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Sets, empty set, space, complement, union and intersection (with the index notation and the
family notation), set­theoretic difference, symetric difference, countable (finite and infinite) union
and intersection, laws of de Morgan, increasing and decreasing sequence of sets (analogy to mono­
tone sequence of numbers and of functions), limsup and liminf (and limit) of a sequence of sets,
power set of a set.
Functions, images and inverse images of sets (union, intersection, complement). Sums and prod­
ucts of functions. Convergence and uniform convergence of sequences of functions.
Topology, open sets, closed sets, basic properties (unions, intersections, etc), interior, closure,
boundary. Metric spaces, balls. Euclidean spaces. Subspace (or relative) topology. The extended
real line, and the extended complex plane. Continuous functions. Diameter of a set and distance
between sets in a metric space.
Equivalence and order relations. Equivalence classes. Quotient space. Zorn’s Lemma. Axiom of
Choice.
Linear algebra.
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Chapter 1

Measures.

1.1 σ­algebras.

Definition. LetX be a set, and S be a collection of subsets ofX . We call S a σ­algebra of subsets
of X if it is non­empty, closed under complements, and closed under countably infinite unions.
This means:
(i) there exists at least one A ⊆ X so that A ∈ S ,
(ii) if A ∈ S , then Ac ∈ S ,
(iii) if An ∈ S for all n ∈ N, then

⋃+∞
n=1An ∈ S .

The pair (X,S) of a set X and a σ­algebra S of subsets of X is called a measurable space. The
sets A ∈ S are called S­measurable subsets of X .

If there is no danger of confusion, every A ∈ S shall be called measurable subset ofX or just
measurable set.

Proposition 1.1. Every σ­algebra of subsets ofX contains the sets ∅ andX , it is closed under finite
unions (and, thus, under countable unions), under countable intersections, and under set­theoretic
differences.

Proof. Let S be any σ­algebra of subsets of X .
Let An ∈ S for all n ∈ N. Then Ac

n ∈ S for all n ∈ N. Therefore
⋃+∞

n=1A
c
n ∈ S , and hence

(
⋃+∞

n=1A
c
n)

c ∈ S . Since ⋂+∞
n=1An = (

⋃+∞
n=1A

c
n)

c,

we get that
⋂+∞

n=1An ∈ S .
LetA1, . . . , AN ∈ S . We considerAn = AN for all n ∈ N, n > N , and we have that

⋃N
n=1An =⋃+∞

n=1An. Since
⋃+∞

n=1An ∈ S , we conclude that
⋃N

n=1An ∈ S .
Similarly, we have that

⋂N
n=1An =

⋂+∞
n=1An. Since

⋂+∞
n=1An ∈ S , we get that

⋂N
n=1An ∈ S .

Now let A ∈ S . Then Ac ∈ S , and so ∅ = A ∩Ac ∈ S and X = A ∪Ac ∈ S .
Finally, let A,B ∈ S . Then Bc ∈ S , and so A \B = A ∩Bc ∈ S .

Here are some simple examples.

Example. The collection {∅, X} is a σ­algebra, the smallest possible, of subsets of the setX .

Example. P(X), the collection of all subsets of X , is a σ­algebra, the largest possible, of subsets
of X .

Example. If E ⊆ X , then {∅, E,Ec, X} is a σ­algebra of subsets of X . In fact, it is the smallest
σ­algebra of subsets of X containing E.
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Example. Let X be uncountable. The collection S = {A ⊆ X | either A or Ac is countable} is
a σ­algebra of subsets of X . Let us see why.
Firstly, ∅ is countable, and so S is non­empty.
If A ∈ S , then, considering cases, we see that Ac ∈ S .
Finally, letAn ∈ S for all n ∈ N. If everyAn is countable, then

⋃+∞
n=1An is also countable, and so⋃+∞

n=1An ∈ S . Otherwise, at least one of theAc
n, sayAc

n0
, is countable. Since (

⋃+∞
n=1An)

c ⊆ Ac
n0
,

we have that (
⋃+∞

n=1An)
c is also countable, and so again

⋃+∞
n=1An ∈ S .

The following result is useful.

Lemma 1.1. Let S be a σ­algebra of subsets ofX . Then for every finite or infinite sequence (An)
in S there exists a finite or infinite, respectively, sequence (Bn) in S such that:
(i) Bn ⊆ An for all n,
(ii) B1 ∪B2 ∪ · · · = A1 ∪A2 ∪ · · · ,
(iii) the Bn are pairwise disjoint.

Proof. We consider B1 = A1, and Bn = An \ (A1 ∪ · · · ∪An−1) for all relevant n ≥ 2.

Of course we know that a sequence (xn) of real numbers is called increasing or decreasing if
xn ≤ xn+1 for all n or, respectively, if xn+1 ≤ xn for all n. Similarly, a sequence (fn) of real
valued functions, with A as their common domain of definition, is called increasing or decreasing
if fn ≤ fn+1 on A for all n or, respectively, if fn+1 ≤ fn on A for all n. Now, a sequence (An)
of sets is called increasing or decreasing if An ⊆ An+1 for all n or, respectively, if An+1 ⊆ An

for all n.

Exercises.

1.1.1. Let An ⊆ X for every n ∈ N. We set

limn→+∞An =
⋃+∞

k=1

(⋂+∞
j=k Aj

)
, limn→+∞An =

⋂+∞
k=1

(⋃+∞
j=k Aj

)
.

Only if limn→+∞An = limn→+∞An, we define

limn→+∞An = limn→+∞An = limn→+∞An.

Prove the following.
(i) limn→+∞An = {x ∈ X |x ∈ An for all large enough n}.
(ii) limn→+∞An = {x ∈ X |x ∈ An for infinitely many n}.
(iii) (limn→+∞An)

c = limn→+∞A
c
n and (limn→+∞An)

c = limn→+∞A
c
n.

(iv) limn→+∞An ⊆ limn→+∞An.
(v) If (An) is increasing, then limn→+∞An =

⋃+∞
n=1An.

(vi) If (An) is decreasing, then limn→+∞An =
⋂+∞

n=1An.
(vii) IfAn ⊆ Bn for all n, then limn→+∞An ⊆ limn→+∞Bn and limn→+∞An ⊆ limn→+∞Bn.
(viii) If An = B, if n is even, and An = C, if n is odd, then limn→+∞An = B ∩ C, and
limn→+∞An = B ∪ C.
(ix) If An = Bn ∪ Cn for all n, then (limn→+∞Bn) ∪ (limn→+∞Cn) ⊆ limn→+∞An and
limn→+∞An = (limn→+∞Bn) ∪ (limn→+∞Cn).
(x) If An = Bn ∩ Cn for all n, then (limn→+∞Bn) ∩ (limn→+∞Cn) = limn→+∞An and
limn→+∞An ⊆ (limn→+∞Bn) ∩ (limn→+∞Cn).

1.1.2. Let SX be a σ­algebra of subsets of X , and f : X → Y . Then

SY = {B ⊆ Y | f−1(B) ∈ SX}

is called the push­forward of SX by f on Y . Prove that SY is a σ­algebra of subsets of Y .
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1.1.3. Let SY be a σ­algebra of subsets of Y , and f : X → Y . Then

SX = {f−1(B) |B ∈ SY }

is called the pull­back of SY by f on X . Prove that SX is a σ­algebra of subsets of X .

GENERATED σ­ALGEBRAS.

Proposition 1.2. The intersection of σ­algebras of subsets of X is a σ­algebra of subsets of X .

Proof. Let S be any collection of σ­algebras of subsets of X , and consider S0 =
⋂
{S | S ∈ S}.

Since ∅ ∈ S for all S ∈ S, we get ∅ ∈ S0, and so S0 is non­empty.
Let A ∈ S0. Then A ∈ S for all S ∈ S. Since every S ∈ S is a σ­algebra, Ac ∈ S for all S ∈ S.
Therefore, Ac ∈ S0.
Let An ∈ S0 for all n ∈ N. Then An ∈ S for all S ∈ S and all n ∈ N. Since every S ∈ S is a
σ­algebra,

⋃+∞
n=1An ∈ S for all S ∈ S. Thus,

⋃+∞
n=1An ∈ S0.

Definition. Let C be any collection of subsets ofX . The intersection of all σ­algebras S of subsets
of X such that C ⊆ S is called the σ­algebra generated by C and we denote it S(C). I.e.

S(C) =
⋂
{S | S is a σ­algebra of subsets of X and C ⊆ S}.

Note that there is at least one σ­algebra S of subsets ofX such that C ⊆ S , namely S = P(X).
Note also that the term σ­algebra used for S(C) is justified by its definition and Proposition 1.2.

The next straightforward result serves as a tool in many of the following proofs.

Proposition 1.3. Let C be any collection of subsets of X . Then S(C) is the smallest σ­algebra S
of subsets of X such that C ⊆ S . In other words,
(i) S(C) is a σ­algebra of subsets of X ,
(ii) C ⊆ S(C),
(iii) if S is any σ­algebra of subsets of X such that C ⊆ S , then S(C) ⊆ S .

Proof. Obvious from the definition of S(C).

Looking back at two of our examples of σ­algebras, we easily get the following.

Example. Let E ⊆ X , and consider C = {E}. Then S(C) = {∅, E,Ec, X}.
In fact, {∅, E,Ec, X} is a σ­algebra of subsets of X and C ⊆ {∅, E,Ec, X}. Moreover, there
can be no smaller σ­algebra S of subsets of X such that C ⊆ S , since such a σ­algebra S must
necessarily contain ∅, X and Ec, besides E.

Example. Let X be an uncountable set, and consider C = {A ⊆ X |A is countable}. Then
S(C) = {A ⊆ X | either A or Ac is countable}.
We know that {A ⊆ X | either A or Ac is countable} is a σ­algebra of subsets of X and, ob­
viously, C ⊆ {A ⊆ X | either A or Ac is countable}. Also, there is no smaller σ­algebra S of
subsets of X such that C ⊆ S , since any such σ­algebra S must contain all the complements of
countable subsets of X , besides the countable subsets of X .

Exercises.

1.1.4. Let C1, C2 be two collections of subsets of X . If C1 ⊆ C2 ⊆ S(C1), prove S(C1) = S(C2).

1.1.5. Let C1, C2 be two collections of subsets of X . Prove that S(C1) = S(C2) if and only if
C1 ⊆ S(C2) and C2 ⊆ S(C1).
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1.1.6. Let X be a set. In the next three cases find S(C).
(i) C = ∅.
(ii) C = {F |E ⊆ F ⊆ X} for some fixed E ⊆ X .
(iii) C = {F |F is a two­point subset of X}.

1.1.7. Let SX be a σ­algebra of subsets ofX , and f : X → Y , and let CY be a collection of subsets
of Y . If f−1(B) ∈ SX for all B ∈ CY , prove that f−1(B) ∈ SX for all B ∈ S(CY ).
Hint. You may consider the push­forward SY of SX by f on Y (see exercise 1.1.2).

1.1.8. Let C be a collection of subsets ofX . Prove that for everyA ∈ S(C) there is some countable
subcollection D of C so that A ∈ S(D).
Hint. Prove that

⋃
{S(D) | D is a countable subcollection of C} is a σ­algebra of subsets of X .

ALGEBRAS AND MONOTONE CLASSES.

Definition. Let A be a collection of subsets of X . We call A an algebra of subsets of X if it is
non­empty, closed under complements, and closed under unions. This means:
(i) there exists at least one A ⊆ X so that A ∈ A,
(ii) if A ∈ A, then Ac ∈ A,
(iii) if A,B ∈ A, then A ∪B ∈ A.

Proposition 1.4. Every algebra of subsets ofX contains the sets ∅ andX , it is closed under finite
unions, under finite intersections, and under set­theoretic differences.

Proof. Similar to the proof of Proposition 1.1.

Example. Every σ­algebra of subsets of X is also an algebra of subsets of X .

Example. IfX is an infinite set, then the collectionA = {A ⊆ X | either A or Ac is finite} is an
algebra of subsets of X , but not a σ­algebra of subsets of X .
The proof thatA is an algebra is similar to the proof in the last example of the first subsection. To
prove thatA is not a σ­algebra, we consider any countably infinite A ⊆ X so that Ac is infinte. If
A = {x1, x2, . . .}, then the sets An = {x1, . . . , xn} belong to A and

⋃+∞
n=1An = A, but A does

not belong to A.

Definition. LetM be a collection of subsets ofX . We callM amonotone class of subsets ofX if
it is closed under countable increasing unions and under countable decreasing intersections. I.e.
(i) if An ∈ M for all n ∈ N and (An) is increasing, then

⋃+∞
n=1An ∈ M,

(ii) if An ∈ M for all n ∈ N and (An) is decreasing, then
⋂+∞

n=1An ∈ M.

It is obvious that every σ­algebra is a non­empty monotone class.

Proposition 1.5. The intersection of monotone classes of subsets ofX is a monotone class of sub­
sets of X .

Proof. Take any collectionM of monotone classes of subsets ofX , andM0 =
⋂
{M|M ∈ M}.

LetAn ∈ M0 for all n ∈ N and (An) be increasing. ThenAn ∈ M for allM ∈ M and all n ∈ N.
Since every M ∈ M is a monotone class, we have that

⋃+∞
n=1An ∈ M for all M ∈ M. Thus,⋃+∞

n=1An ∈ M0, and soM0 is closed under countable increasing unions.
Similarly, let An ∈ M0 for all n ∈ N and (An) be decreasing. Then An ∈ M for allM ∈ M and
all n ∈ N. Since everyM ∈ M is a monotone class, we have that

⋂+∞
n=1An ∈ M for allM ∈ M.

Hence,
⋂+∞

n=1An ∈ M0, and soM0 is closed under countable decreasing intersections.
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Definition. Let C be any collection of subsets of X . The intersection of all monotone classes M
of subsets of X such that C ⊆ M is called the monotone class generated by C and we denote it
M(C). I.e.

M(C) =
⋂
{M|M is a monotone class of subsets of X and C ⊆ M}.

There is at least one monotone class M of subsets of X such that C ⊆ M, namely M =
P(X). We also note that the term monotone class used forM(C) is justified by its definition and
Proposition 1.5.

Proposition 1.6. Let C be any collection of subsets of X . Then M(C) is the smallest monotone
classM of subsets of X such that C ⊆ M. In other words,
(i)M(C) is a monotone class of subsets of X ,
(ii) C ⊆ M(C),
(iii) ifM is any monotone class of subsets of X such that C ⊆ M, then M(C) ⊆ M.

Proof. Obvious from the definition ofM(C).

Proposition 1.7. Let A be an algebra of subsets of X . Then M(A) = S(A).

Proof. S(A) is a σ­algebra and, hence, a monotone class. Since A ⊆ S(A), Proposition 1.6
impliesM(A) ⊆ S(A).
Now it is enough to prove thatM(A) is a σ­algebra. SinceA ⊆ M(A), Proposition 1.3 will then
immediately imply that S(A) ⊆ M(A), and this will conclude the proof.
M(A) is non­empty, since ∅ ∈ A ⊆ M(A).
Now fix any A ∈ A and consider the collection

MA = {B ⊆ X |A ∪B ∈ M(A)}.

It is very easy to show that A ⊆ MA and thatMA is a monotone class of subsets of X .
In fact, if B ∈ A, then A ∪B ∈ A ⊆ M(A), and so B ∈ MA.
Also, let Bn ∈ MA for all n ∈ N and (Bn) be increasing. Then A ∪ Bn ∈ M(A) for all n ∈ N
and (A ∪Bn) is increasing. SinceM(A) is a monotone class,

⋃+∞
n=1(A ∪Bn) ∈ M(A). Since⋃+∞

n=1(A ∪Bn) = A ∪
(⋃+∞

n=1Bn

)
,

we get A ∪
(⋃+∞

n=1Bn

)
∈ M(A), and so

⋃+∞
n=1Bn ∈ MA. Therefore, MA is closed under

countable increasing unions.
In the same manner we can prove thatMA is closed under countable decreasing intersections, and
we conclude that it is a monotone class.
Proposition 1.6 impliesM(A) ⊆ MA. This means:

A ∪B ∈ M(A) for all A ∈ A and all B ∈ M(A). (1.1)

Now fix any B ∈ M(A) and considerMB = {A ⊆ X |A ∪B ∈ M(A)} again.
We just proved thatMB is a monotone class of subsets ofX . Moreover, (1.1) implies A ⊆ MB .
Again, Proposition 1.6 impliesM(A) ⊆ MB , which means:

A ∪B ∈ M(A) for all A ∈ M(A) and all B ∈ M(A). (1.2)

Now consider the collection

M = {A ⊆ X |Ac ∈ M(A)}.

8



Assume that An ∈ M for every n ∈ N and that (An) is increasing. Then Ac
n ∈ M(A) for every

n ∈ N and (Ac
n) is decreasing. SinceM(A) is a monotone class, we get that

⋂+∞
n=1A

c
n ∈ M(A).

Since ⋂+∞
n=1A

c
n =

(⋃+∞
n=1An

)c
,

we have that
(⋃+∞

n=1An

)c ∈ M(A) and so
⋃+∞

n=1An ∈ M. Therefore, M is closed under
countable increasing unions.
In the same manner we can prove that M is closed under countable decreasing intersections, and
we conclude that M is a monotone class. Moreover, A ⊆ M (because, if A ∈ A, then Ac ∈ A,
and so Ac ∈ M(A), and so A ∈ M). Hence,M(A) ⊆ M, which means:

Ac ∈ M(A) for all A ∈ M(A). (1.3)

Now (1.2) and (1.3) imply thatM(A) is an algebra of subsets of X .
Finally, let An ∈ M(A) for all n ∈ N. We consider Bn = A1 ∪ · · · ∪ An for all n. SinceM(A)
is an algebra, Bn ∈ M(A) for all n. It is clear that (Bn) is increasing, and, since M(A) is a
monotone class,

⋃+∞
n=1Bn ∈ M(A). But⋃+∞

n=1An =
⋃+∞

n=1Bn,

and so
⋃+∞

n=1An ∈ M(A).
Therefore,M(A) is a σ­algebra.

Exercises.

1.1.9. Let A be an algebra of subsets of X . Prove that A is a σ­algebra if and only if it is closed
under countable increasing unions.

1.1.10. Prove that the intersection of algebras of subsets ofX is an algebra of subsets of X .

1.1.11. FindM(C) in the three cases of exercise 1.1.6.

1.1.12. Prove that every finite collection of subsets of X is a monotone class of subsets of X .

RESTRICTION OF A σ­ALGEBRA.

Definition. Let C be any collection of subsets ofX , and Y ⊆ X . We define

CeY = {A ∩ Y |A ∈ C}.

This is a collection of subsets of Y , and we call it the restriction of C on Y .

Proposition 1.8. Let S be a σ­algebra of subsets of X , and Y ⊆ X . Then SeY is a σ­algebra of
subsets of Y . If, also, Y ∈ S , then SeY = {A ⊆ Y |A ∈ S}.

Proof. Since ∅ ∈ S , we have that ∅ = ∅ ∩ Y ∈ SeY .
Let B ∈ SeY . Then B = A ∩ Y for some A ∈ S . Since

Y \B = (X \A) ∩ Y

and X \A ∈ S , we have that Y \B ∈ SeY .
Let Bn ∈ SeY for every n ∈ N. Then for each n there is An ∈ S so that Bn = An ∩ Y . Since⋃+∞

n=1Bn =
⋃+∞

n=1(An ∩ Y ) =
(⋃+∞

n=1An

)
∩ Y

and
⋃+∞

n=1An ∈ S , we find that
⋃+∞

n=1Bn ∈ SeY .
Therefore, SeY is a σ­algebra of subsets of Y .
Now let Y ∈ S .
If B ∈ SeY , then B = A ∩ Y for some A ∈ S , and so B ⊆ Y and B ∈ S . Therefore,
B ∈ {C ⊆ Y |C ∈ S}. Conversely, if B ∈ {C ⊆ Y |C ∈ S}, then B ⊆ Y and B ∈ S. We set
A = B, and we get B = A ∩ Y and A ∈ S . Hence, B ∈ SeY .
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Proposition 1.9. Let C be a collection of subsets ofX , and Y ⊆ X . If S(CeY ) is the σ­algebra of
subsets of Y generated by CeY , then S(CeY ) = S(C)eY .

Proof. If B ∈ CeY , then B = A ∩ Y for some A ∈ C ⊆ S(C), and so B ∈ S(C)eY . Thus,
CeY ⊆ S(C)eY . Proposition 1.8 says that S(C)eY is a σ­algebra of subsets of Y , and now
Proposition 1.3 implies S(CeY ) ⊆ S(C)eY .
Now we define the following collection of subsets ofX:

S = {A ⊆ X |A ∩ Y ∈ S(CeY )}.

We have that ∅ ∈ S , because ∅ ∩ Y = ∅ ∈ S(CeY ).
If A ∈ S , then A ∩ Y ∈ S(CeY ). Then X \A ∈ S , since

(X \A) ∩ Y = Y \ (A ∩ Y ) ∈ S(CeY ).

If An ∈ S for all n ∈ N, then An ∩ Y ∈ S(CeY ) for all n ∈ N. This implies that(⋃+∞
n=1An

)
∩ Y =

⋃+∞
n=1(An ∩ Y ) ∈ S(CeY ),

and so
⋃+∞

n=1An ∈ S .
We conclude that S is a σ­algebra of subsets of X .
If A ∈ C, then A ∩ Y ∈ CeY ⊆ S(CeY ), and so A ∈ S . Thus, C ⊆ S , and now Proposition 1.3
implies S(C) ⊆ S .
Now, for an arbitrary B ∈ S(C)eY , we have that B = A ∩ Y for some A ∈ S(C) ⊆ S and, thus,
B ∈ S(CeY ). Hence, S(C)eY ⊆ S(CeY ).

Exercises.

1.1.13. Let Y ⊆ X , and A be an algebra of subsets ofX . Prove that AeY is an algebra of subsets
of Y .

BOREL σ­ALGEBRAS.

Definition. Let X be a topological space, and T be the topology of X , i.e. the collection of all
open subsets of X . The σ­algebra of subsets of X which is generated by T , namely the smallest
σ­algebra S of subsets of X such that T ⊆ S , is called the Borel σ­algebra of X and we denote
it BX . I.e.

BX = S(T ).

The elements of BX are called Borel subsets of X , and BX is also called the σ­algebra of Borel
subsets of X .

If there is no danger of confusion, we shall say open set instead of open subset ofX and Borel
set instead of Borel subset of X .

By definition, all open sets are Borel sets and, since BX is a σ­algebra, all closed sets (which
are the complements of open sets) are also Borel sets. Hence, every countable intersection of open
sets and every countable union of closed sets is a Borel set.

If X is a topological space with topology T and if Y ⊆ X , then, as is well­known (and easy
to prove), the collection T eY = {U ∩ Y |U ∈ T } is a topology of Y which is called the relative
topology or the subspace topology of Y .

Proposition 1.10. Let Y ⊆ X . IfX is a topological space and Y has the subspace topology, then
BY = BXeY .

Proof. An application of Proposition 1.9: BY = S(T eY ) = S(T )eY = BXeY .
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Thus, the Borel subsets of Y (with the subspace topology of Y ) are just the intersections with
Y of the Borel subsets of X .

Examples of topological spaces are the metric spaces. The most familiar metric space is the
Euclidean space Rn with the usual Euclidean metric. Because of the importance of Rn we shall
pay particular attention to BRn . Instead of BRn we shall use the simpler symbol Bn:

Bn = BRn .

The typical bounded orthogonal parallelepiped with axis­parallel edges in Rn is a set of the
form S = I1 × · · · × In, where each Ij is a bounded interval in R. The bounded orthogonal
parallelepipeds with axis­parallel edges are called closed or open or open­closed or closed­open if
they are, respectively, of the formQ = [a1, b1]× · · ·× [an, bn] orR = (a1, b1)× · · ·× (an, bn) or
P = (a1, b1]× · · · × (an, bn] or T = [a1, b1)× · · · × [an, bn). An orthogonal parallelepiped with
axis­parallel edges S = I1 × · · · × In is empty if at least one of the Ij is the empty interval in R.

If we allow at least one of the intervals Ij inR to be unbounded (and none of them to be empty),
then S = I1 × · · · × In is the typical unbounded orthogonal parallelepiped with axis­parallel
edges in Rn. Again, certain unbounded orthogonal parallelepipeds with axis­parallel edges in Rn

are closed or open or open­closed or closed­open.
Since orthogonal parallelepipeds with axis­parallel edges will play a role in much of the fol­

lowing, we agree to call them, for short, n­dimensional intervals or intervals in Rn.
The typical open­closed interval in Rn is of the form P = (a1, b1] × · · · × (an, bn], where

−∞ ≤ aj ≤ bj ≤ +∞ for all j. (Of course, when we write (a,+∞] we mean (a,+∞).) The
space Rn is an open­closed interval, as well as any of the half spaces {(x1, . . . , xn) |xj ≤ bj} and
{(x1, . . . , xn) | aj < xj}. In fact, every open­closed interval in Rn is, obviously, the intersection
of 2n such half­spaces.

Proposition 1.11. All n­dimensional intervals are Borel sets in Rn.

Proof. A half­space of the form {(x1, . . . , xn) |xj < bj} or of the form {(x1, . . . , xn) |xj ≤ bj}
is a Borel set inRn, since it is an open set or a closed set, respectively. Similarly, a half­space of the
form {(x1, . . . , xn) | aj < xj} or of the form {(x1, . . . , xn) | aj ≤ xj} is a Borel set in Rn. Now,
an interval S in Rn is the intersection of 2n such half­spaces and so it is a Borel set in Rn.

Proposition 1.12. (i) If C is the collection of all closed or of all open or of all open­closed or of all
closed­open bounded intervals or of all bounded intervals in Rn, then Bn = S(C).
(ii) If C is the collection of all intervals (a,+∞) in R, then B1 = S(C).

Proof. (i) In all cases, Proposition 1.11 implies C ⊆ Bn, and so S(C) ⊆ Bn.
To show the opposite inclusion we consider any open subset U of Rn. For every x ∈ U there
is a small open ball Bx centered at x which is included in U . Now, considering the case of C
being the collection of all closed bounded intervals, there is a Qx = [a1, b1] × · · · × [an, bn]
containing x, which is small enough so that it is included in Bx, and hence in U , and with all
a1, . . . , an, b1, . . . , bn being rational numbers. Since x ∈ Qx ⊆ U for all x ∈ U , we have that

U =
⋃

x∈U Qx.

But the collection of all possible Qx is countable, and so the general open subset U of Rn can be
written as a countable union of sets in the collection C. Therefore, every open subset U of Rn

belongs to S(C). Since S(C) is a σ­algebra of subsets of Rn, and since Bn is generated by the
collection of all open subsets of Rn, we conclude that Bn ⊆ S(C).
Of course, the proof of the last inclusion works in the same manner with all other types of intervals.
(ii) Again, we have that C ⊆ B1, and so S(C) ⊆ B1.
Moreover, (a, b] = (a,+∞) \ (b,+∞) ∈ S(C) for all (a, b]. By (i), the collection of all (a, b]
generates B1. Therefore, B1 ⊆ S(C).
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Proposition 1.13. The collection

A =
{⋃k

i=1 Pi

∣∣ k ∈ N, P1, . . . , Pk are pairwise disjoint open­closed intervals in Rn
}

is an algebra of subsets of Rn. In particular, the following are true:
(i) The intersection of two open­closed intervals is an open­closed interval.
(ii) For all open­closed intervals P, P1, . . . , Pm there are pairwise disjoint open­closed intervals
P ′1, . . . , P

′
k so that P \ (P1 ∪ · · · ∪ Pm) = P ′1 ∪ · · · ∪ P ′k.

(iii) For all open­closed intervals P1, . . . , Pm there are pairwise disjoint open­closed intervals
P ′1, . . . , P

′
k so that P1 ∪ · · · ∪ Pm = P ′1 ∪ · · · ∪ P ′k.

Proof. If P ′ = (a′1, b
′
1] × · · · × (a′n, b

′
n] and P ′′ = (a′′1, b

′′
1] × · · · × (a′′n, b

′′
n] are not disjoint, then

aj < bj for all j, where aj = max{a′j , a′′j } and bj = min{b′j , b′′j }, and then

P ′ ∩ P ′′ = (a1, b1]× · · · × (an, bn].

This proves (i).
If A′ =

⋃k
i=1 P

′
i and A′′ =

⋃l
j=1 P

′′
j , where the open­closed intervals P ′1, . . . , P ′k are pairwise

disjoint and the open­closed intervals P ′′1 , . . . , P ′′l are also pairwise disjoint, then

A′ ∩A′′ =
⋃

1≤i≤k, 1≤j≤l(P
′
i ∩ P ′′j ).

The sets P ′i ∩ P ′′j are pairwise disjoint open­closed intervals, as we have just seen.
Thus, A is closed under finite intersections.
Consider the open­closed interval P = (a1, b1] × · · · × (an, bn]. It is easy to see that P c can be
written as the union of 2n pairwise disjoint open­closed intervals. To express this in a concise way,
for every I = (a, b] denote I(l) = (−∞, a] and I(r) = (b,+∞] the left and right complementary
intervals of I in R (they may be empty). If we write P = I1 × · · · × In, then P c is equal to

(I
(l)
1 × R× · · · × R) ∪ (I

(r)
1 × R× · · · × R)

∪ (I1 × I
(l)
2 × R× · · · × R) ∪ (I1 × I

(r)
2 × R× · · · × R)

· · · · · · · · · · · ·

∪ (I1 × · · · × In−2 × I
(l)
n−1 × R) ∪ (I1 × · · · × In−2 × I

(r)
n−1 × R)

∪ (I1 × · · · × In−1 × I(l)n ) ∪ (I1 × · · · × In−1 × I(r)n ),

i.e. the union of pairwise disjoint open­closed intervals. Thus, the complement P c of every open­
closed interval P is an element of A.
Now, if A =

⋃k
i=1 Pi, where the open­closed intervals P1, . . . , Pk are pairwise disjoint, is any

element of A, then Ac =
⋂k

i=1 P
c
i is a finite intersection of elements of A. Since A is closed

under finite intersections, we have that Ac ∈ A, and so A is closed under complements.
Finally, if A′, A′′ ∈ A, then A′ ∪A′′ = (A′c ∩A′′c)c ∈ A, and so A is closed under finite unions.
Therefore, A is an algebra of subsets of Rn, and then (ii) and (iii) are immediate.

It is convenient for certain purposes, and especially because functions are often infinite valued,
to consider R = R ∪ {+∞,−∞} and C = C ∪ {∞} as topological spaces and define their Borel
σ­algebras.

The ϵ­neighborhood of a point x ∈ R is, as usual, the interval (x−ϵ, x+ϵ). Now we define the
ϵ­neighborhood of +∞ to be (1ϵ ,+∞], and the ϵ­neighborhood of −∞ to be [−∞,−1

ϵ ). We also
say that U ⊆ R is an open subset of R if every point of U has an ϵ­neighborhood (the ϵ depending
on the point) which is included in U . It is trivial to see (justifying the term open) that the collection
of all open subsets of R is a topology of R, namely that it contains the sets ∅ and R and that it is
closed under arbitrary unions and under finite intersections. It is obvious that a set U ⊆ R is an
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open subset of R if and only if it is an open subset of R. In particular, R itself is an open subset of
R. It is also obvious that, if a set U ⊆ R is an open subset of R, then U ∩ R is an open subset of
R. Therefore, the topology of R coincides with its subspace topology as a subset of R.

The next result says, in particular, thatwemay construct the general Borel subset ofR by taking
the general Borel subset of R and adjoining none or any one or both of the points +∞, −∞ to it.

Proposition 1.14. (i) B1 = B1eR, where we denote B1 the Borel σ­algebra of R.
(ii) B1 =

{
A,A ∪ {+∞}, A ∪ {−∞}, A ∪ {+∞,−∞} |A ∈ B1

}
.

(iii) If C is the collection containing {+∞} or {−∞} and all closed or all open or all open­closed
or all closed­open or all bounded intervals in R, then B1 = S(C).
(iv) If C is the collection of all intervals (a,+∞] in R, then B1 = S(C).

Proof. (i) Immediate from Proposition 1.10.
(ii) R is open in R, and so R ∈ B1. Now (i) and the last statement in Proposition 1.8 imply that

B1 = {A ⊆ R |A ∈ B1}.

Therefore, ifA ∈ B1, thenA ∈ B1. Also, [−∞,+∞) is open inR, and so {+∞} ∈ B1. Similarly,
{−∞} ∈ B1 and {+∞,−∞} ∈ B1, and we conclude that{

A,A ∪ {+∞}, A ∪ {−∞}, A ∪ {+∞,−∞} |A ∈ B1

}
⊆ B1.

Conversely, let B ∈ B1 and consider A = B ∩ R ∈ B1. Then B = A or B = A ∪ {+∞} or
B = A ∪ {−∞} or B = A ∪ {+∞,−∞}, and we conclude that

B1 ⊆
{
A,A ∪ {+∞}, A ∪ {−∞}, A ∪ {+∞,−∞} |A ∈ B1

}
.

(iii) Let C =
{
{+∞}, (a, b] | −∞ < a ≤ b < +∞

}
.

From all the above we get that C ⊆ B1, and so S(C) ⊆ B1.
IfA ∈ B1, then Proposition 1.12 impliesA ∈ S(C). In particular,R ∈ S(C), and so (−∞,+∞] =
R ∪ {+∞} ∈ S(C). Therefore, {−∞} = R \ (−∞,+∞] ∈ S(C), and {+∞,−∞} = {+∞} ∪
{−∞} ∈ S(C). From all these and from (ii) we conclude that

B1 =
{
A,A ∪ {+∞}, A ∪ {−∞}, A ∪ {+∞,−∞} |A ∈ B1

}
⊆ S(C).

The proof is similar for all other choices of C.
(iv) We have that C ⊆ B1, and so S(C) ⊆ B1.
Now, {+∞} =

⋂+∞
n=1(n,+∞] ∈ S(C). Also (a, b] = (a,+∞] \ (b,+∞] ∈ S(C) for all (a, b].

By (iii), the collection containing {+∞} and all (a, b] generates B1. Therefore, B1 ⊆ S(C).

We now turn to the case of C = C ∪ {∞}.
The ϵ­neighborhood of a point x = (x1, x2) = x1 + ix2 ∈ C is, as usual, the open disc

B(x; ϵ) = {y = (y1, y2) ∈ C | |y − x| < ϵ}, where |y − x| = ((y1 − x1)
2 + (y2 − x2)

2)1/2. We
define the ϵ­neighborhood of∞ to be the set

{
y ∈ C

∣∣ |y| > 1
ϵ

}
∪ {∞}, i.e. the complement of a

closed disc centered at 0 (together with the point ∞). We say that U ⊆ C is an open subset of C
if every point of U has an ϵ­neighborhood (the ϵ depending on the point) which is included in U .
The collection of all open subsets of C contains ∅ and C and it is closed under arbitrary unions and
under finite intersections, thus forming a topology of C. It is clear that U ⊆ C is an open subset
of C if and only if it is an open subset of C. In particular, C itself is an open subset of C. Also, if
U ⊆ C is an open subset of C, then U ∩ C is an open subset of C. Therefore, the topology of C
coincides with its subspace topology as a subset of C.

As in the case ofR, we may construct the general Borel subset ofC by taking the general Borel
subset of C and at most adjoining the point∞ to it.
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Proposition 1.15. (i) B2 = B2eC, where we denote B2 the Borel σ­algebra of C.
(ii) B2 =

{
A,A ∪ {∞} |A ∈ B2

}
.

(iii) If C is the collection of all closed or all open or all open­closed or all closed­open or all
bounded intervals in C = R2, then B2 = S(C).

Proof. The proof is very similar to (and slightly simpler than) the proof of Proposition 1.14.

Exercises.

1.1.14. Let Y ⊆ X . If T is a topology of X , prove that T eY is a topology of Y .

1.1.15. Let X be a topological space, and F be the collection of all closed subsets of X . Prove
that BX = S(F).

1.1.16. If X,Y are two topological spaces and f : X → Y is continuous, prove that f−1(B) is a
Borel subset of X for every Borel subset B of Y .
Hint. Exercise 1.1.7 may help.

1.1.17. If Y is a Borel subset of the topological spaceX , prove that BY = {A ⊆ Y |A ∈ BX}.

1.1.18. (i) Let C be the collection of all half­spaces in Rn of the form {(x1, . . . , xn) | aj < xj},
where j = 1, . . . , n and aj ∈ R. Prove that Bn = S(C).
(ii) Let C be the collection of all open balls B(x; r) or of all closed balls B(x; r), where x ∈ Rn

and r > 0. Prove that Bn = S(C).

1.1.19. Let C be the collection of all open discsB(x; r) or of all closed discsB(x; r), where x ∈ C
and r > 0. Prove that B2 = S(C).

1.1.20. LetX be a metric space. Prove that every closed subset ofX is a countable intersection of
open subsets of X , and that every open subset of X is a countable union of closed subsets of X .
Hint. If F is a closed subset ofX , consider the setsUn = {x ∈ X | d(x, y) < 1

n for some y ∈ F},
where n ∈ N and d is the metric of X .

1.1.21. Let X be a topological space, Y be a metric space, and f : X → Y . Prove that the set
{x ∈ X | f is continuous at x} is a countable intersection of open subsets ofX .
Hint. Consider the sets Un =

⋃
y∈Y int

(
f−1

(
B
(
y; 1

n

)))
for n ∈ N, where int(A) is the interior

of A ⊆ X , and B(y; r) is the open ball in Y with center y ∈ Y and radius r > 0.

1.1.22. Let X be a topological space, Y be a metric space, and fk : X → Y for k ∈ N.
Assume that Y is complete and separable, and that every fk is continuous on X . Prove that
{x ∈ Rn | (fk(x)) converges} is a countable intersection of countable unions of closed subsets
of X .
Hint. Consider the sets Un =

⋃
y∈A

⋃+∞
k=1

⋂+∞
j=k f

−1
j

(
B
(
y; 1

n

))
for n ∈ N, whereA is a countable

set which is dense in Y , and B(y; r) is the closed ball in Y with center y ∈ Y and radius r > 0.

1.2 Measures.

Definition. Let (X,S) be a measurable space. A function µ : S → [0,+∞] is called a measure
on (X,S) if
(i) µ(∅) = 0,
(ii) µ

(⋃+∞
n=1An

)
=

∑+∞
n=1 µ(An) for all sequences (An) of pairwise disjoint elements of S.

The triple (X,S, µ) of a setX , a σ­algebra S of subsets ofX and a measure µ on (X,S) is called
a measure space.
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If there is no danger of confusion, we shall say that µ is a measure on S or a measure on X .
Recall that eachA ∈ S is called a measurable set. Now, the quantity µ(A) is called the μ­measure
of A or, if there is no danger of confusion, just the measure of A.

Note that the values of a measure are non­negative real numbers or +∞.
Property (ii) of a measure is called σ­additivity. Sometimes ameasure is also called σ­additive

measure to distinguish from a finitely additivemeasure µwhich, by definition, satisfies µ(∅) = 0
and µ

(⋃N
n=1An

)
=

∑N
n=1 µ(An) for all N ∈ N and all pairwise disjoint A1, . . . , AN ∈ S .

In fact, it is easy to see that a (σ­additive) measure on a σ­algebra is finitely additive. Indeed,
if A1, . . . , AN ∈ S are pairwise disjoint, we take An = ∅ (and hence µ(An) = 0) for n > N , and
then

µ
(⋃N

n=1An

)
= µ

(⋃+∞
n=1An

)
=

∑+∞
n=1 µ(An) =

∑N
n=1 µ(An).

Example. The simplest measure on a measurable space (X,S) is the zero measure which is de­
noted 0 and it is defined by 0(A) = 0 for every A ∈ S .

Example. LetX be an uncountable set and consider S = {A ⊆ X | either A or Ac is countable}.
We define: µ(A) = 0, if A is countable, and µ(A) = 1, if Ac is countable.
Then it is clear that µ(∅) = 0, and letA1, A2, . . . ∈ S be pairwise disjoint. If allAn are countable,
then

⋃+∞
n=1An is also countable, and we get

µ
(⋃+∞

n=1An

)
= 0 =

∑+∞
n=1 µ(An).

Now, assume that one of theAn, sayAn0 , is uncountable. Then for all n 6= n0 we haveAn ⊆ Ac
n0
,

and so An is countable. Therefore, µ(An0) = 1, and µ(An) = 0 for all n 6= n0. Moreover,
(
⋃+∞

n=1An)
c ⊆ Ac

n0
, and so (

⋃+∞
n=1An)

c is countable. Thus,

µ
(⋃+∞

n=1An

)
= 1 =

∑+∞
n=1 µ(An).

Therefore, µ is a measure on X .

Example.We consider the measurable space (X,P(X)), and we define ♯ : P(X) → [0,+∞] in
the following manner. We set ♯(A) = card(A), i.e. the cardinality of A, if A is a finite subset of
X . We also set ♯(A) = +∞ if A is an infinite subset of X .
Clearly, ♯(∅) = card(∅) = 0. Now let A1, A2, . . . be pairwise disjoint subsets of X . If at most
finitely many of the An are non­empty and those which are non­empty are finite, then

⋃+∞
n=1An is

also finite, and

♯
(⋃+∞

n=1An

)
= card

(⋃+∞
n=1An

)
=

∑+∞
n=1 card(An) =

∑+∞
n=1 ♯(An).

If either at most finitely many of the An are non­empty and at least one of those which are non­
empty is infinite or if infinitely many of the An are non­empty, then

⋃+∞
n=1An is infinite, and

♯
(⋃+∞

n=1An

)
= +∞ =

∑+∞
n=1 ♯(An).

Therefore, ♯ is a measure on (X,P(X)), and it is called the counting measure on X .

Example. Again, we consider the measurable space (X,P(X)) and a particular x0 ∈ X , and we
define δx0 : P(X) → [0,+∞] as follows. We set δx0(A) = 1, if x0 ∈ A, and δx0(A) = 0, if
x0 /∈ A.
Of course, δx0(∅) = 0. Let A1, A2, . . . be pairwise disjoint subsets of X . If x0 /∈ An for every n,
then x0 /∈

⋃+∞
n=1An, and so

δx0

(⋃+∞
n=1An

)
= 0 =

∑+∞
n=1 δx0(An).

If x0 ∈ An for some n, then this n is unique, and also x0 ∈
⋃+∞

n=1An. Hence,

δx0

(⋃+∞
n=1An

)
= 1 =

∑+∞
n=1 δx0(An).

Therefore, δx0 is a measure on (X,P(X)), and it is called the Dirac measure at x0 or the Dirac
mass at x0.
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Proposition 1.16. Let (X,S, µ) be a measure space.
(i) If A,B ∈ S and A ⊆ B, then µ(A) ≤ µ(B).
(ii) If A,B ∈ S , A ⊆ B and µ(A) < +∞, then µ(B \A) = µ(B)− µ(A).
(iii) If A1, A2, . . . ∈ S , then µ

(⋃+∞
n=1An

)
≤

∑+∞
n=1 µ(An).

(iv) If A1, A2, . . . ∈ S and (An) is increasing, then µ
(⋃+∞

n=1An

)
= limn→+∞ µ(An).

(v) If A1, A2, . . . ∈ S , µ(AN ) < +∞ for some N and (An) is decreasing, then µ
(⋂+∞

n=1An

)
=

limn→+∞ µ(An).

Proof. (i) We write B = A ∪ (B \A). By finite additivity of µ,

µ(B) = µ(A) + µ(B \A) ≥ µ(A).

(ii) From both sides of µ(B) = µ(A) + µ(B \A) we subtract µ(A).
(iii) Due to Lemma 1.1, there areB1, B2, . . . ∈ S which are pairwise disjoint, and satisfyBn ⊆ An

for all n, and
⋃+∞

n=1Bn =
⋃+∞

n=1An. By σ­additivity of µ and (i), we get

µ
(⋃+∞

n=1An

)
= µ

(⋃+∞
n=1Bn

)
=

∑+∞
n=1 µ(Bn) ≤

∑+∞
n=1 µ(An).

(iv) We have that ⋃+∞
n=1An = A1 ∪

(⋃+∞
k=1(Ak+1 \Ak)

)
,

where all sets whose union is taken in the right side are pairwise disjoint. Applying σ­additivity
(and finite additivity),

µ
(⋃+∞

n=1An

)
= µ(A1) +

∑+∞
k=1 µ(Ak+1 \Ak) = lim

n→+∞

(
µ(A1) +

∑n−1
k=1 µ(Ak+1 \Ak)

)
= lim

n→+∞
µ
(
A1 ∪

⋃n−1
k=1(Ak+1 \Ak)

)
= lim

n→+∞
µ(An).

(v) We write A =
⋂+∞

n=1An. Then (AN \ An) is increasing and
⋃+∞

n=1(AN \ An) = AN \ A. So
from (iv) we get

limn→+∞ µ(AN \An) = µ(AN \A).

Now, µ(AN ) < +∞ implies µ(An) < +∞ for all n ≥ N and µ(A) < +∞. From (ii) we get

limn→+∞(µ(AN )− µ(An)) = µ(AN )− µ(A)

and, since µ(AN ) < +∞, we find limn→+∞ µ(An) = µ(A).

Property (i) of a measure is calledmonotonicity, property (iii) is called σ­subadditivity, prop­
erty (iv) is called continuity from below, and property (v) is called continuity from above.

Definition. Let (X,S, µ) be a measure space.
(i) µ is called finite if µ(X) < +∞.
(ii) µ is called σ­finite if there exist X1, X2, . . . ∈ S so that

⋃+∞
n=1Xn = X and µ(Xn) < +∞

for all n.
(iii) µ is called semifinite if for every E ∈ S with µ(E) = +∞ there is an F ∈ S so that F ⊆ E
and 0 < µ(F ) < +∞.
(iv) We say that E ∈ S is of finite μ­measure if µ(E) < +∞.
(v) We say thatE ∈ S is of σ­finite μ­measure if there existE1, E2, . . . ∈ S so thatE ⊆

⋃+∞
n=1En

and µ(En) < +∞ for all n.

If there is no danger of confusion, we may say thatE is of finite measure or of σ­finite measure.
Some observations related to the last definition are immediate.

1. If µ is finite, then all sets in S are of finite measure. More generally, if E ∈ S is of finite
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measure, then all subsets of E which belong to S are of finite measure.
2. If µ is σ­finite, then all sets in S are of σ­finite measure. More generally, if E ∈ S is of σ­finite
measure, then all subsets of E which belong to S are of σ­finite measure.
3. The collection of sets of finite measure is closed under finite unions.
4. The collection of sets of σ­finite measure is closed under countable unions.
5. If µ is finite, then it is also σ­finite.

Lemma 1.2. Let (X,S, µ) be a measure space. If µ is σ­finite, then
(i) there exist pairwise disjoint X1, X2, . . . ∈ S so that

⋃+∞
n=1Xn = X and µ(Xn) < +∞ for

every n.
(ii) there exist X1, X2, . . . ∈ S so that (Xn) is increasing and

⋃+∞
n=1Xn = X and µ(Xn) < +∞

for every n.

Proof. By definition, there exist X ′1, X ′2, . . . ∈ S so that
⋃+∞

n=1X
′
n = X and µ(X ′n) < +∞ for

every n.
(i) Due to Lemma 1.1 there are pairwise disjoint X1, X2, . . . ∈ S so that

⋃+∞
n=1Xn = X and

Xn ⊆ X ′n for every n. From the last inclusion we get µ(Xn) ≤ µ(X ′n) < +∞ for every n.
(ii) We take the successive unions X1 = X ′1 and Xn = X ′1 ∪ · · · ∪X ′n for n ≥ 2. Then, clearly,
(Xn) is increasing and

⋃+∞
n=1Xn = X . Moreover, µ(X1) = µ(X ′1) < +∞ and also

µ(Xn) ≤ µ(X ′1) + · · ·+ µ(X ′n) < +∞

for n ≥ 2.

Proposition 1.17. Let (X,S, µ) be a measure space. If µ is σ­finite, then it is semifinite.

Proof. By Lemma 1.2, there are X1, X2, . . . ∈ S so that (Xn) is increasing and
⋃+∞

n=1Xn = X
and µ(Xn) < +∞ for all n.
Let E ∈ S have µ(E) = +∞. Since (E ∩Xn) is increasing and

⋃+∞
n=1(E ∩Xn) = E, we get

limn→+∞ µ(E ∩Xn) = µ(E) = +∞.

Hence, µ(E∩Xn0) > 0 for some n0. Also,E∩Xn0 ⊆ E and µ(E∩Xn0) ≤ µ(Xn0) < +∞.

Definition. Let (X,S, µ) be a measure space. E ∈ S is called μ­null if µ(E) = 0.

If there is no danger of confusion, we shall say that E is null instead of µ­null.
The following is trivial but basic.

Proposition 1.18. Let (X,S, µ) be a measure space.
(i) If E ∈ S is null, then every subset of E which belongs to S is also null.
(ii) If E1, E2, . . . ∈ S are all null, then

⋃+∞
n=1En is null.

Proof. The proof is based on the monotonicity and on the σ­subadditivity of µ.

LINEAR COMBINATIONS OF MEASURES.

Proposition 1.19. Let µ, ν be measures on the measurable space (X,S) and λ ∈ [0,+∞).
(i) We define the function µ+ ν : S → [0,+∞] by

(µ+ ν)(E) = µ(E) + ν(E) for all E ∈ S.

Then µ+ ν is a measure on (X,S).
(ii) We define the function λµ : S → [0,+∞] by

(λµ)(E) = λµ(E) for all E ∈ S

(where we follow the convention: 0 (+∞) = 0 whenever λ = 0 and µ(E) = +∞). Then λµ is a
measure on (X,S).
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Proof. (i) We have (µ+ ν)(∅) = µ(∅) + ν(∅) = 0 + 0 = 0.
If A1, A2, . . . ∈ S are pairwise disjoint, then

(µ+ ν)
(⋃+∞

n=1An

)
= µ

(⋃+∞
n=1An

)
+ ν

(⋃+∞
n=1An

)
=

∑+∞
n=1 µ(An) +

∑+∞
n=1 ν(An)

=
∑+∞

n=1(µ(An) + ν(An)) =
∑+∞

n=1(µ+ ν)(An).

Hence, µ+ ν is a measure on (X,S).
(ii) We have (λµ)(∅) = λµ(∅) = λ 0 = 0.
If A1, A2, . . . ∈ S are pairwise disjoint, then

(λµ)
(⋃+∞

n=1An

)
= λµ

(⋃+∞
n=1An

)
= λ

∑+∞
n=1 µ(An) =

∑+∞
n=1 λµ(An) =

∑+∞
n=1(λµ)(An).

Hence, λµ is a measure on (X,S).

Definition. Let µ, ν be measures on the measurable space (X,S) and λ ∈ [0,+∞). The measures
µ + ν and λµ on (X,S) which are defined in Proposition 1.19 are called sum of µ and ν and
product of µ by λ.

Thus, we may define more general non­negative linear combinations

λ1µ1 + · · ·+ λnµn

of measures.

Exercises.

1.2.1. Let X be uncountable and define µ(E) = 0, if E ⊆ X is countable, and µ(E) = +∞, if
E ⊆ X is uncountable. Prove that µ is a measure on (X,P(X)) which is not semifinite.

1.2.2. Let X be infinite and define µ(E) = 0, if E ⊆ X is finite, and µ(E) = +∞, if E ⊆ X is
infinite. Prove that µ is a finitely additive measure on (X,P(X)) which is not a measure.

1.2.3. Let µ be a finitely additive measure on the measurable space (X,S).
(i) Prove that µ is a measure if and only if it is continuous from below.
(ii) If µ(X) < +∞, prove that µ is a measure if and only if it is continuous from above.

1.2.4. Let (X,S, µ) be a measure space. If A ∈ S , B ⊆ X and µ(A4B) = 0, prove that B ∈ S
and µ(B) = µ(A).

1.2.5. Let (X,S, µ) be a measure space and A1, A2, . . . ∈ S . See exercise 1.1.1, and prove that:
(i) µ

(
limn→+∞An

)
≤ limn→+∞ µ(An),

(ii) limn→+∞ µ(An) ≤ µ
(
limn→+∞An

)
, if µ

(⋃+∞
n=1An

)
< +∞,

(iii) µ
(
limn→+∞An

)
= 0, if

∑+∞
n=1 µ(An) < +∞.

1.2.6. Let µ be a semifinite measure on the measurable space (X,S). Prove that for every E ∈ S
with µ(E) = +∞ and everyM > 0 there is an F ∈ S so that F ⊆ E andM < µ(F ) < +∞.
Hint. Consider the sup{µ(F ) |F ∈ S, F ⊆ E, µ(F ) < +∞}.

1.2.7. Let (X,S, µ) be a measure space and E ∈ S be of σ­finite measure. If {Di}i∈I is a collec­
tion of pairwise disjoint sets in S, prove that the set {i ∈ I |µ(E ∩Di) > 0} is countable.
Hint. If µ(E) < +∞ and n ∈ N, prove that the set

{
i ∈ I

∣∣µ(E ∩Di) ≥ 1
n

}
is finite.

1.2.8. Let (µn) be an increasing sequence of measures on the measurable space (X,S). We define
µ(E) = limn→+∞ µn(E) for all E ∈ S . Prove that µ is a measure on (X,S).
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1.2.9. Let (X,S, µ) be a measure space. Prove that for all n and A1, . . . , An ∈ S we have

µ
(⋃n

j=1Aj

)
+
∑

k even
(∑

1≤i1<···<ik≤n µ(Ai1 ∩ · · · ∩Aik)
)

=
∑

k odd
(∑

1≤i1<···<ik≤n µ(Ai1 ∩ · · · ∩Aik)
)
.

This is called inclusion­exclusion formula.

1.2.10. Let (X,SX , µX) be a measure space and f : X → Y . We consider the push­forward of
SX by f on Y i.e. the σ­algebra SY = {B ⊆ Y | f−1(B) ∈ SX} (see exercise 1.1.2). We define

µY (B) = µX(f−1(B)), B ∈ SY .

Prove that µY is a measure on (Y,SY ). It is called the push­forward of µX by f on Y .

1.2.11. Let (Y,SY , µY ) be a measure space and f : X → Y be one­to­one on X and onto Y . We
consider the pull­back of SY by f onX i.e. the σ­algebra SX = {f−1(B) |B ∈ SY } (see exercise
1.1.3). We define

µX(A) = µY (f(A)), A ∈ SX .

Prove that µX is a measure on (X,SX). It is called the pull­back of µY by f on X .

1.2.12. Let (X,S, µ) be a measure space.
(i) If A,B ∈ S and µ(A4B) = 0, prove that µ(A) = µ(B).
(ii) Define A ∼ B if A,B ∈ S and µ(A4B) = 0. Prove that ∼ is an equivalence relation on S.
For the rest we assume that µ(X) < +∞, and we define d(A,B) = µ(A4B) for all A,B ∈ S .
(iii) Prove that d is a pseudometric on S. This means: 0 ≤ d(A,B) < +∞, d(A,B) = d(B,A)
and d(A,C) ≤ d(A,B) + d(B,C) for all A,B,C ∈ S .
(iv) On the set S/∼ of all equivalence classes we define d([A], [B]) = d(A,B) = µ(A4B) for
all [A], [B] ∈ S/∼. Prove that d([A], [B]) is well defined and that d is a metric on S/∼.

1.2.13. Let A be an algebra of subsets of X . If
(i) µ(∅) = 0,
(ii) µ

(⋃+∞
j=1 Aj

)
=

∑+∞
j=1 µ(Aj) for all pairwise disjoint A1, A2, . . . ∈ A with

⋃+∞
j=1 Aj ∈ A,

then we say that µ : A → [0,+∞] is ameasure on (X,A).
Prove that if µ is a measure on (X,A), where A is an algebra of subsets of X , then µ is finitely
additive, monotone, σ­subadditive, continuous from below and continuous from above (provided
that, every time a countable union or countable intersection of elements of A appears, we assume
that this is also an element of A).

1.2.14. Let
(
(Xn,Sn, µn)

)
be a sequence of measure spaces, where the Xn are pairwise dis­

joint. We define X =
⋃+∞

n=1Xn, S = {E ⊆ X |E ∩ Xn ∈ Sn for all n ∈ N} and µ(E) =∑+∞
n=1 µn(E ∩Xn) for all E ∈ S .

(i) Prove that (X,S, µ) is a measure space. It is called the direct sum of
(
(Xn,Sn, µn)

)
and it is

denoted
⊕+∞

n=1(Xn,Sn, µn).
(ii) Prove that µ is σ­finite if and only if µn is σ­finite for all n ∈ N.

POINT­MASS DISTRIBUTIONS.

Before introducing a particular class of measures we shall define sums of non­negative terms over
general sets of indices. We shall follow the standard practice of using both notations a(i) and ai
for the values of a function a on a set I of indices.
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Definition. Let I be a non­empty set of indices, and a : I → [0,+∞]. We define the sum of the
values of a by ∑

i∈I ai = sup
{∑

i∈F ai
∣∣F is a non­empty finite subset of I

}
.

If I = ∅, we define
∑

i∈I ai = 0.

Of course, if F is a non­empty finite set, then∑
i∈F ai =

∑N
k=1 aik ,

where F = {ai1 , . . . , aiN } is an arbitrary enumeration of F .
We first make sure that this definition extends a simpler situation.

Proposition 1.20. If I is countable and I = {i1, i2, . . .} is an arbitrary enumeration of I , then∑
i∈I ai =

∑+∞
k=1 aik for all a : I → [0,+∞].

Proof. For arbitraryN we consider the finite subsetF = {i1, . . . , iN} of I . Then, by the definition
of

∑
i∈I ai, we have ∑N

k=1 aik =
∑

i∈F ai ≤
∑

i∈I ai.

Since N is arbitrary, we get
∑+∞

k=1 aik ≤
∑

i∈I ai.
Now for an arbitrary non­empty finiteF ⊆ I we consider the indices of the elements ofF provided
by the enumeration I = {i1, i2, . . .} andwe take the largest, sayN , of them. Of course, this implies
F ⊆ {i1, i2, . . . , iN}. Therefore∑

i∈F ai ≤
∑N

k=1 aik ≤
∑+∞

k=1 aik .

Since F is arbitrary, we find, by the definition of
∑

i∈I ai, that
∑

i∈I ai ≤
∑+∞

k=1 aik .

Proposition 1.21. Let a : I → [0,+∞]. If
∑

i∈I ai < +∞, then ai < +∞ for all i ∈ I and the
set {i ∈ I | ai > 0} is countable.

Proof. Let
∑

i∈I ai < +∞.
We take any i0 ∈ I . Considering the finite set F = {i0}, we see that

ai0 =
∑

i∈F ai ≤
∑

i∈I ai < +∞.

Now, for arbitrary n ∈ N, we consider the set

In =
{
i ∈ I

∣∣ ai ≥ 1
n

}
.

If F is an arbitrary finite subset of In, then

1
n card(F ) ≤

∑
i∈F ai ≤

∑
i∈I ai.

Hence, the cardinality of the arbitrary finite subset of In is not larger than the number n
∑

i∈I ai,
and so In is finite. But we have that

{i ∈ I | ai > 0} =
⋃+∞

n=1 In,

and so {i ∈ I | ai > 0} is countable.

Proposition 1.22. (i) If a, b : I → [0,+∞] and ai ≤ bi for all i ∈ I , then
∑

i∈I ai ≤
∑

i∈I bi.
(ii) If a : I → [0,+∞] and J ⊆ I , then

∑
i∈J ai ≤

∑
i∈I ai.

(iii) If a : I → [0,+∞] and J = {i ∈ I | ai > 0}, then
∑

i∈I ai =
∑

i∈J ai.
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Proof. (i) For arbitrary finite F ⊆ I we have∑
i∈F ai ≤

∑
i∈F bi ≤

∑
i∈I bi.

Taking the supremum over the finite subsets F of I , we find
∑

i∈I ai ≤
∑

i∈I bi.
(ii) For arbitrary finite F ⊆ J we have that F ⊆ I , and so∑

i∈F ai ≤
∑

i∈I ai.

Taking the supremum over the finite subsets F of J , we get
∑

i∈J ai ≤
∑

i∈I ai.
(iii) Since J ⊆ I , (ii) implies that

∑
i∈J ai ≤

∑
i∈I ai.

For an arbitrary finite F ⊆ I we write F1 = {i ∈ F | ai > 0} and F2 = {i ∈ F | ai = 0}. Then
F1 ∪ F2 = F and F1 ∩ F2 = ∅, and also F1 ⊆ J . Hence,∑

i∈F ai =
∑

i∈F1
ai +

∑
i∈F2

ai =
∑

i∈F1
ai ≤

∑
i∈J ai.

Taking the supremum over the finite subsets F of I , we get
∑

i∈I ai ≤
∑

i∈J ai.

Proposition 1.23. Let I =
⋃

k∈K Jk, whereK is non­empty and the Jk are non­empty and pairwise
disjoint. Then for every a : I → [0,+∞] we have

∑
i∈I ai =

∑
k∈K

(∑
i∈Jk ai

)
.

Proof. We take an arbitrary finite F ⊆ I and we consider the finite sets Fk = F ∩Jk. We observe
that the set

L = {k ∈ K |Fk 6= ∅}

is a finite subset ofK. Then, using trivial properties of sums over finite sets of indices, we find∑
i∈F ai =

∑
k∈L

(∑
i∈Fk

ai
)
.

The definitions of
∑

i∈Jk and of
∑

k∈K imply that∑
i∈F ai ≤

∑
k∈L

(∑
i∈Jk ai

)
≤

∑
k∈K

(∑
i∈Jk ai

)
.

Taking the supremum over the finite subsets F of I we find
∑

i∈I ai ≤
∑

k∈K
(∑

i∈Jk ai
)
.

Now we take an arbitrary finite L ⊆ K, and an arbitrary finite Fk ⊆ Jk for each k ∈ L. Then∑
k∈L

(∑
i∈Fk

ai
)
is, clearly, a sum (without repetitions) over the finite subset

⋃
k∈L Fk of I .

Hence ∑
k∈L

(∑
i∈Fk

ai
)
≤

∑
i∈I ai.

Taking the supremum over the finite subsets Fk of Jk for each k ∈ L, one at a time, we get that∑
k∈L

(∑
i∈Jk ai

)
≤

∑
i∈I ai.

Taking the supremum over the finite subsets L ofK, we get
∑

k∈K
(∑

i∈Jk ai
)
≤

∑
i∈I ai.

After this short investigation of the general summation notion we define a class of measures.

Proposition 1.24. LetX be non­empty and a : X → [0,+∞]. We define µ : P(X) → [0,+∞] by

µ(E) =
∑

x∈E ax for all E ⊆ X.

Then µ is a measure on (X,P(X)).

Proof. It is obvious that µ(∅) =
∑

x∈∅ ax = 0.
If E1, E2, . . . are pairwise disjoint and E =

⋃+∞
n=1En, we have

µ(E) =
∑

x∈E ax =
∑

n∈N
(∑

x∈En
ax

)
=

∑
n∈N µ(En) =

∑+∞
n=1 µ(En),

applying Propositions 1.20 and 1.23.
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Definition. The measure on (X,P(X)) defined in Proposition 1.24 is called the point­mass dis­
tribution on X induced by the function a. The value ax is called the point­mass at x.

Example. Consider the function which assigns point­mass ax = 1 at every x ∈ X . It is easy to
see that the induced point­mass distribution is ♯, i.e. the counting measure on X .

Example. Take a particular x0 ∈ X and the function which assigns point­mass ax0 = 1 at x0 and
point­mass ax = 0 at all other points of X . Then the induced point­mass distribution is δx0 , i.e.
the Dirac measure at x0.

Exercises.

1.2.15. Let X be non­empty and consider a finite A ⊆ X . If a : X → [0,+∞) satisfies ax = 0
for all x /∈ A, prove that the point­mass distribution µ on X induced by a can be written as a
non­negative linear combination of Dirac measures: µ =

∑
x∈A axδx.

1.2.16. Let I be a set of indices, a, b : I → [0,+∞] and κ ∈ [0,+∞).
(i) Prove that

∑
i∈I ai = 0 if and only if ai = 0 for all i ∈ I .

(ii) Prove that
∑

i∈I κai = κ
∑

i∈I ai (consider 0 (+∞) = 0).
(iii) Prove that

∑
i∈I(ai + bi) =

∑
i∈I ai +

∑
i∈I bi.

1.2.17. Let I, J be two sets of indices and consider any a : I × J → [0,+∞]. Using Proposition
1.23, prove that ∑

i∈I
(∑

j∈J ai,j
)
=

∑
(i,j)∈I×J ai,j =

∑
j∈J

(∑
i∈I ai,j

)
.

Recognize as a special case of this the result of exercise 1.2.16 (iii).

1.2.18. Let X be non­empty and consider the point­mass distribution µ defined by the function
a : X → [0,+∞]. Prove that
(i) µ is semifinite if and only if ax < +∞ for every x ∈ X ,
(ii) µ is σ­finite if and only if ax < +∞ for every x ∈ X and the set {x ∈ X | ax > 0} is
countable.

1.2.19. (i) Let X be any non­empty countable set. Prove that every measure µ on (X,P(X)) is a
point­mass distribution.
(ii) Consider the measure in exercise 1.2.1. Prove that this measure is not a point­mass distribution.

1.2.20. A generalization of exercise 1.2.14.
Let {(Xi,Si, µi) | i ∈ I} be a collection of measure spaces, where theXi are pairwise disjoint. We
define X =

⋃
i∈I Xi, S = {E ⊆ X |E ∩Xi ∈ Si for all i ∈ I} and µ(E) =

∑
i∈I µi(E ∩Xi)

for all E ∈ S .
(i) Prove that (X,S, µ) is a measure space. It is called the direct sum of {(Xi,Si, µi) | i ∈ I} and
it is denoted

⊕
i∈I(Xi,Si, µi).

(ii) Prove that µ is σ­finite if and only if the set J = {i ∈ I |µi 6= 0} is countable and µi is σ­finite
for all i ∈ J .

COMPLETE MEASURES.

Proposition 1.18 says that a subset of aµ­null set is alsoµ­null, provided that the subset is contained
in the σ­algebra on which the measure µ is defined.

Definition. Let (X,S, µ) be a measure space. Suppose that for every E ∈ S with µ(E) = 0 and
every F ⊆ E it is implied that F ∈ S (and hence µ(F ) = 0). Then µ is called complete and
(X,S, µ) is called a complete measure space.
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Thus, a measure µ is complete if the σ­algebra on which it is defined contains all subsets of all
µ­null sets.

Definition. If (X,S1, µ1) and (X,S2, µ2) are two measure spaces on the same setX , we say that
(X,S2, µ2) is an extension of (X,S1, µ1) if S1 ⊆ S2 and µ1(E) = µ2(E) for all E ∈ S1.

Theorem 1.1. Let (X,S, µ) be a measure space. Then there is a unique smallest complete exten­
sion (X,S, µ) of (X,S, µ). In other words, there is a unique measure space (X,S, µ) so that
(i) (X,S, µ) is an extension of (X,S, µ),
(ii) (X,S, µ) is complete,
(iii) if (X,S, µ) is another complete extension of (X,S, µ), then it is an extension also of (X,S, µ).

Proof. We shall first construct (X,S, µ). We define

S = {A ∪ F |A ∈ S and F ⊆ E for some E ∈ S with µ(E) = 0}.

We shall prove that S is a σ­algebra.
We write ∅ = ∅ ∪ ∅, where the first ∅ belongs to S and the second ∅ is a subset of ∅ ∈ S with
µ(∅) = 0. Therefore, ∅ ∈ S.
LetB ∈ S. ThenB = A∪F , whereA ∈ S and F ⊆ E for someE ∈ S with µ(E) = 0. We then
write Bc = A1 ∪ F1, where A1 = (A ∪ E)c and F1 = E \ (A ∪ F ). Then A1 ∈ S and F1 ⊆ E.
Hence, Bc ∈ S.
Let B1, B2, . . . ∈ S. Then for every n we have Bn = An ∪ Fn, where An ∈ S and Fn ⊆ En for
some En ∈ S with µ(En) = 0. Now⋃+∞

n=1Bn =
(⋃+∞

n=1An

)
∪
(⋃+∞

n=1 Fn

)
,

where
⋃+∞

n=1An ∈ S and
⋃+∞

n=1 Fn ⊆
⋃+∞

n=1En ∈ S with

µ
(⋃+∞

n=1En

)
≤

∑+∞
n=1 µ(En) = 0

and hence µ(
⋃+∞

n=1En) = 0. Thus,
⋃+∞

n=1Bn ∈ S.
Now, we construct µ.
For everyB ∈ S we writeB = A∪F , whereA ∈ S and F ⊆ E for someE ∈ S with µ(E) = 0,
and we define

µ(B) = µ(A).

To prove that µ(B) is well defined, we assume that B = A′ ∪ F ′, where A′ ∈ S and F ′ ⊆ E′ for
some E′ ∈ S with µ(E′) = 0, and we shall prove that µ(A) = µ(A′). Since A ⊆ B ⊆ A′ ∪ E′,
we have

µ(A) ≤ µ(A′) + µ(E′) = µ(A′)

and, symmetrically, µ(A′) ≤ µ(A).
To prove that µ is a measure on (X,S), write ∅ = ∅ ∪ ∅ as above, and get µ(∅) = µ(∅) = 0.
Let also B1, B2, . . . ∈ S be pairwise disjoint. Then Bn = An ∪ Fn, where An ∈ S and Fn ⊆ En

for some En ∈ S with µ(En) = 0. Observe that the An are pairwise disjoint. Then⋃+∞
n=1Bn =

(⋃+∞
n=1An

)
∪
(⋃+∞

n=1 Fn

)
and

⋃+∞
n=1 Fn ⊆

⋃+∞
n=1En ∈ S with

µ
(⋃+∞

n=1En

)
≤

∑+∞
n=1 µ(En) = 0,

and hence µ
(⋃+∞

n=1En

)
= 0. Therefore,

µ
(⋃+∞

n=1Bn

)
= µ

(⋃+∞
n=1An

)
=

∑+∞
n=1 µ(An) =

∑+∞
n=1 µ(Bn).
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We now prove that µ is complete. Let B ∈ S with µ(B) = 0 and let B′ ⊆ B. Write B = A ∪ F ,
where A ∈ S and F ⊆ E for some E ∈ S with µ(E) = 0, and so µ(A) = µ(B) = 0. Then write
B′ = ∅ ∪B′, with ∅ ∈ S and B′ ⊆ E′, where E′ = A ∪ E ∈ S and µ(E′) ≤ µ(A) + µ(E) = 0.
Hence, B′ ∈ S.
To prove that (X,S, µ) is an extension of (X,S, µ), we take any A ∈ S and we write A = A∪ ∅,
where ∅ ⊆ ∅ ∈ S with µ(∅) = 0. This implies that A ∈ S and µ(A) = µ(A).
Now suppose that (X,S, µ) is another complete extension of (X,S, µ). Take any B ∈ S, and
then B = A ∪ F , where A ∈ S and F ⊆ E for some E ∈ S with µ(E) = 0. But then A,E ∈ S
and µ(E) = µ(E) = 0. Since µ is complete, we get that also F ∈ S and hence B = A ∪ F ∈ S.
Moreover,

µ(A) ≤ µ(B) ≤ µ(A) + µ(F ) = µ(A),

which implies
µ(B) = µ(A) = µ(A) = µ(B).

It only remains to prove the uniqueness of a smallest complete extension of (X,S, µ). This is
obvious, since two smallest complete extensions of (X,S, µ) must be extensions of each other
and, hence, identical.

Definition. If (X,S, µ) is a measure space, then its smallest complete extension is called the com­
pletion of (X,S, µ).

Exercises.

1.2.21. Let (X,S, µ) be a measure space. We say that E ⊆ X belongs locally to S if E ∩A ∈ S
for all A ∈ S with µ(A) < +∞. We define S̃ = {E ⊆ X |E belongs locally to S}.
(i) Prove that S ⊆ S̃ and that S̃ is a σ­algebra. If S = S̃, then (X,S, µ) is called saturated.
(ii) If µ is σ­finite, prove that (X,S, µ) is saturated.
We define µ̃(E) = µ(E), if E ∈ S , and µ̃(E) = +∞, if E ∈ S̃ \ S .
(iii) Prove that µ̃ is a measure on (X, S̃), and, hence, (X, S̃, µ̃) is an extension of (X,S, µ).
(iv) If (X,S, µ) is complete, prove that (X, S̃, µ̃) is also complete.
(v) Prove that (X, S̃, µ̃) is a saturated measure space.
(X, S̃, µ̃) is called the saturation of (X,S, µ).

RESTRICTION OF A MEASURE.

Let (X,S, µ) be a measure space and Y ∈ S . We recall that the restriction SeY of the σ­algebra
S of subsets of X on Y is SeY = {A ⊆ Y |A ∈ S}.

Proposition 1.25. Let (X,S, µ) be a measure space, Y ∈ S and SeY = {A ⊆ Y |A ∈ S}. We
define µeY : SeY → [0,+∞] by

(µeY )(A) = µ(A), A ∈ SeY ( i.e. A ∈ S, A ⊆ Y ).

Then µeY is a measure on (Y,SeY ).

Proof. Exercise.

Definition. Let (X,S, µ) be a measure space and Y ∈ S . The measure µeY on (Y,SeY ) of
Proposition 1.25 is called the restriction of µ on (Y,SeY ).

Informally speaking, we may say that µeY is the same as µ but applied only to the measurable
subsets of Y .

There is a second kind of restriction of a measure.
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Proposition 1.26. Let (X,S, µ) be a measure space and Y ∈ S . We define µY : S → [0,+∞] by

µY (A) = µ(A ∩ Y ), A ∈ S.

Then µY is a measure on (X,S) with the properties:
(i) µY (A) = µ(A) if A ∈ S , A ⊆ Y ,
(ii) µY (A) = 0 if A ∈ S , A ⊆ Y c.

Proof. We have µY (∅) = µ(∅ ∩ Y ) = µ(∅) = 0.
If A1, A2, . . . ∈ S are pairwise disjoint, then

µY
(⋃+∞

j=1 Aj

)
= µ

((⋃+∞
j=1 Aj

)
∩ Y

)
= µ

(⋃+∞
j=1(Aj ∩ Y )

)
=

∑+∞
j=1 µ(Aj ∩ Y ) =

∑+∞
j=1 µY (Aj).

Therefore, µY is a measure on (X,S) and its two properties are trivial to prove.

Definition. Let (X,S, µ) be a measure space and Y ∈ S . The measure µY on (X,S) of Proposi­
tion 1.26 is called the Y ­restriction of µ on (X,S).

Informally speaking, we may describe the relation between the two restrictions of µ as follows.
The restriction µY assigns value 0 to all sets in S which are included in the complement of Y while
the restriction µeY simply ignores all those sets. Both restrictions µY and µeY assign the same
values (the same to the values that µ assigns) to all sets in S which are included in Y .

UNIQUENESS OF MEASURES.

The next result is very useful when we want to prove that two measures are equal on a σ­algebra
S . It says that it is enough to prove that they are equal on an algebra which generates S, provided
that an extra assumption of σ­finiteness of the two measures on the algebra is satisfied.

Proposition 1.27. LetA be an algebra of subsets ofX and let µ, ν be two measures on (X,S(A)).
Suppose there are A1, A2, . . . ∈ A so that (An) is increasing,

⋃+∞
n=1An = X and µ(An) < +∞

and ν(An) < +∞ for all n.
If µ, ν are equal on A, then they are equal also on S(A).

Proof. (a) We assume that µ(X) < +∞ and ν(X) < +∞.
We define the collection

M = {E ∈ S(A) |µ(E) = ν(E)}.

It is easy to see that M is a monotone class. Indeed, let E1, E2, . . . ∈ M and (En) be increasing
and

⋃+∞
n=1En = E. By continuity of measures from below, we get

limn→+∞ µ(En) = µ(E), limn→+∞ ν(En) = ν(E).

Since µ(En) = ν(En) for all n, we find µ(E) = ν(E), and so E ∈ M. Now, we just repeat the
same argument, assuming that (En) is decreasing and

⋂+∞
n=1En = E, and using the continuity of

measures from above and the assumption µ(X) < +∞ and ν(X) < +∞.
Since M is a monotone class including A, Proposition 1.4 implies that M(A) ⊆ M. Now,
Proposition 1.5 implies that S(A) ⊆ M, and so µ(E) = ν(E) for all E ∈ S(A).
(b) We consider the general case: we do not assume that µ(X) < +∞ or that ν(X) < +∞.
For each n, we consider the An­restrictions of µ, ν on (X,S(A)). Namely,

µAn(E) = µ(E ∩An), νAn(E) = ν(E ∩An) for all E ∈ S(A).
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Then all µAn and νAn are finite measures on (X,S(A)), since µAn(X) = µ(An) < +∞ and
νAn(X) = ν(An) < +∞.
If A ∈ A, then A ∩An ∈ A for all n, and so

µAn(A) = µ(A ∩An) = ν(A ∩An) = νAn(A).

Now, by the result of (a) we get that µAn and νAn are equal on S(A). I.e.

µ(E ∩An) = µAn(E) = νAn(E) = ν(E ∩An), E ∈ S(A).

Now let E ∈ S(A). Then (E ∩ An) is increasing and
⋃+∞

n=1(E ∩ An) = E. Continuity of µ and
ν from below implies

limn→+∞ µ(E ∩An) = µ(E), limn→+∞ ν(E ∩An) = ν(E).

Since µ(E ∩An) = ν(E ∩An) for every n, we get µ(E) = ν(E).
Thus, µ, ν are equal on S(A).

1.3 Measures from outer measures.

Definition. Let X be a set. A function µ∗ : P(X) → [0,+∞] is called an outer measure on X if
(i) µ∗(∅) = 0,
(ii) µ∗(E) ≤ µ∗(F ) if E ⊆ F ⊆ X ,
(iii) µ∗

(⋃+∞
n=1En

)
≤

∑+∞
n=1 µ

∗(En) for all sequences (En) of subsets of X .

Note that, ifµ∗ is an outermeasure onX , thenµ∗(E) is defined for all subsetsE ofX . Property
(ii) of an outer measure is called monotonicity, and property (iii) is called σ­subadditivity. It is
easy to see that an outer measure is also finitely subadditive: taking En = ∅ for n > N , we get

µ∗
(⋃N

n=1En

)
= µ∗

(⋃+∞
n=1En

)
≤

∑+∞
n=1 µ

∗(En) =
∑N

n=1 µ
∗(En).

Exercises.

1.3.1. Let µ∗, µ∗1, µ∗2 be outer measures on X and κ ∈ [0,+∞). Prove that κµ∗, µ∗1 + µ∗2 and
max{µ∗1, µ∗2} are outer measures on X , where these are defined by the formulas (κµ∗)(E) =
κµ∗(E) (consider 0 (+∞) = 0), (µ∗1 + µ∗2)(E) = µ∗1(E) + µ∗2(E) and max{µ∗1, µ∗2}(E) =
max{µ∗1(E), µ∗2(E)} for all E ⊆ X .

1.3.2. Let (µ∗n) be a sequence of outermeasures onX . Defineµ∗(E) = supn µ∗n(E) for allE ⊆ X .
Prove that µ∗ is an outer measure on X .

1.3.3. For every E ⊆ N define λ(E) = limn→+∞
card(E∩{1,2,...,n})

n . Prove that λ is not an outer
measure on N.

CONSTRUCTION OF OUTER MEASURES.

Proposition 1.28. Let C be any collection of subsets of X so that ∅ ∈ C, and let τ : C → [0,+∞]
satisfy τ(∅) = 0. We define

µ∗(E) = inf
{∑+∞

j=1 τ(Cj)
∣∣C1, C2, . . . ∈ C so that E ⊆

⋃+∞
j=1 Cj

}
for all E ⊆ X , where we agree that inf ∅ = +∞. Then µ∗ is an outer measure on X .

It is clear that, if there is at least one countable covering of E with elements of C, then the
set {

∑+∞
j=1 τ(Cj) |C1, C2, . . . ∈ C so that E ⊆

⋃+∞
j=1 Cj} is non­empty. If there is no countable

covering of E with elements of C, then this set is empty, and so µ∗(E) = inf ∅ = +∞.
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Proof. The inclusion ∅ ⊆
⋃+∞

j=1 ∅ implies

µ∗(∅) ≤
∑+∞

j=1 τ(∅) = 0,

and so µ∗(∅) = 0.
Now, letA ⊆ B ⊆ X . If there is no countable covering ofB by elements of C, then µ∗(B) = +∞
and the inequality µ∗(A) ≤ µ∗(B) is obviously true. Otherwise, we take an arbitrary covering
B ⊆

⋃+∞
j=1 Cj with C1, C2, . . . ∈ C. Then we also have A ⊆

⋃+∞
j=1 Cj and, by the definition of

µ∗(A), we get
µ∗(A) ≤

∑+∞
j=1 τ(Cj).

Taking the infimum of the right side, we find µ∗(A) ≤ µ∗(B).
Finally, let us prove

µ∗
(⋃+∞

n=1An

)
≤

∑+∞
n=1 µ

∗(An) (1.4)

for all A1, A2, . . . ⊆ X . If the right side of (1.4) is equal to +∞, the inequality is clear. So
we may assume that the right side of (1.4) is < +∞. Then µ∗(An) < +∞ for all n. Now
we take an arbitrary ϵ > 0. By the definition of µ∗(An), there exist Cn,1, Cn,2, . . . ∈ C so that
An ⊆

⋃+∞
j=1 Cn,j and ∑+∞

j=1 τ(Cn,j) < µ∗(An) +
ϵ
2n .

Then ⋃+∞
n=1An ⊆

⋃
(n,j)∈N×NCn,j ,

and so, using an arbitrary enumeration of N×N and Proposition 1.20, we get by the definition of
µ∗

(⋃+∞
n=1An

)
that

µ∗
(⋃+∞

n=1An

)
≤

∑
(n,j)∈N×N τ(Cn,j).

Proposition 1.23 implies

µ∗
(⋃+∞

n=1An

)
≤

∑+∞
n=1

(∑+∞
j=1 τ(Cn,j)

)
<

∑+∞
n=1

(
µ∗(An) +

ϵ
2n

)
=

∑+∞
n=1 µ

∗(An) + ϵ.

Since ϵ is arbitrary, this proves (1.4).

CONSTRUCTION OF A MEASURE FROM AN OUTER MEASURE.

We shall see now how a measure is constructed from an outer measure.

Definition. Let µ∗ be an outer measure on X . We say that the set A ⊆ X is µ∗­measurable if

µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗(E) for all E ⊆ X.

We denote Sµ∗ the collection of all µ∗­measurable subsets of X .

Thus, a set A is µ∗­measurable if and only if it decomposes every subset E of X into two
disjoint pieces, namely E ∩ A and E ∩ Ac, the outer measures of which add to give the outer
measure of the subset.

Observe that E = (E ∩A)∪ (E ∩Ac), and so µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac) due to the
subadditivity of µ∗. Therefore, in order to check the validity of the equality in the definition, it is
enough to check the inequality

µ∗(E ∩A) + µ∗(E ∩Ac) ≤ µ∗(E).

Furthermore, it is enough to check this last inequality whenever µ∗(E) < +∞.

Caratheodory’s Theorem. If µ∗ is an outer measure on X , then Sµ∗ is a σ­algebra of subsets of
X . If we denote µ the restriction of µ∗ on Sµ∗ , then (X,Sµ∗ , µ) is a complete measure space.
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Proof. We have
µ∗(E ∩ ∅) + µ∗(E ∩ ∅c) = µ∗(∅) + µ∗(E) = µ∗(E)

for all E ⊆ X , and so ∅ ∈ Sµ∗ .
Let A ∈ Sµ∗ . Then

µ∗(E ∩Ac) + µ∗(E ∩ (Ac)c) = µ∗(E ∩Ac) + µ∗(E ∩A) = µ∗(E)

for all E ⊆ X . Therefore, Ac ∈ Sµ∗ , and so Sµ∗ is closed under complements.
Now let A,B ∈ Sµ∗ and E ⊆ X . For the first inequality below we use the subadditivity of
µ∗, for the second equality we use µ∗­measurability of B, and for the last equality we use the
µ∗­measurability of A:

µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c) = µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (Ac ∩Bc))

≤ µ∗(E ∩ (A ∩Bc)) + µ∗(E ∩ (B ∩Ac))

+ µ∗(E ∩ (A ∩B)) + µ∗(E ∩ (Ac ∩Bc))

= µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗(E).

Thus, A∪B ∈ Sµ∗ , and by induction we get that Sµ∗ is closed under finite unions. Since it is also
closed under complements, Sµ∗ is an algebra of subsets of X , and so it is also closed under finite
intersections and under set­theoretic differences.
Let A,B ∈ Sµ∗ and A ∩B = ∅. Then for all E ⊆ X we have

µ∗(E∩ (A∪B)) = µ∗([E∩ (A∪B)]∩A)+µ∗([E∩ (A∪B)]∩Ac) = µ∗(E∩A)+µ∗(E∩B).

By an obvious induction we find that, if A1, . . . , AN ∈ Sµ∗ are pairwise disjoint and E ⊆ X is
arbitrary, then

µ∗(E ∩ (A1 ∪ · · · ∪AN )) = µ∗(E ∩A1) + · · ·+ µ∗(E ∩AN ).

Now, if A1, A2, . . . ∈ Sµ∗ are pairwise disjoint and E ⊆ X is arbitrary, then for all N we have

µ∗(E ∩A1) + · · ·+ µ∗(E ∩AN ) = µ∗(E ∩ (A1 ∪ · · · ∪AN )) ≤ µ∗
(
E ∩

(⋃+∞
n=1An

))
by the monotonicity of µ∗. Hence∑+∞

n=1 µ
∗(E ∩An) ≤ µ∗

(
E ∩

(⋃+∞
n=1An

))
.

The opposite inequality is immediate by the σ­subadditivity of µ∗:

µ∗
(
E ∩

(⋃+∞
n=1An

))
= µ∗

(⋃+∞
n=1(E ∩An)

)
≤

∑+∞
n=1 µ

∗(E ∩An).

We conclude with the equality∑+∞
n=1 µ

∗(E ∩An) = µ∗
(
E ∩

(⋃+∞
n=1An

))
(1.5)

for all pairwise disjoint A1, A2, . . . ∈ Sµ∗ and all E ⊆ X .
If A1, A2, . . . ∈ Sµ∗ are pairwise disjoint and E ⊆ X is arbitrary, then, since Sµ∗ is closed under
finite unions,

⋃N
n=1An ∈ Sµ∗ for all N . Hence

µ∗(E) = µ∗
(
E ∩

(⋃N
n=1An

))
+ µ∗

(
E ∩

(⋃N
n=1An

)c)
≥

∑N
n=1 µ

∗(E ∩An) + µ∗
(
E ∩

(⋃+∞
n=1An

)c)
,

where we used the finite version of (1.5) for the first term and themonotonicity ofµ∗ for the second.
Since N is arbitrary,

µ∗(E) ≥
∑+∞

n=1 µ
∗(E ∩An) + µ∗

(
E ∩

(⋃+∞
n=1An

)c)
= µ∗

(
E ∩

(⋃+∞
n=1An

))
+ µ∗

(
E ∩

(⋃+∞
n=1An

)c)
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by (1.5). Therefore,
⋃+∞

n=1An ∈ Sµ∗ .
If A1, A2, . . . ∈ Sµ∗ are not necessarily pairwise disjoint, then in the spirit of Lemma 1.1 we write
B1 = A1 and Bn = An \ (A1 ∪ · · · ∪An−1) for all n ≥ 2. Since Sµ∗ is an algebra, all Bn belong
to Sµ∗ and they are pairwise disjoint. Hence

⋃+∞
n=1An =

⋃+∞
n=1Bn ∈ Sµ∗ . We conclude that Sµ∗

is a σ­algebra.
We now define µ : Sµ∗ → [0,+∞] as the restriction of µ∗, i.e.

µ(A) = µ∗(A) for all A ∈ Sµ∗ .

Using E = X in (1.5), we get that for all pairwise disjoint A1, A2, . . . ∈ Sµ∗ ,∑+∞
n=1 µ(An) =

∑+∞
n=1 µ

∗(An) = µ∗
(⋃+∞

n=1An

)
= µ

(⋃+∞
n=1An

)
.

Since µ(∅) = µ∗(∅) = 0, we see that (X,Sµ∗ , µ) is a measure space.
Finally, let A ∈ Sµ∗ with µ(A) = 0 and B ⊆ A. Then

µ∗(B) ≤ µ∗(A) = µ(A) = 0,

and so
µ∗(E ∩B) + µ∗(E ∩Bc) ≤ µ∗(B) + µ∗(E) = µ∗(E)

for all E ⊆ X . Therefore, B ∈ Sµ∗ , and so µ is complete.

As a by­product of the proof of Caratheodory’s Theorem we get the useful

Proposition 1.29. Let µ∗ be an outer measure on X .
(i) If B ⊆ X and µ∗(B) = 0, then B is µ∗­measurable.
(ii) We have

∑+∞
n=1 µ

∗(E ∩ An) = µ∗
(
E ∩

(⋃+∞
n=1An

))
for all pairwise disjoint µ∗­measurable

A1, A2, . . . and all E ⊆ X .

Proof. The proof of (i) is in the last part of the proof of the Theorem of Caratheodory, and (ii) is
just (1.5).

Thus, every outer measure µ∗ produces a specific σ­algebra, the elements of which are the µ∗­
measurable sets, and a measure µ, which is the same as µ∗ but applied only on the µ∗­measurable
sets and not on all subsets of the whole space X . If there is no danger of confusion, we shall call
the µ∗­measurable sets just measurable sets (and keep in mind that they are defined by a specific
procedure starting from the outer measure µ∗).

The most widely used method of producing measures is based on the Theorem of Caratheodory
and it is the one we just described: one starts with an outer measure µ∗ on X and produces the
measure space (X,Sµ∗ , µ). There is another method of producing measures, the so­called Daniell
method which we shall describe later.

Exercises.

1.3.4. Let µ∗ be an outer measure on X and Y ⊆ X .
(i) Define (µ∗eY )(E) = µ∗(E) for all E ⊆ Y , and prove that µ∗eY is an outer measure on Y .
(ii) Define µ∗Y (E) = µ∗(E ∩ Y ) for all E ⊆ X , and prove that µ∗Y is an outer measure on X .
Moreover, prove that Y is µ∗Y ­measurable.

1.3.5. Let X 6= ∅. We define: µ∗(E) = 0, if E = ∅, and µ∗(E) = 1, if ∅ 6= E ⊆ X . Prove that
µ∗ is an outer measure on X , and that ∅ and X are the only µ∗­measurable subsets of X .

1.3.6. Let µ∗ be an outer measure on X . If A1, A2, . . . ∈ Sµ∗ and (An) is increasing, prove that
limn→+∞ µ

∗(E ∩An) = µ∗
(
E ∩

(⋃+∞
n=1An

))
for every E ⊆ X .

Hint. Use Proposition 1.29.
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1.3.7. Let µ∗ be an outer measure on X and µ be the induced measure (the restriction of µ∗) on
Sµ∗ . If E,G ⊆ X we say that G is a µ∗­measurable cover of E if: E ⊆ G, G ∈ Sµ∗ , and for all
A ∈ Sµ∗ for which A ⊆ G \ E we have µ(A) = 0.
(i) If G1, G2 are µ∗­measurable covers of E, prove that µ(G14G2) = 0 and hence µ(G1) =
µ(G2).
(ii) Suppose E ⊆ G, G ∈ Sµ∗ and µ∗(E) = µ(G). If µ∗(E) < +∞, prove that G is a µ∗­
measurable cover of E.

1.3.8.We say E ⊆ R has a condensation point at infinity if E has uncountably many points
outside every bounded interval.
For anyE ⊆ R define: µ∗(E) = 0, ifE is countable, µ∗(E) = 1, ifE is uncountable and does not
have a condensation point at infinity, and µ∗(E) = +∞, if E has a condensation point at infinity.
Prove that µ∗ is an outer measure on R, and that A ⊆ R is µ∗­measurable if and only if either A
or Ac is countable. Does every E ⊆ R have a µ∗­measurable cover? (See exercise 1.3.7).

1.3.9. Consider the collection C of subsets ofNwhich only contains ∅ and all the two­point subsets
of N. Define: τ(C) = 0, if C = ∅, and τ(C) = 2, if C ∈ C, C 6= ∅. Calculate µ∗(E) for all
E ⊆ N, where µ∗ is the outer measure defined as in Proposition 1.28. Prove that ∅ and N are the
only µ∗­measurable subsets of N.

1.3.10. Extension of a measure, I.
Let (X,S0, µ0) be a measure space. Define

µ∗(E) = inf
{∑+∞

j=1 µ0(Aj)
∣∣A1, A2, . . . ∈ S0 so that E ⊆

⋃+∞
j=1 Aj

}
for every E ⊆ X . Proposition 1.28 implies that µ∗ is an outer measure on X . We say that µ∗ is
induced by the measure µ0.
(i) Prove that µ∗(E) = min

{
µ0(A) |A ∈ S0, E ⊆ A}.

(ii) If (X,Sµ∗ , µ) is the complete measure space resulting from µ∗ by Caratheodory’s Theorem
(i.e. µ is the restriction of µ∗ on Sµ∗), prove that (X,Sµ∗ , µ) is an extension of (X,S0, µ0).
(iii) Assume that E ⊆ X , and A1, A2, . . . ∈ S0, and E ⊆

⋃+∞
j=1 Aj , and µ(Aj) < +∞ for all j.

Prove that E ∈ Sµ∗ if and only if there is some A ∈ S0 so that E ⊆ A and µ∗(A \ E) = 0.
(iv) If µ is σ­finite, prove that (X,Sµ∗ , µ) is the completion of (X,S0, µ0).
(v) LetX be an uncountable set, S0 = {A ⊆ X | either A or Ac is countable} and µ0(A) = ♯(A)
for every A ∈ S0. Prove that (X,S0, µ0) is a complete measure space and that Sµ∗ = P(X).
Thus, the result of (iv) does not hold in general.
(vi) See exercise 1.2.21 and prove that (X,Sµ∗ , µ) is always the saturation of the completion of
(X,S0, µ0).

1.3.11. Extension of a measure, II.
Let A0 be an algebra of subsets of X , and µ0 be a measure on (X,A0) (see exercise 1.2.13). Let

µ∗(E) = inf
{∑+∞

j=1 µ0(Aj)
∣∣A1, A2, . . . ∈ A0 so that E ⊆

⋃+∞
j=1 Aj

}
for all E ⊆ X . Proposition 1.28 implies that µ∗ is an outer measure on X . We say that µ∗ is
induced by the measure µ0.
(i) Prove that µ∗(A) = µ0(A) for every A ∈ A0.
(ii) Prove that every A ∈ A0 is µ∗­measurable, and so S(A0) ⊆ Sµ∗ .
Thus, if (X,Sµ∗ , µ) is the complete measure space resulting from µ∗ by Caratheodory’s Theorem
(i.e. µ is the restriction of µ∗ on Sµ∗), then (X,Sµ∗ , µ) is an extention of (X,S(A0), µ), and this
is an extention of (X,A0, µ0).
(iii) If (X,S(A0), ν) is another measure space which is an extension of (X,A0, µ0), prove that
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ν(E) ≤ µ(E) for all E ∈ S(A0), and that ν(E) = µ(E) for all E ∈ S(A0) with µ(E) < +∞.
(iv) If the original (X,A0, µ0) is σ­finite, prove that µ is the unique measure on (X,S(A0))which
is an extension of µ0 on (X,A0).

1.3.12. Let µ∗ be an outer measure on X . We say that µ∗ is a regular outer measure if for every
E ⊆ X there is A ∈ Sµ∗ so that E ⊆ A and µ∗(E) = µ(A) (where µ is the usual restriction of µ∗
on Sµ∗).
(i) Prove that µ∗ is a regular outer measure if and only if µ∗ is induced by some measure on some
algebra of subsets of X (as described in exercise 1.3.11).
(ii) Consider the outer measure µ∗ in exercise 1.3.8. Is µ∗ a regular outer measure?

1.4 Lebesgue measure.

VOLUME OF INTERVALS.

We consider the quantity voln(S), the n­dimensional volume of S, defined for any bounded inter­
val S = I1 × · · · × In in Rn by

voln(S) = length(I1) · · · length(In).

Clearly, voln(S) < +∞ for every bounded interval S. Moreover, if S = I1 × · · · × In, then
voln(S) = 0 if and only if at least one of the Ij is an one­point interval or the empty interval. Note,
also, that, if n = 1, then the one­dimensional volume of a bounded interval in R is just its length.

Proposition 1.30 summarizes some geometrically obvious properties of volumes of bounded
intervals.

Proposition 1.30. (i) We consider P = (a1, b1]×· · ·×(an, bn] and, for each k = 1, . . . , n, we take
ak = c

(0)
k < c

(1)
k < · · · < c

(mk)
k = bk. We considerPi1,...,in = (c

(i1−1)
1 , c

(i1)
1 ]×· · ·×(c

(in−1)
n , c

(in)
n ]

for 1 ≤ i1 ≤ m1, . . . , 1 ≤ in ≤ mn, and we say that the intervals Pi1,...,in result from P by
subdivision of its edges. Then voln(P ) =

∑
1≤i1≤m1,...,1≤in≤mn

voln(Pi1,...,in).
(ii) Assume that P, P1, . . . , Pl are bounded open­closed intervals, that P1, . . . , Pl are pairwise
disjoint and that P =

⋃l
j=1 Pj . Then voln(P ) =

∑l
j=1 voln(Pj).

(iii) Assume that P, P1, . . . , Pl are bounded open­closed intervals, that P1, . . . , Pl are pairwise
disjoint and that

⋃l
j=1 Pj ⊆ P . Then

∑l
j=1 voln(Pj) ≤ voln(P ).

(iv) Assume that P, P1, . . . , Pl are bounded open­closed intervals and that P ⊆
⋃l

j=1 Pj . Then
voln(P ) ≤

∑l
j=1 voln(Pj).

(v) Assume that Q is a bounded closed interval, that R1, . . . , Rl are bounded open intervals and
that Q ⊆

⋃l
j=1Rj . Then voln(Q) ≤

∑l
j=1 voln(Rj).

Proof. (i) For the second equality in the following calculation we use the distributive property of
multiplication of sums:∑

1≤i1≤m1,...,1≤in≤mn
voln(Pi1,...,in)

=
∑

1≤i1≤m1,...,1≤in≤mn
(c

(i1)
1 − c

(i1−1)
1 ) · · · (c(in)n − c

(in−1)
n )

=
∑

1≤i1≤m1
(c

(i1)
1 − c

(i1−1)
1 ) · · ·

∑
1≤in≤mn

(c
(in)
n − c

(in−1)
n )

= (b1 − a1) · · · (bn − an) = voln(P ).

(ii) Let P = (a1, b1]× · · · × (an, bn] and Pj = (a
(j)
1 , b

(j)
1 ]× · · · × (a

(j)
n , b

(j)
n ] for j = 1, . . . , l.

For every k = 1, . . . , n we set

{c(0)k , . . . , c
(mk)
k } = {a(1)k , . . . , a

(l)
k , b

(1)
k , . . . , b

(l)
k },
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so that ak = c
(0)
k < c

(1)
k < · · · < c

(mk)
k = bk. This simply means that we rename the numbers

a
(1)
k , . . . , a

(l)
k , b

(1)
k , . . . , b

(l)
k in increasing order and so that there are no repetitions. Of course, the

smallest of these numbers is ak and the largest is bk, otherwise the P1, . . . , Pl would not cover P .
It is obvious that every interval (a(j)k , b

(j)
k ] is the union of some successive among the intervals

(c
(0)
k , c

(1)
k ], . . . , (c

(mk−1)
k , c

(mk)
k ].

We now set Pi1,...,in = (c
(i1−1)
1 , c

(i1)
1 ]× · · · × (c

(in−1)
n , c

(in)
n ] for 1 ≤ i1 ≤ m1, . . . , 1 ≤ in ≤ mn.

It is clear that the intervals Pi1,...,in result from P by subdivision of its edges. It is also (almost)
clear that the intervals among the Pi1,...,in which belong to a Pj result from it by subdivision of its
edges, and that every Pi1,...,in is included in exactly one from P1, . . . , Pl (because the P1, . . . , Pl

are disjoint and cover P ).
Now, using (i) for the first and third equality, and grouping together the intervals Pi1,...,in which
are included in the same Pj for the second equality, we find

voln(P ) =
∑

1≤i1≤m1,...,1≤in≤mn
voln(Pi1,...,in) =

∑l
j=1

(∑
Pi1,...,in

⊆Pj
voln(Pi1,...,in)

)
=

∑l
j=1 voln(Pj).

(iii) We know from Proposition 1.13 that P \ (P1 ∪ · · · ∪ Pl) = P ′1 ∪ · · · ∪ P ′k for some pairwise
disjoint bounded open­closed intervals P ′1, . . . , P ′k. Then P = P1 ∪ · · · ∪ Pl ∪ P ′1 ∪ · · · ∪ P ′k, and
so (ii) implies

voln(P ) =
∑l

j=1 voln(Pj) +
∑k

i=1 voln(P
′
i ) ≥

∑l
j=1 voln(Pj).

(iv) We first write P = P ′1 ∪ · · · ∪P ′l where P ′j = Pj ∩P are open­closed intervals included in P .
We then write

P = P ′1 ∪ (P ′2 \ P ′1) ∪ · · · ∪
(
P ′l \ (P ′1 ∪ · · · ∪ P ′l−1)

)
,

where each of these l pairwise disjoint sets can, by Proposition 1.13, be written as a finite union of
pairwise disjoint bounded open­closed intervals:

P ′1 = P ′1, P ′j \ (P ′1 ∪ · · · ∪ P ′j−1) = P
(j)
1 ∪ · · · ∪ P (j)

mj
for 2 ≤ j ≤ l.

Now, using (ii) for the equality and (iii) for the two inequalities, we get

voln(P ) = voln(P ′1) +
∑l

j=2

(∑mj

m=1 voln(P
(j)
m )

)
≤ voln(P ′1) +

∑l
j=2 voln(P

′
j) ≤

∑l
j=1 voln(Pj).

(v) Let P and Pj be the open­closed intervals with the same edges as Q and, respectively, Rj .
Then P ⊆ Q ⊆ R1 ∪ · · · ∪Rl ⊆ P1 ∪ · · · ∪ Pl and we get

voln(Q) = voln(P ) ≤
∑l

j=1 voln(Pj) =
∑l

j=1 voln(Rj)

using (iv).

LEBESGUE MEASURE.

Now we consider the collection C of all bounded open intervals in Rn and the τ : C → [0,+∞]
defined by τ(R) = voln(R) = (b1−a1) · · · (bn−an) for everyR = (a1, b1)×· · ·×(an, bn) ∈ C.

If we define

m∗n(E) = inf
{∑+∞

j=1 voln(Rj)
∣∣R1, R2, . . . ∈ C so that E ⊆

⋃+∞
j=1 Rj

}
for all E ⊆ Rn, then Proposition 1.28 implies thatm∗n is an outer measure on Rn.

We observe that, since Rn =
⋃+∞

k=1Rk, where Rk = (−k, k) × · · · × (−k, k), there is a
countable covering by elements of C for every E ⊆ Rn.

32



Now Caratheodory’s Theorem implies that the collection Sm∗
n
of m∗n­measurable sets is a σ­

algebra of subsets of Rn, and, if mn is defined as the restriction of m∗n on Sm∗
n
, then mn is a

complete measure on (X,Sm∗
n
). Now we simplify the notation and instead of Sm∗

n
we write Ln:

Ln = Sm∗
n
.

SoLn is the σ­algebra ofm∗n­measurable subsets ofRn, andmn is a complete measure on (X,Ln).

Definition. Ln is called the σ­algebra of Lebesgue subsets ofRn,m∗n is called the Lebesgue outer
measure on Rn, andmn is called the Lebesgue measure on Rn.

We shall also say that m∗n is the n­dimensional Lebesgue outer measure and that mn is the
n­dimensional Lebesgue measure. If there is no danger of confusion, we shall say Lebesgue set
instead of Lebesgue subset of Rn.

Our aim now is to study properties of Lebesgue sets and especially their relation with the Borel
sets or even more special sets in Rn, like open sets or closed sets or unions of intervals.

Proposition 1.31. (i) Every bounded interval S in Rn is a Lebesgue set, andmn(S) = voln(S).
(ii) Every countable subset A of Rn is a Lebesgue set andmn(A) = 0.

Proof. (i) Let Q = [a1, b1] × · · · × [an, bn] and R = (a1 − ϵ, b1 + ϵ) × · · · × (an − ϵ, bn + ϵ).
Then Q ⊆ R, and by the definition ofm∗n we get

m∗n(Q) ≤ voln(R) = (b1 − a1 + 2ϵ) · · · (bn − an + 2ϵ).

Since ϵ > 0 is arbitrary, we findm∗n(Q) ≤ voln(Q).
Now we take any covering, Q ⊆

⋃+∞
j=1 Rj , of Q by bounded open intervals Rj . Since Q is

compact, there is l so that Q ⊆
⋃l

j=1Rj , and then Proposition 1.30 implies

voln(Q) ≤
∑l

j=1 voln(Rj) ≤
∑+∞

j=1 voln(Rj).

Taking the infimum of the right side, we get voln(Q) ≤ m∗n(Q), and so

m∗n(Q) = voln(Q). (1.6)

Let S be a bounded interval and a1, b1, . . . , an, bn be the end­points of its edges.
If aj < bj for all j, then Q′ ⊆ S ⊆ Q′′, where Q′ = [a1 + ϵ, b1 − ϵ]× · · · × [an + ϵ, bn − ϵ] and
Q′′ = [a1− ϵ, b1+ ϵ]×· · ·× [an− ϵ, bn+ ϵ] for small ϵ > 0. Thenm∗n(Q′) ≤ m∗n(S) ≤ m∗n(Q

′′),
which, due to (1.6), becomes

(b1 − a1 − 2ϵ) · · · (bn − an − 2ϵ) ≤ m∗n(S) ≤ (b1 − a1 + 2ϵ) · · · (bn − an + 2ϵ).

Since ϵ > 0 is arbitrarily small, we find

m∗n(S) = voln(S). (1.7)

If aj = bj for at least one j, then of course voln(S) = 0. Moreover, we have S ⊆ Q′′, where
Q′′ = [a1 − ϵ, b1 + ϵ]× · · · × [an − ϵ, bn + ϵ], as before. Thenm∗n(S) ≤ m∗n(Q

′′), which, due to
(1.6) again, becomes

m∗n(S) ≤ (b1 − a1 + 2ϵ) · · · (bn − an + 2ϵ).

Since ϵ > 0 is arbitrarily small, we findm∗n(S) ≤ voln(S). And, since voln(S) = 0, we get (1.7)
again. Therefore, (1.7) holds for every bounded interval S.
Consider a bounded open­closed interval P and a bounded open interval R. Take the open­closed
interval PR with the same edges as R. Then (1.7) implies

m∗n(R ∩ P ) ≤ m∗n(PR ∩ P ) = voln(PR ∩ P ) (1.8)
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and we also have
m∗n(R ∩ P c) ≤ m∗n(PR ∩ P c). (1.9)

Now Proposition 1.13 implies PR ∩ P c = PR \ P = P ′1 ∪ · · · ∪ P ′k for some pairwise disjoint
bounded open­closed intervals P ′1, . . . , P ′k. From (1.9) and (1.7) we get

m∗n(R ∩ P c) ≤
∑k

i=1m
∗
n(P

′
i ) =

∑k
i=1 voln(P

′
i ). (1.10)

And now from (1.8) and (1.10) and from Proposition 1.30 we get

m∗n(R ∩ P ) +m∗n(R ∩ P c) ≤ voln(PR ∩ P ) +
∑k

i=1 voln(P
′
i ) = voln(PR) = voln(R).

We have just proved that

m∗n(R ∩ P ) +m∗n(R ∩ P c) ≤ voln(R). (1.11)

Now consider any bounded open­closed interval P and any E ⊆ Rn with m∗n(E) < +∞. Take,
for arbitrary ϵ > 0, a covering E ⊆

⋃+∞
j=1 Rj of E by bounded open intervals Rj so that∑+∞

j=1 voln(Rj) < m∗n(E) + ϵ.

Using the σ­subadditivity ofm∗n and (1.11), we get

m∗n(E ∩ P ) +m∗n(E ∩ P c) ≤
∑+∞

j=1m
∗
n(Rj ∩ P ) +

∑+∞
j=1m

∗
n(Rj ∩ P c)

=
∑+∞

j=1(m
∗
n(Rj ∩ P ) +m∗n(Rj ∩ P c))

≤
∑+∞

j=1 voln(Rj) < m∗n(E) + ϵ.

This impliesm∗n(E ∩ P ) +m∗n(E ∩ P c) ≤ m∗n(E), and so P is a Lebesgue set.
If T is any bounded interval at least one of whose edges is a single point, thenm∗n(T ) = voln(T ) =
0, and so, by Proposition 1.29, T is a Lebesgue set. Now, any bounded interval S differs from the
open­closed interval P , which has the same edges as S, by finitely many (at most 2n) T ’s, and so
S is also a Lebesgue set. Moreover,mn(S) = m∗n(S) = voln(S).
(ii) If x ∈ Rn, then {x} is a degenerate interval, and so mn({x}) = voln({x}) = 0. Now, if
A = {x1, x2, . . .} ⊆ Rn is an infinite countable set, then A =

⋃+∞
k=1{xk} is a Lebesgue set, and

mn(A) =
∑+∞

k=1mn({xk}) = 0.

Of course, the same is true if A is finite.

Proposition 1.32. Lebesgue measure is σ­finite but not finite.

Proof. Rn =
⋃+∞

k=1Qk, where Qk = [−k, k] × · · · × [−k, k] and mn(Qk) = voln(Qk) < +∞
for all k.
On the other hand,mn(Rn) ≥ mn(Qk) = (2k)n for all k, and somn(Rn) = +∞.

LEBESGUE MEASURE AND BOREL SETS.

Proposition 1.33. All Borel sets are Lebesgue sets, i.e. Bn ⊆ Ln.

Proof. Proposition 1.31 says that, if C is the collection of all bounded intervals inRn, then C ⊆ Ln.
But then Bn = S(C) ⊆ Ln.

Proposition 1.34. Let E ⊆ Rn. Then
(i)E is a Lebesgue set if and only if there is a setA, which is a countable intersection of open sets,
such that E ⊆ A andm∗n(A \ E) = 0.
(ii) E is a Lebesgue set if and only if there is a set B, which is a countable union of compact sets,
such that B ⊆ E andm∗n(E \B) = 0.
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Proof. (i) Assume that there is a set A, a countable intersection of open sets, such that E ⊆ A and
m∗n(A \ E) = 0. Then A ∈ Bn, and so A ∈ Ln. Also, by Proposition 1.29, A \ E ∈ Ln. Hence,
E = A \ (A \ E) ∈ Ln.
For the converse, consider, by means of Proposition 1.32, Y1, Y2, . . . ∈ Ln so that Rn =

⋃+∞
k=1 Yk

andmn(Yk) < +∞ for all k. DefineEk = E∩Yk and then getE =
⋃+∞

k=1Ek andmn(Ek) < +∞
for all k.
For all k and arbitrary l ∈ N we consider a covering Ek ⊆

⋃+∞
j=1 R

(k,l)
j by bounded open intervals

R
(k,l)
j so that ∑+∞

j=1 voln(R
(k,l)
j ) < mn(Ek) +

1
l2k
.

The set U (k,l) =
⋃+∞

j=1 R
(k,l)
j is open, and we have that Ek ⊆ U (k,l) and

mn(U
(k,l)) ≤

∑+∞
j=1mn(R

(k,l)
j ) =

∑+∞
j=1 voln(R

(k,l)
j ) < mn(Ek) +

1
l2k
,

from which we get
mn(U

(k,l) \ Ek) <
1
l2k
.

Now, the set U (l) =
⋃+∞

k=1 U
(k,l) is open, with E ⊆ U (l) and U (l) \E ⊆

⋃+∞
k=1(U

(k,l) \Ek), from
which we get

mn(U
(l) \ E) ≤

∑+∞
k=1mn(U

(k,l) \ Ek) <
∑+∞

k=1
1
l2k

= 1
l .

Finally, we define A =
⋂+∞

l=1 U
(l). Then E ⊆ A and

mn(A \ E) ≤ mn(U
(l) \ E) < 1

l

for all l, and somn(A \ E) = 0.
(ii) Assume thatB is a countable union of compact sets so thatB ⊆ E andm∗n(E \B) = 0. Then
B ∈ Bn, and so B ∈ Ln. Also, by Proposition 1.29, E \B ∈ Ln. Thus, E = B ∪ (E \B) ∈ Ln.
Now take E ∈ Ln. Then Ec ∈ Ln and by (i) there is a setA, a countable intersection of open sets,
so that Ec ⊆ A andmn(A \ Ec) = 0.
We set B = Ac, a countable union of closed sets, and we get mn(E \ B) = mn(A \ Ec) = 0.
Now, let B =

⋃+∞
j=1 Fj , where each Fj is closed. We then write Fj =

⋃+∞
k=1 Fj,k, where Fj,k =

Fj ∩ ([−k, k]×· · ·× [−k, k]) is a compact set. This proves thatB is a countable union of compact
sets: B =

⋃
(j,k)∈N×N Fj,k.

Proposition 1.34 says that every Lebesgue set is, except from a null set, equal to a Borel set.

Proposition 1.35. (i) mn is the only measure on (Rn,Bn) satisfying mn(S) = voln(S) for every
bounded interval S.
(ii) (Rn,Ln,mn) is the completion of (Rn,Bn,mn).

Proof. (i) Let µ be a measure on (Rn,Bn) with µ(S) = voln(S), and hence µ(S) = mn(S), for
all bounded intervals S. If S = I1 × · · · × In is an unbounded interval, we take any increasing
sequence (Sk) of bounded intervals (for example, Sk = S ∩ ([−k, k] × · · · × [−k, k])) so that⋃+∞

k=1 Sk = S, and we get that

µ(S) = limk→+∞ µ(Sk) = limk→+∞mn(Sk) = mn(S).

Therefore,
µ
(⋃m

j=1 Pj

)
=

∑m
j=1 µ(Pj) =

∑m
j=1mn(Pj) = mn

(⋃m
j=1 Pj

)
for all pairwise disjoint open­closed intervals P1, . . . , Pm. So the measures µ andmn are equal on
the algebra A =

{⋃m
j=1 Pj

∣∣m ∈ N, P1, . . . , Pm pairwise disjoint open­closed intervals in Rn
}
.

By Proposition 1.27, the two measures are equal also on S(A) = Bn.
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(ii) Let (Rn,Bn,mn) be the completion of (Rn,Bn,mn).
By Proposition 1.33, (Rn,Ln,mn) is a complete extension of (Rn,Bn,mn). Hence, Bn ⊆ Ln

andmn(E) = mn(E) for every E ∈ Bn.
Now take any E ∈ Ln. Proposition 1.34 implies that there is a Borel set B so that B ⊆ E and
mn(E \B) = 0. Once more, Proposition 1.34 imples that there is a Borel setA so thatE \B ⊆ A
andmn(A \ (E \B)) = 0. Then

mn(A) = mn(A \ (E \B)) +mn(E \B) = 0.

Since A ∈ Bn, we have A ∈ Bn. Now, since E \ B ⊆ A and mn(A) = mn(A) = 0, and since
(Rn,Bn,mn) is complete, we get thatE \B ∈ Bn. We also haveB ∈ Bn, and soB ∈ Bn. Hence,
E = B ∪ (E \B) ∈ Bn.
Therefore, Ln ⊆ Bn, and the proof is complete.

Proposition 1.36. Letm∗n(E) < +∞. ThenE ∈ Ln if and only if for any ϵ > 0 there are pairwise
disjoint bounded intervals S1, . . . , Sl (of any kind we like) so thatmn(E4(S1 ∪ · · · ∪ Sl)) < ϵ.

Proof. Let E ∈ Ln andmn(E) < +∞. We consider a covering E ⊆
⋃+∞

j=1 R
′
j by bounded open

intervals R′j such that ∑+∞
j=1 voln(R

′
j) < mn(E) + ϵ

4 .

Now we consider the bounded open­closed interval P ′j which has the same edges as R′j , and then
we have E ⊆

⋃+∞
j=1 P

′
j and ∑+∞

j=1 voln(P
′
j) < mn(E) + ϵ

4 .

We takem so that
∑+∞

j=m+1 voln(P
′
j) <

ϵ
4 , and we observe the inclusions

E \
(⋃m

j=1 P
′
j

)
⊆

⋃+∞
j=m+1 P

′
j ,

(⋃m
j=1 P

′
j

)
\ E ⊆

(⋃+∞
j=1 P

′
j

)
\ E.

Thus,
mn

(
E \

(⋃m
j=1 P

′
j

))
≤

∑+∞
j=m+1 voln(P

′
j) <

ϵ
4 ,

mn

((⋃m
j=1 P

′
j

)
\ E

)
≤ mn

(⋃+∞
j=1 P

′
j

)
−mn(E) < ϵ

4 .

Adding, we find
mn

(
E4

(⋃m
j=1 P

′
j

))
< ϵ

2 .

Proposition 1.13 implies that there are pairwise disjoint bounded open­closed intervals P1, . . . , Pl

so that
⋃m

j=1 P
′
j =

⋃l
k=1 Pk, and so

mn

(
E4

(⋃l
k=1 Pk

))
< ϵ

2 .

Using a technique which appeared in the proof of Proposition 1.31, for each Pk we can find an
interval Sk (of any kind we like) so that Sk ⊆ Pk and

mn(Pk \ Sk) = mn(Pk)−mn(Sk) <
ϵ
2l .

Then the S1, . . . , Sl are pairwise disjoint, and
⋃l

k=1 Sk ⊆
⋃l

k=1 Pk. Moreover,(⋃l
k=1 Pk

)
\
(⋃l

k=1 Sk
)
⊆

⋃l
k=1(Pk \ Sk),

and so

mn

((⋃l
k=1 Pk

)
\
(⋃l

k=1 Sk
))

≤ mn

(⋃l
k=1(Pk \ Sk)

)
=

∑l
k=1mn(Pk \ Sk) <

∑l
k=1

ϵ
2l =

ϵ
2 .

Since
E4

(⋃l
k=1 Sk

)
⊆

(
E4

(⋃l
k=1 Pk

))
∪
((⋃l

k=1 Pk

)
\
(⋃l

k=1 Sk
))
,
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we finally get
mn

(
E4

(⋃l
k=1 Sk

))
< ϵ

2 + ϵ
2 = ϵ.

Conversely, assume that for every k ∈ N there is a set Bk, a finite union of pairwise disjoint
bounded intervals, so that

m∗n(E4Bk) <
1
2k
.

We consider the set
F =

⋂+∞
m=1

(⋃+∞
k=mBk

)
,

and since Bk ∈ Ln for all k, we have that F ∈ Ln. Then

F \ E =
⋂+∞

m=1

(⋃+∞
k=m(Bk \ E)

)
⊆

⋃+∞
k=m(Bk \ E)

for everym, and so

m∗n(F \ E) ≤
∑+∞

k=mm
∗
n(Bk \ E) ≤

∑+∞
k=mm

∗
n(Bk4E) ≤

∑+∞
k=m

1
2k

= 1
2m−1

for everym. Hencem∗n(F \ E) = 0, which implies that F \ E ∈ Ln.
Also,

E \ F =
⋃+∞

m=1

(⋂+∞
k=m(E \Bk)

)
=

⋃+∞
m=M

(⋂+∞
k=m(E \Bk)

)
⊆

⋃+∞
m=M (E \Bm)

for everyM , and so

m∗n(E \ F ) ≤
∑+∞

m=M m∗n(E \Bm) ≤
∑+∞

m=M m∗n(E4Bm) ≤
∑+∞

m=M
1
2m = 1

2M−1

for everyM . Hencem∗n(E \ F ) = 0, which implies that E \ F ∈ Ln.
Now, since E = (E \ F ) ∪ (E ∩ F ) = (E \ F ) ∪

(
F \ (F \ E)

)
, we get that E ∈ Ln.

Exercises.

1.4.1. If A ∈ Ln and A is bounded, prove that mn(A) < +∞. Give an example of an A ∈ Ln

which is not bounded but hasmn(A) < +∞.

1.4.2. Let A = Q ∩ [0, 1]. If R1, . . . , Rm are open intervals so that A ⊆
⋃m

j=1Rj , prove that
1 ≤

∑m
j=1 vol1(Rj). Discuss the contrast tom∗1(A) = 0.

1.4.3. Let E ⊆ Rn with m∗n(E) > 0, and 0 ≤ α < 1. Prove that there is a non­empty bounded
open interval R so thatm∗n(E ∩R) ≥ α voln(R).

1.4.4. Let E ⊆ Rn be a Lebesgue set, and δ > 0. If mn(E ∩ R) ≥ δ voln(R) for all bounded
open intervals R, prove thatmn(E

c) = 0.
Hint. Use the result of exercise 1.4.3.

LEBESGUE MEASURE AND SIMPLE TRANSFORMATIONS.

Some of the simplest and most important transformations of Rn are the translations and the linear
transformations.

Every z ∈ Rn defines the translation by z, namely the function τz : Rn → Rn given by

τz(x) = x+ z, x ∈ Rn.

Then τz is an one­to­one transformation of Rn onto Rn and its inverse transformation is τ−z . For
every E ⊆ Rn we define

E + z = {x+ z |x ∈ E} = τz(E).

If S is any bounded interval in Rn, then any translation transforms it onto another interval (of
the same type) with the same volume. In fact, if a1, b1, . . . , an, bn are the end­points of the edges
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of S, then S + z has a1 + z1, b1 + z1, . . . , an + zn, bn + zn as end­points of its edges, where
z = (z1, . . . , zn). Therefore,

voln(S + z) =
(
(b1 + z1)− (a1 + z1)

)
· · ·

(
(bn + zn)− (an + zn)

)
= (b1 − a1) · · · (bn − an) = voln(S).

So we may say that the volume of intervals in Rn is invariant under translations. We shall see
that the same is true for the Lebesgue measure of Lebesgue sets in Rn.

Proposition 1.37. (i) Ln is invariant under translations: A + z ∈ Ln for every A ∈ Ln and
z ∈ Rn.
(ii)mn is invariant under translations:

mn(A+ z) = mn(A)

for every A ∈ Ln and z ∈ Rn.

Proof. Let E ⊆ Rn and z ∈ Rn. Then for all coverings E ⊆
⋃+∞

j=1 Rj by bounded open intervals
Rj we get E + z ⊆

⋃+∞
j=1(Rj + z). Therefore,

m∗n(E + z) ≤
∑+∞

j=1 voln(Rj + z) =
∑+∞

j=1 voln(Rj).

Taking the infimum of the right side, we find that m∗n(E + z) ≤ m∗n(E). Now, applying this to
E + z translated by −z, we get

m∗n(E) = m∗n((E + z)− z) ≤ m∗n(E + z).

Hence,m∗n(E + z) = m∗n(E) for all E ⊆ Rn and z ∈ Rn.
Suppose now that A ∈ Ln and E ⊆ Rn. We have

m∗n(E ∩ (A+ z)) +m∗n(E ∩ (A+ z)c)

= m∗n
(
[(E − z) ∩A] + z

)
+m∗n

(
[(E − z) ∩Ac] + z

)
= m∗n

(
(E − z) ∩A

)
+m∗n

(
(E − z) ∩Ac

)
= m∗n(E − z) = m∗n(E).

Therefore, A+ z ∈ Ln andmn(A+ z) = m∗n(A+ z) = m∗n(A) = mn(A).

As is well known, a linear transformation of Rn is a function T : Rn → Rn such that

T (x+ y) = T (x) + T (y), T (κx) = κT (x)

for all x, y ∈ Rn and κ ∈ R.
Every linear transformation T : Rn → Rn has a determinant, det(T ) ∈ R. The linear transfo­

mation T : Rn → Rn is one­to­one if and only if it is onto if and only if det(T ) 6= 0. Moreover, if
det(T ) 6= 0, then T−1 : Rn → Rn is also a linear transformation and det(T−1) = (det(T ))−1. Fi­
nally, if T, T1, T2 are linear transformations ofRn and T = T1◦T2, then det(T ) = det(T1) det(T2).
All these are standard results of Linear Algebra.

Proposition 1.38. Let T : Rn → Rn be a linear transformation. If A ∈ Ln, then T (A) ∈ Ln and

mn(T (A)) = | det(T )|mn(A).

If det(T ) = 0 andmn(A) = +∞, we interpret the right side as 0 (+∞) = 0.
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Proof. At first we assume that det(T ) 6= 0.
If T has the form

T (x1, x2, . . . , xn) = (λx1, x2, . . . , xn) (1.12)

for a certain λ ∈ R\{0}, then det(T ) = λ. Also, ifR = (a1, b1)×· · ·× (an, bn), then, depending
on whether λ > 0 or λ < 0, we have, respectively,

T (R) = (λa1, λb1)× (a2, b2)× · · · × (an, bn) or (λb1, λa1)× (a2, b2)× · · · × (an, bn),

Thus, T (R) is an interval andmn(T (R)) = |λ|mn(R) = | det(T )|mn(R).
If T has the form

T (x1, x2, . . . , xi−1, xi, xi+1, . . . , xn) = (xi, x2, . . . , xi−1, x1, xi+1, . . . , xn) (1.13)

for a certain i 6= 1, then det(T ) = −1. Also, if R = (a1, b1)× · · · × (an, bn) as before, then

T (R) = (ai, bi)× (a2, b2)× · · · × (ai−1, bi−1)× (a1, b1)× (ai+1, bi+1)× · · · × (an, bn).

Thus, T (R) is an interval and, again,mn(T (R)) = mn(R) = | det(T )|mn(R).
Now, let T have the form

T (x1, . . . , xi−1, xi, xi+1, . . . , xn) = (x1, . . . , xi−1, xi + x1, xi+1, . . . , xn) (1.14)

for a certain i 6= 1. Then det(T ) = 1. Now it is more convenient to work with an interval of the
form

S = [a1, b1]× · · · × [ai−1, bi−1]× (ai, bi]× [ai+1, bi+1]× · · · × [an, bn]. (1.15)

Then T (S) is not an interval any more. In fact,

T (S) = {(y1, . . . , yn) | yj ∈ [aj , bj ] for j 6= i, yi − y1 ∈ (ai, bi]}.

We also define the following three auxilliary sets:

L = [a1, b1]× · · · × [ai−1, bi−1]× [ai + a1, bi + a1)× [ai+1, bi+1]× · · · × [an, bn],

M = {(y1, . . . , yn) | yj ∈ [aj , bj ] for j 6= i, ai + a1 ≤ yi ≤ ai + y1},
N = {(y1, . . . , yn) | yj ∈ [aj , bj ] for j 6= i, bi + a1 ≤ yi ≤ bi + y1}.

It is easy to see that

T (S) ∩M = ∅, L ∩N = ∅, T (S) ∪M = L ∪N, N =M + z,

where z = (0, . . . , 0, bi−ai, 0, . . . , 0). Moreover, L is an interval and so it is a Borel set. It is easy
to see thatM,N are closed sets and so they are also Borel sets. Now, from T (S) = (L∪N) \M
we get that T (S) is also a Borel set. Then we have

mn(T (S)) +mn(M) = mn(T (P ) ∪M) = mn(L ∪N) = mn(L) +mn(N)

and
mn(M) = mn(M + z) = mn(N).

Hence, L, S being intervals,

mn(T (S)) = mn(L) = voln(L) = voln(S) = mn(S) = | det(T )|mn(S).

Now, if R = (a1, b1) × · · · × (an, bn) is any bounded open interval, we take the corresponding
interval S of the form (1.15) with the same endpoints as R. Then R ⊆ S and mn(R) = mn(S),
and we get T (R) ⊆ T (S) and

m∗n(T (R)) ≤ mn(T (S)) = | det(T )|mn(S) = | det(T )|mn(R).
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We have shown that for every linear transformation T of the above three types (1.12), (1.13), (1.14)
we have

m∗n(T (R)) ≤ | det(T )|mn(R)

for every bounded open intervalR. (In the first two cases, it was obvious that T (R)was an interval,
and so T (R) ∈ Bn. In the third case, with a little more work, we can also show that T (R) ∈ Bn

and that the equality mn(T (R)) = | det(T )|mn(R) holds, but we do not really need this for the
rest of the proof.)
Let, again, T be any linear transformation of one of the above three types. Take any E ⊆ Rn

and consider an arbitrary covering E ⊆
⋃+∞

j=1 Rj by bounded open intervals Rj . Then T (E) ⊆⋃+∞
j=1 T (Rj), and so

m∗n(T (E)) ≤
∑+∞

j=1m
∗
n(T (Rj)) ≤ | det(T )|

∑+∞
j=1mn(Rj) = | det(T )|

∑+∞
j=1 voln(Rj).

Taking the infimum over all such coverings, we conclude that

m∗n(T (E)) ≤ | det(T )|m∗n(E).

If T is any linear transformation with det(T ) 6= 0, then, by a well­known result of Linear Algebra,
there are linear transformations T1, . . . , TN , where each is of one of the above three types so that
T = T1 ◦ · · · ◦ TN . Applying the last result repeatedly, we find

m∗n(T (E)) ≤ | det(T1)| · · · | det(TN )|m∗n(E)| = | det(T )|m∗n(E)

for every E ⊆ Rn. If in this inequality we use the set T (E) in the place of E and T−1 in the place
of T , we get

m∗n(E) ≤ | det(T−1)|m∗n(T (E)) = | det(T )|−1m∗n(T (E)).

Combining the last two inequalities, we conclude that

m∗n(T (E)) = | det(T )|m∗n(E)

for every linear transformation T with det(T ) 6= 0 and every E ⊆ Rn.
Now let A ∈ Ln. For all E ⊆ Rn we get

m∗n(E ∩ T (A)) +m∗n(E ∩ (T (A))c) = m∗n
(
T (T−1(E) ∩A)

)
+m∗n

(
T (T−1(E) ∩Ac)

)
= | det(T )|

(
m∗n(T

−1(E) ∩A) +m∗n(T
−1(E) ∩Ac)

)
= | det(T )|m∗n(T−1(E)) = m∗n(E).

Thus, T (A) ∈ Ln. Moreover,

mn(T (A)) = m∗n(T (A)) = | det(T )|m∗n(A) = | det(T )|mn(A).

If det(T ) = 0, then V = T (Rn) is a linear subspace of Rn with dim(V ) ≤ n − 1. We shall
prove thatmn(V ) = 0 and, since T (A) ⊆ V , from the completeness ofmn we shall conclude that
T (A) ∈ Ln and

mn(T (A)) = 0 = | det(T )|mn(A)

for every A ∈ Ln.
We consider any basis {f1, . . . , fm} of V withm = dim(V ) ≤ n−1, and we complete it to a basis
{f1, . . . , fm, fm+1, . . . , fn} of Rn. We consider the linear transformation S : Rn → Rn given by

S(x1f1 + · · ·+ xnfn) = (x1, . . . , xn).

Then S is one­to­one, and so det(S) 6= 0. Moreover,

S(V ) = {(x1, . . . , xm, 0, . . . , 0) |x1, . . . , xm ∈ R}.

We have S(V ) =
⋃+∞

k=1Qk, where Qk = [−k, k] × · · · × [−k, k] × {0} × · · · × {0} (the first
m factors of Qk are equal to [−k, k]). Each Qk is a closed interval in Rn with mn(Qk) = 0.
Therefore,mn(S(V )) = 0, and this impliesmn(V ) = | det(S)|−1mn(S(V )) = 0.
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Two special examples of linear transformations of Rn are the dilations and the reflection.
Every λ > 0 defines the dilation lλ : Rn → Rn, given by

lλ(x) = λx, x ∈ Rn.

Then lλ is an one­to­one linear transformationwith det(lλ) = λn. The inverse linear transformation
of lλ is l1/λ. For every E ⊆ Rn we define

λE = {λx |x ∈ E} = lλ(E)

and we have
mn(λA) = λnmn(A)

for all A ∈ Ln.
Another linear transformation is r : Rn → Rn, reflection through 0, defined by

r(x) = −x, x ∈ Rn.

Reflection r is one­to­one with det(r) = (−1)n, and it is the inverse of itself. We define

−E = {−x |x ∈ E} = r(E)

for all E ⊆ Rn and we have
mn(−A) = mn(A)

for all A ∈ Ln.
If b, b1, . . . , bn ∈ Rn, then the set

M = {b+ κ1b1 + · · ·+ κnbn | 0 ≤ κ1 ≤ 1, . . . , 0 ≤ κn ≤ 1}

is the typical bounded closed parallelepiped in Rn. One of the vertices of M is b, and then
b1, . . . , bn (interpreted as vectors) are the edges of M which start from b. For such an M we
define the linear transformation T : Rn → Rn by

T (x) = T (x1, . . . , xn) = x1b1 + · · ·+ xnbn, x = (x1, . . . , xn) ∈ Rn.

We also consider the translation τb and the unit cubeQ0 = [0, 1]n = [0, 1]×· · ·× [0, 1] in Rn. We
observe thatM = τb

(
T (Q0)

)
, and now Propositions 1.37 amd 1.38 imply thatM is a Lebesgue

set and
mn(M) = mn

(
T (Q0)

)
= | det(T )|mn(Q0) = | det(T )|.

The columns of the matrix of T with respect to the standard basis {e1, . . . , en} ofRn are the vectors
T (e1) = b1, . . . , T (en) = bn. We conclude with the rule: the Lebesgue measure of a bounded
closed parallelepiped is equal to the absolute value of the determinant of the matrix having as
columns the sides of the parallelepiped starting from one of its vertices. Of course, it is easy to see
that the same is true for any bounded parallelepiped.

A hyperplane of Rn is a set of the form V + z, where z ∈ Rn and V is a linear subspace of Rn

with dim(V ) = n− 1.

Proposition 1.39. IfA is included in a hyperplane ofRn, thenA is a Lebesgue set andmn(A) = 0.

Proof. If V is a linear subspace of Rn with dim(V ) = n− 1, then there is a linear transformation
T : Rn → Rn so that V = T (Rn) and det(T ) = 0. Now, Proposition 1.38 implies that V
is a Lebesgue set and, as we saw in the proof of Proposition 1.38, we have mn(V ) = 0. Then
Proposition 1.37 says that V + z is a Lebesgue set andmn(V + z) = mn(V ) = 0.
Now, if A ⊆ V + z, then by the completeness of Lebesgue measure we have that A is a Lebesgue
set andmn(A) = 0.
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Exercises.

1.4.5. Let T : Rn → Rn be an isometric linear transformation. This means that T is a linear
transformation satisfying |T (x) − T (y)| = |x − y| for every x, y ∈ Rn or, equivalently, TT ∗ =
T ∗T = I , where T ∗ is the adjoint of T and I is the identity transformation.
Prove thatmn(T (A)) = mn(A) for every A ∈ Ln.

1.4.6. A parallelepiped in Rn is called degenerate if it is included in a hyperplane of Rn.
Prove that a parallelepipedM is degenerate if and only ifmn(M) = 0.

1.4.7. State in a formal way and prove the rule “volume = base area × height” for parallelepipeds
in Rn.

1.4.8. Prove thatmn is the only measure µ on (Rn,Bn) which is invariant under translations (i.e.
µ(A + z) = µ(A) for all A ∈ Bn and all z ∈ Rn), and which satisfies µ(Q0) = 1, where
Q0 = [0, 1]× · · · × [0, 1].
Hint. For every m ∈ N and for all cubes of the form Q =

[
x1, x1 +

1
m

]
× · · · ×

[
xn, xn + 1

m

]
,

prove that µ(Q) =
(
1
m

)n.
1.4.9. Let E ⊆ Rn be a Lebesgue set withmn(E) > 0. Prove that the difference set of E, i.e. the
set D(E) = {x− y |x, y ∈ E}, includes some open interval in Rn which is centered at 0.
Hint. Take α = 2

3 . Then exercise 1.4.3 says that there is a non­empty bounded open interval R =
I1×· · ·×In so thatmn(E∩R) ≥ α voln(R). Consider the open intervalR′ = J1×· · ·×Jn, where
Jk is the open interval in R which is centered at 0 and with length(Jk) = 2(1− α1/n) length(Ik).
Prove that E ∩ (E + z) ∩R 6= ∅ for all z ∈ R′.

1.4.10. Let E ⊆ Rn be a Lebesgue set, and A be a dense subset of Rn. If mn(E4(E + z)) = 0
for all z ∈ A, prove thatmn(E) = 0 ormn(E

c) = 0.

THE CANTOR SET AND THE CANTOR FUNCTION.

If x ∈ Rn, then {x} is a degenerate interval, and so mn({x}) = voln({x}) = 0. In fact, every
countable set in Rn has Lebesgue measure zero: if A = {x1, x2, . . .}, then

mn(A) =
∑+∞

k=1mn({xk}) = 0.

The aim of this subsection is to construct an uncountable set in R whose one­dimensional
Lebesgue measure is zero.

We start with the interval I0 = [0, 1], we then take I1 = [0, 13 ] ∪ [23 , 1], we continue with
I2 = [0, 19 ]∪ [29 ,

1
3 ]∪ [23 ,

7
9 ]∪ [89 , 1] and so on: at every stage we divide each of the intervals which

we get at the previous stage into three subintervals of equal length and we keep only the two closed
subintervals on the sides.

We thus construct a decreasing sequence (Ik) of closed sets so that every Ik consists of 2k
closed intervals all of which have the same length 1

3k
. We define

C =
⋂+∞

k=1 Ik

and call it the Cantor set.
C is a compact subset of [0, 1] with m1(C) = 0. To see this we observe that for every k we

have
0 ≤ m1(C) ≤ m1(Ik) = 2k 1

3k

and that limk→+∞
(
2
3

)k
= 0.

We shall prove, by contradiction, that C is uncountable: let us assume that C = {x1, x2, . . .}.
We shall now describe an inductive process of picking one of the subintervals constituting each Ik.
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It is obvious that every xk belongs to Ik, since it belongs to C. At the first step we choose
the interval I(1) to be the subinterval of I1 which does not contain x1. Now, I(1) includes two
subintervals of I2, and at the second step we choose the interval I(2) to be whichever of these two
subintervals of I(1) does not contain x2. (If both do not contain x2, we just take the left one.) And
we continue inductively: if we have already chosen I(k−1) from the subintervals of Ik−1, then this
includes two subintervals of Ik. We choose as I(k) whichever of these two subintervals of I(k−1)
does not contain xk. (If both do not contain xk, we just take the left one.)

This produces a sequence (I(k)) of closed intervals with the following properties:
(i) I(k) ⊆ Ik for all k,
(ii) I(k) ⊆ I(k−1) for all k,
(iii) length(I(k)) = 1

3k
, and so limk→+∞ length(I(k)) = 0,

(iv) xk /∈ I(k) for all k.
From (ii) and (iii) we conclude that the intersection of all I(k) contains a single point:

⋂+∞
k=1 I

(k) =
{x0} for some x0. From (i) we see that x0 ∈ Ik for all k, and so x0 ∈ C. Therefore, x0 = xk for
some k ∈ N. But then x0 ∈ I(k) and, by (iv), the same point xk does not belong to I(k).

We arrived at a contradiction, and we conclude that C is uncountable.
Now, for each k ∈ Nwe shall define a function fk : [0, 1] → [0, 1] as follows. We observe that

the set [0, 1] \ Ik consists of 2k − 1 open intervals, and we denote these intervals J (k)
1 , . . . , J

(k)

2k−1,
going from left to right:

[0, 1] \ Ik = J
(k)
1 ∪ · · · ∪ J (k)

2k−1.

We define fk(0) = 0, fk(1) = 1, then we define fk to be constant j
2k

on J (k)
j for j = 1, . . . , 2k−1,

and, finally, we define fk to be linear on each of the 2k subintervals of Ik in such a way that fk is
continuous on [0, 1]. The resulting function fk is strictly increasing on each of the 2k subintervals
of Ik, and constant on each of the 2k − 1 subintervals of [0, 1] \ Ik.

We observe that the subintervals of [0, 1] \ Ik−1 are also subintervals of [0, 1] \ Ik and that
fk−1 = fk on each of them. Moreover, on each of the subintervals of Ik−1 the functions fk−1, fk
are increasing, they coincide at the endpoints and the difference of their common values at the
endpoints is 1

2k−1 . Therefore, we get that |fk − fk−1| ≤ 1
2k−1 on each of the subintervals of Ik−1

and, hence, |fk − fk−1| ≤ 1
2k−1 everywhere on [0, 1] for all k ≥ 2. This implies that the series of

functions f1 +
∑+∞

k=2(fk − fk−1) converges to a function, say f , uniformly on [0, 1]:

f1 +
∑+∞

k=2(fk − fk−1) = f uniformly on [0, 1].

The k­th partial sum of the series is f1 + (f2 − f1) + · · ·+ (fk − fk−1) = fk, and so

limk→+∞ fk = f uniformly on [0, 1].

Since fk(0) = 0 and fk(1) = 1 for all k, we have that f(0) = 0 and f(1) = 1. Moreover, f
is increasing on [0, 1] since it is the limit of increasing functions on [0, 1]. Furthermore, all fk are
continuous on [0, 1] and from uniform convergence we conclude that f is continuous on [0, 1].

The function fk was defined to be constant j
2k

on J (k)
j for all j = 1, . . . , 2k−1. But we observe

that for all m ≥ k we have fm = fk on each J
(k)
j . Therefore, f is constant j

2k
on J (k)

j for all k
and all j = 1, . . . , 2k − 1.

The function f is called the Cantor function. We restate its main properties:
(i) f is increasing and continuous on [0, 1].
(ii) f(0) = 0 and f(1) = 1, and f is constant on each of the subintervals of [0, 1] \ C. More
precisely, for every k ≥ 1 the function f is constant j

2k
on J (k)

j for all j = 1, . . . , 2k − 1.
It is standard to extend the Cantor function on R by defining f = 0 on (−∞, 0) and f = 1 on

(1,+∞). Thus, f is continuous and increasing on R.

Exercises.
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1.4.11. An example of anm1­null uncountable set which is dense in an interval.
Let Q ∩ [0, 1] = {x1, x2, . . .}. Take U(ϵ) =

⋃+∞
j=1

(
xj − ϵ

2j
, xj +

ϵ
2j

)
and A =

⋂+∞
n=1 U

(
1
n

)
.

(i) Prove thatm1(U(ϵ)) ≤ 2ϵ.
(ii) If ϵ < 1

2 , prove that [0, 1] is not a subset of U(ϵ).
(iii) Prove that A ⊆ [0, 1] andm1(A) = 0.
(iv) Prove that Q ∩ [0, 1] ⊆ A, and that A is uncountable.

1.4.12. Prove that the Cantor set is perfect: it is closed and has no isolated points.

1.4.13. (i) Prove that for every sequence (ak) in {0, 1, 2} the series
∑+∞

k=1
ak
3k

converges and its
sum is a number in [0, 1].
Conversely, prove that for every number x in [0, 1] there is a sequence (ak) in {0, 1, 2} so that
x =

∑+∞
k=1

ak
3k
. Then we say that 0.a1a2 . . . is a ternary expansion of x and that a1, a2, . . . are the

ternary digits of this expansion.
(ii) If x ∈ [0, 1] is of the form x = m

3N
, where m ≡ 1(mod 3) and N ∈ N, prove that x has

exactly two ternary expansions: one of the form 0.a1 . . . aN−11000 . . . and another of the form
0.a1 . . . aN−10222 . . . .
If x ∈ [0, 1] is either irrational or of the form x = m

3N
, where m ≡ 0(mod 3) or m ≡ 2(mod 3)

andN ∈ N, prove that x has exactly one ternary expansion which is not of either one of the above
forms.
(iii) Let C be the Cantor set. If x ∈ [0, 1], prove that x ∈ C if and only if x has at least one ternary
expansion containing no ternary digit 1.

1.4.14. More Cantor sets.
(a) We take an arbitrary sequence (ϵk) so that 0 < ϵk < 1

2 for all k. We split I0 = [0, 1] into
the three intervals

[
0, 12 − ϵ1

]
,
(
1
2 − ϵ1,

1
2 + ϵ1

)
,
[
1
2 + ϵ1, 1

]
, and we form I1 as the union of the

two closed intervals. Inductively, if we have already constructed Ik−1 as a union of certain closed
intervals, we split each of these intervals into three subintervals of which the two side ones are
closed and their proportion to the original is 1

2 − ϵk. Then we denote Ik the union of the new
intervals. Clearly, Ik consists of 2k disjoint closed intervals.
We setK =

⋂+∞
k=1 Ik.

Observe that, if ϵk = 1
6 for every k, thenK = C, i.e. the usual Cantor set.

(i) Prove thatK is compact, has no isolated points, includes no open interval, and is uncountable.
(ii) Prove thatm1(K) = limk→+∞(1− 2ϵ1) · · · (1− 2ϵk).
(iii) Taking 0 < ϵ < 1, and ϵk = ϵ

3k
for all k, prove thatm1(K) > 1− ϵ.

Hint. (1− a1) · · · (1− ak) > 1− (a1 + · · ·+ ak) for all k and all a1, . . . , ak ∈ (0, 1].
(iv) Prove thatm1(K) > 0 if and only if

∑+∞
k=1 ϵk < +∞.

Hint. Use the inequality in the hint for (iii) and also that 1− a ≤ e−a for all a.
(b) We can produce Cantor sets in Rn. Using the sequence (ϵk) and the sequence (Ik) of closed
subsets of [0, 1] in part (a), we consider the cartesian products Ink = Ik×· · ·×Ik. Then In0 = [0, 1]n

is the closed unit cube in Rn, and every Ink is the union of 2kn closed cubes. Each of the 2(k−1)n
cubes of Ink−1 contains 2

n cubes of Ink . Now, if K is the set of part (a), then the cartesian product
Kn = K × · · · ×K is the intersection of the Ink , i.e. K

n =
⋂+∞

k=1 I
n
k .

Adjusting (i)­(iv) of part (a), prove that Kn is compact, has no isolated points, includes no open
interval, is uncountable, hasmn(K

n) = limk→+∞((1−2ϵ1) · · · (1−2ϵk))
n, and thatmn(K

n) > 0
if and only if

∑+∞
k=1 ϵk < +∞.

A NON­LEBESGUE SET IN R.

For any x, y ∈ R we write
x ∼ y
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if x − y ∈ Q. It is easy to see that ∼ is an equivalence relation. Indeed, x ∼ x, because
x− x = 0 ∈ Q. Also, if x ∼ y, then x− y ∈ Q, and then y − x = −(x− y) ∈ Q, and so y ∼ x.
Finally, if x ∼ y and y ∼ z, then x−y ∈ Q and y−z ∈ Q, and then x−z = (x−y)+(y−z) ∈ Q,
and then x ∼ z.

It is easy to see that every equivalence class of∼ has non­empty intersectionwith [0, 1]. Indeed,
let ξ be any equivalence class of ∼, and let x ∈ ξ. Since Q is dense in R, there exists r ∈
Q ∩ [−x,−x+ 1]. Now we consider y = x+ r, and then y ∈ [0, 1]. Also y ∼ x, and so y ∈ ξ.

Now, using the Axiom of Choice, we form a set N containing exactly one element from the
intersection of each equivalence class of ∼ with [0, 1].

Obviously, N ⊆ [0, 1]. Our aim is to prove that N is not a Lebesgue set in R.
We form the set

A =
⋃

r∈Q∩[−1,1](N + r).

We shall need three properties of A.
(i) If r1, r2 ∈ Q ∩ [−1, 1] and r1 6= r2, then (N + r1) ∩ (N + r2) = ∅.
Indeed, if x ∈ (N + r1) ∩ (N + r2), then x− r1, x− r2 ∈ N . But x ∼ x− r1 and x ∼ x− r2,
and so N contains two different elements from the equivalence class of ∼ which contains x.
(ii) A ⊆ [−1, 2].
This is clear, since N ⊆ [0, 1] implies N + r ⊆ [−1, 2] for every r ∈ Q ∩ [−1, 1].
(iii) [0, 1] ⊆ A.
Indeed, let x ∈ [0, 1] and let us consider the equivalence class ξ of ∼ which contains x. Then
N contains exactly one element x from ξ ∩ [0, 1]. Then x ∈ N and x − x ∈ Q. We consider
r = x− x, and then r ∈ Q ∩ [−1, 1]. Hence, x = x+ r ∈ N + r for some r ∈ Q ∩ [−1, 1], and
so x ∈ A.

Now let us suppose that N is a Lebesgue set in R. By (i) and by the invariance of m1 under
translations, we get that

m1(A) =
∑

r∈Q∩[−1,1]m1(N + r) =
∑

r∈Q∩[−1,1]m1(N).

If m1(N) > 0, then m1(A) = +∞, contradicting (ii). If m1(N) = 0, then m1(A) = 0, contra­
dicting (iii).

Therefore, N is not a Lebesgue set in R.

Exercises.

1.4.15. Another construction of a non­Lebesgue set in R.
Consider the equivalence relation ∼ which we used in this section, and let L be a set containing
exactly one element from each of the equivalence classes of ∼.
(i) Prove that R =

⋃
r∈Q(L+ r), and that the sets L+ r are pairwise disjoint.

(ii) Prove that the difference set of L (see exercise 1.4.9) contains no rational number 6= 0.
(iii) Using the result of exercise 1.4.9, prove that L is not a Lebesgue set in R.

1.4.16. Non­Lebesgue sets in R are everywhere, I.
We shall prove that every E ⊆ R withm∗1(E) > 0 includes at least one non­Lebesgue set in R.
(i) Consider the non­Lebesgue set N ⊆ [0, 1] which was constructed in this section, and prove
that, if B ⊆ N is a Lebesgue set, then m1(B) = 0. Therefore, ifM ⊆ N has m∗1(M) > 0, then
M is a non­Lebesgue set in R.
(ii) Consider an arbitrary E ⊆ R with m∗1(E) > 0, and α = 1 − m∗1(N). Then 0 ≤ α < 1.
Exercise 1.4.3 implies that there is a bounded interval (a, b) so that m∗1(E ∩ (a, b)) ≥ α (b − a).
Now, the set N ′ = (b − a)N + a is included in [a, b], and has m∗1(N ′) = (1 − α)(b − a). If
M ′ ⊆ N ′ hasm∗1(M ′) > 0, thenM ′ is not a Lebesgue set in R.
(iii) Prove that E ∩N ′ is not a Lebesgue set in R.
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1.4.17. Non­Lebesgue sets in R are everywhere, II.
Consider E ⊆ R withm∗1(E) > 0.
(i) Consider the set L in exercise 1.4.15. Then E =

⋃
r∈Q(E ∩ (L+ r)). Prove that the difference

set (exercise 1.4.9) of each E ∩ (L+ r) contains no rational number 6= 0.
(ii) Use the result of exercise 1.4.9, and prove that, for at least one r ∈ Q, the set E ∩ (L + r) is
not a Lebesgue set in R.

1.4.18. Not all Lebesgue sets in R are Borel sets, and not all continuous functions map Lebesgue
sets onto Lebesgue sets.
Let f : [0, 1] → [0, 1] be the Cantor function. We define g(x) = f(x) + x for x ∈ [0, 1].
(i) Prove that g is continuous, strictly increasing, one­to­one, and onto [0, 2]. Its inverse function
g−1 : [0, 2] → [0, 1] is also continuous, strictly increasing, one­to­one, and onto [0, 1].
(ii) Prove that the set A = g([0, 1] \ C), where C is the Cantor set, is an open set in R, with
m1(A) = 1. Therefore, the set E = g(C) is a closed set in R, withm1(E) = 1.
(iii) Exercises 1.4.16 and 1.4.17 provide us with non­Lebesgue setsM ⊆ E. For any such setM ,
consider the setK = g−1(M) ⊆ C. Prove thatK is a Lebesgue set in R.
(iv) Using exercise 1.1.7, prove thatK is not a Borel set.
(v) g mapsK ontoM .

1.5 Borel measures on topological spaces.

LEBESGUE­STIELTJES MEASURES ON R.

Lemma 1.3. If −∞ ≤ a < b ≤ +∞ and F : (a, b) → R is increasing, then
(i) F (x+) = inf{F (y) |x < y} if x ∈ [a, b),
(ii) F (x−) = sup{F (y) | y < x} if x ∈ (a, b],
(iii) F (x−) ≤ F (x) ≤ F (x+) ≤ F (y) ≤ F (z−) ≤ F (z) ≤ F (z+) if a < x < y < z < b,
(iv) F (x+) = limy→x+ F (y±) if x ∈ [a, b),
(v) F (x−) = limy→x− F (y±) if x ∈ (a, b].

Proof. Exercise.

We consider a0, b0 with −∞ ≤ a0 < b0 ≤ +∞ and an increasing function F : (a0, b0) → R.
We define a non­negative function τ acting on bounded subintervals of (a0, b0), as follows:

τ((a, b)) = F (b−)− F (a+), τ([a, b]) = F (b+)− F (a−),

τ((a, b]) = F (b+)− F (a+), τ([a, b)) = F (b−)− F (a−).

The mnemonic rule is: if the end­point is included in the interval, then we approach it from outside
of the interval, while, if the end­point is not included in the interval, then we approach it from
inside of the interval.

We use the collection of all bounded open subintervals of (a0, b0) and the function τ to define,
as an application of Proposition 1.28, the following outer measure on (a0, b0):

µ∗F (E) = inf
{∑+∞

j=1 τ((aj , bj))
∣∣ (aj , bj) ⊆ (a0, b0) for all j so that E ⊆

⋃+∞
j=1(aj , bj)

}
for every E ⊆ (a0, b0). Caratheodory’s Theorem implies that the collection of µ∗F ­measurable
sets is a σ­algebra of subsets of (a0, b0). As we know, this σ­algebra is denoted Sµ∗

F
, but we

shall simplify the notation using the symbol SF . The restriction of µ∗F on the σ­algebra of µ∗F ­
measurable sets, i.e. SF , is denoted µF . Thus, we get the measure space

((a0, b0),SF , µF )

which, by Caratheodory’s Theorem, is complete.
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Definition. The measure µF is called the Lebesgue­Stieltjes measure induced by the (increasing)
function F : (a0, b0) → R.

If F (x) = x for all x ∈ R, then τ(S) = vol1(S) for all bounded intervals S and, in this special
case, µF coincides with the 1­dimensional Lebesgue measurem1 on R. Thus, Lebesgue­Stieltjes
measure is a generalization of Lebesgue measure.

Following the same procedure as with Lebesgue measure, we shall investigate the relation
between the σ­algebra SF and the Borel subsets of (a0, b0). Proposition 1.40 is analogous to
Proposition 1.30.

Proposition 1.40. (i) Let P = (a, b] ⊆ (a0, b0) and a = c(0) < c(1) < · · · < c(m) = b. If
Pi = (c(i−1), c(i)], then τ(P ) =

∑m
i=1 τ(Pi).

(ii) Assume that P, P1, . . . , Pl are bounded open­closed subintervals of (a0, b0), that P1, . . . , Pl

are pairwise disjoint and that P =
⋃l

j=1 Pj . Then τ(P ) =
∑l

j=1 τ(Pj).
(iii) Assume that P, P1, . . . , Pl are bounded open­closed subintervals of (a0, b0), that P1, . . . , Pl

are pairwise disjoint and that
⋃l

j=1 Pj ⊆ P . Then
∑l

j=1 τ(Pj) ≤ τ(P ).
(iv) Assume that P, P1, . . . , Pl are bounded open­closed subintervals of (a0, b0) and that P ⊆⋃l

j=1 Pj . Then τ(P ) ≤
∑l

j=1 τ(Pj).
(v) Assume that Q is a bounded closed interval, that R1, . . . , Rl are bounded open subintervals of
(a0, b0) and that Q ⊆

⋃l
j=1Rj . Then τ(Q) ≤

∑l
j=1 τ(Rj).

Proof. (i) We have a telescoping sum:∑m
i=1 τ(Pi) =

∑m
i=1(F (c

(i)+)− F (c(i−1)+)) = F (b+)− F (a+) = τ((a, b]).

(ii) Exactly one of P1, . . . , Pl has the same right end­point as P . We rename and call it Pl. Then
exactly one ofP1, . . . , Pl−1 has right end­point coinciding with the left end­point ofPl. We rename
and call it Pl−1. We continue until the left end­point of the last remaining subinterval, which we
shall rename P1, coincides with the left end­point of P . Then the result is clear from (i).
(iii) We know that P \ (P1 ∪ · · · ∪ Pl) = P ′1 ∪ · · · ∪ P ′k for some pairwise disjoint open­closed
intervals P ′1, . . . , P ′k. Then P =

(⋃l
j=1 Pj

)
∪
(⋃k

i=1 P
′
i

)
, and from (ii) we get

τ(P ) =
∑l

j=1 τ(Pj) +
∑k

i=1 τ(P
′
i ) ≥

∑l
j=1 τ(Pj).

(iv) We write P = P ′1 ∪ · · · ∪ P ′l , where P ′j = Pj ∩ P are open­closed intervals included in P .
Then we write

P = P ′1 ∪ (P ′2 \ P ′1) ∪ · · · ∪
(
P ′l \ (P ′1 ∪ · · · ∪ P ′l−1)

)
.

Each of these l pairwise disjoint sets can bewritten as a finite union of pairwise disjoint open­closed
intervals:

P ′1 = P ′1, P ′j \ (P ′1 ∪ · · · ∪ P ′j−1) = P
(j)
1 ∪ · · · ∪ P (j)

mj
for 2 ≤ j ≤ l.

Now, using (ii) for the equality and (iii) for the two inequalities, we get

τ(P ) = τ(P ′1) +
∑l

j=2

(∑mj

m=1 τ(P
(j)
m )

)
≤ τ(P ′1) +

∑l
j=2 τ(P

′
j) ≤

∑l
j=1 τ(Pj).

(v) Let Q = [a, b] and Rj = (aj , bj). For small ϵ > 0 we define Pϵ = (a − ϵ, b] and Pj,ϵ =
(aj , bj − ϵ]. It is easy to see that Pϵ ⊆ P1,ϵ ∪ · · · ∪Pl,ϵ if ϵ > 0 is small enough. Now, (iv) implies
that

F (b+)− F ((a− ϵ)+) ≤
∑l

j=1

(
F ((bj − ϵ)+)− F (aj+)

)
for small ϵ > 0. We take the limit as ϵ→ 0+, and we get

τ(Q) = F (b+)− F (a−) ≤
∑l

j=1

(
F (bj−)− F (aj+)

)
=

∑l
j=1 τ(Rj)

using Lemma 1.3.
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Proposition 1.41 corresponds to Proposition 1.31.

Proposition 1.41. Every bounded subinterval S of (a0, b0) is µ∗F ­measurable and µF (S) = τ(S).

Proof. Let Q = [a, b] ⊆ (a0, b0).
Then

µ∗F (Q) ≤ τ((a− ϵ, b+ ϵ)) = F ((b+ ϵ)−)− F ((a− ϵ)+)

for all small enough ϵ > 0. Taking the limit as ϵ→ 0+ and using Lemma 1.3, we get

µ∗F (Q) ≤ F (b+)− F (a−) = τ(Q).

For every covering Q ⊆
⋃+∞

j=1 Rj by bounded open subintervals Rj of (a0, b0), there is (by com­
pactness) l so that Q ⊆

⋃l
j=1Rj . Proposition 1.40 implies

τ(Q) ≤
∑l

j=1 τ(Rj) ≤
∑+∞

j=1 τ(Rj).

Hence τ(Q) ≤ µ∗F (Q), and we conclude that

µ∗F (Q) = τ(Q)

for all closed intervals Q ⊆ (a0, b0).
If P = (a, b] ⊆ (a0, b0), then

µ∗F (P ) ≤ τ((a, b+ ϵ)) = F ((b+ ϵ)−)− F (a+)

for all small enough ϵ > 0. We take the limit as ϵ→ 0+, and we get

µ∗F (P ) ≤ F (b+)− F (a+) = τ(P ).

If R = (a, b) ⊆ (a0, b0), then
µ∗F (R) ≤ τ((a, b)) = τ(R).

Now let P = (a, b] and R = (c, d) be included in (a0, b0). We take PR = (c, d− ϵ], and we write

µ∗F (R ∩ P ) = µ∗F
(
(PR ∩ P ) ∪ ((d− ϵ, d) ∩ P )

)
≤ µ∗F (PR ∩ P ) + µ∗F ((d− ϵ, d))

≤ τ(PR ∩ P ) + F (d−)− F ((d− ϵ)+)

by the previous results. The same inequalities, with P c instead of P , give

µ∗F (R ∩ P c) ≤ µ∗F (PR ∩ P c) + F (d−)− F ((d− ϵ)+).

We sum the last two inequalities, and we find

µ∗F (R ∩ P ) + µ∗F (R ∩ P c) ≤ τ(PR ∩ P ) + µ∗F (PR ∩ P c) + 2(F (d−)− F ((d− ϵ)+)).

Now, we have PR ∩P c = P1 ∪ · · · ∪Pl for pairwise disjoint open­closed intervals Pj , and we get

τ(PR ∩ P ) + µ∗F (PR ∩ P c) ≤ τ(PR ∩ P ) +
∑l

j=1 µ
∗
F (Pj)

≤ τ(PR ∩ P ) +
∑l

j=1 τ(Pj) = τ(PR)

by our first results and Lemma 1.3. Therefore,

µ∗F (R ∩ P ) + µ∗F (R ∩ P c) ≤ τ(PR) + 2(F (d−)− F ((d− ϵ)+))

= F ((d− ϵ)+)− F (c+) + 2(F (d−)− F ((d− ϵ)+)).

Taking limit as ϵ→ 0+, we find

µ∗F (R ∩ P ) + µ∗F (R ∩ P c) ≤ F (d−)− F (c+) = τ(R).
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We proved that
µ∗F (R ∩ P ) + µ∗F (R ∩ P c) ≤ τ(R)

for all bounded open intervals R and bounded open­closed intervals P included in (a0, b0).
Now, we consider an arbitrary E ⊆ (a0, b0) with µ∗F (E) < +∞. We take a covering E ⊆⋃+∞

j=1 Rj by bounded open subintervals Rj of (a0, b0) so that∑+∞
j=1 τ(Rj) < µ∗F (E) + ϵ.

By σ­subadditivity of µ∗F and by the last result we find

µ∗F (E∩P )+µ∗F (E∩P c) ≤
∑+∞

j=1

(
µ∗F (Rj ∩P )+µ∗F (Rj ∩P c)

)
≤

∑+∞
j=1 τ(Rj) < µ∗F (E)+ ϵ.

Taking limit as ϵ→ 0+, we find

µ∗F (E ∩ P ) + µ∗F (E ∩ P c) ≤ µ∗F (E),

concluding that P ∈ SF .
IfQ = [a, b] ⊆ (a0, b0), we take any increasing (ak) in (a0, b0) so that limk→+∞ ak = a and then
Q =

⋂+∞
k=1(ak, b] ∈ SF . Moreover, by our first result,

µF (Q) = µ∗F (Q) = τ(Q).

If P = (a, b] ⊆ (a0, b0), we take any decreasing (ak) in (a, b] so that limk→+∞ ak = a, and we
get that

µF (P ) = limk→+∞ µF ([ak, b]) = limk→+∞(F (b+)− F (ak−)) = F (b+)− F (a+) = τ(P ).

If T = [a, b) ⊆ (a0, b0), we take any increasing (bk) in [a, b) so that limk→+∞ bk = b, and we get
that T =

⋃+∞
k=1[a, bk] ∈ SF . Moreover,

µF (T ) = limk→+∞ µF ([a, bk]) = limk→+∞(F (bk+)− F (a−)) = F (b−)− F (a−) = τ(T ).

Finally, if R = (a, b) ⊆ (a0, b0), we take any decreasing (ak) and any increasing (bk) in (a, b) so
that limk→+∞ ak = a, limk→+∞ bk = b and a1 ≤ b1. Then R =

⋃+∞
k=1[ak, bk] ∈ SF . Moreover,

µF (R) = limk→+∞ µF ([ak, bk]) = limk→+∞(F (bk+)− F (ak−)) = F (b−)− F (a+) = τ(R).

We have thus proved that µF (S) = τ(S) for every bounded interval S ⊆ (a0, b0).

Proposition 1.42 corresponds to Proposition 1.32.

Proposition 1.42. µF is σ­finite. Moreover, µF is finite if and only if F is bounded.

Proof. We take any decreasing (ak) and any increasing (bk) in (a0, b0) so that limk→+∞ ak = a0,
limk→+∞ bk = b0. Then (a0, b0) =

⋃+∞
k=1[ak, bk] and µF ([ak, bk]) = F (bk+)− F (ak−) < +∞

for all k. Hence, µF is σ­finite.
We know that µF ((a0, b0)) = F (b0−)−F (a0+). Therefore, if µF is finite, then −∞ < F (a0+)
and F (b0−) < +∞. Since all values of F lie in the bounded interval [F (a0+), F (b0−)], we
get that F is bounded. Conversely, if F is bounded, then F (a0+) and F (b0−) are finite, and so
µF ((a0, b0)) < +∞.

It is easy to prove that the collection of all subintervals of (a0, b0) generates the σ­algebra
of all Borel subsets of (a0, b0). Indeed, let C be the collection of all intervals in R and F be the
collection of all subintervals of (a0, b0). It is clear that F = Ce(a0, b0), and then Propositions 1.9
and 1.10 imply that B(a0,b0) = B1e(a0, b0) = S(C)e(a0, b0) = S(F).

Proposition 1.43 corresponds to Proposition 1.33.
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Proposition 1.43. All Borel subsets of (a0, b0) belong to SF .

Proof. Proposition 1.41 implies that the collection F of all subintervals of (a0, b0) is included in
SF . By the discussion of the previous paragraph, we conclude that B(a0,b0) = S(F) ⊆ SF .

Proposition 1.44 corresponds to Proposition 1.34.

Proposition 1.44. Let E ⊆ (a0, b0). Then
(i) E ∈ SF if and only if there is an A ⊆ (a0, b0), which is a countable intersection of open sets,
such that E ⊆ A and µ∗F (A \ E) = 0.
(ii)E ∈ SF if and only if there is aB, which is a countable union of compact sets, such thatB ⊆ E
and µ∗F (E \B) = 0.

Proof. The proof is exactly the same as the proof of the similar Proposition 1.34. Only the obvious
changes have to be made: mn changes to µF , andm∗n to µ∗F , Rn changes to (a0, b0), voln changes
to τ , and Ln changes to SF .

Therefore, every set in SF is, except from a µF ­null set, equal to a Borel set.
Proposition 1.45 corresponds to Proposition 1.35.

Proposition 1.45. (i) µF is the only measure on
(
(a0, b0),B(a0,b0)

)
satisfying µF (S) = τ(S) for

all bounded intervals S ⊆ (a0, b0).
(ii)

(
(a0, b0),SF , µF

)
is the completion of

(
(a0, b0),B(a0,b0), µF

)
.

Proof. The proof is similar to the proof of Proposition 1.35. Only some obvious notational modi­
fications are needed.

It should be observed that the Lebesgue­Stieltjes measure of a set {x}, consisting of a single
point x ∈ (a0, b0), is equal to

µF ({x}) = F (x+)− F (x−),

i.e. to the jump of F at x. In other words, the measure of a one­point set is positive if and only if
F is discontinuous there. Also, observe that the measure of an open subinterval of (a0, b0) is 0 if
and only if F is constant on this interval.

It is very common in practice to consider the increasing function F with the extra property
of being continuous from the right. In this case the measure of an open­closed interval takes the
simpler form

µF ((a, b]) = F (b)− F (a).

Proposition 1.46 shows that this is not a serious restriction.

Proposition 1.46. Given any increasing function on (a0, b0) there is another increasing function
which is continuous from the right so that the Lebesgue­Stieltjes measures induced by the two
functions are equal.

Proof. Given any increasing F : (a0, b0) → R, we define F0 : (a0, b0) → R by F0(x) = F (x+)
for all x ∈ (a0, b0). It is immediate from Lemma 1.3 that F0 is increasing, that F0 is continuous
from the right, i.e. F0(x+) = F0(x) for all x, and that F0(x+) = F (x+), F0(x−) = F (x−) for
all x. Now, F0 and F induce the same Lebesgue­Stieltjes measure on (a0, b0), simply because the
corresponding functions τ(S) (from which the constructions of the measures µF0 , µF start) assign
the same values to every interval S ⊆ (a0, b0).

The functions F0 and F of Proposition 1.46 have the same jump at every x and, in particular,
they have the same continuity points.
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Example.We consider the Cantor function f : R → [0, 1] which is increasing, continuous and
bounded. We call µf the Cantor measure on (−∞,+∞).
Since f is continuous, we have that µf ({x}) = 0 for every x. We recall that f is constant on
every subinterval of [0, 1] \C, where C is the Cantor set, and that f is constant 0 on (−∞, 0] and
constant 1 on [1,+∞). Therefore, µf ((−∞, 0]) = µf ([1,+∞)) = 0, and µf (Jm) = 0 for each
of the subintervals J1, J2, . . . of [0, 1] \ C. Since f(0) = 0 and f(1) = 1, we get

µf ((−∞,+∞)) = µf ([0, 1]) = f(1)− f(0) = 1.

Moreover,
µf (C) = µf ([0, 1])−

∑+∞
m=1 µf (Jm) = 1−

∑+∞
m=1 0 = 1.

Since µf (C) = µf ((−∞,+∞)) = 1, we get that µf (A) = 0 for every Borel set A in R with
A ∩ C = ∅.
Finally, since the difference of the values of f at the endpoints of each of the 2k subintervals of
Ik (look at the construction of C) is equal to 1

2k
, we have that µf (I) = 1

2k
for each of these

subintervals I of Ik.

BOREL MEASURES ON TOPOLOGICAL SPACES.

Definition. Let X be a topological space and (X,S, µ) be a measure space. The measure µ is
called a Borel measure on X if BX ⊆ S , i.e. if all Borel subsets of X are measurable.

Observe that, for µ to be a Borel measure, it is enough that all open sets are measurable. This
is because BX is generated by the collection of all open sets.

Example. Lebesgue measuremn on Rn is a Borel measure.

Example. Every Lebesgue­Stieltjes measure µF on any interval (a0, b0) is a Borel measure.
It is easy to see that µF (K) < +∞ for every compact K ⊆ (a0, b0). Indeed, we have K ⊆
[a, b] ⊆ (a0, b0) for some a, b, and so

µF (K) ⊆ µF ([a, b]) = F (b+)− F (a−) < +∞.

In fact, Proposition 1.47 says that Lebesgue­Stieltjes measures are the only Borel measures µ on
an interval (a0, b0) with the property that µ([a, b]) < +∞ for every [a, b] ⊆ (a0, b0).

Proposition 1.47. Let −∞ ≤ a0 < b0 ≤ +∞ and c0 ∈ (a0, b0). Also let µ be a Borel measure
on (a0, b0) so that µ([a, b]) < +∞ for every [a, b] ⊆ (a0, b0). Then there is a unique function
F : (a0, b0) → R, which is increasing and continuous from the right, so that µ = µF on B(a0,b0)

and F (c0) = 0. For any other function G : (a0, b0) → R, which is increasing and continuous
from the right, we have: µ = µG if and only if G differs from F by a constant.

Proof. We define F (x) = µ((c0, x]), if c0 ≤ x < b0, and F (x) = −µ((x, c0]), if a0 < x < c0.
F is real valued, and it is clear, by the monotonicity of µ, that F is increasing.
We take any decreasing (xn) so that limn→+∞ xn = x. If c0 ≤ x, by continuity of µ from above,
we get

limn→+∞ F (xn) = limn→+∞ µ((c0, xn]) = µ((c0, x]) = F (x).

Also, if x < c0, then xn < c0 for large n, and, by continuity of µ from below, we get

limn→+∞ F (xn) = − limn→+∞ µ((xn, c0]) = −µ((x, c0]) = F (x).

Therefore, F is continuous from the right at every x.
Now we have that

µF ((a, b]) = F (b)− F (a) = µ((a, b]),
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where the second equality becomes clear by considering cases: a < b < c0, a < c0 ≤ b and
c0 ≤ a < b. We easily get the same result, namely µF (S) = µ(S), for all other types of intervals
S, and then Proposition 1.45 implies that µF = µ on B(a0,b0).
Let G : (a0, b0) → R be increasing and continuous from the right, and let µG = µ(= µF ) on
B(a0,b0). Then we have that

G(x)−G(c0) = µG((c0, x]) = µF ((c0, x]) = F (x)− F (c0)

for all x ≥ c0. Similarly,

G(c0)−G(x) = µG((x, c0]) = µF ((x, c0]) = F (c0)− F (x)

for all x < c0. Thus, F,G differ by a constant: G − F = G(c0) − F (c0) on (a0, b0). Moreover,
if F (c0) = 0 = G(c0), then F,G are equal on (a0, b0).

If the Borel measure µ of Proposition 1.47 satisfies µ((a0, c0]) < +∞, then we may make a
different choice for F than the one we made in the proof of Proposition 1.47. We add the constant
µ((a0, c0]) to the function F in the proof, and we get the function

F (x) = µ((a0, x]), x ∈ (a0, b0).

This last function is called the cumulative distribution function of µ.
A central notion related to Borel measures is the notion of regularity, and this is because of the

need to relate the general Borel set (a somewhat obscure object) to appropriate open or closed sets.
We recall that a topological spaceX is calledHausdorff if for every x1, x2 ∈ X with x1 6= x2

there are disjoint open neighborhoodsVx1 , Vx2 ofx1, x2, respectively. We know that every compact
subset of a Hausdorff topological space is closed and, hence, a Borel set.

Let E be a Borel subset of a Hausdorff topological space X and µ be a Borel measure on X .
It is clear that µ(K) ≤ µ(E) ≤ µ(U) for all compactK and open U withK ⊆ E ⊆ U . Hence,

sup{µ(K) |K compact, K ⊆ E} ≤ µ(E) ≤ inf{µ(U) |U open, E ⊆ U}.

Definition. Let X be a Hausdorff topological space and µ be a Borel measure on X . Then µ is
called regular if the following are true for every Borel subset E of X:
(i) µ(E) = inf{µ(U) |U open, E ⊆ U},
(ii) µ(E) = sup{µ(K) |K compact, K ⊆ E}.

In other words, µ is regular if the measure of every Borel set can be approximated from above
by the measures of larger open sets and from below by the measures of smaller compact sets.

In the proof of Proposition 1.48 we shall use the Euclidean norm ‖ · ‖2 on Rn, defined by

‖x‖2 = (x21 + · · ·+ x2n)
1/2 for all x = (x1, . . . , xn).

We also recall the Euclidean open balls in Rn: the open ball with center x ∈ Rn and radius r > 0
is

B(x; r) = {y ∈ Rn | ‖y − x‖2 < r}.

Proposition 1.48. Let O be any open subset of Rn. Then there is an increasing sequence (Km) of
compact sets so that

⋃+∞
m=1Km = O.

Proof. We consider the sets

Km =
{
x ∈ O

∣∣ ‖x‖2 ≤ m and ‖y − x‖2 ≥ 1
m for all y /∈ O

}
.

The setKm is bounded, since ‖x‖2 ≤ m for all x ∈ Km.
Let (xj) be a sequence in Km converging to some x in Rn. From ‖xj‖2 ≤ m for all j, we get
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‖x‖2 ≤ m. Also, from ‖y − xj‖2 ≥ 1
m for all j and for all y /∈ O, we get ‖y − x‖2 ≥ 1

m for all
y /∈ O. Thus, x ∈ Km, and soKm is closed.
Therefore,Km is compact.
It is clear thatKm ⊆ Km+1 ⊆ O for allm.
Now we take any x ∈ O, and an ϵ > 0 such that B(x; ϵ) ⊆ O. We also consider anym ∈ N such
thatm ≥ max

{
‖x‖2, 1ϵ

}
, and then it is trivial to see that x ∈ Km. Thus,

⋃+∞
m=1Km = O.

Theorem 1.2. LetX be a Hausdorff topological space and µ be a Borel measure onX . We assume
that for every open set O there is an increasing sequence of compact subsets of O which cover O,
and that there is an increasing sequence of open sets with finite µ­measure which coverX . Then:
(i) µ(K) < +∞ for every compact setK.
(ii) For every Borel set E and every ϵ > 0 there is an open set U and a closed set F so that
F ⊆ E ⊆ U and µ(U \ F ) < ϵ. If also µ(E) < +∞, then F can be taken compact.
(iii) For every Borel set E there is a set A, which is a countable intersection of open sets, and a
set B, which is a countable union of compact sets, so that B ⊆ E ⊆ A and µ(A \B) = 0.
(iv) µ is regular.

Proof. There is an increasing sequence (Gm) of open sets so that µ(Gm) < +∞ for everym and⋃+∞
m=1Gm = X .

Now, letK be compact. SinceK ⊆
⋃+∞

m=1Gm, there isM so thatK ⊆
⋃M

m=1Gm. Then

µ(K) ≤
∑M

m=1 µ(Gm) < +∞,

and we have proved (i).
(a) Let µ(X) < +∞.
We consider the collection S of all Borel sets E with the property expressed in (ii), namely, that
for every ϵ > 0 there is an open U and a closed F so that F ⊆ E ⊆ U and µ(U \ F ) < ϵ.
We take any open O, and any ϵ > 0. By assumption there is an increasing sequence (Km) of
compact sets so that

⋃+∞
m=1Km = O. Then (O \ Km) is decreasing and

⋂+∞
m=1(O \ Km) = ∅.

Since µ(O \K1) ≤ µ(X) < +∞, continuity of µ from above implies that

limm→+∞ µ(O \Km) = 0.

Hence, there is some m so that µ(O \ Km) < ϵ. Considering U = O and F = Km, we get
F ⊆ O ⊆ U and µ(U \ F ) < ϵ. Thus, all open sets belong to S.
If E ∈ S and ϵ > 0 is arbitrary, there is an open U and a closed F so that F ⊆ E ⊆ U and
µ(U \ F ) < ϵ. Then F c is open, U c is closed, U c ⊆ Ec ⊆ F c and

µ(F c \ U c) = µ(U \ F ) < ϵ.

This implies that Ec ∈ S .
Now, we take E1, E2, . . . ∈ S and E =

⋃+∞
j=1 Ej . If ϵ > 0, for each Ej there is an open Uj and a

closed F ′j so that F ′j ⊆ Ej ⊆ Uj and µ(Uj \ F ′j) < ϵ
2j
. We consider B =

⋃+∞
j=1 F

′
j and the open

set U =
⋃+∞

j=1 Uj , and then B ⊆ E ⊆ U . Then U \B ⊆
⋃+∞

j=1(Uj \ F ′j), and so

µ(U \B) ≤
∑+∞

j=1 µ(Uj \ F ′j) <
∑+∞

j=1
ϵ
2j

= ϵ.

Since B is not necessarily closed, we consider the closed sets Fj = F ′1 ∪ · · · ∪ F ′j . Then (Fj) is
increasing and

⋃+∞
j=1 Fj = B, and so (U \ Fj) is decreasing and

⋂+∞
j=1(U \ Fj) = U \ B. Since

µ(U \ F1) ≤ µ(X) < +∞, continuity of µ from below gives

limj→+∞ µ(U \ Fj) = µ(U \B).
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Thus, there is some j so that µ(U \ Fj) < ϵ. The inclusion Fj ⊆ E ⊆ U is clearly true. We
conclude that E ∈ S .
Therefore, S is a σ­algebra. Since S contains all open sets, we have that BX ⊆ S , and we have
finished the proof of the first statement of (ii) in the special case µ(X) < +∞.
(b) Let E be a Borel set such that there is some open G with E ⊆ G and µ(G) < +∞.
We consider the G­restriction µG of µ, which is defined by µG(A) = µ(A ∩G) for all Borel sets
A. Clearly, µG(X) = µ(G) < +∞.
By the result of (a), for any ϵ > 0 there is an open U ′ and a closed F so that F ⊆ E ⊆ U ′ and
µG(U

′ \ F ) < ϵ. We consider the open set U = U ′ ∩G. Since E ⊆ G, we get F ⊆ E ⊆ U ⊆ G
and µ(U \ F ) = µG(U \ F ) < ϵ.
Therefore, the first statement of (ii) is now proved with no restriction on µ(X) but only for Borel
sets which are included in open sets of finite µ­measure.
(c) Now, we consider the general case, and the sequence (Gm) of open sets as in the beginning of
the proof.
For any Borel set E we consider the Borel sets

E1 = E ∩G1, Em = E ∩ (Gm \Gm−1) for all m ≥ 2,

and we have that E =
⋃+∞

m=1Em. Since Em ⊆ Gm, (b) implies that for eachm and every ϵ > 0
there is an open Um and a closed Fm so that Fm ⊆ Em ⊆ Um and µ(Um \ Fm) < ϵ

2m . Now we
consider the sets

U =
⋃+∞

m=1 Um, F =
⋃+∞

m=1 Fm.

Then U is clearly open, and it is easy to see that F is closed. Indeed, let x ∈ F c =
⋂+∞

m=1 F
c
m.

Then x ∈ GM for some large M . Also, x ∈
⋂M

m=1 F
c
m and

⋂M
m=1 F

c
m is open. Hence, there is

an open neighborhood Ux of x which is included in GM ∩
⋂M

m=1 F
c
m. Since GM is included in⋂+∞

m=M+1 F
c
m, we get that Ux is included in

⋂+∞
m=1 F

c
m = F c. Therefore, F c is open.

Finally, F ⊆ E ⊆ U , and, as in the proof of (a), we have U \ F ⊆
⋃+∞

m=1(Um \ Fm), and so

µ(U \ F ) ≤
∑+∞

m=1 µ(Um \ Fm) <
∑+∞

m=1
ϵ
2m = ϵ.

This concludes the proof of the first statement of (ii).
(d) Let µ(E) < +∞. There are an open U and a closed F so that F ⊆ E ⊆ U and µ(U \F ) < ϵ

2 .
By assumption, there is an increasing sequence (Km) of compact sets so that

⋃+∞
m=1Km = X .

Then the sets Fm = F ∩ Km are compact, the (Fm) is increasing and
⋃+∞

m=1 Fm = F . Hence,
(E\Fm) is decreasing and

⋂+∞
m=1(E\Fm) = E\F and µ(E\F1) ≤ µ(E) < +∞. By continuity

of µ from above,
limm→+∞ µ(E \ Fm) = µ(E \ F ) < ϵ

2 .

Hence, there ism so that µ(E \ Fm) < ϵ
2 , and so

µ(U \ Fm) = µ(U \ E) + µ(E \ Fm) < ϵ.

This proves the second statement of (ii).
(e) LetE be a Borel set. We take open Uj and closed Fj so that Fj ⊆ E ⊆ Uj and µ(Uj \Fj) <

1
j .

We define A =
⋂+∞

j=1 Uj and B =
⋃+∞

j=1 Fj , and then B ⊆ E ⊆ A. Now, for all j we have

µ(A \B) ≤ µ(Uj \ Fj) <
1
j ,

and so µ(A \ B) = 0. We consider the compact sets Km of part (d), and we define the compact
setsKj,m = Fj ∩Km. Then B =

⋃
(j,m)∈N×NKj,m, and we conclude the proof of (iii).

(f) If µ(E) = +∞, then we have that µ(U) = +∞ for all open U such that E ⊆ U , and so we get
µ(E) = inf{µ(U) |U open, E ⊆ U}.
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If µ(E) < +∞, then, from (i), for every ϵ > 0 there is an openU so thatE ⊆ U and µ(U \E) < ϵ.
This implies

µ(U) = µ(E) + µ(U \ E) < µ(E) + ϵ,

and so again µ(E) = inf{µ(U) |U open, E ⊆ U}.
Finally, from (iii), there is some B =

⋃+∞
m=1H

′
m, where all H ′m are compact, so that B ⊆ E and

µ(E \B) = 0. Hence,
µ(B) = µ(B) + µ(E \B) = µ(E).

We take the compact setsHm = H ′1∪· · ·∪H ′m, and then (Hm) is increasing and
⋃+∞

m=1Hm = B.
Then

limm→+∞ µ(Hm) = µ(B) = µ(E),

and so sup{µ(K) |K compact, K ⊆ E} = µ(E).

Example. Let us consider the Euclidean space Rn with any Borel measure µ on Rn such that
µ(B(0;m)) < +∞ for everym ∈ N.
Then Proposition 1.48 implies that Rn and µ satisfy the assumptions of Theorem 1.2, and so, in
particular, µ is regular.
A special case of this is the Lebesgue measuremn on Rn.

Example. Let (a0, b0) be an interval in R and µ be a Borel measure on (a0, b0) so that µ([a, b]) <
+∞ for every [a, b] ⊆ (a0, b0).
It is easy to see, by means of Proposition 1.48, that the assumptions of Theorem 1.2 are satisfied,
and so µ is regular. On the other hand, since Proposition 1.47 implies that µ is a Lebesgue­Stieltjes
measure, this result (the regularity of µ) is also easily implied by Proposition 1.44.

Exercises.

1.5.1. If −∞ < x1 < x2 < · · · < xN < +∞ and 0 < λ1, . . . , λN < +∞, then find (and draw)
the cumulative distribution function of µ =

∑N
k=1 λkδxk

.

1.5.2. Let µ be a Borel measure on R so that µ(K) < +∞ for every compact K ⊆ R and so that
µ((−∞, 0]) < +∞. Prove that there is a unique F : R → R, which is increasing and continuous
from the right, so that µ = µF and limx→−∞ F (x) = 0. Which is this function?

1.5.3. If µ, ν are regular Borel measures on the Hausdorff topological space X and λ ∈ [0,+∞),
prove that λµ and µ+ ν are regular Borel measures on X .

1.5.4. Let µ be a Borel measure on the topological space X . A point x ∈ X is called a support
point for µ if µ(Ux) > 0 for every open neighborhood Ux of x.
The set

supp(µ) = {x ∈ X |x is a support point for µ}

is called the support of µ.
(i) Prove that supp(µ) is a closed set.
(ii) If X is Hausdorff, prove that µ(K) = 0 for all compact setsK ⊆ (supp(µ))c.
(iii) If X is Hausdorff and µ is regular, prove that µ

(
(supp(µ))c

)
= 0, and that (supp(µ))c is the

largest open set which is µ­null.

1.5.5. If f is the Cantor function, prove that the support (exercise 1.5.4) of µf is the Cantor set C.

1.5.6. Let F : R → R be any increasing function. Prove that the complement of the support
(exercise 1.5.4) of the measure µF is the union of all open intervals on each of which F is constant.
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1.5.7. Let a : R → [0,+∞] induce the point­mass distribution µ on (R,P(R)). Then µ is a Borel
measure on R.
(i) Prove that µ(K) < +∞ for every compact K ⊆ R if and only if

∑
−R≤x≤R ax < +∞ for

every R > 0.
(ii) In particular, prove that, if µ(K) < +∞ for every compact K ⊆ R, then {x ∈ R | ax > 0} is
countable.
(iii) If µ(K) < +∞ for every compact K ⊆ R, find (in terms of the function a) an increasing,
continuous from the right F : R → R so that µ = µF on B1. Describe the sets E such that
µ∗F (E) = 0 and find the σ­algebra SF of all µ∗F ­measurable sets. Is SF = P(R)?

1.5.8. Let µ be a σ­finite regular Borel measure on the Hausdorff topological spaceX and Y be a
Borel subset of X . Prove that both restrictions, µeY and µY , are regular Borel measures.

1.5.9. Let µ be a regular Borel measure on the Hausdorff topological spaceX so that µ({x}) = 0
for all x ∈ X . A measure satisfying this last property is called continuous. Prove that for every
Borel set A with 0 < µ(A) < +∞ and every t ∈ (0, µ(A)) there is some Borel set B so that
B ⊆ A and µ(B) = t.

1.5.10. LetX be a separable and complete metric space and letµ be a Borel measure onX such that
µ(X) = 1. Prove that there is a B, which is a countable union of compact sets, so that µ(B) = 1.

1.5.11. Let T = {∅, X} be the trivial topology on the non­empty set X . Prove that every subset
of X is compact, while the only Borel sets inX are ∅ and X .

1.5.12. Let X be a Hausdorff topological space and µ be a measure on (X,BX) which satisfy the
assumptions of Theorem 1.2. Let Y be an open or closed subset of X with its subspace topology
and let µeY be the restriction of µ on (Y,BY ). Prove that Y and µeY also satisfy the assumptions
of Theorem 1.2.

METRIC OUTER MEASURES.

Let (X, d) be a metric space. As usual, we denote B(x; r) the open ball in X with center x ∈ X
and radius r > 0, i.e.

B(x; r) = {y ∈ X | d(y, x) < r}.

We recall that, if E,F are non­empty subsets of X , the quantity

d(E,F ) = inf{d(x, y) |x ∈ E, y ∈ F}

is the distance between E and F .

Definition. Let (X, d) be a metric space and µ∗ be an outer measure on X . We say that µ∗ is a
metric outer measure if

µ∗(E ∪ F ) = µ∗(E) + µ∗(F )

for every non­empty sets E,F ⊆ X with d(E,F ) > 0.

Proposition 1.49. Let (X, d) be a metric space and µ∗ be an outer measure on X . Then, the
measure µ which is induced by µ∗ on (X,Sµ∗) is a Borel measure (i.e. all Borel subsets of X are
µ∗­measurable) if and only if µ∗ is a metric outer measure.

Proof. We assume that all Borel sets are µ∗­measurable, and we take arbitrary non­empty E,F ⊆
X with d(E,F ) > 0. We consider r = d(E,F ) and the open set U =

⋃
x∈E B(x; r). It is clear

that E ⊆ U and F ∩ U = ∅. Since U is µ∗­measurable, we have

µ∗(E ∪ F ) = µ∗
(
(E ∪ F ) ∩ U

)
+ µ∗

(
(E ∪ F ) ∩ U c

)
= µ∗(E) + µ∗(F ).
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Therefore, µ∗ is a metric outer measure onX .
Now let µ∗ be a metric outer measure. We consider any open set U ⊆ X . If A is a non­empty
subset of U , we define

An =
{
x ∈ A

∣∣ d(x, y) ≥ 1
n for every y /∈ U

}
.

It is obvious that (An) is increasing. If x ∈ A ⊆ U , there is r > 0 so that B(x; r) ⊆ U . Now, if
we take n ∈ N so that 1

n ≤ r, then x ∈ An. Therefore,
⋃+∞

n=1An = A.
Now, we defineB1 = A1 andBn = An \An−1 for all n ≥ 2, and we have that the setsB1, B2, . . .
are pairwise disjoint and that

⋃+∞
n=1Bn = A.

If x ∈ An and z ∈ Bn+2, then z /∈ An+1, and so there is y /∈ U so that d(y, z) < 1
n+1 . Then

d(x, z) ≥ d(x, y)− d(y, z) > 1
n − 1

n+1 = 1
n(n+1) .

Therefore, d(An, Bn+2) ≥ 1
n(n+1) > 0 for every n. Since An+2 ⊇ An ∪Bn+2, we find

µ∗(An+2) ≥ µ∗(An ∪Bn+2) = µ∗(An) + µ∗(Bn+2).

By induction, we get

µ∗(B1) + µ∗(B3) + · · ·+ µ∗(B2k−1) ≤ µ∗(A2k−1),

µ∗(B2) + µ∗(B4) + · · ·+ µ∗(B2k) ≤ µ∗(A2k).

If
∑+∞

k=1 µ
∗(B2k−1) = +∞ then limk→+∞ µ

∗(A2k−1) = +∞ and, if
∑+∞

k=1 µ
∗(B2k) = +∞,

then limk→+∞ µ
∗(A2k) = +∞. Since the sequence (µ∗(An)) is increasing, in both cases we get

limn→+∞ µ
∗(An) = +∞. Since µ∗(An) ≤ µ∗(A) for all n, we get

limn→+∞ µ
∗(An) = µ∗(A).

If
∑+∞

k=1 µ
∗(B2k−1) < +∞ and

∑+∞
k=1 µ

∗(B2k) < +∞, then
∑+∞

k=1 µ
∗(Bk) < +∞. So for every

ϵ > 0 there is n so that
∑+∞

k=n+1 µ
∗(Bk) < ϵ. Now, from A = An ∪

(⋃+∞
k=n+1Bk

)
we get

µ∗(A) ≤ µ∗(An) +
∑+∞

k=n+1 µ
∗(Bk) ≤ µ∗(An) + ϵ.

This implies that
limn→+∞ µ

∗(An) = µ∗(A).

Therefore, in any case, limn→+∞ µ
∗(An) = µ∗(A) for all A ⊆ U .

Now, we take an arbitrary E ⊆ X , and we consider A = E ∩ U and the corresponding sets An.
Since E ∩ U c ⊆ U c, we have that

d(An, E ∩ U c) ≥ d(An, U
c) ≥ 1

n > 0

by the definition of An. Therefore,

µ∗(E) ≥ µ∗
(
An ∪ (E ∩ U c)

)
= µ∗(An) + µ∗(E ∩ U c)

for all n. Taking the limit as n→ +∞, we find

µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E ∩ U c).

Thus, every open set U is µ∗­measurable, and so every Borel set is µ∗­measurable.
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HAUSDORFF MEASURE, HAUSDORFF DIMENSION.

Let (X, d) be a metric space. The diameter of a non­empty set E ⊆ X is defined by

diam(E) = sup{d(x, y) |x, y ∈ E}

and the diameter of ∅ is defined by diam(∅) = 0.
If cl(E) is the closure of E ⊆ X , then it is easy to see that diam(cl(E)) = diam(E).
We take an arbitrary δ > 0, and we consider the collection Cδ of all subsets of X of diameter

not larger than δ. We fix α with 0 < α < +∞, and we consider the function τα,δ : Cδ → [0,+∞]
defined by τα,δ(E) = (diam(E))α for everyE ∈ Cδ. We are now ready to apply Proposition 1.28,
and for any E ⊆ X we define

h∗α,δ(E) = inf
{∑+∞

j=1(diam(Ej))
α
∣∣ diam(Ej) ≤ δ for all j and E ⊆

⋃+∞
j=1 Ej

}
.

We have that h∗α,δ is an outer measure on X , and we further define

h∗α(E) = supδ>0 h
∗
α,δ(E), E ⊆ X.

We observe that, if 0 < δ1 < δ2, then the set whose infimum is h∗α,δ1(E) is included in the set
whose infimum is h∗α,δ2(E). Therefore, h∗α,δ2(E) ≤ h∗α,δ1(E), and so

h∗α(E) = limδ→0+ h
∗
α,δ(E), E ⊆ X.

Proposition 1.50. Let (X, d) be a metric space and 0 < α < +∞. Then h∗α is a metric outer
measure on X .

Proof. We have h∗α(∅) = supδ>0 h
∗
α,δ(∅) = 0, since h∗α,δ is an outer measure for every δ > 0.

If E ⊆ F ⊆ X , then for every δ > 0 we have

h∗α,δ(E) ≤ h∗α,δ(F ) ≤ h∗α(F ).

Taking the supremum of the left side, we find h∗α(E) ≤ h∗α(F ).
If E =

⋃+∞
j=1 Ej , then for every δ > 0 we have

h∗α,δ(E) ≤
∑+∞

j=1 h
∗
α,δ(Ej) ≤

∑+∞
j=1 h

∗
α(Ej),

and, taking the supremum of the left side, we find h∗α(E) ≤
∑+∞

j=1 h
∗
α(Ej).

Therefore, h∗α is an outer measure on X .
Now, we consider any E,F ⊆ X with d(E,F ) > 0.
If h∗α(E ∪F ) = +∞, then h∗α(E ∪F ) ≤ h∗α(E)+h∗α(F ) implies h∗α(E ∪F ) = h∗α(E)+h∗α(F ).
Now, we assume that h∗α(E ∪ F ) < +∞, and so h∗α,δ(E ∪ F ) < +∞ for every δ > 0. We take
arbitrary δ so that

0 < δ < d(E,F )

and an arbitrary covering
E ∪ F ⊆

⋃+∞
j=1 Aj

with diam(Aj) ≤ δ for every j. It is obvious that each Aj intersects at most one of the E and F .
We define Bj = Aj , if Aj intersects E, and Bj = ∅, otherwise. Similarly, we define Cj = Aj , if
Aj intersects F , and Cj = ∅, otherwise. Then

E ⊆
⋃+∞

j=1 Bj , F ⊆
⋃+∞

j=1 Cj ,

and so
h∗α,δ(E) ≤

∑+∞
j=1(diam(Bj))

α, h∗α,δ(F ) ≤
∑+∞

j=1(diam(Cj))
α.

Adding, we find
h∗α,δ(E) + h∗α,δ(F ) ≤

∑+∞
j=1(diam(Aj))

α,

and, taking the infimum of the right side, h∗α,δ(E)+h∗α,δ(F ) ≤ h∗α,δ(E∪F ). Now, taking the limit
as δ → 0+, we get h∗α(E) + h∗α(F ) ≤ h∗α(E ∪ F ). Finally, since h∗α(E ∪ F ) ≤ h∗α(E) + h∗α(F ),
we conclude that h∗α(E ∪ F ) = h∗α(E) + h∗α(F ).
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Definition. Let (X, d) be a metric space and 0 < α < +∞. We call h∗α the α­dimensional
Hausdorff outer measure on X , and the measure hα on (X,Sh∗

α
) is called the α­dimensional

Hausdorff measure on X .

Proposition 1.51. If (X, d) is a metric space and 0 < α < +∞, then hα is a Borel measure on
X . Namely, BX ⊆ Sh∗

α
.

Proof. Immediate, by Proposition 1.49 and 1.50.

Lemma 1.4. Let (X, d) be a metric space, E be a Borel set in X , and 0 < α1 < α2 < +∞. If
hα1(E) < +∞, then hα2(E) = 0.

Proof. Since h∗α1
(E) = hα1(E) < +∞, we have that h∗α1,δ

(E) < +∞ for every δ > 0. We fix
such a δ > 0, and we consider a covering E ⊆

⋃+∞
j=1 Aj by subsets of X with diam(Aj) ≤ δ for

all j so that ∑+∞
j=1(diam(Aj))

α1 < h∗α1,δ
(E) + 1 ≤ h∗α1

(E) + 1.

Then

h∗α2,δ
(E) ≤

∑+∞
j=1(diam(Aj))

α2 ≤ δα2−α1
∑+∞

j=1(diam(Aj))
α1 ≤ (h∗α1

(E) + 1)δα2−α1 .

Taking the limit as δ → 0+, we find h∗α2
(E) = 0, and so hα2(E) = 0.

Proposition 1.52. Let (X, d) be a metric space and E be a Borel set in X . Then there is an
α0 ∈ [0,+∞] (depending on E) such that: hα(E) = +∞ for every α ∈ (0, α0), and hα(E) = 0
for every α ∈ (α0,+∞).

Proof. We consider various cases.
If hα(E) = 0 for every α > 0, then it is enough to define α0 = 0.
If hα(E) = +∞ for every α > 0, then it is enough to define α0 = +∞.
Otherwise, there are α1 and α2 in (0,+∞) so that 0 < hα1(E) and hα2(E) < +∞. In this case,
Lemma 1.4 implies α1 ≤ α2, and hα(E) = +∞ for every α ∈ (0, α1), and hα(E) = 0 for every
α ∈ (α2,+∞). Now, we consider

α0 = sup{α ∈ (0,+∞) |hα(E) = +∞}.

Then α0 ∈ [α1, α2]. Again, Lemma 1.4 implies hα(E) = +∞ for every α ∈ (0, α0), and
hα(E) = 0 for every α ∈ (α0,+∞).

Definition. If E is any Borel subset of a metric space (X, d), the a0 of Proposition 1.52 is called
the Hausdorff dimension of E, and it is denoted

dimh(E).

In other words, we have 0 ≤ dimh(E) ≤ +∞, and hα(E) = +∞ for 0 ≤ α < dimh(E), and
hα(E) = 0 for α > dimh(E). If α = dimh(E), then hα(E) can take any value in [0,+∞].

Proposition 1.53. For every Borel setE in the Euclidean space Rn we have dimh(E) ≤ n. More­
over, there is a positive constant cn, depending only on n, so that hn(E) = cnmn(E). Therefore,
ifmn(E) > 0, then dimh(E) = n.

Proof. Consider an arbitrary α > n and any bounded Borel set E. We take a closed cube Q large
enough so that E ⊆ Q. By subdividing each of the edges ofQ intoN intervals of the same length
we can subdivide Q into Nn closed cubes Qj , j = 1, . . . , Nn, of the same Lebesgue measure. If
the side length of Q is l, then the diameter of Q is

√
n l and the diameter of each Qj is

√
n l
N . Now,

E is covered by the union of all Qj , and so

h∗
α,
√
n l/N

(E) ≤
∑Nn

j=1

(√n l
N

)α
= (
√
n l)α

Nα−n . (1.16)
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Therefore,
hα(E) = limN→+∞ h

∗
α,
√
n l/N

(E) = 0.

Now, if E is not bounded, we can write it as E =
⋃+∞

k=1Ek, where all Ek are bounded Borel sets.
Hence, hα(E) = 0 again.
Since hα(E) = 0 for all α > n, we get that dimh(E) ≤ n.
Now, we consider the closed cube

Q0 = [0, 1]× · · · × [0, 1] = [0, 1]n.

Let δ > 0, and let Q0 ⊆
⋃+∞

j=1 Ej with diam(Ej) ≤ δ for all j. Then each Ej is contained in a
closed ball Bj of radius diam(Ej). Also, the closed ball Bj is contained in a closed cube Qj of
side­length 2 diam(Ej). Therefore, Q0 ⊆

⋃+∞
j=1 Qj , and so

1 = mn(Q0) ≤
∑+∞

j=1mn(Qj) =
∑+∞

j=1(2 diam(Ej))
n.

Thus, 1
2n ≤

∑+∞
j=1(diam(Ej))

n. Taking the infimum of the left side, we get

1
2n ≤ h∗n,δ(Q0) ≤ h∗n(Q0) = hn(Q0).

On the other hand, we may repeat the argument at the beginning of this proof with the closed cube
Q = Q0, which has side length l = 1, and with α = n. Then (1.16) becomes

h∗
n,
√
n/N

(Q0) ≤
∑Nn

j=1

(√n
N

)n
= nn/2.

Finally,
hn(Q0) = limN→+∞ h

∗
n,
√
n/N

(Q0) ≤ nn/2.

We conclude that 0 < hn(Q0) < +∞.
Now it is easy to show (exactly as with the Lebesgue measure mn) that for all Borel sets A, all
z ∈ Rn and all λ > 0 we have

hn(A+ z) = hn(A), hn(λA) = λnhn(A).

This implies that hn(Q) = lnhn(Q0) for every closed cubeQ, where l is the side length ofQ. But
we also have thatmn(Q) = lnmn(Q0), and so

hn(Q) = cnmn(Q)

for every closed cube Q, where cn = hn(Q0)
mn(Q0)

. We may easily extend this result, i.e. hn(S) =

cnmn(S), to all bounded intervals S with rational vertices (indeed, such an interval can be de­
composed into pairwise disjoint cubes), and then to all bounded intervals. Now, Proposition 1.35
implies that the Borel measures hn and cnmn are equal.

Example.We shall calculate the Hausdorff dimension of the Cantor set C ⊆ [0, 1].
From Proposition 1.53 we know that 0 ≤ dimh(C) ≤ 1.
We consider the sets Ik which are involved in the construction of C =

⋂+∞
k=1 Ik. Each Ik consists

of 2k closed intervals of length 1
3k

and, since C ⊆ Ik, we get

h∗
α,1/3k

(C) ≤ 2k
(

1
3k

)α
=

(
2
3α

)k
.

If α > log 2
log 3 , then

2
3α < 1, and we get

hα(C) = limk→+∞ h
∗
α,1/3k

(C) = 0 for α > log 2
log 3 .
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Therefore, dimh(C) ≤ log 2
log 3 .

Now, we consider α = log 2
log 3 , and we take any δ with 0 < δ < 1

3 , and any covering C ⊆
⋃+∞

j=1 Ej

with diam(Ej) ≤ δ for all j. Considering the closure cl(Ej) of each Ej , we have that C ⊆⋃+∞
j=1 cl(Ej) and diam(cl(Ej)) = diam(Ej) ≤ δ. Therefore, without loss of generality, we may

assume that every Ej is a Borel set.
We also consider the Cantor measure µf , where f is the Cantor function.
Now, assume that Ej ∩ C 6= ∅ and diam(Ej) > 0. Then there is exactly one k ∈ N so that

1
3k+1 ≤ diam(Ej) <

1
3k
.

Then Ej ∩ Ik 6= ∅ and, since diam(Ej) <
1
3k
, we have that Ej intersects exactly one, say I , of the

2k subintervals of Ik. Hence,

µf (Ej) = µf (Ej ∩ I) ≤ µf (I) =
1
2k

= 2
2k+1 = 2

3(k+1)α ≤ 2(diam(Ej))
α.

Next, assume that Ej ∩ C 6= ∅ and diam(Ej) = 0. Then Ej contains only one point, and so

µf (Ej) = 0 = 2(diam(Ej))
α.

Finally, if Ej ∩ C = ∅, then
µf (Ej) = 0 ≤ 2(diam(Ej))

α.

In any case we have µf (Ej) ≤ 2(diam(Ej))
α for all j. Therefore,

1 = µf (C) ≤
∑+∞

j=1 µf (Ej) ≤ 2
∑+∞

j=1(diam(Ej))
α.

Taking the infimum of the right side, we get that 1
2 ≤ h∗α,δ(C) for all δ with 0 < δ < 1

3 , and so

1
2 ≤ limδ→0+ h

∗
α,δ(C) = hα(C) for α = log 2

log 3 .

Hence, dimh(C) ≥ log 2
log 3 , and we conclude that dimh(C) =

log 2
log 3 .

Exercises.

1.5.13. Let K be the set constructed in part (a) of exercise 1.4.14 using ϵk = ϵ for all k, where
0 < ϵ < 1

2 . Prove that dimh(K) = (log 2)/(log 2
1−2ϵ). Thus, by varying ϵ in the interval (0,

1
2)

we get Borel sets in R whose Hausdorff dimensions cover the whole range between 0 and 1.
Find a Borel setK in R with dimh(K) = 0.
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Chapter 2

Measurable functions.

2.1 Measurability.

Definition. Let (X,SX) and (Y,SY ) be measurable spaces and f : X → Y . We say that f is
(SX ,SY )­measurable if f−1(E) ∈ SX for all E ∈ SY .
If the second space (Y,SY ) is R or C or R or C or Rn with the corresponding σ­algebra of Borel
sets, then we just say that f is SX ­measurable. If, moreover, the first space (X,SX) is Rn with
the σ­algebra of Borel sets or the σ­algebra of Lebesgue sets, then we just say that f is Borel
measurable or Lebesgue measurable, respectively. And, if (X,SX) is a topological space with
the σ­algebra of Borel sets, then we just say that f is Borel measurable.

In the general case and if there is no danger of confusion, we may just say that f ismeasurable.
If f : X → R, then it is also true that f : X → R. Thus, according to the definition we

have given, there might be a conflict between the two meanings of SX ­measurability of f . But,
actually, there is no such conflict. Indeed, suppose that f is (SX ,B1)­measurable. If E ∈ B1,
then E ∩ R ∈ B1, and so f−1(E) = f−1(E ∩ R) ∈ SX . Hence, f is (SX ,B1)­measurable.
Conversely, let f be (SX ,B1)­measurable. If E ∈ B1, then E ∈ B1, and so f−1(E) ∈ SX .
Hence, f is (SX ,B1)­measurable.

The same question arises when f : X → C, since it is then also true that f : X → C. Exactly
as before we may prove that f is (SX ,B2)­measurable if and only if it is (SX ,B2)­measurable,
and so there is no conflict in the meaning of SX ­measurability of f .

Example. Any constant function is measurable.
Indeed, let (X,SX) and (Y,SY ) be measurable spaces and f(x) = y0 ∈ Y for all x ∈ X . We take
an arbitrary E ∈ SY . If y0 ∈ E, then f−1(E) = X ∈ SX . If y0 /∈ E, then f−1(E) = ∅ ∈ SX .

Proposition 2.1. Let (X,SX) and (Y,SY ) be measurable spaces and f : X → Y . Suppose that
CY is a collection of subsets of Y so that S(CY ) = SY . If f−1(E) ∈ SX for all E ∈ CY , then f is
(SX ,SY )­measurable.

Proof. We consider the collection

S ′Y = {E ⊆ Y | f−1(E) ∈ SX}

of subsets of Y . (According to exercise 1.1.2, this is the push­forward of SX .)
Since f−1(∅) = ∅ ∈ SX , we get that ∅ ∈ S ′Y .
Let E ∈ S ′Y . Then f−1(E) ∈ SX , and so f−1(Ec) = (f−1(E))c ∈ SX . Hence, Ec ∈ S ′Y .
Let Ej ∈ S ′Y for all j. Then f−1(Ej) ∈ SX for all j, and so f−1

(⋃+∞
j=1 Ej

)
=

⋃+∞
j=1 f

−1(Ej) ∈
SX . Hence,

⋃+∞
j=1 Ej ∈ S ′Y .

Therefore, S ′Y is a σ­algebra of subsets of Y .
Since, by hypothesis, CY ⊆ S ′Y , we get that SY = S(CY ) ⊆ S ′Y . This concludes the proof.
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Proposition 2.2. Let X,Y be topological spaces and f : X → Y be continuous on X . Then f is
(BX ,BY )­measurable.

Proof. Let TY be the topology of Y , i.e. the collection of all open subsets of Y . By continuity
of f , for all E ∈ TY we have that f−1(E) is an open subset of X , and so f−1(E) ∈ BX . Since
S(TY ) = BY , Proposition 2.1 implies that f is (BX ,BY )­measurable.

COMPOSITION.

Proposition 2.3. Let (X,SX), (Y,SY ), (Z,SZ) be measurable spaces and let f : X → Y and
g : Y → Z. If f is (SX ,SY )­measurable and g is (SY ,SZ)­measurable, then g ◦ f : X → Z is
(SX ,SZ)­measurable.

Proof. For all E ∈ SZ we have g−1(E) ∈ SY , and so (g ◦ f)−1(E) = f−1
(
g−1(E)

)
∈ SX .

Hence, composition of measurable functions is measurable.

MEASURABILITY AND SIMPLE TRANSFORMATIONS OF Rn.

We recall that the function τz : Rn → Rn given by τz(x) = x + z for all x ∈ Rn is called
translation by z. The inverse of τz is τ−z given by τ−z(x) = x− z. If A ⊆ Rn, then

τz : A→ τz(A), τ−z : τz(A) → A.

There is a corresponding translation by z of a function f : A → Y , where A ⊆ Rn. This is
the function

τz(f) = f ◦ τ−z : τz(A) → Y

given by
τz(f)(x) = f(τ−z(x)) = f(x− z), x ∈ τz(A) = A+ z.

We note that the domain of definition of the translation of f by z is the translation of the domain
of definition of f by z.

Proposition 2.4 says that the translation of a measurable function is a measurable function.

Proposition 2.4. Let (Y,SY ) be a measure space and A ∈ Ln. If f : A → Y is (LneA,SY )­
measurable, then τz(f) : τz(A) → Y is (Lneτz(A),SY )­measurable.

Proof. If we prove that τ−z : τz(A) → A is (Lneτz(A),LneA)­measurable, then, in view of
Proposition 2.3, the proof will be complete.
So let E ∈ LneA, i.e. E ⊆ A and E ∈ Ln. Then

(τ−z)
−1(E) = τz(E) ⊆ τz(A), (τ−z)

−1(E) = τz(E) ∈ Ln,

where the second relation is implied by Proposition 1.37. Hence (τ−z)−1(E) ∈ Lneτz(A).

Now we consider any linear transformation T : Rn → Rn with det(T ) 6= 0, so that the inverse
linear transformation T−1 : Rn → Rn is also defined. If A ⊆ Rn, then

T : A→ T (A), T−1 : T (A) → A.

There is a corresponding linear transformation of a function f : A→ Y , where A ⊆ Rn. This
is the function

T (f) = f ◦ T−1 : T (A) → Y

given by
T (f)(x) = f(T−1(x)), x ∈ T (A).

Proposition 2.5 says that the linear transformation of a measurable function is a measurable
function.
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Proposition 2.5. Let (Y,SY ) be a measure space and A ∈ Ln. If f : A → Y is (LneA,SY )­
measurable, then T (f) : T (A) → Y is (LneT (A),SY )­measurable.

Proof. As in the proof of Proposition 2.4, if we prove that T−1 : T (A) → A is (LneT (A),LneA)­
measurable, then Proposition 2.3 will conclude the proof.
So let E ∈ LneA, i.e. E ⊆ A and E ∈ Ln. Then

(T−1)−1(E) = T (E) ⊆ T (A), (T−1)−1(E) = T (E) ∈ Ln,

where the second relation is implied by Proposition 1.38. Hence (T−1)−1(E) ∈ LneT (A).

As a special case of an invertible linear transformation we consider the function lλ : Rn → Rn,
i.e. the dilation by λ > 0, given by lλ(x) = λx for all x ∈ Rn. The inverse of lλ is l1/λ.

The corresponding transformation of the function f : A→ Y , where A ⊆ Rn, is the function
lλ(f) = f ◦ l1/λ : lλ(A) → Y given by

lλ(f)(x) = f(l1/λ(x)) = f
(
x
λ

)
, x ∈ lλ(A) = λA.

The function lλ(f) is called dilation of f by λ.
Another special case of an invertible linear transformation is the function r : Rn → Rn, i.e.

the reflection, given by r(x) = −x for all x ∈ Rn. The inverse of r is itself.
The corresponding reflection of the function f : A → Y , where A ⊆ Rn, is the function

r(f) = f ◦ r : r(A) → Y given by

r(f)(x) = f(r(x)) = f(−x), x ∈ r(A) = −A.

RESTRICTION AND GLUING.

If f : X → Y and A ⊆ X is non­empty, then the function feA : A→ Y , defined by

(feA)(x) = f(x) for all x ∈ A,

is the usual restriction of f on A.

Proposition 2.6. Let (X,SX), (Y,SY ) be measurable spaces and f : X → Y be (SX ,SY )­
measurable. If A ∈ SX is non­empty, then feA is (SXeA,SY )­measurable.

Proof. Let E ∈ SY . Then

(feA)−1(E) = {x ∈ A | (feA)(x) ∈ E} = {x ∈ A | f(x) ∈ E} = {x ∈ X | f(x) ∈ E} ∩A
= f−1(E) ∩A.

Now, since f−1(E) ∈ SX , we get that (feA)−1(E) ∈ SXeA.

We may say that measurability of a function on the whole space implies its measurability on
every (measurable) subset of the space.

Proposition 2.7. Let (X,SX), (Y,SY ) be measurable spaces and f : X → Y . Let the (finitely
many or infinitely many) non­emptyA1, A2, . . . ∈ SX be pairwise disjoint andA1∪A2∪· · · = X .
If feAj is (SXeAj ,SY )­measurable for all j, then f is (SX ,SY )­measurable.

Proof. Let E ∈ SY . Then f−1(E) ∩ Aj = (feAj)
−1(E) ∈ SXeAj for all j. This implies that

f−1(E) ∩ Aj ∈ SX for all j, and so f−1(E) = (f−1(E) ∩ A1) ∪ (f−1(E) ∩ A2) ∪ · · · ∈ SX .
Therefore, f is (SX ,SY )­measurable.
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Thus, measurability of a function separately on complementary (measurable) subsets of the
space implies its measurability on the whole space.

There are two operations on measurable functions that are taken care of by Propositions 2.6
and 2.7. One is the restriction of a function f : X → Y on some non­empty A ⊆ X and the
other is the gluing of functions feAj : Aj → Y to form a single f : X → Y , whenever the
countably many Aj are non­empty, pairwise disjoint and cover X . The rules are: restriction of
a measurable function on a measurable set is measurable, and gluing of measurable functions
defined on measurable subsets results to a measurable function.

Example. LetX,Y be topological spaces, f : X → Y , andA1, A2, . . . ∈ BX be pairwise disjoint
and A1 ∪A2 ∪ · · · = X . Let also every feAj : Aj → Y be continuous on Aj .
By Proposition 2.2, each feAj : Aj → Y is (BAj ,SY )­measurable. SinceBAj = BXeAj , we have
that each feAj : Aj → Y is (BXeAj ,SY )­measurable. Therefore, f is (BX ,BY )­measurable.
Loosely speaking, if a function is piecewise continuous, then it is Borel measurable.

FUNCTIONS WITH ARITHMETICAL VALUES.

Proposition 2.8. Let (X,S) be a measurable space and f : X → Rn. Let, for each j = 1, . . . , n,
fj : X → R denote the j­th component function of f . Namely, f(x) = (f1(x), . . . , fn(x)) for all
x ∈ X . Then f is S­measurable if and only if every fj is S­measurable.

Proof. Let f be S­measurable.
Let I be any interval in R. We consider the interval S = R× · · · × R× I × R× · · · × R in Rn,
where I is its j­th factor. Then

f−1j (I) = {x ∈ X | fj(x) ∈ I} = {x ∈ X | f(x) ∈ S} = f−1(S).

Since S ∈ Bn, we get f−1(S) ∈ S and so f−1j (I) ∈ S . Since the collection of all I generates B1,
Proposition 2.1 implies that fj is S­measurable.
Now let every fj be S­measurable.
Let S = I1 × · · · × In be any interval in Rn. Now

f−1(S) = {x ∈ X | f(x) ∈ S} =
⋂n

j=1{x ∈ X | fj(x) ∈ Ij} =
⋂n

j=1 f
−1
j (Ij).

Since f−1j (Ij) ∈ S for all j, we get f−1(S) ∈ S . The collection of all intervals S generates Bn,
and Proposition 2.1, again, implies that f is S­ measurable.

Loosely speaking, measurability of a vector function is equivalent to measurability of all its
component functions.

The next two results give simple criteria for measurability of real or complex valued functions.

Proposition 2.9. Let (X,S) be a measurable space and f : X → R. Then f is S­measurable if
and only if f−1((a,+∞)) ∈ S for all a ∈ R.

Proof. Since (a,+∞) ∈ B1, one direction is trivial. The other direction is a corollary of Proposi­
tion 2.1, since, by Proposition 1.12, the collection of all intervals (a,+∞) generates B1.

Of course, in the statement of Proposition 2.9 one may replace the intervals (a,+∞) by the
intervals [a,+∞) or (−∞, b) or (−∞, b].

If f : X → C, then the functions Re(f) : X → R and Im(f) : X → R are defined by

Re(f)(x) = Re(f(x)), Im(f)(x) = Im(f(x)) for all x ∈ X

and they are called the real part and the imaginary part of f , respectively.

Proposition 2.10. Let (X,S) be a measurable space and f : X → C. Then f is S­measurable if
and only if both Re(f) : X → R and Im(f) : X → R are S­measurable.
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Proof. An immediate application of Proposition 2.8.

The next two results investigate extended­real and extended­complex valued functions.

Proposition 2.11. Let (X,S) be a measurable space and f : X → R. The following are equiva­
lent.
(i) f is S­measurable.
(ii) f−1({+∞}) ∈ S , f−1(R) ∈ S , and, if A = f−1(R) is non­empty, the function feA : A→ R
is SeA­measurable.
(iii) f−1((a,+∞]) ∈ S for all a ∈ R.

Proof. Using Proposition 2.6, we easily see that (i) implies (ii).
Now, we assume (ii). We consider the sets B = f−1({+∞}) and C = f−1({−∞}) = (A∪B)c.
BothB and C belong to S, and the restrictions feB = +∞ and feC = −∞ are constants, and so
they are, respectively, SeB­measurable and SeC­measurable. Then Proposition 2.7 implies that
f is S­measurable, and so (ii) implies (i).
It is clear that (i) implies (iii).
Now, we assume (iii). Proposition 1.14 says that the collection of all (a,+∞] generates B1. Then
Proposition 2.1 implies that f is S­measurable, and so (iii) implies (i).

Proposition 2.12. Let (X,S) be a measurable space and f : X → C. The following are equiva­
lent.
(i) f is S­measurable.
(ii) f−1(C) ∈ S , and, ifA = f−1(C) is non­empty, the function feA : A→ C isSeA­measurable.

Proof. Using Proposition 2.6, we easily see that (i) implies (ii).
We assume (ii), and we consider the set B = f−1({∞}) = (f−1(C))c.
Then B ∈ S , and the restriction feB = ∞ is constant, and so it is SeB­measurable. Then
Proposition 2.7 implies that f is S­measurable, and so (ii) implies (i).

Exercises.

2.1.1. Let (X,S) be a measurable space and f : X → R. Prove that f is S­measurable if
f−1((a,+∞]) ∈ S for all a ∈ Q.

2.1.2. Prove that every monotone f : R → R is Borel measurable.

2.1.3. Let (X,S) be a measurable space and assume that the collection {Eλ}λ∈R of subsets of X
which belong to S has the properties:
(i) Eλ ⊆ Eκ for all λ, κ with λ ≤ κ,
(ii)

⋃
λ∈REλ = X ,

⋂
λ∈REλ = ∅,

(iii)
⋂

κ, κ>λEκ = Eλ for all λ ∈ R.
Consider the function f : X → R defined by f(x) = inf{λ ∈ R |x ∈ Eλ}. Prove that f is
S­measurable and that Eλ = {x ∈ X | f(x) ≤ λ} for every λ ∈ R.
How will the result change if we drop any of the assumptions in (ii) and (iii)?

SUM AND PRODUCT.

The next result is that sums and products of real or complex valued measurable functions are
measurable functions.

Proposition 2.13. Let (X,S) be a measurable space and f, g : X → R or C be S­measurable.
Then f + g, fg are S­measurable.
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Proof. (a) In the case f, g : X → R, we consider H : X → R2 defined by H(x) = (f(x), g(x))
for all x ∈ X . Proposition 2.8 implies that H is S­measurable. Now, we consider ϕ, ψ : R2 → R
defined by

ϕ(y, z) = y + z, ψ(y, z) = yz.

Since ϕ, ψ are continuous, Proposition 2.2 implies that they are Borel measurable. Therefore, by
Proposition 2.3, ϕ ◦H,ψ ◦H : X → R are S­measurable. But,

ϕ ◦H = f + g, ψ ◦H = fg.

(b) In the case f, g : X → C, we consider Re(f), Im(f),Re(g), Im(g) : X → R, which, by
Proposition 2.10, are all S­measurable. Then part (a) implies that

Re(f + g) = Re(f) + Re(g), Im(f + g) = Im(f) + Im(g),

Re(fg) = Re(f)Re(g)− Im(f) Im(g), Im(fg) = Re(f) Im(g) + Im(f)Re(g)

are all S­measurable. By Proposition 2.10 again, f + g, fg are S­measurable.

If we want to extend the previous results to functions with infinite values, we must be more
careful.

The sums (+∞) + (−∞), (−∞) + (+∞) are not defined in R and neither is∞+∞ defined
in C. Hence, when we add f, g : X → R or C we must agree on how to treat the summation on,
respectively, the set

B = {x ∈ X | f(x) = +∞, g(x) = −∞ or f(x) = −∞, g(x) = +∞}

or the set
B = {x ∈ X | f(x) = ∞, g(x) = ∞}.

There are two standard ways to do this. One is to ignore the bad set and consider f + g defined
on A = X \ B on which it is naturally defined. The other way is to choose some appropriate h
defined on B and define f + g = h on B. The usual choice for h is some constant, e.g. h = 0.

Proposition 2.14. Let (X,S) be a measurable space and f, g : X → R be S­measurable. Then
the set B = {x ∈ X | f(x) = +∞, g(x) = −∞ or f(x) = −∞, g(x) = +∞} belongs to S.
(i) If A = X \B, then the function f + g : A→ R is SeA­measurable.
(ii) Let h : B → R be SeB­measurable. We define (f + g)(x) = f(x) + g(x), if x ∈ A, and
(f + g)(x) = h(x), if x ∈ B. Then f + g : X → R is S­measurable.
Similar results hold if f, g : X → C and B = {x ∈ X | f(x) = ∞, g(x) = ∞}.

Proof. Let f, g : X → R be S­measurable.
We have

B =
(
f−1({+∞}) ∩ g−1({−∞})

)
∪
(
f−1({−∞}) ∩ g−1({+∞})

)
,

and so B ∈ S .
(i) We consider the sets:

C = {x ∈ X | f(x), g(x) ∈ R}.

D1 = {x ∈ X | f(x) = +∞, g(x) 6= −∞ or f(x) 6= −∞, g(x) = +∞},

D2 = {x ∈ X | f(x) = −∞, g(x) 6= +∞ or f(x) 6= +∞, g(x) = −∞},

It is clear that C,D1, D2 ∈ S , that A = C ∪D1 ∪D2, and that the three sets are pairwise disjoint.
The restriction of f + g on C is the sum of the real valued feC, geC. By Proposition 2.6, both
feC, geC are SeC­measurable. Now, since

(f + g)eC = (feC) + (geC),
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Proposition 2.13 implies that (f + g)eC is SeC­measurable. The restriction (f + g)eD1 = +∞,
is SeD1­measurable. Also, the restriction (f + g)eD2 = −∞ is SeD2­measurable. Finally,
Proposition 2.7 implies that f + g : A→ R is SeA­measurable.
(ii) This is immediate after the result of (i) and Proposition 2.7.
The case f, g : X → C is similar, if not simpler.

Thus, there is always a measurable sum of measurable functions.
For multiplication we make the following

Convention: (±∞) 0 = 0 (±∞) = 0 in R and∞ 0 = 0∞ = 0 in C.
Thus, multiplication is always defined andwemay say that the product of measurable functions

is measurable.

Proposition 2.15. Let (X,S) be a measurable space and f, g : X → R or C be S­measurable.
Then the function fg is S­measurable.

Proof. Let f, g : X → R be S­measurable.
We consider the sets

A = {x ∈ X | f(x), g(x) ∈ R},
C1 = {x ∈ X | f(x) = +∞, g(x) > 0 or f(x) = −∞, g(x) < 0

or f(x) > 0, g(x) = +∞ or f(x) < 0, g(x) = −∞},
C2 = {x ∈ X | f(x) = −∞, g(x) > 0 or f(x) = +∞, g(x) < 0

or f(x) > 0, g(x) = −∞ or f(x) < 0, g(x) = +∞},
D = {x ∈ X | f(x) = ±∞, g(x) = 0 or f(x) = 0, g(x) = ±∞}.

These four sets are pairwise disjoint, their union isX and they all belong to S.
Now, we have

(fg)eA = (feA)(geA).

By Proposition 2.6, feA, geA are SeA­measurable, and then Proposition 2.13 implies that (fg)eA
isSeA­measurable. The restriction (fg)eC1 = +∞ isSeC1­measurable. Similarly, the restriction
(fg)eC2 = −∞ is SeC2­measurable. Finally, (fg)eD = 0 is SeD­measurable.
Now, Proposition 2.7 implies that fg is S­measurable.
If f, g : X → C, the proof is similar and slightly simpler.

ABSOLUTE VALUE AND SIGNUM.

The action of the absolute value on infinities is: |+∞| = | −∞| = +∞ and |∞| = +∞.

Proposition 2.16. Let (X,S) be a measurable space and f : X → R orC be S­measurable. Then
the function |f | : X → [0,+∞] is S­measurable.

Proof. Let f : X → R. The function | · | : R → [0,+∞] is continuous, and so it is Borel
measurable. Therefore, |f |, the composition of | · | and f , is S­measurable.
The same proof applies in the case f : X → C.

Definition. For every z ∈ C we define: sign(z) = z
|z| , if z 6= 0 and z 6= ∞, and sign(0) = 0, and

sign(∞) = ∞.

If we denote C∗ = C \ {0,∞}, then the restriction signeC∗ : C∗ → C is continuous. The
restriction signe{0} is constant 0 and the restriction signe{∞} is constant ∞. Now, Proposition
2.7 implies that sign : C → C is Borel measurable.

All this applies in the same way to the well­known function sign : R → R defined by:
sign(x) = 1, if 0 < x ≤ +∞, and sign(x) = −1, if −∞ ≤ x < 0, and sign(0) = 0. Hence,
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sign : R → R is Borel measurable.
For all z ∈ C we may write

z = |z| sign(z)

and this is called the polar decomposition of z.

Proposition 2.17. Let (X,S) be a measurable space and f : X → R orC be S­measurable. Then
the function sign(f), defined by sign(f)(x) = sign(f(x)) for all x ∈ X , is S­measurable.

Proof. If f : X → R, then sign(f) is the composition of sign : R → R and f . Hence, the result
is clear by Proposition 2.3. The same argument applies if f : X → C.

Exercises.

2.1.4. Let (X,S) be a measurable space and f : X → R or C be S­measurable. We agree that
0p = +∞ and (+∞)p = 0 if p < 0. Prove that, for all p ∈ R, p 6= 0, the function |f |p is
S­measurable.

MAXIMUM ANDMINIMUM.

Proposition 2.18. Let (X,S) be measurable space and f, g : X → R be S­measurable. Then the
functions max{f, g},min{f, g} : X → R are S­measurable.

Proof. If h = max{f, g}, then we have

h−1((a,+∞]) = {x ∈ A | a < h(x)} = {x ∈ X | a < f(x) or a < g(x)}
= {x ∈ X | a < f(x)} ∪ {x ∈ X | a < g(x)}
= f−1((a,+∞]) ∪ g−1((a,+∞]).

Hence, h−1((a,+∞]) ∈ S for all a ∈ R. Now, Proposition 2.11 implies that h is S­measurable.
And then we get that min{f, g} = −max{−f,−g} is also S­measurable.

The next result is about comparison of measurable functions.

Proposition 2.19. Let (X,S) be a measurable space and f, g : X → R be S­measurable. Then
{x ∈ X | f(x) = g(x)} ∈ S and {x ∈ X | f(x) < g(x)} ∈ S .
If f, g : X → C is S­measurable, then {x ∈ X | f(x) = g(x)} ∈ S .

Proof. Consider the set A = {x ∈ X | f(x) ∈ R, g(x) ∈ R} ∈ S . Then feA, geA are SeA­
measurable, and so (f − g)eA = (feA)− (geA) is SeA­measurable. Hence, the sets

{x ∈ A | f(x) = g(x)} = ((f − g)eA)−1({0})

{x ∈ A | f(x) < g(x)} = ((f − g)eA)−1((−∞, 0))

belong to SeA, and so they belong to S . Therefore,

{x ∈ X | f(x) = g(x)} = {x ∈ A | f(x) = g(x)} ∪
(
f−1({−∞}) ∩ g−1({−∞})

)
∪
(
f−1({+∞}) ∩ g−1({+∞})

)
∈ S.

In a similar manner,

{x ∈ X | f(x) < g(x)} = {x ∈ A | f(x) < g(x)} ∪
(
f−1({−∞}) ∩ g−1((−∞,+∞])

)
∪
(
f−1([−∞,+∞)) ∩ g−1({+∞})

)
∈ S.

The case of f, g : X → C and {x ∈ X | f(x) = g(x)} is even simpler.

69



TRUNCATION.

There are many possible truncations of a function.

Definition. Let f : X → R and α, β ∈ R so that α ≤ β.
We define f (β)(α) = min

{
max{f, α}, β

}
.

We write f (β) instead of f (β)(−∞). I.e. f
(β) = min{f, β}.

We write f(α) instead of f
(+∞)
(α) . I.e. f(α) = max{f, α}.

The functions f (β)(α) , f
(β), f(α) are called truncations of f .

In other words, we have: f (β)(α) (x) = f(x), if α ≤ f(x) ≤ β, f (β)(α) (x) = α, if f(x) < α, and

f
(β)
(α) (x) = β, if β < f(x). Also: f (β)(x) = f(x), if f(x) ≤ β, and f (β)(x) = β, if β < f(x).
Finally: f(α)(x) = f(x), if α ≤ f(x), and f(α)(x) = α, if f(x) < α.

Proposition 2.20. Let (X,S) be a measurable space and f : X → R be S­measurable. Then all
truncations f (β)(α) are S­measurable.

Proof. The proof is obvious from f
(β)
(α) = min

{
max{f, α}, β

}
and Proposition 2.18.

An important role is played by the following special truncations of f : X → R. They are the
functions f+ : X → [0,+∞] and f− : X → [0,+∞], which are defined by the formulas

f+ = f(0) = max{f, 0}, f− = −f (0) = −min{f, 0} = max{−f, 0},

and they are called, respectively, the non­negative part and the non­positive part of f .
If S is a σ­algebra of subsets ofX and f : X → R is S­measurable, then both f+ and f− are

S­measurable. It is also trivial to see that either f+(x) = 0 or f−(x) = 0 for every x ∈ X . I.e.
f+f− = 0. Αlso

f+ + f− = |f |, f+ − f− = f.

There is another type of truncations used mainly for extended­complex valued functions.

Definition. Let f : X → R or C and r ∈ [0,+∞]. We define (r)f(x) = f(x), if |f(x)| ≤ r, and
(r)f(x) = r sign(f(x)), if r < |f(x)|.
The functions (r)f are also called truncations of f .

We observe that, if f : X → R, then (r)f = f
(r)
(−r).

Proposition 2.21. Let (X,S) be a measurable space and f : X → R orC be S­measurable. Then
all truncations (r)f are S­measurable.

Proof. The case f : X → R is clear, since (r)f = f
(r)
(−r).

In the case f : X → C we consider the function ϕr : C → C defined by: ϕr(x) = x, if |x| ≤ r,
and ϕr(x) = r sign(x), if r < |x|. We easily see that ϕr is Borel measurable. Now, (r)f = ϕr ◦ f ,
and so (r)f is S­measurable.

Exercises.

2.1.5. Let f : X → R. If g, h : X → R are such that g, h ≥ 0 and f = g − h on X , prove that
f+ ≤ g and f− ≤ h on X .

2.1.6. Let (X,S, µ) be a measure space, f : X → R or C be S­measurable, and 0 ≤ M < +∞.
If µ({x ∈ X | |f(x)| = +∞}) = 0 and µ({x ∈ X | |f(x)| > M}) < +∞, prove that for every
ϵ > 0 there is a bounded S­measurable g : X → R or C so that µ({x ∈ X | g(x) 6= f(x)}) < ϵ.
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LIMITS.

The next group of results is about various limiting operations on measurable functions. The rule
is, roughly: the supremum, the infimum and the limit of a sequence of measurable functions are
measurable functions.

Proposition 2.22. Let (X,S) be a measurable space and (fj) be a sequence of S­measurable
functions fj : X → R. Then all functions supj∈N fj , infj∈N fj , limj→+∞ fj and limj→+∞ fj are
S­measurable.

Proof. Let h = supj∈N fj : X → R. We have

h−1((a,+∞]) = {x ∈ A | a < h(x)} = {x ∈ X | a < fj(x) for at least one j}
=

⋃+∞
j=1{x ∈ X | a < fj(x)} =

⋃+∞
j=1 f

−1
j ((a,+∞]),

and so h−1((a,+∞]) ∈ S for every a ∈ R. Now, Proposition 2.11 implies that h is S­measurable.
Therefore, infj∈N fj = − supj∈N(−fj) is also S­measurable.
And, finally, limj→+∞ fj = infj∈N(supk≥j fk) and limj→+∞ fj = supj∈N(infk≥j fk) are S­
measurable.

Proposition 2.23. Let (X,S) be a measurable space and (fj) be a sequence of S­measurable
functions fj : X → R. Then the set A = {x ∈ X | limj→+∞ fj(x) exists in R} belongs to S .
(i) The function limj→+∞ fj : A→ R is SeA­measurable.
(ii) Let h : Ac → R be SeAc­measurable. We define (limj→+∞ fj)(x) = limj→+∞ fj(x), if
x ∈ A, and (limj→+∞ fj)(x) = h(x), if x ∈ Ac. Then limj→+∞ fj : X → R is S­measurable.
Similar results hold if fj : X → C for all j and A = {x ∈ X | limj→+∞ fj(x) exists in C}.

Proof. Suppose that fj : X → R for all j.
Since limj→+∞ fj(x) exists if and only if limj→+∞ fj(x) = limj→+∞ fj(x), we have that

A = {x ∈ X | limj→+∞ fj(x) = limj→+∞ fj(x)}.

Now, Proposition 2.22 implies that limj→+∞ fj and limj→+∞ fj are both S­measurable, and then
Proposition 2.19 implies A ∈ S .
(i) It is clear that the function limj→+∞ fj : A → R is just the restriction of limj→+∞ fj (and of
limj→+∞ fj) on A, and so it is SeA­measurable.
(ii) The proof of (ii) is a direct consequence of (i) and Proposition 2.7.
The case of complex valued (or extended complex valued) functions can be reduced to what we
just proved and it is left as an exercise.

SIMPLE FUNCTIONS.

Definition. Let E ⊆ X . The function χE : X → R defined by χE(x) = 1, if x ∈ E, and
χE(x) = 0, if x /∈ E, is called the characteristic function of E.

Of course, E determines its χE . But also, conversely, χE determines its corresponding E.
Indeed, E = {x ∈ X |χE(x) = 1} = (χE)

−1({1}).
The following are trivial:

λχE + κχF = λχE\F + (λ+ κ)χE∩F + κχF\E , χEχF = χE∩F , χEc = 1− χE

for all E,F ⊆ X and all λ, κ ∈ C.

Proposition 2.24. Let (X,S) be a measurable space and E ⊆ X . Then χE is S­measurable if
and only if E ∈ S .
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Proof. If χE is S­measurable, then E = (χE)
−1({1}) ∈ S .

Conversely, let E ∈ S . Then for an arbitrary Borel set F in R or C we have: (χE)
−1(F ) = ∅ if

0 /∈ F , 1 /∈ F , and (χE)
−1(F ) = E if 1 ∈ F , 0 /∈ F , and (χE)

−1(F ) = Ec if 1 /∈ F , 0 ∈ F , and
(χE)

−1(F ) = X if 0 ∈ F , 1 ∈ F . In any case, (χE)
−1(F ) ∈ S , and so χE is S­measurable.

Definition. A function defined on a non­empty setX is called a simple function onX if its range
is a finite subset of C. If, in particular, the range of the simple function is a subset of R, then we
may say that it is a real valued simple function. Also, if the range of the simple function is a subset
of [0,+∞), then we may say that it is a non­negative simple function.

We note that simple functions never take infinite values.
The following proposition describes completely the structure of simple functions.

Proposition 2.25. (i) A function ϕ : X → C is a simple function on X if and only if it is a linear
combination with complex coefficients of characteristic functions of subsets ofX .
(ii) For every simple function ϕ on X there are m ∈ N, distinct κ1, . . . , κm ∈ C and non­empty
pairwise disjoint E1, . . . , Em ⊆ X with

⋃m
j=1Ej = X so that ϕ = κ1χE1 + · · ·+ κmχEm . This

representation of ϕ is unique (apart from rearrangement).
(iii) If S is a σ­algebra of subsets of X , then the simple function ϕ on X is S­measurable if and
only if all Ek in the representation of ϕ described in (ii) belong to S.

Proof. Let
ϕ =

∑n
j=1 λjχFj ,

where λj ∈ C and Fj ⊆ X for all j. We consider any x ∈ X , and then either x belongs to no Fj ,
in which case ϕ(x) = 0, or, by considering all the sets Fj1 , . . . , Fjk which contain x, we have that
ϕ(x) = λj1+ · · ·+λjk . Hence, the range of ϕ contains at most all the possible sums λj1+ · · ·+λjk
together with 0, and so it is a finite set. Thus, ϕ is simple on X .
Conversely, let ϕ be simple on X , and let the range of ϕ consist of the distinct κ1, . . . , κm ∈ C.
We consider

Ej = {x ∈ X |ϕ(x) = κj} = ϕ−1({κj}).

Then every x ∈ X belongs to exactly one of these sets, and so E1, . . . , Em are pairwise disjoint
and X = E1 ∪ · · · ∪ Em. Now it is clear that

ϕ =
∑m

j=1 κjχEj ,

because both sides take the same value at every x.
If

ϕ =
∑m′

i=1 κ
′
iχE′

i

is another representation of ϕ with distinct κ′i and non­empty pairwise disjoint E′i covering X ,
then the range of ϕ is exactly the set {κ′1, . . . , κ′m′}. Hence, m′ = m and, after rearrangement,
κ′1 = κ1, . . . , κ

′
m = κm. Therefore,

E′j = ϕ−1({κ′j}) = ϕ−1({κj}) = Ej

for all j. We conclude that the representation is unique.
Now, if all Ej belong to S, then, by Proposition 2.24, all χEj are S­measurable, and so ϕ is also
S­measurable. Conversely, if ϕ is S­measurable, then all Ej = ϕ−1({κj}) belong to S.

Definition. The unique representation ϕ = κ1χE1 + · · ·+κmχEm of the simple function ϕ, which
is described in part (ii) of Proposition 2.25, is called the standard representation of ϕ.

If one of the coefficients in the standard representation of a simple function is equal to 0, then
we usually omit the corresponding term from the sum (but then the union of the pairwise disjoint
sets which appear in the representation is not necessarily equal to the whole space).
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Proposition 2.26. Any linear combination with complex coefficients of simple functions is a simple
function and any product of simple functions is a simple function. Also, the maximum and the
minimum of real valued simple functions are real valued simple functions.

Proof. Let ϕ, ψ be simple functions onX and p, q ∈ C. Assume that λ1, . . . , λn are the values of
ϕ, and κ1, . . . , κm are the values of ψ. It is obvious that the possible values of pϕ+ qψ are among
the nm numbers pλi + qκj , and that the possible values of ϕψ are among the nm numbers λiκj .
Therefore, both functions pϕ+qψ, ϕψ have a finite number of values. If ϕ, ψ are real valued, then
the possible values of max{ϕ, ψ} and min{ϕ, ψ} are among the n+m real numbers λi, κj .

Proposition 2.27. (i) Given f : X → [0,+∞], there exists an increasing sequence (ϕn) of non­
negative simple functions on X which converges to f pointwise on X . Moreover, (ϕn) converges
to f uniformly on every subset of X on which f is bounded.
(ii) Given f : X → R orC, there is a sequence (ϕn) of real valued or complex valued, respectively,
simple functions on X which converges to f pointwise on X and so that (|ϕn|) is increasing.
Moreover, (ϕn) converges to f uniformly on every subset on which f is bounded.
If S is a σ­algebra of subsets ofX and f is S­measurable, then the ϕn in (i) and (ii) can be taken
to be S­measurable.

Proof. (i) For every n, k ∈ N with 0 ≤ k ≤ n2 − 1, we define the sets

En,k = f−1
([

k
n ,

k+1
n

))
, Fn = f−1([n,+∞])

and the non­negative simple function

ψn =
∑n2−1

k=0
k
nχEn,k

+ nχFn .

For each n the sets
En,0, En,1, . . . , En,n2−1, Fn

are pairwise disjoint and their union isX . Observe that if f is S­measurable then all En,k and Fn

belong to S , and so ψn is S­measurable.
For every n we have

ψn = k
n ≤ f < k+1

n = ψn + 1
n on each En,k, ψn = n ≤ f on Fn.

Now, if f(x) = +∞, then x ∈ Fn and so ϕn(x) = n for every n. Hence limn→+∞ ϕn(x) = f(x).
If 0 ≤ f(x) < +∞, then for all large n we have 0 ≤ f(x) < n. So for each large n there is a
unique k with 0 ≤ k ≤ n2 − 1 and k

n ≤ f(x) < k+1
n . Then x ∈ En,k, and so ψn(x) =

k
n . Hence

0 ≤ f(x)− ψn(x) <
1
n

for large n. This implies that limn→+∞ ψn(x) = f(x).
Therefore,

limn→+∞ ψn = f pointwise on X.

If K ⊆ X and f is bounded on K, then there is an n0 so that f(x) < n0 for all x ∈ K. Hence,
for all n ≥ n0 we have

0 ≤ f(x)− ψn(x) <
1
n for all x ∈ K.

Thus,
limn→+∞ ψn = f uniformly on K.

Now, for every n, we consider the simple function

ϕn = max{ψ1, . . . , ψn}
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If f is S­measurable, then every ψk is S­measurable, and so every ϕn is S­measurable. We have
proved that 0 ≤ ψk ≤ f on X for every k, and so we have that 0 ≤ ϕn ≤ f on X for every n.
Moreover, ϕn = max{ψ1, . . . , ψn} ≥ ψn, and so ψn ≤ ϕn ≤ f on X for every n.
Therefore,

limn→+∞ ϕn = f pointwise on X,

and, ifK ⊆ X and f is bounded onK, then

limn→+∞ ϕn = f uniformly on K.

Finally,
ϕn+1 = max{ψ1, . . . , ψn, ψn+1} ≥ max{ψ1, . . . , ψn} = ϕn

on X for every n, and so (ϕn) is increasing on X .
(ii) Let f : X → R. We consider the functions f+, f− : X → [0,+∞]. If f is S­measurable,
then f+, f− are both S­measurable.
By (i) there are increasing sequences (pn) and (qn) of non­negative simple functions on X con­
verging to, respectively, f+ and f− pointwise onX and uniformly on every subset ofX on which
f is bounded (because on such a subset f+, f− are also bounded). Now it is obvious that, if we set

ϕn = pn − qn,

then ϕn is a real valued simple function on X which is S­measurable if f is S­measurable. It is
clear that (ϕn) converges to f pointwise on X and uniformly on every subset of X on which f is
bounded. Since 0 ≤ pn ≤ f+ and 0 ≤ qn ≤ f−, we have that pn = ϕ+n and qn = ϕ−n . Hence

|ϕn| = pn + qn,

and so the sequence (|ϕn|) is increasing on X .
Now let f : X → C. We consider A = f−1(C), the restriction feA : A → C, and the functions
Re(feA), Im(feA) : A→ R.
If f is S­measurable, then these two functions are SeA­measurable.
By the previous case there are sequences (rn) and (sn) of real valued simple functions on A con­
verging to, respectively, Re(feA) and Im(feA) pointwise on A and uniformly on every subset of
A on which feA is bounded. Now, if we set

ϕn = rn + isn,

then ϕn is a complex valued simple function onA which is SeA­measurable if f is S­measurable.
It is clear that (ϕn) converges to feA pointwise onA and uniformly on every subset ofA on which
feA is bounded. Also

|ϕn| =
√
r2n + s2n,

and so the sequence (|ϕn|) is increasing on A.
If we also define ϕn = n on Ac, then the proof is complete.

Exercises.

2.1.7. (i) Prove that a Borel measurable f : R → R is also Lebesgue measurable.
(ii) Find a function f : R → R which is not Lebesgue measurable.
(iii) Using the Lebesgue but not Borel set constructed in exercise 1.4.18, find a function f : R → R
which is Lebesgue measurable but not Borel measurable.

2.1.8. Give an example of a function f : R → R which is not Lebesgue measurable so that |f | is
Lebesgue measurable.
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2.1.9. Starting with an appropriate function which is not Lebesgue measurable, give an example of
an uncountable collection {fi}i∈I of Lebesgue measurable functions fi : R → R so that supi∈I fi
is not Lebesgue measurable.

2.1.10. (i) Prove that, if G : R → R is continuous and H : R → R is Borel measurable, then
H ◦G : R → R is Borel measurable.
(ii) Using exercise 1.4.18, construct a continuous G : R → R and a Lebesgue measurable H :
R → R so that H ◦G : R → R is not Lebesgue measurable.

2.1.11.We say that ϕ : X → C is an elementary function on X if it has countably many values.
Is there a standard representation for an elementary function?
Prove that for any f : X → [0,+∞), there is an increasing sequence (ϕn) of non­negative ele­
mentary functions on X so that limn→+∞ ϕn = f uniformly on X . If S is a σ­algebra of subsets
of X and f is S­measurable, prove that the ϕn can be taken to be S­measurable.

2.2 The role of null sets.

Definition. Let (X,S, µ) be a measure space. We say that a property P (x) holds μ­almost every­
where on X or for μ­almost every x ∈ X , if the set {x ∈ X |P (x) is not true} is included in a
µ­null set.

We may also say: P (x) holds µ­a.e. on X and P (x) holds for µ­a.e. x ∈ X . More simply:
P (x) holds a.e. on X and P (x) holds for a.e. x ∈ X .

It is clear that, if P (x) holds for a.e. x ∈ X and µ is complete, then {x ∈ X |P (x) is not true}
is contained in S, and so its complement {x ∈ X |P (x) is true} is also contained in S .

Proposition 2.28. Let (X,SX , µ) be a measure space and (X,SX , µ) be its completion, and as­
sumeA ∈ SX hasµ(Ac) = 0. Let (Y,SY ) be ameasurable space and f : A→ Y be (SXeA,SY )­
measurable. If we extend f on X in an arbitrary manner as a function F : X → Y , then the
extended function F is (SX ,SY )­measurable.

Proof. We consider an arbitrary function h : Ac → Y , and we define F : X → Y by F (x) =
f(x), if x ∈ A, and F (x) = h(x), if x ∈ Ac.
We take an arbitrary E ∈ SY , and we write

F−1(E) = {x ∈ A | f(x) ∈ E} ∪ {x ∈ Ac |h(x) ∈ E} = f−1(E) ∪ {x ∈ Ac |h(x) ∈ E}.

The first set belongs to SXeA and hence to SX , and the second set is a subset of Ac. Therefore,
F−1(E) ∈ SX , and so F is (SX ,SY )­measurable.

In other words, if (X,SX , µ) is a complete measure space, we get that, if f is defined a.e. on
X and it is measurable on its domain of definition, then any extension of f on X is measurable.

Proposition 2.29. Let (X,SX , µ) be a measure space and (X,SX , µ) be its completion. Let
(Y,SY ) be a measurable space and f : X → Y be (SX ,SY )­measurable. If g : X → Y is
equal to f a.e on X , then g is (SX ,SY )­measurable.

Proof. There exists N ∈ SX so that {x ∈ X | f(x) 6= g(x)} ⊆ N and µ(N) = 0.
We consider A = N c ∈ SX , and then feA : A→ Y is (SXeA,SY )­measurable. Since g = f on
A, we see that g : X → Y is an extension of feA : A→ Y . Now, Proposition 2.28 implies that g
is (SX ,SY )­measurable.

In the particular case of a complete measure space (X,SX , µ), we get that, if f is measurable
and g is equal to f a.e., then g is also measurable.
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Proposition 2.30. Let (X,S, µ) be a measure space and (X,S, µ) be its completion. Let (fj)
be a sequence of S­measurable functions fj : X → R or C. If f : X → R or C is such that
f = limj→+∞ fj a.e. on X , then f is S­measurable.

Proof. There exists N ∈ S so that {x ∈ X | f(x) 6= limj→+∞ fj(x)} ⊆ N and µ(N) = 0.
We consider A = N c ∈ S , and then feA = limj→+∞ fjeA on A.
Now, every fjeA is SeA­measurable, and so feA is SeA­measurable. Since f = feA on A,
Proposition 2.28 implies that f is S­measurable.

Again, in the particular case of a complete measure space (X,S, µ) we get that, if (fj) is a
sequence of measurable functions and its limit is equal to f a.e., then f is also measurable.

Proposition 2.31. Let (X,S, µ) be a measure space and (X,S, µ) be its completion. If g : X → R
or C is S­measurable, then there is a S­measurable f : X → R or C so that g = f a.e. on X .

Proof. (a) Let E ∈ S . Then there are A,M ∈ S with µ(M) = 0 so that E = A ∪ F for some
F ⊆M . Then χE 6= χA only on E \A ⊆M , and so χE = χA a.e. on X .
(b) Now, let ϕ : X → R or C be a S­measurable simple function with standard representation

ϕ = κ1χE1 + · · ·+ κmχEm .

Then E1, . . . , Em ∈ S , and by the result of (a), there are A1, . . . , Am ∈ S so that χEj = χAj a.e.
on X for every j. Then

ψ = κ1χA1 + · · ·+ κmχAm

is a S­measurable simple function. Since

{x ∈ X |ϕ(x) 6= ψ(x)} ⊆
⋃m

j=1{x ∈ X |χEj (x) 6= χAj (x)},

we have that µ({x ∈ X |ϕ(x) 6= ψ(x)}) = 0, and so ϕ = ψ a.e. on X .
(c) Finally, let g : X → R or C be S­measurable. Proposition 2.27 implies that there are S­
measurable simple functions ϕn : X → R or C so that limn→+∞ ϕn = g on X .
By (b), there are S­measurable simple functions ψn : X → R or C so that ϕn = ψn a.e. on X .
We consider the set

B =
⋃+∞

n=1{x ∈ X |ϕn(x) 6= ψn(x)}.

Then B ∈ S and µ(B) = 0, and we have that ϕn = ψn for every n on Bc. Since Bc ∈ S , there
are A,M ∈ S with µ(M) = 0 so that Bc = A ∪ F for some F ⊆ M . Since A ⊆ Bc, we have
that ϕn = ψn for every n on A, and so limn→+∞ ψn = g on A.
Also, since A ∈ S and every ψn is S­measurable, we have that every ψneA is SeA­measurable,
and so geA = limn→+∞(ψneA) is SeA­measurable.
Now, we consider f : X → R or C to be equal to geA on A and equal to 0 on Ac. Then f is
S­measurable. Also, Ac ⊆ B ∪M and

µ(B ∪M) ≤ µ(B) + µ(M) = µ(B) + µ(M) = 0.

Therefore, g = f a.e. on X .

Exercises.

2.2.1. Let (X,S, µ) be a measure space.
(i) Let f, g, h : X → Y . If f = g a.e. on X and g = h a.e. on X , prove that f = h a.e. on X .
(ii) Let f1, f2, g1, g2 : X → R. If f1 = f2 a.e. on X and g1 = g2 a.e. on X , prove that
f1 + g1 = f2 + g2 and f1g1 = f2g2 a.e. on X .
(iii) Let fj , gj : X → R so that fj = gj a.e. onX for all j ∈ N. Prove that supj∈N fj = supj∈N gj
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a.e. on X . Similar results hold for inf, lim and lim.
(iv) Let fj , gj : X → R so that fj = gj a.e. on X for all j ∈ N.
If A = {x ∈ X | limj→+∞ fj(x) exists} and B = {x ∈ X | limj→+∞ gj(x) exists}, prove that
A4B ⊆ N for someN ∈ S with µ(N) = 0, and that limj→+∞ fj = limj→+∞ gj a.e. on A∩B.
If, moreover, we extend both limj→+∞ fj and limj→+∞ gj by a common function h on (A∩B)c,
prove that limj→+∞ fj = limj→+∞ gj a.e. on X .

2.3 Lusin’s Theorem

A topological spaceX is called locally compact if for every x ∈ X there is an open V ⊆ X such
that x ∈ V and cl(V ) is compact.

Lemma 2.1. Let the topological space X be locally compact and Hausdorff. For every x ∈ X
and every open U ⊆ X with x ∈ U there is an openW ⊆ X such that x ∈ W , cl(W ) ⊆ U and
cl(W ) is compact.

Proof. There is an open V ⊆ X such that x ∈ V and cl(V ) is compact. Let V0 = V ∩ U . Then
V0 is open, and x ∈ V0 ⊆ U . Since bd(V0) ⊆ cl(V0) ⊆ cl(V ), we have that bd(V0) is a closed
subset of a compact set, and so bd(V0) is compact.
For every y ∈ bd(V0) we have x 6= y, and so there are openWy, Yy such that x ∈Wy, y ∈ Yy and
Wy ∩ Yy = ∅. Now, since bd(V0) ⊆

⋃
y∈bd(V0)

Yy, there are y1, . . . , yn ∈ bd(V0) such that

bd(V0) ⊆ Yy1 ∪ · · · ∪ Yyn .

Now letW = V0 ∩Wy1 ∩ · · · ∩Wyn .
ThenW is open, and x ∈W . We also have that

W ∩ (Yy1 ∪ · · · ∪ Yyn) = ∅.

Then, since Yy1 ∪ · · · ∪ Yyn is open, we get that

cl(W ) ∩ (Yy1 ∪ · · · ∪ Yyn) = ∅,

and so cl(W ) ∩ bd(V0) = ∅. Now, sinceW ⊆ V0, we get cl(W ) ⊆ V0, and so cl(W ) ⊆ U .
Finally, cl(W ) ⊆ V0 ⊆ V ⊆ cl(V ), and so cl(W ) is compact.

Lemma 2.2. Let the topological spaceX be locally compact and Hausdorff. IfK ⊆ X is compact
and U ⊆ X is open andK ⊆ U , then there is an openW ⊆ X such thatK ⊆W ⊆ cl(W ) ⊆ U
and cl(W ) is compact.

Proof. By Lemma 2.1, for every x ∈ K there is an openWx ⊆ X such that x ∈Wx, cl(Wx) ⊆ U
and cl(Wx) is compact. SinceK ⊆

⋃
x∈K Wx, there are x1, . . . , xn ∈ K such that

K ⊆Wx1 ∪ · · · ∪Wxn .

LetW =Wx1 ∪ · · · ∪Wxn .
Then

cl(W ) = cl(Wx1) ∪ · · · ∪ cl(Wxn).

Therefore,W is open, cl(W ) is compact, andK ⊆W ⊆ cl(W ) ⊆ U .

We know that, if X is a topological space and f : X → C is continuous, then the set

supp(f) = cl({x ∈ X | f(x) 6= 0})

is called the support of f . Clearly, supp(f) is a closed subset of X . Also, clearly, f(x) = 0 for
every x /∈ supp(f). Now, let us assume that F is a closed subset of X such that f(x) = 0 for
every x /∈ F . Then, {x ∈ X | f(x) 6= 0} ⊆ F , and, since F is closed, we get that supp(f) ⊆ F .
Therefore, supp(f) is the smallest closed set outside of which f = 0.

There is a more general version of the following result in Topology.
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Urysohn’s Lemma. Let the topological spaceX be locally compact and Hausdorff. IfK ⊆ X is
compact and U ⊆ X is open andK ⊆ U , then there is a continuous f : X → [0, 1] so that f = 1
onK and supp(f) is a compact subset of U .

Proof. By Lemma 2.2, there is an open B1 so that cl(B1) is compact and

K ⊆ B1 ⊆ cl(B1) ⊆ U.

Then there is some open B1/2 so that cl(B1/2) is compact and

K ⊆ B1/2 ⊆ cl(B1/2) ⊆ B1.

Similarly, there are some open B1/4 and B3/4 so that cl(B1/4) and cl(B3/4) are compact and

K ⊆ B1/4 ⊆ cl(B1/4) ⊆ B1/2 ⊆ cl(B1/2) ⊆ B3/4 ⊆ cl(B3/4) ⊆ B1.

Continuing inductively, we see that to every rational of the form r = k
2n with 0 < k ≤ 2n

corresponds some open set Br so that cl(Br) is compact and so that

K ⊆ Br ⊆ cl(Br) ⊆ Bs ⊆ cl(Bs) ⊆ U

for every two such rational r, s with r < s. Let Qd be the set of all these rational numbers. It is
easy to see that Qd is dense in [0, 1].
Now, we define:

g(x) = inf{r ∈ Qd |x ∈ Br}, if x ∈ B1, g(x) = 1, if x ∈ Bc
1.

We see that g = 0 onK and that g : X → [0, 1], and we shall prove that g is continuous on X .
Let x ∈ X and ϵ > 0.
If 0 < g(x) < 1, there are r, r′, s ∈ Qd so that

g(x)− ϵ < r < r′ < g(x) < s < g(x) + ϵ.

If y ∈ Bs, then g(y) ≤ s < g(x) + ϵ. If y /∈ cl(Br), then y /∈ Br, and so g(y) ≥ r > g(x) − ϵ.
Also, x ∈ Bs and x /∈ Br′ , and so x ∈ cl(Br)

c. Hence, the open set V = Bs ∩ cl(Br)
c contains

x, and we have that
g(x)− ϵ < g(y) < g(x) + ϵ for every y ∈ V.

Therefore, g is continuous at x.
If g(x) = 1, we take, like before, r, r′ ∈ Qd so that

g(x)− ϵ < r < r′ < g(x).

Then we easily see that the open set V = cl(Br)
c contains x, and that

g(x)− ϵ < g(y) ≤ 1 < g(x) + ϵ for every y ∈ V.

Hence, g is continuous at x.
Similarly, if g(x) = 0, we take s ∈ Qd so that

0 < s < ϵ.

Then we get that the open set V = Bs contains x, and that

g(x)− ϵ < 0 ≤ g(y) < ϵ = g(x) + ϵ for every y ∈ V.

Hence, g is continuous at x.
Finally, we take f = 1 − g. Then f : X → [0, 1] is continuous on X , and f = 1 on K. Also
f = 0 outside cl(B1). Hence, supp(f) is contained in cl(B1) which is a compact subset of U .
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If X is a topological space and U ⊆ X is open, then for a function f we write

f ≺ U

whenever f : X → [0, 1] is continuous on X and supp(f) is a compact subset of U .
Thus, Urysohn’s Lemma says that, ifX is locally compact and Hausdorff,K ⊆ X is compact

and U ⊆ X is open andK ⊆ U , then there is a function f so that f ≺ U and f = 1 onK.

Lusin’s Theorem. Let the topological space X be locally compact and Hausdorff and µ be a
regular Borel measure on X . If f : X → R or C is Borel measurable and f is finite a.e. on X
and f = 0 outside a set of finite measure, then for every ϵ > 0 there is a continuous g : X → R
or C so that g = 0 outside a compact set of finite measure and µ({x ∈ X | f(x) 6= g(x)}) < ϵ. If
f has certain bounds a.e. on X , then g can be chosen to have the same bounds on X .

Proof. (a) Let E be any Borel set in X with µ(E) < +∞ and let ϵ > 0. Then there is a compact
K and an open U so that K ⊆ E ⊆ U ⊆ X and µ(U \K) < ϵ. By Urysohn’s Lemma, there is
a function g so that g ≺ U and g = 1 on K. Obviously, g = χE = 1 on K, and g = χE = 0
outside U . Therefore,

µ({x ∈ X |χE(x) 6= g(x)}) ≤ µ(U \K) < ϵ.

We also observe that supp(g) ⊆ U is compact and µ(U) < +∞, and so g is 0 outside a compact
set of finite measure.
(b) Now we consider a non­negative Borel measurable simple function ϕ : X → [0,M ] which is
0 outside some set of finite measure. We may write

ϕ = κ1χE1 + · · ·+ κkχEk
,

whereE1, . . . , Ek are pairwise disjoint Borel sets of finite measure and κ1, . . . , κk > 0. Then from
part (a) there are continuous g1, . . . , gk : X → [0, 1] so that µ({x ∈ X |χEj (x) 6= gj(x)}) < ϵ

k
for all j, and so that each gj is 0 outside a compact set of finite measure. Now, we consider

h = κ1g1 + · · ·+ κkgk

which is continuous and non­negative onX , and which is 0 outside a compact set of finite measure.
Then

{x ∈ X |ϕ(x) 6= h(x)} ⊆ {x ∈ X |χE1(x) 6= g1(x)} ∪ · · · ∪ {x ∈ X |χEk
(x) 6= gk(x)},

and so
µ({x ∈ X |ϕ(x) 6= h(x)}) < ϵ

k + · · ·+ ϵ
k = ϵ.

Now, we take g = h(M) = min{h,M}.
Then g : X → [0,M ] is continuous on X and 0 outside a compact set of finite measure. Since

{x ∈ X |ϕ(x) 6= g(x)} ⊆ {x ∈ X |ϕ(x) 6= h(x)},

we get µ({x ∈ X |ϕ(x) 6= g(x)}) < ϵ.
(c) Next let f : X → [0,M ] be Borel measurable and 0 outside some set of finite measure. By
Proposition 2.27, there is an increasing sequence (ϕk) of non­negative Borel measurable simple
functions which converges uniformly to f onX . All ϕk are 0 outside the same set of finite measure.
By taking an appropriate subsequence we may assume that

0 ≤ f − ϕk ≤ 1
2k

on X

for every k. We consider the non­negative Borel measurable simple functions

ψ1 = ϕ1, ψk = ϕk − ϕk−1 for k ≥ 2.

79



All ψk are 0 outside the same set of finite measure and it is clear that∑+∞
k=1 ψk = f on X.

Moreover,
ψk ≤ f − ϕk−1 ≤ 1

2k−1 on X for k ≥ 2.

Now, from part (b) there are continuous and non­negative gk on X so that

µ({x ∈ X |ψk(x) 6= gk(x)}) < ϵ
2k
, gk ≤ 1

2k−1 on X for k ≥ 2.

We may also assume that all gk are 0 outside the same compact set of finite measure. Then the
series

∑+∞
k=1 gk converges uniformly on X , and the function∑+∞

k=1 gk = h

is non­negative and continuous on X and is 0 outside a compact set of finite measure. We also
have that

{x ∈ X | f(x) 6= h(x)} ⊆
⋃+∞

k=1{x ∈ X |ψk(x) 6= gk(x)},

and so
µ({x ∈ X | f(x) 6= h(x)}) <

∑+∞
k=1

ϵ
2k

= ϵ.

Finally, we consider g = h(M) = min{h,M}.
Then g : X → [0,M ] is continuous on X and 0 outside a compact set of finite measure. Since

{x ∈ X | f(x) 6= g(x)} ⊆ {x ∈ X | f(x) 6= h(x)},

we get µ({x ∈ X | f(x) 6= g(x)}) < ϵ.
(d) Let f : X → [0,+∞] be Borel measurable and finite a.e. onX and 0 outside some set, say E,
of finite measure.
We consider the sets

Fk = {x ∈ X | k < f(x)}

for k ∈ N. Then (Fk) is decreasing and⋂+∞
k=1 Fk = {x ∈ X | f(x) = +∞}.

Since F1 ⊆ E, we have µ(F1) < +∞, and so

limk→+∞ µ(Fk) = µ({x ∈ X | f(x) = +∞}) = 0.

Therefore, there is someM so that µ(FM ) < ϵ
2 . Now we consider f (M) = min{f,M}, and then

f (M) : X → [0,M ] is Borel measurable, f (M) = 0 outside E, and

µ({x ∈ X | f(x) 6= f (M)(x)}) = µ(FM ) < ϵ
2 .

From part (c) there is a continuous g : X → [0,+∞) which is 0 outside a compact set of finite
measure so that

µ({x ∈ X | f (M)(x) 6= g(x)}) < ϵ
2 .

Since

{x ∈ X | f(x) 6= g(x)} ⊆ {x ∈ X | f (M)(x) 6= g(x)} ∪ {x ∈ X | f(x) 6= f (M)(x)},

we get µ({x ∈ X | f(x) 6= g(x)}) < ϵ
2 + ϵ

2 = ϵ.
We have finished the proof in the case of functions f : X → [0,+∞]. By considering the non­
negative and non­positive parts of a function f : X → R, and, after that, the real and imaginary
parts of a function f : X → C, we can easily finish the proof in the general case. We leave these
last details as an exercise.
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Loosely speaking, every Borel measurable function which is finite a.e. on X and 0 outside
a set of finite measure is equal to a continuous function with compact support except on a set of
arbitrarily small measure.

We recall that Theorem 1.2 gives conditions on a Hausdorff topological space X and a Borel
measure µ on X so that µ is regular.

Exercises.

2.3.1. Is it possible to nullify the set of non­equality in Lusin’s Theorem?
Take χ[0,+∞) : R → R and prove that there is no continuous g : R → R so that χ[0,+∞) = g
m1­a.e. on R

2.3.2. LetX,Y be topological spaces of which Y is Hausdorff, and µ be a Borel measure onX so
that µ(U) > 0 for every non­empty open U ⊆ X . Prove that, if f, g : X → Y are continuous and
f = g a.e. on X , then f = g on X .

2.3.3. (a) Let µ be a Borel measure on the topological space X and f : X → C be a Borel
measurable function. In the spirit of exercise 1.5.4 about supports of Borel measures, a point x ∈ X
is called a support point for f if µ({y ∈ Ux | f(y) 6= 0}) > 0 for every open neighborhood Ux

of x. The set
supp(f) = {x ∈ X |x is a support point for f}

is called the support of f .
(i) Prove that supp(f) is a closed set.
(ii) If X is Hausdorff, prove that µ({x ∈ K | f(x) 6= 0}) = 0 for all compactK ⊆ (supp(f))c.
(iii) IfX is Hausdorff and µ is regular, prove that f = 0 a.e on (supp(f))c, and that (supp(f))c is
the largest open set on which f = 0 a.e.
(b) Assume that the µ appearing in (a) has the additional property that µ(U) > 0 for every open
U . Use exercise 2.3.2 to prove that for any continuous f : X → C the two definitions of supp(f)
(the usual one, which we mentioned in this section, and the one in (a)) coincide.

2.3.4. Let f : Rn → R be continuous atmn­a.e. x ∈ Rn. Prove that f is Lebesgue measurable.

2.3.5. Let X be a locally compact and Hausdorff topological space so that for every open set O
there is an increasing sequence of compact subsets of O which cover O. If, moreover, µ is a Borel
measure on X such that µ(K) < +∞ for every compact setK, prove that µ is regular.
Hint. Prove that there is an increasing sequence of open sets of finite µ­measure which cover X
and then use Theorem 1.2.

2.3.6. LetX be a locally compact and Hausdorff topological space which is separable, i.e. there is
a countable dense subset of X . Prove that for every open set O there is an increasing sequence of
compact subsets of O whose interiors cover O. If, moreover, µ is a Borel measure onX such that
µ(K) < +∞ for every compact setK, prove that µ is regular.
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Chapter 3

Integrals.

3.1 Integrals.

In this whole section (except in the last subsection about point­mass distributions) (X,S, µ) will
be a general but fixed measure space. At some places we may also deal with a second measure
space (X,S, ν).

INTEGRALS OF NON­NEGATIVE SIMPLE FUNCTIONS.

Definition. Let ϕ : X → [0,+∞) be a non­negative measurable simple function.
If ϕ =

∑m
k=1 κkχEk

is the standard representation of ϕ, we define∫
X ϕdµ =

∑m
k=1 κkµ(Ek).

We say that
∫
X ϕdµ is the integral of ϕ over X with respect to µ or, shortly, the μ­integral of ϕ.

Sometimes we want to see the independent variable in the integral and we write
∫
X ϕ(x) dµ(x).

If there is no danger of confusion, we shall simply say integral instead of µ­integral.
In the definition of

∫
X ϕdµwe observe that if one of the values κk of ϕ is equal to 0, then, even

if the corresponding setEk has infinite measure, the product κkµ(Ek) is equal to 0. Therefore, the
set where ϕ = 0 does not matter for the calculation of the integral of ϕ.

Example.We consider the measure space (X,P(X), δx0) for some x0 ∈ X . Every simple func­
tion ϕ : X → [0,+∞) is measurable, and let ϕ =

∑m
k=1 κkχEk

be the standard representation of
ϕ. Then x0 belongs to exactly oneEk, say Ek0 . Now, δx0(Ek0) = 1, and δx0(Ek) = 0 for k 6= k0.
Also, χEk0

(x0) = 1, and χEk
(x0) = 0 for k 6= k0. Hence,∫

X ϕdδx0 =
∑m

k=1 κkδx0(Ek) = κk0 =
∑m

k=1 κkχEk
(x0) = ϕ(x0).

Proposition 3.1. Let ϕ =
∑n

j=1 λjχFj , where 0 ≤ λj < +∞ for all j and the sets Fj ∈ S are
pairwise disjoint. Then

∫
X ϕdµ =

∑n
j=1 λjµ(Fj).

Proof. The representation ϕ =
∑n

j=1 λjχFj in the statement may not be the standard represen­
tation of the simple function ϕ. In fact, the numbers λj are not assumed different, and it is not
assumed either that the sets Fj are non­empty or that they coverX .
(a) If all Fj are empty, then χFj = 0 on X for all j, and we get ϕ = 0 = 0χX as the standard
representation of ϕ. Therefore∫

X ϕdµ = 0µ(X) = 0 =
∑n

j=1 λjµ(Fj),

since µ(Fj) = 0 for all j.
(b) If at least oneFj is non­empty, we rearrange so thatF1 6= ∅, . . . , Fl 6= ∅, Fl+1 = ∅, . . . , Fn = ∅.
(We may have l = n.) Then

ϕ =
∑l

j=1 λjχFj ,
∑n

j=1 λjµ(Fj) =
∑l

j=1 λjµ(Fj),
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and the equality to be proved becomes
∫
X ϕdµ =

∑l
j=1 λjµ(Fj).

If the Fj do not cover X , we introduce the non­empty set Fl+1 = (F1 ∪ · · · ∪ Fl)
c and the value

λl+1 = 0. We can then write

ϕ =
∑l+1

j=1 λjχFj ,
∑l

j=1 λjµ(Fj) =
∑l+1

j=1 λjµ(Fj),

and the equality to be proved becomes
∫
X ϕdµ =

∑l+1
j=1 λjµ(Fj).

In any case, using the symbol k for l or l + 1, we have to prove that, if ϕ =
∑k

j=1 λjχFj , where
all Fj ∈ S are non­empty, pairwise disjoint and coverX , then

∫
X ϕdµ =

∑k
j=1 λjµ(Fj).

It is clear that λ1, . . . , λk are all the values of ϕ on X , perhaps with repetitions. We rearrange in
groups, so that

λ1 = · · · = λk1 = κ1,

λk1+1 = · · · = λk1+k2 = κ2,

. . .

λk1+···+km−1+1 = · · · = λk1+···+km = κm

are the different values of ϕ on X (and, of course, k1 + · · · + km = k). For every i = 1, . . . ,m
we define

Ei =
⋃k1+···+ki

j=k1+···+ki−1+1 Fj = {x ∈ X |ϕ(x) = κi},

and then ϕ =
∑m

i=1 κiχEi is the standard representation of ϕ.
By the definition of

∫
X ϕdµ, we get∫

X ϕdµ =
∑m

i=1 κiµ(Ei) =
∑m

i=1 κi
(∑k1+···+ki

j=k1+···+ki−1+1 µ(Fj)
)

=
∑m

i=1

(∑k1+···+ki
j=k1+···+ki−1+1 λjµ(Fj)

)
=

∑k
j=1 λjµ(Fj),

and the proof is complete.

Proposition 3.2. (i) If ϕ, ψ : X → [0,+∞) are measurable simple functions and 0 ≤ λ < +∞,
then

∫
X(ϕ+ ψ) dµ =

∫
X ϕdµ+

∫
X ψ dµ and

∫
X λϕdµ = λ

∫
X ϕdµ.

(ii) If µ, ν are measures and ϕ : X → [0,+∞) is a measurable simple function and 0 ≤ λ < +∞,
then

∫
X ϕd(µ+ ν) =

∫
X ϕdµ+

∫
X ϕdν and

∫
X ϕd(λµ) = λ

∫
X ϕdµ.

Proof. (i) If λ = 0, then λϕ = 0 = 0χX is the standard representation of λϕ, and so∫
X λϕdµ = 0µ(X) = 0 = 0

∫
X ϕdµ = λ

∫
X ϕdµ.

Now let 0 < λ < +∞. If ϕ =
∑m

j=1 κjχEj is the standard representation of ϕ, then λϕ =∑m
j=1 λκjχEj is the standard representation of λϕ. Hence,∫

X λϕdµ =
∑m

j=1 λκjµ(Ej) = λ
∑m

j=1 κjµ(Ej) = λ
∫
X ϕdµ.

Now, let ϕ =
∑m

j=1 κjχEj and ψ =
∑n

i=1 λiχFi be the standard representations of ϕ and ψ. It is
trivial to see that

X =
⋃

1≤j≤m,1≤i≤n(Ej ∩ Fi)

and that the sets Ej ∩ Fi ∈ S are pairwise disjoint. It is also clear that ϕ+ ψ is constant κj + λi
on each Ej ∩ Fi, and so

ϕ+ ψ =
∑

1≤j≤m,1≤i≤n(κj + λi)χEj∩Fi .
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Proposition 3.1 implies∫
X(ϕ+ ψ) dµ =

∑
1≤j≤m,1≤i≤n(κj + λi)µ(Ej ∩ Fi)

=
∑

1≤j≤m,1≤i≤n κjµ(Ej ∩ Fi) +
∑

1≤j≤m,1≤i≤n λiµ(Ej ∩ Fi)

=
∑m

j=1 κj
(∑n

i=1 µ(Ej ∩ Fi)
)
+
∑n

i=1 λi
(∑m

j=1 µ(Ej ∩ Fi)
)

=
∑m

j=1 κjµ(Ej) +
∑n

i=1 λiµ(Fi) =
∫
X ϕdµ+

∫
X ψ dµ,

(ii) Let ϕ =
∑m

j=1 κjχEj be the standard representation of ϕ. Then∫
X ϕd(µ+ ν) =

∑m
j=1 κj(µ+ ν)(Ej) =

∑m
j=1 κj(µ(Ej) + ν(Ej))

=
∑m

j=1 κjµ(Ej) +
∑m

j=1 κjν(Ej) =
∫
X ϕdµ+

∫
X ϕdν.

Also,∫
X ϕd(λµ) =

∑m
j=1 κj(λµ)(Ej) =

∑m
j=1 κjλµ(Ej) = λ

∑m
j=1 κjµ(Ej) = λ

∫
X ϕdµ

and the proof is complete.

Proposition 3.3. (i) If ϕ, ψ : X → [0,+∞) are measurable simple functions and if ϕ ≤ ψ on X ,
then

∫
X ϕdµ ≤

∫
X ψ dµ.

(ii) If µ, ν are measures so that µ ≤ ν and ϕ : X → [0,+∞) is a measurable simple function,
then

∫
X ϕdµ ≤

∫
X ϕdν.

Proof. (i) Let ϕ =
∑m

j=1 κjχEj and ψ =
∑n

i=1 λiχFi be the standard representations of ϕ and ψ.
Whenever Ej ∩ Fi 6= ∅, we take any x ∈ Ej ∩ Fi, and we find

κj = ϕ(x) ≤ ψ(x) = λi,

and so κjµ(Ej ∩ Fi) ≤ λiµ(Ej ∩ Fi). The same is obviously true even when Ej ∩ Fi = ∅.
Therefore, ∫

X ϕdµ =
∑m

j=1 κjµ(Ej) =
∑

1≤j≤m,1≤i≤n κjµ(Ej ∩ Fi)

≤
∑

1≤j≤m,1≤i≤n λiµ(Ej ∩ Fi) =
∑n

i=1 λiµ(Fi) =
∫
X ψ dµ.

(ii) Let ϕ =
∑m

j=1 κjχEj be the standard representation of ϕ. Then∫
X ϕdµ =

∑m
j=1 κjµ(Ej) ≤

∑m
j=1 κjν(Ej) =

∫
X ϕdν,

since µ(Ej) ≤ ν(Ej) and κj ≥ 0 for all j.

Proposition 3.4. Letϕ : X → [0,+∞) be ameasurable simple function and (An) be an increasing
sequence of measurable sets so that

⋃+∞
n=1An = X . Then limn→+∞

∫
X ϕχAn dµ =

∫
X ϕdµ.

Proof. Let ϕ =
∑m

j=1 κjχEj be the standard representation of ϕ. Then we have

ϕχAn =
∑m

j=1 κjχEjχAn =
∑m

j=1 κjχEj∩An ,

and Proposition 3.1 implies

limn→+∞
∫
X ϕχAn dµ = limn→+∞

∑m
j=1 κjµ(Ej ∩An) =

∑m
j=1 κjµ(Ej) =

∫
X ϕdµ,

since (Ej ∩An) is increasing,
⋃+∞

n=1(Ej ∩An) = Ej , and µ is continuous from below.

Proposition 3.5. Let ϕ, ϕ1, ϕ2, . . . : X → [0,+∞) be measurable simple functions so that the
sequence (ϕn) is increasing on X .
(i) If limn→+∞ ϕn ≤ ϕ on X , then limn→+∞

∫
X ϕn dµ ≤

∫
X ϕdµ.

(ii) If ϕ ≤ limn→+∞ ϕn on X , then
∫
X ϕdµ ≤ limn→+∞

∫
X ϕn dµ.
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Proof. By Proposition 3.3, the sequence
( ∫

X ϕn dµ
)
is increasing, and so limn→+∞

∫
X ϕn dµ

exists in [0,+∞].
(i) Proposition 3.3 implies

∫
X ϕn dµ ≤

∫
X ϕdµ for all n, and so limn→+∞

∫
X ϕn dµ ≤

∫
X ϕdµ.

(ii) We consider an arbitrary α ∈ [0, 1), and we define

An = {x ∈ X |αϕ(x) ≤ ϕn(x)} ∈ S.

It is easy to see that (An) is increasing and
⋃+∞

n=1An = X . Now, we have that αϕχAn ≤ ϕn on
X , and Propositions 3.2, 3.3 and 3.4 imply

α
∫
X ϕdµ =

∫
X αϕdµ = limn→+∞

∫
X αϕχAn dµ ≤ limn→+∞

∫
X ϕn dµ.

From this we get
∫
X ϕdµ ≤ limn→+∞

∫
X ϕn dµ by taking the limit as α→ 1−,

Proposition 3.6. Let ϕ1, ψ1, ϕ2, ψ2 . . . : X → [0,+∞) be measurable simple functions so that
the sequences (ϕn) and (ψn) are increasing on X . If limn→+∞ ϕn = limn→+∞ ψn on X , then
limn→+∞

∫
X ϕn dµ = limn→+∞

∫
X ψn dµ.

Proof. For each k we have

ψk ≤ limn→+∞ ψn = limn→+∞ ϕn

on X . Now, Proposition 3.5 implies∫
X ψk dµ ≤ limn→+∞

∫
X ϕn dµ.

Taking the limit as k → +∞, we get limn→+∞
∫
X ψn dµ ≤ limn→+∞

∫
X ϕn dµ.

The reverse inequality is proved symmetrically.

Proposition 3.7. Let ϕ : X → [0,+∞) be a measurable simple function. Then
∫
X ϕdµ = 0 if

and only if ϕ = 0 a.e. on X .

Proof. If ϕ =
∑m

j=1 κjχEj is the standard representation of ϕ, then
∫
X ϕdµ =

∑m
k=1 κkµ(Ek).

Hence,
∫
X ϕdµ = 0 if and only if µ(Ek) = 0 for all k for which κk > 0.

Now, since ⋃
k:κk>0Ek = {x ∈ X |ϕ(x) > 0},

we get ∑
k:κk>0 µ(Ek) = µ({x ∈ X |ϕ(x) > 0}).

Thus,
∫
X ϕdµ = 0 if and only if µ({x ∈ X |ϕ(x) > 0}) = 0 if and only if ϕ = 0 a.e. on X .

INTEGRALS OF NON­NEGATIVE FUNCTIONS.

In this subsection we shall take for granted the notion of the integral
∫
X ϕdµ for measurable simple

functions ϕ : X → [0,+∞) and also all the relevant properties which we saw in the previous
subsection.

Definition. Let f : X → [0,+∞] be a measurable function. We define the integral of f over X
with respect to µ or, shortly, the μ­integral of f by∫

X f dµ = limn→+∞
∫
X ϕn dµ,

where (ϕn) is any increasing sequence of non­negative measurable simple functions on X such
that limn→+∞ ϕn = f on X .
We say that f is integrable over X with respect to µ or μ­integrable over X if

∫
X f dµ is finite,

i.e.
∫
X f dµ < +∞.

We may use the symbol
∫
X f(x) dµ(x) if we want to see the independent variable in the integral.
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Proposition 3.6 guarantees that
∫
X f dµ is well defined and Proposition 2.27 implies the exis­

tence of at least one sequence (ϕn) as in the definition.
If there is no danger of confusion, we shall simply say integral and integrable instead of µ­

integral and µ­integrable.

Example.We consider the measure space (X,P(X), δx0) for some x0 ∈ X . Every function
f : X → [0,+∞] is measurable, and let (ϕn) be any increasing sequence of non­negative simple
functions on X such that limn→+∞ ϕn = f on X . We have shown that

∫
X ϕn dδx0 = ϕn(x0) for

every n, and we get ∫
X f dδx0 = f(x0)

by taking the limit as n→ +∞.

Proposition 3.8. (i) Let f, g : X → [0,+∞] be measurable functions and let λ ∈ [0,+∞). Then∫
X(f + g) dµ =

∫
X f dµ+

∫
X g dµ and

∫
X λf dµ = λ

∫
X f dµ.

(ii) If µ, ν are measures and f : X → [0,+∞] is a measurable function and 0 ≤ λ < +∞, then∫
X f d(µ+ ν) =

∫
X f dµ+

∫
X f dν and

∫
X f d(λµ) = λ

∫
X f dµ.

Proof. We consider increasing sequences (ϕn) and (ψn) of non­negative measurable simple func­
tions on X so that limn→+∞ ϕn = f and limn→+∞ ψn = g on X .
(i) Now, (ϕn + ψn) and (λϕn) are increasing sequences of non­negative measurable simple func­
tions on X such that limn→+∞(ϕn + ψn) = f + g and limn→+∞ λϕn = λf on X .
We know that∫

X(ϕn + ψn) dµ =
∫
X ϕn dµ+

∫
X ψn dµ,

∫
X λϕn dµ = λ

∫
X ϕn dµ

for all n. These imply
∫
X(f + g) dµ =

∫
X f dµ+

∫
X g dµ and

∫
X λf dµ = λ

∫
X f dµ, by taking

the limit as n→ +∞.
(ii) We have that∫

X ϕn d(µ+ ν) =
∫
X ϕn dµ+

∫
X ϕn dν,

∫
X ϕn d(λµ) = λ

∫
X ϕn dµ

for all n. These imply
∫
X f d(µ + ν) =

∫
X f dµ +

∫
X f dν and

∫
X f d(λµ) = λ

∫
X f dµ , by

taking the limit as n→ +∞.

Proposition 3.9. (i) Let f, g : X → [0,+∞] be measurable functions such that f ≤ g onX . Then∫
X f dµ ≤

∫
X g dµ.

(ii) If µ, ν are measures so that µ ≤ ν and f : X → [0,+∞] is a measurable function, then∫
X f dµ ≤

∫
X f dν.

Proof. We consider increasing sequences (ϕn) and (ψn) of non­negative measurable simple func­
tions on X so that limn→+∞ ϕn = f and limn→+∞ ψn = g on X .
(i) For every k we have that ϕk ≤ f ≤ g = limn→+∞ ψn on X , and Proposition 3.5 implies∫

X ϕk dµ ≤ limn→+∞
∫
X ψn dµ =

∫
X g dµ.

Taking the limit as k → +∞, we conclude that
∫
X f dµ ≤

∫
X g dµ.

(ii) We have that ∫
X ϕn dµ ≤

∫
X ϕn dν

for all n, and, taking the limit as n→ +∞, we find
∫
X f dµ ≤

∫
X f dν.

Proposition 3.10. Let f : X → [0,+∞] be measurable. Then
∫
X f dµ = 0 if and only if f = 0

a.e. on X .

87



Proof. We take an increasing sequence (ϕn) of non­negative measurable simple functions on X
so that limn→+∞ ϕn = f on X , and then limn→+∞

∫
X ϕn dµ =

∫
X f dµ.

Let
∫
X f dµ = 0. Since the sequence

( ∫
X ϕn dµ

)
of non­negative numbers is increasing, we have

that
∫
X ϕn dµ = 0 for all n. Then ϕn = 0 a.e. on X for all n, and so f = 0 a.e. on X .

Conversely, let f = 0 a.e. on X . For every n we have 0 ≤ ϕn ≤ f on X , and so ϕn = 0 a.e. on
X . Then

∫
X ϕn dµ = 0 for all n, and so

∫
X f dµ = 0.

Proposition 3.11. Let f : X → [0,+∞] be integrable. Then
(i) f(x) < +∞ for a.e. x ∈ X ,
(ii) the set {x ∈ X | f(x) > 0} is of σ­finite measure.

Proof. (i) We consider the set B = {x ∈ X | f(x) = +∞} ∈ S and any r ∈ (0,+∞).
Now, we have that rχB ≤ f on X , and Proposition 3.9 implies

rµ(B) =
∫
X rχB dµ ≤

∫
X f dµ < +∞.

This implies µ(B) ≤ 1
r

∫
X f dµ, and, taking the limit as r → +∞, we find µ(B) = 0.

(ii) We consider the sets A = {x ∈ X | f(x) 6= 0} and Aϵ = {x ∈ X | |f(x)| ≥ ϵ} for ϵ > 0.
Then ϵχAϵ ≤ f on X , and exactly as before, we get

ϵµ(Aϵ) =
∫
X ϵχAϵ dµ ≤

∫
X f dµ < +∞.

Thus, µ(Aϵ) < +∞ for all ϵ > 0. SinceA =
⋃+∞

n=1A1/n, we get thatA is of σ­finite measure.

Proposition 3.12. Let f, g : X → [0,+∞] be measurable and f = g a.e. on X . Then
(i)

∫
X g dµ =

∫
X f dµ,

(ii) if f is integrable, then g is integrable.

Proof. (i) We consider the set A = {x ∈ X | f(x) = g(x)} ∈ S , and then µ(Ac) = 0.
We have that fχAc = 0 a.e. on X , and Propositions 3.8 and 3.10 imply∫

X f dµ =
∫
X(fχA + fχAc) dµ =

∫
X fχA dµ+

∫
X fχAc dµ =

∫
X fχA dµ.

Similarly, we get
∫
X g dµ =

∫
X gχA dµ.

Now, since fχA = gχA on X , we find
∫
X f dµ =

∫
X g dµ.

(ii) If f is integrable, then
∫
X f dµ < +∞. Now, (i) gives

∫
X g dµ < +∞, and g is integrable.

Exercises.

3.1.1. Let f : X → [0,+∞] be measurable. Let ∆ = {E1, . . . , El}, where l ∈ N and the non­
empty sets E1, . . . , El ∈ S are pairwise disjoint and cover X . Such a ∆ is called S­partition of
X . We define S(f,∆) =

∑l
j=1mjµ(Ej), wheremj = inf{f(x) |x ∈ Ej}.

Prove that
∫
X f dµ = sup{S(f,∆) |∆ is a S­partition of X}.

INTEGRALS OF EXTENDED­REAL VALUED FUNCTIONS.

Now we shall take for granted the notion of the integral
∫
X f dµ for measurable f : X → [0,+∞]

and also all the relevant properties which we saw in the two previous subsections.

Definition. Let f : X → R be a measurable function and f+, f− : X → [0,+∞] be the non­
negative and non­positive parts of f . If at least one of

∫
X f+ dµ and

∫
X f− dµ is finite, we define∫

X f dµ =
∫
X f+ dµ−

∫
X f− dµ.

Then
∫
X f dµ is called the integral of f over X with respect to µ or, simply, the μ­integral of f .

We say that f is integrable over X with respect to µ or μ­integrable over X if
∫
X f dµ is finite.

As in the case of non­negative functions, we may write
∫
X f(x) dµ(x) if we want to see the inde­

pendent variable in the integral.
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If there is no danger of confusion, we shall say integral and integrable instead of µ­integral
and µ­integrable.

We note that, if
∫
X f+ dµ =

∫
X f− dµ = +∞, then

∫
X f dµ is not defined. On the other

hand, if
∫
X f+ dµ = +∞ and

∫
X f− dµ < +∞, then

∫
X f dµ = +∞. Also, if

∫
X f+ dµ < +∞

and
∫
X f− dµ = +∞, then

∫
X f dµ = −∞. Finally, if

∫
X f+ dµ < +∞ and

∫
X f− dµ < +∞,

then
∫
X f dµ is a real number and so f is integrable.

Example.We consider the measure space (X,P(X), δx0) for some x0 ∈ X . Then every function
f : X → R is measurable.
We know that

∫
X f+ dδx0 = f+(x0) and

∫
X f− dδx0 = f−(x0). Since at least one of f+(x0) and

f−(x0) equals 0, we have that
∫
X f dδx0 is defined. Subtracting the two equalities, we get∫

X f dδx0 = f(x0).

Thus, integration with respect to the Dirac measure at x0 coincides with the so­called point eval­
uation at x0.

Proposition 3.13. Let f : X → R be measurable. Then f is integrable if and only if f+ and f−
are integrable if and only if |f | is integrable.

Proof. The first equivalence is clear from the definition. The second equivalence is due to Propo­
sition 3.8 and the equality f+ + f− = |f | on X .

Proposition 3.14. Let f : X → R be integrable. Then
(i) f(x) ∈ R for a.e. x ∈ X ,
(ii) the set {x ∈ X | f(x) 6= 0} is of σ­finite measure.

Proof. Since the integrability of f implies the integrability of |f |, the result is immediate by ap­
plying Proposition 3.11 to |f |.

Proposition 3.15. Let f, g : X → R be measurable and f = g a.e. on X . Then
(i) if

∫
X f dµ is defined, then

∫
X g dµ is defined and

∫
X g dµ =

∫
X f dµ,

(ii) if f is integrable, then g is integrable.

Proof. From f = g a.e. on X we get f+ = g+ a.e. on X and f− = g− a.e. on X . Hence,∫
X f+ dµ =

∫
X g+ dµ,

∫
X f− dµ =

∫
X g− dµ.

(i) Now, let
∫
X f dµ be defined. Then either

∫
X f+ dµ is finite or

∫
X f− dµ is finite, and so either∫

X g+ dµ is finite or
∫
X g− dµ is finite, and so

∫
X g dµ is defined. Also,∫

X f dµ =
∫
X f+ dµ−

∫
X f− dµ =

∫
X g+ dµ−

∫
X g− dµ =

∫
X g dµ.

(ii) If f is integrable, then
∫
X f dµ is a real number. From (i) we have that

∫
X g dµ is also a real

number, and so g is integrable.

Proposition 3.16. Let f, g : X → R be measurable and let us consider any measurable definition
of f + g. Then
(i) if

∫
X f dµ,

∫
X g dµ are both defined and they are not opposite infinities, then

∫
X(f + g) dµ is

defined and
∫
X(f + g) dµ =

∫
X f dµ+

∫
X g dµ,

(ii) if f, g are integrable, then f + g is integrable.

Proof. (i) If
∫
X f dµ,

∫
X g dµ are both defined and they are not opposite infinities, then either∫

X f− dµ < +∞,
∫
X g− dµ < +∞ or

∫
X f+ dµ < +∞,

∫
X g+ dµ < +∞.

Let
∫
X f+ dµ < +∞ and

∫
X g+ dµ < +∞.
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Proposition 3.11 implies that, if A = {x ∈ X | f(x) 6= +∞, g(x) 6= +∞}, then µ(Ac) = 0.
We consider F = fχA and G = gχA. Then F,G : X → [−∞,+∞) are measurable, and F = f
a.e. on X and G = g a.e. on X . Also, F+ = f+ a.e. on X and G+ = g+ a.e. on X .
The advantage of F,G over f, g is that F (x) +G(x) is defined for every x ∈ X .
We observe that for all measurable definitions of f + g we have F + G = f + g a.e. on X .
Therefore, because of Proposition 3.15, it is enough to prove that

∫
X(F + G) dµ is defined and

that
∫
X(F +G) dµ =

∫
X F dµ+

∫
X Gdµ.

From
F = F+ − F− ≤ F+, G = G+ −G− ≤ G+

on X we get F +G ≤ F+ +G+ on X , and so (F +G)+ ≤ F+ +G+ on X . Hence,∫
X(F +G)+ dµ ≤

∫
X F+ dµ+

∫
X G+ dµ =

∫
X f+ dµ+

∫
X g+ dµ < +∞,

and so
∫
X(F +G) dµ is defined.

We now have

(F +G)+ − (F +G)− = F +G = (F+ +G+)− (F− +G−)

or, equivalently,
(F +G)+ + F− +G− = (F +G)− + F+ +G+.

Hence,∫
X(F +G)+ dµ+

∫
X F− dµ+

∫
X G− dµ =

∫
X(F +G)− dµ+

∫
X F+ dµ+

∫
X G+ dµ.

Because of the finiteness of the integrals
∫
X(F +G)+ dµ,

∫
X F+ dµ,

∫
X G+ dµ, we get∫

X(F +G) dµ =
∫
X(F +G)+ dµ−

∫
X(F +G)− dµ

=
∫
X F+ dµ+

∫
X G+ dµ−

∫
X F− dµ−

∫
X G− dµ =

∫
X F dµ+

∫
X Gdµ.

If
∫
X f− dµ < +∞ and

∫
X g− dµ < +∞, then the proof is similar.

(ii) Let f, g be integrable. For every measurable definition of f + g we have |f + g| ≤ |f | + |g|
on X , and so ∫

X |f + g| dµ ≤
∫
X |f | dµ+

∫
X |g| dµ < +∞.

Hence, f + g is integrable

Proposition 3.17. Let f : X → R be measurable and µ, ν be two measures. Then
(i) if

∫
X f dµ,

∫
X f dν are both defined and they are not opposite infinities, then

∫
X f d(µ+ ν) is

defined and
∫
X f d(µ+ ν) =

∫
X f dµ+

∫
X f dν,

(ii) if f is µ­integrable and ν­integrable, then f is (µ+ ν)­integrable.

Proof. (i) If
∫
X f dµ,

∫
X f dν are both defined and they are not opposite infinities, then either∫

X f− dµ < +∞,
∫
X f− dν < +∞ or

∫
X f+ dµ < +∞,

∫
X f+ dν < +∞.

Let
∫
X f+ dµ < +∞ and

∫
X f+ dν < +∞.

Then ∫
X f+ d(µ+ ν) =

∫
X f+ dµ+

∫
X f+ dν < +∞,

and so
∫
X f d(µ+ ν) is defined. We also have that∫

X f− d(µ+ ν) =
∫
X f− dµ+

∫
X f− dν,

and, subtracting these two equalities, we get
∫
X f d(µ+ ν) =

∫
X f dµ+

∫
X f dν.

If
∫
X f− dµ < +∞ and

∫
X f− dν < +∞, then the proof is similar.

(ii) Let f be µ­integrable and ν­integrable. Then∫
X |f | d(µ+ ν) =

∫
X |f | dµ+

∫
X |f | dν < +∞,

and so f is (µ+ ν)­integrable.
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Proposition 3.18. Let f : X → R be measurable and λ ∈ R. Then
(i) if

∫
X f dµ is defined, then

∫
X λf dµ is defined and

∫
X λf dµ = λ

∫
X f dµ,

(ii) if f is integrable, then λf is integrable.

Proof. (i) Let
∫
X f dµ be defined. Then at least one of

∫
X f+ dµ and

∫
X f− dµ is finite.

If λ > 0, then (λf)+ = λf+ and (λf)− = λf−. Therefore, at least one of∫
X(λf)+ dµ = λ

∫
X f+ dµ,

∫
X(λf)− dµ = λ

∫
X f− dµ

is finite. Hence,
∫
X λf dµ is defined, and∫

X λf dµ =
∫
X(λf)+ dµ−

∫
X(λf)− dµ = λ

( ∫
X f+ dµ−

∫
X f− dµ

)
= λ

∫
X f dµ.

If λ < 0, then (λf)+ = −λf− and (λf)− = −λf+, and the previous argument can be repeated
with no essential change.
If λ = 0, then the result is trivial.
(ii) If f is integrable, then

∫
X |λf | dµ = |λ|

∫
X |f | dµ < +∞, and so λf is integrable.

Proposition 3.19. Let f : X → R be measurable and λ ∈ [0,+∞).
(i) If

∫
X f dµ is defined, then

∫
X f d(λµ) is defined and

∫
X f d(λµ) = λ

∫
X f dµ.

(ii) If f is µ­integrable, then f is λµ­integrable.

Proof. (i) Either
∫
X f− dµ < +∞ or

∫
X f+ dµ < +∞.

Let
∫
X f+ dµ < +∞.

Then ∫
X f+ d(λµ) = λ

∫
X f+ dµ < +∞,

and so
∫
X f d(λµ) is defined. We also have that∫

X f− d(λµ) = λ
∫
X f− dµ,

and subtracting these two equalities we get the equality in (i).
If
∫
X f− dµ < +∞, then the proof is similar.

(ii) If f is µ­integrable, then
∫
X |f | d(λµ) = λ

∫
X |f | dµ < +∞, and so f is λµ­integrable.

Proposition 3.20. Let f, g : X → R be measurable. If
∫
X f dµ and

∫
X g dµ are defined and if

f ≤ g on X , then
∫
X f dµ ≤

∫
X g dµ.

Proof. If
∫
X f dµ = −∞ or

∫
X g dµ = +∞, then the inequality

∫
X f dµ ≤

∫
X g dµ is obviously

true. So we assume that
∫
X f− dµ < +∞ and

∫
X g+ dµ < +∞.

From f ≤ g = g+ − g− ≤ g+ we get f+ ≤ g+ on X . Similarly, we get g− ≤ f− on X .
Therefore, ∫

X f+ dµ ≤
∫
X g+ dµ < +∞,

∫
X g− dµ ≤

∫
X f− dµ < +∞.

So we can subtract the inequalities
∫
X f+ dµ ≤

∫
X g+ dµ and

∫
X g− dµ ≤

∫
X f− dµ, and then

we get
∫
X f dµ ≤

∫
X g dµ.

Proposition 3.21. Let f : X → R be measurable. If
∫
X f dµ is defined, then

∣∣ ∫
X f dµ

∣∣ ≤∫
X |f | dµ.

Proof. We have that∣∣ ∫
X f dµ

∣∣ = ∣∣ ∫
X f+ dµ−

∫
X f− dµ

∣∣ ≤ ∫
X f+ dµ+

∫
X f− dµ =

∫
X(f+ + f−) dµ =

∫
X |f | dµ

since
∫
X f+ dµ ≥ 0 and

∫
X f− dµ ≥ 0.

Exercises.

3.1.2. If f, g, h : X → R are measurable, g, h are integrable and g ≤ f ≤ h a.e. on X , prove that
f is also integrable.
Hint. Prove that f− ≤ g− a.e. on X and f+ ≤ h+ a.e. on X .
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INTEGRALS OF EXTENDED­COMPLEX VALUED FUNCTIONS.

Now we shall take for granted the notion of the integral
∫
X f dµ for measurable f : X → R and

also all the relevant properties which we saw in the three previous subsections.

Definition. Let f : X → C be measurable. Then |f | : X → [0,+∞] is measurable, and we say
that f is integrable overX with respect to µ or, simply, μ­integrable overX , if

∫
X |f | dµ < +∞.

If there is no danger of confusion, we shall say integrable instead of µ­integrable.

Proposition 3.22. Let f : X → C be integrable. Then
(i) f(x) ∈ C for a.e. x ∈ X ,
(ii) the set {x ∈ X | f(x) 6= 0} is of σ­finite measure.

Proof. Immediate application of Proposition 3.11 to |f |.

Let f : X → C be integrable. By Proposition 3.22, the set Df , defined by

Df = {x ∈ X | f(x) ∈ C} = f−1(C) ∈ S

has a null complement. Thus, the function fχDf
is measurable, and

fχDf
= f a.e. on X.

The advantage of fχDf
over f is that fχDf

is complex valued, i.e. fχDf
: X → C. Therefore,

the real and imaginary parts of fχDf
, namely Re(fχDf

) : X → R and Im(fχDf
) : X → R, are

defined on X . We also have that

|Re(fχDf
)| ≤ |fχDf

| ≤ |f |, | Im(fχDf
)| ≤ |fχDf

| ≤ |f |

on X . Hence,∫
X |Re(fχDf

)| dµ ≤
∫
X |f | dµ < +∞,

∫
X | Im(fχDf

)| dµ ≤
∫
X |f | dµ < +∞.

Thus, Re(fχDf
) and Im(fχDf

) are integrable real valued functions, and so
∫
X Re(fχDf

) dµ and∫
X Im(fχDf

) dµ are defined and they are real numbers.

Definition. Let f : X → C be integrable and Df = {x ∈ X | f(x) ∈ C}. We define∫
X f dµ =

∫
X Re(fχDf

) dµ+ i
∫
X Im(fχDf

) dµ,

and we call it the integral of f overX with respect to µ or the μ­integral of f overX . If we want
to see the independent variable in the integral we may write

∫
X f(x) dµ(x).

If there is no danger of confusion, we shall say integral instead of µ­integral.
We shall make a few comments regarding this definition.

(i) The integral of an extended­complex valued function is defined only if the function is integrable,
and then the value of the integral is a complex number. On the contrary, the integral of an extended­
real valued function is defined either when the function is integrable (and then the value of the
integral is a real number) or in certain other cases (and then the value of the integral is either +∞
or −∞).
(ii) We used the function fχDf

, which is equal to f on Df and equal to 0 on Dc
f , simply because

we need complex values in order to be able to consider their real and imaginary parts. We may
allow more freedom and use a function F which is equal to f onDf and equal to h onDc

f , where
h is an arbitrary SeDc

f ­measurable complex valued function onD
c
f . Then we have that F = fχDf

a.e. onX , and so Re(F ) = Re(fχDf
) and Im(F ) = Im(fχDf

) a.e. onX . Now, Proposition 3.15
implies ∫

X Re(F ) dµ =
∫
X Re(fχDf

) dµ,
∫
X Im(F ) dµ =

∫
X Im(fχDf

) dµ.
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Therefore, there is no difference between the possible definition∫
X f dµ =

∫
X Re(F ) dµ+ i

∫
X Im(F ) dµ

and the one we have given. Of course, the function 0 onDc
f is the simplest of all possible choices

for h.
(iii) If f : X → C is complex valued on X , then Df = X , and so the definition of

∫
X f dµ takes

the simpler form: ∫
X f dµ =

∫
X Re(f) dµ+ i

∫
X Im(f) dµ.

In the same case we also have that

Re
( ∫

X f dµ
)
=

∫
X Re(f) dµ, Im

( ∫
X f dµ

)
=

∫
X Im(f) dµ.

Example. Again, we consider the measure space (X,P(X), δx0) for some x0 ∈ X . Then every
function f : X → C is measurable.
We know that

∫
X |f | dδx0 = |f |(x0) = |f(x0)|, and so f is integrable if and only if f(x0) ∈ C.

In this case, we have that x0 ∈ Df , and so∫
X Re(fχDf

) dδx0 = Re(fχDf
)(x0) = Re(f(x0)),∫

X Im(fχDf
) dδx0 = Im(fχDf

)(x0) = Im(f(x0)).

Combining the two equalities, we get ∫
X f dδx0 = f(x0).

We find again that integration with respect to the Dirac measure at x0 coincides with point evalu­
ation at x0.

The next result is obviously helpful and we shall make use of it very often.

Lemma 3.1. If f : X → C is integrable, there is an integrable F : X → C so that F = f a.e. on
X and

∫
X F dµ =

∫
X f dµ.

Proof. We just consider F = fχDf
, where Df = f−1(C).

Proposition 3.23. Let f, g : X → C be measurable and f = g a.e. on X . If f is integrable, then
g is integrable and

∫
X g dµ =

∫
X f dµ.

Proof. Let f = g a.e. on X and f be integrable. Then |f | = |g| a.e. on X , and so g is integrable.
Now, Lemma 3.1 says that there are F,G : X → C so that F = f a.e. onX andG = g a.e. onX
and also ∫

X F dµ =
∫
X f dµ,

∫
X Gdµ =

∫
X g dµ.

From f = g a.e. onX we get that F = G a.e. onX . This implies that Re(F ) = Re(G) a.e. onX
and Im(F ) = Im(G) a.e. on X . Hence,∫

X F dµ =
∫
X Re(F ) dµ+ i

∫
X Im(F ) dµ =

∫
X Re(G) dµ+ i

∫
X Im(G) dµ =

∫
X Gdµ,

and so
∫
X f dµ =

∫
X g dµ.

Proposition 3.24. Let f, g : X → C be integrable and let us consider any measurable definition
of f + g. Then f + g is integrable and

∫
X(f + g) dµ =

∫
X f dµ+

∫
X g dµ.
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Proof. Let f, g be integrable. For every measurable definition of f+g we have |f+g| ≤ |f |+ |g|
on X , and so

∫
X |f + g| dµ ≤

∫
X |f | dµ +

∫
X |g| dµ < +∞. Hence, f + g is integrable, and

so there are integrable F,G : X → C so that F = f a.e. on X and G = g a.e. on X . This
implies that for all measurable definitions of f + g we have F +G = f + g a.e. onX , and so, by
Proposition 3.23, we have∫

X f dµ =
∫
X F dµ,

∫
X g dµ =

∫
X Gdµ,

∫
X(f + g) dµ =

∫
X(F +G) dµ.

Therefore, it is enough to prove that
∫
X(F +G) dµ =

∫
X F dµ+

∫
X Gdµ.

Now, ∫
X Re(F +G) dµ =

∫
X Re(F ) dµ+

∫
X Re(G) dµ,∫

X Im(F +G) dµ =
∫
X Im(F ) dµ+

∫
X Im(G) dµ.

Combining, we get
∫
X(F +G) dµ =

∫
X F dµ+

∫
X Gdµ.

Proposition 3.25. Let f : X → C be µ­integrable and ν­integrable. Then f is (µ+ ν)­integrable
and

∫
X f d(µ+ ν) =

∫
X f dµ+

∫
X f dν.

Proof. If f is µ­integrable and ν­integrable, then
∫
X |f | d(µ+ν) =

∫
X |f | dµ+

∫
X |f | dν < +∞,

and so f is (µ+ ν)­integrable. Then there is a (µ+ ν)­integrable F : X → C so that F = f a.e.
on X . From Proposition 3.23 we get∫

X f dµ =
∫
X F dµ,

∫
X f dν =

∫
X F dν,

∫
X f d(µ+ ν) =

∫
X F d(µ+ ν).

Now, ∫
X Re(F ) d(µ+ ν) =

∫
X Re(F ) dµ+

∫
X Re(F ) dν,∫

X Im(F ) d(µ+ ν) =
∫
X Im(F ) dµ+

∫
X Im(F ) dν.

Then
∫
X F d(µ+ ν) =

∫
X F dµ+

∫
X F dν, and so

∫
X f d(µ+ ν) =

∫
X f dµ+

∫
X f dν.

Proposition 3.26. Let f : X → C be integrable andλ ∈ C. Thenλf is integrable and
∫
X λf dµ =

λ
∫
X f dµ.

Proof. Let f be integrable. Then
∫
X |λf | dµ = |λ|

∫
X |f | dµ < +∞, and so λf is also integrable.

Then there is an integrable F : X → C so that F = f a.e. on X . Then, λF = λf a.e. on X , and
Proposition 3.23 implies ∫

X λf dµ =
∫
X λF dµ,

∫
X f dµ =

∫
X F dµ.

From Re(λF ) = Re(λ)Re(F ) − Im(λ) Im(F ) and Im(λF ) = Re(λ) Im(F ) + Im(λ)Re(F ) we
get ∫

X Re(λF ) dµ = Re(λ)
∫
X Re(F ) dµ− Im(λ)

∫
X Im(F ) dµ,∫

X Im(λF ) dµ = Re(λ)
∫
X Im(F ) dµ+ Im(λ)

∫
X Re(F ) dµ.

From these two equalities we easily get∫
X λF dµ = λ

∫
X Re(F ) dµ+ iλ

∫
X Im(F ) dµ = λ

∫
X F dµ.

Hence,
∫
X λf dµ = λ

∫
X f dµ.

Proposition 3.27. Let f : X → C be µ­integrable and λ ∈ [0,+∞). Then f is λµ­integrable and∫
X f d(λµ) = λ

∫
X f dµ.
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Proof. Let f be µ­integrable. Then
∫
X |f | d(λµ) = λ

∫
X |f | dµ < +∞, and so f is also λµ­

integrable. Then there is a µ­integrable F : X → C so that F = f µ­a.e. on X . Of course, this
implies that F = f λµ­a.e. on X , and Proposition 3.23 implies∫

X f dµ =
∫
X F dµ,

∫
X f d(λµ) =

∫
X F d(λµ).

Now, ∫
X Re(F ) d(λµ) = λ

∫
X Re(F ) dµ,

∫
X Im(F ) d(λµ) = λ

∫
X Im(F ) dµ.

Hence,
∫
X F d(λµ) = λ

∫
X F dµ, and so

∫
X f d(λµ) = λ

∫
X f dµ.

Proposition 3.28. Let f : X → C be integrable. Then
∣∣ ∫

X f dµ
∣∣ ≤ ∫

X |f | dµ.

Proof. There is an integrable F : X → C so that F = f a.e. on X . By Proposition 3.23, it is
enough to prove

∣∣ ∫
X F dµ

∣∣ ≤ ∫
X |F | dµ.

We consider the complex number
λ = sign(

∫
X F dµ),

and we get∣∣ ∫
X F dµ

∣∣ = λ
∫
X F dµ =

∫
X λF dµ = Re

( ∫
X λF dµ

)
=

∫
X Re(λF ) dµ ≤

∫
X |Re(λF )| dµ

≤
∫
X |λF | dµ ≤

∫
X |F | dµ,

since |λ| ≤ 1.

THE LIMIT THEOREMS.

The next five theorems are probably the most important results of integration theory.

Monotone Convergence Theorem (Lebesgue, Levi). Let f, f1, f2, . . . : X → [0,+∞] be mea­
surable so that fn ≤ fn+1 a.e. on X for all n and limn→+∞ fn = f a.e. on X . Then

limn→+∞
∫
X fn dµ =

∫
X f dµ.

Proof. (a) Assume that fn ≤ fn+1 everywhere on X for all n and limn→+∞ fn = f everywhere
on X .
The sequence

( ∫
X fn dµ

)
is increasing and it is bounded above by

∫
X f dµ. Hence, the limit

limn→+∞
∫
X fn dµ exists and limn→+∞

∫
X fn dµ ≤

∫
X f dµ.

Now we consider an increasing sequence (ϕn) of non­negative measurable simple functions onX
so that limn→+∞ ϕn = f on X . Then for each k we have ϕk ≤ f = limn→+∞ fn.
We consider an arbitrary α ∈ [0, 1), and, for any fixed k, we define

An = {x ∈ X |αϕk(x) ≤ fn(x)} ∈ S.

Then (An) is increasing,
⋃+∞

n=1An = X , and αϕkχAn ≤ fn on X . Hence,

α
∫
X ϕk dµ =

∫
X αϕk dµ = limn→+∞

∫
X αϕkχAn dµ ≤ limn→+∞

∫
X fn dµ,

where we used Proposition 3.4 for the second equality. Taking the limit as α→ 1− and then taking
the limit as k → +∞, we conclude that

∫
X f dµ ≤ limn→+∞

∫
X fn dµ, and the proof is complete.

Here is an alternative proof of the last inequality.
For each kwe consider an increasing sequence (ψk,n) of non­negative measurable simple functions
onX so that limn→+∞ ψk,n = fk onX . We define the non­negative measurable simple functions

ϕn = max{ψ1,n, . . . , ψn,n}.

Then we have
ϕn = max{ψ1,n, . . . , ψn,n} ≤ max{f1, . . . , fn} = fn ≤ f
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on X . Also,

ϕn = max{ψ1,n, . . . , ψn,n} ≤ max{ψ1,n+1, . . . , ψn,n+1}
≤ max{ψ1,n+1, . . . , ψn,n+1, ψn+1,n+1} = ϕn+1

on X . Therefore, limn→+∞ ϕn exists, and limn→+∞ ϕn ≤ f on X . Moreover, if k ≤ n, we have

ϕn = max{ψ1,n, . . . , ψn,n} ≥ max{ψ1,n, . . . , ψk,n},

and, taking the limit as n→ +∞, we get

limn→+∞ ϕn ≥ max{f1, . . . , fk} = fk

for every k. Now, taking the limit as k → +∞, we get limn→+∞ ϕn ≥ f on X .
We conclude that (ϕn) is increasing and limn→+∞ ϕn = f on X , and so∫

X f dµ = limn→+∞
∫
X ϕn dµ ≤ limn→+∞

∫
X fn dµ.

(b) In the general case there is some A ∈ S with µ(Ac) = 0 so that fn ≤ fn+1 on A for all n and
limn→+∞ fn = f on A. Then fnχA ≤ fn+1χA onX for all n and limn→+∞ fnχA = fχA onX ,
and so from part (a) we get

limn→+∞
∫
X fnχA dµ =

∫
X fχA dµ.

Since f = fχA a.e. on X and fn = fnχA a.e. on X for every n, Proposition 3.12 finally implies
limn→+∞

∫
X fn dµ =

∫
X f dµ.

Non­negative Series Theorem. Let s, f1, f2, . . . : X → [0,+∞] be measurable and
∑+∞

n=1 fn =
s a.e. on X . Then ∑+∞

n=1

∫
X fn dµ =

∫
X s dµ.

Proof. We consider the partial sums sk = f1 + · · · + fk. Then sk ≤ sk+1 on X for all k and
limk→+∞ sk = s a.e. on X , and so∑+∞

n=1

∫
X fn dµ = limk→+∞

∑k
n=1

∫
X fn dµ = limk→+∞

∫
X sk dµ =

∫
X s dµ

by the Monotone Convergence Theorem.

Fatou’s Lemma. Let f, f1, f2, . . . : X → [0,+∞] be measurable and f = limn→+∞ fn a.e. on
X . Then ∫

X f dµ ≤ limn→+∞
∫
X fn dµ.

Proof. We define gn = infk≥n fk for each n. Then every gn : X → [0,+∞] is measurable, and
we have that gn ≤ fn onX and gn ≤ gn+1 onX for all n and limn→+∞ gn = f a.e. onX . Then∫

X f dµ = limn→+∞
∫
X gn dµ ≤ limn→+∞

∫
X fn dµ

by the Monotone Convergence Theorem.

Dominated Convergence Theorem (Lebesgue). Let f, f1, f2, . . . : X → R or C and g : X →
[0,+∞] be measurable. Let also limn→+∞ fn = f a.e. on X , |fn| ≤ g a.e. on X for all n and∫
X g dµ < +∞. Then all f, fn are integrable and

limn→+∞
∫
X fn dµ =

∫
X f dµ.
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Proof. From |fn| ≤ g a.e. onX , we get
∫
X |fn| dµ ≤

∫
X g dµ < +∞, and so all fn are integrable.

Also, from |fn| ≤ g a.e. on X and limn→+∞ fn = f a.e. on X , we get |f | ≤ g a.e. on X , and so
f is also integrable.
Now, there are integrable F, F1, F2, . . . : X → R or C so that F = f a.e. on X and Fn = fn a.e.
on X for all n. Then ∫

X fn dµ =
∫
X Fn dµ,

∫
X f dµ =

∫
X F dµ,

and so is enough to prove limn→+∞
∫
X Fn dµ =

∫
X F dµ.

We have that |Fn| ≤ g a.e. on X for all n, and limn→+∞ Fn = F a.e. on X .
(a) Let F, Fn : X → R.
Since 0 ≤ g + Fn a.e. on X and 0 ≤ g − Fn a.e. on X for all n, Fatou’s Lemma implies∫

X(g ± F ) dµ ≤ limn→+∞
∫
X(g ± Fn) dµ,

and so ∫
X g dµ±

∫
X F dµ ≤

∫
X g dµ+ limn→+∞(±

∫
X Fn dµ).

Since
∫
X g dµ is finite, we get

±
∫
X F dµ ≤ limn→+∞(±

∫
X Fn dµ).

Therefore,
limn→+∞

∫
X Fn dµ ≤

∫
X F dµ ≤ limn→+∞

∫
X Fn dµ,

and this implies limn→+∞
∫
X Fn dµ =

∫
X F dµ.

(b) Let F, Fn : X → C.
From |Re(Fn)| ≤ |Fn| ≤ g a.e. on X for all n and limn→+∞ Re(Fn) = Re(F ) a.e. on X , and
from part (a) we have that

limn→+∞
∫
X Re(Fn) dµ =

∫
X Re(F ) dµ.

Similarly,
limn→+∞

∫
X Im(Fn) dµ =

∫
X Im(F ) dµ.

Therefore, limn→+∞
∫
X Fn dµ =

∫
X F dµ.

Series Theorem. Let f, f1, f2, . . . : X → R or C be measurable. If
∑+∞

n=1

∫
X |fn| dµ < +∞,

then
(i)

∑+∞
n=1 fn(x) converges for a.e. x ∈ X ,

(ii) if
∑+∞

n=1 fn = s a.e. on X , then∑+∞
n=1

∫
X fn dµ =

∫
X s dµ.

Proof. (i) We define S =
∑+∞

n=1 |fn|. From the Non­negative Series Theorem we have∫
X S dµ =

∑+∞
n=1

∫
X |fn| dµ < +∞.

This implies S(x) < +∞ for a.e. x ∈ X . Therefore, the series
∑+∞

n=1 fn(x) converges absolutely,
and hence converges, for a.e. x ∈ X .
(ii) We consider the partial sums sk = f1 + · · · + fk. Then |sk| ≤ |f1| + · · · + |fk| ≤ S a.e. on
X for all k, and limk→+∞ sk = s a.e. on X . Hence,∑+∞

n=1

∫
X fn dµ = limk→+∞

∑k
n=1

∫
X fn dµ = limk→+∞

∫
X sk dµ =

∫
X s dµ

by the Dominated Convergence Theorem.
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Exercises.

3.1.3. Let f, fn : X → [0,+∞] be measurable with fn ≤ f a.e. onX for all n and limn→+∞ fn =
f a.e. on X . Prove that limn→+∞

∫
X fn dµ =

∫
X f dµ.

Hint. Use Fatou’s Lemma.

3.1.4. Let f, fn : X → [0,+∞] be measurable and limn→+∞ fn = f a.e. on X . If there is
M < +∞ so that

∫
X fn dµ ≤M for infinitely many n, prove that

∫
X f dµ < +∞.

3.1.5. Let f, fn : X → [0,+∞] be measurable so that fn+1 ≤ fn a.e. on X for all n and
limn→+∞ fn = f a.e. on X and

∫
X f1 dµ < +∞. Prove that limn→+∞

∫
X fn dµ =

∫
X f dµ.

Hint. Use the Monotone Convergence Theorem.

3.1.6. Use either Fatou’s Lemma or the Series Theorem to prove the Monotone Convergence The­
orem.

3.1.7. Let µ be σ­finite. Prove that there is f : X → [0,+∞] such that f(x) > 0 for every x ∈ X
and

∫
X f dµ < +∞.

Hint. Consider pairwise disjoint X1, X2, . . . ∈ S which cover X and so that 0 < µ(Xj) < +∞
for all j. Then let f = aj on Xj , where the aj > 0 are chosen appropriately.

3.1.8. Assume that f : X → [0,+∞] is measurable, 0 <
∫
X f dµ < +∞, and 0 < α < +∞.

Prove that the limit I = limn→+∞ n
∫
X log

(
1+

( f
n

)α)
dµ exists, and that: I =

∫
X f dµ, if α = 1,

and I = +∞, if 0 < α < 1, and I = 0, if 1 < α < +∞.
Hint. Consider the case α = 1 first, using the Monotone Convergence Theorem.

3.1.9. Uniform Convergence Theorem.
Let fn : X → R or C be integrable and let limn→+∞ fn = f uniformly on X . If µ(X) < +∞,
prove that f is integrable and that limn→+∞

∫
X fn dµ =

∫
X f dµ.

3.1.10. Bounded Convergence Theorem.
Let f, fn : X → R or C be measurable. If µ(X) < +∞ and there isM < +∞ so that |fn| ≤M
a.e. on X for all n and limn→+∞ fn = f a.e. on X , prove that limn→+∞

∫
X fn dµ =

∫
X f dµ.

3.1.11. Let f, fn : X → R or C be measurable and g : X → [0,+∞] be integrable. If |fn| ≤ g
a.e. on X for all n and limn→+∞ fn = f a.e. on X , prove that limn→+∞

∫
X |fn − f | dµ = 0.

Hint. Prove that |fn − f | ≤ 2g a.e. on X .

3.1.12. Let f, g, fn : X → R be measurable and
∫
X g− dµ < +∞. If g ≤ fn a.e. on X for all n

and f = limn→+∞ fn a.e. on X , prove that
∫
X f dµ ≤ limn→+∞

∫
X fn dµ.

Hint. Prove that fn + g− ≥ 0 a.e. on X .

3.1.13. Let f, fn : X → R or C and g, gn : X → [0,+∞] be all measurable. If |fn| ≤ gn a.e.
on X for all n, if limn→+∞

∫
X gn dµ =

∫
X g dµ < +∞ and if limn→+∞ fn = f a.e. on X and

limn→+∞ gn = g a.e. on X , prove that limn→+∞
∫
X fn dµ =

∫
X f dµ.

Hint. Aplly Fatou’s Lemma to (gn + fn) and to (gn − fn).

3.1.14. Let f, fn : X → R or C be integrable and limn→+∞ fn = f a.e. on X . Prove that
limn→+∞

∫
X |fn − f | dµ = 0 if and only if limn→+∞

∫
X |fn| dµ =

∫
X |f | dµ.

Hint. One direction is trivial. For the other direction, use |fn − f | ≤ |fn| + |f | and the result of
exercise 3.1.13.

3.1.15. Continuity of an integral as a function of a parameter.
Let f : X × (a, b) → R and g : X → [0,+∞] be such that
(i) g is integrable and, for every t ∈ (a, b), f(·, t) is measurable,
(ii) for a.e. x ∈ X , f(x, t) is continuous as a function of t on (a, b),
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(iii) for every t ∈ (a, b), |f(x, t)| ≤ g(x) for a.e. x ∈ X .
Define F (t) =

∫
X f(x, t) dµ(x) for all t ∈ (a, b) and prove that F is continuous on (a, b).

Hint. Assume limn→+∞ tn = t and use the Dominated Convergence Theorem to prove that
limn→+∞ F (tn) = F (t).

3.1.16. Differentiability of an integral as a function of a parameter.
Let f : X × (a, b) → R and g : X → [0,+∞] be such that
(i) g is integrable and, for every t ∈ (a, b), f(·, t) is measurable,
(ii) for at least one t0 ∈ (a, b), f(·, t0) is integrable,
(iii) for a.e. x ∈ X , f(x, t) is differentiable as a function of t on (a, b) and

∣∣∂f
∂t (x, t)

∣∣ ≤ g(x) for
every t ∈ (a, b). Thus, ∂f

∂t : A× (a, b) → R for some A ∈ S with µ(X \A) = 0.
Define F (t) =

∫
X f(x, t) dµ(x) for all t ∈ (a, b) and prove that F is differentiable on (a, b) and

that dF
dt (t) =

∫
X

∂f
∂t (x, t) dµ(x) for all t ∈ (a, b).

Hint. Assume limn→+∞ tn = t and use the Dominated Convergence Theorem to prove that
limn→+∞

F (tn)−F (t)
tn−t =

∫
X

∂f
∂t (x, t) dµ(x).

APPROXIMATION BY SIMPLE FUNCTIONS.

Proposition 3.29. Let f : X → R or C be integrable. Then for every ϵ > 0 there is an integrable
simple function ϕ : X → R or C so that

∫
X |f − ϕ| dµ < ϵ.

Proof. (a) If f : X → [0,+∞] is integrable, there is an increasing sequence (ϕn) of non­negative
measurable simple functions so that limn→+∞ ϕn = f on X and limn→+∞

∫
X ϕn dµ =

∫
X f dµ.

Then for some n we have ∫
X f dµ− ϵ <

∫
X ϕn dµ ≤

∫
X f dµ,

and so ϕn is integrable and ∫
X |f − ϕn| dµ =

∫
X(f − ϕn) dµ < ϵ.

(b) Now, if f : X → R is integrable, then
∫
X f+ dµ < +∞ and

∫
X f− dµ < +∞. By (a) we

have that there are non­negative integrable simple functions χ, ψ so that∫
X |f+ − χ| dµ < ϵ

2 ,
∫
X |f− − ψ| dµ < ϵ

2 .

We consider the integrable simple function ϕ = χ− ψ : X → R, and we get∫
X |f − ϕ| dµ ≤

∫
X |f+ − χ| dµ+

∫
X |f− − ψ| dµ < ϵ.

(c) Finally, let f : X → C be integrable. Then there is an integrable F : X → C so that F = f
a.e. on X . The functions Re(F ), Im(F ) : X → R are both integrable. By (b) we know that there
are real valued integrable simple functions χ, ψ so that∫

X |Re(F )− χ| dµ < ϵ
2 ,

∫
X | Im(F )− ψ| dµ < ϵ

2 .

We consider the integrable simple function ϕ = χ+ iψ : X → C, and we get∫
X |f − ϕ| dµ =

∫
X |F − ϕ| dµ ≤

∫
X |Re(F )− χ| dµ+

∫
X | Im(F )− ψ| dµ < ϵ.

So the proof is complete in all cases.
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INTEGRALS OVER SUBSETS.

Let A ∈ S and f : X → R or C be measurable. In order to define an integral of f over A we
have two natural choices. One choice is to take fχA, which is equal to f on A and equal to 0
on Ac, and consider

∫
X fχA dµ. Another choice is to take the restriction feA of f on A, and

consider
∫
A(feA) d(µeA) with respect to the restricted measure µeA on the restricted σ­algebra

(A,SeA). The following lemma says that the two procedures are equivalent and that they give the
same results.

Lemma 3.2. Let A ∈ S and f : X → R or C be measurable.
(i) If f : X → R and either

∫
X fχA dµ or

∫
A(feA) d(µeA) is defined, then the other is also

defined and
∫
X fχA dµ =

∫
A(feA) d(µeA).

(ii) If f : X → C and either
∫
X |fχA| dµ or

∫
A |feA| d(µeA) is finite, then the other is also finite

and
∫
X fχA dµ =

∫
A(feA) d(µeA).

Proof. (a) We take a non­negative measurable simple function ϕ onX with its standard represen­
tation ϕ =

∑m
j=1 κjχEj .

Then we have ϕχA =
∑m

j=1 κjχEj∩A, with∫
X ϕχA dµ =

∑m
j=1 κjµ(Ej ∩A).

On the other hand, ϕeA =
∑m

j=1 κjχEj∩A has∫
A(ϕeA) d(µeA) =

∑m
j=1 κj(µeA)(Ej ∩A) =

∑m
j=1 κjµ(Ej ∩A).

(b) Now let f : X → [0,+∞] be measurable. We consider an increasing sequence (ϕn) of non­
negative measurable simple functions onX so that limn→+∞ ϕn = f on X .
Then (ϕnχA) is increasing and limn→+∞ ϕnχA = fχA on X . Also, (ϕneA) is increasing and
limn→+∞ ϕneA = feA on A. Now, by part (a) we get∫

X fχA dµ = limn→+∞
∫
X ϕnχA dµ = limn→+∞

∫
A(ϕneA) d(µeA) =

∫
A(feA) d(µeA).

(c) If f : X → R is measurable, then f+χA = (fχA)
+ and f−χA = (fχA)

− on X , and also
(feA)+ = f+eA and (feA)− = f−eA on A. Hence, by part (b) we get∫

X(fχA)
+ dµ =

∫
X f+χA dµ =

∫
A(f

+eA) d(µeA) =
∫
A(feA)

+ d(µeA)

and, similarly, ∫
X(fχA)

− dµ =
∫
A(feA)

− d(µeA).

These prove (i).
(d) Finally, let f : X → C be measurable. Then |fχA| = |f |χA on X and |feA| = |f |eA on A.
By part (b) we have∫

X |fχA| dµ =
∫
X |f |χA dµ =

∫
A(|f |eA) d(µeA) =

∫
A |feA| d(µeA),

and so fχA and feA are simultaneously integrable or non­integrable.
Assuming integrability, there is an integrable F : X → C so that F = fχA a.e. on X . It is clear
that FχA = fχA a.e. on X and F eA = feA a.e. on A. Therefore, it is enough to prove that∫
X FχA dµ =

∫
A(F eA) d(µeA). Now, part (c) implies∫

X Re(FχA) dµ =
∫
X Re(F )χA dµ =

∫
A(Re(F )eA) d(µeA) =

∫
A Re(F eA) d(µeA).

Similarly, ∫
X Im(FχA) dµ =

∫
A Im(F eA) d(µeA).

Thus,
∫
X FχA dµ =

∫
A(F eA) d(µeA).
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Definition. Let A ∈ S and f : X → R or C be measurable.
(i) If f : X → R and

∫
X fχA dµ or, equivalently,

∫
A(feA) d(µeA) is defined, then we say that∫

A f dµ is defined as ∫
A f dµ =

∫
X fχA dµ =

∫
A(feA) d(µeA).

(ii) If f : X → C and fχA is integrable over X or, equivalently, feA is integrable over A, then
we say that f is integrable over A and we define

∫
A f dµ exactly as in (i).

Proposition 3.30. Let f : X → R or C be measurable.
(i) If f : X → R and

∫
X f dµ is defined, then

∫
A f dµ is defined for every A ∈ S .

(ii) If f : X → C is integrable, then f is integrable over every A ∈ S .

Proof. (i) Let
∫
X f dµ be defined. We have (fχA)

+ = f+χA ≤ f+ and (fχA)
− = f−χA ≤ f−

on X . Thus, either
∫
X(fχA)

+ dµ ≤
∫
X f+ dµ < +∞ or

∫
X(fχA)

− dµ ≤
∫
X f− dµ < +∞.

Therefore,
∫
X fχA dµ is defined, and so

∫
A f dµ is also defined.

(ii) Let f be integrable. Then
∫
X |fχA| dµ ≤

∫
X |f | dµ < +∞, and so fχA is integrable.

Proposition 3.31. Let f : X → R be measurable and
∫
X f dµ be defined. Then either

∫
A f dµ >

−∞ for all A ∈ S or
∫
A f dµ < +∞ for all A ∈ S .

Proof. Let
∫
X f− dµ < +∞. We have (fχA)

− = f−χA ≤ f− on X . Then∫
X(fχA)

− dµ ≤
∫
X f− dµ < +∞,

and so
∫
A f dµ =

∫
X fχA dµ > −∞ for all A ∈ S .

Similarly, if
∫
X f+ dµ < +∞, then

∫
A f dµ < +∞ for all A ∈ S .

Theorem 3.1. Let f : X → R be measurable and
∫
X f dµ be defined, or let f : X → C be

integrable.
(i)

∫
A f dµ = 0 for all A ∈ S with µ(A) = 0,

(ii)
∑+∞

n=1

∫
An
f dµ =

∫
A f dµ for all pairwise disjoint A1, A2, . . . ∈ S with A =

⋃+∞
n=1An,

(iii) limn→+∞
∫
An
f dµ =

∫
A f dµ for all A1, A2, . . . ∈ S such that (An) is increasing and⋃+∞

n=1An = A,
(iv) limn→+∞

∫
An
f dµ =

∫
A f dµ for all A1, A2, . . . ∈ S such that (An) is decreasing and⋂+∞

n=1An = A and
∣∣ ∫

AN
f dµ

∣∣ < +∞ for some N .

Proof. (i) This is easy because, if µ(A) = 0, then fχA = 0 a.e. on X .
(ii) Let A1, A2, . . . ∈ S be pairwise disjoint and A =

⋃+∞
n=1An.

(a) If f : X → [0,+∞] is measurable, then, since
∑+∞

n=1 fχAn = fχA on X , the Non­negative
Series Theorem gives∑+∞

n=1

∫
An
f dµ =

∑+∞
n=1

∫
X fχAn dµ =

∫
X fχA dµ =

∫
A f dµ.

(b) If f : X → R and
∫
X f− dµ < +∞, we apply (a) and we get∑+∞

n=1

∫
An
f+ dµ =

∫
A f

+ dµ,
∑+∞

n=1

∫
An
f− dµ =

∫
A f
− dµ < +∞.

Subtracting, we find
∑+∞

n=1

∫
An
f dµ =

∫
A f dµ.

If f : X → R and
∫
X f+ dµ < +∞, then the proof is similar.

(c) If f : X → C and f is integrable, we have by (a) that∑+∞
n=1

∫
X |fχAn | dµ =

∑+∞
n=1

∫
An

|f | dµ =
∫
A |f | dµ < +∞.
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Now, since
∑+∞

n=1 fχAn = fχA on X , we get∑+∞
n=1

∫
An
f dµ =

∑+∞
n=1

∫
X fχAn dµ =

∫
X fχA dµ =

∫
A f dµ

by the Series Theorem.
(iii) We have thatA = A1∪

(⋃+∞
k=2(Ak \Ak−1)

)
, where the sets in the union are pairwise disjoint.

We apply (ii) and we get∫
A f dµ =

∫
A1
f dµ+

∑+∞
k=2

∫
Ak\Ak−1

f dµ =
∫
A1
f dµ+ limn→+∞

∑n
k=2

∫
Ak\Ak−1

f dµ

= limn→+∞
∫
An
f dµ.

(iv) We have that (AN \An) is increasing and
⋃+∞

n=1(AN \An) = AN \A. So (iii) implies

limn→+∞
∫
AN\An

f dµ =
∫
AN\A f dµ. (3.1)

Now, from the equality ∫
AN\A f dµ+

∫
A f dµ =

∫
AN

f dµ

and from
∣∣ ∫

AN
f dµ

∣∣ < +∞ we get
∣∣ ∫

A f dµ
∣∣ < +∞. From the same equality we then get∫

AN\A f dµ =
∫
AN

f dµ−
∫
A f dµ.

Similarly, ∫
AN\An

f dµ =
∫
AN

f dµ−
∫
An
f dµ

for all n ≥ N , and now (3.1) implies∫
AN

f dµ− limn→+∞
∫
An
f dµ =

∫
AN

f dµ−
∫
A f dµ.

Because of
∣∣ ∫

AN
f dµ

∣∣ < +∞ again, we get limn→+∞
∫
An
f dµ =

∫
A f dµ.

We must say that all results we have proved about integrals
∫
X over X hold without change

for integrals
∫
A over an arbitrary A ∈ S . To see this we either repeat all proofs, making the

necessary minor changes, or we just apply those results to the functions multiplied by χA or to
their restrictions on A. As an example let us look at the following version of the Dominated
Convergence Theorem.
Let f, f1, f2, . . . : X → R or C and g : X → [0,+∞] be measurable. Let also limn→+∞ fn = f
a.e. on A, |fn| ≤ g a.e. on A for all n and

∫
A g dµ < +∞. Then limn→+∞

∫
A fn dµ =

∫
A f dµ.

Indeed, the assumptions imply that limn→+∞ fnχA = fχA a.e. on X , |fnχA| ≤ gχA a.e. on X
for all n and

∫
X gχA dµ < +∞. Then the Dominated Convergence Theorem (forX) implies

limn→+∞
∫
A fn dµ = limn→+∞

∫
X fnχA dµ =

∫
X fχA dµ =

∫
A f dµ.

Alternatively, the same assumptions imply limn→+∞ fneA = feA a.e on A, |fneA| ≤ geA a.e.
onA for all n and

∫
A(geA) d(µeA) < +∞. Again, the Dominated Convergence Theorem (forA)

implies

limn→+∞
∫
A fn dµ = limn→+∞

∫
A(fneA) d(µeA) =

∫
A(feA) d(µeA) =

∫
A f dµ.

Exercises.

3.1.17. Consider the measure space (X,P(X), δx0) for some x0 ∈ X and any f : X → R. Prove
that

∫
A f dδx0 = f(x0), if x0 ∈ A, and

∫
A f dδx0 = 0, if x0 /∈ A.
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3.1.18. Let f, fn : X → [0,+∞] be measurable. Assume that limn→+∞ fn = f a.e. on X and
limn→+∞

∫
X fn dµ =

∫
X f dµ < +∞, and prove that limn→+∞

∫
A fn dµ =

∫
A f dµ for every

A ∈ S .
Hint. Aplly Fatou’s Lemma over both A and Ac.

3.1.19. (i) Let f : X → R or C be integrable. Prove that for every ϵ > 0 there is E ∈ S with
µ(E) < +∞ and

∫
Ec |f | dµ < ϵ.

Hint. Consider E =
{
x ∈ X

∣∣ |f(x)| ≥ 1
n

}
for large n ∈ N.

(ii) Let f be Lebesgue integrable over Rn. Prove that for every ϵ > 0 there is a compactK ⊆ Rn

so that
∫
Kc |f | dmn < ϵ.

Hint. ConsiderK to be a large closed ball in Rn with center 0.

3.1.20. Let f : X → R or C be integrable. Prove that for every ϵ > 0 there is δ > 0 so that:∣∣ ∫
E f dµ

∣∣ < ϵ for all E ∈ S with µ(E) < δ.
Hint. One may prove it first for simple functions and then use Proposition 3.20.

3.1.21. Mean values.
Let f : X → R or C be integrable and F be a closed subset of R or C. If 1

µ(E)

∫
E f dµ ∈ F for

every E ∈ S with µ(E) > 0, prove that f(x) ∈ F for a.e. x ∈ X .
Hint. If E ∈ S , 0 < µ(E) < +∞, |f(x)− y0| ≤ r0 for all x ∈ E, then

∣∣ 1
µ(E)

∫
E f dµ− y0

∣∣ ≤ r0.
Now, consider the open set U = R \ F or C \ F , and prove that µ({x ∈ X | f(x) ∈ U}) = 0,
using a covering of U by countably many closed intevals or closed discs which are contained in U .

POINT­MASS DISTRIBUTIONS.

Consider the point­mass distribution µ induced by a function a : X → [0,+∞] through the
formula

µ(E) =
∑

x∈E ax

for all E ⊆ X .
We observe that all functions f : X → Y , no matter what the measure space (Y,SY ) is, are

(P(X),SY )­measurable.

Proposition 3.32. If f : X → [0,+∞] then
∫
X f dµ =

∑
x∈X f(x) ax.

Proof. If ϕ is a non­negative simple function onX with standard representation ϕ =
∑n

j=1 κjχEj ,
then ∫

X ϕdµ =
∑n

j=1 κjµ(Ej) =
∑n

j=1 κj
(∑

x∈Ej
ax

)
=

∑n
j=1

(∑
x∈Ej

κjax
)

=
∑n

j=1

(∑
x∈Ej

ϕ(x)ax
)
=

∑
x∈X ϕ(x) ax,

where the last equality is implied by Proposition 1.23.
Now, we take an increasing sequence (ϕn) of non­negative simple functions so that limn→+∞ ϕn =
f on X , and then limn→+∞

∫
X ϕn dµ =

∫
X f dµ. Since∫

X ϕn dµ =
∑

x∈X ϕn(x) ax ≤
∑

x∈X f(x) ax,

we find
∫
X f dµ ≤

∑
x∈X f(x) ax by taking the limit as n→ +∞.

If F is any finite subset of X , then∑
x∈F ϕn(x) ax ≤

∑
x∈X ϕn(x) ax =

∫
X ϕn dµ.

Taking the limit as n→ +∞, we get
∑

x∈F f(x) ax ≤
∫
X f dµ. Now, taking the supremum over

the finite subsets of X , we find
∑

x∈X f(x) ax ≤
∫
X f dµ.
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We would like to extend the validity of Proposition 3.32 to (extended­) real valued or complex
valued functions, but we do not have a definition for sums of (extended­) real valued or complex
valued terms! We can give such a definition in a straightforward manner, but we prefer to use the
theory of the integral developed so far.

The amusing thing is that any series
∑

i∈I bi of non­negative terms over the general index set
I can be written as an integral ∑

i∈I bi =
∫
I b d ♯,

where ♯ is the counting measure on I (and we freely write bi = b(i)). This is a simple application
of Proposition 3.32: we just take X = I , f = b, and ai = 1 for all i ∈ I .

Using properties of integrals, we may prove corresponding properties of sums. For example,
it is true that ∑

i∈I(bi + ci) =
∑

i∈I bi +
∑

i∈I ci,
∑

i∈I λbi = λ
∑

i∈I bi

for every non­negative bi, ci and λ. The proof consists in rewriting∫
I(b+ c) d ♯ =

∫
I b d ♯+

∫
I c d ♯,

∫
I λb d ♯ = λ

∫
I b d ♯

in terms of sums.
For every b ∈ R we write b+ = max{b, 0} and b− = −min{b, 0}, and then we have that

b = b+ − b− and |b| = b+ + b−.

Definition. If I is any index set and b : I → R, we define the sum of (bi)i∈I over I by∑
i∈I bi =

∑
i∈I b

+
i −

∑
i∈I b

−
i

only when either
∑

i∈I b
+
i < +∞ or

∑
i∈I b

−
i < +∞. We say that (bi)i∈I is summable (over I)

if
∑

i∈I bi is finite or, equivalently, if both
∑

i∈I b
+
i and

∑
i∈I b

−
i are finite.

Since we can write∑
i∈I bi =

∑
i∈I b

+
i −

∑
i∈I b

−
i =

∫
I b

+ d ♯−
∫
I b
− d ♯ =

∫
I b d ♯

and also ∑
i∈I |bi| =

∑
i∈I b

+
i +

∑
i∈I b

−
i =

∫
I b

+ d ♯+
∫
I b
− d ♯ =

∫
I |b| d ♯,

we may say that (bi)i∈I is summable over I if and only if b is integrable over I with respect to the
counting measure ♯ or, equivalently, if and only if

∑
i∈I |bi| =

∫
I |b| d ♯ < +∞. Also,

∑
i∈I bi is

defined if and only if
∫
I b d ♯ is defined and, in this case, they are equal.

Further exploiting the analogy between sums and integrals, we have:

Definition. If I is any index set and b : I → C, we say that (bi)i∈I is summable over I if∑
i∈I |bi| < +∞.

This is the same condition as in the case of b : I → R.

Proposition 3.33. Let b : I → R or C. Then (bi)i∈I is summable if and only if {i ∈ I | bi 6= 0} is
countable and

∑+∞
k=1 |bik | < +∞, where {i1, i2, . . .} is an arbitrary enumeration of I .

Proof. An application of Propositions 1.20 and 1.21.

In particular, if (bi)i∈I is summable then bi is finite for all i. This allows us to give the

Definition. Let b : I → C be summable over I . We define the sum of (bi)i∈I over I as∑
i∈I bi =

∑
i∈I Re(bi) + i

∑
i∈I Im(bi).
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Therefore, the sum of complex valued terms is defined only when the sum is summable and,
in this case, this sum has a finite value. Again, we can say that if b : I → C is summable over I
(which is equivalent to b being integrable over I with respect to the counting measure) then∑

i∈I bi =
∫
I b d ♯.

We shall see now the form that some of the important results on general integrals take when
we specialize them to sums. They are simple and straightforward formulations of known results
but, since they are very important when one is working with sums, we shall state them explicitly.
Their content is the interchange of limits and sums. It should be stressed that it is very helpful to
be able to recognize the underlying integral theorem behind a property of sums.
Monotone Convergence Theorem. Let b, b1, b2, . . . : I → [0,+∞]. If (bn,i) is increasing for all
i ∈ I and limn→+∞ bn,i = bi for all i ∈ I , then limn→+∞

∑
i∈I bn,i =

∑
i∈I bi.

Non­negative Series Theorem. Let b1, b2, . . . : I → [0,+∞]. Then
∑

i∈I
(∑+∞

n=1 bn,i
)

=∑+∞
n=1

(∑
i∈I bn,i

)
.

Fatou’s Lemma. Let b, b1, b2, . . . : I → [0,+∞]. If bi = limn→+∞ bn,i for all i ∈ I , then∑
i∈I bi ≤ limn→+∞

∑
i∈I bn,i.

Dominated Convergence Theorem. Let b, b1, b2, . . . : I → R or C and c : I → [0,+∞]. If
limn→+∞ bn,i = bi for all i ∈ I , and |bn,i| ≤ ci for all i ∈ I and n ∈ N, and

∑
i∈I ci < +∞,

then limn→+∞
∑

i∈I bn,i =
∑

i∈I bi.
Series Theorem. Let b1, b2, . . . : I → R or C. If

∑+∞
n=1

(∑
i∈I |bn,i|

)
< +∞, then

∑+∞
n=1 bn,i

converges for every i ∈ I and
∑

i∈I
(∑+∞

n=1 bn,i
)
=

∑+∞
n=1

(∑
i∈I bn,i

)
.

Observe that ∅ is the only ♯­null set. Therefore, saying that a property holds ♯­a.e. on I is
equivalent to saying that it holds at every point of I .

Now we go back to the general case, where µ is the point­mass distribution induced by the
function a : X → [0,+∞], and f : X → R. Using Proposition 3.32, we get∫

X f+ dµ =
∑

x∈X f+(x)ax,
∫
X f− dµ =

∑
x∈X f−(x)ax.

Then
∫
X f dµ is defined if and only if either

∫
X f+ dµ < +∞ or

∫
X f− dµ < +∞, and in this

case we have∫
X f dµ =

∫
X f+ dµ−

∫
X f− dµ =

∑
x∈X f+(x)ax −

∑
x∈X f−(x)ax =

∑
x∈X f(x)ax.

Moreover, f is integrable if and only if∫
X |f | dµ =

∑
x∈X |f(x)|ax < +∞.

This is also true when f : X → C, and in this case we have∫
X f dµ =

∑
x∈X Re(f(x)χDf

(x))ax + i
∑

x∈X Im(f(x)χDf
(x))ax,

where
Df = {x ∈ X | f(x) 6= ∞}.

Since
∑

x∈X |f(x)|ax < +∞, it is clear that f(x) = ∞ can happen only if ax = 0, and
ax = +∞ can happen only if f(x) = 0. But, then f(x)ax ∈ C for all x ∈ X and, moreover,
f(x)χDf

(x)ax = f(x)ax for all x ∈ X . Therefore, we get∫
X f dµ =

∑
x∈X Re(f)(x)ax + i

∑
x∈X Im(f)(x)ax =

∑
x∈X f(x)ax.

Now we have arrived at the complete interpretation of sums as integrals.

Proposition 3.34. Let µ be the point­mass distribution induced by a : X → [0,+∞].
(i) If f : X → R, then

∫
X f dµ is defined if and only if

∑
x∈X f(x)ax is defined and, in this case,

we have
∫
X f dµ =

∑
x∈X f(x)ax.

(ii) If f : X → C, then f is µ­integrable if and only if
∑

x∈X |f(x)|ax < +∞ and, in this case,
the equality in (i) is true.
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3.2 Lebesgue integral.

A function f : Rn → R orC is Lebesgue integrable if it is Lebesguemeasurable and also integrable
with respect tomn. For example, it is easy to see that every continuous f : Rn → R or C which is
0 outside some bounded set is Lebesgue integrable. Indeed, f is then Borel measurable, and, ifQ is
any closed interval in Rn outside of which f is 0, then |f | ≤MχQ, whereM = max{|f(x)| |x ∈
Q} < +∞. Therefore,∫

Rn |f | dmn ≤M
∫
Rn χQ dmn =Mmn(Q) < +∞.

LEBESGUE INTEGRAL VS RIEMANN INTEGRAL.

We shall now investigate the relation between the Lebesgue integral and the Riemann integral. We
recall the definition of the latter.

We consider a bounded closed interval Q = [a1, b1] × · · · × [an, bn] in Rn, and a bounded
function f : Q→ R. If l ∈ N is arbitrary andQ1, . . . , Ql are arbitrary closed intervals which have
pairwise disjoint interiors and so that Q = Q1 ∪ · · · ∪Ql, then we say that∆ = {Q1, . . . Ql} is a
partition of Q. If P, P1, . . . , Pl are the open­closed intervals with the same sides as, respectively,
Q,Q1, . . . , Ql, then {Q1, . . . , Ql} is a partition of Q if and only if the P1, . . . , Pl are pairwise
disjoint and P = P1 ∪ · · · ∪ Pl. Now, since f is bounded, for each Qj we may consider the real
numbers mj = inf{f(x) |x ∈ Qj} and Mj = sup{f(x) |x ∈ Qj}. We then define the lower
Darboux sum and the upper Darboux sum of f with respect to the partition∆ as, respectively,

Σ(f ;∆) =
∑l

j=1mj voln(Qj), Σ(f ;∆) =
∑l

j=1Mj voln(Qj).

Ifm = inf{f(x) |x ∈ Q},M = sup{f(x) |x ∈ Q}, we have that

m ≤ mj ≤Mj ≤M

for every j. Using Proposition 1.30 (and working with the corresponding open­closed intervals),
we see that

m voln(Q) ≤ Σ(f ;∆) ≤ Σ(f ;∆) ≤M voln(Q).

If ∆1 = {Q(1)
1 , . . . , Q

(1)
l1

} and ∆2 = {Q(2)
1 , . . . , Q

(2)
l2

} are two partitions of Q, we say that ∆2 is
finer than∆1 if everyQ

(2)
i is included in someQ(1)

j . Then it is obvious that, for everyQ(1)
j of∆1,

the Q(2)
i of ∆2 which are included in Q

(1)
j form a partition of Q(1)

j . Therefore, from Proposition
1.30 again,

m
(1)
j voln(Q

(1)
j ) ≤

∑
i:Q

(2)
i ⊆Q

(1)
j

m
(2)
i voln(Q

(2)
i )

≤
∑

i:Q
(2)
i ⊆Q

(1)
j

M
(2)
i voln(Q

(2)
i ) ≤M

(1)
j voln(Q

(1)
j ).

Summing over all j = 1, . . . , l1 we find

Σ(f ;∆1) ≤ Σ(f ;∆2) ≤ Σ(f ;∆2) ≤ Σ(f ;∆1).

Now, if∆1 = {Q(1)
1 , . . . , Q

(1)
l1

} and∆2 = {Q(2)
1 , . . . , Q

(2)
l2

} are any two partitions of Q, we form
their common refinement∆ = {Q(1)

j ∩Q(2)
i | 1 ≤ j ≤ l1, 1 ≤ i ≤ l2}, and we get

Σ(f ;∆1) ≤ Σ(f ;∆) ≤ Σ(f ;∆) ≤ Σ(f ;∆2).

We conclude that
m voln(Q) ≤ Σ(f ;∆1) ≤ Σ(f ;∆2) ≤M voln(Q)
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for all partitions∆1,∆2 of Q. Now, we define

(Rn)
∫
Q
f = sup{Σ(f ;∆) |∆ partition of Q}, (Rn)

∫
Qf = inf{Σ(f ;∆) |∆ partition of Q}

and we call them, respectively, the lower Riemann integral and the upper Riemann integral of
f over Q. It is then clear that

m voln(Q) ≤ (Rn)
∫
Q
f ≤ (Rn)

∫
Qf ≤M voln(Q).

We say that f is Riemann integrable over Q if (Rn)
∫
Q
f = (Rn)

∫
Qf . In this case we define

(Rn)
∫
Q f = (Rn)

∫
Q
f = (Rn)

∫
Qf

and we call it the Riemann integral of f over Q.

Lemma 3.3. The bounded f : Q → R is Riemann integrable over the bounded closed interval Q
if and only if for every ϵ > 0 there is a partition ∆ of Q so that Σ(f ;∆)− Σ(f ;∆) < ϵ.

Proof. For the sufficiency, we take an arbitrary ϵ > 0. Then for the corresponding∆ we have

0 ≤ (Rn)
∫
Qf − (Rn)

∫
Q
f ≤ Σ(f ;∆)− Σ(f ;∆) < ϵ.

This implies the equality of the upper and lower Riemann integrals of f over Q.
For the necessity, we assume (Rn)

∫
Q
f = (Rn)

∫
Qf , and then for each ϵ > 0 we take partitions

∆1,∆2 of Q so that

(Rn)
∫
Q f − ϵ

2 < Σ(f ;∆1), Σ(f ;∆2) < (Rn)
∫
Q f + ϵ

2 .

Then
Σ(f ;∆)− Σ(f ;∆) ≤ Σ(f ;∆2)− Σ(f ;∆1) < ϵ

for the common refinement∆ of∆1 and∆2.

Proposition 3.35. If f : Q→ R is continuous on the bounded closed intervalQ, then f is Riemann
integrable over Q.

Proof. By uniform continuity of f on Q, for any ϵ > 0 there is a δ > 0 so that |f(x) − f(y)| <
ϵ

voln(Q) for all x, y ∈ Q whose distance is < δ. We take any partition ∆ = {Q1, . . . , Ql} of Q, so
that every Qj has diameter < δ. Then |f(x) − f(y)| < ϵ

voln(Q) for all x, y on the same Qj . This
implies that for every Qj we haveMj −mj <

ϵ
voln(Q) . Hence

Σ(f ;∆)− Σ(f ;∆) =
∑l

j=1(Mj −mj) voln(Qj) <
ϵ

voln(Q)

∑l
j=1 voln(Qj) = ϵ,

and Lemma 3.3 implies that f is Riemann integrable over Q.

Theorem 3.2. If f : Q → R is Riemann integrable over the bounded closed interval Q and we
extend f as 0 outsideQ, then f is Lebesgue integrable and

∫
Rn f dmn =

∫
Q f dmn = (Rn)

∫
Q f .

Proof. Lemma 3.3 implies that, for every k ∈ N, there is a partition∆k = {Q(k)
1 , . . . , Q

(k)
lk

} of Q
so that

Σ(f ;∆k)− Σ(f ;∆k) <
1
k .

We consider the simple functions

ψk =
∑lk

j=1m
(k)
j χ

P
(k)
j

, ϕk =
∑lk

j=1M
(k)
j χ

P
(k)
j

,
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where m(k)
j = inf{f(x) |x ∈ Q

(k)
j } and M (k)

j = sup{f(x) |x ∈ Q
(k)
j } and P (k)

j is the open­
closed interval with the same sides as Q(k)

j . Clearly, all ψk, ϕk are Borel measurable. Now, we
have

limk→+∞Σ(f ;∆k) = (Rn)
∫
Q f, limk→+∞Σ(f ;∆k) = (Rn)

∫
Q f.

It is clear that ψk ≤ fχP ≤ ϕk on Rn for all k, where P is the open­closed interval with the same
sides as Q. It is also clear that∫

Rn ψk dmn =
∑lk

j=1m
(k)
j voln(P

(k)
j ) =

∑lk
j=1m

(k)
j voln(Q

(k)
j ) = Σ(f ;∆k)∫

Rn ϕk dmn =
∑lk

j=1M
(k)
j voln(P

(k)
j ) =

∑lk
j=1M

(k)
j voln(Q

(k)
j ) = Σ(f ;∆k).

Hence,
limk→+∞

∫
Rn ψk dmn = limk→+∞

∫
Rn ϕk dmn = (Rn)

∫
Q f.

We define
g = lim

k→+∞
ψk, h = lim

k→+∞
ϕk,

and then g, h are Borel measurable, and g ≤ fχP ≤ h on Rn.
Fatou’s Lemma implies

0 ≤
∫
Rn(h− g) dmn ≤ limk→+∞

∫
Rn(ϕk − ψk) dmn = 0.

Hence, g = h a.e. on Rn, and so fχP = g = h a.e. on Rn. Since g, h are Borel measurable, we
have that fχP is Lebesgue measurable. Since f = 0 outside Q, we have that f 6= fχP only on a
subset of Q \ P , and so f = fχP a.e. on Rn. Hence, f is Lebesgue measurable.
Now, f is bounded and f = 0 outside Q, and so |f | ≤ KχQ, where K = sup{|f(x)| |x ∈ Q}.
Thus,

∫
Rn |f | dmn ≤ Kmn(Q) < +∞, and so f is Lebesgue integrable.

Another application of Fatou’s Lemma gives∫
Rn(h− fχP ) dmn ≤ limk→+∞

∫
Rn(ϕk − fχP ) dmn = (Rn)

∫
Q f −

∫
Rn fχP dmn,∫

Rn(fχP − g) dmn ≤ limk→+∞
∫
Rn(fχP − ψk) dmn =

∫
Rn fχP dmn − (Rn)

∫
Q f.

Hence, ∫
Rn h dmn ≤ (Rn)

∫
Q f ≤

∫
Rn g dmn.

Since f = g = h a.e. on Rn, we conclude that (Rn)
∫
Q f =

∫
Rn f dmn.

The converse of Theorem 3.2 does not hold. There are bounded f : Q→ Rwhich are Lebesgue
integrable but not Riemann integrable over Q.

Example.We define f(x) = 1, if x ∈ Q has only rational coordinates, and f(x) = 0, if x ∈ Q
has at least one irrational coordinate. If∆ = {Q1, . . . , Qk} is any partition of Q, then all Qj with
non­empty interior (the rest do not matter because they have zero volume) contain at least one x
with f(x) = 0 and at least one x with f(x) = 1. Hence, for all such Qj we have mj = 0 and
Mj = 1, and so Σ(f ;∆) = 0 and Σ(f ;∆) = voln(Q) for every ∆. Thus, (R1)

∫
Q
f = 0 and

(Rn)
∫
Qf = voln(Q), and so f is not Riemann integrable over Q.

On the other hand, if we extend f as 0 outside Q, then f = 0 a.e on Rn, and so f is Lebesgue
integrable over Rn with

∫
Rn f dmn =

∫
Q f dmn = 0.

Theorem 3.2 incorporates the notion of Riemann integral in the notion of Lebesgue integral. It
says that the collection of Riemann integrable functions is included in the collection of Lebesgue
integrable functions and that the Riemann integral is the restriction of the Lebesgue integral on
the collection of Riemann integrable functions. This provides us with greater flexibility over the
symbol we may use for the Lebesgue integral, at least in the case of bounded intervals [a, b] in the
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one­dimensional space R. The standard symbol used in Infinitesimal Calculus for the Riemann
integral (R1)

∫
[a,b] f is the familiar ∫ b

a f(x) dx.

We may now use the same symbol for the Lebesgue integral∫
[a,b] f dm1 =

∫
[a,b] f(x) dm1(x),

without the danger of confusion between the Riemann and the Lebesgue integrals when the function
is integrable both in the Riemann and in the Lebesgue sense. Now, since the one­point sets {a},
{b} have zero Lebesgue measure, the Lebesgue integrals

∫
[a,b] f dm1,

∫
(a,b] f dm1,

∫
[a,b) f dm1

and
∫
(a,b) f dm1 are all the same. Therefore, we may use the symbol

∫ b
a f(x) dx for all these

Lebesgue integrals. This is extended to cases where the Riemann integral does not apply. For
example, we may use the symbol ∫ +∞

−∞ f(x) dx

for the Lebesgue integral
∫
R f dm1 and, likewise, the symbol

∫ +∞
a f(x) dx for the Lebesgue in­

tegral
∫
[a,+∞) f dm1 and the symbol

∫ b
−∞ f(x) dx for the Lebesgue integral

∫
(−∞,b] f dm1.

Theorem 3.2 provides us with a powerful tool to calculate Lebesgue integrals, at least in the
case of R. If a function f is Riemann integrable over a closed interval [a, b] ⊆ R, we have many
techniques (integration by parts, change of variable, primitives etc) to calculate its

∫ b
a f(x) dx

which is the same as
∫
[a,b] f(x) dm1(x). Moreover, if the given f is Riemann integrable over in­

tervals [ak, bk] with limk→+∞ ak = −∞ and limk→+∞ bk = +∞ and if we can calculate the
integrals

∫ bk
ak
f(x) dx =

∫
[ak,bk]

f(x) dm1(x), then it is a matter of being able to justify the limit
limk→+∞

∫
[ak,bk]

f(x) dm1(x) =
∫
R f(x) dm1(x) in order to calculate the Lebesgue integral over

R. To do this we may try to use the Monotone Convergence Theorem or the Dominated Conver­
gence Theorem.

Exercises.

3.2.1. The graph and the volume under the graph of a function.
Let f : Rn → [0,+∞]. If Af = {(x1, . . . , xn, xn+1) | 0 ≤ xn+1 < f(x1, . . . , xn)} ⊆ Rn+1 and
Gf = {(x1, . . . , xn, xn+1) |xn+1 = f(x1, . . . , xn)} ⊆ Rn+1 and if f is Lebesgue measurable,
prove that Af , Gf ∈ Ln+1 andmn+1(Af ) =

∫
Rn f dmn andmn+1(Gf ) = 0.

Hint. Provemn+1(Aϕ) =
∫
Rn ϕdmn when ϕ : Rn → [0,+∞) is a Lebesgue measurable simple

function.

3.2.2. Improper Integrals.
Let f : [a, b) → R, where −∞ < a < b ≤ +∞. If f is Riemann integrable over [a, c] for every
c ∈ (a, b) and the limit limc→b−

∫ c
a f(x) dx exists in R, we say that the improper integral of f

over [a, b) exists and we define it as
∫→b
a f(x) dx = limc→b−

∫ c
a f(x) dx.

We have similar terminology and definition for
∫ b
a← f(x) dx, the improper integral of f over (a, b].

(i) Let f : [a, b) → [0,+∞) be Riemann integrable over [a, c] for every c ∈ (a, b). Prove that
the Lebesgue integral

∫ b
a f(x) dx and the improper integral

∫→b
a f(x) dx both exist and they are

equal.
(ii) Let f : [a, b) → R be Riemann integrable over [a, c] for every c ∈ (a, b). Prove that, if the
Lebesgue integral

∫ b
a f(x) dx exists, then

∫→b
a f(x) dx also exists and the two integrals are equal.

(iii) Prove that the converse of (ii) is not true in general: look at the fourth function in exercise
3.2.4 or at (ii) and (iii) of exercise 3.2.18.
(iv) If

∫→b
a |f(x)| dx < +∞ (then we say that the improper integral is absolutely convergent),

prove that
∫→b
a f(x) dx exists and is a real number (then we say that the improper integral is

convergent.)
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3.2.3. Using improper integrals (see exercise 3.2.2), find the Lebesgue integral
∫ +∞
−∞ f(x) dx (if it

exists), where f(x) is any of the functions:

1
1+x2 , e−|x|, 1

x2χ[0,+∞)(x),
1
x ,

1
|x| ,

1
|x|1/2χ[−1,1](x),

∑+∞
n=1

1
2nχ[n,n+1)(x),∑+∞

n=1
(−1)n+1

2n χ[n,n+1)(x),
∑+∞

n=1
1
nχ[n,n+1)(x),

∑+∞
n=1

(−1)n+1

n χ[n,n+1)(x).

3.2.4. Apply the Fatou’s Lemma for Lebesgue measure on R and the sequences (fn), where fn(x)
is any of the functions:

χ(n,n+1)(x), χ(n,+∞)(x), nχ(0, 1
n
)(x), 1 + sign

(
sin 2nx

2π

)
.

3.2.5. If f is Lebesgue integrable over [−1, 1], prove that limn→+∞
∫ 1
−1 x

nf(x) dx = 0.

3.2.6. Prove that the limit I = limt→+∞
1
π

∫ +∞
a

t
1+t2x2 dx exists, and that: I = 0, if 0 < a, and

I = 1
2 , if a = 0, and I = 1, if a < 0.

3.2.7. Prove that the limit I = limn→+∞
∫ n
0

(
1+ x

n

)n
e−αx dx exists, and that: I = 1

α−1 , if 1 < α,
and I = +∞, if α ≤ 1.

3.2.8. Let f : R → R or C be Lebesgue integrable. Prove F (x) =
∫ x
−∞ f(t) dt is a continuous

function of x on R.

3.2.9. Continuity of translations.
If f : Rn → R or C is Lebesgue integrable, prove limh→0

∫
Rn |f(x− h)− f(x)| dmn(x) = 0.

Hint. Prove it first for continuous functions which are 0 outside a bounded set, and then use The­
orem 3.12.

3.2.10. LetQ ⊆ Rn be a bounded closed interval and x0 ∈ Q. If f : Q→ R is Riemann integrable
overQ and g : Q→ R coincides with f onQ \ {x0}, prove that g is also Riemann integrable over
Q and that (Rn)

∫
Q g = (Rn)

∫
Q f .

3.2.11. LetQ ⊆ Rn be a bounded closed interval, λ ∈ R and f, g : Q→ R be Riemann integrable
over Q. Prove that f + g, λf and fg are all Riemann integrable over Q and (Rn)

∫
Q(f + g) =

(Rn)
∫
Q f + (Rn)

∫
Q g and (Rn)

∫
Q λf = λ(Rn)

∫
Q f .

3.2.12. Let Q ⊆ Rn be a bounded closed interval.
(i) If the bounded functions f, fk : Q → R are all Riemann integrable over Q and fk ↑ f on Q,
prove that (Rn)

∫
Q fk ↑ (Rn)

∫
Q f .

(ii) Find bounded functions f, fk : Q → R so that fk ↑ f on Q and so that all fk are Riemann
integrable over Q, but f is not Riemann integrable over Q.

3.2.13. Consider the functions f(x) = 1
2

( ∫ x
0 e
− 1

2
t2 dt

)2 and h(x) = ∫ 1
0

e−
1
2x2(t2+1)

t2+1
dt.

(i) Using exercise 3.1.16, prove that f ′(x) + h′(x) = 0 and, hence, f(x) + h(x) = π
4 for every x.

(ii) Prove that ∫ +∞
−∞ e−

1
2
t2 dt =

√
2π.

3.2.14. (i) Using exercise 3.1.16, prove that the function F (t) =
∫ +∞
0 e−tx sinx

x dx is differentiable
on (0,+∞), and that dF

dt (t) = − 1
1+t2

for every t > 0. Find the limt→+∞ F (t), and conclude that
F (t) = arctan 1

t for every t > 0.
(ii) Prove that the function sinx

x is not Lebesgue integrable over (0,+∞).
(iii) Prove that the improper integral (exercise 3.2.2)

∫→+∞
0

sinx
x dx exists.

(iv) Justify the equality limt→0+ F (t) =
∫→+∞
0

sinx
x dx.
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(v) Conclude that ∫→+∞
0

sinx
x dx = π

2 .

(vi) Prove that the limit I = limt→+∞
1
π

∫→+∞
a

sin(tx)
x dx exists, and that: I = 0, if 0 < a, and

I = 1
2 , if a = 0, and I = 1, if a < 0.

3.2.15. Let H+ = {z = x+ iy ∈ C |x > 0}, and consider Γ : H+ → C defined by

Γ(z) =
∫ +∞
0 tz−1e−t dt.

This is called the gamma­function.
(i) Prove that this Lebesgue integral exists and is finite for every z ∈ H+.
(ii) Using exercises 3.1.15 and 3.1.16, prove that ∂Γ

∂x ,
∂Γ
∂y are continuous on H+, and that ∂Γ

∂x (z) =

−i∂Γ∂y (z) for every z ∈ H+. This means that Γ is holomorphic on H+.
(iii) Prove that Γ(z + 1) = zΓ(z) for every z ∈ H+, and that Γ(1) = 1.
Prove that Γ(n) = (n− 1)! for every n ∈ N.
(iv) Prove that Γ(12) =

√
π.

3.2.16. Let E ⊆ Rn be bounded.
We define the inner Jordan content c(i)n (E) of E to be the supremum of

∑m
j=1 voln(Rj) for all

m ∈ N and all pairwise disjoint open intervals R1, . . . , Rm with
⋃m

j=1Rj ⊆ E. We also define
the outer Jordan content c(o)n (E) of E to be the infimum of

∑m
j=1 voln(Rj) for all m ∈ N and

all open intervals R1, . . . , Rm with E ⊆
⋃m

j=1Rj .

(i) Prove that the values of c(i)n (E) and c(o)n (E) remain the same if in the above definitions we use
closed intervals instead of open intervals.
(ii) Prove that c(i)n (E) ≤ c

(o)
n (E) for every bounded E ⊆ Rn.

Now, E is called a Jordan set if c(i)n (E) = c
(o)
n (E), and the value cn(E) = c

(i)
n (E) = c

(o)
n (E) is

called the Jordan content of E.
(iii) If c(o)n (E) = 0, prove that E is a Jordan set.
(iv) Prove that all bounded intervals S ⊆ Rn are Jordan sets and cn(S) = voln(S).
(v) Prove that E is a Jordan set if and only if for every ϵ > 0 there exist pairwise disjoint open
intervals R1, . . . , Rm and open intervals R′1, . . . , R′k so that

⋃m
j=1Rj ⊆ E ⊆

⋃k
i=1R

′
i and∑k

i=1 voln(R
′
i)−

∑m
j=1 voln(Rj) < ϵ.

(vi) Prove that E is a Jordan set if and only if c(o)n (bd(E)) = 0, where bd(E) is the boundary of
E.
(vii) Prove that the collection of bounded Jordan sets is closed under finite unions and set­theoretic
differences. If E1, . . . , El are pairwise disjoint Jordan sets, prove that cn(E) =

∑l
j=1 cn(Ej).

(viii) If E is closed, prove that mn(E) = 0 implies cn(E) = 0. If E is not closed, then
this result may not be true. For example, if E = Q ∩ [0, 1] ⊆ R, then m1(E) = 0, but
c
(i)
1 (E) = 0 < 1 = c

(o)
1 (E), and so E is not a Jordan set. (See exercise 1.4.6.)

(ix) If E is a Jordan set, prove that E is a Lebesgue set andmn(E) = cn(E).
(x) Let E ⊆ Q, where Q is any bounded closed interval. Prove that E is a Jordan set if and only
if χE is Riemann integrable over Q, and that, in this case, cn(E) = (Rn)

∫
Q χE .

(xi) LetQ be a bounded closed interval, f, g : Q→ R be bounded andE ⊆ Q be a Jordan set with
cn(E) = 0. If f is Riemann integrable over Q and f = g on Q \ E, prove that g is also Riemann
integrable over Q, and that (Rn)

∫
Q f = (Rn)

∫
Q g.

3.2.17. Lebesgue’s characterisation of Riemann integrable functions.
Let Q ⊆ Rn be a bounded closed interval and f : Q→ R be bounded. For any x ∈ Q we define

ωf (x) = limδ→0+ sup{|f(x′)− f(x′′)| |x′, x′′ ∈ Q, |x′ − x| < δ, |x′′ − x| < δ},
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and we call it the oscillation of f at x.
(i) Prove that f is continuous at x if and only if ωf (x) = 0.
(ii) Prove that for every ϵ > 0 the set {x ∈ Q |ωf (x) ≥ ϵ} is closed.
(iii) Assume that {x ∈ Q | f is discontinuous at x} is amn­null set.
Take any ϵ > 0 and prove that there are closed subintervalsQ′1, . . . , Q′l ofQwith pairwise disjoint
interiors so that {x ∈ Q |ωf (x) ≥ ϵ} ⊆ Q′1 ∪ · · · ∪ Q′l and voln(Q′1) + · · · + voln(Q′l) < ϵ.
Then prove that there are closed subintervals Q′′1, . . . , Q′′m of Q so that Q′1, . . . , Q′l, Q

′′
1, . . . , Q

′′
m

form a partition∆ of Q, and then prove that Σ(f ;∆)−Σ(f ;∆) < (M −m+ voln(Q))ϵ, where
m = inf{f(x) |x ∈ Q},M = sup{f(x) |x ∈ Q}.
Conclude that f is Riemann integrable over Q.
(iv) Assume that f is Riemann integrable over Q.
Take any ϵ > 0 and consider a partition∆ = {Q1, . . . , Qk} ofQ so that Σ(f ;∆)−Σ(f ;∆) < ϵ2.
Consider those subintervals among the Q1, . . . , Qk which intersect the set {x ∈ Q |ωf (x) ≥ ϵ},
and prove that the sum of their volumes is < ϵ. Thus,mn({x ∈ Q |ωf (x) ≥ ϵ}) < ϵ.
Conclude that {x ∈ Q | f is discontinuous at x} is amn­null set.

LEBESGUE INTEGRAL AND SIMPLE TRANSFORMATIONS.

Another topic is the effect on Lebesgue integrals of translations and linear transformations of the
space.

Proposition 3.36. Let A ∈ Ln and f : A→ R or C be LneA­measurable.
(i) If

∫
A f dmn is defined, then

∫
τz(A) τz(f) dmn is defined and∫
τz(A) τz(f) dmn =

∫
A f dmn.

(ii) If f is Lebesgue integrable over A, then τz(f) is Lebesgue integrable over τz(A) and the
equality in (i) is again true.

Proof. Let ϕ : A→ [0,+∞) be a Lebesgue measurable simple function and let ϕ =
∑m

j=1 κjχEj

be its standard representation. Then∫
A ϕdmn =

∑m
j=1 κjmn(Ej).

It is clear that

τz(ϕ)(x) = ϕ(x− z) =
∑m

j=1 κjχEj (x− z) =
∑m

j=1 κjχEj+z(x) =
∑m

j=1 κjχτz(Ej)(x),

from which we get∫
τz(A) τz(ϕ) dmn =

∑m
j=1 κjmn(τz(Ej)) =

∑m
j=1 κjmn(Ej) =

∫
A ϕdmn.

Now we pass to the case of f : Rn → [0,+∞] by considering an increasing sequence of simple
functions, and then we pass to the case of f : Rn → R by considering the non­positive part and
the non­negative part of f , and then to the case of f : Rn → C by considering the real part and the
imaginary part of f . All this is already standard and it is left as an exercise.

The equality
∫
τz(A) τz(f) dmn =

∫
A f dmn can be written∫

A+z f(x− z) dmn(x) =
∫
A f(y) dmn(y).

We can view this as change of variable formula. We write y = (τz)
−1(x) = x−z or, equivalently,

x = τz(y) = y + z, and we employ the informal rule for the change of differentials:

dmn(x) = dmn(y).
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Proposition 3.37. Let T : Rn → Rn be a linear transformation with det(T ) 6= 0 and A ∈ Ln and
f : A→ R or C be LneA­measurable.
(i) If

∫
A f dmn is defined, then

∫
T (A) T (f) dmn is defined and∫

T (A) T (f) dmn = | det(T )|
∫
A f dmn.

(ii) If f is Lebesgue integrable overA, thenT (f) is Lebesgue integrable overT (A) and the equality
in (i) is again true.

Proof. Let ϕ : A→ [0,+∞) be a Lebesgue measurable simple function and let ϕ =
∑m

j=1 κjχEj

be its standard representation. Then∫
A ϕdmn =

∑m
j=1 κjmn(Ej).

It is clear that

T (ϕ)(x) = ϕ(T−1(x)) =
∑m

j=1 κjχEj (T
−1(x)) =

∑m
j=1 κjχT (Ej)(x),

from which we get∫
T (A) T (ϕ) dmn =

∑m
j=1 κjmn(T (Ej)) = | det(T )|

∑m
j=1 κjmn(Ej) = | det(T )|

∫
A ϕdmn.

As in the proof of Proposition 3.36, we pass to the case of f : Rn → [0,+∞] by considering
an increasing sequence of simple functions, and then we pass to the case of f : Rn → R by
considering the non­positive part and the non­negative part of f , and then we pass to the case of
f : Rn → C by considering the real part and the imaginary part of f .

The equality
∫
T (A) T (f) dmn = | det(T )|

∫
A f dmn can be written∫

T (A) f(T
−1(x)) dmn(x) = | det(T )|

∫
A f(y) dmn(y).

Again, this expresses a change of variable formula. We write y = T−1(x) or, equivalently, x =
T (y), and we employ the informal rule for the change of differentials:

dmn(x) = | det(T )| dmn(y).

As special cases of linear transformations we consider the dilations and the reflection, and we
get the equalities

1
λn

∫
λA f

(
x
λ

)
dmn(x) =

∫
A f(y) dmn(y),

∫
−A f(−x) dmn(x) =

∫
A f(y) dmn(y)

for all λ > 0.

Exercises.

3.2.18. LetQ∩ [0, 1] = {r1, r2, . . .} and
∑+∞

n=1 |an| < +∞. Prove that the series
∑+∞

n=1
an

|x−rn|1/2
converges absolutely form1­a.e. x ∈ [0, 1].

3.2.19. LetQ = {r1, r2, . . .}. Prove that the series
∑+∞

n=1 e
−n2|x−rn| converges form1­a.e. x ∈ R.

3.2.20. The Fourier transforms of Lebesgue integrable functions.
Let f : Rn → R or C be Lebesgue integrable over Rn. We define the function f̂ : Rn → C by

f̂(ξ) =
∫
Rn e

−2πix·ξf(x) dmn(x),

where x · ξ = x1ξ1+ · · ·xnξn is the Euclidean inner product. The function f̂ is called the Fourier
transform of f .
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(i) Prove that f̂1 + f2 = f̂1 + f̂2 and λ̂f = λf̂ .
(ii) If g(x) = f(x− a) formn­a.e. x ∈ Rn, prove that ĝ(ξ) = e−2πia·ξ f̂(ξ) for all ξ ∈ Rn.
(iii) If g(x) = e−2πia·xf(x) formn­a.e. x ∈ Rn, prove that ĝ(ξ) = f̂(ξ + a) for all ξ ∈ Rn.

(iv) If g(x) = f(x) formn­a.e. x ∈ Rn, prove that ĝ(ξ) = f̂(−ξ) for all ξ ∈ Rn.
(v) If T : Rn → Rn is a linear transformation with det(T ) 6= 0 and g(x) = f(Tx) for mn­a.e.
x ∈ Rn, prove that ĝ(ξ) = 1

| det(T )| f̂
(
(T ∗)−1(ξ)

)
for all ξ ∈ Rn, where T ∗ is the adjoint of T .

(vi) Prove that f̂ is continuous on Rn.
(vii) Prove that |f̂(ξ)| ≤

∫
Rn |f(x)| dmn(x) for every ξ ∈ Rn.

(viii) (The Riemann­Lebesgue Lemma) Prove that f̂(ξ) → 0 as |ξ| → +∞.
Hint. Prove that

∫
Rn e

−2πix·ξf(x) dmn(x) = 1
2

∫
Rn e

−2πix·ξ(f(x − ξ
2|ξ|2

)
− f(x)

)
dmn(x) and

then use the result of exercise 3.2.12.

3.2.21. Let T : Rn → Rn be an isometric linear transformation (see exercise 1.4.5). Prove that∫
Rn f ◦ T−1 dmn =

∫
Rn f dmn for every Lebesgue measurable f : Rn → R or C, provided that

at least one of the two integrals exists.

3.2.22. Let f : Rn → R orC. We say that f is 1­periodic if f = f ◦τ−1k for every k ∈ Zn. In other
words, f is 1­periodic if f(x1, . . . , xn) = f(x1 − k1, . . . , xn − kn) for every (x1, . . . , xn) ∈ Rn

and every (k1, . . . , kn) ∈ Zn.
(i) Let f be 1­periodic,A ∈ Ln and k ∈ Z. Prove that

∫
A f dmn exists if and only if

∫
τ−1
k (A) f dmn

exists and, in this case, we have
∫
A f dmn =

∫
τ−1
k (A) f dmn.

(ii) Let f be 1­periodic, and y ∈ Rn. Prove that
∫
[0,1)n f dmn exists if and only if

∫
τ−1
y ([0,1)n) f dmn

exists and, in this case, we have
∫
[0,1)n f dmn =

∫
τ−1
y ([0,1)n) f dmn.

3.3 Lebesgue­Stieltjes integrals.

Let −∞ ≤ a0 < b0 ≤ +∞. We know that every continuous f : (a0, b0) → R or C is Borel
measurable. On the other hand, also every monotone f : (a0, b0) → R is Borel measurable. This
is seen by observing that f−1(I) is an interval, and hence a Borel set, for every interval I in R.
Now, if F : (a0, b0) → R is an increasing function and µF is the induced Borel measure, then f ,
in both cases, satisfies the necessary measurability condition, and the integral

∫
(a0,b0)

f dµF exists
provided, as usual, that either

∫
(a0,b0)

f+ dµF < +∞ or
∫
(a0,b0)

f− dµF < +∞ in the case of
f : (a0, b0) → R, and that

∫
(a0,b0)

|f | dµF < +∞ in the case of f : (a0, b0) → C.
In particular, if f , besides being continuous or monotone, is also bounded on an interval S ⊆

(a0, b0) with µF (S) < +∞, then it is integrable over S with respect to µF .
We shall prove three classical results about Lebesgue­Stieltjes integrals.
Observe that the cases [a, b], [a, b), (a, b] and (a, b) for the interval S may give different corre­

sponding integrals
∫
S f dµF . This is because the one­point integral∫
{x} f dµF = f(x)µF ({x}) = f(x)(F (x+)− F (x−))

may not be zero.

Proposition 3.38. (Integration by parts) Let F,G : (a0, b0) → R be two increasing functions and
µF , µG be the induced Lebesgue­Stieltjes measures. Then∫

(a,b]G(x+) dµF (x) +
∫
(a,b] F (x−) dµG(x) = G(b+)F (b+)−G(a+)F (a+)

for all a, b ∈ (a0, b0) with a ≤ b. In this equality we may interchange F with G.
Similar equalities hold for the other types of intervals, provided we use the appropriate limits of
F,G at a, b at the right side of the above equality.
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Proof. We consider a sequence of partitions∆k = {c(k)0 , . . . , c
(k)
lk

} of [a, b] so that

limk→+∞max{c(k)j − c
(k)
j−1 | 1 ≤ j ≤ lk} = 0.

We also introduce the simple functions

gk =
∑lk

j=1G(c
(k)
j +)χ

(c
(k)
j−1,c

(k)
j ]
, fk =

∑lk
j=1 F (c

(k)
j−1+)χ

(c
(k)
j−1,c

(k)
j ]
.

It is clear that
G(a+) ≤ gk ≤ G(b+), F (a+) ≤ fk ≤ F (b−)

for all k.
For any x ∈ (a, b] we consider the interval (c(k)j−1, c

(k)
j ] containing x (where j depends upon both k

and x). Then gk(x) = G(c
(k)
j +) and fk(x) = F (c

(k)
j−1+). Since limk→+∞(c

(k)
j − c

(k)
j−1) = 0, we

have that limk→+∞ c
(k)
j−1 = limk→+∞ c

(k)
j = x, and so

limk→+∞ gk(x) = G(x+), limk→+∞ fk(x) = F (x−).

Now, we have that∑lk
j=1G(c

(k)
j +)(F (c

(k)
j +)− F (c

(k)
j−1+)) =

∫
(a,b] gk(x) dµF (x),∑lk

j=1 F (c
(k)
j−1+)(G(c

(k)
j +)−G(c

(k)
j−1+)) =

∫
(a,b] fk(x) dµG(x).

We apply the Dominated Convergence Theorem and we get

limk→+∞
∑lk

j=1G(c
(k)
j +)(F (c

(k)
j +)− F (c

(k)
j−1+)) =

∫
(a,b]G(x+) dµF (x),

limk→+∞
∑lk

j=1 F (c
(k)
j−1+)(G(c

(k)
j +)−G(c

(k)
j−1+)) =

∫
(a,b] F (x−) dµG(x).

Adding, we find

G(b+)F (b+)−G(a+)F (a+) =
∫
(a,b]G(x+) dµF (x) +

∫
(a,b] F (x−) dµG(x).

We work in the same way for all other types of intervals.

The next two results concern the reduction of Lebesgue­Stieltjes integrals to Lebesgue inte­
grals. This makes the calculation of the former more accessible in many situations.

Proposition 3.39. LetF : (a0, b0) → R be increasing and have a continuous derivative on (a0, b0).
Then

µF (E) =
∫
E F

′(x) dm1(x)

for every Borel set E ⊆ (a0, b0). Also∫
(a0,b0)

f(x) dµF (x) =
∫
(a0,b0)

f(x)F ′(x) dm1(x)

for every Borel measurable f : (a0, b0) → R or C for which either of the two integrals exists.

Proof. The assumptions on F imply that it is continuous and that F ′ ≥ 0 on (a0, b0). The Fun­
damental Theorem of Calculus for Riemann integrals implies that for every [a, b] ⊆ (a0, b0) we
have ∫

[a,b] F
′(x) dm1(x) = F (b)− F (a) = µF ([a, b]).

By the continuity of F , this equality holds for all intervals (a, b], [a, b), (a, b) in (a0, b0).
Now we define the Borel measure µ on (a0, b0) by

µ(E) =
∫
E F

′(x) dm1(x)
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for every Borel set E ⊆ (a0, b0). It is easy to see that µ is a measure indeed. Clearly, µ(∅) = 0,
and µ(E) ≥ 0 for all BorelE ⊆ (a0, b0). Also, the σ­additivity of µ is an immediate consequence
of Theorem 3.1.
Now we have µ(S) = µF (S) for every bounded interval S ⊆ (a0, b0). Then Proposition 1.45
implies that µ = µF , and so

µF (E) =
∫
E F

′(x) dm1(x)

for every Borel set E ⊆ (a0, b0).
Considering arbitrary linear combinations of characteristic functions, we get∫

(a0,b0)
ϕ(x) dµF (x) =

∫
(a0,b0)

ϕ(x)F ′(x) dm1(x)

for all Borel measurable simple functions ϕ : (a0, b0) → [0,+∞).
The rest is a standard exercise.

Proposition 3.40. Let F : (a0, b0) → R be increasing and G : (a, b) → R be bounded and have a
continuous derivative which is Lebesgue integrable over (a, b), where a0 < a < b < b0. Then,∫

(a,b)G(x) dµF (x) = G(b−)F (b−)−G(a+)F (a+)−
∫
(a,b) F (x−)G′(x) dm1(x)

= G(b−)F (b−)−G(a+)F (a+)−
∫
(a,b) F (x+)G′(x) dm1(x).

Proof. (a) Let us assume thatG is also increasing on (a, b). Then its extension asG(a+) on (a0, a]
and as G(b−) on [b, b0) is increasing on (a0, b0). We apply Proposition 3.38 and we get∫

(a,b)G(x) dµF (x) = G(b−)F (b−)−G(a+)F (a+)−
∫
(a,b) F (x−) dµG(x).

Now, the integral
∫
(a,b) F (x−)G′(x) dm1(x) exists, since F (x−) is bounded on (a, b) and G′ is

Lebesgue integrable over (a, b), and Proposition 3.39 implies∫
(a,b)G(x) dµF (x) = G(b−)F (b−)−G(a+)F (a+)−

∫
(a,b) F (x−)G′(x) dm1(x).

(b) In the general case, we take an arbitrary x0 ∈ (a, b), and we have that

G(x) = G(x0) +
∫
(x0,x)

G′(t) dm1(t)

for every x ∈ (a, b). Now, (G′)+ and (G′)− are non­negative, continuous and Lebesgue integrable
over (a, b), and we have G = G1 −G2 on (a, b), where

G1(x) = G(x0) +
∫
(x0,x)

(G′)+(t) dm1(t), G2(x) =
∫
(x0,x)

(G′)−(t) dm1(t)

for all x ∈ (a, b). By the continuity of (G′)+ and (G′)− and the Fundamental Theorem of Calculus,
we have that G′1 = (G′)+ ≥ 0 and G′2 = (G′)− ≥ 0 on (a, b). Hence, G1 and G2 are both
increasing with a continuous derivative which is Lebesgue integrable over (a, b), and so from (a)
we have∫

(a,b)Gi(x) dµF (x) = Gi(b−)F (b−)−Gi(a+)F (a+)−
∫
(a,b) F (x−)G′i(x) dm1(x)

for i = 1, 2. We subtract these two equalities and we get the desired equality.

From the proof of Proposition 3.40 it is worth keeping in mind the fact that an arbitrary G
with a continuous derivative integrable over an interval (a, b) can be decomposed as a difference,
G = G1 −G2, of two increasing functions with continuous derivatives integrable over (a, b).

Exercises.
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3.3.1. Consider the function g : R → R defined by g(x) = 1√
2π

∫ x
−∞ e

− 1
2
t2 dt.

(i) Prove that g is continuous, strictly increasing, with g(−∞) = 0 and g(+∞) = 1 (see exercise
3.2.13), and with continuous derivative g′(x) = 1√

2π
e−

1
2
x2 .

(ii) The Lebesgue­Stieltjes measure µg induced by g is called the distribution or measure of
Gauss. Prove that µg(R) = 1, that µg(E) = 1√

2π

∫
E e
− 1

2
x2
dx for every Borel set in R, and that∫

R f(x) dµg(x) =
1√
2π

∫ +∞
−∞ f(x)e−

1
2
x2
dx for every Borel measurable f : R → R orC for which

either of the two integrals exists.

3.3.2. (i) Consider the Cantor set C and the I0 = [0, 1], I1, I2, . . . which were used for its construc­
tion. Prove that the 2k−1 subintervals of Ik−1\Ik are the (a13 +· · ·+ ak−1

3k−1 +
1
3k
, a13 +· · ·+ ak−1

3k−1 +
2
3k
),

where each of a1, . . . , ak−1 takes the values 0 and 2.
(ii) Prove that the Cantor function f is constant f(x) = a1

22
+ · · ·+ ak−1

2k
+ 1

2k
on the above subin­

terval (a13 + · · ·+ ak−1

3k−1 + 1
3k
, a13 + · · ·+ ak−1

3k−1 + 2
3k
).

(iii) If G : (0, 1) → R has continuous derivative which is Lebesgue integrable over (0, 1), prove:∑+∞
k=1

∑
a1,...,ak−1∈{0,2}

(
a1
22

+ · · ·+ ak−1

2k
+ 1

2k

)(
G
(
a1
3 + · · ·+ ak−1

3k−1 + 2
3k

)
−G

(
a1
3 + · · ·+ ak−1

3k−1 + 1
3k

))
= G(1−)−

∫
(0,1)G(x) dµf (x).

(iv) In particular, prove that
∫
(0,1) x dµf (x) =

1
2 .

(v) Prove that
∫
(0,1) e

−2πiξx dµf (x) = e−πiξ limk→+∞
∏k

j=1 cos
(2πξ

3j

)
for every ξ ∈ R.

3.3.3. Let F,G : R → R be increasing and assume that FG is also increasing.
(i) Prove that µFG(E) =

∫
E G(x+) dµF (x) +

∫
E F (x−) dµG(x) for every Borel set E ⊆ R.

(ii) Prove that
∫
R f(x) dµFG(x) =

∫
R f(x)G(x+) dµF (x) +

∫
R f(x)F (x−) dµG(x) for every

Borel measurable f : R → R or C for which at least two of the three integrals exist.

3.3.4. If F : R → R is increasing and continuous and f : R → [0,+∞] is Borel measurable,
prove that

∫
R f(F (x)) dµF (x) =

∫ F (+∞)
F (−∞) f(t) dt.

Show, by example, that this may not be true if F is not continuous.

3.3.5. Riemann’s criterion for convergence of a series.
Assume F : R → [0,+∞) is increasing and g : (0,+∞) → [0,+∞) is decreasing. Let an ≥ 0
for all n and ♯{n | an ≥ g(x)} ≤ F (x) for all x ∈ (0,+∞) and

∫
(0,+∞) g(x) dµF (x) < +∞.

Prove that
∑+∞

n=1 an < +∞.

REDUCTION TO INTEGRALS OVER R.

Let (X,S, µ) be a measure space.

Definition. Let f : X → [0,+∞] be measurable. Then the function λf : [0,+∞) → [0,+∞],
defined by

λf (t) = µ({x ∈ X | t < f(x)}),

is called the distribution function of f .

Some properties of λf are easy to prove. It is obvious that λf is non­negative and decreasing
on [0,+∞). Also, continuity of µ from below implies that λf is continuous from the right on
[0,+∞). Hence, there exists some t0 ∈ [0,+∞] with the property that λf is +∞ on the interval
[0, t0) (which may be empty) and λf is finite on the interval (t0,+∞) (which may be empty).
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Proposition 3.41. (Chebychev) If f : X → [0,+∞] is measurable, then

λf (t) ≤ 1
t

∫
X f dµ

for every t ∈ (0,+∞).

Proof. We consider the set A = {x ∈ X | t < f(x)} ∈ S . Then

tλf (t) = tµ(A) = t
∫
X χA dµ ≤

∫
X f dµ,

since tχA ≤ f on X .

Proposition 3.42. Let f : X → [0,+∞] be measurable and G : R → R be increasing with
G(0−) = 0. Then ∫

X G(f(x)−) dµ(x) =
∫
[0,+∞) λf (t) dµG(t).

Moreover, if G has continuous derivative on (0,+∞), then∫
X G(f(x)) dµ(x) =

∫
(0,+∞) λf (t)G

′(t) dm1(t) + λf (0)G(0+).

In particular, ∫
X f(x) dµ(x) =

∫
(0,+∞) λf (t) dm1(t).

Proof. (a) Let ϕ be a non­negative measurable simple function onX with standard representation
ϕ =

∑m
j=1 κjχEj , where we omit the value 0. We rearrange so that 0 < κ1 < · · · < κm, and then

λϕ(t) =



µ(E1) + µ(E2) + · · ·+ µ(Em), if 0 ≤ t < κ1

µ(E2) + · · ·+ µ(Em), if κ1 ≤ t < κ2

· · ·
µ(Em), if κm−1 ≤ t < κm

0, if κm ≤ t

Then ∫
[0,+∞) λϕ(t) dµG(t) =

(
µ(E1) + µ(E2) + · · ·+ µ(Em)

)(
G(κ1−)−G(0−)

)
+
(
µ(E2) + · · ·+ µ(Em)

)(
G(κ2−)−G(κ1−)

)
· · ·
+ µ(Em)

(
G(κm−)−G(κm−1−)

)
= G(κ1−)µ(E1) +G(κ2−)µ(E2) + · · ·+G(κm−)µ(Em)

=
∫
X G(ϕ(x)−) dµ(x),

since G(ϕ(x)−) is a simple function taking value G(κj−) on each Ej and value G(0−) = 0 on
(E1 ∪ · · · ∪ Em)c.
(b) Now we consider any measurable f : X → [0,+∞] and any increasing sequence (ϕn) of non­
negative measurable simple functions on X so that limn→+∞ ϕn = f on X . Then (G(ϕn(x)−))
is an increasing sequence of functions so that

limn→+∞G(ϕn(x)−) = G(f(x)−)

for every x ∈ X , and so

limn→+∞
∫
X G(ϕn(x)−) dµ(x) =

∫
X G(f(x)−) dµ(x)
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by the Monotone Convergence Theorem.
Also (λϕn) is an increasing sequence of functions so that limn→+∞ λϕn = λf on [0,+∞). Hence,

limn→+∞
∫
[0,+∞) λϕn(t) dµG(t) =

∫
[0,+∞) λf (t) dµG(t)

by the Monotone Convergence Theorem.
Applying the result of (a) to each ϕn, we get

∫
X G(f(x)−) dµ(x) =

∫
[0,+∞) λf (t) dµG(t).

Now, Proposition 3.39 implies the second equality of the statement, and the special case G(t) = t
implies the last equality.

Exercises.

3.3.6. Let (X,S, µ) be a measure space and f : X → [0,+∞] be µ­integrable. Prove that
limt→+∞ tλf (t) = 0.

3.3.7. Let (X,S, µ) be a measure space and f : X → [0,+∞] be measurable. Prove that

1
2

∑
n∈Z 2

nλf (2
n) ≤

∫
X f(x) dµ(x) ≤

∑
n∈Z 2

nλf (2
n).

Conclude that f is integrable if and only if
∑

n∈Z 2
nλf (2

n) is finite.

3.3.8. Let (X,S, µ) be a measure space, f : X → [0,+∞] be measurable and 0 < p < +∞.
Prove that

∫
X f(x)p dµ(x) = p

∫ +∞
0 tp−1λf (t) dt.

3.3.9. Let (X,S, µ) be a measure space and f, g : X → [0,+∞] be measurable. The f, g are
called equidistributed if λf (t) = λg(t) for every t ∈ [0,+∞).
If f, g are equidistributed, prove that

∫
X f(x)p dµ(x) =

∫
X g(x)p dµ(x) for every p > 0.

Hint. See exercise 3.3.8.

3.3.10. Let (X,S, µ) be a measure space and ϕ, ψ : X → [0,+∞) be two measurable simple
functions, and let ϕ =

∑m
j=1 κjχEj and ψ =

∑n
i=1 λiχFi be their standard representations so that

0 < κ1 < · · · < κm and 0 < λ1 < · · · < λn (where we omit the possible value 0).
If ϕ and ψ are integrable, prove that they are equidistributed (see exercise 3.3.9) if and only if
m = n, κ1 = λ1, . . . , κm = λm and µ(E1) = µ(F1), . . . , µ(Em) = µ(Fm).

3.4 Integrals on Borel measure spaces.

Let X be a Hausdorff topological space and µ be a Borel measure on X . It is easy to see that
every continuous f : X → R or C, which is 0 outside some compact set of finite measure,
is integrable with respect to µ. Indeed, since f is continuous, it is Borel measurable. Also, let
K be a compact set with µ(K) < +∞ outside of which f is 0. Then |f | ≤ MχK , where
M = max{|f(x)| |x ∈ K} < +∞. Therefore,∫

X |f | dµ ≤M
∫
X χK dµ =Mµ(K) < +∞,

and so f is integrable.

APPROXIMATION BY CONTINUOUS FUNCTIONS.

Theorem 3.3. Let the topological space X be locally compact and Hausdorff and µ be a regular
Borel measure on X and let the Borel measurable f : X → R or C be integrable. Then for every
ϵ > 0 there is a continuous g : X → R or C which is 0 outside some compact set of finite measure
so that

∫
X |g − f | dµ < ϵ.
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Proof. By Proposition 3.29, there is an integrable Borel measurable simple function ϕ : X → R
or C so that ∫

X |ϕ− f | dµ < ϵ
2 .

Let ϕ =
∑m

k=1 κkχEk
, where E1, . . . , Em are pairwise disjoint Borel sets and all κk are 6= 0.

Since ϕ is integrable, we have that µ(Ek) < +∞ for all k.
From the regularity of µ, we have that there are compactKk and open Uk so thatKk ⊆ Ek ⊆ Uk

and µ(Uk \Kk) < η for all k, where η > 0 will be chosen appropriately in a moment.
Urysohn’s Lemma implies that there are continuous functions gk : X → [0, 1] so that gk = 1 on
Kk and supp(gk) is a compact subset of Uk.
Now we consider g =

∑m
k=1 κkgk.

Then g : X → R or C is continuous and equal to 0 outside some compact set of finite measure.
Indeed, g = 0 outside the compactK =

⋃m
k=1 supp(gk) with

µ(K) ≤
∑m

k=1 µ(Uk) ≤
∑m

k=1(µ(Ek) + η) < +∞.

Moreover, we have gk = 1 = χEk
on Kk, and gk = 0 = χEk

on U c
k , and |gk − χEk

| ≤ 1 on
Uk \Kk. Hence, ∫

X |gk − χEk
| dµ ≤ µ(Uk \Kk) < η.

Therefore, ∫
X |g − ϕ| dµ ≤

∑m
k=1 |κk|

∫
X |gk − χEk

| dµ < η
∑m

k=1 |κk|.

Now we choose η = ϵ
2
∑m

k=1 |κk| , and we get∫
X |g − ϕ| dµ < ϵ

2 .

Hence, ∫
X |g − f | dµ ≤

∫
X |g − ϕ| dµ+

∫
X |ϕ− f | dµ < ϵ

and the proof is complete.

We recall that Theorem 1.2 gives conditions on a Hausdorff topological space X and a Borel
measure µ on X so that µ is regular.
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Chapter 4

Product measures.

4.1 Product σ­algebra.

If I is a general set of indices, then the elements of the cartesian product
∏

i∈I Xi are the functions
x : I →

⋃
i∈I Xi with the property: x(i) ∈ Xi for every i ∈ I . It is customary to use the notation

xi, instead of x(i), for the value of x at i ∈ I and, accordingly, to use the notation (xi)i∈I for the
element x ∈

∏
i∈I Xi.

If I is a finite set, say I = {1, . . . , n}, we use the traditional notation (x1, . . . , xn) for the
element (xi)i∈{1,...,n} and we use the notation

∏n
i=1Xi orX1× · · · ×Xn for

∏
i∈{1,...,n}Xi. And

if I is countable, say I = N = {1, 2, . . .}, we write (x1, x2, . . .) for the element (xi)i∈N and we
write

∏+∞
i=1 Xi or X1 ×X2 × · · · for

∏
i∈NXi.

Definition. Let (Xi,Si) be a measurable space for every i ∈ I . We consider the σ­algebra of
subsets of the cartesian product

∏
i∈I Xi which is generated by the collection

C =
{∏

i∈I Ai

∣∣Ai 6= Xi for at most finitely many i ∈ I, and Ai ∈ Si if Ai 6= Xi

}
.

This σ­algebra S(C) is called the product σ­algebra of Si and it is denoted by⊗
i∈I Si.

In particular,
⊗n

i=1 Si is generated by the collection of all sets of the form A1 × · · · × An,
where Ai ∈ Si for all i = 1, . . . , n. Similarly,

⊗+∞
i=1 Si is generated by the collection of all sets

of the form A1 × · · · ×An ×Xn+1 ×Xn+2 × · · · , where n ∈ N and Ai ∈ Si for all i = 1, . . . , n.

Proposition 4.1. Let (Xi,Si) be a measurable space for every i ∈ I and Ci be a collection of
subsets of Xi so that Si = S(Ci) for every i ∈ I . Then

⊗
i∈I Si = S(C̃), where

C̃ =
{∏

i∈I Ai

∣∣Ai 6= Xi for at most finitely many i ∈ I, and Ai ∈ Ci if Ai 6= Xi

}
.

Proof. If C is the collection in the definition of
⊗

i∈I Si, then C̃ ⊆ C, and so S(C̃) ⊆ S(C).
Now we fix some j ∈ I , and for every Aj ⊆ Xj we define A∗j =

∏
i∈I Yi, where Yi = Xi for

i 6= j and Yj = Aj . We then consider the collection

S∗j = {Aj |Aj ⊆ Xj and A∗j ∈ S(C̃)}.

We can easily show that S∗j is a σ­algebra of subsets of Xj and that Cj ⊆ S∗j . Therefore, Sj =

S(Cj) ⊆ S∗j . This means that for every Aj ∈ Sj we have A∗j ∈ S(C̃).
Now, every element of C is a finite intersection (i.e. for a finite collection of indices j ∈ I) of sets
of the form A∗j , and so C ⊆ S(C̃). Hence, S(C) ⊆ S(C̃).

In particular,
⊗n

i=1 Si is generated by the collection of all sets of the form A1 × · · · × An,
where Ai ∈ Ci for all i = 1, . . . , n. Also,

⊗+∞
i=1 Si is generated by the collection of all sets of the

form A1 × · · · ×An ×Xn+1 ×Xn+2 × · · · , where n ∈ N and Ai ∈ Ci for all i = 1, . . . , n.

122



SECTIONS OF SETS AND FUNCTIONS.

Let x ∈
∏

i∈I Xi. Then x is a function with domain of definition I and values xi ∈ Xi for all
i ∈ I . Now, if J ⊆ I , then wemay consider the restriction xJ of x on J . Then xJ is a function with
domain of definition J and values (xJ)i = xi ∈ Xi for all i ∈ J . In other words, xJ ∈

∏
i∈J Xi.

If I = {1, . . . , n}, then we use the notation x = (x1, . . . , xn) ∈ X1 × · · · × Xn. Now, if
J = {i1, . . . , im} with 1 ≤ i1 < · · · < im ≤ n is a subset of I , then, accordingly, we use the
notation xJ = (xi1 , . . . , xim) ∈ Xi1 × · · · ×Xim . For example, if x = (x1, x2, x3, x4, x5), then
x{1,3,5} = (x1, x3, x5).

We may also consider the complement Jc = I \ J of J ⊆ I . Then, besides the restriction
xJ of x on J , we may also consider the restriction xJc of x on Jc. We have xJ ∈

∏
i∈J Xi

and xJc ∈
∏

i∈Jc Xi. Also, (xJ)i = xi ∈ Xi for all i ∈ J and (xJc)i = xi ∈ Xi for all
i ∈ Jc. Clearly, x uniquely determines xJ and xJc . Conversely, x is uniquely determined by its
restrictions xJ and xJc . Indeed, if y ∈

∏
i∈J Xi and z ∈

∏
i∈Jc Xi are given, then there is a unique

x ∈
∏

i∈I Xi so that xJ = y and xJc = z: we define xi = yi, if i ∈ J , and xi = zi, if i ∈ Jc.
For example, if x = (x1, x2, x3, x4, x5), then x{1,3,5} = (x1, x3, x5) and x{2,4} = (x2, x4). It

is obvious that x = (x1, x2, x3, x4, x5) uniquely determines the restrictions y = (x1, x3, x5) and
z = (x2, x4) and is uniquely determined by them.

Thus, we have an identification between
∏

i∈I Xi and
(∏

i∈J Xi

)
×
(∏

i∈Jc Xi

)
. We identify

the element x of the first space with the pair (y, z) of the second space, whenever y = xJ and z =
xJc . For example, we identify x = (x1, x2, x3, x4, x5) with (y, z) =

(
(x1, x3, x5), (x2, x4)

)
. It

must be stressed that these are formal identifications (logically supported by underlying bijections)
and not actual equalities.

Definition. Let A ⊆
∏

i∈I Xi and J ⊆ I and z ∈
∏

i∈Jc Xi. We define

Az =
{
y ∈

∏
i∈J Xi

∣∣ (y, z) ∈ A
}
.

We call Az the z­section of A.

It is clear that every z­section of A is a subset of
∏

i∈J Xi.
For example, if A ⊆ X1 × X2 × X3 × X4 × X5 and (x2, x4) ∈ X2 × X4, then we have

A(x2,x4) = {(x1, x3, x5) | (x1, x2, x3, x4, x5) ∈ A} ⊆ X1 ×X3 ×X5.

Definition. Let f :
∏

i∈I Xi → Y and J ⊆ I and z ∈
∏

i∈Jc Xi. We define fz :
∏

i∈J Xi → Y
by

fz(y) = f(y, z) for all y ∈
∏

i∈J Xi.

We call fz the z­section of f .

For example, if f : X1 ×X2 ×X3 ×X4 ×X5 → Y and (x2, x4) ∈ X2 ×X4, then f(x2,x4) :
X1×X3×X5 → Y is defined by f(x2,x4)(x1, x3, x5) = f(x1, x2, x3, x4, x5) for all (x1, x3, x5) ∈
X1 ×X3 ×X5.

Whenever Jc = {j} is a one­point set, then, for simplicity, we prefer to write Axj and fxj ,
instead of A(xj) and f(xj).

Proposition 4.2. Let (Xi,Si) be a measurable space for every i ∈ I and let J ⊆ I and z ∈∏
i∈Jc Xi. If A ⊆

∏
i∈I Xi belongs to

⊗
i∈I Si, then Az ⊆

∏
i∈J Xi belongs to

⊗
i∈J Si.

Proof. We fix z ∈
∏

i∈Jc Xi and we consider the collection S of all A ⊆
∏

i∈I Xi with the
property that Az ∈

⊗
i∈J Si.

We shall prove that S is a σ­algebra of subsets of
∏

i∈I Xi.
For the ∅ ⊆

∏
i∈I Xi we have ∅z = ∅ ∈

⊗
i∈J Si, and so ∅ ∈ S .

Let A ∈ S . Then Az ∈
⊗

i∈J Si. Hence,

(Ac)z = (Az)
c ∈

⊗
i∈J Si,
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and so Ac ∈ S .
Let An ∈ S for all n ∈ N. Then (An)z ∈

⊗
i∈J Si for all n ∈ N. Hence,(⋃+∞

n=1An

)
z
=

⋃+∞
n=1(An)z ∈

⊗
i∈J Si,

and so
⋃+∞

n=1An ∈ S .
Now we fix a k ∈ I and an Ak ∈ Sk and we consider the set A∗k =

∏
i∈I Yi, where Yi = Xi, if

i 6= k, and Yk = Ak. We observe that, if k ∈ J , then (A∗k)z =
∏

i∈J Yi, where Yi = Xi if i ∈ J ,
i 6= k, and Yk = Ak. Also, if k ∈ Jc, then (A∗k)z =

∏
i∈J Yi, where Yi = Xi for all i ∈ J . In

both cases we have that (A∗k)z ∈
⊗

i∈J Si, and so A∗k ∈ S .
Now we observe that every element in the original collection C which generates

⊗
i∈I Si is a

finite intersection of sets A∗k (for a finite collection of indices k ∈ I), and so C ⊆ S . Therefore,⊗
i∈I Si ⊆ S . Thus, if A ∈

⊗
i∈I Si, then A ∈ S , and so Az ∈

⊗
i∈J Si.

Proposition 4.3. Let (Xi,Si), (Y,S) be measurable spaces for every i ∈ I and let J ⊆ I and
z ∈

∏
i∈Jc Xi. If f :

∏
i∈I Xi → Y is (

⊗
i∈I Si,S)­measurable, then fz :

∏
i∈J Xi → Y is

(
⊗

i∈J Si,S)­measurable.

Proof. Let B ∈ S . Then f−1(B) ∈
⊗

i∈I Si. Since

(fz)
−1(B) = (f−1(B))z,

Theorem 4.1 implies that (fz)−1(B) ∈
⊗

i∈J Si.

The last two theorems say, in informal language, that sets or functions which are measurable
on a product space have all their sections measurable on the appropriate product subspaces.

PRODUCTS OF BOREL σ­ALGEBRAS.

Example.We consider Rn =
∏n

i=1R, and, for each copy of R, we consider the collection of all
bounded 1­dimensional intervals as a generator of B1. Proposition 4.1 implies that the collection
of all bounded n­dimensional intervals is a generator of

⊗n
i=1 B1. But we already know that the

same collection is a generator of Bn. Therefore,

Bn =
⊗n

i=1 B1.

This can be generalised.
If n1 + · · ·+ nk = n, we formally identify the typical element (x1, . . . , xn) ∈ Rn with(

(x1, . . . , xn1), (xn1+1, . . . , xn1+n2), . . . , (xn1+···+nk−1+1, . . . , xn1+···+nk
)
)
,

i.e. with the typical element of
∏k

j=1Rnj . In other words, we consider the identification:

Rn =
∏k

j=1Rnj .

Now, Proposition 4.1 implies that
⊗k

j=1 Bnj is generated by the collection of all
∏k

j=1Aj , where
Aj is an nj­dimensional bounded interval. By the above identification,

∏k
j=1Aj is the typical

n­dimensional bounded interval, and so
⊗k

j=1 Bnj is generated by the collection of all bounded
intervals in Rn. But the same collection generates Bn, and we conclude that

Bn =
⊗k

j=1 Bnj .

LetX be any non­empty set. We recall that a topology T ofX is any collection of subsets ofX
which contains ∅ andX and which is closed under arbitrary unions and under finite intersections.
The elements of a topology T ofX are called open subsets ofX , and the complements of the open
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subsets of X are called closed subsets of X . A set X with a topology of X is called topological
space.

It is well known (and trivial to show) that any intersection of topologies of X is a topology
of X . Now, let C be an arbitrary collection of subsets of X . We consider all the topologies of X
which include C, and we take their intersection. This is, clearly, the smallest topology ofX which
includes C, it is called the topology ofX generated by C and it is denoted T (C).

Definition. Let Xi be a topological space with topology Ti for every i ∈ I . We consider the
collection

C =
{∏

i∈I Ui

∣∣Ui 6= Xi for at most finitely many i ∈ I, and Ui ∈ Ti if Ui 6= Xi

}
.

Then T (C) is called the product topology of
∏

i∈I Xi.

We say that a topological space X is second countable if there is a countable collection of
open subsets of X such that every open subset of X can be written as a (necessarily, countable)
union of open sets contained in this collection.

Proposition 4.4. Let Xi be a topological space for every i ∈ I and let X =
∏

i∈I Xi have the
product topology. Then

⊗
i∈I BXi ⊆ BX . If, moreover, I is countable and every Xi is second

countable, then
⊗

i∈I BXi = BX .

Proof. Let Ti be the topology of Xi for every i ∈ I . Then BXi = S(Ti). Proposition 4.1 implies
that

⊗
i∈I BXi = S(C), where

C =
{∏

i∈I Ui

∣∣Ui 6= Xi for at most finitely many i ∈ I, and Ui ∈ Ti if Ui 6= Xi

}
.

But, by the definition of the product topology T of X , we have that C ⊆ T ⊆ S(T ) = BX .
Therefore,

⊗
i∈I BXi ⊆ BX .

Now, let I be countable and everyXi be second countable. SinceXi is second countable, there is
a countable collection Ci of open subsets ofXi so that every open subset ofXi can be written as a
countable union of sets contained in Ci. We consider

C̃ =
{∏

i∈I Ui

∣∣Ui 6= Xi for at most finitely many i ∈ I, and Ui ∈ Ci if Ui 6= Xi

}
.

Then C̃ is countable. Moreover, since C̃ ⊆ C, we get S(C̃) ⊆ S(C) =
⊗

i∈I BXi .
Now, we consider the collection T ∗ which contains ∅ and all unions (necessarily, countable) of
elements of C̃. It is clear that T ∗ ⊆ S(C̃) ⊆

⊗
i∈I BXi . Every finite intersection of elements of

T ∗ is either ∅ or a countable union of finite intersections of elements of C̃. But it is easy to see that
every finite intersection of elements of C̃ belongs to C and so it is a countable union of elements
of C̃. Therefore, T ∗ is closed under finite intersections, and, since it is obviously closed under
arbitrary unions, it is a topology of X .
We have already mentioned that every element of C is a union of elements of C̃, and so C ⊆ T ∗.
Thus, T = T (C) ⊆ T ∗ ⊆

⊗
i∈I BXi . Therefore, BX = S(T ) ⊆

⊗
i∈I BXi .

Example.We considerRn =
∏n

i=1R, where I = {1, . . . , n}. We also consider J = {i1, . . . , im}
with 1 ≤ i1 < · · · < im ≤ n. We take k = n − m and we write Jc = {i′1, . . . , i′k} with
1 ≤ i′1 < · · · < i′k ≤ n.
We naturally identify

∏
i∈J R with Rm, writing each y = (xi1 , . . . , xim) as y = (y1, . . . , ym). We

also identify
∏

i∈Jc R with Rk, writing each z = (xi′1 , . . . , xi′k) as z = (z1, . . . , zk).
Therefore,

⊗
i∈J B1 = Bm and

⊗
i∈Jc B1 = Bk. Also, Bn = Bm ⊗ Bk.

Now, if A is a Borel set in Rn, then, for arbitrary z ∈
∏

i∈Jc R = Rk, the z­section Az of A is a
Borel set in Rm.
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Example.We consider any E ⊆ R, which is not a Borel set, and A = {(x, x) ∈ R2 |x ∈ E}.
Since all 1­dimensional sections of A are either empty or one­point sets, they are Borel sets in R.
We shall see that A is not a Borel set in R2.
Indeed, we assume thatA is a Borel set in R2, and we consider the invertible linear transformation
T : R2 → R2 defined by T (x1, x2) =

(
x1+x2

2 , x1−x2
2

)
.

Then T (A) = {(x, 0) |x ∈ E} is a Borel set in R2, and so all 1­dimensional sections of T (A)
must be Borel sets in R. In particular, the (horizontal) section T (A)0 = {x |x ∈ E} = E must be
a Borel set in R, and so we arrive at a contradiction.

Exercises.

4.1.1. (i) The function πj :
∏

i∈I Xi → Xj defined by πj(x) = xj for all x = (xi)i∈I ∈
∏

i∈I Xi,
is called the j­th projection of

∏
i∈I Xi or the projection of

∏
i∈I Xi onto its j­th componentXj .

If Aj ⊆ Xj , prove that π−1j (Aj) =
∏

i∈I Yi, where Yi = Xi, if i ∈ I , i 6= j, and Yj = Aj .
(ii) Let (Xi,Si) be a measurable space for every i ∈ I . Prove that the product σ­algebra

⊗
i∈I Si is

the smallestσ­algebraS of subsets of
∏

i∈I Xi such thatπj :
∏

i∈I Xi → Xj is (S,Sj)­measurable
for every j ∈ I .
(iii) Let (Xi,Si) be a measurable space for every i ∈ I , and (Y,S) be a measurable space, and
i0 ∈ I , and g : Xi0 → Y be (Si0 ,S)­measurable. If we define f :

∏
i∈I Xi → Y by f

(
(xi)i∈I

)
=

g(xi0), prove that f is (
⊗

i∈I Si,S)­measurable.
(iv) Let (Xi, Ti) be a topological space for every i ∈ I . Prove that the product topology is the
smallest topology on

∏
i∈I Xi such that πj :

∏
i∈I Xi → Xj is continuous for every j ∈ I .

4.1.2. Let (Xi,Si) be a measurable space for every i ∈ I and let Ci be a collection of subsets of
Xi so that Si = S(Ci) for every i ∈ I . Prove that

⊗
i∈I Si = S(C̃), where

C̃ = {
∏

i∈I Ei |Ei 6= Xi for at most countably many i ∈ I, and Ei ∈ Ci if Ei 6= Xi}.

4.1.3. Let Rn
∗ = Rn \ {0}.

(i) If U is open in Rn
∗ , prove that R+U = {rx | r > 0, x ∈ U} is open in Rn

∗ .
(ii) If A is a Borel set in Rn

∗ , prove that R+A is a Borel set in Rn
∗ .

4.2 Product measure.

In this section we shall limit ourselves to cartesian products of finitely many spaces and, for sim­
plicity, we shall work with two measure spaces.

We fix the measure spaces (X1,S1, µ1), (X2,S2, µ2) and (X1 ×X2,S1 ⊗S2). We know that
S1 ⊗ S2, by its definition, is generated by the collection

C = {A1 ×A2 |A1 ∈ S1, A2 ∈ S2}.

We observe that X1 ×X2 and ∅ × ∅ = ∅ belong to C.
The elements of C play the same role that n­dimensional intervals play for the introduction

of Lebesgue measure on Rn. We agree to call these sets (S1 ⊗ S2)­measurable intervals or, for
simplicity, justmeasurable intervals inX1 ×X2, a term which will be justified by Theorem 4.3,
and denote them by

R = A1 ×A2.

Proposition 4.5. TheA = {R1∪· · ·∪Rm |m ∈ N, R1, . . . , Rm pairwise disjoint elements of C}
is an algebra of subsets of X1 ×X2.

Proof. Similar to the proof of Proposition 1.11. We first prove thatR′∩R′′ ∈ C for allR′, R′′ ∈ C.
This implies that A is closed under finite intersections. Then we prove that Rc ∈ A for every
R ∈ C. This implies thatA is closed under complements. Finally, we prove thatA is closed under
finite unions. The details are left to the reader as an exercise.
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For each R = A1 ×A2 ∈ C, we define the quantity

τ(R) = µ1(A1)µ2(A2),

which plays the role of volume of the measurable interval R.

Definition. For every E ⊆ X1 ×X2 we define

µ∗(E) = inf
{∑+∞

i=1 τ(Ri)
∣∣Ri ∈ C for all i, and E ⊆

⋃+∞
i=1 Ri

}
Theorem 1.8 implies that µ∗ : P(X1 ×X2) → [0,+∞] is an outer measure on X1 ×X2.

Proposition 4.6. Let R,Ri be measurable intervals for every i ∈ N.
(i) If R ⊆

⋃+∞
i=1 Ri, then τ(R) ≤

∑+∞
i=1 τ(Ri).

(ii) If R =
⋃+∞

i=1 Ri and the Ri are pairwise disjoint, then τ(R) =
∑+∞

i=1 τ(Ri).

Proof. (i) Let R = A1 ×A2 and Ri = Ai,1 ×Ai,2.
From A1 ×A2 ⊆

⋃+∞
i=1 (Ai,1 ×Ai,2), we get that

χA1(x1)χA2(x2) = χA1×A2(x1, x2) ≤
∑+∞

i=1 χAi,1×Ai,2(x1, x2) =
∑+∞

i=1 χAi,1(x1)χAi,2(x2)

for every x1 ∈ X1, x2 ∈ X2. Integrating over X1 with respect to µ1, we find

µ1(A1)χA2(x2) ≤
∑+∞

i=1 µ1(Ai,1)χAi,2(x2)

for every x2 ∈ X2. Integrating the last relation overX2 with respect to µ2, we get

µ1(A1)µ2(A2) ≤
∑+∞

i=1 µ1(Ai,1)µ2(Ai,2).

(ii) We use equalities everywhere in the above calculations.

The next result justifies the term measurable interval for each R ∈ C.

Theorem 4.1. Every R ∈ C is µ∗­measurable, and µ∗(R) = τ(R). Moreover, S1⊗S2 is included
in the σ­algebra Sµ∗ of µ∗­measurable subsets of X1 ×X2.

Proof. (a) Let R ∈ C. From R ⊆ R, we get µ∗(R) ≤ τ(R). Proposition 4.4 implies τ(R) ≤∑+∞
i=1 τ(Ri) for every covering R ⊆

⋃+∞
i=1 Ri with Ri ∈ C. Hence, τ(R) ≤ µ∗(R), and we

conclude that µ∗(R) = τ(R).
(b) Let R,R′ ∈ C. Proposition 4.3 implies that there are pairwise disjoint R1, . . . , Rm ∈ C so that
R′ \R = R1 ∪ · · · ∪Rm. By the subadditivity of µ∗, the result of (a) and Proposition 4.4, we get

µ∗(R′ ∩R) + µ∗(R′ \R) ≤ µ∗(R′ ∩R) + µ∗(R1) + · · ·+ µ∗(Rn)

= τ(R′ ∩R) + τ(R1) + · · ·+ τ(Rn) = τ(R′).

(c) Let R ∈ C and E ⊆ X1 × X2 with µ∗(E) < +∞. For any ϵ > 0 there is a covering
E ⊆

⋃+∞
i=1 Ri with Ri ∈ C such that

∑+∞
i=1 τ(Ri) < µ∗(E) + ϵ. By the result of (b) and the

subadditivity of µ∗, we get

µ∗(E ∩R) + µ∗(E \R) ≤
∑+∞

i=1

(
µ∗(Ri ∩R) + µ∗(Ri \R)

)
≤

∑+∞
i=1 τ(Ri) < µ∗(E) + ϵ.

Since ϵ is arbitrary, we get µ∗(E ∩ R) + µ∗(E \ R) ≤ µ∗(E), and we conclude that R is µ∗­
measurable.
Therefore, C ⊆ Sµ∗ . Since S1 ⊗ S2 is generated by C, we have that S1 ⊗ S2 ⊆ Sµ∗ .
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Definition. The measure induced from µ∗ is called the product measure of µ1, µ2 and it is denoted

µ1 ⊗ µ2.

We denote by
Sµ1⊗µ2

the σ­algebra Sµ∗ of µ∗­measurable subsets of X1 ×X2.
Thus, (X1 ×X2,Sµ1⊗µ2 , µ1 ⊗ µ2) is a complete measure space.

Theorem 4.3 implies that
S1 ⊗ S2 ⊆ Sµ1⊗µ2

and
(µ1 ⊗ µ2)(A1 ×A2) = µ1(A1)µ2(A2) for all A1 ∈ S1, A2 ∈ S2.

It is very common to consider the restriction, also denoted µ1 ⊗ µ2, of µ1 ⊗ µ2 on S1 ⊗ S2.

Theorem 4.2. If µ1 and µ2 are σ­finite measures, then
(i) µ1⊗µ2 is the unique measure µ on (X1×X2,S1⊗S2) such that µ(A1×A2) = µ1(A1)µ2(A2)
for every A1 ∈ S1, A2 ∈ S2,
(ii) (X1 ×X2,Sµ1⊗µ2 , µ1 ⊗ µ2) is the completion of (X1 ×X2,S1 ⊗ S2, µ1 ⊗ µ2).

Proof. (i) We consider the algebraA of subsets ofX1×X2 which is described in Proposition 4.3.
Let µ be any measure on (X1 ×X2,S1 ⊗ S2) such that µ(R) = (µ1 ⊗ µ2)(R) for every R ∈ C.
Then, by additivity of measures, we have that µ(R1 ∪ · · · ∪Rm) = (µ1 ⊗µ2)(R1 ∪ · · · ∪Rm) for
all pairwise disjoint R1, . . . , Rm ∈ C. Therefore, the measures µ and µ1 ⊗ µ2 are equal on A.
Since µ1, µ2 are σ­finite, there exist Ai,1 ∈ S1, Ai,2 ∈ S2 with µ1(Ai,1) < +∞, µ2(Ai,2) < +∞
and Ai,1 ↑ X1, Ai,2 ↑ X2. This implies that the Ri = Ai,1 × Ai,2 ∈ C have the property that
Ri ↑ X1 ×X2 and that µ(Ri) = (µ1 ⊗ µ2)(Ri) = µ1(Ai,1)µ2(Ai,2) < +∞ for every i.
Since S1 ⊗ S2 = S(C) = S(A), Theorem 1.7 implies that µ and µ1 ⊗ µ2 are equal on S1 ⊗ S2.
(ii) (X1 × X2,Sµ1⊗µ2 , µ1 ⊗ µ2) is a complete extension of (X1 × X2,S1 ⊗ S2, µ1 ⊗ µ2), and
so it is an extension of the completion (X,S1 ⊗ S2, µ1 ⊗ µ2). Hence, it is enough to prove that
Sµ1⊗µ2 ⊆ S1 ⊗ S2.
Let A ∈ Sµ1⊗µ2 with (µ1 ⊗ µ2)(A) < +∞.
For each k ∈ N there is a covering A ⊆

⋃+∞
i=1 Rk,i by measurable intervals so that∑+∞

i=1 τ(Rk,i) < (µ1 ⊗ µ2)(A) +
1
k .

We define Bk =
⋃+∞

i=1 Rk,i ∈ S1 ⊗ S2, and we have that A ⊆ Bk and

(µ1 ⊗ µ2)(A) ≤ (µ1 ⊗ µ2)(Bk) < (µ1 ⊗ µ2)(A) +
1
k .

Now, we define B =
⋂+∞

k=1Bk ∈ S1 ⊗ S2. Then A ⊆ B and (µ1 ⊗ µ2)(A) = (µ1 ⊗ µ2)(B).
Therefore, (µ1 ⊗ µ2)(B \A) = 0.
Now, let A ∈ Sµ1⊗µ2 with (µ1 ⊗ µ2)(A) = +∞.
We consider the specific measurable intervals Ri which we used in the proof of part (i), and the
Ai = A ∩ Ri. These sets have (µ1 ⊗ µ2)(Ai) < +∞, and, by the previous paragraph, there are
Bi ∈ S1 ⊗S2 so that Ai ⊆ Bi and (µ1 ⊗ µ2)(Bi \Ai) = 0. We define B =

⋃+∞
i=1 Bi ∈ S1 ⊗S2.

Then A ⊆ B, and, since B \A ⊆
⋃+∞

i=1 (Bi \Ai), we conclude that (µ1 ⊗ µ2)(B \A) = 0.
We proved that for eachA ∈ Sµ1⊗µ2 there isB ∈ S1⊗S2 so thatA ⊆ B and (µ1⊗µ2)(B\A) = 0.
Considering B \ A, there is C ∈ S1 ⊗ S2 so that B \ A ⊆ C and (µ1 ⊗ µ2)

(
C \ (B \ A)

)
= 0.

Of course, (µ1 ⊗ µ2)(C) = 0.
Now we observe thatA = (B \C)∪ (A∩C), whereB \C ∈ S1⊗S2 andA∩C ⊆ C ∈ S1⊗S2

with (µ1 ⊗ µ2)(C) = 0. This says that A ∈ S1 ⊗ S2.
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Now we shall examine the influence to the product measure space of replacing the measure
spaces (X1,S1, µ1), (X2,S2, µ2) with their completions (X1,S1, µ1), (X2,S2, µ2).

Theorem 4.3. (i) The measure spaces (X1,S1, µ1), (X2,S2, µ2) induce the same product measure
space as their completions (X1,S1, µ1), (X2,S2, µ2). Namely,

(X1 ×X2,Sµ1⊗µ2 , µ1 ⊗ µ2) = (X1 ×X2,Sµ1⊗µ2 , µ1 ⊗ µ2).

Moreover, the above product measure space is an extension of both (X1 ×X2,S1 ⊗ S2, µ1 ⊗ µ2)
and (X1 ×X2,S1 ⊗ S2, µ1 ⊗ µ2), of which the second is an extension of the first.
(ii) If µ1 and µ2 are σ­finite measures, then (X1×X2,Sµ1⊗µ2 , µ1⊗µ2) is the completion of both
(X1 ×X2,S1 ⊗ S2, µ1 ⊗ µ2) and (X1 ×X2,S1 ⊗ S2, µ1 ⊗ µ2).

Proof. (i) We recall that to construct the product measure space (X1 ×X2,Sµ1⊗µ2 , µ1 ⊗ µ2), we
consider all (S1 ⊗S2)­measurable intervals of the form R = A1 ×A2 for any A1 ∈ S1, A2 ∈ S2,
and we define the outer measure

µ∗(E) = inf
{∑+∞

i=1 τ(Ri)
∣∣Ri are (S1 ⊗ S2)­measurable intervals, and E ⊆

⋃+∞
i=1 Ri

}
,

where τ(R) = µ1(A1)µ2(A2) for all R = A1 × A2. Similarly, to construct the product measure
space (X1 × X2,Sµ1⊗µ2 , µ1 ⊗ µ2), we consider all (S1 ⊗ S2)­measurable intervals of the form
R = A1 ×A2 for any A1 ∈ S1, A2 ∈ S2, and we define the outer measure

ν∗(E) = inf
{∑+∞

i=1 σ(Ri)
∣∣Ri are (S2 ⊗ S2)­measurable intervals, and E ⊆

⋃+∞
i=1 Ri

}
,

where σ(R) = µ1(A1)µ2(A2) for all R = A1 ×A2.
Our first task will be to prove that the two outer measures µ∗ and ν∗ are identical.
We observe that all (S1 ⊗ S2)­measurable intervals R are at the same time (S1 ⊗ S2)­measurable
and that σ(R) = τ(R) for them. Hence, ν∗(E) ≤ µ∗(E) for every E ⊆ X1 ×X2.
Now let E ⊆ X1 ×X2 with ν∗(E) < +∞, and let ϵ > 0. Then there is a covering E ⊆

⋃+∞
i=1 Ri

with (S1 ⊗ S2)­measurable intervals Ri so that∑+∞
i=1 σ(Ri) < ν∗(E) + ϵ.

For all i we haveRi = Ai,1×Ai,2 withAi,1 ∈ S1, Ai,2 ∈ S2. Then there areBi,1 ∈ S1, Bi,2 ∈ S2

so that Ai,1 ⊆ Bi,1, Ai,2 ⊆ Bi,2 and µ1(Ai,1) = µ1(Bi,1), µ2(Ai,2) = µ2(Bi,2). We form the
(S1 ⊗ S2)­measurable intervals R′i = Bi,1 × Bi,2 and we have Ri ⊆ R′i and σ(Ri) = τ(R′i) for
all i. We now have a covering E ⊆

⋃+∞
i=1 R

′
i with (S1 ⊗ S2)­measurable intervals R′i, and this

implies
µ∗(E) ≤

∑+∞
i=1 τ(R

′
i) =

∑+∞
i=1 σ(Ri) < ν∗(E) + ϵ.

Hence, µ∗(E) ≤ ν∗(E). If ν∗(E) = +∞, then µ∗(E) ≤ ν∗(E) is obviously true.
We conclude that µ∗(E) = ν∗(E) for every E ⊆ X1 ×X2.
The next step in forming the product measures is to apply Caratheodory’s Theorem to the common
outer measure µ∗ = ν∗, and we find the common complete product measure space

(X1 ×X2,Sµ1⊗µ2 , µ1 ⊗ µ2) = (X1 ×X2,Sµ1⊗µ2 , µ1 ⊗ µ2)

where Sµ1⊗µ2 = Sµ1⊗µ2 is the symbol we use for Sµ∗ = Sν∗ , and µ1 ⊗ µ2 = µ1 ⊗ µ2 is the
restriction of µ∗ = ν∗ on Sµ∗ = Sν∗ .
Finally, Theorem 4.3 says that S1 ⊗ S2 and S1 ⊗ S2 are included in Sµ1⊗µ2 and, since every
(S1 ⊗ S2)­measurable interval is also a (S1 ⊗ S2)­measurable interval, we have that S1 ⊗ S2 is
included in S1 ⊗ S2. Thus, S1 ⊗ S2 ⊆ S2 ⊗ S2 ⊆ Sµ1⊗µ2 .
(ii) The proof is immediate from Theorem 4.4.
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The most basic application of Theorem 4.5 (in its formulation with more than two components)
is related to the n­dimensional Lebesgue measure. The next result is no surprise, since the n­
dimensional Lebesgue measure of any interval in Rn is equal to the product of the 1­dimensional
Lebesgue measures of its edges: mn

(∏n
j=1[aj , bj ]

)
=

∏n
j=1m1([aj , bj ]).

Theorem 4.4. Let n = n1 + · · ·+ nk.
(i) The Lebesgue measure space (Rn,Ln,mn) is the product measure space of the Borel measure
spaces (Rnj ,Bnj ,mnj ) and, at the same time, the product measure space of the Lebesgue measure
spaces (Rnj ,Lnj ,mnj ).
(ii) The Lebesgue measure space (Rn,Ln,mn) is the completion of both (Rn,

⊗k
j=1 Bnj ,mn) =

(Rn,Bn,mn) and (Rn,
⊗k

j=1 Lnj ,mn), of which the second is an extension of the first.

Proof. We know that
⊗k

j=1 Bnj = Bn, that (Rnj ,Lnj ,mnj ) is the completion of (Rnj ,Bnj ,mnj ),
and that mnj is a σ­finite measure. Hence, Theorem 4.5 implies that the Borel measure spaces
(Rnj ,Bnj ,mnj ) and the Lebesgue measure spaces (Rnj ,Lnj ,mnj ) induce the same product mea­
sure space (Rn,S⊗k

j=1 mnj
,
⊗k

j=1mnj ), and that this is the completion of both measure spaces

(Rn,Bn,
⊗k

j=1mnj ) and (Rn,
⊗k

j=1 Lnj ,
⊗k

j=1mnj ), of which the second is an extension of the
first.
Theorem 4.3 implies that

(⊗k
j=1mnj

)
(R) =

∏k
j=1mnj (Aj) for every Borel measurable inter­

val R =
∏k

j=1Aj . In particular,
(⊗k

j=1mnj

)
(S) = voln(S) for every bounded interval S in

Rn. Now Theorem 1.13 implies that
⊗k

j=1mnj = mn on Bn. Hence, (Rn,Bn,
⊗k

j=1mnj ) =
(Rn,Bn,mn).
The proof finishes, since, by Theorem 1.13, (Rn,Ln,mn) is the completion of (Rn,Bn,mn).

It is, perhaps, surprising that, although the Lebesgue measure spaces (Rnj ,Lnj ,mnj ) are com­
plete, the product (Rn,

⊗k
j=1 Lnj ,mn) is not complete (when k ≥ 2, of course).

Example.We consider any non­Lebesgue set A ⊆ R, and the E = A × {0} × · · · × {0} ⊆ Rn.
We also consider the Lebesgue measurable intervalR = R×{0}× · · ·×{0} ⊆ Rn. We have that
E ⊆ R and mn(R) = m1(R)m1({0}) · · ·m1({0}) = 0. If we assume that (Rn,

⊗n
j=1 L1,mn)

is complete, then we conclude thatE ∈
⊗n

j=1 L1. We now take z = (0, . . . , 0) ∈ Rn−1 and, then,
the section Ez = A must belong to L1. This is not true, and so we arrive at a contradiction.

Exercises.

4.3 Multiple integrals.

The purpose of this section is to describe the mechanism which reduces the calculation of product
measures of subsets of cartesian products and of integrals of functions defined on cartesian products
to the calculation of the measures or, respectively, the integrals of their sections. The gain is
obvious: the reduced calculations are performed over sets of lower dimension.

As in the previous section, for the sake of simplicity, we restrict to the case of two measure
spaces.

We recall that, if E ⊆ X1 ×X2 and x1 ∈ X1, then the x1­section of E is defined by

Ex1 = {x2 ∈ X2 | (x1, x2) ∈ E} ⊆ X2.

Similarly, if x2 ∈ X2, then the x2­section of E is defined by

Ex2 = {x1 ∈ X1 | (x1, x2) ∈ E} ⊆ X1.

We do not write Ex2 in order to avoid confusion with Ex1 .
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Theorem 4.5. Let (X1,S1, µ1) and (X2,S2, µ2) be σ­finite and let (X1 ×X2,S1 ⊗ S2, µ1 ⊗ µ2)
be their restricted product measure space.
If E ∈ S1 ⊗ S2, then Ex1 ∈ S2 for every x1 ∈ X1 and Ex2 ∈ S1 for every x2 ∈ X2. Moreover,
the function x1 7→ µ2(Ex1) is S1­measurable, the function x2 7→ µ1(E

x2) is S2­measurable, and

(µ1 ⊗ µ2)(E) =
∫
X1
µ2(Ex1) dµ1(x1) =

∫
X2
µ1(E

x2) dµ2(x2).

Proof. We observe that the first statement, namely thatEx1 ∈ S2 for every x1 ∈ X1 andEx2 ∈ S1

for every x2 ∈ X2, is a direct consequence of Theorem 4.1 and it holds without the assumption
about the σ­finiteness of µ1, µ2.
We denote N the collection of all E ∈ S1 ⊗ S2 which have all the properties in the conclusion of
the theorem.
(a) Every measurable interval R = A1 ×A2 belongs to N .
Indeed, Rx1 = ∅, if x1 /∈ A1, and Rx1 = A2, if x1 ∈ A1. Hence, µ2(Rx1) = µ2(A2)χA1(x1) for
every x1 ∈ X1, and so the function x1 7→ µ2(Rx1) is S1­measurable. Moreover, we have∫

X1
µ2(Rx1) dµ1(x1) = µ2(A2)

∫
X1
χA1 dµ1 = µ2(A2)µ1(A1) = (µ1 ⊗ µ2)(R).

The same arguments hold for x2­sections.
(b) Let E1, . . . , Em ∈ N be pairwise disjoint. Then E = E1 ∪ · · · ∪ Em ∈ N .
Indeed, from Ex1 = (E1)x1 ∪ · · · ∪ (Em)x1 for every x1 ∈ X1, we have that Ex1 ∈ S2 for every
x1 ∈ X1 and µ2(Ex1) = µ2((E1)x1) + · · ·+ µ2((Em)x1) for every x1 ∈ X1. Then the function
x1 7→ µ2(Ex1) is S1­measurable, and∫
X1
µ2(Ex1) dµ1(x1) =

∑m
j=1

∫
X1
µ2((Ej)x1) dµ1(x1) =

∑m
j=1(µ1⊗µ2)(Ej) = (µ1⊗µ2)(E).

The same arguments hold for x2­sections.
(c) Let En ∈ N for every n ∈ N and En ↑ E. Then E ∈ N .
Indeed, from (En)x1 ↑ Ex1 for every x1 ∈ X1, we have that Ex1 ∈ S2 for every x1 ∈ X1.
Continuity of µ2 from below implies that µ2((En)x1) ↑ µ2(Ex1) for every x1 ∈ X1, and so
the function x1 7→ µ2(Ex1) is S1­measurable. By continuity of µ1 ⊗ µ2 from below and by the
Monotone Convergence Theorem, we get (µ1 ⊗ µ2)(E) =

∫
X1
µ2(Ex1) dµ1(x1).

The same can be proved, symmetrically, for x2­sections.
(d) Let R = A1×A2 be any measurable interval with µ1(A1) < +∞ and µ2(A2) < +∞, and let
NR be the collection of all sets E ∈ S1 ⊗ S2 for which E ∩R ∈ N .
If En ∈ NR for all n and En ↓ E, then E ∈ NR.
Indeed, En∩R ↓ E∩R, and so (En∩R)x1 ↓ (E∩R)x1 for every x1 ∈ X1. Hence, (E∩R)x1 ∈
S2 for every x1 ∈ X1. Now, for every x1 ∈ X1 we have (E1 ∩ R)x1 ⊆ Rx1 . Since either
Rx1 = A2 or Rx1 = ∅, and since µ2(A2) < +∞, by the continuity of µ2 from above, we find
µ2

(
(En ∩R)x1

)
↓ µ2

(
(E ∩R)x1

)
for every x1 ∈ X1. Hence, the function x1 7→ µ2

(
(E ∩R)x1

)
is S1­measurable. Now, from our calculations in (a) we have that µ2

(
(En ∩R)x1

)
≤ µ2(Rx1) =

µ2(A2)χA1(x1). Since
∫
X1
µ2(A2)χA1(x1) dµ1(x1) = µ1(A1)µ2(A2) < +∞, the Dominated

Convergence Theorem implies that∫
X1
µ2

(
(En ∩R)x1

)
dµ1(x1) ↓

∫
X1
µ2

(
(E ∩R)x1

)
dµ1(x1).

We also have that (µ1⊗µ2)(E1∩R) ≤ (µ1⊗µ2)(R) = µ1(A1)µ2(A2) < +∞. Hence, continuity
of µ1 ⊗ µ2 from above implies that (µ1 ⊗ µ2)(En ∩R) ↓ (µ1 ⊗ µ2)(E ∩R). Therefore,

(µ1 ⊗ µ2)(E ∩R) =
∫
X1
µ2

(
(E ∩R)x1

)
dµ1(x1).

Since all arguments hold for x2­sections as well, we get that E ∩R ∈ N , and so E ∈ NR.
IfEn ∈ NR for all n andEn ↑ E, thenEn∩R ↑ E∩R, and the result of (c) implies thatE ∈ NR.
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Therefore, the collection NR is a monotone class of subsets of X1 ×X2.
Now, let E1, . . . , Em ∈ NR be pairwise disjoint and E = E1 ∪ · · · ∪ Em. Then the result of (b)
implies thatE∩R = (E1∩R)∪· · ·∪(Em∩R) ∈ N , and soE ∈ NR. From (a), we have thatNR

contains all measurable intervals, and soNR contains all elements of the algebraA of Proposition
4.3. Therefore, NR includes the monotone class generated by A, which, by Theorem 1.1, is the
same as the σ­algebra generated by A, namely S1 ⊗ S2.
Thus, E ∩R ∈ N for all E ∈ S1 ⊗S2 and all measurable intervals R = A1 ×A2 with µ1(A1) <
+∞ and µ2(A2) < +∞.
(e) Since µ1 is σ­finite, there are A1,n ∈ S1 so that A1,n ↑ X1 and µ1(A1,n) < +∞ for every n.
Similarly, there are A2,n ∈ S2 so that A2,n ↑ X2 and µ2(A2,n) < +∞ for every n. Now, we form
the measurable intervals Rn = A1,n ×A2,n.
We consider any E ∈ S1 ⊗ S2. From the result of (d), we have that En = E ∩Rn ∈ N for every
n. Since En ↑ E, the result of (c) implies E ∈ N .

Theorem 4.6. Let (X1,S1, µ1) and (X2,S2, µ2) be σ­finite and let (X1 ×X2,Sµ1⊗µ2 , µ1 ⊗ µ2)
be their product measure space.
If E ∈ Sµ1⊗µ2 , then Ex1 ∈ S2 for µ1­a.e. x1 ∈ X1 and Ex2 ∈ S1 for µ2­a.e. x2 ∈ X2.
Moreover, the µ1­almost everywhere defined function x1 7→ µ2(Ex1) is S1­measurable, the µ2­
almost everywhere defined function x2 7→ µ1(E

x2) is S2­measurable, and

(µ1 ⊗ µ2)(E) =
∫
X1
µ2(Ex1) dµ1(x1) =

∫
X2
µ1(E

x2) dµ2(x2).

Proof. Let E ∈ Sµ1⊗µ2 . Since, by Theorems 4.4 and 4.5, (X1 × X2,Sµ1⊗µ2 , µ1 ⊗ µ2) is the
completion of (X1×X2,S1⊗S2, µ1⊗µ2), there are A,M ∈ S1⊗S2 so that (µ1⊗µ2)(M) = 0
and E = A ∪ F for some F ⊆M .
Now, we apply Theorem 4.7 to A andM .
We have that Ax1 ,Mx1 ∈ S2 for every x1 ∈ X1. Moreover, the function x1 7→ µ2(Mx1) is
S1­measurable, and ∫

X1
µ2(Mx1) dµ1(x1) = (µ1 ⊗ µ2)(M) = 0.

Hence, µ2(Mx1) = 0 for µ1­a.e. x1 ∈ X1. Since Ex1 = Ax1 ∪ Fx1 and Fx1 ⊆ Mx1 for every
x1 ∈ X1, we have that Ex1 ∈ S2 and µ2(Ex1) = µ2(Ax1) for µ1­a.e. x1 ∈ X1.
Also, since the function x1 7→ µ2(Ax1) is S1­measurable, we have that the function x1 7→ µ2(Ex1)
is S1­measurable.
Finally, by Theorem 4.7 again, we have

(µ1 ⊗ µ2)(E) = (µ1 ⊗ µ2)(A) =
∫
X1
µ2(Ax1) dµ1(x1) =

∫
X1
µ2(Ex1) dµ1(x1).

All these arguments hold for x2­sections as well.

Example. Let us think about the difference between Theorems 4.7 and 4.8.
We have Rn = Rk × Rl, where n = k + l.
We know that Bn = Bk ⊗ Bl, and let us consider any Borel set E in Rn. Theorem 4.7 implies
that for every z ∈ Rl the section Ez is a Borel set in Rk, that the everywhere defined function
z 7→ mk(Ez) is Borel measurable, and that

mn(E) =
∫
Rl mk(Ez) dml(z).

On the other hand, we cannot have the same result for Lebesgue sets, because Ln ) Lk ⊗ Ll.
The relevant fact is that Ln = Smk⊗ml

(i.e. Ln is the completion of Lk ⊗ Ll). So let us consider
any Lebesgue set E in Rn. Theorem 4.8 implies that for ml­a.e. every z ∈ Rl the section Ez is
a Lebesgue set in Rk, that the ml­almost everywhere defined function z 7→ mk(Ez) is Lebesgue
measurable, and that

mn(E) =
∫
Rl mk(Ez) dml(z).
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We recall that, if f : X1 ×X2 → Y and x1 ∈ X1, x2 ∈ X2, then the corresponding sections
fx1 : X2 → Y , fx2 : X1 → Y of f are defined by

fx1(x2) = f(x1, x2) for x2 ∈ X2, fx2(x1) = f(x1, x2) for x1 ∈ X1.

Theorem 4.7. Let (X1,S1, µ1) and (X2,S2, µ2) be σ­finite and let (X1 ×X2,S1 ⊗ S2, µ1 ⊗ µ2)
be their restricted product measure space.
(i) (Tonelli’s Theorem) If f : X1 × X2 → [0,+∞] is S1 ⊗ S2­measurable, then fx1 is S2­
measurable for every x1 ∈ X1 and fx2 is S1­measurable for every x2 ∈ X2. Moreover, the
function x1 7→

∫
X2
fx1(x2) dµ2(x2) is S1­measurable, the function x2 7→

∫
X1
fx2(x1) dµ1(x1) is

S2­measurable, and∫
X f(x) d(µ1 ⊗ µ2)(x) =

∫
X1

( ∫
X2
f(x1, x2) dµ2(x2)

)
dµ1(x1)

=
∫
X2

( ∫
X1
f(x1, x2) dµ1(x1)

)
dµ2(x2).

(ii) (Fubini’s Theorem) If f : X1×X2 → R orC is S1⊗S2­measurable and µ1⊗µ2­integrable,
then fx1 isS2­measurable for everyx1 ∈ X1 andµ2­integrable forµ1­a.e. x1 ∈ X1, and fx2 isS1­
measurable for every x2 ∈ X2 and µ1­integrable for µ2­a.e. x2 ∈ X2. Moreover, the µ1­almost
everywhere defined function x1 7→

∫
X2
fx1(x2) dµ2(x2) is S1­measurable and µ1­integrable, the

µ2­almost everywhere defined function x2 7→
∫
X1
fx2(x1) dµ1(x1) is S2­measurable and µ2­

integrable, and the equalities in (i) are true.

Proof. We observe that in both (i) and (ii) the measurability of the sections fx1 and fx2 is an
immediate application of Theorem 4.2 and does not need the assumption about σ­finiteness.
(i) We consider the characteristic function χE of an E ∈ S1 ⊗ S2.
Theorem 4.7 implies that (χE)x1 = χEx1

is S2­measurable for every x1 ∈ X1 and the function

x1 7→
∫
X2

(χE)x1(x2) dµ2(x2) =
∫
X2
χEx1

(x2) dµ2(x2) = µ2(Ex1)

is S1­measurable. Finally, we have∫
X χE(x) d(µ1 ⊗ µ2)(x) = (µ1 ⊗ µ2)(E) =

∫
X1
µ2(Ex1) dµ1(x1)

=
∫
X1

( ∫
X2

(χE)x1(x2) dµ2(x2)
)
dµ1(x1)

=
∫
X1

( ∫
X2
χE(x1, x2) dµ2(x2)

)
dµ1(x1).

The argument for x2­sections is the same.
Now, we consider a S1 ⊗S2­measurable simple ϕ : X1 ×X2 → [0,+∞) with standard represen­
tation ϕ =

∑m
j=1 κjχEj . Then ϕx1 =

∑m
j=1 κj(χEj )x1 for every x1 ∈ X1. By the results in the

case of a single characteristic function, we get that ϕx1 is S2­measurable for every x1 ∈ X1 and
that the function

x1 7→
∫
X2
ϕx1(x2) dµ2(x2) =

∑m
j=1 κj

∫
X2

(χEj )x1(x2) dµ2(x2)

is S1­measurable. Also,∫
X ϕ(x) d(µ1 ⊗ µ2)(x) =

∑m
j=1 κj

∫
X χEj (x) d(µ1 ⊗ µ2)(x)

=
∑m

j=1 κj
∫
X1

( ∫
X2
χEj (x1, x2) dµ2(x2)

)
dµ1(x1)

=
∫
X1

( ∫
X2
ϕ(x1, x2) dµ2(x2)

)
dµ1(x1).

The argument for x2­sections is the same.
Finally, we consider a S1 ⊗ S2­measurable f : X1 × X2 → [0,+∞]. Then there are S1 ⊗ S2­
measurable simple ϕn : X1 × X2 → [0,+∞] so that ϕn ↑ f on X1 × X2. From our results
so far, every ϕn satisfies the conclusions of (i), and, since (ϕn)x1 ↑ fx1 for every x1 ∈ X1 and
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(ϕn)
x2 ↑ fx2 for every x2 ∈ X2, an application of the Monotone Convergence Theorem implies

that f also satisfies the conclusions of (i).
(ii) If f : X1 ×X2 → [0,+∞] is S1 ⊗ S2­measurable and µ1 ⊗ µ2­integrable, then (i) implies∫

X1

( ∫
X2
f(x1, x2) dµ2(x2)

)
dµ1(x1) =

∫
X2

( ∫
X1
f(x1, x2) dµ1(x1)

)
dµ2(x2)

=
∫
X f(x) d(µ1 ⊗ µ2)(x) < +∞.

Hence,
∫
X2
fx1(x2) dµ2(x2) < +∞ for µ1­a.e. x1 ∈ X1 and

∫
X1
fx2(x1) dµ1(x1) < +∞ for

µ2­a.e. x2 ∈ X2. Therefore, the conclusion of the theorem is true for non­negative functions.
If f : X1×X2 → R is S1⊗S2­measurable and µ1⊗µ2­integrable, the same is true for f+ and f−
and, by the result for non­negative functions, the conclusion is true for these two functions. Since
fx1 = (f+)x1 − (f−)x1 for every x1 ∈ X1 and fx2 = (f+)x2 − (f−)x2 for every x2 ∈ X2, the
conclusion is, by linearity, true also for extended real valued functions.
If f : X1 × X2 → C is S1 ⊗ S2­measurable and µ1 ⊗ µ2­integrable, the same is true for Re(f)
and Im(f). By the result for real valued functions, the conclusion is true for Re(f) and Im(f).
Since fx1 = Re(f)x1 + i Im(f)x1 for every x1 ∈ X1 and fx2 = Re(f)x2 + i Im(f)x2 for every
x2 ∈ X2, the conclusion is, by linearity, true also for complex valued functions.
Finally, let f : X1 × X2 → C be S1 ⊗ S2­measurable and µ1 ⊗ µ2­integrable. Then the set
E = f−1({∞}) ∈ S1 ⊗ S2 has (µ1 ⊗ µ2)(E) = 0. Theorem 4.7 implies that µ2(Ex1) = 0 for
µ1­a.e. x1 ∈ X1 and µ1(Ex2) = 0 for µ2­a.e. x2 ∈ X2.
If we define F = fχEc , then F : X1 ×X2 → C is S1 ⊗ S2­measurable and µ1 ⊗ µ2­integrable,
and so, by the result for complex valued functions, the conclusion of the theorem holds for F .
Since F = f holds (µ1 ⊗ µ2)­a.e. on X1 ×X2, we have∫

X1×X2
F (x) d(µ1 ⊗ µ2)(x) =

∫
X1×X2

f(x) d(µ1 ⊗ µ2)(x).

We, also, have that Fx1 = fx1 on X2 \ Ex1 , and so Fx1 = fx1 holds µ2­a.e. on X2 for µ1­a.e.
x1 ∈ X1. Therefore, fx1 is µ2­integrable and

∫
X2
fx1(x2) dµ2(x2) =

∫
X2
Fx1(x2) dµ2(x2) for

µ1­a.e. x1 ∈ X1. This implies∫
X1

( ∫
X2
f(x1, x2) dµ2(x2)

)
dµ1(x1) =

∫
X1

( ∫
X2
F (x1, x2) dµ2(x2)

)
dµ1(x1)

and, equating the corresponding integrals of F , we get∫
X f(x) d(µ1 ⊗ µ2)(x) =

∫
X1

( ∫
X2
f(x1, x2) dµ2(x2)

)
dµ1(x1).

The argument is the same for x2­sections.

Theorem 4.8. Let (X1,S1, µ1) and (X2,S2, µ2) be σ­finite and let (X1 ×X2,Sµ1⊗µ2 , µ1 ⊗ µ2)
be their product measure space.
(i) (Tonelli’s Theorem) If f : X1 × X2 → [0,+∞] is Sµ1⊗µ2­measurable, then fx1 is S2­
measurable for µ1­a.e. x1 ∈ X1 and fx2 is S1­measurable for µ2­a.e. x2 ∈ X2. Moreover,
the µ1­almost everywhere defined function x1 7→

∫
X2
fx1(x2) dµ2(x2) is S1­measurable, the µ2­

almost everywhere defined function x2 7→
∫
X1
fx2(x1) dµ1(x1) is S2­measurable, and∫

X1×X2
f(x) d(µ1 ⊗ µ2)(x) =

∫
X1

( ∫
X2
f(x1, x2) dµ2(x2)

)
dµ1(x1)

=
∫
X2

( ∫
X1
f(x1, x2) dµ1(x1)

)
dµ2(x2).

(ii) (Fubini’s Theorem) If f : X1×X2 → R or C is Sµ1⊗µ2­measurable and µ1⊗µ2­integrable,
then fx1 is S2­measurable and µ2­integrable for µ1­a.e. x1 ∈ X1, and fx2 is S1­measurable
and µ1­integrable for µ2­a.e. x2 ∈ X2. Moreover, the µ1­almost everywhere defined function
x1 7→

∫
X2
fx1(x2) dµ2(x2) isS1­measurable andµ1­integrable, theµ2­almost everywhere defined

function x2 7→
∫
X1
fx2(x1) dµ1(x1) is S2­measurable and µ2­integrable, and the equalities in (i)

are true.
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Proof. The proof follows the same line as the proof of Theorem 4.9, starting with the characteristic
function χE of a set E ∈ Sµ1⊗µ2 and using, for this case, Theorem 4.8 instead of Theorem 4.7.
The rest of the proof is the same, with only minor modifications, which are left to the reader as an
exercise.

Example. Let us think about the difference between Theorems 4.9 and 4.10, based on the equality
Rn = Rk × Rl, where n = k + l, as we did for the difference between Theorems 4.7 and 4.8.
We know that Bn = Bk ⊗Bl, and let us consider any Borel measurable f : Rn → C. Theorem 4.9
implies that the section fz : Rk → C is Borel measurable for every z ∈ Rl and Lebesgue integrable
for ml­a.e. z ∈ Rl, that the ml­almost everywhere defined function z 7→

∫
Rk fz(y) dmk(y) is

Borel measurable and Lebesgue integrable, and that∫
Rn f(x) dmn(x) =

∫
Rl

( ∫
Rk f(y, z) dmk(y)

)
dml(z).

On the other hand, we cannot have the same result for Lebesgue measurable f : Rn → C. Since
Ln = Smk⊗ml

(i.e. Ln is the completion of Lk ⊗ Ll), Theorem 4.10 implies that the section
fz : Rk → C is Lebesgue measurable and Lebesgue integrable for ml­a.e. z ∈ Rl, that the ml­
almost everywhere defined function z 7→

∫
Rk fz(y) dmk(y) is Lebesgue measurable and Lebesgue

integrable, and that ∫
Rn f(x) dmn(x) =

∫
Rl

( ∫
Rk f(y, z) dmk(y)

)
dml(z).

The power of the Theorems of Tonelli and of Fubini lies in the resulting successive integration
formula for the calculation of integrals over product spaces and in the interchange of successive
integrations. The function f to which we may want to apply Fubini’s Theorem must be Sµ1⊗µ2­
measurable and µ1 ⊗ µ2­integrable. The Theorem of Tonelli is applied to non­negative functions
f which must be Sµ1⊗µ2­measurable. Thus, the assumptions of the Theorem of Tonelli are, except
for the sign, weaker than the assumptions of the Theorem of Fubini.

The strategy, in order to calculate the integral of f over the product space by means of suc­
cessive integrations or in order to interchange successive integrations, consists of three steps. The
first is to prove that f is Sµ1⊗µ2­measurable. The second step is to apply Tonelli’s Theorem to |f |
to get ∫

X1×X2
|f(x)| d(µ1 ⊗ µ2)(x) =

∫
X1

( ∫
X2

|f(x1, x2)| dµ2(x2)
)
dµ1(x1)

=
∫
X2

( ∫
X1

|f(x1, x2)| dµ1(x1)
)
dµ2(x2).

We need to estimate one of the two successive integrals, to see if
∫
X1×X2

|f(x)| d(µ1 ⊗ µ2)(x) is
finite. If this is true, i.e. if f is µ1 ⊗ µ2­integrable, then we take the third step: we apply Fubini’s
Theorem to find the desired∫

X1×X2
f(x) d(µ1 ⊗ µ2)(x) =

∫
X1

( ∫
X2
f(x1, x2) dµ2(x2)

)
dµ1(x1)

=
∫
X2

( ∫
X1
f(x1, x2) dµ1(x1)

)
dµ2(x2)

by calculating one of the two successive integrals.
Of the three steps the first, namely proving the Sµ1⊗µ2­measurability of f , is more subtle and

sometimes difficult to do.

Exercises.

4.3.1. Consider the measure spaces (R,B1,m1) and (R,P(R), ♯), where ♯ is the counting measure.
If E = {(x1, x2) | 0 ≤ x1 = x2 ≤ 1}, prove that all numbers (m1 ⊗ ♯)(E),

∫
R ♯(Ex1) dm1(x1)

and
∫
Rm1(Ex2) d♯(x2) are different.

4.3.2. Consider am,n = 1 if m = n, am,n = −1 if m = n + 1 and am,n = 0 in any other case.
Then

∑+∞
n=1

(∑+∞
m=1 am,n

)
6=

∑+∞
m=1

(∑+∞
n=1 am,n

)
. Explain, through the Theorem of Fubini.

135



4.3.3. Suppose that (X,S, µ) is a measure space and f : X → [0,+∞] is S­measurable. Consider
Af = {(x, y) ∈ X × R | 0 ≤ y < f(x)} and Gf = {(x, y) ∈ X × R | y = f(x)} and prove that
both Af and Gf are S ⊗ B1­measurable. If, moreover, µ is σ­finite, prove that (µ⊗m1)(Af ) =∫
X f dµ and (µ⊗m1)(Gf ) = 0. A special case appears in exercise 3.2.1.

4.3.4. Let (X,S, µ) be a σ­finite measure space and f : X → [0,+∞] be S­measurable. Calcu­
lating the measure µ⊗ µG of the set Af = {(x, y) ∈ X × R | 0 ≤ y < f(x)}, prove Proposition
3.14.

4.3.5. Consider measure spaces (X1,S1, µ1) and (X2,S2, µ2), a S1­measurable f1 : X1 → C
and a S2­measurable f2 : X2 → C. Consider the function f : X1 × X2 → C defined by
f(x1, x2) = f1(x1)f2(x2).
Prove that f is S1 ⊗ S2­measurable.
If f1 is integrable with respect toµ1 and f2 is integrable with respect toµ2, prove that f is integrable
with respect to µ1 ⊗ µ2 and that

∫
X1×X2

f d(µ1 ⊗ µ2) =
∫
X1
f1 dµ1

∫
X2
f2 dµ2.

4.3.6. From
∫ n
0

sinx
x dx =

∫ n
0

( ∫ +∞
0 e−xt dt

)
sinx dx, prove that

∫→+∞
0

sinx
x dx = π

2 . (See also
exercises 3.2.2 and 3.2.18.)

4.3.7. Let f, g : Rn → R or C be Ln­measurable.
(i) Prove that H : Rn × Rn → R or C defined by H(x, y) = f(x− y)g(y) is L2n­measurable.
Now, let f and g be integrable with respect tomn.
(ii) Prove thatH is integrable with respect tom2n and

∫
R2n |H| dm2n ≤

∫
Rn |f | dmn

∫
Rn |g| dmn.

(iii) Prove that formn­a.e. x ∈ Rn the function f(x− ·)g(·) is integrable with respect tomn.
The a.e. defined function f ∗ g : Rn → R or C by (f ∗ g)(x) =

∫
Rn f(x − y)g(y) dmn(y) is

called the convolution of f and g.
(iv) Prove that f ∗g is integrable with respect tomn, that

∫
Rn(f ∗g) dmn =

∫
Rn f dmn

∫
Rn g dmn

and
∫
Rn |f ∗ g| dmn ≤

∫
Rn |f | dmn

∫
Rn |g| dmn.

(v) Prove that, for every f, g, h, f1, f2 which are Lebesgue integrable, we havemn­a.e. on Rn that
f ∗ g = g ∗ f , (f ∗ g) ∗ h = f ∗ (g ∗ h), (λf) ∗ g = λ(f ∗ g) and (f1 + f2) ∗ g = f1 ∗ g + f2 ∗ g.
(vi) Prove that f̂ ∗ g = f̂ ĝ, where f̂ is the Fourier transform of f (exercise 3.2.13).

4.3.8. Let K be a set in [0, 1] of the type considered in exercise 1.4.14 with m1(K) > 0. Prove
that {(x, y) ∈ [0, 1] × [0, 1] |x − y ∈ K} is a compact subset of R2 with positive m2­measure,
which does not contain any measurable interval of positivem2­measure.

4.3.9. Let µ and ν be two locally finite Borel measures on Rn, which are translation invariant.
Namely: µ(A+ x) = µ(A) and ν(A+ x) = ν(A) for every x ∈ Rn and every A ∈ Bn.
Working with

∫
Rn×Rn χA(x)χB(x + y) d(µ ⊗ ν)(x, y), prove that either µ = λν or ν = λµ for

some λ ∈ [0,+∞).
Conclude that the only translation invariant locally finite Borel measure on Rn which has value 1
at the unit cube [0, 1]n is the Lebesgue measuremn.

4.3.10. Let E ⊆ [0, 1]× [0, 1] have the property that every horizontal section Ey is countable and
every vertical sectionEx has countable complementary set [0, 1]\Ex. Prove thatE is not Lebesgue
measurable.

4.3.11. Let (X,SX , µ) be a measure space and (Y,SY ) be a measurable space. Suppose that for
every x ∈ X there is a measure νx on (Y,SY ) so that for every B ∈ SY the function x 7→ νx(B)
is SX ­measurable.
We define ν(B) =

∫
X νx(B) dµ(x) for every B ∈ SY .

(i) Prove that ν is a measure on (Y,SY ).
(ii) If g : Y → [0,+∞] is SY ­measurable and if f(x) =

∫
Y g dνx for every x ∈ X , prove that f

is SX ­measurable and
∫
X f dµ =

∫
Y g dν.
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4.3.12. If I1, I2 are two sets of indices with their countingmeasures, prove that the product measure
on I1 × I2 is its counting measure. Applying the Theorems of Tonelli and Fubini, derive results
about the validity of

∑
i1∈I1,i2∈I2 ci1,i2 =

∑
i1∈I1(

∑
i2∈I2 ci1,i2) =

∑
i2∈I2(

∑
i1∈I1 ci1,i2).

4.3.13. Consider the interval R = (a, b] × (a, b], and partition it into ∆1 = {(t, s) ∈ R | t ≤ s}
and ∆2 = {(t, s) ∈ R | s < t}. Writing (µG ⊗ µF )(R) = (µG ⊗ µF )(∆1) + (µG ⊗ µF )(∆2),
prove Proposition 3.11.

4.3.14. (i) Prove Theorem 4.8 replacing the σ­finiteness of (X1,S1, µ1) and (X2,S2, µ2) with the
σ­finiteness of E ∈ Sµ1⊗µ2 .
(ii) In Theorem 4.10, prove Tonelli’s Theorem replacing the σ­finiteness of (X1,S1, µ1) and of
(X2,S2, µ2) with the assumption that the set f−1((0,+∞]) has σ­finite (µ1 ⊗ µ2)­measure.
Also, prove Fubini’s Theorem omitting the σ­finiteness of (X1,S1, µ1) and of (X2,S2, µ2).

4.4 Surface measure on Sn−1.

For every x = (x1, . . . , xn) ∈ Rn
∗ = Rn \ {0} we write

r = ‖x‖ = (x21 + · · ·+ x2n)
1/2 ∈ R+ = (0,+∞), y = x

∥x∥ ∈ Sn−1,

where Sn−1 = {y ∈ Rn | ‖y‖ = 1} is the unit sphere of Rn.
The mapping Φ : Rn

∗ → R+ × Sn−1, defined by

Φ(x) = (r, y) =
(
‖x‖, x

∥x∥
)
,

is one­to­one and onto, and its inverse Φ−1 : R+ × Sn−1 → Rn
∗ is given by

Φ−1(r, y) = x = ry.

The elements r = ‖x‖ and y = x
∥x∥ are called the polar coordinates of x and the mappings

Φ and Φ−1 determine an identification of Rn
∗ with the cartesian product R+ × Sn−1, where every

point x 6= 0 is identified with the pair (r, y) of its polar coordinates.
As usual, we consider Sn−1 as a metric subspace of Rn. This means that the distance between

points y′, y′′ ∈ Sn−1 is their Euclidean distance ‖y′ − y′′‖ considered as points of the larger
space Rn. The open ball in Sn−1 with center y ∈ Sn−1 and radius δ > 0 is the spherical cap
S(y; δ) = {y′ ∈ Sn−1 | ‖y′ − y‖ < δ}, which is the intersection with Sn−1 of the Euclidean ball
B(y; δ) = {x ∈ Rn | ‖x − y‖ < δ}. In fact, the intersection with Sn−1 of an arbitrary Euclidean
open ball in Rn is, if non­empty, a spherical cap of Sn−1.

It is easy to see that there is a countable collection of spherical caps with the property that
every open set in Sn−1 is a union (countable, necessarily) of spherical caps from this collection.
Indeed, such is the collection of the (non­empty) intersections with Sn−1 of all open balls in Rn

with rational centers (i.e. points in Rn with all their coordinates being rational) and rational radii.
If we equip R+ × Sn−1 with the product metric d((r, y), (r′, y′)) = max{|r − r′|, ‖y − y′‖},

then Φ : Rn
∗ → R+ × Sn−1 and Φ−1 : R+ × Sn−1 → Rn

∗ are both continuous.
Proposition 4.7 contains information about the Borel structures of Rn

∗ and of R+, Sn−1 and
their product R+ × Sn−1.

Proposition 4.7. (i) BR+×Sn−1 = BR+ ⊗ BSn−1 .
(ii) Φ(E) is a Borel set in R+ × Sn−1 for every Borel set E in Rn

∗ , and Φ−1(F ) is a Borel set in
Rn
∗ for every Borel set F in R+ × Sn−1.

(iii)MA = {ry | r ∈M,y ∈ A} is a Borel set in Rn
∗ for every Borel setM in R+ and every Borel

set A in Sn−1.

137



Proof. (i) A corollary of Proposition 4.2.
(ii) Since Φ is continuous, it is (BRn

∗ ,BR+×Sn−1)­measurable. Hence, Φ−1(F ) is a Borel set in
Rn
∗ for every Borel set F in R+ × Sn−1. Similarly, the second statement is a consequence of the

continuity of Φ−1.
(iii) LetM be a Borel set inR+ andA be a Borel set in Sn−1. ThenM×A is a Borel set (measurable
interval) in R+ × Sn−1. From (ii) we have thatMA = Φ−1(M ×A) is a Borel set in Rn

∗ .

A set Γ ⊆ Rn
∗ is called a positive cone if rx ∈ Γ for every r ∈ R+ and every x ∈ Γ

or, equivalently, if Γ is closed under multiplication by positive numbers or, equivalently, if Γ is
invariant under dilations. If B ⊆ Rn

∗ , then the set R+B = {rb | r ∈ R+, b ∈ B} is, obviously, a
positive cone and it is called the positive cone determined by B. It is easy to see that, if Γ is a
positive cone and A = Γ ∩ Sn−1, then Γ is the positive cone determined by A, and, conversely, if
A ⊆ Sn−1 and Γ is the positive cone determined by A, then Γ ∩ Sn−1 = A. In other words there
is a one­to­one correspondence between subsets of Sn−1 and positive cones of Rn.

The next result expresses a simple characterization of open and of Borel subsets of Sn−1 in
terms of the corresponding positive cones.

Proposition 4.8. Let A ⊆ Sn−1.
(i) A is open in Sn−1 if and only if the cone R+A is open in Rn

∗ .
(ii) A is a Borel set in Sn−1 if and only if R+A is a Borel set in Rn

∗ if and only if (0, 1]A is a Borel
set in Rn

∗ .

Proof. (i) Let A be open in Sn−1. Then R+ ×A is open in R+ × Sn−1. Now, the continuity of Φ
implies that R+A = Φ−1(R+ ×A) is an open set in Rn

∗ .
Conversely, if R+A is open in Rn

∗ , then A = (R+A) ∩ Sn−1 is open in Sn−1.
(ii) If A is a Borel set in Sn−1, Proposition 4.5 implies that R+A and (0, 1]A are Borel sets in Rn

∗ .
Conversely, if either R+A is a Borel set in Rn

∗ or (0, 1]A is a Borel set in Rn
∗ , then A = (R+A) ∩

Sn−1 = ((0, 1]A) ∩ Sn−1 is a Borel set in Sn−1.

Proposition 4.9. If we define
σn−1(A) = nmn

(
(0, 1]A

)
for every A ∈ BSn−1 , then σn−1 is a measure on (Sn−1,BSn−1).

Proof. By Proposition 4.5 (or 4.6), for every Borel set A in Sn−1 the set (0, 1]A is a Borel set in
Rn
∗ , and so σn−1(A) is well defined.

We have σn−1(∅) = nmn

(
(0, 1]∅

)
= nmn(∅) = 0.

Moreover, ifA1, A2, . . . ∈ BSn−1 are pairwise disjoint, then the sets (0, 1]A1, (0, 1]A2, . . . are also
pairwise disjoint. Hence,

σn−1(
⋃+∞

j=1 Aj) = nmn

(
(0, 1]

⋃+∞
j=1 Aj

)
= nmn

(⋃+∞
j=1((0, 1]Aj)

)
=

∑+∞
j=1 nmn

(
(0, 1]Aj

)
=

∑+∞
j=1 σn−1(Aj),

and so σn−1 is a measure on (Sn−1,BSn−1).

Definition. The measure σn−1 on (Sn−1,BSn−1), which is defined in Proposition 4.7, is called the
(n− 1)­dimensional surface measure on Sn−1.

Lemma 4.1. If we define
ρ(N) =

∫
N rn−1 dr

for every N ∈ BR+ , then ρ is a measure on (R+,BR+).

Proof. A simple consequence of Theorem 3.9.
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Lemma 4.2. If we define m̃n(F ) = mn(Φ
−1(F )) for every Borel set F in R+× Sn−1, then m̃n is

a measure on the measurable space (R+ × Sn−1,BR+×Sn−1).

Proof. Φ−1(F ) is a Borel set in Rn
∗ for every Borel set F in R+ × Sn−1, and so m̃n(F ) is well

defined.
Clearly, m̃n(∅) = mn(Φ

−1(∅)) = mn(∅) = 0.
If F1, F2, . . . are pairwise disjoint, then Φ−1(F1),Φ

−1(F2), . . . are also pairwise disjoint, and

m̃n(
⋃+∞

j=1 Fj) = mn(Φ
−1(

⋃+∞
j=1 Fj)) = mn(

⋃+∞
j=1 Φ

−1(Fj)) =
∑+∞

j=1mn(Φ
−1(Fj))

=
∑+∞

j=1 m̃n(Fj),

and so m̃n is a measure on (R+ × Sn−1,BR+×Sn−1).

Lemma 4.3. On the measurable space (R+ × Sn−1,BR+×Sn−1) = (R+ × Sn−1,BR+ ⊗ BSn−1)
the measures m̃n and ρ⊗ σn−1 are identical.

Proof. The equality BR+×Sn−1 = BR+ ⊗ BSn−1 is in Proposition 4.5.
If A is a Borel set in Sn−1, then the sets (0, b]A and (0, 1]A are Borel sets in Rn

∗ and the first is a
dilate of the second by the factor b > 0. Hence, mn((0, b]A) = bnmn((0, 1]A) for every b > 0,
and so

mn((a, b]A) = mn

(
((0, b]A)\((0, a]A)

)
= mn((0, b]A)−mn((0, a]A) = (bn−an)mn((0, 1]A)

for every a, b with 0 ≤ a < b < +∞.
Therefore, if A is a Borel set in Sn−1, then

m̃n((a, b]×A) = mn(Φ
−1((a, b]×A)) = mn((a, b]A) = (bn − an)mn((0, 1]A)

= bn−an
n σn−1(A) =

∫
(a,b] r

n−1 dr σn−1(A) = ρ((a, b]) σn−1(A)

= (ρ⊗ σn−1) ((a, b]×A).

Now, we define
µ(N) = m̃n(N ×A), ν(N) = (ρ⊗ σn−1)(N ×A)

for every Borel setN in R+. It is easy to see that µ, ν are Borel measures on R+, and, by what we
just proved, they satisfy µ((a, b]) = ν((a, b]) for every interval in R+. This, obviously, extends to
all finite unions of pairwise disjoint open­closed subintervals of R+. Now, Theorem 1.7 implies
that the two measures are equal on the σ­algebra generated by the collection of all these sets, which
is equal to BR+ . Therefore, m̃n(N ×A) = (ρ⊗ σn−1)(N ×A) for every Borel set N in R+ and
every Borel set A in Sn−1.
Finally, Theorem 4.4 implies the equality of the two measures, since ρ and σn−1 are σ­finite.

If E ⊆ Rn
∗ , we consider the set Φ(E) ⊆ R+ × Sn−1. We also consider the r­sections

Φ(E)r = {y ∈ Sn−1 | (r, y) ∈ Φ(E)} = {y ∈ Sn−1 | ry ∈ E}

and the y­sections

Φ(E)y = {r ∈ R+ | (r, y) ∈ Φ(E)} = {r ∈ R+ | ry ∈ E}

of Φ(E). We extend the notation as follows.

Definition. If E ⊆ Rn, we define, for every r ∈ R+ and every y ∈ Sn−1,

Er = {y ∈ Sn−1 | ry ∈ E}, Ey = {r ∈ R+ | ry ∈ E}

and call them the r­sections and the y­sections of E, respectively.
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Observe that E may contain 0, but this plays no role: the sections of E are the same as the
corresponding sections of E \ {0}. Thus, the sections of E are, by definition, exactly the same
as the sections of Φ(E \ {0}). This is justified by the informal identification of E \ {0} with
Φ(E \ {0}).

Theorem 4.9. Let E be any Borel set in Rn. Then Er is a Borel set in Sn−1 for every r ∈ R+

and Ey is a Borel set in R+ for every y ∈ Sn−1. Moreover, the function r 7→ σn−1(Er) is BR+­
measurable and the function y 7→

∫
Ey r

n−1 dr is BSn−1­measurable. Also,

mn(E) =
∫ +∞
0 σn−1(Er)r

n−1 dr =
∫
Sn−1

( ∫
Ey r

n−1 dr
)
dσn−1(y).

Proof. The set E \ {0} is a Borel set in Rn
∗ . Proposition 4.5 implies that Φ(E \ {0}) is a Borel set

in R+ × Sn−1, and Lemmas 4.2 and 4.3 imply

mn(E) = mn(E \ {0}) = m̃n(Φ(E \ {0})) = (ρ⊗ σn−1)(Φ(E \ {0})).

Also Er = Φ(E \ {0})r and Ey = Φ(E \ {0})y. The rest is a consequence of Theorem 4.7.

We shall see a simple description of the completion of the measure space (Sn−1,BSn−1 , σn−1)
in terms of positive cones.

Definition. Let (Sn−1,Sn−1, σn−1) be the completion of the measure space (Sn−1,BSn−1 , σn−1).

Proposition 4.10. If A ⊆ Sn−1, then
(i) A ∈ Sn−1 if and only if R+A ∈ Ln if and only if (0, 1]A ∈ Ln,
(ii) σn−1(A) = nmn

(
(0, 1]A

)
for every A ∈ Sn−1.

Proof. (i) If A ∈ Sn−1, there exist A1, A2 ∈ BSn−1 with σn−1(A2) = 0 so that A1 ⊆ A and
A \ A1 ⊆ A2. Proposition 4.5 implies that the positive cones R+A1 and R+A2 are Borel sets in
Rn with R+A1 ⊆ R+A and (R+A) \ (R+A1) ⊆ R+A2. Lemmas 4.2 and 4.3 (or Theorem 4.11)
imply

mn(R+A2) = m̃n(Φ(R+A2)) = m̃n(R+×A2) = (ρ⊗σn−1)(R+×A2) = ρ(R+)σn−1(A2) = 0.

Hence, R+A ∈ Ln.
Conversely, let R+A ∈ Ln. Then, there are Borel sets B1, B2 ⊆ Rn with mn(B2) = 0, so
that B1 ⊆ R+A and (R+A) \ B1 ⊆ B2. For every r ∈ R+ we have that (B1)r ⊆ A and
A \ (B1)r ⊆ (B2)r. Theorem 4.11 implies that∫ +∞

0 σn−1((B2)r)r
n−1 dr = mn(B2) = 0,

and so σn−1((B2)r) = 0 for m1­a.e. r ∈ (0,+∞). If we consider such an r, since (B1)r and
(B2)r are Borel sets in Sn−1, we conclude that A ∈ Sn−1.
If R+A ∈ Ln, then (0, 1]A = (R+A) ∩ Bn ∈ Ln, where Bn is the closed unit ball of Rn centered
at 0. Conversely, if (0, 1]A ∈ Ln, then R+A =

⋃+∞
k=1 k

(
(0, 1]A

)
∈ Ln.

(ii) Let A ∈ Sn−1. Then there are A1, A2 ∈ BSn−1 with σn−1(A2) = 0 so that A1 ⊆ A and
A \ A1 ⊆ A2. Then the sets (0, 1]A1 and (0, 1]A2 are Borel sets in Rn with (0, 1]A1 ⊆ (0, 1]A
and (0, 1]A \ (0, 1]A1 ⊆ (0, 1]A2. We conclude that

σn−1(A) = σn−1(A1) = nmn((0, 1]A1) = nmn((0, 1]A),

sincemn((0, 1]A2) =
1
nσn−1(A2) = 0.

The next result is an extension of Theorem 4.11 to Lebesgue sets.
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Theorem 4.10. Let E ∈ Ln. Then Er ∈ Sn−1 for m1­a.e. r ∈ R+ and Ey ∈ L1 for σn−1­a.e.
y ∈ Sn−1. Moreover, them1­almost everywhere defined function r 7→ σn−1(Er) isL1­measurable
and the σn−1­almost everywhere defined function y 7→

∫
Ey r

n−1 dr is Sn−1­measurable. Also,

mn(E) =
∫ +∞
0 σn−1(Er)r

n−1 dr =
∫
Sn−1

( ∫
Ey r

n−1 dr
)
dσn−1(y).

Proof. Since E ∈ Ln, there are Borel sets B1, B2 in Rn with mn(B2) = 0 so that B1 ⊆ E and
E \ B1 ⊆ B2. Theorem 4.11 implies that, for every r ∈ R+, (B1)r and (B2)r are Borel sets in
Sn−1 with (B1)r ⊆ Er and Er \ (B1)r ⊆ (B2)r. From Theorem 4.11 again,∫ +∞

0 σn−1((B2)r)r
n−1 dr = mn(B2) = 0,

and so σn−1((B2)r) = 0 form1­a.e. r ∈ R+. Hence, Er ∈ Sn−1 and σn−1(Er) = σn−1((B1)r)
form1­a.e. r ∈ R+.
Similarly, for every y ∈ Sn−1, (B1)

y and (B2)
y are Borel sets in R+ with (B1)

y ⊆ Ey and
Ey \ (B1)

y ⊆ (B2)
y. Also∫

Sn−1

( ∫
(B2)y

rn−1 dr
)
dσn−1(y) = mn(B2) = 0,

and so
∫
(B2)y

rn−1 dr = 0 for σn−1­a.e. y ∈ Sn−1. This implies thatm1((B2)
y) = 0 for σn−1­a.e.

y ∈ Sn−1, and so Ey ∈ L1 and
∫
Ey r

n−1 dr =
∫
(B1)y

rn−1 dr for σn−1­a.e. y ∈ Sn−1.
Finally,

mn(E) = mn(B1) =
∫ +∞
0 σn−1((B1)r)r

n−1 dr =
∫ +∞
0 σn−1(Er)r

n−1 dr,

mn(E) = mn(B1) =
∫
Sn−1

( ∫
(B1)y

rn−1 dr
)
dσn−1(y) =

∫
Sn−1

( ∫
Ey r

n−1 dr
)
dσn−1(y)

from Theorem 4.11.

The rest of this section consists of a series of theorems which describe the so­called method of
integration by polar coordinates.

Definition. Let f : Rn → Z. For every r ∈ R+ and every y ∈ Sn−1 we define the functions
fr : Sn−1 → Z and fy : R+ → Z by

fr(y) = fy(r) = f(ry).

fr is called the r­section of f and fy is called the y­section of f .

Theorem 4.13 treats integration by polar coordinates for Borel measurable functions.

Theorem 4.11. (i) If f : Rn → [0,+∞] is BRn­measurable, then fr is BSn−1­measurable for
every r ∈ R+ and fy is BR+­measurable for every y ∈ Sn−1. Moreover, the function r 7→∫
Sn−1 fr(y) dσn−1(y) is BR+­measurable, and the function y 7→

∫ +∞
0 fy(r)rn−1 dr is BSn−1­

measurable. Also ∫
Rn f(x) dmn(x) =

∫ +∞
0

( ∫
Sn−1 f(ry) dσn−1(y)

)
rn−1 dr

=
∫
Sn−1

( ∫ +∞
0 f(ry)rn−1 dr

)
dσn−1(y).

(ii) If f : Rn → R or C is BRn­measurable and mn­integrable, then fr is BSn−1­measurable for
every r ∈ R+ and σn−1­integrable for m1­a.e. r ∈ R+, and fy is BR+­measurable for every
y ∈ Sn−1 and m1­integrable for σn−1­a.e. y ∈ Sn−1. Moreover, the m1­almost everywhere de­
fined function r 7→

∫
Sn−1 fr(y) dσn−1(y) is BR+­measurable andm1­integrable, the σn−1­almost

everywhere defined function y 7→
∫ +∞
0 fy(r)rn−1 dr is BSn−1­measurable and σn−1­integrable,

and the equalities in (i) are true.
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Proof. (i) If f = χE , then the results are the same as the results of Theorem 4.11. Using the
linearity of the integrals, we can prove the results in the case of a simple function ϕ : Rn →
[0,+∞]. Finally, applying the Monotone Convergence Theorem to an increasing sequence of
simple functions, we can prove the results in the general case f : Rn → [0,+∞].
(ii) We use the results of (i) to pass to the case of functions f : Rn → R, by writing them as
f = f+ − f−. We next treat the case of f : Rn → C, by writing f = Re(f) + i Im(f), after we
exclude, in the usual manner, the set f−1({∞}).

Theorem 4.14 treats integration by polar coordinates for Lebesgue measurable functions.

Theorem 4.12. (i) If f : Rn → [0,+∞] isLn­measurable, then fr is Sn−1­measurable form1­a.e.
r ∈ R+ and fy is L1­measurable for σn−1­a.e. y ∈ Sn−1. Moreover, the m1­almost everywhere
defined function r 7→

∫
Sn−1 fr(y) dσn−1(y) is L1­measurable, and the σn−1­almost everywhere

defined function y 7→
∫ +∞
0 fy(r)rn−1 dr is Sn−1­measurable, and∫

Rn f(x) dmn(x) =
∫ +∞
0

( ∫
Sn−1 f(ry) dσn−1(y)

)
rn−1 dr

=
∫
Sn−1

( ∫ +∞
0 f(ry)rn−1 dr

)
dσn−1(y).

(ii) If f : Rn → R or C is Ln­measurable and mn­integrable, then fr is Sn−1­measurable and
σn−1­integrable for m1­a.e. r ∈ R+, and fy is L1­measurable and m1­integrable for σn−1­a.e.
y ∈ Sn−1. Moreover, the m1­almost everywhere defined function r 7→

∫
Sn−1 fr(y) dσn−1(y)

is L1­measurable and m1­integrable, and the σn−1­almost everywhere defined function y 7→∫ +∞
0 fy(r)rn−1 dr is Sn−1­measurable and σn−1­integrable, and the equalities in (i) are true.

Proof. We use Theorem 4.12 in the way that we used Theorem 4.11 to prove Theorem 4.13.

Definition. A set E ⊆ Rn is called radial if x ∈ E implies that x′ ∈ E for all x′ with ‖x′‖ = ‖x‖.
A function f : Rn → Z is called radial if f(x) = f(x′) for every x, x′ with ‖x‖ = ‖x′‖.

It is obvious that E is radial if and only if χE is radial.
If the set E ⊆ Rn is radial, we define the radial projection Ẽ of E by

Ẽ = {r ∈ R+ |x ∈ E when ‖x‖ = r} ⊆ R+.

Also, if f : Rn → Z is radial, we define the radial projection f̃ : R+ → Z of f by

f̃(r) = f(x) for all x ∈ Rn with ‖x‖ = r.

It is obvious that a radial set or a radial function is uniquely determined from its radial projection
(except from the fact that the radial set may or may not contain the point 0 and that the value of
the function at 0 is not determined by its radial projection).

Proposition 4.11. (i) The radial set E ⊆ Rn is in BRn or in Ln if and only if its radial projection
is in BR+ or, respectively, in L1. In any case we have

mn(E) = σn−1(Sn−1)
∫
Ẽ
rn−1 dr.

(ii) If (Z,SZ) is a measurable space, then the radial f : Rn → Z is (BRn ,SZ)­measurable or
(Ln,SZ)­measurable if and only if its radial projection is (BR+ ,SZ)­measurable or, respectively,
(L1,SZ)­measurable.
(iii) If f : Rn → [0,+∞] is Bn or Ln­measurable or if f : Rn → R or C is Bn or Ln­measurable
andmn­integrable, then∫

Rn f(x) dmn(x) = σn−1(Sn−1)
∫ +∞
0 f̃(r)rn−1 dr.
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Proof. (i) If E ∈ BRn or E ∈ Ln is radial, then for every y ∈ Sn−1 we have Ey = Ẽ, and so the
result is a consequence of Theorems 4.11 and 4.12.
For the converse we consider the collection of all subsets of R+ which are radial projections of
radial Borel sets in Rn. Then we prove easily that this collection is a σ­algebra which contains all
open subsets of R+, and so it contains all Borel sets in R+.
Now, if E is radial and Ẽ ∈ L1, then there are Borel sets M1,M2 in R+ with m1(M2) = 0 so
thatM1 ⊆ Ẽ and Ẽ \M1 ⊆ M2. We consider the radial sets E1, E2 ⊆ Rn so that Ẽ1 = M1 and
Ẽ2 = M2. By the result of the previous paragraph, E1, E2 are Borel sets. Then we have E1 ⊆ E
and E \ E1 ⊆ E2. Since

0 = mn(E2) =
∫
Sn−1(

∫
(E2)y

rn−1 dr) dσn−1 = σn−1(Sn−1)
∫
Ẽ2
rn−1 dr,

we have that
∫
Ẽ2
rn−1 dr = 0, and som1(Ẽ2) = 0. This implies that E ∈ L1.

(ii) A consequence of the definition of measurability and the result of part (i).
(iii) A consequence of Theorems 4.13 and 4.14.

Exercises.

4.4.1. Consider, for any p > 0, the function f : Rn → [0,+∞], defined by f(x) = 1
∥x∥p .

(i) Prove that f is not Lebesgue integrable over Rn.
(ii) For any δ > 0, prove that f is integrable over {x ∈ Rn | ‖x‖ ≥ δ} if and only if p > 1.
(iii) For any R < +∞, prove that f is integrable over {x ∈ Rn | ‖x‖ ≤ R} if and only if p < 1.

4.4.2. The volume of the unit ball in Rn and the surface measure of Sn−1.
(i) If vn = mn(Bn) is the Lebesgue measure of the closed unit ball of Rn centered at 0, prove that
vn = 2vn−1

∫ 1
0 (1− t2)

n−1
2 dt.

(ii) Set Jn =
∫ 1
0 (1− t2)

n−1
2 dt for n ≥ 0 and prove the inductive formula Jn = n−1

n Jn−2, n ≥ 2.
(iii) Use properties of the gamma­function (see exercise 3.2.15) to prove that

mn(Bn) =
πn/2

Γ((n/2)+1) , σn−1(Sn−1) = 2πn/2

Γ(n/2) .

4.4.3. The integral of Gauss and the measures of Bn and of Sn−1.

Define In =
∫
Rn e

− ∥x∥2
2 dmn(x).

(i) Prove that In = In1 for every n ∈ N.
(ii) Using integration by polar coordinates, prove that I2 = 2π and, hence,∫

Rn e
− ∥x∥2

2 dmn(x) = (2π)
n
2 .

(iii) Using integration by polar coordinates, prove that (2π)
n
2 = σn−1(Sn−1)

∫ +∞
0 e−

r2

2 rn−1 dr

and, hence, σn−1(Sn−1) = 2πn/2

Γ(n/2) andmn(Bn) =
πn/2

Γ((n/2)+1) .

143



144



Chapter 5

Convergence of functions.

5.1 a.e. convergence and uniform a.e. convergence.

The two types of convergence of sequences of functions which are usually studied in elementary
courses are the pointwise convergence and the uniform convergence. We recall briefly their defi­
nitions and simple properties.

Let A be an arbitrary set and f, fn : A → R or C for every n ∈ N. We say that fn → f
pointwise on A if fn(x) → f(x) for every x ∈ A. In case f(x) is finite, this means that for every
ϵ > 0 there is an n0 = n0(ϵ, x) so that |fn(x)− f(x)| ≤ ϵ for every n ≥ n0.

Let A be an arbitrary set and f, fn : A → C for every n ∈ N. We say that fn → f uniformly
on A if for every ϵ > 0 there is an n0 = n0(ϵ) so that |fn(x) − f(x)| ≤ ϵ for every x ∈ A and
every n ≥ n0 or, equivalently, supx∈A |fn(x) − f(x)| ≤ ϵ for every n ≥ n0. In other words,
fn → f uniformly on A if and only if supx∈A |fn(x)− f(x)| → 0 as n→ +∞.

It is obvious that uniform convergence onA implies pointwise convergence onA. The converse
is not true in general.

Example. Let fn = χ(0, 1
n
) : (0, 1) → R for every n. Then fn → 0 pointwise on (0, 1) but not

uniformly on (0, 1).

Let us describe some easy properties.
The pointwise limit (if it exists) of a sequence of functions is unique. The same is true for the

uniform limit.
Let f, g, fn, gn : A → C for all n ∈ N. If fn → f and gn → g pointwise on A, then

fn + gn → f + g and fngn → fg pointwise on A. The same is true for uniform convergence,
provided that in the case of the product the two sequences are uniformly bounded: this means that
there is anM < +∞ so that |fn(x)| ≤M and |gn(x)| ≤M for every x ∈ A and every n ∈ N.

Let fn : A → C for every n ∈ N. We say that (fn) is Cauchy uniformly on A if for every
ϵ > 0 there is an n0 = n0(ϵ) so that |fn(x)−fm(x)| ≤ ϵ for every x ∈ A and every n,m ≥ n0 or,
equivalently, supx∈A |fn(x) − fm(x)| ≤ ϵ for every n,m ≥ n0. In other words, (fn) is Cauchy
uniformly on A if and only if supx∈A |fn(x)− fm(x)| → 0 as n,m→ +∞.

If (fn) is Cauchy uniformly on A then there is an f : A → C so that fn → f uniformly on
A. Indeed, we have that for every ϵ > 0 there is an n0 = n0(ϵ) so that |fn(x) − fm(x)| ≤ ϵ for
every x ∈ A and every n,m ≥ n0. This implies that for every x ∈ A the sequence (fn(x)) is a
Cauchy sequence of complex numbers, and so it converges to some complex number. Let us define
f : A→ C by f(x) = limn→+∞ fn(x). Now, if in the above inequality |fn(x)− fm(x)| ≤ ϵ we
let m → +∞, we get that |fn(x) − f(x)| ≤ ϵ for every x ∈ A and every n ≥ n0. Therefore,
fn → f uniformly on A.

It is almost straightforward to extend these two notions of convergence to measure spaces.
Let (X,S, µ) be an arbitrary measure space.
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We have already seen the notion of a.e. convergence. If f, fn : X → R or C for every n ∈ N,
we say that fn → f (pointwise) a.e. onA ∈ S if there is a setB ∈ S ,B ⊆ A, so that µ(A\B) = 0
and fn → f pointwise on B.

If f, fn : X → R or C for every n ∈ N, we say that fn → f uniformly a.e. on A ∈ S if there
is a set B ∈ S , B ⊆ A, so that µ(A \ B) = 0, f and fn are finite on B for all n and fn → f
uniformly on B.

It is clear that uniform a.e. convergence on A implies a.e. convergence on A. The converse is
not true in general and the counter­example is the same as above.

If fn → f ′ a.e. on A and fn → f ′′ a.e. on A, then f ′ = f ′′ a.e. on A. Indeed, there are
B,C ∈ S , B,C ⊆ A so that µ(A \ B) = µ(A \ C) = 0 and fn → f ′ pointwise on B and
fn → f ′′ pointwise on C. Therefore, fn → f ′ and fn → f ′′ pointwise on B ∩ C, and so f ′ = f ′′

on B ∩ C. Since µ(A \ (B ∩ C)) = 0, we get that f ′ = f ′′ a.e. on A. This is a common
feature of almost any notion of convergence in the framework of measure spaces: the limits may
be considered unique only if we agree to identify functions which are equal a.e. on A. This can be
made precise by using the tool of equivalence classes in an appropriate manner but we postpone
this discussion for later.

We can similarly prove that if fn → f ′ uniformly a.e. on A and fn → f ′′ uniformly a.e. on
A, then f ′ = f ′′ a.e. on A.

Moreover, if f, g, fn, gn : A → C for every n and fn → f a.e. on A and gn → g a.e. on
A, then fn + gn → f + g a.e. on A and fngn → fg a.e. on A. The same is true for uniform
a.e. convergence, provided that in the case of the product the two sequences are uniformly a.e.
bounded: namely, that there is anM < +∞ so that |fn| ≤ M a.e. on A and |gn| ≤ M a.e. on A
for every n.

Exercises.

Except if specified otherwise, all exercises refer to a measure space (X,S, µ), all sets belong to S
and all functions are S­measurable.
5.1.1. Let f, fn : A→ C for every n ∈ N.
(i) If ϕ : C → C is continuous and fn → f a.e. on A, prove that ϕ ◦ fn → ϕ ◦ f a.e. on A.
(ii) If ϕ : C → C is uniformly continuous and fn → f uniformly a.e. on A, prove that ϕ ◦ fn →
ϕ ◦ f uniformly a.e. on A.

5.1.2. If fn → f a.e. on A and |fn| ≤ g a.e. on A for every n ∈ N, prove that |f | ≤ g a.e. on A.

5.1.3. If En ⊆ A for every n ∈ N and χEn → f a.e. on A, prove that there exists E ⊆ A so that
f = χE a.e. on A. What is the relation between the three sets: E, limEn, limEn ? (See exercise
1.1.1.)

5.1.4. Let µ(A) < +∞ and fn : A→ R or C for every n ∈ N and every fn be finite a.e. on A.
(i) Prove that there exists a g : A → [0,+∞) and a sequence (rn) in R+ so that |fn| ≤ rng a.e.
on A for every n.
Hint. For every n ∈ N there is a kn ∈ N so thatµ(En) <

1
2n , whereEn = {x ∈ A | |fn(x)| > kn}.

Let Fn =
⋃+∞

k=nEk and F =
⋂+∞

n=1 Fn. Then µ(F ) = 0. Now letAn = A\Fn so thatAn ↑ A\F .
Consider g = 1 on A1 and g = max{1, f1, . . . , fn−1} on An \ An−1 for n ≥ 2 and prove that
|fn| ≤ kng on A \ F .
(ii) Prove that there is a sequence (λn) in R+ so that λnfn → 0 a.e. on A.

5.1.5. Let µ(A) < +∞ and fn : A → R or C for every n ∈ N and every fn be finite a.e. on A
and fn → 0 a.e. on A.
(i) Prove that there exists a g : A → [0,+∞) and a sequence (ϵn) in R+ so that ϵn ↓ 0 and
|fn| ≤ ϵng a.e. on A for every n.
Hint. Look at the hint of exercise 5.1.4.
(ii) Prove that there is a sequence (λn) in R+ so that λn ↑ +∞ and λnfn → 0 a.e. on A.
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5.2 Convergence in the mean.

Let (X,S, µ) be a measure space.

Definition. Let all f, fn : X → R or C be S­measurable, and all f, fn be finite a.e. on A.
We say that fn → f in the mean on A ∈ S if

∫
A |fn − f | dµ→ 0 as n→ +∞.

We say that (fn) is Cauchy in the mean on A ∈ S if
∫
A |fn − fm| dµ→ 0 asm,n→ +∞.

Proposition 5.1. If fn → f ′ and fn → f ′′ in the mean on A, then f ′ = f ′′ a.e. on A.

Proof. We have ∫
A |f ′ − f ′′| dµ ≤

∫
A |fn − f ′| dµ+

∫
A |fn − f ′′| dµ→ 0

as n→ +∞. Hence,
∫
A |f ′ − f ′′| dµ = 0, and so f ′ = f ′′ a.e. on A.

Proposition 5.2. Let fn → f and gn → g in the mean on A and λ ∈ C. Then
(i) fn + gn → f + g in the mean on A.
(ii) λfn → λf in the mean on A.

Proof. We have∫
A |(fn + gn)− (f + g)| dµ ≤

∫
A |fn − f | dµ+

∫
A |gn − g| dµ→ 0,∫

A |λfn − λf | dµ = |λ|
∫
A |fn − f | dµ→ 0

as n→ +∞.

It is trivial to prove that, if fn → f in the mean on A, then (fn) is Cauchy in the mean on A.
The following basic theorem expresses the converse.

Theorem 5.1. If (fn) is Cauchy in the mean on A, then there is f : X → C so that fn → f in the
mean on A. Moreover, there is a subsequence (fnk

) so that fnk
→ f a.e. on A.

Corollary: if fn → f in the mean on A, there is a subsequence (fnk
) so that fnk

→ f a.e. on A.

Proof. For every k ∈ N there is nk ∈ N so that
∫
A |fn − fm| dµ < 1

2k
for every n,m ≥ nk.

Since we may assume that each nk is as large as we like, we may inductively take (nk) so that
nk < nk+1 for every k. Therefore, (fnk

) is a subsequence of (fn).
From the construction of nk and from nk < nk+1, we get

∫
A |fnk+1

− fnk
| dµ < 1

2k
for every k.

Then the S­measurable function G : X → [0,+∞], defined by G =
∑+∞

k=1 |fnk+1
− fnk

| on A
and by G = 0 on Ac, satisfies∫

X Gdµ =
∑+∞

k=1

∫
A |fnk+1

− fnk
| dµ <

∑+∞
k=1

1
2k

= 1.

Hence,G is finite a.e. onA, and so
∑+∞

k=1(fnk+1
(x)−fnk

(x)) converges for a.e. x ∈ A. Therefore,
there is a B ∈ S, B ⊆ A so that µ(A \ B) = 0 and

∑+∞
k=1(fnk+1

(x) − fnk
(x)) converges for

every x ∈ B. Now, we define the S­measurable function f : X → C by

f =

{
fn1 +

∑+∞
k=1(fnk+1

− fnk
), on B

0, on Bc

On B we have that

f = fn1 + limK→+∞
∑K−1

k=1 (fnk+1
− fnk

) = limK→+∞ fnK .
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and so (fnk
) converges to f a.e. on A.

We also have on B that
|fnK − f | = |fnK − fn1 −

∑+∞
k=1(fnk+1

− fnk
)|

= |
∑K−1

k=1 (fnk+1
− fnk

)−
∑+∞

k=1(fnk+1
− fnk

)| ≤
∑+∞

k=K |fnk+1
− fnk

|

for allK. Hence,∫
A |fnK − f | dµ ≤

∑+∞
k=K

∫
A |fnk+1

− fnk
| dµ <

∑+∞
k=K

1
2k

= 1
2K−1 → 0

asK → +∞.
Since nk → +∞ when k → +∞, we get∫

A |fk − f | dµ ≤
∫
A |fk − fnk

| dµ+
∫
A |fnk

− f | dµ→ 0,

and we conclude that fn → f in the mean on A.

Example.We consider the functions f1 = χ(0,1), f2 = χ(0, 1
2
), f3 = χ( 1

2
,1), f4 = χ(0, 1

3
), f5 =

χ( 1
3
, 2
3
), f6 = χ( 2

3
,1), f7 = χ(0, 1

4
), f8 = χ( 1

4
, 2
4
), f9 = χ( 2

4
, 3
4
), f10 = χ( 3

4
,1) and so on.

It is clear that
∫
(0,1) |fn| dm1 → 0, and so fn → 0 in the mean on (0, 1). Theorem 5.1 implies

that there exists a subsequence converging to 0 a.e. on (0, 1), and it is easy to find many such
subsequences: for example, the functions f1 = χ(0,1), f2 = χ(0, 1

2
), f4 = χ(0, 1

3
), f7 = χ(0, 1

4
) and

so on, form one such subsequence.
But it is not true that fn → 0 a.e. on (0, 1). In fact, if x is any irrational number in (0, 1), then
x belongs to infinitely many intervals of the form (k−1m , k

m) (for each value of m there is exactly
one such value of k), and so (fn(x)) does not converge to 0. It easy to see that fn(x) → 0 only
for every rational x ∈ (0, 1).

We may now complete Proposition 5.2 as follows.

Proposition 5.3. Let fn → f and gn → g in the mean on A.
(i) If there isM < +∞ so that |fn| ≤M a.e. on A for all n, then |f | ≤M a.e. on A.
(ii) If there is M < +∞ so that |fn| ≤ M a.e. on A and |gn| ≤ M a.e. on A for all n, then
fngn → fg in the mean on A.

Proof. (i) Theorem 5.1 implies that there is a subsequence (fnk
) so that fnk

→ f a.e. on A. Since
|fnk

| ≤M a.e. on A for every k, we get that |f | ≤M a.e. on A.
(ii) Using the result of (i), we have∫

A |fngn − fg| dµ ≤
∫
A |fngn − fgn| dµ+

∫
A |fgn − fg| dµ

≤M
∫
A |fn − f | dµ+M

∫
A |gn − g| dµ→ 0

as n→ +∞.

Exercises.

Except if specified otherwise, all exercises refer to a measure space (X,S, µ), all sets belong to S
and all functions are S­measurable.

5.2.1. If fn → f in the mean on A and |fn| ≤ g a.e. on A for all n, prove that |f | ≤ g a.e. on A.

5.2.2. If fn → f a.e. onA and |fn| ≤ g a.e. onA for all n and
∫
A g dµ < +∞, prove that fn → f

in the mean on A.

5.2.3. Look at exercise 5.1.3. IfEn ⊆ A for all n and χEn → f in the mean onA, prove that there
exists E ⊆ A so that f = χE a.e. on A. Prove that µ(En4E) → 0.

5.2.4. Let En ⊆ A for all n. If µ(En4Em) → 0 as n,m → +∞, prove that there exists E ⊆ A
so that µ(En4E) → 0 as n → +∞. Prove that the metric space (S/∼, d) of exercise 1.2.13 is
complete.
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5.3 Convergence in measure.

Let (X,S, µ) be a measure space.

Definition. Let all f, fn : X → R or C be S­measurable, and all f, fn be finite a.e. on A.
We say that fn → f in measure on A ∈ S if µ({x ∈ A | |fn(x)− f(x)| ≥ ϵ}) → 0 as n → +∞
for every ϵ > 0.
We say that (fn) is Cauchy in measure on A ∈ S if µ({x ∈ A | |fn(x) − fm(x)| ≥ ϵ}) → 0 as
n,m→ +∞ for every ϵ > 0.

A useful trick is the inequality

µ({x ∈ A | |f(x) + g(x)| ≥ a+ b}) ≤ µ({x ∈ A | |f(x)| ≥ a}) + µ({x ∈ A | |g(x)| ≥ b}),

which is true for every a, b > 0. This is due to the set­inclusion

{x ∈ A | |f(x) + g(x)| ≥ a+ b} ⊆ {x ∈ A | |f(x)| ≥ a} ∪ {x ∈ A | |g(x)| ≥ b}.

Proposition 5.4. If fn → f ′ and fn → f ′′ in measure on A, then f ′ = f ′′ a.e. on A.

Proof. We have

µ({x ∈ A | |f ′(x)− f ′′(x)| ≥ ϵ}) ≤ µ
({
x ∈ A

∣∣ |fn(x)− f ′(x)| ≥ ϵ
2

})
+ µ

({
x ∈ A

∣∣ |fn(x)− f ′′(x)| ≥ ϵ
2

})
→ 0.

This implies µ({x ∈ A | |f ′(x)− f ′′(x)| ≥ ϵ}) = 0 for every ϵ > 0.
Now we have

{x ∈ A | f ′(x) 6= f ′′(x)} =
⋃+∞

k=1

{
x ∈ A

∣∣ |f ′(x)− f ′′(x)| ≥ 1
k

}
.

Since all terms in the union are null sets, we get that {x ∈ A | f ′(x) 6= f ′′(x)} is a null set, and we
conclude that f ′ = f ′′ a.e. on A.

Proposition 5.5. Let fn → f and gn → g in measure on A and λ ∈ C. Then
(i) fn + gn → f + g in measure on A.
(ii) λfn → λf in measure on A.
(iii) If there isM < +∞ so that |fn| ≤M a.e. on A for all n, then |f | ≤M a.e. on A.
(iv) If there is M < +∞ so that |fn| ≤ M a.e. on A and |gn| ≤ M a.e. on A for all n, then
fngn → fg in measure on A.

Proof. (i) We apply the usual trick and we have

µ({x ∈ A | |(fn + gn)(x)− (f + g)(x)| ≥ ϵ}) ≤ µ
({
x ∈ A

∣∣ |fn(x)− f(x)| ≥ ϵ
2

})
+ µ

({
x ∈ A

∣∣ |gn(x)− g(x)| ≥ ϵ
2

})
→ 0

as n→ +∞.
(ii) The case λ = 0 is trivial. If λ 6= 0, then

µ({x ∈ A | |λfn(x)− λf(x)| ≥ ϵ}) = µ
({
x ∈ A

∣∣ |fn(x)− f(x)| ≥ ϵ
|λ|
})

→ 0

as n→ +∞.
(iii) We write

µ({x ∈ A | |f(x)| ≥M + ϵ}) ≤ µ
({
x ∈ A

∣∣ |fn(x)| ≥M + ϵ
2

})
+ µ

({
x ∈ A

∣∣ |fn(x)− f(x)| ≥ ϵ
2

})
= µ

({
x ∈ A

∣∣ |fn(x)− f(x)| ≥ ϵ
2

})
→ 0
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as n→ +∞. Hence, µ({x ∈ A | |f(x)| ≥M + ϵ}) = 0 for every ϵ > 0.
We have

{x ∈ A | |f(x)| > M} =
⋃+∞

k=1

{
x ∈ A

∣∣ |f(x)| ≥M + 1
k

}
and, since all sets of the union are null, we find that µ({x ∈ A | |f(x)| > M}) = 0. Hence,
|f | ≤M a.e. on A.
(iv) Applying the result of (iii),

µ({x ∈ A | |fn(x)gn(x)− f(x)g(x)| ≥ ϵ}) ≤ µ
({
x ∈ A

∣∣ |fn(x)gn(x)− fn(x)g(x)| ≥ ϵ
2

})
+ µ

({
x ∈ A

∣∣ |fn(x)g(x)− f(x)g(x)| ≥ ϵ
2

})
≤ µ

({
x ∈ A

∣∣ |gn(x)− g(x)| ≥ ϵ
2M

})
+ µ

({
x ∈ A

∣∣ |fn(x)− f(x)| ≥ ϵ
2M

})
→ 0

as n→ +∞.

It is easy to see that if fn → f in measure on A, then (fn) is Cauchy in measure on A. Indeed,

µ({x ∈ A | |fn(x)− fm(x)| ≥ ϵ}) ≤ µ
({
x ∈ A

∣∣ |fn(x)− f(x)| ≥ ϵ
2

})
+ µ

({
x ∈ A

∣∣ |fm(x)− f(x)| ≥ ϵ
2

})
→ 0

as n,m→ +∞.

Theorem 5.2. If (fn) is Cauchy in measure on A, then there is f : X → C so that fn → f in
measure on A. Moreover, there is a subsequence (fnk

) so that fnk
→ f a.e. on A.

Corollary: if fn → f in measure on A, there is a subsequence (fnk
) so that fnk

→ f a.e. on A.

Proof. For every k ∈ N we have that µ
({
x ∈ A

∣∣ |fn(x)− fm(x)| ≥ 1
2k

})
→ 0 as n,m→ +∞.

Hence, there is nk ∈ N so that µ
({
x ∈ A

∣∣ |fn(x) − fm(x)| ≥ 1
2k

})
< 1

2k
for every n,m ≥ nk.

Since we may assume that each nk is as large as we like, we may inductively take (nk) so that
nk < nk+1 for every k. Thus, (fnk

) is a subsequence of (fn), and from the construction of nk and
from nk < nk+1 we get µ

({
x ∈ A

∣∣ |fnk+1
(x)−fnk

(x)| ≥ 1
2k

})
< 1

2k
for every k. For simplicity

we write
Ek =

{
x ∈ A

∣∣ |fnk+1
(x)− fnk

(x)| ≥ 1
2k

}
,

and so µ(Ek) <
1
2k

for all k. We also define the subsets of A:

Fm =
⋃+∞

k=mEk, F =
⋂+∞

m=1 Fm = limEk.

Then
µ(F ) ≤ µ(Fm) ≤

∑+∞
k=m µ(Ek) <

∑+∞
k=m

1
2k

= 1
2m−1

for everym. This implies µ(F ) = 0.
Now, let x ∈ A \ F . Then there is m so that x ∈ A \ Fm, which implies that x ∈ A \ Ek for all
k ≥ m. Therefore, |fnk+1

(x)− fnk
(x)| < 1

2k
for all k ≥ m, and so∑+∞

k=m |fnk+1
(x)− fnk

(x)| <
∑+∞

k=m
1
2k

= 1
2m−1 .

Thus, the series
∑+∞

k=m(fnk+1
(x) − fnk

(x)) converges for every x ∈ A \ F , and we may define
f : X → C by

f =

{
fn1 +

∑+∞
k=1(fnk+1

− fnk
), on A \ F

0, on Ac ∪ F

From
f = fn1 + limK→+∞

∑K−1
k=1 (fnk+1

− fnk
) = limK→+∞ fnK
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on A \ F and from µ(F ) = 0, we get that (fnk
) converges to f a.e. on A.

Now, on A \ Fm we have

|fnm − f | = |fnm − fn1 −
∑+∞

k=1(fnk+1
− fnk

)|
= |

∑m−1
k=1 (fnk+1

− fnk
)−

∑+∞
k=1(fnk+1

− fnk
)| ≤

∑+∞
k=m |fnk+1

− fnk
| < 1

2m−1 .

Therefore,
{
x ∈ A

∣∣ |fnm(x)− f(x)| ≥ 1
2m−1

}
⊆ Fm. This implies that

µ
({
x ∈ A

∣∣ |fnm(x)− f(x)| ≥ 1
2m−1

})
≤ µ(Fm) < 1

2m−1 .

Now, we consider an arbitrary ϵ > 0 andm0 ∈ N large enough so that 1
2m0−1 ≤ ϵ. Then for every

m ≥ m0 we have

{x ∈ A | |fnm(x)− f(x)| ≥ ϵ} ⊆
{
x ∈ A

∣∣ |fnm(x)− f(x)| ≥ 1
2m−1

}
,

and so
µ({x ∈ A | |fnm(x)− f(x)| ≥ ϵ}) < 1

2m−1 → 0

asm→ +∞. Therefore, fnk
→ f in measure on A.

And, finally, since nk → +∞ as k → +∞, we have that

µ({x ∈ A | |fk(x)− f(x)| ≥ ϵ}) ≤ µ
({
x ∈ A

∣∣ |fk(x)− fnk
(x)| ≥ ϵ

2

})
+ µ

({
x ∈ A

∣∣ |fnk
(x)− f(x)| ≥ ϵ

2

})
→ 0

as k → +∞, and we conclude that fn → f in measure on A.

Example.We consider the example just after Theorem 5.1. If 0 < ϵ ≤ 1, then the sequence of
the values of m1({x ∈ (0, 1) | |fn(x)| ≥ ϵ}) is 1, 12 ,

1
2 ,

1
3 ,

1
3 ,

1
3 ,

1
4 ,

1
4 ,

1
4 ,

1
4 , . . ., and converges to 0.

Hence, fn → 0 in measure on (0, 1). But, as we have seen, it is not true that fn → 0 a.e. on (0, 1).

Exercises.

Except if specified otherwise, all exercises refer to a measure space (X,S, µ), all sets belong to S
and all functions are S­measurable.

5.3.1. If ϕ : C → C is uniformly continuous and fn → f in measure onA, prove that ϕ◦fn → ϕ◦f
in measure on A.

5.3.2. If fn → f in measure on A and |fn| ≤ g a.e. on A for all n, prove that |f | ≤ g a.e. on A.

5.3.3. Look at exercises 5.1.3 and 5.2.3. IfEn ⊆ A for all n and χEn → f in measure onA, prove
that there exists E ⊆ A so that f = χE a.e. on A. Prove that µ(En4E) → 0.

5.3.4. Let ♯ be the counting measure on (N,P(N)). Prove that fn → f uniformly on N if and only
if fn → f in measure on N.

5.3.5. A variation of the Lemma of Fatou.
If fn ≥ 0 a.e. on A for all n and fn → f in measure on A, prove

∫
A f dµ ≤ limn→+∞

∫
A fn dµ.

5.3.6. (i) If µ(A) < +∞ and supn∈N |hn(x)| <∞ for a.e. x ∈ A, prove that for every δ > 0 there
is a B ⊆ A so that µ(A \B) < δ and supx∈B,n∈N |hn(x)| < +∞.
(ii) If µ(A) < +∞, and fn → f and gn → g in measure on A, prove that fngn → fg in measure
on A.

5.3.7. (i) If µ(A) < +∞, prove that fn → f in measure on A if and only if
∫
A
|fn−f |

1+|fn−f | dµ→ 0.

(ii) Prove that fn → f in measure on A if and only if infϵ>0
ϵ+µ({x∈A | |fn(x)−f(x)|≥ϵ})

1+ϵ+µ({x∈A | |fn(x)−f(x)|≥ϵ}) → 0.

5.3.8. If fn → f in measure on A, prove that λfn(t) → λf (t) for every t ∈ [0,+∞) which is a
point of continuity of λf .
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5.4 Almost uniform convergence.

Let (X,S, µ) be a measure space.

Definition. Let all f, fn : X → R or C be S­measurable, and all f, fn be finite a.e. on A.
We say that fn → f almost uniformly on A ∈ S if for every δ > 0 there is B ∈ S , B ⊆ A, so
that µ(A \B) < δ and fn → f uniformly on B.
We say that (fn) is Cauchy almost uniformly onA ∈ S if for every δ > 0 there isB ∈ S , B ⊆ A,
so that µ(A \B) < δ and (fn) is Cauchy uniformly on B.

Proposition 5.6. If fn → f ′ and fn → f ′′ almost uniformly on A, then f ′ = f ′′ a.e. on A.

Proof. Let us assume that µ(E) > 0, where E = {x ∈ A | f ′(x) 6= f ′′(x)}.
There isB ∈ S , B ⊆ A so that µ(A \B) < µ(E)

2 and fn → f ′ uniformly onB. Similarly, there is
C ∈ S , C ⊆ A so that µ(A \C) < µ(E)

2 and fn → f ′′ uniformly on C. We considerD = B ∩C,
and we have that µ(A \D) < µ(E) and fn → f ′ and fn → f ′′ uniformly on D. Of course this
implies that f ′ = f ′′ on D, and so D ∩ E = ∅.
But then E ⊆ A \D. Therefore, µ(E) ≤ µ(A \D) < µ(E), and we arrive at a contradiction.

Proposition 5.7. Let fn → f and gn → g almost uniformly on A. Then
(i) fn + gn → f + g almost uniformly on A.
(ii) λfn → λf almost uniformly on A.
(iii) If there isM < +∞ so that |fn| ≤M a.e. on A for all n, then |f | ≤M a.e. on A.
(iv) If there is M < +∞ so that |fn| ≤ M a.e. on A and |gn| ≤ M a.e. on A for all n, then
fngn → fg almost uniformly on A.

Proof. (i) For each δ > 0, there is B′ ∈ S , B′ ⊆ A, so that µ(A \B′) < δ
2 and fn → f uniformly

on B′, and there is B′′ ∈ S , B′′ ⊆ A, so that µ(A \ B′′) < δ
2 and gn → g uniformly on B′′. We

consider B = B′ ∩ B′′, and then µ(A \ B) < δ and fn → f and gn → g uniformly on B. Then
fn + gn → f + g uniformly on B, and, since δ is arbitrary, we conclude that fn + gn → f + g
almost uniformly on A.
(ii) This is easier, since, if fn → f uniformly on B, then λfn → λf uniformly on B.
(iii) Let us assume that µ(E) > 0, where E = {x ∈ A | |f(x)| > M}.
There is B ∈ S , B ⊆ A, so that µ(A \ B) < µ(E) and fn → f uniformly on B. Then we have
|f | ≤M a.e. on B, and so µ(B ∩E) = 0. Now, µ(E) = µ(E \B) ≤ µ(A \B) < µ(E), and we
arrive at a contradiction.
(iv) Exactly as in the proof of (i), for every δ > 0 there isB1 ∈ S , B1 ⊆ A, so that µ(A \B1) < δ
and fn → f and gn → g uniformly on B1. By the result of (iii), we have |f | ≤ M a.e. on A.
Hence, there is B2 ∈ S , B2 ⊆ A so that µ(A \ B2) = 0 and |fn|, |gn|, |f | ≤ M on B2. We
consider B = B1 ∩B2, and then µ(A \B) = µ(A \B1) < δ. Now, on B we have that

|fngn − fg| ≤ |fngn − fgn|+ |fgn − fg| ≤M |fn − f |+M |gn − g|,

and so fngn → fg uniformly on B. We conclude that fngn → fg almost uniformly on A.

One should notice the difference between the next result and the corresponding Theorems 5.1
and 5.2 for the other two types of convergence: if a sequence converges in the mean or in measure,
then a.e. convergence holds for some subsequence, while, if it converges almost uniformly, then
a.e. convergence holds for the whole sequence (and so for every subsequence).

Before the next result let us consider a simple general fact.
Assume that there is a collection of functions gi : Bi → C, indexed by the set I of indices,

where Bi ⊆ X for every i ∈ I , and that fn → gi pointwise on Bi for every i ∈ I . If x ∈ Bi ∩Bj

for any i, j ∈ I , then by the uniqueness of pointwise limits we have that gi(x) = gj(x). Therefore,
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all limit functions have the same value at each point of the union B =
⋃

i∈I Bi of the domains of
definition. Hence, we can define a single function f : B → C by f(x) = gi(x), where i ∈ I is
any index for which x ∈ Bi, and then clearly fn → f pointwise on B.

Theorem 5.3. If (fn) is Cauchy almost uniformly onA, then there is an f : X → C so that fn → f
almost uniformly on A. Moreover, fn → f a.e. on A.
Corollary: if fn → f almost uniformly on A, then fn → f a.e. on A.

Proof. For every k ∈ N there exists Bk ∈ S , Bk ⊆ A so that µ(A \Bk) <
1
k and (fn) is Cauchy

uniformly on Bk. Therefore, there is a function gk : Bk → C so that fn → gk uniformly and,
hence, pointwise on Bk.
By the general result of the paragraph just before this theorem, there is an f : B → C, where
B =

⋃+∞
k=1Bk, so that fn → f pointwise on B. But µ(A \B) ≤ µ(A \Bk) <

1
k for every k, and

so µ(A \ B) = 0. If we extend f : X → C by defining f = 0 on Bc, we conclude that fn → f
a.e. on A.
By the general construction of f , we have that gk = f on Bk, and so fn → f uniformly on Bk. If
δ > 0 is arbitrary, we just take k large enough so that 1

k ≤ δ, and we have that µ(A \ Bk) < δ.
Therefore, fn → f almost uniformly on A.

Exercises.

Except if specified otherwise, all exercises refer to a measure space (X,S, µ), all sets belong to S
and all functions are S­measurable.

5.4.1. If ϕ : C → C is uniformly continuous and fn → f almost uniformly on A, prove that
ϕ ◦ fn → ϕ ◦ f almost uniformly on A.

5.4.2. If fn → f almost uniformly on A and |fn| ≤ g a.e. on A for all n, prove that |f | ≤ g a.e.
on A.

5.5 Relations between various types of convergence.

In this section we shall see three results describing some relations between the four types of conver­
gence: a.e. convergence, convergence in the mean, convergence in measure, and almost uniform
convergence. Many other results are consequences of these.

Let (X,S, µ) be a measure space.

Theorem 5.4. If fn → f almost uniformly on A, then fn → f a.e. on A.
The converse is true under the additional assumption that either
(i) (Egoroff) µ(A) < +∞ and all f, fn are finite a.e. on A
or
(ii) there is a g : A→ [0,+∞] so that

∫
A g dµ < +∞ and |fn| ≤ g a.e. on A for every n.

Proof. The first statement is included in Theorem 5.3.µ(A) < +∞
(i) Let µ(A) < +∞ and fn → f a.e. on A and all f, fn be finite a.e. on A.
For each k, n ∈ N we consider

En(k) =
⋃+∞

m=n

{
x ∈ A

∣∣ |fm(x)− f(x)| > 1
k

}
.

If C = {x ∈ A | fn(x) → f(x)}, then it is easy to see that
⋂+∞

n=1En(k) ⊆ A \ C. Since
µ(A \ C) = 0, we get µ(

⋂+∞
n=1En(k)) = 0 for every k. From En(k) ↓

⋂+∞
n=1En(k), from

µ(A) < +∞ and from the continuity of µ from above, we get that µ(En(k)) → 0 as n → +∞.
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Hence, for an arbitrary δ > 0 there is nk ∈ N so that µ(Enk
(k)) < δ

2k
.

We define
E =

⋃+∞
k=1Enk

(k), B = A \ E,
and we have

µ(E) ≤
∑+∞

k=1 µ(Enk
(k)) < δ.

Also, for every x ∈ B and for every k ≥ 1 we have that |fm(x) − f(x)| ≤ 1
k for all m ≥ nk or,

equivalently, supx∈B |fm(x) − f(x)| ≤ 1
k for all m ≥ nk. This implies, of course, that fn → f

uniformly on B. Since µ(A \B) = µ(E) < δ, we conclude that fn → f almost uniformly on A.
(ii) Let

∫
A g dµ < +∞ and fn → f a.e. on A and |fn| ≤ g a.e. on A for all n.

Then |f | ≤ g a.e. on A and, since
∫
A g dµ < +∞, all f, fn are finite a.e. on A. Therefore,

|fn − f | ≤ 2g a.e. on A for all n. Using the same notation as in the proof of (i), this implies that
there is an F ⊆ En(k), F ∈ S , so that En(k) \ F ⊆

{
x ∈ A

∣∣ g(x) > 1
2k

}
, and so

µ(En(k)) = µ(En(k) \ F ) ≤ µ
({
x ∈ A

∣∣ g(x) > 1
2k

})
.

Now, it is clear that
∫
A g dµ < +∞ implies µ

({
x ∈ A

∣∣ g(x) > 1
2k

})
< +∞. Therefore, we may

apply again the continuity of µ from above to find that µ(En(k)) → 0 as n → +∞. From this
point we repeat the proof of (i) word for word.

Example. If fn = χ(n,n+1) for every n ≥ 1, then fn → 0 everywhere on R, but it is not true that
fn → 0 almost uniformly on R.
Indeed, if 0 < δ ≤ 1, then every Lebesgue measurableB ⊆ Rwithm1(R\B) < δ has non­empty
intersection with every interval (n, n+ 1), and so supx∈B |fn(x)| ≥ 1 for every n.
In this example we havem1(R) = +∞, and it is easy to see that there is no g : R → [0,+∞] so
that

∫
R g(x) dm1(x) < +∞ and fn ≤ g a.e. on R for every n. In fact, if fn ≤ g a.e. on R for

every n, then g ≥ 1 a.e. on (1,+∞).

Theorem 5.5. If fn → f almost uniformly on A, then fn → f in measure on A.
Conversely, if fn → f in measure onA, then there is a subsequence (fnk

) so that fnk
→ f almost

uniformly on A.

Proof. Let fn → f almost uniformly on A. We take an arbitrary ϵ > 0.
Then for every δ > 0 there is B ∈ S , B ⊆ A, so that µ(A \B) < δ and fn → f uniformly on B.
Now, there exists an n0 ∈ N so that |fn(x)−f(x)| < ϵ for all n ≥ n0 and every x ∈ B. Therefore,
{x ∈ A | |fn(x) − f(x)| ≥ ϵ} ⊆ A \ B and, thus, µ({x ∈ A | |fn(x) − f(x)| ≥ ϵ}) < δ for all
n ≥ n0. This implies that µ({x ∈ A | |fn(x)− f(x)| ≥ ϵ}) → 0 as n → +∞, and so fn → f in
measure on A.
The idea for the converse is already in the proof of Theorem 5.2.
Let fn → f in measure on A.
Then for all k ∈ N we have µ

({
x ∈ A

∣∣ |fn(x)−f(x)| ≥ 1
2k

})
→ 0 as n→ +∞. Hence, there is

nk ∈ N so that µ
({
x ∈ A

∣∣ |fn(x)− f(x)| ≥ 1
2k

})
< 1

2k
for all n ≥ nk, and we may also assume

that nk < nk+1 for all k. Therefore, (fnk
) is a subsequence of (fn) such that

µ
({
x ∈ A

∣∣ |fnk
(x)− f(x)| ≥ 1

2k

})
< 1

2k

for all k. Now, we consider

Ek =
{
x ∈ A

∣∣ |fnk
(x)− f(x)| ≥ 1

2k

}
, Fm =

⋃+∞
k=mEk.

Then
µ(Fm) ≤

∑+∞
k=m µ(Ek) <

∑+∞
k=m

1
2k

= 1
2m−1

for everym.
If x ∈ A\Fm, then x ∈ A\Ek for every k ≥ m, and then |fnk

(x)−f(x)| < 1
2k

for every k ≥ m.
This implies that supx∈A\Fm

|fnk
(x) − f(x)| ≤ 1

2k
for all k ≥ m, and so fnk

→ f uniformly on
A \ Fm. Since µ(Fm) < 1

2m−1 for allm, we conclude that fnk
→ f almost uniformly on A.
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Example.We consider the example just after Theorem 5.1. There, fn → 0 in measure on (0, 1)
but it is not true that fn → 0 almost uniformly on (0, 1). In fact, if we take any δ with 0 < δ ≤ 1,
then every Lebesgue measurable B ⊆ (0, 1) with m1((0, 1) \ B) < δ must have non­empty
intersection with infinitely many intervals of the form (k−1m , k

m) (at least one for each value ofm),
and so supx∈B |fn(x)| ≥ 1 for infinitely many n.

The converse in Theorem 5.6 is a variation of the Dominated Convergence Theorem.

Theorem 5.6. If fn → f in the mean on A, then fn → f in measure on A.
The converse is true under the additional assumption that there exists a g : X → [0,+∞] so that∫
A g dµ < +∞ and |fn| ≤ g a.e. on A.

Proof. If fn → f in the mean on A, then

µ({x ∈ A | |fn(x)− f(x)| ≥ ϵ}) ≤ 1
ϵ

∫
A |fn − f | dµ→ 0

as n→ +∞. Therefore, fn → f in measure on A.
Let us assume that the converse is not true. Then there is some ϵ0 > 0 and a subsequence (fnk

)
of (fn) so that

∫
A |fnk

− f | dµ ≥ ϵ0 for every k ≥ 1. Since fnk
→ f in measure, Theorem

5.2 implies that there is a subsequence (fnkl
) so that fnkl

→ f a.e. on A. From |fnkl
| ≤ g a.e.

on A we find that |f | ≤ g a.e. on A. Now the Dominated Convergence Theorem implies that∫
A |fnkl

− f | dµ→ 0 as l → +∞, and we arrive at a contradiction.

Example. Let fn = nχ(0, 1
n
) for all n. If 0 < ϵ ≤ 1, then µ({x ∈ (0, 1) | |fn(x)| ≥ ϵ}) = 1

n → 0

as n → +∞, and so fn → 0 in measure on (0, 1). But
∫ 1
0 |fn| dm1 = 1, and so it is not true that

fn → 0 in the mean on (0, 1).
On the other hand, there can be no g : (0, 1) → [0,+∞] so that

∫ 1
0 g dm1 < +∞ and |fn| ≤ g

a.e. on (0, 1) for all n. Otherwise, we would have that g ≥ n a.e. on each interval [ 1
n+1 ,

1
n), and

so ∫ 1
0 g dm1 ≥

∑+∞
n=1

∫ 1/n
1/(n+1) ndm1 =

∑+∞
n=1 n

(
1
n − 1

n+1

)
=

∑+∞
n=1

1
n+1 = +∞,

resulting in a contradiction.

Exercises.

Except if specified otherwise, all exercises refer to a measure space (X,S, µ), all sets belong to S
and all functions are S­measurable.

5.5.1. If fn → f ′ with respect to any of the four types of convergence (a.e., in the mean, in mea­
sure, almost uniformly) on A and fn → f ′′ with respect to any other of the same four types of
convergence, prove that f ′ = f ′′ a.e. on A.

5.5.2. Prove the Dominated Convergence Theorem using the second converse part of Theorem 5.4.

5.5.3. A variation of the Dominated Convergence Theorem.
Let

∫
A g dµ < +∞ and |fn| ≤ g a.e. on A and fn → f in measure on A. Prove that

∫
A fn dµ →∫

A f dµ.
Hint. One can follow three paths. One is to use Theorem 5.6. Another is to reduce to the case
of a.e. convergence and use the original version of the theorem. The third path is to use almost
uniform convergence.

5.5.4. A variation of Egoroff’s Theorem for continuous parameter.
Let µ(A) < +∞ and f : A× [0, 1] → C have the properties:
(a) f(·, y) : A→ C is S­measurable for every y ∈ [0, 1]
(b) f(x, ·) : [0, 1] → C is continuous for every x ∈ A.
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(i) If ϵ, η > 0, prove that {x ∈ A | |f(x, y)− f(x, 0)| ≤ ϵ for all y < η} belongs to S.
(ii) Prove that for every δ > 0 there isB ⊆ A so that µ(A\B) < δ and f(·, y) → f(·, 0) uniformly
on B as y → 0+.

5.5.5. Prove the converse part of Theorem 5.6 using the converse part of Theorem 5.5.

5.5.6. The exact relation between convergence in the mean and convergence in measure.
In all that follows every fn is integrable over A.
We say that the indefinite integrals of (fn) are uniformly absolutely continuous onA if for every
ϵ > 0 there exists δ > 0 so that |

∫
E fn dµ| < ϵ for all n and all E ⊆ A with µ(E) < δ.

We say that the indefinite integrals of (fn) are equicontinuous from above at ∅ on A if for every
sequence (Ek) of subsets ofAwithEk ↓ ∅ and for every ϵ > 0 there exists k0 so that |

∫
Ek
fn dµ| <

ϵ for all k ≥ k0 and all n.
Prove Vitali’s Theorem: fn → f in the mean onA if and only if fn → f in measure onA and the
indefinite integrals of (|fn|) are uniformly absolutely continuous on A and equicontinuous from
above at ∅ on A.
How is Theorem 5.6 related to Vitali’s Theorem?

5.5.7. If f : Rn → C is continuous in each variable separately, prove that f is Lebesgue measur­
able.

156



Chapter 6

Signed measures and complex measures.

6.1 Signed measures.

Let (X,S) be a measurable space.

Definition. A function ν : S → R is called a signed measure on (X,S) if
(i) either ν(A) 6= −∞ for all A ∈ S or ν(A) 6= +∞ for all A ∈ S ,
(ii) ν(∅) = 0,
(iii) ν(

⋃+∞
j=1 Aj) =

∑+∞
j=1 ν(Aj) for all pairwise disjoint A1, A2, . . . ∈ S .

If ν(A) ∈ R for every A ∈ S , then ν is called a real measure.
It ν(A) ≥ 0 for every A ∈ S , then ν is called a non­negative signed measure. If ν(A) ≤ 0 for
every A ∈ S , then ν is called a non­positive signed measure.

It is obvious that ν is a non­negative signed measure if and only if it is a measure. Also, ν is a
non­negative signed measure if and only if −ν is a non­positive signed measure.

Proposition 6.1. Let ν, ν1, ν2 be signed measures on (X,S) and λ ∈ R.
(i) If either ν1(A) 6= −∞, ν2(A) 6= −∞ for all A ∈ S or ν1(A) 6= +∞, ν2(A) 6= +∞ for all
A ∈ S , then we can define ν1 + ν2 : S → R by

(ν1 + ν2)(A) = ν1(A) + ν2(A) for all A ∈ S.

Then ν1 + ν2 is a signed measure on (X,S).
(ii) We define the function λν : S → R by

(λν)(A) = λ ν(A), for all A ∈ S

(where we follow the convention: 0 (±∞) = 0 whenever λ = 0 and ν(A) = ±∞). Then λν is a
signed measure on (X,S).

Proof. Similar to the proof of Proposition 1.16.

Definition. Let ν, ν1, ν2 be signed measures on the measurable space (X,S) and λ ∈ R. The
signed measures ν1+ ν2 and λν on (X,S) which are defined in Proposition 6.1 are called sum of
ν1 and ν2 and product of ν by λ.

Example. Let µ1, µ2 be two measures on (X,S).
If µ2(X) < +∞, then µ2(A) ≤ µ2(X) < +∞ for every A ∈ S . Then ν = µ1 − µ2 is well­
defined, since ν(A) = µ1(A)−µ2(A) ≥ −µ2(A) > −∞ for allA ∈ S , and ν is a signed measure
on (X,S)
Similarly, if µ1(X) < +∞, then ν = µ1 − µ2 is a signed measure on (X,S) with ν(A) < +∞
for all A ∈ S .
Thus, the difference of two measures, at least one of which is finite, is a signed measure.
Clearly, the difference of two finite measures is a real measure.
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Example. Let µ be a measure on (X,S) and f : X → R be a measurable function such that the
integral

∫
X f dµ is defined. Lemma 3.10 says that

∫
A f dµ is defined for every A ∈ S . If we

consider the function λ : S → R defined by λ(A) =
∫
A f dµ for all A ∈ S , then Proposition 3.6

and Theorem 3.9 imply that λ is a signed measure on (X,S).

Definition. The signed measure λ which is defined in the last example is called the indefinite
integral of f with respect to µ and it is denoted fµ. Thus, the defining relation for fµ is

(fµ)(A) =
∫
A f dµ, A ∈ S.

In case f ≥ 0 a.e. on X the signed measure fµ is a measure, since (fµ)(A) =
∫
A f dµ ≥ 0

for every A ∈ S . Similarly, if f ≤ 0 a.e. on X , the fµ is a non­positive signed measure.
Continuing the study of this example, we shall make a few remarks. That the

∫
X f dµ is defined

means that either
∫
X f+ dµ < +∞ or

∫
X f− dµ < +∞.

Let us consider the case
∫
X f+ dµ < +∞ first. Since (f+µ)(X) =

∫
X f+ dµ < +∞, the

signed measure f+µ is a finite measure. The signed measure f−µ is a measure (not necessarily
finite). Also, for every A ∈ S we have (f+µ)(A) − (f−µ)(A) =

∫
A f

+ dµ −
∫
A f
− dµ =∫

A f dµ = (fµ)(A). Therefore, in the case
∫
X f+ dµ < +∞ the signed measure fµ is the

difference of the measures f+µ and f−µ of which the first is finite:

fµ = f+µ− f−µ.

Similarly, in the case
∫
X f− dµ < +∞ the signed measure fµ is the difference of the measures

f+µ and f−µ of which the second is finite, since (f−µ)(X) =
∫
X f− dµ < +∞.

Property (iii) in the definition of a signed measure ν is called the σ­additivity of ν. It is trivial
to see that a signed measure is also finitely additive.

A signed measure is not, in general, monotone: ifA,B ∈ S andA ⊆ B, thenB = A∪(B\A)
and, hence, ν(B) = ν(A) + ν(B \A), but ν(B \A) may not be ≥ 0.

Theorem 6.1. Let ν be a signed measure on (X,S).
(i) Let A,B ∈ S and A ⊆ B. If ν(B) < +∞, then ν(A) < +∞ and, if ν(B) > −∞, then
ν(A) > −∞. In particular, if ν(B) ∈ R, then ν(A) ∈ R.
(ii) If A,B ∈ S , A ⊆ B and ν(A) ∈ R, then ν(B \A) = ν(B)− ν(A).
(iii) If A1, A2, . . . ∈ S and An ↑ A, then ν(An) → ν(A).
(iv) If A1, A2, . . . ∈ S , ν(AN ) ∈ R for some N and An ↓ A, then ν(An) → ν(A).

Proof. (i) We have ν(B) = ν(A) + ν(B \ A). If ν(A) = +∞, then ν(B \ A) > −∞, and so
ν(B) = +∞. Similarly, if ν(A) = −∞, then ν(B \A) < +∞, and so ν(B) = −∞.
The proofs of (ii), (iii), (iv) are the same as the proofs of the analogous parts of Theorem 1.4.

Property (iii) is called continuity from below and property (iv) is called continuity from
above.

6.2 The Hahn and Jordan decompositions.

Let (X,S) be a measurable space.

Definition. Let ν be a signed measure on (X,S).
(i) P ∈ S is called a non­negative set for ν if ν(A) ≥ 0 for every A ∈ S , A ⊆ P .
(ii) N ∈ S is called a non­positive set for ν if ν(A) ≤ 0 for every A ∈ S , A ⊆ N .
(iii) Q ∈ S is called a null set for ν if ν(A) = 0 for every A ∈ S , A ⊆ Q.
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It is obvious that an element of S which is both a non­negative and a non­positive set for ν is
a null set for ν. It is also obvious that, if µ is a measure, then every A ∈ S is a non­negative set
for µ.

Proposition 6.2. Let ν be a signed measure on (X,S).
(i) If P is a non­negative set for ν and P ′ ∈ S , P ′ ⊆ P , then P ′ is a non­negative set for ν.
(ii) If P1, P2, . . . are non­negative sets for ν, then

⋃+∞
k=1 Pk is a non­negative set for ν.

The same results are also true for non­positive sets and for null sets for ν.

Proof. (i) Trivial.
(ii) Let A ∈ S , A ⊆

⋃+∞
k=1 Pk. We consider A1 = A∩P1 and Ak = A∩ (Pk \ (P1 ∪ · · · ∪Pk−1))

for k ≥ 2. Then A =
⋃+∞

k=1Ak, the A1, A2, . . . ∈ S are pairwise disjoint, and Ak ⊆ Pk for all k.
We then have ν(A) =

∑+∞
k=1 ν(Ak) ≥ 0.

Theorem 6.2. Let ν be a signed measure on (X,S). Then there exist a non­negative set P and a
non­positive set N for ν which form a partition of X , i.e.

P ∪N = X, P ∩N = ∅.

If P1 is a non­negative set and N1 is a non­positive set for ν which form a partition of X , then
P4P1 = N4N1 is a null set for ν.

Proof. We consider the case when −∞ < ν(A) for every A ∈ S , and we define the quantity

κ = inf{ν(N) |N is a non­positive set for ν}.

Since ∅ is a non­positive set with ν(∅) = 0, we have that κ ≤ 0.
Now, we consider a sequence (Nk) of non­positive sets for ν so that ν(Nk) → κ, and we consider
the set N =

⋃+∞
k=1Nk. By Proposition 6.1, N is a non­positive set for ν. Thus, ν(N \ Nk) ≤ 0

for every k, and so κ ≤ ν(N) ≤ ν(Nk) for every k. Taking the limit as k → +∞, we find that
−∞ < ν(N) = κ.
Therefore, N is a non­positive set for ν of minimal ν­measure, and we shall prove that the set
P = X \N is a non­negative set for ν.
Let us assume that P is not a non­negative set for ν. Then there is A0 ∈ S , A0 ⊆ P , with
−∞ < ν(A0) < 0. The set A0 is not a non­positive set or, otherwise, the set N ∪ A0 would be a
non­positive set with ν(N ∪ A0) = ν(N) + ν(A0) < ν(N), contradicting the minimality of N .
Therefore, there is at least one subset of A0 in S having positive ν­measure. This means that

τ0 := sup{ν(B) |B ∈ S, B ⊆ A0} > 0.

Since 0 < τ0
τ0+1 < τ0, there is a B1 ∈ S , B1 ⊆ A0 so that 0 < τ0

τ0+1 < ν(B1) ≤ τ0. We consider
A1 = A0 \ B1, and we have that −∞ < ν(A1) < ν(A1) + ν(B1) = ν(A0). Here we are using
Theorem 6.1 to imply ν(A1), ν(B1) ∈ R from ν(A0) ∈ R.
Let us suppose that we have constructed sets A0, A1, . . . , An ∈ S and B1, . . . , Bn ∈ S so that

An ⊆ An−1 ⊆ · · · ⊆ A1 ⊆ A0 ⊆ N, Bn = An−1 \An, . . . , B1 = A0 \A1,

τk−1 := sup{ν(B) |B ∈ S, B ⊆ Ak−1} > 0 for all k = 1, . . . , n,

0 <
τk−1

τk−1+1 < ν(Bk) ≤ τk−1 for all k = 1, . . . , n,

−∞ < ν(An) < ν(An−1) < · · · < ν(A1) < ν(A0) < 0 < +∞.

(6.1)

Now, An is not a non­positive set for ν for the same reason that A0 is not a non­positive set for ν.
Therefore, there is at least one subset of An in S having positive ν­measure. This means that

τn := sup{ν(B) |B ∈ S, B ⊆ An} > 0.

159



Then there is Bn+1 ∈ S , Bn+1 ⊆ An so that 0 < τn
τn+1 < ν(Bn+1) ≤ τn. We consider An+1 =

An \Bn+1, and we have that −∞ < ν(An+1) < ν(An+1) + ν(Bn+1) = ν(An).
Thus, we have constructed, inductively, two sequences (An), (Bn) satisfying properties (6.1).
Now the sets B1, B2, . . . and

⋂+∞
n=1An are pairwise disjoint and A0 = (

⋂+∞
n=1An) ∪ (

⋃+∞
n=1Bn).

Therefore,
ν(A0) = ν(

⋂+∞
n=1An) +

∑+∞
n=1 ν(Bn),

from which we get
∑+∞

n=1 ν(Bn) < +∞. This implies that ν(Bn) → 0, and, by the third property
(6.1), we have that τn−1 → 0.
By continuity from above of ν, the set A =

⋂+∞
n=1An ∈ S has ν(A) = limn→+∞ ν(An) < 0.

Moreover, A is not a non­positive set for ν for the same reason that A0 is not a non­positive set
for ν. Therefore, there is a B ∈ S , B ⊆ A so that ν(B) > 0. But then B ⊆ An for all n, and so
0 < ν(B) ≤ τn for all n. We, thus, arrive at a contradiction with the limit τn → 0.
In the same way we can prove that, in the case when ν(A) < +∞ for every A ∈ S , there is a
non­negative set P for ν of maximal ν­measure, and then that the setN = X \P is a non­positive
set for ν.
Thus, in any case there exist a non­negative set P and a non­positive set N for ν which form a
partition of X .
Now, let P1 be a non­negative set and N1 be a non­positive set for ν so that P1 ∪ N1 = X and
P1 ∩ N1 = ∅. Then, since P \ P1 = N1 \ N ⊆ P ∩ N1, the set P \ P1 = N1 \ N1 is both a
non­negative set and a non­positive set for ν, and so it is a null set for ν. Similarly, P1\P = N \N1

is a null set for ν, and we conclude that their union, i.e. P4P1 = N4N1, is a null set for ν.

Definition. Let ν be a signed measure on (X,S). Every partition ofX into a non­negative set and
a non­positive set for ν is called a Hahn decomposition of X for ν.

Proposition 6.3. Let ν be a signed measure on (X,S).
(i) If P and N constitute a Hahn decomposition of X for ν, then

ν(P ) = max{ν(A) |A ∈ S}, ν(N) = min{ν(A) |A ∈ S}.

(ii) If ν(A) < +∞ for every A ∈ S , then ν is bounded from above. If −∞ < ν(A) for every
A ∈ S , then ν is bounded from below.

Proof. (i) If A ∈ S , then ν(P \A) ≥ 0, because P \A ⊆ P . This implies

ν(P ) = ν(P ∩A) + ν(P \A) ≥ ν(P ∩A) ≥ 0

and, similarly, ν(N) ≤ ν(N ∩A) ≤ 0. Therefore,

ν(A) = ν(P ∩A) + ν(N ∩A) ≤ ν(P ∩A) ≤ ν(P ),

ν(A) = ν(P ∩A) + ν(N ∩A) ≥ ν(N ∩A) ≥ ν(N).

(ii) This is a consequence of the result of (i).

Definition. Let µ1, µ2 be two measures on (X,S). We say that µ1, µ2 are mutually singular (or
that µ1 is singular to µ2 or that µ2 is singular to µ1) if there exist A1, A2 ∈ S so that A1 is null
for µ2 and A2 is null for µ1 and A1 ∪A2 = X , A1 ∩A2 = ∅.
We use the symbol

µ1⊥µ2
to denote that µ1, µ2 are mutually singular.
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In other words, two measures are mutually singular if there is a set in S which is null for one
of them and its complement is null for the other.

If µ1, µ2 are mutually singular andA1, A2 are as in the definition, then it is clear that µ1(A) =
µ1(A ∩ A1) and µ2(A) = µ2(A ∩ A2) for every A ∈ S . Thus, we may informally say that µ1 is
concentrated on A1 and µ2 is concentrated on A2.

Theorem 6.3. Let ν be a signed measure on (X,S). There exist two measures ν+ and ν−, at least
one of which is finite, so that

ν = ν+ − ν−, ν+⊥ν−.

If ν+1 , ν
−
1 are two measures on (X,S), at least one of which is finite, so that ν = ν+1 − ν−1 and

ν+1 ⊥ν
−
1 , then ν

+
1 = ν+ and ν−1 = ν−.

Proof. We consider any Hahn decomposition of X for ν: let P be a non­negative set and N be a
non­positive set for ν so that P ∪N = X and P ∩N = ∅.
We define ν+, ν− : S → [0,+∞] by

ν+(A) = ν(A ∩ P ), ν−(A) = −ν(A ∩N) for every A ∈ S.

It is trivial to see that ν+, ν− are measures on (X,S). If ν(A) < +∞ for every A ∈ S , then
ν+(X) = ν(P ) < +∞, and so ν+ is a finite measure. Similarly, if−∞ < ν(A) for everyA ∈ S ,
then ν−(X) = −ν(N) < +∞, and so ν− is a finite measure.
Also,

ν(A) = ν(A ∩ P ) + ν(A ∩N) = ν+(A)− ν−(A)

for all A ∈ S , and so ν = ν+ − ν−.
If A ∈ S and A ⊆ N , then ν+(A) = ν(A ∩ P ) = ν(∅) = 0. Therefore, N is a null set for ν+.
Similarly, P is a null set for ν−, and so ν+⊥ν−.
Now, let ν+1 , ν

−
1 be two measures on (X,S), at least one of which is finite, so that ν = ν+1 − ν−1

and ν+1 ⊥ν
−
1 . Then there exist P1 ∈ S which is null for ν−1 and N1 ∈ S which is null for ν+1 so

that P1 ∪N1 = X and P1 ∩N1 = ∅.
Then for every A ∈ S we have

ν+(A) = ν(A ∩ P ) = ν+1 (A ∩ P )− ν−1 (A ∩ P ) ≤ ν+1 (A ∩ P ) ≤ ν+1 (A).

Also,

ν+1 (A) = ν+1 (A ∩ P1) + ν+1 (A ∩N1) = ν+1 (A ∩ P1) = ν+1 (A ∩ P1)− ν−1 (A ∩ P1)

= ν(A ∩ P1) = ν+(A ∩ P1)− ν−(A ∩ P1) ≤ ν+(A ∩ P1) ≤ ν+(A).

Hence, ν+1 (A) = ν+(A) for every A ∈ S , and so ν+1 = ν+.
The proof of ν−1 = ν− is similar.

Definition. Let ν be a signed measure on (X,S). We say that the mutually singular measures
ν+, ν−, whose existence and uniqueness is proved in Theorem 6.3, constitute the Jordan decom­
position of ν.
We call ν+ the non­negative variation of ν and ν− the non­positive variation of ν. We recall from
the proof of Theorem 6.3 that ν+, ν− are defined by

ν+(A) = ν(A ∩ P ), ν−(A) = −ν(A ∩N) for every A ∈ S,

where P,N constitute any Hahn decomposition of X for ν.
We call the measure |ν| = ν+ + ν− the absolute variation of ν, and we call the quantity |ν|(X)
the total variation of ν.
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For the measure |ν| we have that

|ν|(A) = ν+(A) + ν−(A) = ν(A ∩ P )− ν(A ∩N) for every A ∈ S.

We observe that the total variation of ν is equal to

|ν|(X) = ν(P )− ν(N),

where the sets P,N constitute a Hahn decomposition of X for ν. Thus, the total variation of ν is
equal to the difference between the largest and the smallest values of ν.

Moreover, the total variation is finite if and only if the absolute variation is a finite measure if
and only if both the non­negative and the non­positive variations are finite measures if and only if
the signed measure takes only finite values.

Proposition 6.4. Let ν be a signed measure on (X,S). Then

ν+(A) = max{ν(B) |B ∈ S, B ⊆ A}, ν−(A) = −min{ν(B) |B ∈ S, B ⊆ A}

for every A ∈ S .

Proof. Let P,N constitute any Hahn decomposition ofX for ν.
Then for every B ∈ S , B ⊆ A we have

ν(B) = ν(B ∩ P ) + ν(B ∩N) ≤ ν(B ∩ P ) = ν+(B) ≤ ν+(A).

On the other hand, if we consider B0 = A ∩ P , then we have B0 ∈ S , B0 ⊆ A and

ν+(A) = ν(A ∩ P ) = ν(B0).

The proof of ν−(A) = −min{ν(B) |B ∈ S, B ⊆ A} is similar.

Proposition 6.5. Let ν, ν1, ν2 be signed measures on (X,S). If ν1 + ν2 is defined, then

(ν1 + ν2)
+ ≤ ν+1 + ν+2 , (ν1 + ν2)

− ≤ ν−1 + ν−2 , |ν1 + ν2| ≤ |ν1|+ |ν2|.

Proof. Let P,N constitute any Hahn decomposition of X for ν1 + ν2. Then for every A ∈ S we
have

(ν1 + ν2)
+(A) = (ν1 + ν2)(A ∩ P ) = ν1(A ∩ P ) + ν2(A ∩ P ) ≤ ν+1 (A ∩ P ) + ν+2 (A ∩ P )

≤ ν+1 (A) + ν+2 (A),

and so (ν1 + ν2)
+ ≤ ν+1 + ν+2 .

The proof of (ν1 + ν2)
− ≤ ν−1 + ν−2 is similar, and then, adding the two inequalities, we get

|ν1 + ν2| ≤ |ν1|+ |ν2|.

Proposition 6.6. Let ν be a signed measures on (X,S) and κ ∈ R.
(i) If κ ≥ 0, then (κν)+ = κν+ and (κν)− = κν−.
(ii) If κ ≤ 0, then (κν)+ = −κν− and (κν)− = −κν+.
(iii) |κν| = |κ||ν|.

Proof. (i) Let P,N constitute any Hahn decomposition ofX for ν. If κ ≥ 0, then P,N constitute
a Hahn decomposition of X for κν as well. Hence, for every A ∈ S we have

(κν)+(A) = (κν)(A ∩ P ) = κν(A ∩ P ) = κν+(A),

(κν)−(A) = (κν)(A ∩N) = κν(A ∩N) = κν−(A).

(ii) The proof is similar: if κ ≤ 0, then N,P constitute a Hahn decomposition ofX for κν.
(iii) A consequence of the results of (i) and (ii).
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Definition. Let A ∈ S . If A1, . . . , An ∈ S are pairwise disjoint and A =
⋃n

k=1Ak, then
{A1, . . . , An} is called a (finite) measurable partition of A.

Theorem 6.4. Let ν be a signed measure on (X,S) and let |ν| be the absolute variation of ν. Then

|ν|(A) = sup
{∑n

k=1 |ν(Ak)|
∣∣n ∈ N, {A1, . . . , An} is a measurable partition of A

}
for every A ∈ S .

Proof. Let M = sup
{∑n

k=1 |ν(Ak)|
∣∣n ∈ N, {A1, . . . , An} is a measurable partition of A

}
,

and let P,N constitute a Hahn decomposition ofX for ν.
We have

|ν(A)| = |ν(A∩P )+ ν(A∩N)| ≤ |ν(A∩P )|+ |ν(A∩N)| = ν(A∩P )− ν(A∩N) = |ν|(A)

for every A ∈ S . Therefore, if {A1, . . . , An} is any measurable partition of A ∈ S , then we have∑n
k=1 |ν(Ak)| ≤

∑n
k=1 |ν|(Ak) = |ν|(A).

Hence,M ≤ |ν|(A).
Now, {A ∩ P,A ∩N} is a particular measurable partition of A for which we have

|ν(A ∩ P )|+ |ν(A ∩N)| = ν(A ∩ P )− ν(A ∩N) = |ν|(A).

Hence, |ν|(A) ≤M .

It is useful to note something which appeared in the proof of Theorem 6.4, namely that

|ν(A)| ≤ |ν|(A) for all A ∈ S.

The next two propositions treat the special case of a signed measure which is the indefinite
integral of a function with respect to a measure.

Proposition 6.7. Let µ be a measure on (X,S), f : X → R be measurable and
∫
X f dµ be

defined. Then the sets P = {x ∈ X | f(x) ≥ 0} and N = {x ∈ X | f(x) < 0} constitute a Hahn
decomposition of X for the signed measure fµ. We also have

(fµ)+ = f+µ, (fµ)− = f−µ.

Thus, the indefinite integrals f+µ and f−µ constitute the Jordan decomposition of fµ. Moreover,

|fµ| = |f |µ.

Proof. If A ∈ S and A ⊆ P , then (fµ)(A) =
∫
A f dµ ≥ 0, while, if A ⊆ N , then (fµ)(A) =∫

A f dµ ≤ 0. Therefore, P is a non­negative set andN is a non­positive set for fµ. Since P ∪N =
X and P ∩N = ∅, we conclude that P,N constitute a Hahn decomposition ofX for fµ.
Now,

(fµ)+(A) = (fµ)(A ∩ P ) =
∫
A∩P f dµ =

∫
A fχP dµ =

∫
A f

+ dµ = (f+µ)(A)

and, similarly,

(fµ)−(A) = −(fµ)(A ∩N) = −
∫
A∩N f dµ = −

∫
A fχN dµ =

∫
A f
− dµ = (f−µ)(A)

for every A ∈ S . Therefore, (fµ)+ = f+µ and (fµ)− = f−µ.
Finally, |fµ| = (fµ)+ + (fµ)− = f+µ+ f−µ = |f |µ.
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Clearly, another Hahn decomposition ofX for fµ consists of the setsP = {x ∈ X | f(x) > 0}
and N = {x ∈ X | f(x) ≤ 0}.

Proposition 6.8. Letµ be ameasure on (X,S), f : X → R bemeasurable and
∫
X f dµ be defined.

Let E ∈ S .
(i) E is a non­negative set for fµ if and only if f ≥ 0 a.e. on E.
(ii) E is a non­positive set for fµ if and only if f ≤ 0 a.e. on E.
(iii) E is a null set for fµ if and only if f = 0 a.e. on E.

Proof. (i) Let f ≥ 0 a.e. on E. If A ∈ S , A ⊆ E, then f ≥ 0 a.e. on A, and so (fµ)(A) =∫
A f dµ ≥ 0. Thus, E is a non­negative set for fµ.
Conversely, let E be a non­negative set for fµ. If ϵ > 0 and Aϵ = {x ∈ E | f(x) ≤ −ϵ}, then

0 ≤ (fµ)(Aϵ) =
∫
Aϵ
f dµ ≤ −ϵµ(Aϵ),

and so µ(Aϵ) = 0. Now, we have that {x ∈ E | f(x) < 0} =
⋃+∞

n=1A1/n, and we conclude that
µ({x ∈ E | f(x) < 0}) = 0. Therefore, f ≥ 0 a.e. on E.
The proof of (ii) is identical to the proof of (i), and (iii) is a consequence of (i) and (ii).

Exercises.

6.2.1. Let ν be a signed measure on (X,S) and let µ1, µ2 be two measures on (X,S) at least one
of which is finite. If ν = µ1 − µ2, prove that ν+ ≤ µ1 and ν− ≤ µ2.

6.2.2. Let f be the Cantor function on [0, 1] extended as 0 on (−∞, 0) and as 1 on (1,+∞) and
let µf be the Lebesgue­Stieltjes measure on (R,B1) induced by f . Prove that µf⊥m1.

6.2.3. (i) Recall that for every a ∈ R the non­negative part and the non­positive part of a are defined
by a+ = max{a, 0} and a− = −min{a, 0}. Prove that (a+b)+ ≤ a++b+ and (a+b)− ≤ a−+b−

for every a, b ∈ R for which a+ b is defined.
(ii) Let ν be a signedmeasure on (X,S) and let ν+ and ν− be the non­negative and the non­positive
variation of ν, respectively. Prove

ν+(A) = sup
{∑n

k=1 ν(Ak)
+
∣∣n ∈ N, {A1, . . . , An} is a measurable partition of A

}
,

ν−(A) = sup
{∑n

k=1 ν(Ak)
− ∣∣n ∈ N, {A1, . . . , An} is a measurable partition of A

}
for every A ∈ S ,

6.3 Complex measures.

Let (X,S) be a measurable space.

Definition. A function ν : S → C is called a complex measure on (X,S) if
(i) ν(∅) = 0,
(ii) ν(

⋃+∞
j=1 Aj) =

∑+∞
j=1 ν(Aj) for every pairwise disjoint A1, A2, . . . ∈ S .

It is trivial to prove, taking real and imaginary parts, that the functions Re(ν), Im(ν) : S → R,
which are defined by Re(ν)(A) = Re(ν(A)) and Im(ν)(A) = Im(ν(A)) for every A ∈ S ,
are real measures on (X,S), and so they are bounded. That is, there is an M < +∞ so that
|Re(ν)(A)| ≤ M and | Im(ν)(A)| ≤ M for every A ∈ S . This implies that |ν(A)| ≤ 2M for
every A ∈ S , and we have proved the

Proposition 6.9. Let ν be a complex measure on (X,S). Then ν is bounded, i.e. there is an
M < +∞ so that |ν(A)| ≤M for every A ∈ S .
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Proposition 6.10. Let ν, ν1, ν2 be complex measures on (X,S) and λ ∈ C.
(i) We define the function ν1 + ν2 : S → C by

(ν1 + ν2)(A) = ν1(A) + ν2(A) for all A ∈ S.

Then ν1 + ν2 is a complex measure on (X,S).
(ii) We define the function λν : S → C by

(λν)(A) = λ ν(A), for all A ∈ S.

Then λν is a complex measure on (X,S).

Proof. Similar to the proof of Proposition 1.16 or of Proposition 6.1.

Definition. Let ν, ν1, ν2 be complex measures on the measurable space (X,S) and λ ∈ C. The
complex measures ν1+ν2 and λν on (X,S) which are defined in Proposition 6.10 are called sum
of ν1 and ν2 and product of ν by λ.

In particular,
ν = Re(ν) + i Im(ν).

Lemma 6.1. LetK ⊆ C be finite. Then there isM ⊆ K, so that |
∑

λ∈M λ| ≥ 1
6

∑
λ∈K |λ|.

Proof. C is the union of

Q1 = {λ | Re(λ) ≥ | Im(λ)|}, Q2 = {λ | Re(λ) ≤ −| Im(λ)|},

Q3 = {λ | Im(λ) ≥ |Re(λ)|}, Q4 = {λ | Im(λ) ≤ −|Re(λ)|}.

If λ1, . . . , λn ∈ Q1, then

|λ1 + · · ·+ λn| ≥ Re(λ1 + · · ·+ λn) = Re(λ1) + · · ·+ Re(λn) ≥ 1√
2
(|λ1|+ · · ·+ |λn|).

The same is true if λ1, . . . , λn all belong to one of Q2, Q3, Q4.
Now, we splitK in four pairwise disjoint subsetsK1,K2,K3,K4, so that each contains elements
ofK in Q1, Q2, Q3, Q4, respectively. Then at least one of them, sayM , satisfies∑

λ∈M |λ| ≥ 1
4

∑
λ∈K |λ|.

and so ∣∣∑
λ∈M λ

∣∣ ≥ 1√
2

∑
λ∈M |λ| ≥ 1

4
√
2

∑
λ∈K |λ| ≥ 1

6

∑
λ∈K |λ|.

Proposition 6.11. Let ν be a complex measure on (X,S). If for every A ∈ S we define

|ν|(A) = sup
{∑n

k=1 |ν(Ak)|
∣∣n ∈ N, {A1, . . . , An} is a measurable partition of A

}
,

then the function |ν| : S → [0,+∞] is a finite measure on (X,S).

Proof. It is obvious that |ν|(∅) = 0.
Now, let A1, A2, . . . ∈ S be pairwise disjoint and A =

⋃+∞
j=1 A

j .
If {A1, . . . , An} is an arbitrarymeasurable partition ofA, then, for every j, {A1∩Aj , . . . , An∩Aj}
is a measurable partition of Aj . This implies,∑n

k=1 |ν(Ak)| =
∑n

k=1 |
∑+∞

j=1 ν(Ak ∩Aj)| ≤
∑n

k=1

(∑+∞
j=1 |ν(Ak ∩Aj)|

)
=

∑+∞
j=1

(∑n
k=1 |ν(Ak ∩Aj)|

)
≤

∑+∞
j=1 |ν|(Aj)
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Taking the supremum of the left side of this inequality, we get |ν|(A) ≤
∑+∞

j=1 |ν|(Aj).
Now, we fix an arbitrary N ∈ N and for each j = 1, . . . , N we consider any measurable parti­
tion {Aj

1, . . . , A
j
nj} of Aj . Then {A1

1, . . . , A
1
n1
, . . . , AN

1 , . . . , A
N
nN
,
⋃+∞

j=N+1A
j} is a measurable

partition of A, and so

|ν|(A) ≥
∑N

j=1

(∑nj

k=1 |ν(A
j
k)|

)
+
∣∣ν(⋃+∞

j=N+1A
j
)∣∣ ≥ ∑N

j=1

(∑nj

k=1 |ν(A
j
k)|

)
.

Taking the supremum of the right side of this inequality, we get |ν|(A) ≥
∑N

j=1 |ν|(Aj). Now,
taking the limit as N → +∞, we find |ν|(A) ≥

∑+∞
j=1 |ν|(Aj).

Hence, |ν|(A) =
∑+∞

j=1 |ν|(Aj), and so |ν| is a measure on (X,S).
Finally, we shall prove that |ν| is finite, i.e. that |ν|(X) < +∞. One way to prove this is to use
the same result for real measures, considering the real measures Re(ν) and Im(ν). This is done as
follows. We consider an arbitrary measurable partition {A1, . . . , An} of X , and we have∑n

k=1 |ν(Ak)| ≤
∑n

k=1 |Re(ν)(Ak)|+
∑n

k=1 | Im(ν)(Ak)| ≤ |Re(ν)|(X) + | Im(ν)|(X).

Taking the supremum of the left side of this inequality, we get

|ν|(X) ≤ |Re(ν)|(X) + | Im(ν)|(X) < +∞,

since the signed measures Re(ν) and Im(ν) have finite values.
Another way to prove that |ν|(X) < +∞ is the following.
We assume that |ν|(X) = +∞, and we claim that there are B1, B2, . . . ∈ S so that

B1 ⊇ B2 ⊇ B3 ⊇ . . . , |ν|(Bk) = +∞, |ν(Bk)| ≥ k − 1

for every k. We take B1 = X and we assume that we have proven the existence of the first
B1, . . . , Bk. Since |ν|(Bk) = +∞, there is a measurable partition {A1, . . . , An} of Bk so that∑n

m=1 |ν(Am)| ≥ 6(|ν(Bk)|+ k).

According to Lemma 6.1, there are some of the A1, . . . , An, which we may assume that they are
the A1, . . . , Al, so that∣∣∑l

m=1 ν(Am)
∣∣ ≥ 1

6

∑n
m=1 |ν(Am)| ≥ |ν(Bk)|+ k.

We consider S =
⋃l

m=1Am ⊆ Bk, and then

|ν(S)| ≥ |ν(Bk)|+ k.

Since |ν|(S)+ |ν|(Bk \S) = |ν|(Bk) = +∞, we have that either |ν|(S) = +∞ or |ν|(Bk \S) =
+∞. In the first case we consider Bk+1 = S ⊆ Bk, and then |ν(Bk+1)| ≥ |ν(Bk)| + k ≥ k. In
the second case we consider Bk+1 = Bk \ S ⊆ Bk, and then |ν(Bk+1)| ≥ |ν(S)| − |ν(Bk)| ≥ k.
In any case we have proven the existence of an appropriateBk+1, and so we have proven the claim.
Now we consider the pairwise disjointA1 = B1 \B2, A2 = B2 \B3, . . . and theB∞ =

⋂+∞
k=1Bk.

Then

ν(B1)− ν(B∞) = ν(B1 \B∞) = ν
(⋃+∞

m=1Am

)
=

∑+∞
m=1 ν(Am)

= limk→+∞
∑k−1

m=1 ν(Am) = limk→+∞(ν(B1)− ν(Bk)).

Therefore limk→+∞ ν(Bk) = ν(B∞), i.e. |ν(B∞)| = +∞, and we arrive at a contradiction.

Definition. Let ν be a complex measure on (X,S). The measure |ν| defined in Proposition 6.9 is
called the absolute variation of ν and the number |ν|(X) is called the total variation of ν.
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It is useful to note something which we have already noted for signed measures. If ν is a
complex measure, then

|ν(A)| ≤ |ν|(A) for all A ∈ S.

Indeed, we may consider {A} as a measurable partition of A, and then the definition of |ν|(A)
implies the above inequlity.

Proposition 6.12. Let ν, ν1, ν2 be complex measures on (X,S) and λ ∈ C. Then
(i) |ν1 + ν2| ≤ |ν1|+ |ν2| and |λν| = |λ||ν|,
(ii) |Re(ν)| ≤ |ν|, | Im(ν)| ≤ |ν|, |ν| ≤ |Re(ν)|+ | Im(ν)|.

Proof. (i) We consider an arbitrary measurable partition {A1, . . . , An} of A ∈ S , and we have∑n
k=1 |(ν1 + ν2)(Ak)| ≤

∑n
k=1 |ν1(Ak)|+

∑n
k=1 |ν2(Ak)| ≤ |ν1|(A) + |ν2|(A).

Taking the supremum of the left side, we find |ν1 + ν2|(A) ≤ |ν1|(A) + |ν2|(A).
In the same manner, we have∑n

k=1 |(λν)(Ak)| = |λ|
∑n

k=1 |ν(Ak)| ≤ |λ||ν|(A).

Taking the supremum of the left side, we find |λν|(A) ≤ |λ||ν|(A). If λ 6= 0, we apply the last
inequality to the number 1

λ and to the signed measure λν, and we get |ν|(A) ≤ 1
|λ| |λν|(A). From

the two inequalities we get |λν|(A) = |λ||ν|(A) for every A ∈ S and every λ 6= 0. Finally, this
last equality is obviously true if λ = 0.
(ii) In the same manner, if {A1, . . . , An} is any measurable partition of A ∈ S , we have∑n

k=1 |Re(ν)(Ak)| ≤
∑n

k=1 |ν(Ak)| ≤ |ν|(A),∑n
k=1 | Im(ν)(Ak)| ≤

∑n
k=1 |ν(Ak)| ≤ |ν|(A).

Taking the supremum of the left sides of these two inequalities, we find |Re(ν)|(A) ≤ |ν|(A) and
| Im(ν)|(A) ≤ |ν|(A).
The last inequality is a consequence of the result of (i).

Example. Let µ be a measure on (X,S) and f : X → C be a µ­integrable function. Lemma
3.10 implies that

∫
A f dµ is a complex number for every A ∈ S and Theorem 3.9 implies that the

function λ : S → C, which is defined by λ(A) =
∫
A f dµ for every A ∈ S , is a complex measure

on (X,S).

Definition. The complex measure λ which is defined in the last example is called the indefinite
integral of f with respect to µ and it is denoted by fµ. Thus,

(fµ)(A) =
∫
A f dµ, A ∈ S.

The next result is the analogue of Proposition 6.6.

Proposition 6.13. Let µ be a measure on (X,S) and f : X → C be integrable with respect to µ.
Then

|fµ|(A) =
∫
A |f | dµ

for every A ∈ S . Hence,
|fµ| = |f |µ.
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Proof. If {A1, . . . , An} is an arbitrary measurable partition of A ∈ S , then∑n
k=1 |(fµ)(Ak)| =

∑n
k=1

∣∣ ∫
Ak
f dµ

∣∣ ≤ ∑n
k=1

∫
Ak

|f | dµ =
∫
A |f | dµ.

Taking the supremum of the left side of this inequality, we get |fµ|(A) ≤
∫
A |f | dµ.

Since f is integrable, it is finite a.e. on X . If N = {x ∈ X | f(x) 6= ∞}, then µ(N c) = 0, and
Theorem 2.1 implies that there is a sequence (ϕm) of measurable simple functions so that

ϕm → sign(f), |ϕm| ↑ |sign(f)| ≤ 1

on N . Defining each ϕm as 0 on N c, we have that all these properties hold a.e. onX .
If ϕm =

∑nm
k=1 κm,kχEm,k

is the standard representation of ϕm, then |κm,k| ≤ 1 for all k =
1, . . . , nm, and so∣∣ ∫

A fϕm dµ
∣∣ = ∣∣∑nm

k=1 κm,k

∫
A∩Em,k

f dµ
∣∣ ≤ ∑nm

k=1 |(fµ)(A ∩ Em,k)| ≤ |fµ|(A),

where the last inequality is true since {A∩Em,1, . . . , A∩Em,nm} is a measurable partition of A.
By the Dominated Convergence Theorem we get that∫

A |f | dµ =
∫
A f sign(f) dµ ≤ |fµ|(A).

We conclude that |fµ|(A) =
∫
A |f | dµ for every A ∈ S .

Exercises.

6.3.1. Let ν be a real or complex measure on (X,S). If ν(X) = |ν|(X), prove that ν = |ν|.

6.3.2. Let ν be a signed or complex measure on (X,S). We say that {A1, A2, . . .} is a countable
measurable partition of A ∈ S , if Ak ∈ S for all k, the sets A1, A2, . . . are pairwise disjoint and
A = A1 ∪A2 ∪ · · · .
Prove that |ν|(A) = sup{

∑+∞
k=1 |ν(Ak)| | {A1, A2, . . .} is a countable measurable partition of A}

for every A ∈ S .

6.4 Integration.

Let (X,S) be a measurable space.
The next definition treats only the case when both f and ν have their values in R.

Definition. Let ν be a signed measure on (X,S). If f : X → R is S­measurable, we say that
the integral

∫
X f dν of f over X with respect to ν is defined if both

∫
X f dν+ and

∫
X f dν− are

defined and they are neither both +∞ nor both −∞. In such a case we write∫
X f dν =

∫
X f dν+ −

∫
X f dν−.

Moreover, we say that f is integrable over X with respect to ν if
∫
X f dν is finite.

Proposition 6.14. Let ν be a signed measure on (X,S) and f : X → R be measurable. Then f
is integrable with respect to ν if and only if f is integrable with respect to both ν+ and ν− if and
only if f is integrable with respect to |ν|.

Proof.
∫
X f dν is finite if and only if both

∫
X f dν+ and

∫
X f dν− are finite or, equivalently,∫

X |f | dν+ < +∞ and
∫
X |f | dν− < +∞ or, equivalently,

∫
X |f | d|ν| < +∞ if and only if f is

integrable with respect to |ν|.
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Now, let ν be a signed measure or a complex measure on (X,S) and f : X → R or C be
S­measurable. If

∫
X |f | d|ν| < +∞, then f is finite |ν|­a.e. on X and the |ν|­almost everywhere

defined functions Re(f), Im(f) satisfy
∫
X |Re(f)| d|ν| < +∞ and

∫
X | Im(f)| d|ν| < +∞. Since

|Re(ν)| ≤ |ν| and | Im(ν)| ≤ |ν|, Lemma 6.6 implies that all integrals
∫
X |Re(f)| d|Re(ν)|,∫

X |Re(f)| d| Im(ν)|,
∫
X | Im(f)| d|Re(ν)| and

∫
X | Im(f)| d| Im(ν)| are finite. Proposition 6.12

implies that
∫
X Re(f) dRe(ν),

∫
X Re(f) d Im(ν),

∫
X Im(f) dRe(ν) and

∫
X Im(f) d Im(ν) are all

defined and they are real numbers.
Therefore, the following definition is valid.

Definition. Let ν be a signed measure or a complex measure on (X,S) and f : X → R or C be
S­measurable. We say that f is integrable overX with respect to ν if f is integrable with respect
to |ν|, and in this case we say that the integral

∫
X f dν of f over X with respect to ν is defined

and that its value is given by∫
X f dν =

∫
X Re(f) dRe(ν)−

∫
X Im(f) d Im(ν) + i

∫
X Re(f) d Im(ν) + i

∫
X Im(f) dRe(ν).

Of course, we have the particular formulas∫
X f dν =

∫
X Re(f) dν + i

∫
X Im(f) dν,

∫
X f dν =

∫
X f dRe(ν) + i

∫
X f d Im(ν),

all under the assumption that
∫
X |f | d|ν| < +∞.

Example. Let ν be a signed measure on (X,S) and E ∈ S so that ν+(E) < +∞ or ν−(E) <
+∞. Then

∫
X χE dν

+ < +∞ or
∫
X χE dν

− < +∞, respectively, and so
∫
X χE dν is defined

and ∫
X χE dν =

∫
X χE dν

+ −
∫
X χE dν

− = ν+(E)− ν−(E) = ν(E).

Now, let ν be a complex measure on (X,S) andE ∈ S so that |ν|(E) < +∞. Then
∫
X χE d|ν| =

|ν|(E) < +∞, and so
∫
X χE dν is defined and, from the previous case,∫

X χE dν =
∫
X χE dRe(ν) + i

∫
X χE d Im(ν) = Re(ν)(E) + i Im(ν)(E) = ν(E).

We shall not try to extend all properties of integrals with respect to measures to properties of
integrals with respect to signed measures or complex measures. The safe thing to do is to reduce
everything to non­negative and non­positive variations or to real and imaginary parts.

For completeness, we shall only see a few of the most useful properties, like the linearity
properties and the appropriate version of the Dominated Convergence Theorem.

Proposition 6.15. Let ν, ν1, ν2 be signed or complex measures on (X,S) and f, f1, f2 : X → R
or C be all integrable with respect to these measures. Then, for every λ1, λ2 ∈ C, we have∫

X(λ1f1 + λ2f2) dν = λ1
∫
X f1 dν + λ2

∫
X f2 dν,∫

X f d(λ1ν1 + λ2ν2) = λ1
∫
X f dν1 + λ2

∫
X f dν2.

Proof. We reduce everything to real functions and signed measures.

Theorem 6.5. (Dominated Convergence Theorem) Let ν be a signed or complex measure on
(X,S), and all f, fn : X → R or C and g : X → [0,+∞] be S­measurable. If fn → f and
|fn| ≤ g on X except on a set which is null for ν, and if

∫
X g d|ν| < +∞, then∫

X fn dν →
∫
X f dν.

Proof. A set which is null for ν is, also, null for ν+ and ν−, if ν is signed, and null for Re(ν) and
Im(ν), if ν is complex. Moreover, Lemma 6.6 implies that

∫
X g dν+ < +∞ and

∫
X g dν− < +∞,

if ν is signed, and
∫
X g d|Re(ν)| < +∞ and

∫
X g d| Im(ν)| < +∞, if ν is complex.

Therefore, the proof reduces to the usual Dominated Convergence Theorem for measures.
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Theorem 6.6. Let ν be a signed or complex measure on (X,S) and f : X → R or C be such that
the

∫
X f dν is defined. Then ∣∣ ∫

X f dν
∣∣ ≤ ∫

X |f | d|ν|.
Proof. We may assume that

∫
X |f | d|ν| < +∞ or else the inequality is obvious.

If ϕ is a measurable simple function with standard representation ϕ =
∑n

k=1 κkχEk
and so that

|ν|(Ek) < +∞ for all k, then we have∣∣ ∫
X ϕdν

∣∣ = ∣∣∑n
k=1 κk

∫
X χEk

dν
∣∣ = ∣∣∑n

k=1 κkν(Ek)
∣∣ ≤ ∑n

k=1 |κk||ν(Ek)|
≤

∑n
k=1 |κk||ν|(Ek) =

∫
X |ϕ| d|ν|.

The proof in the case of a general function f is a standard limiting argument.

A companion to the previous theorem is

Theorem 6.7. Let ν be a signed or complex measure on (X,S). Then

|ν|(A) = sup
{∣∣ ∫

A f dν
∣∣ ∣∣ f is S­measurable, |f | ≤ 1 ν­a.e. on A

}
for every A ∈ S , where the functions f have real values, if ν is signed, and complex values, if ν is
complex.

Proof. LetM = sup
{∣∣ ∫

A f dν
∣∣ ∣∣ f is S­measurable, |f | ≤ 1 ν­a.e. on A

}
.

If f is S­measurable and |f | ≤ 1 ν­a.e. on A, then |fχA| ≤ χA ν­a.e. on X , and Theorem 6.6
implies ∣∣ ∫

A f dν
∣∣ = ∣∣ ∫

X fχA dν
∣∣ ≤ ∫

X |fχA| d|ν| ≤
∫
X χA d|ν| = |ν|(A).

Hence,M ≤ |ν|(A).
Now, let {A1, . . . , An} be any measurable partition of A.
Then

∑n
k=1 |ν|(Ak)| = |ν|(A) < +∞, and so |ν|(Ak) < +∞ for all k. We consider the function

f =
∑n

k=1 κkχAk
, where κk = sign(ν(Ak)) for all k. Then |f | ≤ 1 on A, and so

M ≥
∣∣ ∫

A f dν
∣∣ = ∣∣∑n

k=1 κk
∫
A χAk

dν
∣∣ = ∣∣∑n

k=1 κkν(Ak)
∣∣ = ∑n

k=1 |ν(Ak)|.

Hence,M ≥ |ν|(A).

Finally, we prove a result about integration with respect to an indefinite integral. This is im­
portant because, as we shall see in the next section, indefinite integrals are special measures which
play an important role among signed or complex measures.

Theorem 6.8. Let µ be a measure on (X,S) and f : X → R or C be measurable so that
∫
X f dµ

is defined. A measurable function g : X → R or C is integrable over X with respect to fµ if and
only if gf is integrable over X with respect to µ. In such a case,∫

X g d(fµ) =
∫
X gf dµ.

This equality is true in the case of S­measurable f, g : X → [0,+∞] without any restriction.

Proof. We consider first the case of S­measurable f, g : X → [0,+∞].
If g = χA for some A ∈ S , then∫

X χA d(fµ) = (fµ)(A) =
∫
A f dµ =

∫
X χAf dµ.

Thus, the equality
∫
X g d(fµ) =

∫
X gf dµ is true forS­measurable characteristic functions g. This

extends by linearity to S­measurable non­negative simple functions g, and then by the Monotone
Convergence Theorem to the general S­measurable non­negative g.
This implies that, in general,

∫
X |g| d(|f |µ) =

∫
X |gf | dµ.

From this we see that g is integrable over X with respect to fµ if and only if, by definition, g is
integrable over X with respect to |fµ| = |f |µ if and only if, by the equality we just proved, gf is
integrable over X with respect to µ.
The equality

∫
X g d(fµ) =

∫
X gf dµ can now be established by reducing all functions to non­

negative functions and using the special case we proved.
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6.5 Lebesgue decomposition, Radon­Nikodym derivative.

Let (X,S) be a measurable space.
We extend two definitions from section 6.2. We had formulated the first definition only for

signed measures and the second definition only for measures.

Definition. Let ν be a complex measure on (X,S) and A ∈ S . We say that A is a null set for ν if
ν(B) = 0 for every B ∈ S , B ⊆ A.

Definition. Let ν1, ν2 be two signed or complex measures on (X,S). We say that ν1, ν2 are mu­
tually singular if there exist A1, A2 ∈ S so that A1 is null for ν2 and A2 is null for ν1 and
A1 ∪A2 = X , A1 ∩A2 = ∅.
We use the symbol

ν1⊥ν2
to denote that ν1, ν2 are mutually singular.

Lemma 6.2. (i) Let ν be a signed measure on (X,S) and A ∈ S . Then A is null for ν if and only
if it is null for both ν+, ν− if and only if it is null for |ν|.
(ii) Let ν be a complex measure on (X,S) and A ∈ S . Then A is null for ν if and only if A is null
for both Re(ν) and Im(ν) if and only if A is null for |ν|.

Proof. Let A be null for |ν|. For every B ∈ S , B ⊆ A, we have that |ν(B)| ≤ |ν|(B) = 0, and
so A is null for ν.
Conversely, letA be null for ν. If {A1, . . . , An} is any measurable partition ofA, then ν(Ak) = 0
for all k, and so

∑n
k=1 |ν(Ak)| = 0. Hence, |ν|(A) = 0, and so A is null for |ν|.

If ν is signed, then from |ν| = ν+ + ν− we have that A is null for both ν+, ν− if and only if it is
null for |ν|.
If ν is complex, then from ν = Re(ν) + i Im(ν) we have that A is null for both Re(ν), Im(ν) if
and only if it is null for ν.

Lemma 6.3. (i) Let ν1 and ν2 be two signed measures on (X,S). Then ν1 and ν2 are mutually
singular if and only if each of ν+1 , ν

−
1 and each of ν+2 , ν

−
2 are mutually singular if and only if |ν1|

and |ν2| are mutually singular.
(ii) Let ν1 and ν2 be complex measures on (X,S). Then, ν1 and ν2 are mutually singular if and
only if each of Re(ν1), Im(ν1) and each of Re(ν2), Im(ν2) are mutually singular if and only if |ν1|
and |ν2| are mutually singular.

Proof. The proof is a trivial consequence of Lemma 6.1.

Lemma 6.4. (i) Let ν, ν1, ν2 be signed measures on (X,S) and λ1, λ2 ∈ R. If ν1⊥ν, ν2⊥ν and
λ1ν1 + λ2ν2 is defined, then (λ1ν1 + λ2ν2)⊥ν.
(ii) Let ν, ν1, ν2 be complex measures on (X,S) and λ1, λ2 ∈ C. If ν1⊥ν, ν2⊥ν, then (λ1ν1 +
λ2ν2)⊥ν.

Proof. There are A1, B1, A2, B2 ∈ S so that A1 ∪B1 = X = A2 ∪B2, A1 ∩B1 = ∅ = A2 ∩B2,
A1 is null for ν1, A2 is null for ν2 and B1, B2 are both null for ν. Then B1 ∪B2 is null for ν and
A1∩A2 is null for both ν1 and ν2 and, hence, for λ1ν1+λ2ν2. Since (A1∩A2)∪ (B1∪B2) = X
and (A1 ∩A2) ∩ (B1 ∪B2) = ∅, we have that (λ1ν1 + λ2ν2)⊥ν.

Definition. Let µ be a measure and ν be a signed or complex measure on (X,S). We say that ν
is absolutely continuous with respect to µ if ν(A) = 0 for every A ∈ S with µ(A) = 0, and we
denote this by

ν � µ.
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Example. Let f : X → R or C be measurable so that the
∫
X f dµ is defined (recall that in the

case of C this means that f is integrable). Then the indefinite integral fµ is absolutely continuous
with respect to µ.
This is obvious: if A ∈ S has µ(A) = 0, then (fµ)(A) =

∫
A f dµ = 0.

Lemma 6.5. Let µ be a measure and ν, ν1, ν2 be signed or complex measures on (X,S).
(i) If ν is signed, then ν � µ if and only if ν+ � µ and ν− � µ if and only if |ν| � µ.
(ii) If ν is complex, then ν � µ if and only if Re(ν) � µ and Im(ν) � µ if and only if |ν| � µ.
(iii) If ν � µ and ν⊥µ, then ν = 0.
(iv) If ν1, ν2 are signed and λ1, λ2 ∈ R and λ1ν1 + λ2ν2 is defined and ν1 � µ, ν2 � µ, then
λ1ν1 + λ2ν2 � µ.
(v) If ν1, ν2 are complex and λ1, λ2 ∈ C and ν1 � µ, ν2 � µ, then λ1ν1 + λ2ν2 � µ.

Proof. (i­ii) Let |ν| � µ. If A ∈ S , µ(A) = 0, then |ν(A)| ≤ |ν|(A) = 0, and so ν(A) = 0.
Hence, ν � µ.
Conversely, Let ν � µ, and let A ∈ S with µ(A) = 0. If {A1, . . . , An} is any measurable
partition of A, then µ(Ak) = 0 for all k, and so ν(Ak) = 0 for all k. Hence,

∑n
k=1 |ν(Ak)| = 0,

and this implies that |ν|(A) = 0. Thus, |ν| � µ.
Since ν(A) = 0 is equivalent to Re(ν)(A) = Im(ν)(A) = 0, the first equivalence is obvious.
If ν is signed, then from |ν| = ν++ ν− we have that ν+ � µ and ν− � µ if and only if |ν| � µ.
If ν is complex, then from ν = Re(ν) + i Im(ν) we have that Re(ν) � µ and Im(ν) � µ if and
only if ν � µ.
(iii) We consider setsM,N ∈ S so thatM ∪N = X ,M ∩N = ∅,M is a null set for ν andN is
a null set for µ. Then µ(N) = 0 and ν � µ imply thatN is a null set for ν. But thenX =M ∪N
is a null set for ν, and so ν = 0.
(iv­v) If A ∈ S has µ(A) = 0, then ν1(A) = ν2(A) = 0, and so (λ1ν1 + λ2ν2)(A) = 0.

The next result justifies the term absolutely continuous at least in the special case of a finite ν.

Proposition 6.16. Let µ be a measure and ν be a real or a complex measure on (X,S). Then
ν � µ if and only if for every ϵ > 0 there is a δ > 0 so that |ν(A)| < ϵ for every A ∈ S with
µ(A) < δ.

Proof. Let us assume that for every ϵ > 0 there is a δ > 0 so that |ν(A)| < ϵ for every A ∈ S
with µ(A) < δ. If µ(A) = 0, then µ(A) < δ for every δ > 0, and so |ν(A)| < ϵ for every ϵ > 0.
Hence, ν(A) = 0, and so ν � µ.
Conversely, let us assume that there is some ϵ0 > 0 so that for every δ > 0 there is A ∈ S with
µ(A) < δ and |ν(A)| ≥ ϵ0. Then for every k ∈ N there is Ak ∈ S with µ(Ak) <

1
2k

and
|ν|(Ak) ≥ |ν(Ak)| ≥ ϵ0. We consider Bk =

⋃+∞
l=k Al, and then µ(Bk) <

1
2k−1 and |ν|(Bk) ≥

|ν|(Ak) ≥ ϵ0 for every k. If we set B =
⋂+∞

k=1Bk, then we have µ(B) = 0. Since Bk ↓ B, the
continuity of |ν| from above implies |ν|(B) ≥ ϵ0. Therefore, |ν| is not absolutely continuous with
respect to µ. Now Lemma 6.4 implies that ν is not absolutely continuous with respect to µ.

Theorem 6.9. Let µ be a measure on (X,S).
(i) If λ, λ1, ρ, ρ1 are signed or complex measures on (X,S) so that λ � µ, λ1 � µ and ρ⊥µ,
ρ1⊥µ and λ+ ρ = λ1 + ρ1, then λ = λ1 and ρ = ρ1.
(ii) If f, f1 : X → R or C are µ­integrable over X and fµ = f1µ, then f = f1 µ­a.e. on X .
(iii) If f, f1 : X → R areS­measurable and the

∫
X f dµ,

∫
X f1 dµ are defined and fµ = f1µ, then

f = f1 µ­a.e. on X , provided that µ restricted on the set {x ∈ X | f(x) 6= f1(x)} is semifinite.

Proof. (i) There exist sets M,M1, N,N1 ∈ S with M ∪ N = X = M1 ∪ N1, M ∩ N = ∅ =
M1∩N1 so thatN,N1 are null for µ,M is null for ρ andM1 is null for ρ1. If we setK = N ∪N1,
thenK is null for µ andKc =M ∩M1 is null for both ρ and ρ1. Since λ� µ, λ1 � µ, we have
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thatK is null for both λ and λ1.
If A ∈ S , A ⊆ K, then

ρ(A) = ρ(A) + λ(A) = ρ1(A) + λ1(A) = ρ1(A).

If A ∈ S , A ⊆ Kc, then ρ(A) = 0 = ρ1(A). Therefore, for every A ∈ S we have

ρ(A) = ρ(A ∩K) + ρ(A ∩Kc) = ρ1(A ∩K) + ρ1(A ∩Kc) = ρ1(A),

and so ρ = ρ1. A symmetric argument implies that λ = λ1.
(ii) We have ∫

A(f − f1) dµ =
∫
A f dµ−

∫
A f1 dµ = (fµ)(A)− (f1µ)(A) = 0

for all A ∈ S . Now, Theorem 3.3 implies f = f1 µ­a.e. on X .
(iii) Let t, s ∈ R with t < s, and let At,s = {x ∈ X | f(x) ≤ t < s ≤ f1(x)}.
If 0 < µ(At,s) < +∞, we consider B = At,s. If µ(At,s) = +∞, we consider any B ∈ S so that
B ⊆ At,s and 0 < µ(B) < +∞. In any case, we have

(fµ)(B) =
∫
B f dµ ≤ tµ(B), (f1µ)(B) =

∫
B f1 dµ ≥ sµ(B),

and so sµ(B) ≤ tµ(B). This implies µ(B) = 0, which is false.
The only remaining case is µ(At,s) = 0. Now we observe that

{x ∈ X | f(x) < f1(x)} =
⋃

t,s∈Q, t<sAt,s,

which implies µ({x ∈ X | f(x) < f1(x)}) = 0. Similarly, µ({x ∈ X | f(x) > f1(x)}) = 0, and
we conclude that f = f1 µ­a.e. on X .

Lemma 6.6. Let µ, ν be finite measures on (X,S). If µ, ν are not mutually singular, then there is
ϵ0 > 0 and A0 ∈ S with µ(A0) > 0 so that ν(A)

µ(A) ≥ ϵ0 for every A ∈ S , A ⊆ A0 with µ(A) > 0.

Proof. For every n ∈ N we consider a Hahn decomposition of the signed measure ν − 1
nµ. There

are sets Pn, Nn ∈ S so that Pn ∪Nn = X , Pn ∩Nn = ∅ and Pn is a non­negative set and Nn is
a non­positive set for ν − 1

nµ.
We consider N =

⋂+∞
n=1Nn. Since N ⊆ Nn, we get (ν − 1

nµ)(N) ≤ 0 for all n. Then ν(N) ≤
1
nµ(N) for all n and, since µ(N) < +∞, we have ν(N) = 0.
We consider P =

⋃+∞
n=1 Pn, and then P ∪N = X and P ∩N = ∅. If µ(P ) = 0, then µ and ν are

mutually singular. Therefore, µ(P ) > 0, and this implies that µ(PN ) > 0 for at least one N . We
define A0 = PN for such an N and we set ϵ0 = 1

N for the same N .
Now, µ(A0) > 0. Since A0 is a non­negative set for ν − ϵ0µ, for every A ∈ S, A ⊆ A0 with
µ(A) > 0 we get ν(A)− ϵ0µ(A) ≥ 0, and so ν(A)

µ(A) ≥ ϵ0.

Lebesgue­Radon­Nikodym Theorem. The signed case. Let ν be a σ­finite signed measure
and µ be a σ­finite measure on (X,S). Then there exist unique σ­finite signed measures λ and ρ
on (X,S) so that

ν = λ+ ρ, λ� µ, ρ⊥µ.

Moreover, there exists a S­measurable f : X → R so that the
∫
X f dµ is defined and

λ = fµ.

If f1 is another such function, then f1 = f µ­a.e. on X .
If ν is non­negative, then λ and ρ are non­negative and f ≥ 0 µ­a.e. on X .
If ν is real, then λ and ρ are real and f is integrable over X with respect to µ.
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Proof. The uniqueness part of the statement is a consequence of Theorem 6.9. Observe that µ is
σ­finite, and so it is semifinite.
Therefore, we need to prove the existence of λ, ρ and f .
(a) We first consider the special case when both µ, ν are finite measures on (X,S).
We define C to be the collection of all S­measurable f : X → [0,+∞] with the property∫

A f dµ ≤ ν(A), A ∈ S.

The function 0, obviously, belongs to C and, if f1, f2 ∈ C, then f = max{f1, f2} ∈ C. Indeed, if
A ∈ S , we consider A1 = {x ∈ A | f2(x) ≤ f1(x)} and A2 = {x ∈ A | f1(x) < f2(x)}, and we
have ∫

A f dµ =
∫
A1
f dµ+

∫
A2
f dµ =

∫
A1
f1 dµ+

∫
A2
f2 dµ ≤ ν(A1) + ν(A2) = ν(A).

We define
κ = sup

{ ∫
X f dµ | f ∈ C

}
. (6.2)

Since 0 ∈ C and
∫
X f dµ ≤ ν(X) for all f ∈ C, we have 0 ≤ κ ≤ ν(X) < +∞.

Now, there is a sequence (fn) in C so that
∫
X fn dµ → κ. We define g1 = f1 and, inductively,

gn = max{gn−1, fn} for all n ≥ 2. Then gn ∈ C for all n. We define f = limn→+∞ gn, and then
gn ↑ f . From

∫
A gn dµ ≤ ν(A) for all n and all A ∈ S we get, by the Monotone Convergence

Theorem, that
∫
A f dµ ≤ ν(A) for all A ∈ S . Therefore, f ∈ C, and so

∫
X f dµ ≤ κ. On the

other hand, we have that fn ≤ gn ≤ f for all n. Thus,
∫
X fn dµ ≤

∫
X f dµ ≤ κ for all n and,

since
∫
X fn dµ→ κ, we conclude that∫

X f dµ = κ < +∞.

In other words, f is a maximazing element of C for (6.2).
Since (ν − fµ)(A) = ν(A) −

∫
A f dµ ≥ 0 for all A ∈ S , the signed measure ν − fµ is a finite

measure.
If ν − fµ and µ are not mutually singular, then by Lemma 6.5 there is ϵ0 > 0 and A0 ∈ S with
µ(A0) > 0 so that

ν(A)
µ(A) −

1
µ(A)

∫
A f dµ = (ν−fµ)(A)

µ(A) ≥ ϵ0

for all A ∈ S , A ⊆ A0 with µ(A) > 0. Thus,∫
A(f + ϵ0χA0) dµ ≤ ν(A)

for all A ∈ S , A ⊆ A0. Now for any A ∈ S we have∫
A(f + ϵ0χA0) dµ =

∫
A∩A0

(f + ϵ0χA0) dµ+
∫
A\A0

(f + ϵ0χA0) dµ

≤ ν(A ∩A0) +
∫
A\A0

(f + ϵ0χA0) dµ = ν(A ∩A0) +
∫
A\A0

f dµ

≤ ν(A ∩A0) + ν(A \A0) = ν(A).

This implies that f + ϵ0χA0 belongs to C, and so

κ+ ϵ0µ(A0) =
∫
X(f + ϵ0χA0) dµ ≤ κ.

This is false and we arrived at a contradiction. Therefore, ν − fµ⊥µ.
We set ρ = ν − fµ and λ = fµ and we have the decomposition ν = λ + ρ with λ � µ, ρ⊥µ.
Both λ and ρ are finite measures and f : X → [0,+∞] is integrable with respect to µ, since

λ(X) =
∫
X f dµ = κ < +∞, ρ(X) = ν(X)−

∫
X f dµ = ν(X)− κ < +∞.

(b) We now suppose that both µ, ν are σ­finite measures on (X,S).
Then there are pairwise disjoint F1, F2, . . . ∈ S so that X =

⋃+∞
k=1 Fk and µ(Fk) < +∞ for all k
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and pairwise disjoint G1, G2, . . . ∈ S so that X =
⋃+∞

l=1 Gl and ν(Gl) < +∞ for all l. Then the
sets Fk ∩Gl are pairwise disjoint, they cover X and µ(Fk ∩Gl) < +∞, ν(Fk ∩Gl) < +∞ for
all k, l. We enumerate them as E1, E2, . . ., and then we have X =

⋃+∞
n=1En and µ(En) < +∞,

ν(En) < +∞ for all n.
We consider the restrictions µn and νn of µ and ν on each En. Namely,

µn(A) = µ(A ∩ En), νn(A) = ν(A ∩ En) for all A ∈ S.

Then all µn, νn are finite measures on (X,S), and we also have

µ(A) =
∑+∞

n=1 µn(A), ν(A) =
∑+∞

n=1 νn(A) for all A ∈ S.

Applying the results of part (a), we see that there exist finite measures λn, ρn on (X,S) and µn­
integrable fn : X → [0,+∞] so that

νn = λn + ρn, λn � µn, ρn⊥µn, λn(A) =
∫
A fn dµn for all A ∈ S.

From νn(E
c
n) = 0 we get that λn(Ec

n) = ρn(E
c
n) = 0. Now, since µn(A) = λn(A) = 0 for every

A ∈ S , A ⊆ Ec
n, the relation λn(A) =

∫
A fn dµn remains true for all A ∈ S if we change fn and

make it 0 on Ec
n. Hence, we may assume that

fn = 0 on Ec
n, λn(A) =

∫
A∩En

fn dµn for all A ∈ S.

We define λ, ρ : S → [0,+∞] and f : X → [0,+∞] by

λ(A) =
∑+∞

n=1 λn(A), ρ(A) =
∑+∞

n=1 ρn(A), f(x) =
∑+∞

n=1 fn(x) for all A ∈ S, x ∈ X.

It is trivial to see that λ and ρ are measures on (X,S) and that f is S­measurable.
Now, the equality ν = λ+ ρ is obvious.
If A ∈ S has µ(A) = 0, then µn(A) = µ(A ∩ En) = 0, and so λn(A) = 0 for all n. Hence,
λ(A) = 0, and so λ� µ.
Since ρn⊥µn, there is Rn ∈ S so that Rn is null for µn and Rc

n is null for ρn. But, then R′n =
Rn ∩ En is also null for µn and R′cn = Rc

n ∪ Ec
n is null for ρn. Since R′n is obviously null for all

µm,m 6= n, we have that R′n is null for µ. Then R =
⋃+∞

n=1R
′
n is null for µ and Rc =

⋂+∞
n=1R

′c
n

is null for all ρn and, hence, for ρ. We conclude that ρ⊥µ.
The λ and ρ are σ­finite since λ(En) = λn(En) < +∞ and ρ(En) = ρn(En) < +∞ for all n.
Finally, for every A ∈ S ,

λ(A) =
∑+∞

n=1 λn(A) =
∑+∞

n=1

∫
A∩En

fn dµn =
∑+∞

n=1

∫
A∩En

f dµn

=
∑+∞

n=1

∫
A∩En

f dµ =
∫
A f dµ.

(6.3)

The fourth equality is true because
∫
En
f dµn =

∫
En
f dµ for all S­measurable f : X → [0,+∞].

This is justified as follows. If f = χA with A ∈ S , then the equality becomes µn(A ∩ En) =
µ(A ∩ En) which is true. Then the equality holds, by linearity, for non­negative S­measurable
simple functions. Finally, by the Monotone Convergence Theorem, it holds for all S­measurable
f : X → [0,+∞].
Now, from (6.3) we conclude that λ = fµ and that λ� µ.
(c) In the general case we have ν = ν+ − ν−, and both ν+, ν− are σ­finite measures on (X,S).
We apply the result of part (b) and we get σ­finite measures λ1, λ2, ρ1, ρ2 so that ν+ = λ1 + ρ1,
ν− = λ2 + ρ2 and λ1 � µ, λ2 � µ, ρ1⊥µ, ρ2⊥µ. Since either ν+ or ν− is a finite measure, we
have that either λ1, ρ1 are finite or λ2, ρ2 are finite. Now, we consider λ = λ1−λ2 and ρ = ρ1−ρ2,
and we have that ν = λ+ ρ and λ� µ, ρ⊥µ.
There are also S­measurable f1, f2 : X → [0,+∞] so that λ1 = f1µ and λ2 = f2µ. Then, either∫
X f1 dµ = λ1(X) < +∞ or

∫
X f2 dµ = λ2(X) < +∞, and so either f1 < +∞ µ­a.e. on X or
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f2 < +∞ µ­a.e. on X . Hence, the function f = f1 − f2 is defined µ­a.e. on X and the integral∫
X f dµ =

∫
X f1 dµ−

∫
X f2 dµ exists. Now,

λ(A) = λ1(A)− λ2(A) =
∫
A f1 dµ−

∫
A f2 dµ =

∫
A f dµ

for all A ∈ S , and so λ = fµ.

Lebesgue­Radon­Nikodym Theorem. The complex case. Let ν be a complex measure and µ
be a σ­finite measure on (X,S). Then there exist unique complex measures λ and ρ on (X,S) so
that

ν = λ+ ρ, λ� µ, ρ⊥µ.

Moreover, there exists a S­measurable f : X → C so that f is integrable over X with respect to
µ and

λ = fµ.

If f1 is another such function, then f1 = f µ­a.e. on X .
If ν is non­negative, then λ and ρ are non­negative and f ≥ 0 µ­a.e. on X .
If ν is real, then λ and ρ are real and f is extended­real valued.

Proof. The measures Re(ν) and Im(ν) are real measures, and, by the previous theorem which
deals with the signed case, we have that there exist real measures λ1, λ2, ρ1, ρ2 on (X,S) so that
Re(ν) = λ1 + ρ1, Im(ν) = λ2 + ρ2 and λ1 � µ, λ2 � µ and ρ1⊥µ, ρ2⊥µ. We define
λ = λ1+ iλ2 and ρ = ρ1+ iρ2. Then ν = λ+ρ and λ� µ and ρ⊥µ. There are also µ­integrable
f1, f2 : X → R so that λ1 = f1µ and λ2 = f2µ. The function f = f1 + if2 : X → C is µ­a.e.
defined, it is µ­integrable, and

(fµ)(A) =
∫
A f dµ =

∫
A f1 dµ+ i

∫
A f2 dµ = λ1(A) + iλ2(A) = λ(A)

for all A ∈ S . Hence, λ = fµ.
The uniqueness is an easy consequence of Theorem 6.11.

Definition. (i) Let ν be a signed measure or a complex measure and µ be a measure on (X,S). If
there exist, necessarily unique, signed or complex measures λ and ρ on (X,S), so that ν = λ+ ρ,
λ� µ and ρ⊥µ, then we say that λ and ρ constitute the Lebesgue decomposition of ν with respect
to µ. Also, λ is called the absolutely continuous part and ρ is called the singular part of ν with
respect to µ.
(ii) Let ν be a signed or complex measure and µ be a measure on (X,S) so that ν � µ. If there
exists a S­measurable f : X → R or C so that

∫
X f dµ is defined and ν = fµ, then f is called

a Radon­Nikodym derivative of ν with respect to µ. Any Radon­Nikodym derivative of ν with
respect to µ is denoted

dν
dµ .

The two Lebesgue­Radon­Nikodym Theorems say that, if ν and µ are σ­finite, then ν has a
unique Lebesgue decomposition with respect to µ. Moreover, if ν and µ are σ­finite and ν � µ,
then there exists a Radon­Nikodym derivative of ν with respect to µ, which is unique if we disregard
µ­null sets. This is true because ν = ν + 0 is, necessarily, the Lebesgue decomposition of ν with
respect to µ.

We should make some remarks about Radon­Nikodym derivatives.
1. The symbol dν

dµ appears as a fraction of two quantities but it is not. It is like the well known
symbol dy

dx of the derivative in elementary calculus.
2. The definition allows all Radon­Nikodym derivatives of ν with respect to µ to be denoted by
the same symbol dν

dµ . This is not absolutely strict and it would be more correct to say that dν
dµ is

the collection (or class) of all Radon­Nikodym derivatives of ν with respect to µ. It is simpler to
follow the tradition and use the same symbol for all derivatives. Actually, there is no danger for

176



confusion in doing this, because the equality f = dν
dµ or its equivalent ν = fµ acquires its real

meaning through the ν(A) =
∫
A f dµ, A ∈ S .

3. As we just observed, the real meaning of the symbol dν
dµ is through the equality ν(A) =

∫
A

dν
dµ dµ

for all A ∈ S , which, after formally simplifying the fraction (!!!), changes into the true equality
ν(A) =

∫
A dν.

4. Theorem 6.9 implies that the Radon­Nikodym of ν � µ with respect to µ, if it exists, is unique
when µ is a semifinite measure, provided we disregard sets of zero µ­measure.

The following propositions give some properties of Radon­Nikodym derivatives of calculus
type.

Proposition 6.17. Let ν1, ν2 be complex or σ­finite signed measures and µ be a σ­finite measure
on (X,S). If ν1 � µ, ν2 � µ and if ν1 + ν2 is defined, then ν1 + ν2 � µ and

d(ν1+ν2)
dµ = dν1

dµ + dν2
dµ µ­a.e. on X.

Proof. We have (ν1 + ν2)(A) =
∫
A

dν1
dµ dµ+

∫
A

dν2
dµ dµ =

∫
A(

dν1
dµ + dν2

dµ ) dµ for all A ∈ S .

Proposition 6.18. Let ν be a complex or a σ­finite signed measure and µ be a σ­finite measure on
(X,S). If ν � µ and κ ∈ C or R, then κν � µ and

d(κν)
dµ = κ dν

dµ µ­a.e. on X.

Proof. We have (κν)(A) = κ
∫
A

dν
dµ dµ =

∫
A(κ

dν
dµ) dµ for all A ∈ S .

The following is the chain rule.

Proposition 6.19. Let ν be a complex or σ­finite signed measure and µ1, µ2 be σ­finite measures
on (X,S). If ν � µ1 and µ1 � µ2, then ν � µ2 and

dν
dµ2

= dν
dµ1

dµ1

dµ2
µ2­a.e. on X.

Proof. If A ∈ S has µ2(A) = 0, then µ1(A) = 0, and so ν(A) = 0. Therefore, ν � µ2.
Theorem 6.8 implies that ν(A) =

∫
A

dν
dµ1

dµ1 =
∫
A

dν
dµ1

dµ1

dµ2
dµ2 for every A ∈ S .

Proposition 6.20. Let µ1 and µ2 be two σ­finite measures on (X,S). If µ1 � µ2 and µ2 � µ1,
then

dµ1

dµ2

dµ2

dµ1
= 1 µ1­a.e. on X.

Proof. We have µ1(A) =
∫
A dµ1 for every A ∈ S , and so dµ1

dµ1
= 1 µ1­a.e. on X . Now the result

is a trivial consequence of Proposition 6.19.

Proposition 6.21. If ν is a σ­finite measure on (X,S), then ν � |ν| and∣∣ dν
d|ν|

∣∣ = 1 ν­a.e. on X.

Proof. We have
∣∣ dν
d|ν|

∣∣|ν| = ∣∣ dν
d|ν| |ν|

∣∣ = |ν|. Thus,
∣∣ dν
d|ν|

∣∣ = 1 |ν|­a.e. on X .

Exercises.

6.5.1. Let ♯ be the counting measure on (N,P(N)) and µ be the point­mass distribution on N
induced by the function an = 1

2n , n ∈ N. Prove that there is an ϵ0 > 0 and a sequence (Ek) of
subsets of N, so that µ(Ek) → 0 and ♯(Ek) ≥ ϵ0 for all k. On the other hand, prove that ♯� µ.

6.5.2. Let ν1, µ1 be σ­finite measures on (X1,S1) and ν2, µ2 be σ­finite measures on (X2,S2). If
ν1 � µ1 and ν2 � µ2, prove that ν1⊗ν2 � µ1⊗µ2 and that d(ν1⊗ν2)

d(µ1⊗µ2)
(x1, x2) =

dν1
dµ1

(x1)
dν2
dµ2

(x2)

for (µ1 ⊗ µ2)­a.e. (x1, x2) ∈ X1 ×X2.
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6.5.3. Let ♯ be the counting measure on (R,B1).
(i) Prove thatm1 � ♯. Is there any f so thatm1 = f♯ ?
(ii) Is there any Lebesgue decomposition of ♯ with respect tom1 ?

6.5.4. Generalization of the Lebesgue­Radon­Nikodym Theorem.
Let ν be a signed measure and µ be a σ­finite measure on (X,S) so that ν � µ. Prove that there
is a measurable f : X → R, so that

∫
X f dµ exists and ν = fµ.

6.5.5. Generalization of the Lebesgue Decomposition Theorem.
Let ν be a σ­finite signed measure and µ a measure on (X,S). Prove that there are unique σ­finite
signed measures λ, ρ on (X,S) so that λ� µ, ρ⊥µ and ν = λ+ ρ.

6.5.6. Let ν, µ be two measures on (X,S) with ν � µ. If λ = µ + ν, prove that ν � λ. If
f : X → [0,+∞] is measurable and ν = fλ, prove that 0 ≤ f < 1 µ­a.e. on X and ν = f

1−f µ.

6.5.7. Let ν be a signed measure on (X,S). Prove that ν+, ν− � |ν| and find formulas for the
Radon­Nikodym derivatives dν+

d|ν| and
dν−

d|ν| .

6.5.8. Let µ be a finite measure on (X,S). We define d(A,B) = µ(A4B) for all A,B ∈ S .
(i) Prove that (S, d) is a complete metric space.
(ii) If ν is a real or a complex measure on (X,S), prove that ν is continuous on S (with respect to
d) if and only if ν is continuous at ∅ (with respect to d) if and only if ν � µ.

6.5.9. Conditional Expectation.
Let (X,S) be a measurable space and S0 be a σ­algebra with S0 ⊆ S . Let µ be a measure on
(X,S) which is σ­finite on (X,S0) and let us denote by the same symbol µ the restriction of the
measure on (X,S0).
If f : X → R or C is S­measurable and

∫
X f dµ exists, prove that there is a S0­measurable

f0 : X → R or, respectively, C so that
∫
X f0 dµ exists and

∫
A f0 dµ =

∫
A f dµ for all A ∈ S0.

If h0 has the same properties as f0, prove that h0 = f0 µ­a.e. on X .
Any f0 with the above properies is called a conditional expectation of f with respect to S0 and it
is denoted by E(f |S0).
Prove:
(i) E(f |S) = f µ­a.e. on X .
(ii) E(f + g|S0) = E(f |S0) + E(g|S0) µ­a.e. on X .
(iii) E(κf |S0) = κE(f |S0) µ­a.e. on X .
(iv) If g is S0­measurable, then E(gf |S0) = gE(f |S0) µ­a.e. on X .
(v) If S1 ⊆ S0 ⊆ S , then E(f |S1) = E(E(f |S0)|S1) µ­a.e. on X .

6.6 Differentiation.

DIFFERENTIATION OF INDEFINITE INTEGRALS OVER Rn.

Let f : [a, b] → R be a Riemann integrable function. The Fundamental Theorem of Calculus says
that for every x ∈ [a, b]which is a continuity point of f we have d

dx

∫ x
a f(y) dy = f(x). Of course,

this means that

limr→0+

( ∫ x+r
a f(y) dy −

∫ x
a f(y) dy

)/
r = limr→0+

( ∫ x
a f(y) dy −

∫ x−r
a f(y) dy

)/
r = f(x).

Adding the two limits, we find

limr→0+

( ∫ x+r
x−r f(y) dy

)/
(2r) = f(x).

In this (and the next) section we shall prove a far reaching generalisation of this result: a
fundamental theorem of calculus for indefinite Lebesgue integrals and, more generally, for locally
finite Borel measures on Rn.
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Wiener’s Lemma. LetB1, . . . , Bm be open balls inRn. There exist pairwise disjointBi1 , . . . , Bik

so thatmn(Bi1) + · · ·+mn(Bik) ≥ 1
3n mn(B1 ∪ · · · ∪Bm).

Proof. From B1, . . . , Bm we choose a ball Bi1 with largest radius. (There may be more than one
balls with the same largest radius and we choose any one of them.) Together with Bi1 we collect
all other balls, its satellites, which intersect it and call their union (Bi1 included) C1. Since each
of these balls has radius not larger than the radius of Bi1 , we see that C1 ⊆ B∗i1 , where B

∗
i1
is the

ball with the same center as Bi1 and radius three times the radius of Bi1 .
Therefore,mn(C1) ≤ mn(B

∗
i1
) = 3nmn(Bi1).

The remaining balls have empty intersection with Bi1 and from them we choose a ball Bi2 with
largest radius. Of course, Bi2 does not intersect Bi1 . Together with Bi2 we collect all other balls
(from the remaining ones), its satellites, which intersect it and call their union (Bi2 included) C2.
Since each of these balls has radius not larger than the radius of Bi2 , we have C2 ⊆ B∗i2 , where
B∗i2 is the ball with the same center as Bi2 and radius three times the radius of Bi2 .
Therefore,mn(C2) ≤ mn(B

∗
i2
) = 3nmn(Bi2).

We continue this procedure and, since at every step at least one ball is collected (Bi1 at the first step,
Bi2 at the second step and so on), after at mostm steps, say at the kth step, the procedure will stop.
Namely, after the first k−1 steps, the remaining balls have empty intersection withBi1 , . . . , Bik−1

and from themwe choose a ballBik with largest radius. ThisBik does not intersectBi1 , . . . , Bik−1
.

All remaining balls intersect Bik , they are its satellites, (since this is the step where the procedure
stops) and form their union (Bik included) Ck. Since each of these balls has radius not larger than
the radius of Bik , we have Ck ⊆ B∗ik , where B

∗
ik
is the ball with the same center as Bik and radius

three times the radius of Bik .
Therefore,mn(Ck) ≤ mn(B

∗
ik
) = 3nmn(Bik).

Clearly, each of the original ballsB1, . . . , Bm is either chosen as one ofBi1 , . . . , Bik or is a satellite
of one of Bi1 , . . . , Bik . Therefore, B1 ∪ · · · ∪Bm = C1 ∪ · · · ∪ Ck, and so

mn(B1 ∪ · · · ∪Bm) = mn(C1 ∪ · · · ∪ Ck) ≤ mn(C1) + · · ·+mn(Ck)

≤ 3n(mn(Bi1) + · · ·+mn(Bik))

and the proof is complete.

Definition. Let f : Rn → R or C be Lebesgue measurable. We say f is locally Lebesgue inte­
grable if for all x ∈ Rn there is an open neighborhood Ux of x so that

∫
Ux

|f(y)| dmn(y) < +∞.

Lemma 6.7. Let f : Rn → R orC be locally Lebesgue integrable. Then
∫
M |f(y)| dmn(y) < +∞

for every bounded setM ∈ Ln.

Proof. Let f be locally Lebesgue integrable andM ∈ Ln be bounded. We consider any compact
K ⊆ Rn so that M ⊆ K. Such a K is the closure of M or just a closed ball or a closed cube
includingM . For each x ∈ K there is an open neighborhood Ux of x so that

∫
Ux

|f(y)| dmn(y) <
+∞. SinceK ⊆

⋃
x∈K Ux, there are finitely many x1, . . . , xm so thatM ⊆ K ⊆ Ux1∪· · ·∪Uxm .

This implies∫
M |f(y)| dmn(y) ≤

∫
Ux1

|f(y)| dmn(y) + · · ·+
∫
Uxm

|f(y)| dmn(y) < +∞.

If, conversely,
∫
M |f(y)| dmn(y) < +∞ for every bounded set M ∈ Ln, then f is locally

Lebesgue integrable since
∫
B(x;1) |f(y)| dmn(y) < +∞ for every x.

Proposition 6.22. Let f, f1, f2 : Rn → R or C be locally Lebesgue integrable and κ ∈ C. Then
(i) f is finite a.e. on Rn,
(ii) f1 + f2 is defined a.e. on Rn and it is locally Lebesgue integrable,
(iii) κf is locally Lebesgue integrable.
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Proof. (i) Lemma 6.6 implies
∫
B(0;k) |f(y)| dmn(y) < +∞, and so f is finite a.e. on B(0; k) for

every k. Since Rn =
⋃+∞

k=1B(0; k), we have that f is finite a.e. on Rn.
(ii) By the result of (i), both f1, f2 are finite a.e. on Rn, and so f1 + f2 is defined a.e. on Rn. We
have ∫

M |f1(y) + f2(y)| dmn(y) ≤
∫
M |f1(y)| dmn(y) +

∫
M |f2(y)| dmn(y) < +∞

for every boundedM ∈ Ln, and, by Lemma 6.6, f1 + f2 is locally Lebesgue integrable.
(iii) Similarly, ∫

M |κf(y)| dmn(y) = |κ|
∫
M |f(y)| dmn(y) < +∞

for all boundedM ∈ Ln, and so κf is locally Lebesgue integrable.

The need for local Lebesgue integrability (or for local finiteness of measures) is for definitions
like the following one to make sense. Of course, we may restrict to Lebesgue integrability if we
like.

Definition. Let f : Rn → R or C be locally Lebesgue integrable. ThenM(f) : Rn → [0,+∞],
defined by

M(f)(x) = supB open ball, B∋x
1

mn(B)

∫
B |f(y)| dmn(y)

for all x ∈ Rn, is called the Hardy­Littlewood maximal function of f .

Proposition 6.23. Let f, f1, f2 : Rn → R or C be locally Lebesgue integrable and κ ∈ C. Then
(i)M(f1 + f2) ≤M(f1) +M(f2),
(ii)M(κf) = |κ|M(f).

Proof. (i) For all x and all open balls B 3 x,

1
mn(B)

∫
B |f1(y) + f2(y)| dmn(y) ≤ 1

mn(B)

∫
B |f1(y)| dmn(y) +

1
mn(B)

∫
B |f2(y)| dmn(y)

≤M(f1)(x) +M(f2)(x).

Taking the supremum of the left side, we getM(f1 + f2)(x) ≤M(f1)(x) +M(f2)(x).
(ii) Similarly, for all x and all open balls B 3 x,

1
mn(B)

∫
B |κf(y)| dmn(y) = |κ| 1

mn(B)

∫
B |f(y)| dmn(y) ≤ |κ|M(f)(x)

and, taking the supremum of the left side, we getM(κf)(x) ≤ |κ|M(f)(x). Now, if κ 6= 0, we
apply this inequality to the number 1

κ and to the function κf , and we getM(f)(x) ≤ 1
|κ|M(κf)(x).

The two inequalities imply M(κf)(x) = |κ|M(f)(x). On the other hand, if κ = 0, then the
equality is trivial.

Lemma 6.8. Let f : Rn → R or C be locally Lebesgue integrable. Then for every t > 0 the set
{x ∈ Rn | t < M(f)(x)} is open in Rn.

Proof. Let U = {x ∈ Rn | t < M(f)(x)} and x ∈ U . Then t < M(f)(x), and so there is an
open ball B 3 x so that

t < 1
mn(B)

∫
B |f(y)| dmn(y).

If we take an arbitrary x′ ∈ B, then

t < 1
mn(B)

∫
B |f(y)| dmn(y) ≤M(f)(x′).

Therefore, B ⊆ U , and so U is open in Rn.

Since {x ∈ Rn | t < M(f)(x)} is open, it is also a Lebesgue set.
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Hardy­Littlewood Theorem. Let f : Rn → R orC be Lebesgue integrable. Then for every t > 0
we have

mn({x ∈ Rn | t < M(f)(x)}) ≤ 3n

t

∫
Rn |f(y)| dmn(y).

Proof. We consider an arbitrary compact K ⊆ U = {x ∈ Rn | t < M(f)(x)}. Then for every
x ∈ K we have t < M(f)(x), and this implies that there is an open ball Bx containing x so that

t < 1
mn(Bx)

∫
Bx

|f(y)| dmn(y).

Since K ⊆
⋃

x∈K Bx, there are x1, . . . , xm so that K ⊆ Bx1 ∪ · · · ∪ Bxm . Wiener’s Lemma
implies that there exist pairwise disjoint Bxi1

, . . . , Bxik
so that

mn(Bx1 ∪ · · · ∪Bxm) ≤ 3n
(
mn(Bxi1

) + · · ·+mn(Bxik
)
)
.

Then

mn(K) ≤ 3n
(
mn(Bxi1

) + · · ·+mn(Bxik
)
)

≤ 3n

t

( ∫
Bxi1

|f(y)| dmn(y) + · · ·+
∫
Bxik

|f(y)| dmn(y)
)

= 3n

t

∫
Bxi1

∪···∪Bxik

|f(y)| dmn(y) ≤ 3n

t

∫
Rn |f(y)| dmn(y).

By the regularity ofmn, the supremum ofmn(K) for all compactK ⊆ U is equal tomn(U), and
we conclude thatmn(U) ≤ 3n

t

∫
Rn |f(y)| dmn(y).

Observe that mn({x ∈ Rn | t < M(f)(x)}) is nothing but the value at t of the distribution
function λM(f) ofM(f). Therefore, another way to state the result of the Hardy­Littlewood The­
orem is

λM(f)(t) ≤ 3n

t

∫
Rn |f(y)| dmn(y).

Definition. Let (X,S, µ) be a measure space and g : X → R or C be S­measurable. We say that
g is weakly µ­integrable overX if there is a constant c < +∞ so that λ|g|(t) ≤ c

t for every t > 0.

Another way to state the Hardy­Littlewood Theorem is: if f is Lebesgue integrable, thenM(f)
is weakly Lebesgue integrable.

Proposition 6.24. Let (X,S, µ) be a measure space, g, g1, g2 : X → R or C be weakly µ­
integrable and κ ∈ C. Then
(i) g is finite a.e. on X ,
(ii) g1 + g2 is defined a.e. on X and it is weakly µ­integrable,
(iii) κg is weakly µ­integrable.

Proof. (i) λ|g|(t) ≤ c
t for all t > 0 implies that

µ({x ∈ X | |g(x)| = +∞}) ≤ µ({x ∈ X |n < |g(x)|}) ≤ c
n

for all n, and so µ({x ∈ X | |g(x)| = +∞}) = 0.
(ii) By (i) both g1 and g2 are finite a.e. on X , and so g1 + g2 is defined a.e. on X .
If µ({x ∈ X | t < |g1(x)|}) ≤ c1

t and µ({x ∈ X | t < |g2(x)|}) ≤ c2
t for all t > 0, then

µ({x ∈ X | t < |g1(x) + g2(x)|}) ≤ µ
({
x ∈ X

∣∣ t
2 < |g1(x)|

})
+ µ

({
x ∈ X

∣∣ t
2 < |g2(x)|

})
≤ 2c1+2c2

t

for all t > 0.
(iii) If µ({x ∈ X | t < |g(x)|}) ≤ c

t for all t > 0, then

µ({x ∈ X | t < |κg(x)|}) = µ
({
x ∈ X

∣∣ t
|κ| < |g(x)|

})
≤ c|κ|

t

for all t > 0.
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Proposition 6.25. Let (X,S, µ) be a measure space and g : X → R or C be µ­integrable. Then
g is weakly µ­integrable.

Proof. We have

λ|g|(t) = µ({x ∈ X | t < |g(x)|}) ≤ 1
t

∫
{x∈X | t<|g(x)|} |g| dµ ≤ 1

t

∫
X |g| dµ

for all t > 0. Therefore, λ|g|(t) ≤ c
t for all t > 0, where c =

∫
X |g| dµ.

Example. The converse of Proposition 6.25 is not true. Consider, for example, the function g(x) =
1
|x|n , x ∈ Rn. Then∫

Rn |g(x)| dmn(x) = σn−1(Sn−1)
∫ +∞
0

1
rn r

n−1 dr = σn−1(Sn−1)
∫ +∞
0

1
r dr = +∞.

But {x ∈ Rn | t < |g(x)|} = B(0; t−1/n), the open ball with center 0 and radius t−1/n. Thus,

λ|g|(t) = mn(B(0; t−1/n)) = (t−1/n)nmn(B(0; 1)) = c
t ,

where c = mn(B(0; 1)).

The next result says that the Hardy­Littlewood maximal function of any f is not Lebesgue
integrable, except only when f = 0mn­a.e. on Rn.

Proposition 6.26. Let f : Rn → R or C be locally Lebesgue integrable. If M(f) is Lebesgue
integrable, then f = 0mn­a.e. on Rn.

Proof. Let A = {x ∈ Rn | f(x) 6= 0}, and let us assume thatmn(A) > 0.
Since A =

⋃+∞
k=1(A ∩ B(0; k)), we get thatmn(A ∩ B(0; k)) > 0 for at least one k ≥ 1. We set

M = A ∩ B(0; k), and we have got a bounded M ∈ Ln so that mn(M) > 0 and ‖x‖ ≤ k for
every x ∈M . Since f(x) 6= 0 for every x ∈M , we have that

∫
M |f(y)| dmn(y) > 0.

We consider any xwith ‖x‖ ≥ k, andwe observe that there is an open ballB of diameter ‖x‖+k+1
containing x and includingM . Then

mn(B) =
(∥x∥+k+1

2

)n
mn(B(0; 1)) ≤

(3∥x∥
2

)n
mn(B(0; 1)),

and so

M(f)(x) ≥ 1
mn(B)

∫
B |f(y)| dmn(y) ≥ 2n

3n∥x∥nmn(B(0;1))

∫
M |f(y)| dmn(y) =

c
∥x∥n ,

with c = 2n

3nmn(B(0;1))

∫
M |f(y)| dmn(y) > 0. This implies∫

Rn |M(f)(x)| dmn(x) ≥ c
∫
{x∈Rn | ∥x∥≥k}

1
∥x∥n dmn(x) = +∞.

Therefore, ifM(f) is Lebesgue integrable, thenmn(A) = 0.

The next result is a direct generalization of the Fundamental Theorem of Calculus and the
proofs are identical.

Lemma 6.9. Let g : Rn → C be continuous on Rn. Then

limr→0+
1

mn(B(x;r))

∫
B(x;r) |g(y)− g(x)| dmn(y) = 0

for every x ∈ Rn.

Proof. Let ϵ > 0 be arbitrary. Then there is δ > 0 so that |g(y)− g(x)| ≤ ϵ for every y ∈ Rn with
‖y − x‖ < δ. Then

1
mn(B(x;r))

∫
B(x;r) |g(y)− g(x)| dmn(y) ≤ 1

mn(B(x;r))

∫
B(x;r) ϵ dmn(y) = ϵ

for every r < δ.
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Lebesgue’s Theorem. Let f : Rn → R or C be locally Lebesgue integrable. Then,

limr→0+
1

mn(B(x;r))

∫
B(x;r) |f(y)− f(x)| dmn(y) = 0

formn­a.e. x ∈ Rn.

Proof. (a) Let f be Lebesgue integrable.
We consider an arbitrary ϵ > 0. Theorem 3.14 implies that there is g : Rn → C continuous on Rn

so that
∫
Rn |g − f | dmn < ϵ. For all x ∈ Rn and r > 0 we get

1
mn(B(x;r))

∫
B(x;r) |f(y)− f(x)| dmn(y)

≤ 1
mn(B(x;r))

∫
B(x;r) |f(y)− g(y)|dmn(y) +

1
mn(B(x;r))

∫
B(x;r) |g(y)− g(x)|dmn(y)

+ 1
mn(B(x;r))

∫
B(x;r) |g(x)− f(x)| dmn(y)

≤M(f − g)(x) + 1
mn(B(x;r))

∫
B(x;r) |g(y)− g(x)| dmn(y) + |g(x)− f(x)|.

We set
A(f)(x; r) = 1

mn(B(x;r))

∫
B(x;r) |f(y)− f(x)| dmn(y)

and the last inequality together with Lemma 6.8 imply

lim
r→0+

A(f)(x; r) ≤M(f − g)(x) + 0 + |g(x)− f(x)|.

Now for every t > 0 we get

m∗n({x ∈ Rn | t < lim
r→0+

A(f)(x; r)})

≤ mn({x ∈ Rn | t
2 < M(f − g)(x)}) +mn({x ∈ Rn | t

2 < |g(x)− f(x)|})
≤ 2·3n

t

∫
Rn |f − g| dmn + 2

t

∫
Rn |f − g| dmn ≤ 2·3n+2

t ϵ,

where the second inequality is a consequence of the Hardy­Littlewood Theorem. Since ϵ is arbi­
trary, for all t > 0 we have m∗n({x ∈ Rn | t < limr→0+A(f)(x; r)}) = 0. By the subadditivity
ofm∗n,

m∗n({x ∈ Rn | 0 < lim
r→0+

A(f)(x; r)})

≤
∑+∞

k=1m
∗
n

({
x ∈ Rn

∣∣ 1
k < limr→0+A(f)(x; r)

})
= 0,

and som∗n({x ∈ Rn | 0 < limr→0+A(f)(x; r)}) = 0.
Thus, limr→0+A(f)(x; r) ≤ 0 for mn­a.e. x ∈ Rn and, since A(f)(x; r) ≥ 0 for every x ∈ Rn

and r > 0, we conclude that limr→0+A(f)(x; r) = 0 formn­a.e. x ∈ Rn.
(b) Now let f be locally Lebesgue integrable. We fix an arbitrary k ≥ 2 and consider the func­
tion h = fχB(0;k). Then h is Lebesgue integrable and for every x ∈ B(0; k − 1) and every
r ≤ 1 we have A(f)(x; r) = A(h)(x; r). By what we have already proved this implies that
limr→0+A(f)(x; r) = 0 for mn­a.e. x ∈ B(0; k − 1). Since k is arbitrary, we conclude that
limr→0+A(f)(x; r) = 0 formn­a.e. x ∈ Rn.

Definition. Let f : Rn → R or C be locally Lebesgue integrable. The set Lf of all x ∈ Rn for
which limr→0+

1
mn(B(x;r))

∫
B(x;r) |f(y)− f(x)| dmn(y) = 0 is called the Lebesgue set of f .

Example. If x is a continuity point of f , then x belongs to the Lebesgue set of f . The proof of this
fact is, actually, the proof of Lemma 6.8.

Theorem 6.10. Let f : Rn → R or C be locally Lebesgue integrable. Then for every x in the
Lebesgue set of f we have

limr→0+
1

mn(B(x;r))

∫
B(x;r) f(y) dmn(y) = f(x).

183



Proof. Indeed, for all x ∈ Lf we have∣∣ 1
mn(B(x;r))

∫
B(x;r) f(y) dmn(y)− f(x)

∣∣ ≤ 1
mn(B(x;r))

∫
B(x;r) |f(y)− f(x)| dmn(y) → 0

as r → 0+.

Definition. Let x ∈ Rn and C be a collection of sets in Ln with the property that there is a c > 0
so that for every E ∈ C there is a ball B(x; r) with E ⊆ B(x; r) and mn(E) ≥ cmn(B(x; r)).
Then the collection C is called a thick family of sets at x.

Example. Any collection of cubes containing x and any collection of balls containing x is a thick
family of sets at x.

Example. Consider any collection C all elements of which are bounded intervals S containing x.
Let AS be the length of the largest edge and aS be the length of the smallest edge of S. If there is
a constant c > 0 so that aS

AS
≥ c for every S ∈ C, then C is a thick family of sets at x.

Theorem 6.11. Let f : Rn → R or C be locally Lebesgue integrable. Then for every x in the
Lebesgue set of f and for every thick family C of sets at x we have

limE∈C,mn(E)→0+
1

mn(E)

∫
E |f(y)− f(x)| dmn(y) = 0

limE∈C,mn(E)→0+
1

mn(E)

∫
E f(y) dmn(y) = f(x).

Proof. There is a c > 0 so that for every E ∈ C there is a ball B(x; rE) with E ⊆ B(x; rE) and
mn(E) ≥ cmn(B(x; rE)). If x ∈ Lf , then for every ϵ > 0 there is a δ > 0 so that r < δ implies

1
mn(B(x;r))

∫
B(x;r) |f(y)− f(x)| dmn(y) < cϵ.

Ifmn(E) < cδnmn(B(0; 1)), then rE < δ, and so

1
mn(E)

∫
E |f(y)− f(x)| dmn(y) ≤ 1

cmn(B(x;rE))

∫
B(x;rE) |f(y)− f(x)| dmn(y) < ϵ.

Therefore, limE∈C,mn(E)→0+
1

mn(E)

∫
E |f(y)− f(x)| dmn(y) = 0.

The proof of the second limit is now trivial.

DIFFERENTIATION OF BOREL MEASURES ON Rn.

Definition. Any signed or complex measure on (Rn,Bn) is called a Borel signed or complex mea­
sure on Rn.

Definition. Let ν be a Borel signed measure on Rn. We say that ν is locally finite if for every
x ∈ Rn there is an open neighborhood Ux of x so that ν(Ux) is finite.

This definition is indifferent for complex measures, since complex measures take only finite
values.

Proposition 6.27. Let ν be a Borel signed measure on Rn. Then ν is locally finite if and only if ν+
and ν− are both locally finite if and only if |ν| is locally finite.

Proof. Since |ν| = ν+ + ν−, the second equivalence is trivial to prove. It is also trivial to prove
that ν is locally finite if |ν| is locally finite.
Let ν be locally finite. For an arbitrary x ∈ Rn there is an open neighborhood Ux of x so that
ν(Ux) is finite. Since ν(Ux) = ν+(Ux)− ν−(Ux), both ν+(Ux) and ν−(Ux), and so also |ν|(Ux)
are finite. Therefore, |ν| is locally finite.

Proposition 6.28. Let ν be a locally finite Borel signed measure on Rn. Then ν(M) is finite for
all bounded Borel setsM ⊆ Rn.
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Proof. Proposition 6.27 implies that |ν| is locally finite. Now let M ∈ Bn be bounded. We
consider any compact K ⊆ Rn so thatM ⊆ K. For every x ∈ K there is an open neighborhood
Ux of x so that |ν|(Ux) < +∞. Since K ⊆

⋃
x∈K Ux, there are finitely many x1, . . . , xm so that

M ⊆ K ⊆ Ux1 ∪ · · · ∪ Uxm . This implies

|ν(M)| ≤ |ν|(M) ≤ |ν|(Ux1) + · · ·+ |ν|(Uxm) < +∞,

and so ν(M) is finite.

Theorem 6.12. Let ρ be a locally finite Borel signed measure or a Borel complex measure on Rn

with ρ⊥mn. Then
limr→0+

ρ(B(x;r))
mn(B(x;r)) = 0

formn­a.e. x ∈ Rn.

Proof. If ρ is complex, then |ρ| is a finite Borel measure on Rn. Proposition 6.27 implies that, if
ρ is signed, then |ρ| is a locally finite Borel measure on Rn. Moreover, Lemma 6.22 implies that
|ρ|⊥mn. Hence, there exist sets R,M ∈ Bn withM ∪R = Rn,M ∩R = ∅ so that R is null for
mn andM is null for |ρ|.
We define

A(|ρ|)(x; r) = |ρ|(B(x;r))
mn(B(x;r)) ,

we take an arbitrary t > 0, and we consider the set

Mt =
{
x ∈M

∣∣ t < limr→0+A(|ρ|)(x; r)
}
.

Since |ρ| is a regular measure and |ρ|(M) = 0, there is an open set U so thatMt ⊆ M ⊆ U and
|ρ|(U) < ϵ. For each x ∈Mt, there is a small enough rx > 0 so that

t < A(|ρ|)(x; rx) = |ρ|(B(x;rx))
mn(B(x;rx))

and B(x; rx) ⊆ U .
We consider the open set V =

⋃
x∈Mt

B(x; rx), and an arbitrary compact setK ⊆ V . Now, there
exist finitely many x1, . . . , xm ∈ Mt so that K ⊆ B(x1; rx1) ∪ · · · ∪ B(xm; rxm). Wiener’s
Lemma implies that there exist pairwise disjoint B(xi1 ; rxi1

), . . . , B(xik ; rxik
) so that

mn(B(x1; rx1) ∪ · · · ∪B(xm; rxm)) ≤ 3n
(
mn(B(xi1 ; rxi1

)) + · · ·+mn(B(xik ; rxik
))
)
.

All these imply that

mn(K) ≤ 3n

t

(
|ρ|(B(xi1 ; rxi1

)) + · · ·+ |ρ|(B(xik ; rxik
))
)
≤ 3n

t |ρ|(U) < 3n

t ϵ.

By the regularity of mn and since K is an arbitrary compact subset of V , we get mn(V ) ≤ 3n

t ϵ.
Since Mt ⊆ V , we have that m∗n(Mt) ≤ 3n

t ϵ. Since ϵ is arbitrary, we conclude that Mt is a
Lebesgue set andmn(Mt) = 0.
Finally, since {

x ∈M
∣∣ limr→0+A(|ρ|)(x; r) 6= 0

}
=

⋃+∞
k=1M1/k,

we get limr→0+A(|ρ|)(x; r) = 0 formn­a.e. x ∈ Rn. Since A(|ρ|)(x; r) ≥ 0 for all x ∈ Rn and
all r > 0, we conclude that limr→0+A(|ρ|)(x; r) = 0 formn­a.e. x ∈ Rn.

Lemma 6.10. Let ν be a locally finite Borel signed measure on Rn. Then ν is σ­finite and let
ν = λ + ρ be the Lebesgue decomposition of ν with respect to mn, where λ � mn and ρ⊥mn.
Then both λ and ρ are locally finite Borel signed measures.
Moreover, if f is any Radon­Nikodym derivative of λwith respect tomn, then f is locally Lebesgue
integrable.
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Proof. Since Rn =
⋃+∞

k=1B(0; k) and ν(B(0; k)) is finite for every k, we find that ν is σ­finite
and the first of the Lebesgue­Radon­Nikodym Theorems implies the existence of the Lebesgue
decomposition of ν.
Since ρ⊥mn, there exist R,N ∈ Bn with R ∪N = X , R ∩N = ∅ so that R is null for mn and
N is null for ρ. From λ� mn, we see that R is null for λ, as well.
Now letM ∈ Bn be bounded. Since ν(M) is finite, Theorem 6.1 implies that ν(M ∩N) is finite.
Now we have

λ(M) = λ(M ∩R) + λ(M ∩N) = λ(M ∩N) = λ(M ∩N) + ρ(M ∩N) = ν(M ∩N),

and so λ(M) is finite. From ν(M) = λ(M)+ρ(M) we get that ρ(M) is also finite. We conclude
that λ and ρ are locally finite.
Again, letM ∈ Bn be bounded. Then

∫
M f(x) dmn(x) = λ(M) is finite. This implies that f is

locally Lebesgue integrable.

Theorem 6.13. Let ν be a locally finite Borel signed measure or a Borel complex measure on Rn.
If f is any Radon­Nikodym derivative of the absolutely continuous part of ν with respect to mn,
then

limr→0+
ν(B(x;r))
mn(B(x;r)) = f(x)

formn­a.e. x ∈ Rn.

Proof. Let ν = λ + ρ be the Lebesgue decomposition of ν with respect to mn, where λ � mn,
ρ⊥mn and λ = fmn. If ν is signed, Lemma 6.9 implies that ρ is a locally finite Borel signed
measure and f is locally Lebesgue integrable. If ν is complex, then ρ is complex and f is Lebesgue
integrable. Lebesgue’s Theorem and Theorem 6.12 imply

limr→0+
ν(B(x;r))
mn(B(x;r)) = limr→0+

1
mn(B(x;r))

∫
B(x;r) f(y) dmn(y) + limr→0+

ρ(B(x;r))
mn(B(x;r)) = f(x)

formn­a.e. x ∈ Rn.

Theorem 6.14. Let ν be a locally finite Borel signed measure or a Borel complex measure on Rn.
If f is any Radon­Nikodym derivative of the absolutely continuous part of ν with respect to mn,
then, formn­a.e. x ∈ Rn,

limE∈C,mn(E)→0+
ν(E)
mn(E) = f(x)

for every thick family C of sets at x.

Proof. If ρ is the singular part of ν with respect tomn, then |ρ|⊥mn, and Theorem 6.12 implies

limr→0+
|ρ|(B(x;r))
mn(B(x;r)) = 0

formn­a.e. x ∈ Rn.
Now, we consider any x for which limr→0+

|ρ|(B(x;r))
mn(B(x;r)) = 0, and any thick family C of sets at x.

Then there is c > 0 so that for every E ∈ C there is a ball B(x; rE) with E ⊆ B(x; rE) and
mn(E) ≥ cmn(B(x; rE)). For every ϵ > 0 there is a δ > 0 so that r < δ implies

|ρ|(B(x;r))
mn(B(x;r)) < cϵ.

Ifmn(E) < cδnmn(B(0; 1)), then rE < δ, and so∣∣ ρ(E)
mn(E)

∣∣ ≤ |ρ|(E)
mn(E) ≤

1
c
|ρ|(B(x;rE))
mn(B(x;rE)) < ϵ.

This means that, formn­a.e. x ∈ Rn,

limE∈C,mn(E)→0+
ρ(E)

mn(E) = 0

for every thick family C of sets at x.
We combine this with Theorem 6.11 to complete the proof.
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Exercises.

6.6.1. A variation of the Hardy­Littlewood maximal function.
Let f : Rn → R or C be locally Lebesgue integrable.
We defineM∗(f)(x) = supr>0

1
mn(B(x;r))

∫
B(x;r) |f(y)| dmn(y) for every x ∈ Rn.

(i) Prove that the set {x ∈ Rn | t < M∗(f)(x)} is open for every t > 0.
(ii) Prove that 1

2n M(f)(x) ≤M∗(f)(x) ≤M(f)(x) for every x ∈ Rn.
One may define other variants of the Hardy­Littlewood maximal function by taking the supremum
of the mean values of |f | over open cubes containing the point x or open cubes centered at the
point x. The results are similar.

6.6.2. Vitali’s Covering Theorem.
Let E ⊆ Rn and let C be a collection of open balls with the property that for every x ∈ E and
every ϵ > 0 there is a B ∈ C so that x ∈ B andmn(B) < ϵ. Prove that there are pairwise disjoint
B1, B2, . . . ∈ C so thatm∗n(E \

⋃+∞
k=1Bk) = 0.

6.6.3. Points of density.
Let E ∈ Ln. If x ∈ Rn, we set DE(x) = limr→0+

mn(E∩B(x;r))
mn(B(x;r)) whenever the limit exists.

Observe that this limit (if it exists) is a number in the interval [0, 1]. If DE(x) = 1, we say that x
is a density point of E.
(i) If x is an interior point of E, prove that it is a density point of E.
(ii) Prove thatmn­a.e. x ∈ E is a density point of E.
(iii) For any α ∈ (0, 1) find x ∈ R and E ∈ L1 so thatDE(x) = α. Also find x ∈ R and E ∈ L1

so that DE(x) does not exist.

6.7 Functions of bounded variation.

187



188



Chapter 7

The classical Banach spaces.

7.1 Some facts from functional analysis.

NORMED SPACES.

Definition. Let Z be a linear space over the field F = R or over the field F = C and let the
function ‖ · ‖ : Z → R have the properties:
(i) ‖u+ v‖ ≤ ‖u‖+ ‖v‖, for all u, v ∈ Z,
(ii) ‖κu‖ = |κ|‖u‖, for all u ∈ Z and κ ∈ F ,
(iii) ‖u‖ = 0 implies u = 0, where 0 is the zero element of Z.
Then, ‖ · ‖ is called a norm on Z and (Z, ‖ · ‖) is called a normed space.

If F = R, we say that (Z, ‖ · ‖) is a real normed space and, if F = C, we say that (Z, ‖ · ‖) is
a complex normed space.

If it is obvious from the context which ‖·‖we are talking about, we shall say thatZ is a normed
space.

Proposition 7.1. If ‖ · ‖ is a norm on the linear space Z, then
(i) ‖0‖ = 0, where 0 is the zero element of Z,
(ii) ‖ − u‖ = ‖u‖, for all u ∈ Z,
(iii) ‖u‖ ≥ 0, for all u ∈ Z.

Proof. Exercise.

Proposition 7.2. Let (Z, ‖·‖) be a normed space. If we define d : Z×Z → R by d(u, v) = ‖u−v‖
for all u, v ∈ Z, then d is a metric on Z.

Proof. Exercise.

Definition. Let (Z, ‖ · ‖) be a normed space. If d is the metric defined in Proposition 7.2, then d
is called the metric induced on Z by ‖ · ‖.

Therefore, if (Z, ‖ · ‖) is a normed space, then (Z, d) is a metric space and we can study all
notions related to the notion of a metric space, like convergence of sequences, open and closed
sets and so on. Open balls in Z have the form B(u; r) = {v ∈ Z | ‖v − u‖ < r}. A sequence
(un) in Z converges to u ∈ Z if ‖un − u‖ → 0 as n → +∞. We denote this by: un → u or
limn→+∞ un = u. A set U ⊆ Z is open if for every u ∈ U there is an r > 0 so that B(u; r) ⊆ U .
Any union of open sets is open and any finite intersection of open sets is open. The sets ∅ andZ are
open. A setK ⊆ Z is closed if Z \K is open or, equivalently, if the limit of every sequence inK
(which has a limit) belongs toK. Any intersection of closed sets is closed and any finite union of
closed sets is closed. The sets ∅ and Z are closed. A setK ⊆ Z is compact if every open cover of
K has a finite subcover ofK. Equivalently,K is compact if every sequence inK has a convergent
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subsequence with limit in K. A sequence (un) in Z is a Cauchy sequence if ‖un − um‖ → 0 as
n,m → +∞. Every convergent sequence is Cauchy. If every Cauchy sequence is convergent,
then Z is a complete metric space.

Definition. If the normed space (Z, ‖ · ‖) is complete as a metric space (with the metric induced
by the norm), then it is called a Banach space.

If there is no danger of confusion, we say that Z is a Banach space.

Example. The space Rn with the Euclidean norm defined by ‖x‖ = |x| = (x21 + · · · + x2n)
1/2 is

a familiar real Banach space.
The space Cn with the norm defined by ‖x‖ = |x| = (|x1|2+ · · ·+ |xn|2)1/2 is a complex Banach
space.

There are some special results based on the combination of the linear and the metric structure
of a normed space. We first define, as in any linear space, u + A = {u + v | v ∈ A} and κA =
{κv | v ∈ A} for all A ⊆ Z, u ∈ Z and κ ∈ F . We also define for every u ∈ Z and every κ > 0
the translation τu : Z → Z and the dilation lκ : Z → Z, by τu(v) = v + u and lκ(v) = κv for
all v ∈ Z. It is trivial to prove that translations and dilations are one­to­one transformations of Z
onto Z and that τ−1u = τ−u and l−1κ = l1/κ. It is obvious that u+A = τu(A) and κA = lκ(A).

Proposition 7.3. Let (Z, ‖ · ‖) be a normed space.
(i) u+B(v; r) = B(u+ v; r) for all u, v ∈ Z and r > 0.
(ii) κB(v; r) = B(κv; |κ|r) for all v ∈ Z, κ ∈ F \ {0} and r > 0.
(iii) If un → u and vn → v in Z, then un + vn → u+ v in Z.
(iv) If κn → κ in F and un → u in Z, then κnun → κu in Z.
(v) If un → u in Z, then ‖un‖ → ‖u‖.
(vi) Translations and dilations are homeomorphisms. This means that they, together with their
inverses, are continuous on Z.
(vii) If A is open or closed or compact in Z and u ∈ Z, then u+A is, respectively, open or closed
or compact in Z.
(viii) If A is open or closed or compact in Z and κ ∈ F \ {0}, then κA is, respectively, open or
closed or compact in Z.

Proof. Exercise.

INNER PRODUCT SPACES.

Definition. Let Z be a linear space over the field F = R or over the field F = C and let the
function 〈·, ·〉 : Z × Z → F have the properties:
(i) 〈u1 + u2, v〉 = 〈u1, v〉+ 〈u2, v〉, for all u1, u2, v ∈ Z,
(ii) 〈κu, v〉 = κ〈u, v〉, for all u, v ∈ Z and κ ∈ F ,
(iii) 〈u, u〉 ≥ 0 for all u ∈ Z and, also, 〈u, u〉 = 0 implies u = 0.
(iv) 〈v, u〉 = 〈u, v〉 for all u, v ∈ Z.
Then, 〈·, ·〉 is called an inner product on Z and (Z, 〈·, ·〉) is called an inner product space.

If F = R, we say that Z is a real inner product space and, if F = C, we say that Z is a
complex inner product space. Of coure, if F = R, then property (iv) becomes 〈v, u〉 = 〈u, v〉 for
all u, v ∈ Z.

Proposition 7.4. Let (Z, 〈·, ·〉) be an inner product space.
(i) 〈u, v1 + v2〉 = 〈u, v1〉+ 〈u, v2〉, for all u, v1, v2 ∈ Z,
(ii) 〈u, κv〉 = κ〈u, v〉, for all u, v ∈ Z and κ ∈ F ,
(iii) 〈0, v〉 = 〈u, 0〉 = 0 for all u, v ∈ Z.
(iv) 〈u+ v, u+ v〉 = 〈u, u〉+ 2Re(〈u, v〉) + 〈v, v〉 for all u, v ∈ Z.
(v) 〈u+ v, u+ v〉+ 〈u− v, u− v〉 = 2〈u, u〉+ 2〈v, v〉 for all u, v ∈ Z.
(vi) |〈u, v〉|2 ≤ 〈u, u〉〈v, v〉 for all u, v ∈ Z.
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Proof. The proofs of (i), (ii), (iii), (iv) and (v) are left as an exercise.
(vi) If u = 0 then the inequality takes the form of an equality: 0 = 0. Now let u 6= 0 and, thus,
〈u, u〉 > 0. Then for every κ ∈ F we get from (iv) that 0 ≤ 〈κu + v, κu + v〉 = |κ|2〈u, u〉 +
2Re(κ〈u, v〉) + 〈v, v〉. We finish the proof, using κ = − ⟨u,v⟩⟨u,u⟩ .

Proposition 7.5. If (Z, 〈·, ·〉) is an inner product space, we define ‖u‖ = (〈u, u〉)1/2 for all u ∈ Z.
Then ‖ · ‖ is a norm on Z.

Proof. All properties of a norm are trivial to prove. We shall only prove the last property:

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 2Re(〈u, v〉) + 〈v, v〉 ≤ ‖u‖2 + 2|〈u, v〉|+ ‖v‖2

≤ ‖u‖2 + 2(〈u, u〉)1/2(〈v, v〉)1/2 + ‖v‖2 = ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2

which implies that ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ Z.

We see that every inner product spaceZ becomes a normed space with a norm which is defined
using the inner product of Z and whatever properties we prove for normed spaces they hold also
for inner product spaces.

Equalities (iv) and (v) of Proposition 7.4 take the forms ‖u+v‖2 = ‖u‖2+2Re(〈u, v〉)+‖v‖2
and ‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2. Inequality (vi) is called the Cauchy­Schwartz
inequality and takes the form

|〈u, v〉| ≤ ‖u‖ ‖v‖.

Definition. If the inner product space (Z, 〈·, ·〉) is complete (as a normed space) then it is called
a Hilbert space.

Example. Rn with the Euclidean norm, defined by ‖x‖ = |x| = (x21+· · ·+x2n)1/2, is a real Hilbert
space. Indeed, the well known inner product defined by 〈x, y〉 = x·y = x1y1+· · ·+xnyn induces
the norm of the space.
Similarly, Cn with the norm defined by ‖x‖ = |x| = (|x1|2+ · · ·+ |xn|2)1/2 is a complex Hilbert
space. Now, the appropriate inner product is defined by 〈x, y〉 = x · y = x1 y1 + · · ·+ xn yn.

Definition. Let (Z, 〈·, ·〉) be an inner product space. If 〈u, v〉 = 0, we say that u, v are orthogonal.
If 〈u, v〉 = 0 for every v ∈ B ⊆ Z, then we say that u,B are orthogonal. If 〈u, v〉 = 0 for every
u ∈ A ⊆ Z and every v ∈ B ⊆ Z, then we say that A,B are orthogonal. In each case we write,
respectively, u ⊥ v, u ⊥ B and A ⊥ B.

Proposition 7.6. Let (Z, 〈·, ·〉) be an inner product space.
(i) If un → u and vn → v, then 〈un, vn〉 → 〈u, v〉.
(ii) If u ⊥ v and u ⊥ w, then u ⊥ (v + w). Also, if u ⊥ v, then u ⊥ (κv) for all κ ∈ F .
(iii) If vn → v and u ⊥ vn for all n, then u ⊥ v.
(iv) If u ⊥ A, then u ⊥ V , where V is the closed linear subspace of Z generated by A. Also,
if A ⊥ B, then U ⊥ V , where U, V are the closed linear subspaces of Z generated by A,B,
respectively.
(v) If u1, . . . , un are pairwise orthogonal, then ‖u1 + · · ·+ un‖2 = ‖u1‖2 + · · ·+ ‖un‖2.

Proof. Exercise.

From now on, if there is no danger of confusion, we shall say normed space Z or inner product
space Z instead of normed space (Z, ‖ · ‖) or inner product space (Z, 〈·, ·〉).

F.Riesz Theorem. Let Z be a Hilbert space, u ∈ Z and V be a closed linear subspace of Z. Then
there is a unique v0 ∈ V such that ‖u−v0‖ ≤ ‖u−v‖ for all v ∈ V . This v0 is the unique element
of V satisfying (u− v0) ⊥ V .
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Proof. Let d = inf{‖u− v‖ | v ∈ V }.
Then d ≥ 0 and there is a sequence (vn) ∈ V so that ‖u− vn‖ → d.
Since V is a linear subspace, we have that 1

2(vn + vm) ∈ V and hence ‖u− 1
2(vn + vm)‖ ≥ d for

all n,m. Now we apply (v) of Proposition 7.4 to 1
2(u− vn) and 1

2(u− vm) and get

‖vn−vm‖2 = 2‖u−vn‖2+2‖u−vm‖2−4‖u− 1
2(vn+vm)‖2 ≤ 2‖u−vn‖2+2‖u−vm‖2−4d2.

Taking the limit, we find ‖vn−vm‖ → 0. Thus, (vn) is a Cauchy sequence and sinceZ is complete,
we get vn → v0 for some v0 ∈ Z. Also, since V is closed, v0 ∈ V . Now, vn → v0 implies that
‖u− vn‖ → ‖u− v0‖ and, hence, ‖u− v0‖ = d. I.e. ‖u− v0‖ ≤ ‖u− v‖ for all v ∈ V .
Now we take any κ ∈ F and any v ∈ V , v 6= 0. Since v0 + κv ∈ V , we get

‖u− v0‖2 ≤ ‖u− (v0 + κv)‖2 = ‖u− v0‖2 + 2Re(κ〈u− v0, v〉) + |κ|2‖v‖2.

Using κ = − ⟨u−v0,v⟩∥v∥2 we find |〈u− v0, v〉|2 ≤ 0. Therefore, 〈u− v0, v〉 = 0 for all v ∈ V and we
conclude that u− v0 ⊥ V .
If u−v0 ⊥ V and u−v1 ⊥ V for some other v1 ∈ V we get (v1−v0) ⊥ V and, since v1−v0 ∈ V ,
we find (v1 − v0) ⊥ (v1 − v0). This implies v1 − v0 = 0 and so v0 is unique.

Definition. Let Z be a Hilbert space and V be a closed linear subspace of Z. For every u ∈ Z
the unique v0 ∈ V which is such that (u − v0) ⊥ V is called the projection of u on V and it is
denoted PV (u).

Definition. Let Z be an inner product space and A ⊆ Z so that 0 /∈ A. The set A is called
orthogonal if u ⊥ v for all u, v ∈ A, u 6= v. The set A is called orthonormal if it is orthogonal
and ‖u‖ = 1 for all u ∈ A.

Every orthogonal set A can become orthonormal when we multiply every element of A by an
appropriate number so that its norm becomes 1. More precisely, the set B = { 1

∥u∥ u |u ∈ A} is
orthonormal.

Bessel’s Inequality. Let Z be an inner product space and A ⊆ Z be an orthonormal set. Then for
every u ∈ Z we have

∑
e∈A |〈u, e〉|2 ≤ ‖u‖2.

Proof. Take any finite subset {e1, . . . , en} ⊆ A and consider v0 = 〈u, e1〉e1 + · · ·+ 〈u, en〉en.
Part (v) of Proposition 7.6 implies ‖v0‖2 = |〈u, e1〉|2 + · · ·+ |〈u, en〉|2 and, hence,

〈u− v0, v0〉 = 〈u, v0〉 − ‖v0‖2 = 〈u, e1〉 〈u, e1〉+ · · ·+ 〈u, en〉 〈u, en〉 − ‖v0‖2 = 0.

Therefore,

|〈u, e1〉|2 + · · ·+ |〈u, en〉|2 = ‖v0‖2 ≤ ‖v0‖2 + ‖u− v0‖2 = ‖v0 + (u− v0)‖2 = ‖u‖2.

Since this is true for every finite subset of A, we conclude that
∑

e∈A |〈u, e〉|2 ≤ ‖u‖2.

Proposition 7.7. Let Z be a Hilbert space and A ⊆ Z be an orthonormal set. If (κe)e∈A is a
family in F indexed over A with

∑
e∈A |κe|2 < +∞, then the sum

∑
e∈A κe e can be defined as

an element of Z, and this element satisfies 〈
∑

e∈A κe e, v〉 =
∑

e∈A κe〈e, v〉 for all v ∈ Z.
In particular, 〈

∑
e∈A κe e, e

′〉 = κe′ for all e′ ∈ A. Moreover, the sum
∑

e∈A κe e belongs to the
closed linear subspace generated by A.

Proof. From
∑

e∈A |κe|2 < +∞we get that the set of e ∈ A for which κe 6= 0 is countable. Thus,
let e1, e2, . . . be any enumeration of the elements ofA with κe 6= 0 and then we have κe = 0 when
e ∈ A \ {e1, e2, . . .}.
Now, if e1, e2, . . . are finite, say e1, . . . , en, then we obviously define

∑
e∈A κe e to be the element

u = κe1 e1 + · · · + κen en and then u belongs to the closed linear subspace generated by A.
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Moreover, 〈u, v〉 = κe1〈e1, v〉+ · · ·+ κen〈en, v〉 =
∑

e∈A κe〈e, v〉.
If e1, e2, . . . are infinitely many, we consider the partial sums sn = κe1 e1 + · · ·+κen en for all n.
Then form < n we get ‖sn − sm‖2 = ‖κem+1 em+1 + · · ·+ κen en‖2 = |κem+1 |2 + · · ·+ |κen |2.
Now,

∑+∞
k=1 |κek |2 =

∑
e∈A |κe|2 < +∞ and this implies that ‖sn − sm‖ → 0 as n,m → +∞.

SinceZ is complete, (sn) converges to some u ∈ Z andwe define
∑

e∈A κe e = u = limn→+∞ sn.
Since every sn belongs to the closed linear subspace generated by A, the same is true for u.
Furthermore, from sn → u and from 〈sn, v〉 = κe1〈e1, v〉 + · · · + κen〈en, v〉 we find 〈u, v〉 =∑+∞

k=1 κek〈ek, v〉 =
∑

e∈A κe〈e, v〉.

Proposition 7.8. Let Z be a Hilbert space, A ⊆ Z be an orthonormal set and V be the closed
linear subspace generated by A. Then for every u ∈ Z the sum

∑
e∈A〈u, e〉 e can be defined as

an element v0 of Z. This v0 is equal to the projection PV (u) of u on V .

Proof. By Bessel’s inequality, we have
∑

e∈A |〈u, e〉|2 ≤ ‖u‖2 < +∞. Now, Proposition 7.7
implies that the sum

∑
e∈A〈u, e〉 e can be defined as an element v0 of Z which belongs to V and

satisfies 〈v0, e〉 = 〈u, e〉 for all e ∈ A. Thus, (u− v0) ⊥ e for all e ∈ A. Therefore, (u− v0) ⊥ V
and we conclude that v0 = PV (u).

Combining the last result with the F. Riesz Theorem we conclude that

‖u−
∑

e∈A〈u, e〉 e‖ ≤ ‖u−
∑

e∈A κe e‖

for all (κe)e∈A with
∑

e∈A |κe|2 < +∞.

Definition. Let Z be a Hilbert space and A ⊆ Z be an orthonormal set. We say that A is an
orthonormal basis of Z if the closed linear subspace generated by A is Z.

Proposition 7.9. Let Z be a Hilbert space and A ⊆ Z be an orthonormal set. Then the following
are equivalent:
(i) A is an orthonormal basis of Z.
(ii) u =

∑
e∈A〈u, e〉 e for all u ∈ Z.

(iii) ‖u‖2 =
∑

e∈A |〈u, e〉|2 for all u ∈ Z.

Proof. Let A be an orthonormal basis of Z. We consider the element v0 =
∑

e∈A〈u, e〉 e and we
shall prove that u = v0. Indeed, Proposition 7.8 says that v0 is the projection of u on the closed
linear subspace generated by A, which is Z. But the projection of u on Z is u itself.
If we assume that u =

∑
e∈A〈u, e〉 e for all u ∈ Z, then this implies that ‖u‖2 =

∑
e∈A |〈u, e〉|2

for all u ∈ Z.
Finally, let ‖u‖2 =

∑
e∈A |〈u, e〉|2 for all u ∈ Z. We assume that A is not an orthonormal basis of

Z, i.e. that the closed linear subspace V which is generated by A is a proper subspace of Z. Thus,
there is a u ∈ Z \ V . By Proposition 7.8, the projection of u on V is v0 =

∑
e∈A〈u, e〉 e and then

(u− v0) ⊥ V . Thus, (u− v0) ⊥ v0 and ‖u‖2 = ‖u− v0‖2 + ‖v0‖2 > ‖v0‖2 =
∑

e∈A |〈u, e〉|2.
We arrive at a contradiction and, hence, A is an orthonormal basis of Z.

Proposition 7.10. Every Hilbert space has an orthonormal basis.

Proof. We consider the family F = {A |A is an orthonormal subset of Z}.
This family is non­empty. Indeed, we may consider any u ∈ Z with ‖u‖ = 1 and then A = {u}
is an orthonormal subset of Z.
We define a partial order ≺ on F by: A1 ≺ A2 if A1 ⊆ A2.
Now assume that G is a totally ordered subfamily of F . We consider the set A0 =

⋃
A∈G A and

then it is easy to prove that A0 is an orthonormal subset of Z. Since A ≺ A0 for all A ∈ G, we get
that A0 is an upper bound of G.
Zorn’s Lemma implies that there is a maximal element of F . I.e. there is an orthonormal subset A
of Z such that there is no orthonormal subset of Z which is strictly larger than A. We shall prove
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that A is an orthonormal basis of Z.
Assume thatA is not an orthonormal basis ofZ. Then the closed linear subspace V generated byA
is strictly smaller that Z. Thus, there is some u ∈ Z \ V . We consider the projection v0 = PV (u)
of u on V and we have that (u − v0) ⊥ V . Then u′ = u − v0 6= 0 and the element e = 1

∥u′∥ u
′

satisfies ‖e‖ = 1 and e ⊥ V and, thus, e ⊥ A. Therefore, A ∪ {e} is an orthonormal set strictly
larger than A and we get a contradiction.

Definition. Let Z be a Hilbert space and A be an orthonormal basis of Z. For every u ∈ Z the
series

∑
e∈A〈u, e〉 e is called the Fourier series of u with respect to A. Thus, every element of Z

is equal to its Fourier series with respect to any orthonormal basis of Z. The numbers 〈u, e〉, for
all e ∈ A, are called the Fourier coefficients of u with respect to A.

If we consider any closed linear subspace V of a Hilbert space Z, then V is also complete
and, hence, a Hilbert space. Therefore, every closed linear subspace of a Hilbert space has an
orthonormal basis.

Proposition 7.11. Let Z be a Hilbert space. If Z has a countable orthonormal basis then Z is
separable. If Z is separable then every orthonormal basis of Z is countable.

Proof. Let Z be separable and let A be any orthonormal basis of Z. Let also B be a countable
dense subset of Z. Then the open balls B(e;

√
2
2 ) for all e ∈ A are disjoint and each of them

contains at least one element be of B. The elements be are disjoint and, thus, the mapping e 7→ be
from A into B is one­to­one. Therefore, A is countable.
Now let the orthonormal basis A of Z be countable. Then the set of all linear combinations of
elements ofAwith rational coefficients is countable and dense inZ. Therefore,Z is separable.

BOUNDED LINEAR OPERATORS.

Definition. Let Z andW be two linear spaces over the same F and a function T : Z →W . Then
T is called a linear transformation or a linear operator from Z toW if T (u+ v) = T (u)+T (v)
and T (κu) = κT (u) for all u, v ∈ Z and all κ ∈ F .

The following are familiar from elementary Linear Algebra. Let T : Z → W be a linear
operator. Then T is one­to­one if and only if T (u) = 0 (the zero element ofW ) implies u = 0 (the
zero element of Z). The subset N(T ) = {u ∈ Z |T (u) = 0} of Z, called the kernel of T , is a
linear subspace ofZ. Similarly, the subsetR(T ) = {T (u) |u ∈ Z} ofW , called the range of T , is
a linear subspace ofW . Now, T is one­to­one if and only ifN(T ) = {0} and T is onto if and only
if R(T ) = W . If T : Z → W is one­to­one and onto, then the inverse function T−1 : W → Z is
also a linear operator. In this case we say that the linear spaces Z andW are identified. By this we
mean that we may view the two spaces as a single space whose elements have two “names”. I.e.
we view the elements u of Z and T (u) ofW as a single element with the two names: u and T (u).
In fact the linear relations between elements are unaffected by changing their “names”: z = u+ v
if and only if T (z) = T (u)+T (v) and z = κu if and only if T (z) = κT (u). If T : Z →W is one­
to­one but not onto, then we may consider the restriction T : Z → R(T ). This is a linear operator
which is one­to­one and onto and we may say that the linear spaces Z andR(T ) are identified and
that Z is identified with a linear subspace ofW or that R(T ) is a “copy” of Z insideW .

Definition. Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be two normed spaces and T : Z → W be a linear
operator. We say that T is bounded if there is a constantM < +∞ so that ‖T (u)‖W ≤ M‖u‖Z
for all u ∈ Z.

From now on when we have two normed spaces (Z, ‖·‖Z) and (W, ‖·‖W )we shall denote, for
simplicity, both norms with the same symbol ‖ · ‖. For instance, the relation ‖T (u)‖W ≤M‖u‖Z
will be simplified to ‖T (u)‖ ≤M‖u‖.

194



Theorem 7.1. Let Z and W be two normed spaces and T : Z → W be a linear operator. The
following are equivalent.
(i) T is bounded.
(ii) T is continuous on Z.
(iii) T is continuous at 0.

Proof. Suppose that T is bounded and, hence, there is M < +∞ so that ‖T (u)‖ ≤ M‖u‖ for
every u ∈ Z. If un → u in Z, then ‖T (un) − T (u)‖ = ‖T (un − u)‖ ≤ M‖un − u‖ → 0 and,
thus, T (un) → T (u) inW . Therefore, T is continuous on Z.
If T is continuous on Z, then it is certainly continuous at 0.
Suppose that T is continuous at 0. Then there is δ > 0 so that ‖T (u)‖ = ‖T (u) − T (0)‖ < 1
for every u with ‖u‖ = ‖u − 0‖ < δ. We take any u ∈ Z \ {0} and any t > 1 and we get∥∥ δ
t∥u∥ u

∥∥ = δ
t < δ. Therefore,

∥∥T ( δ
t∥u∥ u

)∥∥ < 1 and, hence, ‖T (u)‖ ≤ t
δ ‖u‖. This is trivially

true also for u = 0 and we conclude that ‖T (u)‖ ≤ t
δ ‖u‖ for every u ∈ Z. Letting t → 1+, we

get ‖T (u)‖ ≤M‖u‖, whereM = 1
δ . Therefore, T is bounded.

Proposition 7.12. Let Z and W be two normed spaces and T : Z → W be a bounded linear
operator. Then there is a smallestM0 with the property: ‖T (u)‖ ≤M0‖u‖ for every u ∈ Z. This
M0 is characterized by the two properties:
(i) ‖T (u)‖ ≤M0‖u‖ for every u ∈ Z,
(ii) for everyM < M0 there is a u ∈ Z so that ‖T (u)‖ > M‖u‖.

Proof. We considerM0 = inf{M | ‖T (u)‖ ≤M‖u‖ for every u ∈ Z}.
The set L = {M | ‖T (u)‖ ≤ M‖u‖ for every u ∈ Z} is non­empty by assumption and included
in [0,+∞). ThereforeM0 exists andM0 ≥ 0. We take a sequence (Mn) in L so thatMn → M0

and, from ‖T (u)‖ ≤ Mn‖u‖ for every u ∈ Z, we get ‖T (u)‖ ≤ M0‖u‖ for every u ∈ Z.
Therefore,M0 is the smallest element of L.
IfM < M0, thenM /∈ L and, hence, there is a u ∈ Z so that ‖T (u)‖ > M‖u‖.

Definition. Let Z andW be two normed spaces and T : Z → W be a bounded linear operator.
The smallest M for which ‖T (u)‖ ≤ M‖u‖ for every u ∈ Z is called the norm of T and it is
denoted ‖T‖.

The zero linear operator 0 : Z → W is bounded and, since ‖0(u)‖ = 0 ≤ 0‖u‖ for every
u ∈ Z, we have that ‖0‖ = 0. On the other hand, if T is a bounded linear operator with ‖T‖ = 0,
then ‖T (u)‖ ≤ 0‖u‖ = 0 for every u ∈ Z and, hence, T is the zero linear operator.

Proposition 7.13. Let Z and W be two normed spaces and T : Z → W be a bounded linear
operator. Then ‖T‖ = supu∈Z,u ̸=0

∥T (u)∥
∥u∥ = supu∈Z,∥u∥=1 ‖T (u)‖ = supu∈Z,∥u∥≤1 ‖T (u)‖.

Proof. It is clear that supu∈Z,∥u∥=1 ‖T (u)‖ ≤ supu∈Z,∥u∥≤1 ‖T (u)‖.
Writing v = u

∥u∥ for every u ∈ Z \ {0}, we have that ‖v‖ = 1. Therefore, supu∈Z,u ̸=0
∥T (u)∥
∥u∥ =

supu∈Z,u ̸=0

∥∥T ( u
∥u∥

)∥∥ ≤ supu∈Z,∥u∥=1 ‖T (u)‖.
For all uwith ‖u‖ ≤ 1, we get ‖T (u)‖ ≤ ‖T‖‖u‖ ≤ ‖T‖ and, thus, supu∈Z,∥u∥≤1 ‖T (u)‖ ≤ ‖T‖.
If we setM = supu∈Z,u ̸=0

∥T (u)∥
∥u∥ , then ∥T (u)∥

∥u∥ ≤ M and, hence, ‖T (u)‖ ≤ M‖u‖ for all u 6= 0.
Since this is obviously true for u = 0, we have that ‖T‖ ≤M and this finishes the proof.

Definition. Let Z andW be two normed spaces and T : Z →W be a bounded linear operator.
If T is ontoW and ‖T (u)‖ = ‖u‖ for every u ∈ Z, then we say that T is an isometry from Z onto
W or between Z andW .
If ‖T (u)‖ = ‖u‖ for every u ∈ Z (but T is not necessarily ontoW ), we say that T is an isometry
from Z intoW .

195



Proposition 7.14. Let Z andW be two normed spaces.
(i) If T is an isometry from Z intoW , then T is one­to­one.
(ii) If T is an isometry from Z ontoW , then T−1 is an isometry fromW onto Z.

Proof. Exercise.

If T is an isometry from Z ontoW , then it is not only that we may identify Z andW as linear
spaces (see the discussion before the definition of a bounded linear operator) but we may also
identify them as metric spaces: the distances between elements are unaffected by changing their
“names”: ‖T (u)− T (v)‖ = ‖T (u− v)‖ = ‖u− v‖.

If T is an isometry from Z into W , then T is an isometry from Z onto R(T ) and we may
identify Z with the subspace R(T ) ofW or we may view R(T ) as a “copy” of Z insideW .

BOUNDED LINEAR FUNCTIONALS.

As in any linear space, we define a linear functional on Z to be a function l : Z → F which
satisfies l(u+ v) = l(u) + l(v) and l(κu) = κl(u) for every u, v ∈ Z and κ ∈ F .

Since F itself is a linear space, a linear functional is a special case of a linear operator.

Definition. Let Z be a normed space and l be a linear functional on Z. Then we say that l is
bounded if there is anM < +∞ so that |l(u)| ≤M‖u‖ for all u ∈ Z.

Theorem 7.2 and Propositions 7.15 and 7.16 are special cases of Theorem 7.1 and Propositions
7.12 and 7.13. Hence, they do not need new proofs.

Theorem 7.2. Let Z be a normed space and l be a linear functional on Z. The following are
equivalent.
(i) l is bounded.
(ii) l is continuous on Z.
(iii) l is continuous at 0.

Proposition 7.15. Let Z be a normed space and l be a bounded linear functional on Z. Then there
is a smallestM0 with the property: |l(u)| ≤M‖u‖ for every u ∈ Z. ThisM0 is characterized by
the two properties:
(i) |l(u)| ≤M0‖u‖ for every u ∈ Z,
(ii) for everyM < M0 there is a u ∈ Z so that |l(u)| > M‖u‖.

Definition. Let Z be a normed space and l be a bounded linear functional on Z. The smallestM
for which |l(u)| ≤M‖u‖ for every u ∈ Z is called the norm of l and it is denoted ‖l‖∗.

The zero linear functional 0 : Z → F is bounded and, since |0(u)| = 0 ≤ 0‖u‖ for every
u ∈ Z, we get ‖0‖∗ = 0. Conversely, if l ∈ Z∗ has ‖l‖∗ = 0, then |l(u)| ≤ 0‖u‖ = 0 for every
u ∈ Z and, hence, l is the zero linear functional on Z.

Proposition 7.16. Let Z be a normed space and l ∈ Z∗. Then ‖l‖∗ = supu∈Z,u ̸=0
|l(u)|
∥u∥ =

supu∈Z,∥u∥=1 |l(u)| = supu∈Z,∥u∥≤1 |l(u)|.

We define the sum l1 + l2 : Z → F of two linear functionals l1, l2 on Z by (l1 + l2)(u) =
l1(u) + l2(u) for all u ∈ Z and the product κl : Z → F of a linear functional l on Z and a κ ∈ F
by (κl)(u) = κl(u) for all u ∈ Z. It is trivial to prove that l1 + l2 and κl are linear functionals on
Z and that the set Z ′ = {l | l is a linear functional on Z} becomes a linear space under this sum
and product. Z ′ is called the algebraic dual of Z. The zero element of Z ′ is the linear functional
0 : Z → F defined by 0(u) = 0 for all u ∈ Z and the opposite of a linear functional l on Z is the
linear functional −l : Z → F defined by (−l)(u) = −l(u) for all u ∈ Z.
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Proposition 7.17. LetZ be a normed space, l, l1, l2 be bounded linear functionals onZ and κ ∈ F .
Then l1 + l2 and κl are bounded linear functionals on Z and ‖l1 + l2‖∗ ≤ ‖l1‖∗ + ‖l2‖∗ and
‖κl‖∗ = |κ|‖l‖∗.

Proof. We have |(l1 + l2)(u)| ≤ |l1(u)|+ |l2(u)| ≤ ‖l1‖∗‖u‖+ ‖l2‖∗‖u‖ = (‖l1‖∗ + ‖l2‖∗)‖u‖
for all u ∈ Z. This implies that l1 + l2 is bounded and that ‖l1 + l2‖∗ ≤ ‖l1‖∗ + ‖l2‖∗.
Similarly, |(κl)(u)| = |κ||l(u)| ≤ |κ|‖l‖∗‖u‖ for all u ∈ Z. This implies that κl is bounded
and that ‖κl‖∗ ≤ |κ|‖l‖∗. If κ = 0, then the equality is obvious. If κ 6= 0, to get the opposite
inequality, we write |κ||l(u)| = |(κl)(u)| ≤ ‖κl‖∗‖u‖ and, hence, |l(u)| ≤ ∥κl∥∗

|κ| ‖u‖ for all u ∈ Z

and, hence, ‖l‖∗ ≤ ∥κl∥∗
|κ| .

Definition. Let Z be a normed space. The set of all bounded linear functionals on Z or, equiva­
lently, of all continuous linear functionals on Z,

Z∗ = {l | l is a bounded linear functional on Z},

is called the topological dual of Z or the norm­dual of Z or just the dual of Z.

Proposition 7.17 together with the remarks about the norm of the zero functional imply that Z∗
is a linear subspace of Z ′ and that ‖ · ‖∗ : Z∗ → R is a norm on Z∗.

Theorem 7.3. If Z is a normed space, then Z∗ is a Banach space.

Proof. Let (ln) be a Cauchy sequence in Z∗.
For all u ∈ Z we have |ln(u)− lm(u)| = |(ln − lm)(u)| ≤ ‖ln − lm‖∗‖u‖ → 0 as n,m→ +∞.
Thus, (ln(u)) is a Cauchy sequence in F and, hence, converges to some element of F . We define
l : Z → F by

l(u) = limn→+∞ ln(u) for all u ∈ Z.

It is easy to show that l is linear, i.e. l ∈ Z ′, and we shall show that l ∈ Z∗ and ‖ln − l‖∗ → 0.
Now, there isN so that ‖ln−lm‖∗ ≤ 1 for all n,m ≥ N . Then |ln(u)−lm(u)| ≤ ‖ln−lm‖∗‖u‖ ≤
‖u‖ for all u ∈ Z and all n,m ≥ N and, taking the limit as n → +∞ and m = N , we find
|l(u)− lN (u)| ≤ ‖u‖ for all u ∈ Z. Therefore, |l(u)| ≤ |lN (u)|+ ‖u‖ ≤ (‖lN‖∗ + 1)‖u‖ for all
u ∈ Z. Hence, l ∈ Z∗.
Moreover, for an arbitrary ϵ > 0 there is N so that ‖ln − lm‖∗ ≤ ϵ for all n,m ≥ N . Then
|ln(u) − lm(u)| ≤ ‖ln − lm‖∗‖u‖ ≤ ϵ‖u‖ for all u ∈ Z and all n,m ≥ N . Taking the limit as
m→ +∞, we find |ln(u)− l(u)| ≤ ϵ‖u‖ for all u ∈ Z and all n ≥ N . Therefore, ‖ln − l‖∗ ≤ ϵ
for all n ≥ N and, thus, ‖ln − l‖∗ → 0.

In case F = C, the linear space Z can also be considered as a linear space over R. Therefore
we may distinguish between real­linear and complex­linear functionals on Z. A complex­linear
functional on Z is the same as a linear functional on Z, i.e. a function l : Z → C satisfying:
l(u + v) = l(u) + l(v) and l(κu) = κl(u) for κ ∈ C and u, v ∈ Z. A real­linear functional on
Z is a function l : Z → R satisfying: l(u + v) = l(u) + l(v) and l(κu) = κl(u) for κ ∈ R and
u, v ∈ Z.

Proposition 7.18. Let Z be a normed space over C. For every bounded linear functional (i.e.
complex­linear functional) l on Z the m = Re(l) is a bounded real­linear functional on Z with
‖m‖∗ = ‖l‖∗. Conversely, for every bounded real­linear functional m on Z there is a unique
bounded linear functional l on Z so that Re(l) = m.
The two functionals l,m satisfy the relation l(u) = m(u)− im(iu) for all u ∈ Z.

Proof. If l : Z → C is a bounded linear functional on Z, then it is trivial to show thatm = Re(l) :
Z → R is a real­linear functional on Z and we leave it as an exercise.
We have l(u) = Re(l)(u) + i Im(l)(u) and l(iu) = Re(l)(iu) + i Im(l)(iu). Since l(iu) = il(u),
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we get Re(l)(iu) + i Im(l)(iu) = iRe(l)(u) − Im(l)(u) for all u ∈ Z. Equating real parts, we
find Im(l)(u) = −Re(l)(iu) = −m(iu) for all u ∈ Z and, thus,

l(u) = Re(l)(u) + i Im(l)(u) = m(u)− im(iu) for all u ∈ Z.

Now, for all u ∈ Z we have |m(u)| = |Re(l(u))| ≤ |l(u)| ≤ ‖l‖∗‖u‖ and, hence, ‖m‖∗ ≤ ‖l‖∗.
Also, if l(u) 6= 0, we consider κ = |l(u)|

l(u) ∈ C with |κ| = 1 and we get

|l(u)| = κl(u) = l(κu) = Re(l)(κu) = m(κu) ≤ |m(κu)| ≤ ‖m‖∗‖κu‖ = ‖m‖∗‖u‖.

The inequality |l(u)| ≤ ‖m‖∗‖u‖ is clearly true if l(u) = 0 and, hence, holds for all u ∈ Z.
Therefore, ‖l‖∗ ≤ ‖m‖∗.
Conversely, let m : Z → R be a bounded real­linear functional on Z. We define l : Z → C by
l(u) = m(u)− im(iu) for all u ∈ Z. It is obvious that Re(l) = m and it is easy to show that l is
a linear functional on Z. That l is bounded with ‖l‖∗ = ‖m‖∗ has already been shown above.
The uniqueness of l with Re(l) = m has also been shown. Indeed, we proved that, if Re(l)(u) =
m(u) for all u ∈ Z, then Im(l)(u) = −m(iu) for all u ∈ Z and, hence, Im(l) is uniquely
determined bym.

Proposition 7.19. Let Z be any inner product space. For any u ∈ Z we define lu : Z → F by
lu(v) = 〈v, u〉 for all v ∈ Z. Then lu ∈ Z∗ and ‖lu‖∗ = ‖u‖.

Proof. It is trivial to prove that lu is linear.
For every v ∈ Z we have |lu(v)| = |〈v, u〉| ≤ ‖v‖‖u‖ and, thus, ‖lu‖∗ ≤ ‖u‖.
On the other hand, |lu(u)| = ‖u‖2 = ‖u‖‖u‖ and thus ‖lu‖∗ = ‖u‖.

The following theorem shows the opposite in the case of a Hilbert space.

Theorem 7.4. Let Z be a Hilbert space. Then for every l ∈ Z∗ there is a unique u ∈ Z such that
l = lu, i.e. such that l(v) = 〈v, u〉 for all v ∈ Z.

Proof. If l = 0 then we consider u = 0 and, clearly, we have l(u) = 0 = 〈v, u〉 for all v ∈ Z.
Now, let l 6= 0. Then the kernel N(l) of l is a proper closed linear subspace of Z. We take any
u0 ∈ Z \N(l) and the projection v0 = PN(l)(u0) of u0 on N(l). Then (u0 − v0) ⊥ N(l) and we
consider the element

u = l(u0)
∥u0−v0∥2 (u0 − v0).

Thus, u ⊥ N(l) and ‖u‖ = |l(u0)|
∥u0−v0∥ > 0 and

l(u) = l(u0)
∥u0−v0∥2 (l(u0)− l(v0)) =

l(u0)
∥u0−v0∥2 l(u0) =

|l(u0)|2
∥u0−v0∥2 = ‖u‖2.

Now, for all v ∈ Z we have that l(v − l(v)
l(u) u) = l(v) − l(v)

l(u) l(u) = 0. Hence, v − l(v)
l(u) u ∈ N(l)

and, thus, 〈v − l(v)
l(u) u, u〉 = 0. This implies 〈v, u〉 = l(v)

l(u) ‖u‖
2 = l(v) for all v ∈ Z.

Proposition 7.20. Let Z be a Hilbert space. Then the mapping T : Z → Z∗ defined by T (u) = lu
for all u ∈ Z is an isometric conjugate­linear operator from Z onto Z∗.

Proof. We have T (u1 + u2)(v) = lu1+u2(v) = 〈v, u1 + u2〉 = 〈v, u1〉 + 〈v, u2〉 = lu1(v) +
lu2(v) = T (u1)(v) + T (u2)(v) for all v ∈ Z and, hence, T (u1 + u2) = T (u1) + T (u2). Also,
T (κu)(v) = lκu(v) = 〈v, κu〉 = κ 〈v, u〉 = κ lu(v) = κT (u)(v) for all v ∈ Z and, hence,
T (κu) = κT (u). Therefore, T : Z → Z∗ is a conjugate­linear operator. Theorem 7.4 implies
that T is onto Z∗. Also, ‖T (u)‖∗ = ‖lu‖∗ = ‖u‖.
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NORMED LATTICES.

This subsection is only about real linear spaces.

Definition.We say that ≤ is an order on the real linear space Z if it satisfies
(i) u ≤ u for all u ∈ Z.
(ii) If u, v ∈ Z and u ≤ v and v ≤ u, then u = v.
(iii) If u, v, w ∈ Z and u ≤ v and v ≤ w, then u ≤ w.
(iv) If u, v, w ∈ Z and u ≤ v, then u+ w ≤ v + w.
(v) If u, v ∈ Z and κ ∈ R+ and u ≤ v, then κu ≤ κv.
If ≤ is an order on the linear space Z, then (Z,≤) is called an ordered linear space.

Properties (i), (ii), (iii) define the general order relation on any set. Properties (iv) and (v)
describe the connection between the order relation and the linear structure of the linear space Z.

For simplicity, from now on we shall say that Z (instead of (Z,≤)) is an ordered linear space.

Definition. Let Z be an ordered linear space. The set Z+ = {u ∈ Z | 0 ≤ u} is called the
non­negative cone of Z.

Proposition 7.21. Let Z be an ordered linear space. Then the non­negative cone Z+ is closed
under addition and under multiplication by positive real numbers. More precisely, (i) if u, v ∈ Z+,
then u+ v ∈ Z+, (ii) if u ∈ Z+ and κ ∈ R+, then κu ∈ Z+.

Proof. Exercise.

Definition.We say that the ordered real linear space Z is a linear lattice if every two elements of
Z have a least upper bound or, more precisely, if for every u, v ∈ Z there is a w ∈ Z such that
(i) u ≤ w and v ≤ w,
(ii) if w′ ∈ Z and u ≤ w′ and v ≤ w′, then w ≤ w′.
The least upper bound w of u, v is denoted u ∨ v.
For every u ∈ Z we denote u+ = u ∨ 0, u− = (−u) ∨ 0 and |u| = u ∨ (−u) and call them the
non­negative part, the non­positive part and the absolute value of u, respectively.

Example. Rn is a linear lattice under the order≤ defined by: x ≤ y if xj ≤ yj for all j = 1, . . . , n.
We have x ∨ y = (max{x1, y1}, . . . ,max{xn, yn}).

Example. The real linear spaceRX of all real valued functions f : X → R is a linear lattice under
the usual order ≤ defined by: f ≤ g if f(x) ≤ g(x) for all x ∈ X .
We have (f ∨ g)(x) = max{f(x), g(x)} for all x ∈ X .
Also f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0} and |f |(x) = max{f(x),−f(x)} =
|f(x)| for all x ∈ X .

Proposition 7.22. Let Z be a linear lattice.
(i) If u, v ∈ Z then the element w = u + v − u ∨ v is the largest lower bound of u, v. More
precisely, (a) w ≤ u and w ≤ v and (b), if w′ ∈ Z and w′ ≤ u and w′ ≤ v, then w′ ≤ w.
(ii) For all u ∈ Z we have: u+ − u− = u and u+ + u− = |u|.
(iii) For all u ∈ Z we have: (a) 0 ≤ u if and only if u = u+ if and only if u = |u|, (b) u ≤ 0 if
and only if u = −u− if and only if u = −|u|.
(iv) For all u, v ∈ Z we have u ∨ v = u+v+|u−v|

2 .

Proof. Exercise.

Definition. Let Z be a linear lattice. If u, v ∈ Z, then the element w = u+ v − u ∨ v which was
defined in (i) of Proposition 7.22, i.e. the largest lower bound of u, v, is denoted u ∧ v.

Therefore, in any linear lattice we have u ∨ v + u ∧ v = u + v. We also see that (iv) of
Proposition 7.22 implies u ∧ v = u+v−|u−v|

2 .

199



Definition. Let Z be a real linear space with a norm ‖ · ‖ and an order ≤ under which it is a
linear lattice. Then we say that (Z, ‖ · ‖,≤) is a normed lattice if u, v ∈ Z and |u| ≤ |v| imply
‖u‖ ≤ ‖v‖.
If also (Z, ‖ · ‖) is a Banach space, then (Z, ‖ · ‖,≤) is called a Banach lattice.

Example. Rn with the order defined in one of the previous examples and with the Euclidean norm
is a Banach lattice.

Definition. LetZ be an ordered linear space. A linear functional l : Z → R is called non­negative
if it has non­negative values on the non­negative cone Z+. This means: l(u) ≥ 0 for all u ∈ Z+.

Proposition 7.23. LetZ be a normed lattice. For every l ∈ Z∗ there are two non­negative bounded
linear functionals l+, l− ∈ Z∗ such that l = l+ − l−. Also, ‖l+‖∗ ≤ ‖l‖∗ and ‖l−‖∗ ≤ ‖l‖∗.

Proof. For each u ∈ Z+, i.e. u ≥ 0, we define

l+(u) = sup{l(v) | v ∈ Z, 0 ≤ v ≤ u}.

Obviously, l+(u) ≥ l(0) = 0 and l+(u) ≥ l(u).
Also, if 0 ≤ v ≤ u, then ‖v‖ ≤ ‖u‖ and, hence, l(v) ≤ |l(v)| ≤ ‖l‖∗‖v‖ ≤ ‖l‖∗‖u‖. Therefore,

l+(u) ≤ ‖l‖∗‖u‖ < +∞. (7.1)

For every κ ∈ R+ and u ∈ Z+ we have

l+(κu) = sup{l(v) | v ∈ Z, 0 ≤ v ≤ κu} = sup{l(κv) | v ∈ Z, 0 ≤ v ≤ u}
= κ sup{l(v) | v ∈ Z, 0 ≤ v ≤ u} = κl+(u).

(7.2)

If u1, u2 ∈ Z+, 0 ≤ v1 ≤ u1 and 0 ≤ v2 ≤ u2, then l(v1) + l(v2) = l(v1 + v2) and, since
0 ≤ v1 + v2 ≤ u1 + u2, it is implied that l(v1) + l(v2) ≤ l+(u1 + u2). Taking supremum
separately over v1 and over v2, we find l+(u1) + l+(u2) ≤ l+(u1 + u2).
Now let 0 ≤ v ≤ u1 + u2. We set v1 = u1 ∧ v from which 0 ≤ v1 ≤ u1 and v1 ≤ v. If we
set v2 = v − v1, then it is easy to see that 0 ≤ v2 ≤ u2 and of course v = v1 + v2. Hence,
l(v) = l(v1) + l(v2) ≤ l+(u1) + l+(u2) from which l+(u1 + u2) ≤ l+(u1) + l+(u2).
We conclude that

l+(u1 + u2) = l+(u1) + l+(u2). (7.3)

Until now l+(u) is defined only for u ∈ Z+. For an arbitrary u ∈ Z we have u = u+−u−, where
of course u+, u− ∈ Z+. We then define

l+(u) = l+(u+)− l+(u−) for all u ∈ Z.

Observe that, if u = v − w for any v, w ∈ Z+, then u+ + w = u− + v, and from (7.3):

l+(u+) + l+(w) = l+(u+ + w) = l+(u− + v) = l+(u−) + l+(v).

Hence, l+(u) = l+(v)− l+(w).
If u1, u2 ∈ Z, then u1 + u2 = (u+1 + u+2 )− (u−1 + u−2 ) and from the last identity we get

l(u1+u2) = l(u+1 +u+2 )− l(u
−
1 +u−2 ) = l(u+1 )+ l(u

+
2 )− l(u

−
1 )− l(u

−
2 ) = l(u1)+ l(u2). (7.4)

If u ∈ Z and κ ∈ R+, then κu = κu+ − κu− and (7.2) implies

l+(κu) = l+(κu+)− l+(κu−) = κl+(u+)− κl+(u−) = κl+(u), (7.5)

while, if κ ∈ R−, then κu = |κ|u− − |κ|u+ and (7.2) implies, again,

l+(κu) = l+(|κ|u−)− l+(|κ|u+) = |κ|l+(u−)− |κ|l+(u+) = κl+(u). (7.6)
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By (7.4), (7.5) and (7.6), l+ : Z → R is a linear functional.
If u ∈ Z, then from (7.1) we get

|l+(u)| = |l+(u+)− l+(u−)| ≤ max{l+(u+), l+(u−)} ≤ max{‖l‖∗‖u+‖, ‖l‖∗‖u−‖}
= ‖l‖∗max{‖u+‖, ‖u−‖} ≤ ‖l‖∗‖u‖,

since 0 ≤ u+ ≤ |u| and 0 ≤ u− ≤ |u|.
Therefore, l+ is a non­negative bounded linear functional of Z with ‖l+‖∗ ≤ ‖l‖∗.
We also define l− = l+ − l : Z → R. This is, clearly, a linear functional of Z and it is non­
negative, since for every u ∈ Z+ we have l−(u) = l+(u) − l(u) ≥ 0. Also it is obvious that l−
is bounded, since ‖l−‖∗ = ‖l+ − l‖∗ ≤ ‖l+‖∗ + ‖l‖∗ ≤ 2‖l‖∗. But we can find a better estimate
for the norm of l−, namely ‖l−‖∗ ≤ ‖l‖∗.
Indeed, if 0 ≤ v ≤ u, then 0 ≤ u − v ≤ u and, hence, l(v) − l(u) = −l(u − v) ≤ |l(u − v)| ≤
‖l‖∗‖u− v‖ ≤ ‖l‖∗‖u‖ and, thus, l−(u) = l+(u)− l(u) ≤ ‖l‖∗‖u‖.
Therefore, if u ∈ Z, we have

|l−(u)| = |l−(u+)− l−(u−)| ≤ max{l−(u+), l−(u−)} ≤ max{‖l‖∗‖u+‖, ‖l‖∗‖u−‖}
= ‖l‖∗max{‖u+‖, ‖u−‖} ≤ ‖l‖∗‖u‖

and we conclude that ‖l−‖∗ ≤ ‖l‖∗.

EXTENSIONS OF LINEAR FUNCTIONALS.

Assume that Z is a normed space and that Z0 is a linear subspace of Z with the same norm. If
l0 : Z0 → F and l : Z → F are two bounded linear functionals and l is an extension of l0,
then ‖l0‖∗ ≤ ‖l‖∗. Indeed, for every u ∈ Z0 we have |l0(u)| = |l(u)| ≤ ‖l‖∗‖u‖ and, thus,
‖l0‖∗ ≤ ‖l‖∗. Therefore, when we extend a linear functional its norm increases (in the broad
sense). The next two very basic facts of Functional Analysis say that we can always extend a
linear functional from a subspace to the whole space keeping its norm fixed. The first theorem
deals with the case F = R and the second theorem considers the case F = C.

Hahn­Banach Theorem. Let Z be a normed space over R, Z0 be a linear subspace of Z and
l0 ∈ Z∗0 . Then there is at least one l ∈ Z∗ which is an extension of l0 so that ‖l0‖∗ = ‖l‖∗.

Proof. We consider the collectionF the elements of which are allmwith the following properties:
(i)m : D(m) → R is a linear functional onD(m) which is a linear subspace of Z,
(ii)m is an extension of l0, i.e. Z0 = D(l0) ⊆ D(m) and l0(u) = m(u) for all u ∈ Z0,
(iii) |m(u)| ≤ ‖l0‖∗‖u‖ for all u ∈ D(m), i.e. ‖l0‖∗ = ‖m‖∗.
Thus, the elements of F are all the extensions of l0 on linear subspaces of Z, which have the same
norm as l0.
Then F is not empty, since l0 ∈ F , and we define the following order relation on F : m1 ≺ m2 if
m2 is an extension ofm1.
Now assume that G is a totally ordered subcollection of F . We define Z ′ =

⋃
{D(m) |m ∈ G}.

Clearly, Z0 ⊆ Z ′ ⊆ Z. If u1, u2 ∈ Z ′, there are m1,m2 ∈ G so that u1 ∈ D(m1) and u2 ∈
D(m2). Since one of m1,m2, say m2, is an extension of the other, we get that u1, u2 ∈ D(m2)
and sinceD(m2) is a linear subspace ofZ, we have that u1+u2 ∈ D(m2) and, thus, u1+u2 ∈ Z ′.
Similarly, if u ∈ Z ′, there is an m ∈ G so that u ∈ D(m) and, hence, for all κ ∈ R we have
κu ∈ D(m) and, thus, κu ∈ Z ′. Therefore, Z ′ is a linear subspace of Z. Now take any u ∈ Z ′,
whence u ∈ D(m) for some m ∈ G. If there is another m′ ∈ G so that u ∈ D(m′), then since
one of m,m′ is an extension of the other we get m(u) = m′(u). This implies that we can define
a function l′ : Z ′ → R so that l′(u) = m(u) for anym ∈ G with u ∈ D(m).
We have seen that, if u1, u2 ∈ Z ′, then there is some m ∈ G so that u1, u2 ∈ D(m) and, thus,
l′(u1 + u2) = m(u1 + u2) = m(u1) +m(u2) = l′(u1) + l′(u2). In the same way we can prove
that l′(κu) = κl′(u) for all u ∈ Z ′ and κ ∈ R. Therefore, l′ is a linear functional on Z ′. It is clear
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that l′ is an extension of l0 and that |l′(u)| ≤ ‖l0‖∗‖u‖ for all u ∈ Z ′. Thus, l′ ∈ F . It is also clear
that l′ is an extension of allm ∈ G and, hence, l′ is an upper bound of G.
Now, Zorn’s Lemma implies that F has at least one maximal element. In other words there is
some l with the properties (i), (ii) and (iii) so that there is nom with the same properties which is
a proper extension of l.
Now it is enough to prove that D(l) = Z.
To get a contradiction we assume thatD(l) 6= Z and we take any u0 ∈ Z \D(l). We consider the
linear subspace

W = {u+ κu0 |u ∈ D(l), κ ∈ R}.
Then D(l) is a proper subspace ofW and we shall define a linear functionalm : W → R so that
m(u) = l(u) for all u ∈ D(l) and |m(u)| ≤ ‖l‖∗‖u‖ = ‖l0‖∗‖u‖ for all u ∈ W . Then m is a
proper extension of l with the properties (i), (ii) and (iii) and we arrive at a contradiction.
To definem we consider an a priori arbitrary κ0 ∈ R and we consider

m(u+ κu0) = l(u) + κκ0, u ∈ D(l), κ ∈ R.

Then it is easy to see thatm is a linear functional onW and thatm(u) = l(u) for every u ∈ D(l).
It remains to choose κ0 so that |m(u + κu0)| ≤ ‖l‖∗‖u + κu0‖ or, equivalently, |l(u) + κκ0| ≤
‖l‖∗‖u+ κu0‖ for all u ∈ D(l) and κ ∈ R.
When κ = 0 what we want takes the form |l(u)| ≤ ‖l‖∗‖u‖ and this is true independently of the
choice of κ0. For κ 6= 0 what we have to prove takes the following successive equivalent forms:

|l(u) + κκ0| ≤ ‖l‖∗‖u+ κu0‖, u ∈ D(l), κ 6= 0

|l( 1κ u) + κ0| ≤ ‖l‖∗‖ 1
κ u+ u0‖, u ∈ D(l), κ 6= 0

|l(u) + κ0| ≤ ‖l‖∗‖u+ u0‖, u ∈ D(l)

−l(u)− ‖l‖∗‖u+ u0‖ ≤ κ0 ≤ −l(u) + ‖l‖∗‖u+ u0‖, u ∈ D(l). (7.7)
Now, if we prove that

−l(u1)− ‖l‖∗‖u1 + u0‖ ≤ −l(u2) + ‖l‖∗‖u2 + u0‖, u1, u2 ∈ D(l), (7.8)

then we get sup{−l(u) − ‖l‖∗‖u + u0‖ |u ∈ D(l)} ≤ inf{−l(u) + ‖l‖∗‖u + u0‖ |u ∈ D(l)}
and then we can choose any number κ0 between the supremum and the infimum and this number
certainly satisfies (7.7). But (7.8) is equivalent to l(u2)− l(u1) ≤ ‖l‖∗(‖u2 + u0‖+ ‖u1 + u0‖).
But l(u2)− l(u1) = l(u2 − u1) ≤ ‖l‖∗‖u2 − u1‖ ≤ ‖l‖∗(‖u2 + u0‖+ ‖u1 + u0‖).

Bohnenblust­Sobczyk Theorem. Let Z be a normed space over C, Z0 be a linear subspace of Z
and l0 ∈ Z∗0 . Then there is at least one l ∈ Z∗ which is an extension of l0 so that ‖l0‖∗ = ‖l‖∗.
Proof. We know from Proposition 7.18 that m0 = Re(l0) is a real­linear functional on Z0 with
‖m0‖∗ = ‖l0‖∗. By the Hahn­Banach Theorem, there is a real­linear functionalm on Z which is
an extension of m0 with ‖m0‖∗ = ‖m‖∗. By Proposition 7.18 again, there is a linear functional
l on Z such that Re(l) = m. Then we have ‖m‖∗ = ‖l‖∗, hence ‖l0‖∗ = ‖l‖∗, and, also,
l(u) = m(u) − im(iu) = m0(u) − im0(iu) = l0(u) for all u ∈ Z0, which means that l is an
extension of l0.

Proposition 7.24. Let Z be a normed space. Then ‖u‖ = max{|l(u)| | l ∈ Z∗, ‖l‖∗ ≤ 1} for all
u ∈ Z.

Proof. First we observe that for every l ∈ Z∗ with ‖l‖∗ ≤ 1 we have |l(u)| ≤ ‖l‖∗‖u‖ ≤ ‖u‖.
Therefore, sup{|l(u)| | l ∈ Z∗, ‖l‖∗ ≤ 1} ≤ ‖u‖.
Now, we consider the linear subspace Z0 = {κu |κ ∈ F} of Z and we define l0 : Z0 → F by
l0(κu) = κ‖u‖ for all κ ∈ F .
It is clear that l0 is linear and that |l0(κu)| = |κ|‖u‖ = ‖κu‖ for all κ ∈ F . Thus, ‖l0‖∗ = 1.
Then there is an l ∈ Z∗ which is an extension of l0 with ‖l‖∗ = ‖l0‖∗ = 1. Since |l(u)| =
|l0(u)| = ‖u‖, the proof is finished.
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Definition. Let Z be a normed space and Z∗ be its dual space. The dual of Z∗ is denoted Z∗∗.

Proposition 7.25. Let Z be a normed space. For every u ∈ Z we define Lu : Z∗ → F by
Lu(l) = l(u) for all l ∈ Z∗. Then Lu ∈ Z∗∗ and ‖Lu‖∗∗ = ‖u‖.

Proof. It is clear that Lu is linear.
Also, ‖Lu‖∗∗ = sup{|Lu(l)| | l ∈ Z∗, ‖l‖∗ ≤ 1} = sup{|l(u)| | l ∈ Z∗, ‖l‖∗ ≤ 1} = ‖u‖, where
the last equality is due to Proposition 7.24.

Proposition 7.26. Let Z be a normed space. The mapping T : Z → Z∗∗ defined by T (u) = Lu is
an isometry from Z into Z∗∗.

Proof. Exercise.

Through themapping T wemay identify each u ∈ Z with the corresponding T (u) = Lu ∈ Z∗∗

and we may view every u ∈ Z as a bounded linear functional on Z∗. If we write u instead of Lu

then the relation Lu(l) = l(u) becomes u(l) = l(u) for u ∈ Z, l ∈ Z∗. This symmetric relation
says that l acts as a function on u and also that u (meaning: Lu) acts as a function on l.

Definition. If the mapping T : Z → Z∗∗ is onto we say that (Z, ‖ · ‖) is reflexive.

Proposition 7.27. Every Hilbert space is reflexive.

Proof. Let Z be a Hilbert space and take any L ∈ Z∗∗. We define l : Z → F by l(v) = L(lv) for
all v ∈ Z.
We recall that lv ∈ Z∗ is such that lv(w) = 〈w, v〉 for all w ∈ Z.
We know that lv1+v2 = lv1 + lv2 and lκv = κ lv and, hence, l is a linear functional on Z. Also
|l(v)| = |L(lv)| ≤ ‖L‖‖lv‖∗ = ‖L‖‖v‖ and, thus, l ∈ Z∗ with ‖l‖ ≤ ‖L‖.
Now, there is some u ∈ Z so that l = lu, i.e. l(v) = 〈v, u〉 for all v ∈ Z. Of course this means
that L(lv) = l(v) = 〈u, v〉 for all v ∈ Z.
On the other hand, T (u)(lv) = lv(u) = 〈u, v〉 for all v ∈ Z.
Therefore, T (u)(lv) = L(lv) for all v ∈ Z. Since every element of Z∗ is of the form lv for some
v ∈ Z, we get that T (u) = L.

WEAK ANDWEAK* CONVERGENCE.

Definition. Let Z be a normed space and Z∗ be its dual space. We say that a sequence (un) in Z
converges weakly to u ∈ Z if l(un) → l(u) for every l ∈ Z∗ and we write un

w−→ u.
Similarly, we say that a sequence (ln) in Z∗ converges weakly* to l ∈ Z∗ if ln(u) → l(u) for
every u ∈ Z and we write ln

w∗−−→ l.

Proposition 7.28. If un → u in Z, then un
w−→ u in Z. If ln → l in Z∗, then ln

w∗−−→ l in Z∗.

Proof. Exercise.

Therefore, convergence in Z is stronger than weak convergence in Z and convergence in Z∗
is stronger than weak* convergence in Z∗.

Definition. Let Z be a normed space.
F ⊆ Z is called weakly sequentially closed if (un) in F and un

w−→ u imply u ∈ F .
F ⊆ Z∗ is called weakly* sequentially closed if (ln) in F and ln

w∗−−→ l imply l ∈ F .

Proposition 7.29. Let Z be a normed space. If F ⊆ Z is weakly sequentially closed then it is
closed. If F ⊆ Z∗ is weakly* sequentially closed then it is closed.

Proof. Exercise.
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Proposition 7.30. If un
w−→ u then ‖u‖ ≤ limn→+∞ ‖un‖.

If ln
w∗−−→ l then ‖l‖ ≤ limn→+∞ ‖ln‖.

Proof. For every l ∈ Z∗ with ‖l‖∗ ≤ 1 we have |l(un)| ≤ ‖un‖ for all n and, hence, |l(u)| ≤
limn→+∞ ‖un‖. Proposition 7.24 implies ‖u‖ ≤ limn→+∞ ‖un‖.
Similarly, for every u ∈ Z with ‖u‖ ≤ 1 we have |ln(u)| ≤ ‖ln‖∗ for all n and, hence, |l(u)| ≤
limn→+∞ ‖ln‖∗. Therefore, ‖l‖∗ ≤ limn→+∞ ‖ln‖∗.

Proposition 7.31. Let Z be a normed space. Every closed ball in Z is weakly sequentially closed.
Every closed ball in Z∗ is weakly* sequentially closed.

Proof. Exercise. Use Proposition 7.30.

Uniform Boundedness Principle. Let Z be a Banach space and (ln) be a sequence in Z∗ so that
supn∈N |ln(u)| < +∞ for every u ∈ Z. Then supn∈N ‖ln‖∗ < +∞.

Proof. For each k ∈ N we consider Fk = {u ∈ Z | |ln(u)| ≤ k for all n ∈ N} ⊆ Z. Due to the
continuity of each ln it is easy to show that every Fk is closed inZ. Also, because of the hypothesis
that supn∈N |ln(u)| < +∞ for every u ∈ Z, we get Z =

⋃+∞
k=1 Fk. Now, since Z is a complete

metric space, the classical Theorem of Baire implies that at least one of the sets Fk has non­empty
interior. I.e. there is some k0 and some ball B(u0; r0) so that cl(B(u0; r0)) ⊆ Fk0 . This means
that |ln(u)| ≤ k0 for all n and all u ∈ Z with ‖u − u0‖ ≤ r0. In particular, |ln(u0)| ≤ k0 for all
n. Now, if ‖u‖ ≤ 1, we have that ‖(r0u+ u0)− u0‖ ≤ r0 and, thus,

|ln(u)| = 1
r0

|ln(r0u)| = 1
r0

|ln(r0u+ u0)− ln(u0)| ≤ 1
r0

(|ln(r0u+ u0)|+ |ln(u0)|) ≤ 2k0
r0

for all n. This implies that ‖ln‖∗ ≤ 2k0
r0

for all n.

Proposition 7.32. Let Z be a Banach space and (ln) be a sequence in Z∗.
(i) If (ln) is weakly* convergent then supn∈N ‖ln‖∗ < +∞.
(ii) If limn→+∞ ln(u) exists in F for every u ∈ Z, then (ln) is weakly* convergent.

Proof. Assume that ln
w∗−−→ l. Then ln(u) → l(u) and, hence, supn∈N |ln(u)| < +∞ for every

u ∈ Z. By the Uniform Boundedness Principle we get supn∈N ‖ln‖∗ < +∞.
If limn→+∞ ln(u) exists in F for every u ∈ Z, then again supn∈N |ln(u)| < +∞ for every u ∈ Z
and, as before, supn∈N ‖ln‖∗ < +∞. Now, we define l : Z → F by l(u) = limn→+∞ ln(u) for
all u ∈ Z and it is easy to see that the linearity of all ln implies the linearity of l. Moreover, if we
setM = supn∈N ‖ln‖∗, then we have |ln(u)| ≤ ‖ln‖∗‖u‖ ≤ M‖u‖ for all u ∈ Z and, taking the
limit, |l(u)| ≤M‖u‖. Thus, l ∈ Z∗ and ln

w∗−−→ l.

Uniform Boundedness Principle. Let Z be a normed space and (un) be a sequence in Z so that
supn∈N |l(un)| < +∞ for every l ∈ Z∗. Then supn∈N ‖un‖ < +∞.

Proof. For each k ∈ N we consider Fk = {l ∈ Z∗ | |l(un)| ≤ k for all n ∈ N} ⊆ Z∗. It is easy
to see that every Fk is closed in Z∗ and, because of the hypothesis that supn∈N |l(un)| < +∞ for
every l ∈ Z∗, we get Z∗ =

⋃+∞
k=1 Fk. Since Z∗ is a complete metric space, at least one of the sets

Fk has non­empty interior. I.e. there is some k0 and some ball B(l0; r0) so that cl(B(l0; r0)) ⊆
Fk0 . This means that |l(un)| ≤ k0 for all n and all l ∈ Z∗ with ‖l − l0‖∗ ≤ r0. In particular,
|l0(un)| ≤ k0 for all n. Now, if ‖l‖∗ ≤ 1, we get ‖(r0l + l0)− l0‖∗ ≤ r0 and, thus,

|l(un)| = 1
r0

|(r0l)(u)| = 1
r0

|(r0ln + l0)(u)− l0(u)| ≤ 1
r0

(|(r0l + l0)(u)|+ |l0(u)|) ≤ 2k0
r0

for all n. Proposition 7.24 implies that ‖un‖ ≤ 2k0
r0

for all n.
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Proposition 7.33. Let Z be a normed space and (un) be a sequence in Z.
(i) If (un) is weakly convergent then supn∈N ‖un‖ < +∞.
(ii) If limn→+∞ l(un) exists in F for every l ∈ Z∗, then there is an L ∈ Z∗∗ so that l(un) → L(l)
for every l ∈ Z∗. If, moreover, Z is reflexive, then (un) is weakly convergent.

Proof. (i) Exercise.
(ii) We consider the elements Lun ∈ Z∗∗. Then limn→+∞ Lun(l) = limn→+∞ l(un) exists in F
for every l ∈ Z∗ and Proposition 7.32 (applied to the Banach space Z∗) implies that there is some
L ∈ Z∗∗ so that Lun

w∗−−→ L as elements of the dual Z∗∗ of Z∗. This means that l(un) = Lun(l) →
L(l) for all l ∈ Z∗.
If Z is reflexive, then there is some u ∈ Z so that L = Lu and, hence, l(un) → L(l) = Lu(l) =
l(u) for all l ∈ Z∗. I.e. un

w−→ u.

Definition. Let Y be a non­empty set, (Yi, Ti)i∈I be a family of topological spaces and consider
functions fi : Y → Yi for each i ∈ I . The smallest topology Tw on Y under which all functions fi
are continuous is called the weak topology on Y induced by the family of functions (fi)i∈I .

Proposition 7.34. Let Y be a non­empty set, (Yi, Ti)i∈I be a family of topological spaces and
consider functions fi : Y → Yi for each i ∈ I and let Tw be the weak topology on Y induced by
(fi)i∈I . Let also (X, T ) be a topological space and f : X → Y . Then f is continuous if and only
if all fi ◦ f are continuous.

Proof. It is obvious that, if f is continuous, then all fi are continuous.
Conversely, assume that all fi ◦ f are continuous. We define T ′ = {U ⊆ Y | f−1(U) ∈ T }. It is
easy to see that ∅ ∈ T ′, Y ∈ T ′ and that T ′ is closed under unions and countable intersections.
Thus, T ′ is a topology on Y . Now, if Ui ∈ Ti, then, since fi ◦ f is continuous, we have that
f−1(f−1i (Ui)) ∈ T and, hence, f−1i (Ui) ∈ T ′. Therefore, fi is continuous under the topology
T ′ on Y . Since this is true for all i ∈ I , we get that Tw is smaller that T ′. This implies that
f−1(U) ∈ T for all U ∈ Tw and, hence, f is continuous.

Definition. Let (Yi, Ti)i∈I be a family of topological spaces and let Y =
∏

i∈I Yi be the product
space of all Yi. For each i ∈ I we consider the projection πi : Y → Yi defined by πi(y) = yi for
every y = (yi)i∈I . Then the weak topology on Y induced by the family of projections (πi)i∈I is
called the product topology on Y .

Definition. Let Z be a normed space.
The weak topology on Z induced by the family of functions Z∗ is called the weak topology on Z.
The weak topology on Z∗ induced by the family of functions (Lu)u∈Z is called the weak* topology
on Z∗.

Proposition 7.35. Let Z be a normed space.
The weak topology on Z is weaker that the metric space topology on Z induced by its norm.
The weak* topology on Z∗ is weaker than the metric space topology on Z∗ induced by its norm.

Proof. Exercise.

Thus, if K ⊆ Z is weakly closed, then it is closed. Similarly, if K ⊆ Z∗ is weakly* closed,
then it is closed.

WEAK ANDWEAK* COMPACTNESS.

Definition. Let Z be a normed space.
K ⊆ Z is called weakly sequentially compact if every sequence inK has a subsequence which is
weakly convergent to an element ofK.
K ⊆ Z∗ is called weakly* sequentially compact if every sequence inK has a subsequence which
is weakly* convergent to an element ofK.
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Proposition 7.36. Let Z be a normed space.
Every weakly sequentially compactK ⊆ Z is weakly sequentially closed and bounded.
Every weakly* sequentially compactK ⊆ Z∗ is weakly* sequentially closed and ­if Z is Banach­
bounded.

Proof. Exercise.

Theorem 7.5. Let Z be a separable Banach space. Then a K ⊆ Z∗ is weakly* sequentially
compact if and only if it is bounded and weakly* sequentially closed. In particular, every closed
ball in Z∗ is weakly* sequentially compact.

Proof. Assume that ‖ln‖∗ ≤M < +∞ for all n.
We consider a dense countable subset {u1, u2, . . .} of Z.
Since |ln(u1)| ≤ M‖u1‖ for all n and since {y ∈ F | |y| ≤ M‖u1‖} is compact, there is a
subsequence (l(1)n ) of (ln) such that (l

(1)
n (u1)) is a convergent sequence in F . I.e.

lim
n→+∞

l(1)n (u1) exists in F.

Since |l(1)n (u2)| ≤ M‖u2‖ for all n and since {y ∈ F | |y| ≤ M‖u2‖} is compact, there is a
subsequence (l(2)n ) of (l(1)n ) such that (l(2)n (u2)) is a convergent sequence in F . I.e.

lim
n→+∞

l(2)n (u2) exists in F.

We continue inductively and for every uj we construct a sequence (l
(j)
n ) so that

lim
n→+∞

l(j)n (uj) exists in F

and so that (l(j)n ) is a subsequence of (l(j−1)n ) for all j ≥ 2 and (l(1)n ) is a subsequence of (ln).
Now we consider the diagonal sequence

(l(n)n ).

This is a subsequence of (ln). Also for every j the sequence (l
(n)
n ) after its j­th term is a subse­

quence of (l(j)n ) and, thus,
lim

n→+∞
l(n)n (uj) exists in F.

For simplicity we write l∗n = l
(n)
n and, thus, limn→+∞ l

∗
n(uj) exists in F for every uj . We shall

prove that this is true for all u ∈ Z.
We take any u ∈ Z and any ϵ > 0. Then there is a uj so that ‖u− uj‖ < ϵ and then there is an n0
so that |l∗n(uj)− l∗m(uj)| < ϵ for allm,n ≥ n0. Hence,

|l∗n(u)− l∗m(u)| ≤ |l∗n(u)− l∗n(uj)|+ |l∗n(uj)− l∗m(uj)|+ |l∗m(uj)− l∗m(u)|
≤M‖u− uj‖+ |l∗n(uj)− l∗m(uj)|+M‖uj − u‖ < (2M + 1)ϵ.

Therefore, the sequence (l∗n(u)) is Cauchy in F and limn→+∞ l
∗
n(u) exists in F .

Now we define l : Z → F by

l(u) = lim
n→+∞

l∗n(u) ∈ F, u ∈ Z.

Since all l∗n are linear on Z, it is clear that l is a linear functional on Z. We also have that |l∗n(u)| ≤
M‖u‖ for all n and all u ∈ Z and, taking the limit,

|l(u)| ≤M‖u‖, u ∈ Z.

Therefore, l ∈ Z∗ and l∗n
w∗−−→ l.
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Lemma 7.1. If Z∗ is separable, then Z is separable.

Proof. Let Q be a countable dense subset of Z∗. Clearly, we may assume that 0 /∈ Q. For each
m ∈ Q there is some um ∈ Z so that ‖um‖ = 1 and |m(um)| > 1

2 ‖m‖∗. Then the set P =
{um |m ∈ Q} is countable.
Now we consider the closed linear subspace P̃ which is produced by P , i.e. all limits of linear
combinations of elements of P . Then P̃ is separable, since every element of P̃ is the limit of linear
combinations of elements of P with rational coefficients.
It is enough to prove that P̃ = Z.
We assume that P̃ is a proper subspace of Z and then there is some u0 ∈ Z \ P̃ with ‖u0−u‖ ≥ 1
for all u ∈ P̃ . We consider the linear subspace Z0 = {u + κu0 |u ∈ P̃ , κ ∈ F} and the linear
functional l0 : Z0 → F defined by

l0(u+ κu0) = κ, u ∈ P̃ , κ ∈ F.

We have that
|l0(u+ κu0)| = |κ| ≤ |κ|‖ 1

κ u+ u0‖ = ‖u+ κu0‖

for all u ∈ P̃ and κ ∈ F . Therefore l0 ∈ Z∗0 with ‖l0‖∗ ≤ 1.
Now there is some l ∈ Z∗ which is an extension of l0 with ‖l0‖∗ = ‖l‖∗.
Since Q is dense in Z∗, there is some m ∈ Q so that ‖m − l‖∗ ≤ 1

2 ‖m‖∗. Then um ∈ P and,
thus, l(um) = 0. This implies that

1
2 ‖m‖∗ < |m(um)| = |m(um)− l(um)| ≤ ‖m− l‖∗‖um‖ ≤ 1

2 ‖m‖∗

and we arrive at a contradiction.

Lemma 7.2. If Z is reflexive andW is a closed linear subspace of Z, thenW is also reflexive.

Proof. We define the usual isometry TW :W →W ∗∗ by

TW (u)(l) = l(u), l ∈W ∗, u ∈W

and we want to prove that it is onto W ∗∗. We know that the similar isometry TZ : Z → Z∗∗

defined by
TZ(u)(l) = l(u), l ∈ Z∗, u ∈ Z

is onto.
We take an arbitrary L̃ ∈W ∗∗ and consider any l ∈ Z∗. We then define the restriction l̃ of l onW
and we have that l̃ ∈W ∗ with ‖l̃‖∗ ≤ ‖l‖∗. And finally we define L : Z∗ → F by

L(l) = L̃(l̃), l ∈ Z∗.

It is easy to show that L is linear and, since |L(l)| = |L̃(l̃)| ≤ ‖L̃‖∗∗‖l̃‖∗ ≤ ‖L̃‖∗∗‖l‖∗, we have
that L is bounded and ‖L‖∗∗ ≤ ‖L̃‖∗∗. Thus, L ∈ Z∗∗.
Now, since TZ is onto, there is a u0 ∈ Z so that TZ(u0) = L. I.e. TZ(u0)(l) = l(u0) for all
l ∈ Z∗.
For the moment we assume that u0 /∈ W . Then there is some c > 0 so that ‖u0 − u‖ ≥ c for all
u ∈W . Now, as in the proof of Lemma 8.1, we consider the linear subspace Z0 = {u+κu0 |u ∈
W,κ ∈ F} and we define l0 : Z0 → F by

l0(u+ κu0) = κ, u ∈W,κ ∈ F.

Then l0 is linear and we have that

|l0(u+ κu0)| = |κ| ≤ |κ|
c ‖ 1

κ u+ u0‖ = 1
c‖u+ κu0‖
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for all u ∈ W and κ ∈ F . Therefore, l0 ∈ Z∗0 and we know that there is an l ∈ Z∗ which is an
extension of l0 with ‖l‖∗ = ‖l0‖∗.
Now, the restriction l̃ of l onW is the same as the restriction of l0 onW , which is 0. Hence

1 = l(u0) = TZ(u0)(l) = L(l) = L̃(l̃) = L̃(0) = 0

and we get a contradiction.
Therefore, u0 ∈W and now for every l ∈W ∗ we consider some l′ ∈ Z∗ which is an extension of
l, i.e. so that l = l̃′ and we get

TW (u0)(l) = l(u0) = l′(u0) = TZ(u0)(l
′) = L(l′) = L̃(l).

Thus, TW (u0) = L̃ and TW is onto.

Theorem 7.6. Let Z be a reflexive normed space. Then a K ⊆ Z is weakly sequentially compact
if and only if it is bounded and weakly sequentially closed. In particular, every closed ball in Z is
weakly sequentially compact.

Proof. Let (un) be a sequence inB, i.e. ‖un‖ ≤ 1 for all n. We consider the closed linear subspace
W of Z which is produced by all un, i.e. all limits of linear combinations of all the un. ThenW
is separable.
Lemma 7.2 implies that W is reflexive. Since W is separable and W ∗∗ is isometric to W , we
get that W ∗∗ is also separable. Now Lemma 7.1 implies that W ∗ is separable too and we apply
Theorem 7.5 to the spaceW ∗.
We consider the isometry T : W → W ∗∗ and the sequence (Ln) = (T (un)) in W ∗∗ which is
bounded since ‖Ln‖∗∗ = ‖un‖ ≤ 1 for all n. Then there is a subsequence (Lnk

) which converges
weakly* to some L ∈W ∗∗. I.e.

Lnk
(l) → L(l)

for all l ∈W ∗. Since T is onto, there is some u ∈W so that T (u) = L. Now we have that

l(unk
) = T (unk

)(l) = Lnk
(l) → L(l) = T (u)(l) = l(u)

for all l ∈W ∗ and hence for all l ∈ Z∗ and, thus, unk

w−→ u. Moreover, we get that

‖u‖ ≤ lim
k→+∞

‖unk
‖ ≤ 1

and, hence, u ∈ B.

Banach­Alaoglou Theorem. Let Z be a normed space and Z∗ be its dual. Then the closed unit
ball B∗ = {l ∈ Z∗ | ‖l‖∗ ≤ 1} is weak* compact.

Proof. We consider the case F = R. The case F = C is similar and we leave as an exercise.
If l ∈ B∗, then we have |l(u)| ≤ ‖u‖ or equivalently l(u) ∈ [−‖u‖, ‖u‖] for all u ∈ Z. We define
the product space

W =
∏

u∈Z [−‖u‖, ‖u‖]

with the product topology (each closed interval has the usual Euclidean topology). By the Theorem
of TychonovW is a compact topological space.
We also define the mapping T : B∗ →W by

T (l) = (l(u))u∈Z , l ∈ B∗

and it is clear that T is one­to­one.
Let X = T (B∗) ⊆ W so that T−1 : X → B∗. Then for every x ∈ X there is an l ∈ B∗ so that
x = T (l) = (l(u))u∈Z and, thus,

(Lu ◦ T−1)(x) = Lu(l) = l(u) = πu(x), u ∈ Z.
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Therefore, Lu ◦ T−1 = πu for all u ∈ Z. Now all πu are continuous on W under the product
topology and, hence, they are continuous on X ⊆ W under the product topology. Therefore, all
Lu◦T−1 are continuous onX under the product topology and Proposition 7.34 implies that T−1 is
continuous fromX under the product topology toB∗ under the weak* topology. Now it is enough
to prove thatX is compact under the product topology and, sinceW is compact under the product
topology, it is enough to prove thatX is closed under the product topology.
Let x ∈ W be a limit point of X . Take u1, u2 ∈ Z and consider an arbitrary ϵ > 0 and the open
intervals

Iu1 = (xu1 − ϵ, xu1 + ϵ), Iu2 = (xu2 − ϵ, xu2 + ϵ), Iu1+u2 = (xu1+u2 − ϵ, xu1+u2 + ϵ).

Consider also Iu = R for all u ∈ Z, u 6= u1, u2, u1 + u2 and take the open neighborhood
N =

∏
u∈Z Iu of x. Then there is an x′ ∈ X so that x′ ∈ N . I.e. there is an l ∈ B∗ so that

T (l) = (l(u))u∈Z ∈ N or equivalently l(u1) ∈ Iu1 , l(u2) ∈ Iu3 , l(u1 + u2) ∈ Iu1+u2 . This
means that

|xu1 − l(u1)| < ϵ, |xu2 − l(u2)| < ϵ, |xu1+u2 − l(u1 + u2)| < ϵ.

Since l(u1)+l(u2) = l(u1+u2), we get |xu1+xu2−xu1+u2 | < 3ϵ and, hence, xu1+xu2 = xu1+u2 .
Similarly, we can prove that κxu = xκu for all u ∈ Z, κ ∈ R.
Now, if we define l : Z → R by

l(u) = xu, u ∈ Z,

then l is a linear functional on Z. Moreover, for every u ∈ Z we have that |l(u)| = |xu| ≤ ‖u‖
and hence l is a bounded linear functional on Z with ‖l‖∗ ≤ 1. I.e. l ∈ B∗. Therefore,

x = (xu)u∈Z = (l(u))u∈Z = T (l)

with l ∈ B∗ and, hence, x ∈ X . This implies that X is closed under the product topology.

7.2 The spaces B(X), C(X), BC(X) and C0(X).

Definition. Let X be non­empty and B(X) be the space of all bounded functions f : X → F .

If there is no danger of confusion we shall use the notation B for B(X).
The sum of two bounded functions and the product of a bounded function with a number are

bounded functions. Therefore, B is a linear space over F .

Definition.We define
‖f‖u = supx∈X |f(x)|

for every f ∈ B.

It is easy to see that ‖ · ‖u is a norm on B. In fact, ‖0‖u = supx∈X 0 = 0 and, if ‖f‖u = 0,
then supx∈X |f(x)| = 0 and, hence, f(x) = 0 for all x ∈ X .
Moreover, ‖κf‖u = supx∈X |κf(x)| = |κ| supu∈X |f(x)| = |κ|‖f‖u and, finally, |f(x)+g(x)| ≤
|f(x)|+ |g(x)| ≤ ‖f‖u + ‖g‖u for all x ∈ X and, hence, ‖f + g‖u ≤ ‖f‖u + ‖g‖u.

We call ‖ · ‖u the uniform norm on B.
If F = R, then, besides the uniform norm, B is equipped with the natural order defined by:

f ≤ g if f(x) ≤ g(x) for all x ∈ X . Thus, B is a normed lattice, since it is clear that |f | ≤ |g|
implies ‖f‖u ≤ ‖g‖u for all f, g ∈ B.

Theorem 7.7. B is a Banach space. Hence, if F = R, then B is a Banach lattice.
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Proof. Let (fn) be a Cauchy sequence in B. Then for any x ∈ X we have |fn(x) − fm(x)| ≤
‖fn − fm‖u → 0 as m,n → +∞. This means that (fn(x)) is a Cauchy sequence in F and,
therefore, it converges. We denote f(x) = limn→+∞ fn(x) and in this way a function f : X → F
is defined.
For ϵ = 1 there is someN so that ‖fn−fm‖u ≤ 1 for all n,m ≥ N . In particular, ‖fn−fN‖u ≤ 1
for alln ≥ N which implies that |fn(x)−fN (x)| ≤ 1 for all x ∈ X andn ≥ N . Lettingn→ +∞,
we find |f(x)−fN (x)| ≤ 1 and, hence, |f(x)| ≤ |fN (x)|+1 ≤ ‖fN‖u+1 < +∞ for all x ∈ X .
Therefore, f ∈ B.
Now for any ϵ > 0 there is some N so that ‖fn − fm‖u ≤ ϵ for all n,m ≥ N . This implies
|fn(x)−fm(x)| ≤ ϵ for all x ∈ X and n,m ≥ N . Lettingm→ +∞, we find |fn(x)−f(x)| ≤ ϵ
for all x ∈ X and n ≥ N . Thus ‖fn − f‖u ≤ ϵ for all n ≥ N and (fn) converges to f in B.

From now on we shall assume that X is a topological space. This is natural, since our main
objects of consideration will be continuous functions and Borel measures onX .

Definition. The space C(X) consists of all continuous functions f : X → F .

We write C instead of C(X) if there is no danger of confusion.
Since the sum of two continuous functions and the product of a continuous function with a

number are continuous functions, the space C is a linear space over F .

Definition. BC(X) = B(X) ∩ C(X).

We may write BC for BC(X).
BC is also a linear space and, as a subspace of B, we may (and do) use as norm the restriction

of ‖ · ‖u on it. In other words, we write ‖f‖u = supx∈X |f(x)| for every f ∈ BC.
Exactly as in the case of B, if F = R, then BC is a normed lattice.

Theorem 7.8. BC is a Banach space. Hence, if F = R, then BC is a Banach lattice.

Proof. In view of Theorem 7.12, it is enough to prove that BC is a closed subset of B.
Let (fn) in BC converge to some f in B. Take any x ∈ X and any ϵ > 0. Then there is some
N so that ‖fn − f‖u ≤ ϵ

3 for all n ≥ N and, in particular, ‖fN − f‖u ≤ ϵ
3 . By continuity of

fN there is some open neighborhood U of x so that |fN (y) − fN (x)| ≤ ϵ
3 for all y ∈ U . Now

for all y ∈ U we have |f(y)− f(x)| ≤ |f(y)− fN (y)|+ |fN (y)− fN (x)|+ |fN (x)− f(x)| ≤
‖f − fN‖u + ϵ

3 + ‖fN − f‖u ≤ ϵ. Therefore, f is continuous at x and, since x is arbitrary, f is
continuous on X . Thus f ∈ BC.

We know that, if X is compact, then every continuous function f : X → F is also bounded
on X . Therefore, if X is compact, then C = BC.

Definition. Let f ∈ C(X). We say that f vanishes at infinity if for every ϵ > 0 there is a compact
K ⊆ X so that |f | < ϵ outsideK. We define

C0(X) = {f ∈ C(X) | f vanishes at infinity}.

Again, we may simplify to C0.
It is clear that C0 ⊆ BC and, in fact, that C0 is a linear subspace of BC. We also take the

restriction on C0 of the uniform norm on BC, that is ‖f‖u = supx∈X |f(x)| for all f ∈ C0.
As in the cases of the spaces B and BC, if F = R, then the space C0 is a normed lattice. IfX

is compact, then C0 = C = BC.

Theorem 7.9. C0 is a Banach space. Hence, if F = R, then C0 is a Banach lattice.

Proof. Exercise.

Lemma 7.3. The series 1−
∑+∞

n=1
1·3···(2n−3)

2nn! (1− t2)n converges to |t| uniformly on [−1, 1].
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Proof. Taylor’s theorem implies that
√
1− x = 1 −

∑+∞
n=1

1·3···(2n−3)
2nn! xn when 0 ≤ x < 1 and

hence we have that
∑+∞

n=1
1·3···(2n−3)

2nn! xn < 1 when 0 ≤ x < 1. Since every summand of the
series is non­negative, we may let x→ 1− and we deduce that

∑+∞
n=1

1·3···(2n−3)
2nn! ≤ 1. Therefore,

the series 1 −
∑+∞

n=1
1·3···(2n−3)

2nn! xn converges to some function uniformly on [0, 1]. The limiting
function is continuous on [0, 1] and hence

√
1− x = 1−

∑+∞
n=1

1·3···(2n−3)
2nn! xn uniformly on [0, 1].

It just remains to set x = 1− t2 with t ∈ [−1, 1].

Kakutani­Krein Theorem. LetF = R andX be compact. LetZ be a linear subspace ofC(X) =
BC(X) with the following properties:
(i) the constant function 1 belongs to Z,
(ii) f ∨ g ∈ Z for all f, g ∈ Z, i.e. Z is a sublattice of C(X),
(ii) for every a, b ∈ X with a 6= b there is f ∈ Z so that f(a) 6= f(b).
Then cl(Z) = C(X).

Proof. Take an arbitrary f ∈ C(X) and a, b ∈ X with a 6= b. Then there is h ∈ Z so that
h(a) 6= h(b). It is clear that there are κ1, κ2 ∈ R such that the function ga,b = κ1h + κ2 ∈ Z
satisfies ga,b(a) = f(a) and ga,b(b) = f(b). Then there is an open neighborhood Ub of b so that
|ga,b(x)− f(x)| ≤ |ga,b(x)− ga,b(b)|+ |f(b)− f(x)| < ϵ for all x ∈ Ub. By compactness, there
are b1, . . . , bn ∈ X so thatX = Ub1 ∪ · · · ∪Ubn . The function ga = ga,b1 ∨ · · · ∨ ga,bn belongs to
Z and ga(a) = f(a) and ga(x) > f(x)− ϵ for all x ∈ X .
Now there is an open neighborhood Va of a so that |ga(x) − f(x)| ≤ |ga(x) − ga(a)| + |f(a) −
f(x)| < ϵ for all x ∈ Va. By compactness, there are a1, . . . , am ∈ X so thatX = Va1 ∪· · ·∪Vam .
The function g = ga1 ∧ · · · ∧ gam belongs to Z and f(x)− ϵ < g(x) < f(x) + ϵ for all x ∈ X .
Thus we can approximate f uniformly by elements of Z and hence f ∈ cl(X).

Stone­Weierstrass Theorem. LetX be compact and Z be a linear subspace of C(X) = BC(X)
with the following properties:
(i) fg ∈ Z for every f, g ∈ Z,
(ii) the constant function 1 belongs to Z,
(iii) f ∈ Z for every f ∈ Z,
(iv) for every a, b ∈ X with a 6= b there is f ∈ Z so that f(a) 6= f(b).
Then cl(Z) = C(X).

Proof. Let CR(X) ⊆ C(X) be the space of all real valued functions in C(X) and ZR ⊆ Z
be the space of all real valued functions in Z. Then ZR is a linear subspace of CR(X) and has
the properties (i) and (ii). If a, b ∈ X and a 6= b, there is f ∈ Z so that f(a) 6= f(b). Then
Re(f) = 1

2 (f + f) and Im(f) = 1
2i (f − f) belong to ZR and either Re(f)(a) 6= Re(f)(b) or

Im(f)(a) 6= Im(f)(b). Hence ZR has also the property (iv). It is easy to see that the linear space
cl(ZR) also has the properties (i),(ii) and (iv).
Now take f ∈ cl(ZR) and ϵ > 0 and consider K > 0 such that −K ≤ f(x) ≤ K for all x ∈ X .
Lemma 7.3 implies that there is a real valued polynomial P (t) such that

∣∣|t| − P (t)
∣∣ ≤ ϵ

K for all
t ∈ [−1, 1]. Then

∣∣|f(x)K | − P (f(x)K )
∣∣ ≤ ϵ

K and hence
∣∣|f(x)| − KP (f(x)K )

∣∣ ≤ ϵ for all x ∈ X .
The function KP ( f

K ) is of the form κ0 + κ1f + · · · + κnf
n and hence it belongs to cl(ZR).

Therefore, |f | is approximated by elements of cl(ZR) and thus |f | ∈ cl(ZR). This implies that
f ∨ g = f+g+|f−g|

2 ∈ cl(ZR) for all f, g ∈ cl(ZR).
We see that the linear subspace cl(ZR) ofCR(X) satisfies all the hypotheses of the Kakutani­Krein
Theorem and we conclude that cl(ZR) = CR(X).
Now if f ∈ C(X), then Re(f), Im(f) ∈ CR(X), hence Re(f), Im(f) ∈ cl(ZR) and we finally
get that f ∈ cl(Z).

The next two results are well­known implications of the Stone­Weierstrass Theorem.
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Weierstrass Theorem. If X ⊆ Rn is compact, then for every continuous f : X → F and every
ϵ > 0 there is a polynomial P (x1, . . . , xn) with coefficients from F such that |f(x) − P (x)| ≤ ϵ
for all x ∈ X .

Proof. Let Z ⊆ C(X) be the linear space of all polynomials P with coefficients from F . Then Z
satisfies all hypotheses of the Stone­Weierstrass Theorem.

Definition. Functions which are finite linear combinations with coefficients from F of functions
of the form ei2πk·x = ei2π(k1x1+···+knxn), where k = (k1, . . . , kn) ∈ Zn, are called exponential
polynomials on Rn.

Theorem 7.10. For every continuous f : Rn → F which is 1­periodic with respect to every
coordinate of x = (x1, . . . , xn) and for every ϵ > 0 there is an exponential polynomial P such
that |f(x)− P (x)| ≤ ϵ for all x ∈ Rn.

Proof. Let T be the unit circle centered at 0 in R2 and consider the compact Tn ⊆ R2n.
Every continuous f : Rn → F which is 1­periodic with respect to every coordinate defines
f̃ : Tn → F through f̃(y1, . . . , yn) = f(x1, . . . , xn), where yk = ei2πxk for 1 ≤ k ≤ n.
Due to the 1­periodicity of f , the function f̃ is well defined. It is easy to show that f̃ is also
continuous on Tn. Indeed, if (y1, . . . , yn), (y′1, . . . , y′n) are close to each other, then the corre­
sponding (x1, . . . , xn), (x

′
1, . . . , x

′
n) can be chosen so that they are also close to each other and

hence f(x1, . . . , xn), f(x′1, . . . , x′n) are close to each other.
Conversely, every continuous f̃ : Tn → F defines f : Rn → F through f(x1, . . . , xn) =
f̃(ei2πx1 , . . . , ei2πxn). This f is 1­periodic in every coordinate and continuous on Rn.
Now take any continuous f : Rn → F which is 1­periodic with respect to every coordinate and
consider the corresponding f̃ : Tn → F which is continuous on the compact Tn ⊆ R2n. The
Weierstrass Theorem implies that there is a polynomial P̃ such that |f̃(y) − P̃ (y)| ≤ ϵ for all
y ∈ Tn. Then the P : Rn → F which corresponds to P̃ is an exponential polynomial such that
|f(x)− P (x)| ≤ ϵ for all x ∈ Rn.

7.3 The spaces Lp(X,S, µ) and their duals.

In this section (X,S, µ) will be a fixed measure space.

Definition. If 0 < p < +∞, we define the space Lp(X,S, µ) to be the set of all measurable
functions f : X → F , F = R or F = C, with∫

X |f |p dµ < +∞.

Thus, L1(X,S, µ) is the set of all functions which are integrable overX with respect to µ.
Whenever any ofX , S, µ is uniquely determined by the context of discussion, we may omit it

from the symbol of the space. Therefore, we may simply write Lp or Lp(X) or Lp(µ) etc.

Proposition 7.37. Lp is a linear space over F .

Proof. We shall use the trivial inequality (a + b)p ≤ 2p(ap + bp) for all a, b ≥ 0. This can be
proved by (a+ b)p ≤ (2max{a, b})p = 2pmax{ap, bp} ≤ 2p(ap + bp).
Now, if f1, f2 ∈ Lp, then

∫
X |f1 + f2|p dµ ≤ 2p

∫
X |f1|p dµ+ 2p

∫
X |f2|p dµ < +∞ and, hence,

f1 + f2 ∈ Lp.
Also, if f ∈ Lp and κ ∈ F , then

∫
X |κf |p dµ = |κ|p

∫
X |f |p dµ < +∞ and, hence, κf ∈ Lp.

Definition. Let f : X → F be measurable. We say that f is essentially bounded on X (with
respect to µ) if there isM < +∞ so that |f | ≤M a.e. on X .
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Proposition 7.38. Let f : X → F be measurable. If f is essentially bounded on X , then there is
a smallestM with the property: |f | ≤M a.e. on X . This smallestM0 is characterized by:
(i) |f | ≤M0 a.e. on X ,
(ii) µ({x ∈ X | |f(x)| > M}) > 0 for everyM < M0.

Proof. We consider the set A = {M | |f | ≤M a.e. on X} andM0 = infA.
The set A is non­empty and is included in [0,+∞) and, hence,M0 exists. We take any sequence
(Mn) in A such that Mn → M0. From Mn ∈ A we find µ({x ∈ X | |f(x)| > Mn}) = 0
for every n and, since {x ∈ X | |f(x)| > M0} =

⋃+∞
n=1{x ∈ X | |f(x)| > Mn}, we have that

µ({x ∈ X | |f(x)| > M0}) = 0. Therefore, |f | ≤M0 a.e. on X .
On the other hand, ifM < M0, thenM /∈ A and, hence, µ({x ∈ X | |f(x)| > M}) > 0.

Definition. Let f : X → F be measurable. If f is essentially bounded, then the smallestM with
the property that |f | ≤ M a.e. on X is called the essential supremum of f over X (with respect
to µ) and it is denoted by ess­supX,µ(f).

Again, we may simply write ess­sup(f) or ess­supX(f) instead of ess­supX,µ(f).

Definition.We define L∞(X,S, µ) to be the set of all measurable functions f : X → F which
are essentially bounded on X .

Proposition 7.39. L∞ is a linear space over F .

Proof. If f1, f2 ∈ L∞, then there are sets A1, A2 ∈ S so that µ(Ac
1) = µ(Ac

2) = 0 and |f1| ≤
ess­sup(f1) onA1 and |f2| ≤ ess­sup(f2) onA2. If we setA = A1∩A2, then we have µ(Ac) = 0
and |f1+f2| ≤ |f1|+ |f2| ≤ ess­sup(f1)+ess­sup(f2) onA. Hence f1+f2 is essentially bounded
on X and ess­sup(f1 + f2) ≤ ess­sup(f1) + ess­sup(f2).
If f ∈ L∞ and κ ∈ F , then there is A ∈ S with µ(Ac) = 0 so that |f | ≤ ess­sup(f) on A. We
now have |κf | ≤ |κ| ess­sup(f) on A. Hence κf is essentially bounded onX and ess­sup(κf) ≤
|κ| ess­sup(f). If κ = 0, this inequality obviously becomes equality. If κ 6= 0, we apply the
same inequality to 1

κ and κf and get ess­sup(f) = ess­sup( 1κ(κf)) ≤
1
|κ| ess­sup(κf). Therefore,

ess­sup(κf) = |κ| ess­sup(f).

Definition. Let 1 ≤ p ≤ +∞. We define p′ = p
p−1 , if 1 < p < +∞, p′ = +∞, if p = 1, and

p′ = 1, if p = +∞. We say that p′ is the conjugate of p or the dual of p.

The definition in the cases p = 1 and p = +∞ is justified by limp→1+
p

p−1 = +∞ and by
limp→+∞

p
p−1 = 1.

It is easy to see that, if p′ is the conjugate of p, then 1 ≤ p′ ≤ +∞ and p is the conjugate of p′.
Moreover, p, p′ are related by the symmetric equality

1
p + 1

p′ = 1.

Lemma 7.4. Let 0 < t < 1 and a, b ≥ 0. Then atb1−t ≤ ta+ (1− t)b.

Proof. A simple Calculus exercise.

Hölder’s Inequalities. Let 1 ≤ p, p′ ≤ +∞ and p, p′ be conjugate to each other. If f ∈ Lp and
g ∈ Lp′ , then fg ∈ L1 and

∫
X |fg| dµ ≤


(
∫
X |f |p dµ)1/p(

∫
X |g|p′ dµ)1/p′ , if 1 < p, p′ < +∞∫

X |f | dµ ess­sup(g), if p = 1, p′ = +∞
ess­sup(f)

∫
X |g| dµ, if p = +∞, p′ = 1

213



Proof. We start with the case 1 < p, p′ < +∞.
If
∫
X |f |p dµ = 0 or if

∫
X |g|p′ dµ = 0, then either f = 0 a.e. on X or g = 0 a.e. on X and the

inequality is trivially true in the form of equality: 0 = 0.
So we assume that A =

∫
X |f |p dµ > 0 and B =

∫
X |g|p′ dµ > 0. Applying Lemma 7.3 with

t = 1
p , 1 − t = 1 − 1

p = 1
p′ and a = |f(x)|p

A , b = |g(x)|p′

B , we get |fg|
A1/pB1/p′ ≤ 1

p
|f |p
A + 1

p′
|g|p′

B a.e.
on X . Integrating, we find 1

A1/pB1/p′
∫
X |fg| dµ ≤ 1

p + 1
p′ = 1 and this implies the inequality we

wanted to prove.
Now let p = 1, p′ = +∞. Since |g| ≤ ess­sup(g) a.e. on X , we have that |fg| ≤ |f | ess­sup(g)
a.e. on X . Integrating, we find the inequality we want to prove.
The proof in the case p = +∞, p′ = 1 is the same as in (b).

Minkowski’s inequalities. Let 1 ≤ p ≤ +∞. If f1, f2 ∈ Lp, then

(
∫
X |f1 + f2|p dµ)1/p ≤ (

∫
X |f1|p dµ)1/p + (

∫
X |f2|p dµ)1/p, if 1 ≤ p < +∞

ess­sup(f1 + f2) ≤ ess­sup(f1) + ess­sup(f2), if p = +∞

Proof. The case p = +∞ is included in the proof of Proposition 7.39. Also the case p = 1 is
trivial and the result is already known. Hence, we assume 1 < p < +∞.
We write |f1 + f2|p ≤ (|f1|+ |f2|)|f1 + f2|p−1 = |f1||f1 + f2|p−1 + |f2||f1 + f2|p−1 a.e. on X
and, applying Hölder’s inequality, we find∫

X |f1 + f2|p dµ ≤
( ∫

X |f1|p dµ
)1/p( ∫

X |f1 + f2|(p−1)p
′
dµ

)1/p′
+
( ∫

X |f2|p dµ
)1/p( ∫

X |f1 + f2|(p−1)p
′
dµ

)1/p′
=

( ∫
X |f1|p dµ

)1/p( ∫
X |f1 + f2|p dµ

)1/p′
+
( ∫

X |f2|p dµ
)1/p( ∫

X |f1 + f2|p dµ
)1/p′

.

Simplifying, we get the inequality we want to prove.

Definition. Let 1 ≤ p ≤ +∞ and (fn) be a sequence in Lp and f ∈ Lp. We say that fn → f in
the p­mean if as n→ +∞ ∫

X |fn − f |p dµ→ 0, if 1 ≤ p < +∞
ess­sup(fn − f) → 0, if p = +∞

We say that (fn) is Cauchy in the p­mean if as n,m→ +∞∫
X |fn − fm|p dµ→ 0, if 1 ≤ p < +∞
ess­sup(fn − fm) → 0, if p = +∞

It is easy to see that, if (fn) converges to f in the p­mean, then (fn) is Cauchy in the p­mean.
Indeed, if 1 ≤ p < +∞, then, by Minkowski’s inequalities,( ∫

X |fn − fm|p dµ
)1/p ≤ ( ∫

X |fn − f |p dµ
)1/p

+
( ∫

X |fm − f |p dµ
)1/p → 0

asm,n→ +∞. The proof is identical if p = +∞.
The notion of convergence in the 1­mean coincides with the notion of convergence in the mean

on X . Theorem 7.7 is an extension of Theorem 5.1.

Theorem 7.11. If (fn) is Cauchy in the p­mean, then there is f ∈ Lp so that fn → f in the p­mean.
Moreover, there is a subsequence (fnk

) so that fnk
→ f a.e. on X .

As a corollary: if fn → f in the p­mean, there is a subsequence (fnk
) so that fnk

→ f a.e. onX .
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Proof. We consider first the case 1 ≤ p < +∞.
First proof. We have that for every k there is nk so that

∫
X |fn − fm|p dµ < 1

2kp
for every

n,m ≥ nk. Since we may assume that each nk is as large as we like, we inductively take (nk) so
that nk < nk+1 for every k. Therefore, (fnk

) is a subsequence of (fn).
From the construction of nk and from nk < nk+1, we get that

∫
X |fnk+1

− fnk
|p dµ < 1

2kp
for

every k. We define the measurable function G : X → [0,+∞] by G =
∑+∞

k=1 |fnk+1
− fnk

|. If
GK =

∑K−1
k=1 |fnk+1

− fnk
| then

(
∫
X Gp

K dµ)1/p ≤
∑K−1

k=1 (
∫
X |fnk+1

− fnk
|p dµ)1/p < 1,

by Minkowski’s inequality. Since GK ↑ G on X , we find
∫
X Gp dµ ≤ 1 and, thus, G < +∞ a.e.

onX . This implies that the series
∑+∞

k=1(fnk+1
(x)−fnk

(x)) converges for a.e. x ∈ X . Therefore,
there is a B ∈ S so that µ(Bc) = 0 and

∑+∞
k=1(fnk+1

(x) − fnk
(x)) converges for every x ∈ B.

We define the measurable f : X → F by

f =

{
fn1 +

∑+∞
k=1(fnk+1

− fnk
), on B

0, on Bc

On B we have that f = fn1 + limK→+∞
∑K−1

k=1 (fnk+1
− fnk

) = limK→+∞ fnK and, hence,
fnk

→ f a.e. on X . We also have on B that

|fnK − f | = |fnK − fn1 −
∑+∞

k=1(fnk+1
− fnk

)|
= |

∑K−1
k=1 (fnk+1

− fnk
)−

∑+∞
k=1(fnk+1

− fnk
)| ≤

∑+∞
k=K |fnk+1

− fnk
| ≤ G

for everyK and, hence, |fnK −f |p ≤ Gp a.e. onX for everyK. Since we have
∫
X Gp dµ < +∞

and that |fnK − f | → 0 a.e. on X , we apply the Dominated Convergence Theorem and we find
that

∫
X |fnK − f |p dµ→ 0 asK → +∞.

From nk → +∞ as k → +∞ and from Minkowski’s inequality, we get (
∫
X |fk − f |p dµ)1/p ≤

(
∫
X |fk − fnk

|p dµ)1/p + (
∫
X |fnk

− f |p dµ)1/p → 0 as k → +∞ and we conclude that fn → f
in the p­mean.
Second proof. For every ϵ > 0 we have that

µ({x ∈ X | |fn(x)− fm(x)| ≥ ϵ}) ≤ 1
ϵ

( ∫
X |fn − fm|p dµ

)1/p
and, hence, (fn) is Cauchy in measure on X . Theorem 5.2 implies that there is a subsequence
(fnk

) so that fnk
→ f a.e. on X .

Now, for every ϵ > 0 there is an N so that
∫
X |fn − fm|p dµ ≤ ϵ for all n,m ≥ N . Since

nk → +∞ as k → +∞, we usem = nk for large k and apply the Lemma of Fatou to get∫
X |fn − f |p dµ ≤ limk→+∞

∫
X |fn − fnk

|p dµ ≤ ϵ

for all n ≥ N . Of course this says that fn → f in the p­mean.
Now let p = +∞.
For each n,m we have a set An,m ∈ S with µ(Ac

n,m) = 0 and |fn − fm| ≤ ess­sup(fn − fm) on
An,m. We define A =

⋂
1≤n,mAn,m and get that µ(Ac) = 0 and |fn − fm| ≤ ess­sup(fn − fm)

onA for every n,m. This says that (fn) is Cauchy uniformly onA and, hence, there is an f so that
fn → f uniformly on A. Now, ess­sup(fn − f) ≤ supx∈A |fn(x)− f(x)| → 0 as n→ +∞.

If for every f ∈ Lp we set

Np(f) =

{( ∫
X |f |p dµ

)1/p
, if 1 ≤ p < +∞

ess­sup(f), if p = +∞
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then (the proofs of) Propositions 7.37 and 7.39 and Minkowski’s Inequalities imply that the func­
tion Np : Lp → R satisfies

Np(f1 + f2) ≤ Np(f1) +Np(f2), Np(κf) = |κ|Np(f)

for every f, f1, f2 ∈ Lp and κ ∈ F .
The function Np has the two properties of a norm but not the third. Indeed, Np(f) = 0 if and

only if f = 0 a.e. onX . The usual practice is to identify every two functions which are equal a.e.
on X so that Np becomes, informally, a norm. The precise way to do this is the following.

Definition.We define the relation ∼ on Lp as follows: we write f1 ∼ f2 if f1 = f2 a.e. on X .

Proposition 7.40. The relation ∼ on Lp is an equivalence relation.

Proof. Exercise.

Like any equivalence relation, the relation ∼ defines equivalence classes. The equivalence
class [f ] of any f ∈ Lp is the set of all g ∈ Lp which are equivalent to f :

[f ] = {g ∈ Lp | g ∼ f} = {g ∈ Lp | g = f a.e. on X}.

Proposition 7.41. Let f1, f2 ∈ Lp. Then
(i) [f1] = [f2] if and only if f1 ∼ f2 if and only if f1 = f2 a.e. on X .
(ii) If [f1] ∩ [f2] 6= ∅, then [f1] = [f2].
Moreover, Lp =

⋃
f∈Lp [f ].

Proof. Exercise.

Proposition 7.41 says that any two different equivalence classes have empty intersection and
that Lp is the union of all equivalence classes. In other words, the collection of all equivalence
classes is a partition of Lp.

Definition.We define

Lp(X,S, µ) = Lp(X,S, µ)/∼ = {[f ] | f ∈ Lp(X,S, µ)}.

Again, we may write Lp or Lp(X) or Lp(µ) etc.
The first task is to carry addition and multiplication from Lp over to Lp.

Proposition 7.42. Let f, f1, f2, g, g1, g2 ∈ Lp and κ ∈ F .
(i) If f1 ∼ g1 and f2 ∼ g2, then f1 + f2 ∼ g1 + g2.
(ii) If f ∼ g, then κf ∼ κg.

Proof. Exercise.

Because of Proposition 7.41, another way to state the results of Proposition 7.42 is: (i) [f1] =
[g1] and [f2] = [g2] imply [f1+g1] = [f2+g2] and (ii) [f ] = [g] implies [κf ] = [κg]. These allow
the following definition.

Definition.We define addition and multiplication in Lp as follows:

[f1] + [f2] = [f1 + f2], κ[f ] = [κf ].

Now it is a matter of routine to prove that the set Lp becomes a linear space under this addition
and multiplication. The zero element of Lp is the equivalence class [0] of the function 0 which is
identically 0 on X . The opposite of [f ] is the equivalence class [−f ].

The next task is to define a norm on Lp.
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Proposition 7.43. Let f1, f2 ∈ Lp. If f1 ∼ f2, then Np(f1) = Np(f2) or, equivalently,∫
X |f1|p dµ =

∫
X |f2|p dµ, if 1 ≤ p < +∞

ess­sup(f1) = ess­sup(f2), if p = +∞

Proof. Exercise.

An equivalent way to state the result of Proposition 7.43: (i) [f1] = [f2] implies
∫
X |f1|p dµ =∫

X |f2|p dµ, if 1 ≤ p < +∞, and (ii) [f1] = [f2] implies ess­sup(f1) = ess­sup(f2), if p = +∞.
These allow the:

Definition.We define for every [f ] ∈ Lp

‖[f ]‖p = Np(f) =

{( ∫
X |f |p dµ

)1/p
, if 1 ≤ p < +∞

ess­sup(f), if p = +∞

Proposition 7.44. The function ‖ · ‖p is a norm on Lp.

Proof. ‖[f1] + [f2]‖p = ‖[f1 + f2]‖p = Np(f1 + f2) ≤ Np(f1) +Np(f2) = ‖[f1]‖p + ‖[f2]‖p.
Also, ‖κ[f ]‖p = ‖[κf ]‖p = Np(κf) = |κ|Np(f) = |κ|‖[f ]‖p.
If ‖[f ]‖p = 0, then Np(f) = 0. This implies f = 0 a.e. on X and, hence, f ∼ 0 or, equivalently,
[f ] is the zero element of Lp.

In order to simplify things and not have to use the bracket­notation [f ] for the elements of Lp,
we shall follow the traditional practice and write f instead of [f ]. When we do this we must have
in mind that the element f of Lp (and not the element f of Lp) is not the single function f , but the
whole collection of functions each of which is equal to f a.e. on X .

For example:
1. When we write f1 = f2 for the elements f1, f2 of Lp, we mean the more correct [f1] = [f2] or,
equivalently, that f1 = f2 a.e. on X .
2. When we write

∫
X fh dµ for the element f ∈ Lp, we mean the integral

∫
X fh dµ for the

element­function f ∈ Lp and, at the same time, all integrals
∫
X gh dµ (equal to each other) for all

functions g ∈ Lp such that g = f a.e. on X .
3. When we write ‖f‖p for the element f ∈ Lp we mean the more correct ‖[f ]‖p or, equivalently,
the expression

( ∫
X |f |p dµ

)1/p, when 1 ≤ p < +∞, and ess­sup(f), when p = +∞, for the
element­function f ∈ Lp and at the same time all similar expressions (equal to each other) for all
functions g ∈ Lp such that g = f a.e. on X .

The inequality of Minkowski takes the form

‖f1 + f2‖p ≤ ‖f1‖p + ‖f2‖p

for every f1, f2 ∈ Lp.
Hölder’s inequality takes the form

‖fg‖1 ≤ ‖f‖p‖g‖p′

for every f ∈ Lp and g ∈ Lp′ .

Definition.We define 〈·, ·〉 : L2 × L2 → F by

〈f, g〉 =
∫
X fg dµ, f, g ∈ L2.

Proposition 7.45. The function 〈·, ·〉 is well­defined and it is an inner product on L2.

Proof. If f1, f2, g1, g2 ∈ L2 so that f1 ∼ f2 and g1 ∼ g2, then f1g1 ∼ f2g2 and thus
∫
X f1g1 dµ =∫

X f2g2 dµ. Therefore, 〈f, g〉 is well defined for any f, g ∈ L2.
All properties of an inner product are very easy to verify.
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Obviously
〈f, f〉 =

∫
X |f |2 dµ = ‖f‖22.

This means that the norm induced by the inner product on L2 is the same as the already defined
norm on L2.

Theorem 7.12. All Lp are Banach spaces. In particular, L2 is a Hilbert space.

Proof. Let (fn) be a Cauchy sequence in Lp. This means ‖fn − fm‖p → 0, which says that∫
X |fn − fm|p dµ→ 0, if 1 ≤ p < +∞, and ess­sup(fn − fm) → 0, if p = +∞. Now, Theorem
7.7 implies that the sequence (fn) in Lp converges to some f ∈ Lp in the p­mean. Therefore,∫
X |fn − f |p dµ → 0, if 1 ≤ p < +∞, and ess­sup(fn − f) → 0, if p = +∞. This means that
‖fn − f‖p → 0 and (fn) converges to the element f of Lp.

Definition. Let I be an index set and ♯ be the counting measure on (I,P(I)). We denote

lp(I) = Lp(I,P(I), ♯).

In particular, if I = N, we denote lp = lp(N).

If 1 ≤ p < +∞, then the function b = (bi)i∈I : I → F belongs to lp(I) if, by definition,∫
I |b|

p d♯ < +∞ or, equivalently, ∑
i∈I |bi|p < +∞.

If |bi| = +∞ for at least one i ∈ I , then
∑

i∈I |bi|p = +∞.

Definition. If 1 ≤ p < +∞, we say that b = (bi)i∈I is p­summable when
∑

i∈I |bi|p < +∞.

Hence, b = (bi)i∈I is p­summable if and only if it belongs to lp(I). We also have

‖b‖p =
(∑

i∈I |bi|p
)1/p

.

When 1 ≤ p < +∞, Minkowski’s inequality becomes(∑
i∈I |b

(1)
i + b

(2)
i |p

)1/p ≤ (∑
i∈I |b

(1)
i |p

)1/p
+
(∑

i∈I |b
(2)
i |p

)1/p
for all b1 = (b

(1)
i )i∈I and b2 = (b

(2)
i )i∈I which are p­summable. Similarly, when 1 < p, p′ < +∞

and p, p′ are conjugate, Hölder’s inequality becomes∑
i∈I |bici| ≤

(∑
i∈I |bi|p

)1/p(∑
i∈I |ci|p

′)1/p′
for all p­summable b = (bi)i∈I and all p′­summable c = (ci)i∈I .

Since the only subset of I with zero ♯­measure is the ∅, we easily see that b = (bi)i∈I is
essentially bounded on I with respect to ♯ if and only if there is an M < +∞ so that |bi| ≤ M
for all i ∈ I . It is obvious that the smallestM with the property that |bi| ≤ M for all i ∈ I is the
M0 = supi∈I |bi|.

Definition.We say that b = (bi)i∈I is bounded if supi∈I |bi| < +∞.

Therefore, b is essentially bounded on I with respect to ♯ or, equivalently, b ∈ l∞(I) if and
only if b is bounded. Also,

‖b‖∞ = ess­sup(b) = supi∈I |bi|.

The inequality of Minkowski takes the form

supi∈I |b
(1)
i + b

(2)
i | ≤ supi∈I |b

(1)
i |+ supi∈I |b

(2)
i |
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for all b1 = (b
(1)
i )i∈I and b2 = (b

(2)
i )i∈I which are bounded. When p = 1 and p′ = +∞, Hölder’s

inequality takes the form ∑
i∈I |bici| ≤

∑
i∈I |bi| · supi∈I |ci|

for all summable b = (bi)i∈I and all bounded c = (ci)i∈I .
The spaces lp(I) are Banach spaces. In particular, the space l2(I) is a Hilbert space. The inner

product on l2(I) is given by
〈b, c〉 =

∑
i∈I bi ci

for all b = (bi)i∈I ∈ l2(I), c = (ci)i∈I ∈ l2(I).
As we have already mentioned, a particular case is when I = N. Then

lp =
{
x = (x1, x2, . . .)

∣∣ ∑+∞
k=1 |xk|p < +∞

}
, if 1 ≤ p < +∞

l∞ =
{
x = (x1, x2, . . .)

∣∣ supk≥1 |xk| < +∞
}

The corresponding norms are

‖x‖p =
(∑+∞

k=1 |xk|p
)1/p

, if 1 ≤ p < +∞
‖x‖∞ = supk≥1 |xk|

For l2 the inner product is
〈x, y〉 =

∑+∞
k=1 xk yk

for every x = (x1, x2, . . .) ∈ l2, y = (y1, y2, . . .) ∈ l2.

Theorem 7.13. The set of all functions of the form ei2πk·x = ei2π(k1x1+···+knxn), where k =
(k1, . . . , kn) ∈ Zn, is an orthonormal basis of L2([0, 1]n,mn).

Proof. It is easy to see that the functions ei2πk·x, where k ∈ Zn, form an orthonormal set in
L2([0, 1]n,mn).
Now take an arbitrary f ∈ L2([0, 1]n,mn) and any ϵ > 0. There is a continuous g : [0, 1]n → F
whose support is contained in the open cube (0, 1)n so that ‖f − g‖22 =

∫
[0,1]n |f − g|2 dmn ≤ ϵ2.

We extend g to a function g : Rn → F which is 1­periodic in each coordinate. The extended g is
also continuous on Rn.
Theorem 7.10 implies that there is an exponential polynomial P such that |g(x) − P (x)| ≤ ϵ for
all x ∈ Rn. Thus ‖g−P‖22 =

∫
[0,1]n |g−P |

2 dmn ≤ ϵ2 and by the triangle inequality of the norm
we get ‖f − P‖2 ≤ 2ϵ. Therefore, every f ∈ L2([0, 1]n,mn) is in the closed linear span of the
functions ei2πk·x, where k ∈ Zn, and we conclude that these functions constitute an orthonormal
basis of L2([0, 1]n,mn).

Thus, the Fourier series of any f ∈ L2([0, 1]n,mn) with respect to the so­called exponential
orthonormal basis of all functions ek(x) = ei2πk·x (k ∈ Zn) is the series

∑
k∈Zn〈f, ek〉 ek, i.e.∑

k∈Zn

∫
[0,1]n f(y)e

−i2πk·y dmn(y) e
i2πk·x.

From now on p, p′ ∈ [1,+∞] are meant to be conjugate.

Theorem 7.14. Let g ∈ Lp′ . If 1 < p ≤ +∞, then

‖g‖p′ = max
{∣∣ ∫

X fg dµ
∣∣ ∣∣ f ∈ Lp, ‖f‖p ≤ 1

}
.

If µ is semifinite, the same is true when p = 1 but with max replaced by sup.
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Proof. (a) Let 1 < p ≤ +∞ and, hence, 1 ≤ p′ < +∞.
For any f ∈ Lp with ‖f‖p ≤ 1 we get by Hölder’s inequality |

∫
X fg dµ| ≤ ‖f‖p‖g‖p′ ≤ ‖g‖p′ .

Therefore, sup
{∣∣ ∫

X fg dµ
∣∣ ∣∣ f ∈ Lp, ‖f‖p ≤ 1

}
≤ ‖g‖p′ .

If ‖g‖p′ = 0, then the inequality between the sup and the ‖g‖p′ obviously becomes equality. In­
deed, we have g = 0 a.e. on X and this implies

∫
X fg dµ = 0 for every f ∈ Lp.

Now let ‖g‖p′ > 0. We consider f0 defined by f0(x) = |g(x)|p′−1 sign(g(x))/‖g‖p
′−1

p′ . Then
f0(x)g(x) = |g(x)|p′/‖g‖p

′−1
p′ and, hence,

∫
X f0g dµ =

∫
X |g|p′ dµ/‖g‖p

′−1
p′ = ‖g‖p′ .

If 1 < p, p′ < +∞, then, since p(p′ − 1) = p′, we have |f0(x)|p = |g(x)|p′/‖g‖p
′

p′ and, hence,

‖f0‖p =
( ∫

X |f0|p dµ
)1/p

= 1.
If p = +∞, p′ = 1, then |f0(x)| = 1 and, thus, ‖f0‖∞ = ess­sup(f0) = 1.
We conclude that ‖g‖p′ = max

{∣∣ ∫
X fg dµ

∣∣ ∣∣ f ∈ Lp, ‖f‖p ≤ 1
}
.

(b) Let p = 1, p′ = +∞.
For any f ∈ L1 with ‖f‖1 ≤ 1 we have |

∫
X fg dµ| ≤ ‖f‖1‖g‖∞ ≤ ‖g‖∞. Therefore,

sup
{∣∣ ∫

X fg dµ
∣∣ ∣∣ f ∈ L1, ‖f‖1 ≤ 1

}
≤ ‖g‖∞.

If ‖g‖∞ = 0, then g = 0 a.e. on X . This implies that
∫
X fg dµ = 0 for every f ∈ Lp and the

inequality between the sup and the ‖g‖∞ becomes equality.
Let ‖g‖∞ > 0. For all ϵwith 0 < ϵ < ‖g‖∞we getµ({x ∈ X | ‖g‖∞−ϵ < |g(x)| ≤ ‖g‖∞}) > 0.
If µ is semifinite, there exists a B ∈ S so that B ⊆ {x ∈ X | ‖g‖∞ − ϵ < |g(x)| ≤ ‖g‖∞}
and 0 < µ(B) < +∞. We define the function f0 by f0(x) = sign(g(x))χB(x)/µ(B). Then
f0(x)g(x) = |g(x)|χB(x)/µ(B) and, hence,

∫
X f0g dµ =

∫
B |g| dµ/µ(B) ≥ ‖g‖∞ − ϵ. Also,

|f0(x)| = χB(x)/µ(B) and, hence, ‖f0‖1 =
∫
X |f0| dµ =

∫
B dµ/µ(B) = 1.

These imply sup
{∣∣ ∫

X fg dµ
∣∣ ∣∣ f ∈ L1, ‖f‖1 ≤ 1

}
≥ ‖g‖∞ − ϵ for every ϵ with 0 < ϵ < ‖g‖∞

and we conclude that ‖g‖∞ = sup
{∣∣ ∫

X fg dµ
∣∣ ∣∣ f ∈ L1, ‖f‖1 ≤ 1

}
.

Definition. Let 1 ≤ p ≤ +∞. For every g ∈ Lp′ we define lg : Lp → F by

lg(f) =
∫
X fg dµ, f ∈ Lp.

Proposition 7.46. Let 1 ≤ p ≤ +∞. For every g ∈ Lp′ the function lg belongs to (Lp)∗.
Moreover, if 1 < p ≤ +∞, then ‖lg‖∗ = ‖g‖p′ and, if p = 1, then ‖lg‖∗ ≤ ‖g‖∞. If p = 1 and µ
is semifinite, then ‖lg‖∗ = ‖g‖∞.

Proof. We have lg(f1 + f2) =
∫
X(f1 + f2)g dµ =

∫
X f1g dµ +

∫
X f2g dµ = lg(f1) + lg(f2).

Also, lg(κf) =
∫
X(κf)g dµ = κ

∫
X fg dµ = κlg(f). These imply that lg is a linear functional.

Theorem 7.9 together with Proposition 7.16 imply that, if 1 < p ≤ +∞, then ‖lg‖∗ = ‖g‖p′ . If µ
is semifinite, the same is true for p = 1.
If p = 1, for all f ∈ L1 we have |lg(f)| = |

∫
X fg dµ ≤ ‖g‖∞‖f‖1. Hence, ‖lg‖∗ ≤ ‖g‖∞.

Definition. Let 1 ≤ p ≤ +∞. We define the mapping J : Lp′ → (Lp)∗ by J(g) = lg for all
g ∈ Lp′ .

Proposition 7.47. The function J is a bounded linear operator. If 1 < p ≤ +∞, then J is an
isometry from Lp′ into (Lp)∗. This is true when p = 1, if µ is semifinite.

Proof. Exercise.

Lemma 7.5. Let l ∈ (Lp(X,S, µ))∗. If E ∈ S , SeE = {A ∈ S |A ⊆ E} is the restriction of S
on E and µeE is the restricted measure on (E,SeE), we define leE by

(leE)(h) = l(h̃), h ∈ Lp(E,SeE, µeE),

where h̃ is the extension of h as 0 on X \ E.
Then, leE ∈ (Lp(E,SeE, µeE))∗ and ‖leE‖∗ ≤ ‖l‖∗. Moreover,

l(fχE) = (leE)(feE), f ∈ Lp(X,S, µ),
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where feE is the restriction of f on E.

Proof. For all h, h1, h2 ∈ Lp(E,SeE, µeE)we consider the corresponding extensions h̃, h̃1, h̃2 ∈
Lp(X,S, µ). Since h̃1 + h̃2 and κh̃ are the extensions of h1 + h2 and κh, respectively, we have
(leE)(h1+h2) = l(h̃1+h̃2) = l(h̃1)+l(h̃2) = (leE)(h1)+(leE)(h2) and (leE)(κh) = l(κh̃) =
κl(h̃) = κ(leE)(h). This proves that leE is linear and |(leE)(h)| = |l(h̃)| ≤ ‖l‖∗‖h̃‖p =
‖l‖∗‖h‖p proves that leE is bounded and that ‖leE‖∗ ≤ ‖l‖∗.
If f ∈ Lp(X,S, µ), then f̃eE = fχE on X and, hence, (leE)(feE) = l(f̃eE) = l(fχE).

Definition. The leE defined in Lemma 7.4 is called the restriction of l ∈ (Lp(X,S, µ))∗ on
Lp(E,SeE, µeE).

Theorem 7.15. Let 1 < p < +∞.
(i) For every l ∈ (Lp)∗ there exists a unique g ∈ Lp′ so that l = lg (see the definition before
Proposition 7.46) i.e. so that l(f) =

∫
X fg dµ for every f ∈ Lp.

(ii) The function J is an isometry from Lp′ onto (Lp)∗.
If µ is σ­finite, then (i) and (ii) are true also when p = 1.

Proof. (a) We consider first the case when µ is a finite measure: µ(X) < +∞.
Let l ∈ (Lp)∗ and 1 ≤ p < +∞.
Since

∫
A |χA|p dµ = µ(A) < +∞, we have that χA ∈ Lp for every A ∈ S . We define the

function ν : S → F by ν(A) = l(χA) for all A ∈ S .
We have ν(∅) = l(χ∅) = l(0) = 0.
If A1, A2, . . . ∈ S are pairwise disjoint and A =

⋃+∞
j=1 Aj , then χA =

∑+∞
j=1 χAj . Therefore,

‖
∑n

j=1 χAj − χA‖pp =
∫
X |

∑+∞
j=n+1 χAj |p dµ =

∫
X |χ⋃+∞

j=n+1 Aj
|p dµ

= µ(
⋃+∞

j=n+1Aj) → µ(∅) = 0,

by continuity of µ from above. Linearity and continuity of l imply
∑n

j=1 ν(Aj) =
∑n

j=1 l(χAj ) =

l(
∑n

j=1 χAj ) → l(χA) = ν(A) or, equivalently, that
∑+∞

j=1 ν(Aj) = ν(A).
Hence, ν is a real or complex measure (depending on whether F = R or F = C) on (X,S).
We observe that, if A ∈ S has µ(A) = 0, then ν(A) = l(χA) = l(0) = 0 because the function χA

is the zero element ofLp. Therefore, ν � µ and by the Lebesgue­Radon­NikodymTheorems there
exists a function g : X → F which is integrable overX with respect to µ, so that l(χA) = ν(A) =∫
A g dµ =

∫
X χAg dµ for every A ∈ S . By linearity of l and of the integral this, clearly, implies

l(ϕ) =
∫
X ϕg dµ for every measurable simple function ϕ on X . This extends to all measurable

functions in Lp which are bounded a.e. onX . Indeed, let f ∈ Lp be such that |f | ≤M a.e. onX
for someM < +∞. We take any sequence (ϕn) of measurable simple functions with ϕn → f and
|ϕn| ↑ |f | on X . Then ϕng → fg and |ϕng| ≤ |fg| ≤ M |g| a.e. on X . Since

∫
X |g| dµ < +∞,

the Dominated Convergence Theorem implies that
∫
X ϕng dµ →

∫
X fg dµ. On the other hand,

|ϕn− f |p → 0 onX and |ϕn− f |p ≤ (|ϕn|+ |f |)p ≤ 2p|f |p onX . The Dominated Convergence
Theorem again implies that

∫
X |ϕn − f |p dµ → 0 and, hence, ϕn → f in Lp. By continuity of l

we get that
∫
X ϕng dµ = l(ϕn) → l(f) and, hence,

l(f) =
∫
X fg dµ (7.9)

for every f ∈ Lp which is bounded a.e. on X .
Now our first task is to prove that g ∈ Lp′ .
If 1 < p, p′ < +∞, we consider a sequence (ψn) of measurable non­negative simple functions on
X so that ψn ↑ |g|p′−1 on X . We define ϕn(x) = ψn(x) sign(g(x)). Then 0 ≤ ϕng = ψn|g| ↑
|g|p′ a.e. on X and each ϕn is bounded a.e. on X . Hence,

‖ψn‖pp =
∫
X ψp

n dµ ≤
∫
X ψn|g| dµ =

∫
X ϕng dµ = l(ϕn) ≤ ‖l‖∗‖ϕn‖p ≤ ‖l‖∗‖ψn‖p,
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where the last equality is justified by (7.9). This implies
∫
X ψp

n dµ = ‖ψn‖pp ≤ ‖l‖p
′
∗ and by the

Monotone Convergence Theorem we get
∫
X |g|p′ dµ = limn→+∞

∫
X ψp

n dµ ≤ ‖l‖p
′
∗ . Therefore,

g ∈ Lp′ and ‖g‖p′ ≤ ‖l‖∗.
If p = 1 and p′ = +∞, we consider any possible t > 0 such that the setA = {x ∈ X | t < |g(x)|}
has µ(A) > 0. We define the function f(x) = χA(x) sign(g(x)). Then

tµ(A) ≤
∫
A |g| dµ =

∫
X fg dµ = l(f) ≤ ‖l‖∗‖f‖1 ≤ ‖l‖∗µ(A),

where the last equality is justified by (7.9). This implies that t ≤ ‖l‖∗ and, hence, |g| ≤ ‖l‖∗ a.e.
on X . Therefore, g is essentially bounded on X with respect to µ and ‖g‖∞ ≤ ‖l‖∗.
We have proved that in all cases g ∈ Lp′ and ‖g‖p′ ≤ ‖l‖∗.
Now consider an arbitrary f ∈ Lp and take a sequence (ϕn) of measurable simple functions on
X so that ϕn → f and |ϕn| ↑ |f | on X . We have already shown by the Dominated Convergence
Theorem that ϕn → f in Lp and, hence, l(ϕn) → l(f). Moreover,∣∣ ∫

X ϕng dµ−
∫
X fg dµ

∣∣ ≤ ∫
X |ϕn − f ||g| dµ ≤ ‖ϕn − f‖p‖g‖p′ → 0,

since ‖g‖p′ < +∞. From l(ϕn) =
∫
X ϕng dµ we conclude that

l(f) =
∫
X fg dµ, for all f ∈ Lp.

Of coure this implies that l(f) = lg(f) for every f ∈ Lp and, hence, l = lg = J(g). Therefore, J
is an isometry from Lp′ onto (Lp)∗.
Now assume that h ∈ Lp′ also satisfies l = lh. Then J(h) = l = J(g) and, since J is an isometry
(and, hence, one­to­one), we get that h = g a.e. on X .
(b)We suppose now thatµ is σ­finite and consider an increasing sequence (Ek) inS so thatEk ↑ X
and µ(Ek) < +∞ for all k.
Let l ∈ (Lp(X,S, µ))∗.
For each k we consider the restriction leEk of l on Lp(Ek,SeEk, µeEk) which is defined in
Lemma 7.4. Since leEk ∈ (Lp(Ek,SeEk, µeEk))

∗ and ‖leEk‖∗ ≤ ‖l‖∗ and since (µeEk)(Ek) =
µ(Ek) < +∞, part (a) implies that there is a unique gk ∈ Lp′(Ek,SeEk, µeEk) with ‖gk‖p′ ≤
‖leEk‖∗ ≤ ‖l‖∗ and

(leEk)(h) =
∫
Ek
hgk d(µeEk), for all h ∈ Lp(Ek,SeEk, µeEk).

In particular,

l(fχEk
) = (leEk)(feEk) =

∫
Ek

(feEk)gk d(µeEk) for all f ∈ Lp(X,S, µ).

For h ∈ Lp(Ek,SeEk, µeEk) take its extension h0 on Ek+1 as 0 on Ek+1 \Ek. Since h̃ = h̃0 on
X , we get∫

Ek
hgk d(µeEk) = (leEk)(h) = l(h̃) = l(h̃0) = (leEk+1)(h0) =

∫
Ek+1

h0gk+1 d(µeEk+1)

=
∫
X h̃0gk+1 dµ =

∫
Ek

(h̃0gk+1)eEk d(µeEk) =
∫
Ek
h(gk+1eEk) d(µeEk).

By the uniqueness result of part (a) we have that gk+1eEk = gk a.e. on Ek. We may clearly
suppose that gk+1eEk = gk on Ek for every k by inductively changing gk+1 on a subset of Ek of
zero measure.
Now we define the measurable function g on X as equal to gk on each Ek. I.e. geEk = gk on Ek

for every k. Therefore, l(fχEk
) =

∫
Ek

(feEk)(geEk) d(µeEk) and, thus,

l(fχEk
) =

∫
Ek
fg dµ for all f ∈ Lp(X,S, µ).
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If 1 < p′ < +∞, then, since |g̃k| ↑ |g| on X , by the Monotone Convergence Theorem,∫
X |g|p′ dµ = limk→+∞

∫
X |g̃k|p

′
dµ = limk→+∞

∫
Ek

|gk|p
′
d(µeEk) ≤ ‖l‖p

′
∗ < +∞.

Hence, g ∈ Lp′(X,S, µ) and ‖g‖p′ ≤ ‖l‖∗.
If p′ = +∞, we have that |g| = |gk| ≤ ‖gk‖∞ ≤ ‖leEk‖∗ ≤ ‖l‖∗ a.e. on Ek for every k. This
implies |g| ≤ ‖l‖∗ a.e. on X and, thus, g ∈ L∞(X,S, µ) and ‖g‖∞ ≤ ‖l‖∗.
Hence, in all cases, g ∈ Lp′(X,S, µ) and ‖g‖p′ ≤ ‖l‖∗.
For an arbitrary f ∈ Lp(X,S, µ) we get ‖fχEk

− f‖pp =
∫
X |fχEk

− f |p dµ =
∫
Ec

k
|f |p dµ =∫

X χEc
k
|f |p dµ → 0 by the Dominated Convergence Theorem. By continuity of l we have that

l(f) = limk→+∞ l(fχEk
) = limk→+∞

∫
Ek
fg dµ =

∫
X fg dµ. The last equality holds since

|
∫
Ek
fg dµ−

∫
X fg dµ| = |

∫
Ec

k
fg dµ| ≤ (

∫
Ec

k
|f |p dµ)

1
p ‖g‖p′ → 0.

We have proved that
l(f) =

∫
X fg dµ for all f ∈ Lp(X,S, µ)

and, thus, l = lg = J(g). Hence, J is an isometry from Lp′(X,S, µ) onto (Lp(X,S, µ))∗.
Again, if h ∈ Lp′(X,S, µ) also satisfies l = lh, then J(h) = l = J(g) and, since J is an isometry,
we get that h = g a.e. on X .
(c) Now let 1 < p, p′ < +∞ and µ be arbitrary.
Let l ∈ (Lp(X,S, µ))∗.
We consider any E ∈ S of σ­finite measure and the restriction leE of l on Lp(E,SeE, µeE)
defined in Lemma 7.4. Since leE ∈ (Lp(E,SeE, µeE))∗ and ‖leE‖∗ ≤ ‖l‖∗, part (b) implies
that there is a unique gE ∈ Lp′(E,SeE, µeE) so that ‖gE‖p′ ≤ ‖leE‖∗ ≤ ‖l‖∗ and

(leE)(h) =
∫
E hgE d(µeE) for all h ∈ Lp(E,SeE, µeE).

In particular,

l(fχE) = (leE)(feE) =
∫
E(feE)gE d(µeE) for all f ∈ Lp(X,S, µ).

Now let E,F be two sets of σ­finite measure with E ⊆ F . Repeating the argument in the proof of
part (b), with which we showed that gk+1eEk = gk a.e. on Ek, we may easily show (just replace
Ek by E and Ek+1 by F ) that gF eE = gE a.e. on E.
Now, we define

M = sup
{ ∫

E |gE |p
′
d(µeE)

∣∣E of σ­finite measure
}

and then, obviously,M ≤ ‖l‖p
′
∗ < +∞. We take a sequence (En) in S where eachEn has σ­finite

measure so that ∫
En

|gEn |p
′
d(µeEn) →M.

We defineE =
⋃+∞

n=1En and observe thatE has σ­finite measure and, hence,
∫
E |gE |p

′
d(µeE) ≤

M . Since En ⊆ E, by the result of the previous paragraph gEeEn = gEn a.e. on En and, hence,∫
En

|gEn |p
′
d(µeEn) ≤

∫
E |gE |p

′
d(µeE) ≤ M . Taking the limit as n → +∞, this implies that∫

E |gE |p
′
d(µeE) =M . We set g = g̃E and have

∫
X |g|p′ dµ =

∫
E |gE |p

′
d(µeE) =M ≤ ‖l‖p

′
∗ .

Now consider an arbitrary f ∈ Lp(X,S, µ). The set F = E ∪ {x ∈ X | f(x) 6= 0} has σ­finite
measure. By gF eE = gE a.e. on E we get

M =
∫
E |gE |p

′
d(µeE) =

∫
E |gF |p

′
d(µeF ) ≤

∫
E |gF |p

′
d(µeF ) +

∫
F\E |gF |p

′
d(µeF )

=
∫
F |gF |p

′
d(µeF ) ≤M.

Therefore,
∫
F\E |gF |p

′
d(µeF ) = 0 and, hence, gF = 0 a.e. on F \ E. Now

l(f) = l(fχF ) =
∫
F (feF )gF d(µeF ) =

∫
E(feF )gF d(µeF ) =

∫
E(feF )gE d(µeF )

=
∫
E(feE)gE d(µeE) =

∫
X fg dµ.
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Thus, l = lg = J(g) and, just as in parts (a) and (b), J is an isometry from Lp′(X,S, µ) onto
(Lp(X,S, µ))∗.
Finally, if h ∈ Lp′(X,S, µ) also satisfies l = lh, then J(h) = l = J(g) and, since J is an isometry,
we get that h = g a.e. on X .

We know that if 1 < p, p′ < +∞ and 1
p+

1
p′ = 1, then there is an isometry fromLp′ onto (Lp)∗.

Also, there is an isometry from L1 into (L∞)∗, but in general this is not onto. If µ is σ­finite, then
there is an isometry from L∞ onto (L1)∗.

In all these cases we may identify every g ∈ Lp′ with the corresponding lg ∈ (Lp)∗ which is
defined by lg(f) =

∫
X fg dµ for all f ∈ Lp. Hence, we may view every g ∈ Lp′ as a bounded

linear functional onLp and if we write g instead of lg, then the defining relation of lg can be written

g(f) =
∫
X fg dµ, f ∈ Lp, g ∈ Lp′ .

Observe the symmetry
∫
X fg dµ =

∫
X gf dµ which permits us to write

g(f) = f(g) =
∫
X fg dµ, f ∈ Lp, g ∈ Lp′ .

Hence, every g ∈ Lp′ acts as a bounded linear functional on all f ∈ Lp and is, thus, an element
of (Lp)∗ and, conversely, every f ∈ Lp acts as a bounded linear functional on all g ∈ Lp′ and is,
thus, an element of (Lp′)∗.

Proposition 7.48. If 1 < p < +∞, then Lp is reflexive.

Proof. We have to prove that the mapping T : Lp → (Lp)∗∗ defined in Proposition 7.26 is onto.
We recall that T is defined by T (f)(l) = l(f) for all l ∈ (Lp)∗ and every f ∈ Lp.
We consider p′ = p

p−1 . Then 1 < p′ < +∞ and 1
p + 1

p′ = 1.
Now, we recall the isometry J : Lp′ → (Lp)∗ defined by J(g) = lg, where lg(f) =

∫
X fg dµ for

all f ∈ Lp.
We consider anyL ∈ (Lp)∗∗ and we define L̃ = L◦J : Lp′ → F . I.e. L̃(g) = (L◦J)(g) = L(lg)
for all g ∈ Lp′ . Both L and J are bounded and linear and, hence, L̃ ∈ (Lp′)∗.
We also recall the isometry J ′ : Lp → (Lp′)∗ defined by J ′(f) = lf , where lf (g) =

∫
X gf dµ for

all g ∈ Lp′ . Therefore, there is an f ∈ Lp so that L̃ = J ′(f) = lf . Then for every l ∈ (Lp)∗ there
is a g ∈ Lp′ so that l = J(g) = lg and

T (f)(l) = l(f) = lg(f) =
∫
X fg dµ = lf (g) = L̃(g) = L(lg) = L(l).

Hence, T (f) = L and T : Lp → (Lp)∗∗ is onto.

Definition. Let 1 ≤ p < +∞ (in the case p = 1 we assume also that µ is σ­finite) and (fn) be a
sequence in Lp. We say that (fn) converges weakly to f ∈ Lp if

∫
X fng dµ →

∫
X fg dµ for all

g ∈ Lp′ . In this case we write fn
w−→ f .

Let 1 ≤ p ≤ +∞ and (fn) be a sequence in Lp. We say that (fn) converges weakly* to f ∈ Lp if∫
X fng dµ→

∫
X fg dµ for all g ∈ Lp′ . In this case we write fn

w∗−−→ f .

Let us see the case of weak convergence. If we identify every g ∈ Lp′ with the corresponding
lg ∈ (Lp)∗ then

∫
X fng dµ →

∫
X fg dµ is equivalent to lg(fn) → lg(f). Now, since for every

l ∈ (Lp)∗ there is a g ∈ Lp′ so that l = lg, we conclude that fn
w−→ f is equivalent to l(fn) → l(f)

for all l ∈ (Lp)∗. Therefore, the definition we gave for fn
w−→ f in Lp is a special case of the

definition of weak convergence in the case of the general normed space.
We have a similar comment for the case of weak* convergence. If we identify every fn ∈ Lp

and f ∈ Lp with the corresponding lfn ∈ (Lp′)∗ and lf ∈ (Lp′)∗ then
∫
X fng dµ →

∫
X fg dµ is

equivalent to lfn(g) → lf (g). Therefore, the definition we gave for fn
w∗−−→ f in Lp is the same as
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the definition of lfn
w∗−−→ lf in (Lp′)∗ which is a special case of the definition of weak* convergence

in the case of the general dual space.
We observe that, if 1 < p < +∞, then the notions of weak convergence and weak* conver­

gence in Lp coincide. The same is true when p = 1 if µ is σ­finite.
The next results are special cases of corresponding results of the previous section.

Proposition 7.49. Let 1 ≤ p ≤ +∞. If (fn) is a sequence in Lp such that limn→+∞
∫
X fng dµ

exists in F for all g ∈ Lp′ , then

‖f‖p ≤ limn→+∞ ‖fn‖p, supn∈N ‖fn‖p < +∞.

Proof. A corollary of Proposition 8.3.

Proposition 7.50. Let 1 < p ≤ +∞ (in the case p = +∞ we assume also that µ is σ­finite). If
(fn) is a sequence in Lp such that limn→+∞

∫
X fng dµ exists in F for all g ∈ Lp′ , then there is

an f ∈ Lp so that
∫
X fng dµ→

∫
X fg dµ for all g ∈ Lp′ .

Proof. A corollary of Proposition 8.3.

Proposition 7.51. Let 1 < p < +∞. If (fn) is a bounded sequence in Lp, then there is an f ∈ Lp

so that
∫
X fng dµ→

∫
X fg dµ for all g ∈ Lp′ .

Proof. This is a corollary of Theorem 8.2 and Proposition 8.10.

Proposition 7.52. Let (X,Σ, µ) be a measure space and a countable P ⊆ Σ with the property:
for every E ∈ Σ with µ(E) < +∞ and every ϵ > 0 there is an A ∈ P so that µ(A4E) < ϵ. If
1 ≤ p < +∞, then Lp(X,Σ, µ) is separable.

Proof. (a) LetE ∈ Σwith µ(E) < +∞ and ϵ > 0. We consider theA ∈ P so that µ(A4E) < ϵp

and we have that {x ∈ X |χA(x) 6= χE(x)} = A4E and, thus,

‖χA − χE‖p < ϵ.

(b) Now we consider a simple function ϕ =
∑n

k=1 κkχEk
so that µ(Ek) < +∞ for each k and

any ϵ with 0 < ϵ ≤ 1. We also takeM = n +
∑n

k=1 |κk| +
∑n

k=1(µ(Ek))
1/p. Then for every

k we find a rational λk so that |λk − κk| < ϵ
M and, by the result of (a), an Ak ∈ P so that

‖χAk
− χEk

‖p < ϵ
M . Then we consider ψ =

∑n
k=1 λkχAk

and we get

‖ψ − ϕ‖p ≤ ‖
∑n

k=1 λk(χAk
− χEk

) +
∑n

k=1(λk − κk)χEk
‖p

≤
∑n

k=1 |λk|‖χAk
− χEk

‖p + ϵ
M

∑n
k=1(µ(Ek))

1/p

< ϵ
M (nϵ+

∑
k=1 |κk|) +

ϵ
M

∑n
k=1(µ(Ek))

1/p < ϵ
M M = ϵ.

We observe that the set B of all functions ψ is countable.
(c) Finally, we take any f ∈ Lp(X,Σ, µ) and any ϵ > 0. Then there is a simple function ϕ so that
‖ϕ − f‖p < ϵ

2 . By the result of (b) there is some ψ ∈ B so that ‖ψ − ϕ‖p < ϵ
2 . Then of course

‖ψ − f‖p < ϵ.

Proposition 7.53. Let µ be σ­finite and assume that there is a countable P ⊆ Σ with the property:
for every E ∈ Σ with µ(E) < +∞ and every ϵ > 0 there is an A ∈ P so that µ(A4E) < ϵ. If
(fn) is a bounded sequence in L∞, then there is an f ∈ L∞ so that

∫
X fng dµ →

∫
X fg dµ for

all g ∈ L1.

Proof. This is a corollary of Theorem 8.1 and Proposition 8.16.

Exercises.
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7.3.1. Approximation
(i) Let f ∈ Lp(X,S, µ) and ϵ > 0. Prove that there exists a measurable simple function ϕ on X
so that ‖f − ϕ‖p < ϵ. If p < +∞, then ϕ = 0 outside a set of finite measure.
(ii) Let f ∈ Lp(Rn,Ln,mn) and ϵ > 0. If p < +∞, prove that there exists a function g continuous
on Rn and equal to 0 outside some bounded set so that ‖f − g‖p < ϵ.

7.3.2. Let I be any index set and 0 < p < q ≤ +∞. Prove that lp(I) ⊆ lq(I) and ‖b‖q ≤ ‖b‖p
for every b ∈ lp(I).

7.3.3. Let µ(X) < +∞ and 0 < p < q ≤ +∞. Prove that Lq(X,µ) ⊆ Lp(X,µ) and that
‖f‖p ≤ µ(X)

1
p
− 1

q ‖f‖q for every f ∈ Lq(X,µ).

7.3.4. Let 0 < p < q < r ≤ +∞ and f ∈ Lp ∩ Lr. Prove that f ∈ Lq and, if 1
q = t

p + 1−t
r , then

‖f‖q ≤ ‖f‖tp‖f‖1−tr . Also prove that limq→p+ ‖f‖q = ‖f‖p and limq→r− ‖f‖q = ‖f‖r.
7.3.5. Let 1 ≤ p < r ≤ +∞. Set Z = Lp ∩ Lr and define ‖f‖ = ‖f‖p + ‖f‖r for every f ∈ Z.
(i) Prove that ‖ · ‖ is a norm on Z and that (Z, ‖ · ‖) is a Banach space.
(ii) If p < q < r, consider the linear transformation T : Z → Lq with T (f) = f for every f ∈ Z
(see exercise 7.2.4). Prove that T is bounded.

7.3.6. Let 0 < p < q < r ≤ +∞ and f ∈ Lq. If t > 0 is arbitrary, consider the functions defined
by g(x) = f(x) and h(x) = 0, if |f(x)| > t, and g(x) = 0 and h(x) = f(x), if |f(x)| ≤ t. Prove
that g ∈ Lp and h ∈ Lr and that f = g + h on X .

7.3.7. Let 1 ≤ p < r ≤ +∞. We defineW = Lp + Lr = {g + h | g ∈ Lp, h ∈ Lr} and, also,
‖f‖ = inf

{
‖g‖p + ‖h‖r | g ∈ Lp, h ∈ Lr, f = g + h

}
for every f ∈W .

(i) Prove that ‖ · ‖ is a norm onW and that (W, ‖ · ‖) is a Banach space.
(ii) If p < q < r, consider the linear transformation T : Lq →W with T (f) = f for every f ∈ Lq

(see exercise 7.2.6). Prove that T is bounded.

7.3.8. Let 0 < p < q < +∞. Prove that Lp(X) 6⊆ Lq(X) if and only if X includes sets of
arbitrarily small positive measure and that Lq(X) 6⊆ Lp(X) if and only if X includes sets of
arbitrarily large finite measure.

7.3.9. Let 1 ≤ p < +∞ and (fn) be a sequence in Lp so that ‖fn − f‖p → 0 for some f ∈ Lp.
Prove that fn → f in measure.

7.3.10. Let 1 ≤ p < +∞ and (fn) be a sequence in Lp so that |fn| ≤ g a.e. for every n for some
g ∈ Lp. If fn → f a.e. or in measure, prove that ‖fn − f‖p → 0.

7.3.11. Let 1 ≤ p < +∞ and f, fn ∈ Lp for all n. If fn → f a.e., prove that ‖fn − f‖p → 0 if
and only if ‖fn‖p → ‖f‖p.
7.3.12. Let 1 ≤ p ≤ +∞ and g ∈ L∞(µ).
We define the linear transformation T : Lp(µ) → Lp(µ) with T (f) = gf for every f ∈ Lp(µ).
Prove that T is bounded, that ‖T‖ ≤ ‖g‖∞ and that ‖T‖ = ‖g‖∞ if µ is semifinite.

7.3.13. The inequality of Chebychev.
If 0 < p < +∞ and f ∈ Lp, prove that λ|f |(t) ≤ ‖f‖pp/tp for 0 < t < +∞.

7.3.14. The general Minkowski’s Inequality.
Let (X1,S1, µ1) and (X2,S2, µ2) be two σ­finite measure spaces and 1 ≤ p < +∞.
(i) If f : X1 ×X2 → [0,+∞] is S1 ⊗ S2−measurable, prove that( ∫

X1

( ∫
X2
f(x1, x2) dµ2(x2)

)p
dµ1(x1)

)1/p ≤ ∫
X2

( ∫
X1
f(x1, x2)

p dµ1(x1)
)1/p

dµ2(x2).

(ii) If f(·, x2) ∈ Lp(X1,S1, µ1) for µ2­a.e. x2 ∈ X2 and the function x2 7→ ‖f(·, x2)‖p is
in L1(X2,S2, µ2), prove that f(x1, ·) ∈ L1(X2,S2, µ2) for µ1­a.e. x1 ∈ X1, that the function
x1 7→

∫
X2
f(x1, ·) dµ2 is in Lp(X1,S1, µ1) and( ∫

X1

∣∣ ∫
X2
f(x1, x2) dµ2(x2)

∣∣p dµ1(x1))1/p ≤ ∫
X2

( ∫
X1

|f(x1, x2)|p dµ1(x1)
)1/p

dµ2(x2).
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7.4 The spacesM(X) andMR(X).

Definition. Let (X,S) be a measurable space. The set of all real or complex (depending on
whether F = R or F = C) measures on (X,S) is denoted byM(X,S).

Therefore, all ν ∈M(X,S) have only finite (real or complex) values.
If there is no danger of confusion, we shall use the symbolM instead ofM(X,S).
We recall addition and multiplication on these spaces. If ν1, ν2 ∈M , we define ν1 + ν2 ∈M

by (ν1 + ν2)(A) = ν1(A) + ν2(A) for all A ∈ S . We also define κν ∈ M by (κν)(A) = κν(A)
for all A ∈ S and κ ∈ F .

It is easy to show thatM is a linear space over F . The zero element is the measure 0 defined
by 0(A) = 0 for all A ∈ S . The opposite to ν is −ν defined by (−ν)(A) = −ν(A) for all A ∈ S .

Definition. For every ν ∈M we define

‖ν‖ = |ν|(X).

Thus, ‖ν‖ is just the total variation of ν.

Proposition 7.54. ‖ · ‖ is a norm onM .

Proof. Immediate after Propositions 6.6 and 6.9.

Theorem 7.16.M is a Banach space.

Proof. Let (νn) be a Cauchy sequence inM . Then |νn − νm|(X) = ‖νn − νm‖ → 0 as n,m →
+∞ and, hence, |νn(A) − νm(A)| = |(νn − νm)(A)| ≤ |νn − νm|(A) ≤ |νn − νm|(X) → 0 as
n,m→ +∞. This implies that the sequence (νn(A)) of numbers is a Cauchy sequence for every
A ∈ S . Therefore, it converges to a finite number and we define ν(A) = limn→+∞ νn(A) for
every A ∈ S .
It is clear that ν(∅) = limn→+∞ νn(∅) = 0.
Now, let A1, A2, . . . ∈ S be pairwise disjoint and A =

⋃+∞
j=1 Aj . We take an arbitrary ϵ > 0 and

find N so that ‖νn − νm‖ ≤ ϵ for all n,m ≥ N . Since
∑+∞

j=1 |νN |(Aj) = |νN |(A) < +∞, there
is some J so that

∑+∞
j=J+1 |νN |(Aj) ≤ ϵ. From |νn| ≤ |νn − νN | + |νN | we get that, for every

n ≥ N ,∑+∞
j=J+1|νn|(Aj) ≤

∑+∞
j=J+1 |νn − νN |(Aj) +

∑+∞
j=J+1 |νN |(Aj)

≤ |νn − νN |(
⋃+∞

j=J+1Aj) + ϵ ≤ |νn − νN |(X) + ϵ = ‖νn − νN‖+ ϵ ≤ 2ϵ.
(7.10)

Then for any K ≥ J + 1 and n ≥ N we have
∑K

j=J+1 |νn(Aj)| ≤
∑K

j=J+1 |νn|(Aj) ≤ 2ϵ and,
taking the limit as n → +∞,

∑K
j=J+1 |ν(Aj)| ≤ 2ϵ. Finally, taking the limit as K → +∞, we

find ∑+∞
j=J+1 |ν(Aj)| ≤ 2ϵ. (7.11)

From (7.10) we get |νn(A)−
∑J

j=1 νn(Aj)| = |
∑+∞

j=J+1 νn(Aj)| ≤
∑+∞

j=J+1 |νn|(Aj) ≤ 2ϵ for
all n ≥ N and, taking the limit as n→ +∞,

|ν(A)−
∑J

j=1 ν(Aj)| ≤ 2ϵ. (7.12)

Altogether, from (7.11) and (7.12) we have

|ν(A)−
∑+∞

j=1 ν(Aj)| ≤ |ν(A)−
∑J

j=1 ν(Aj)|+
∑+∞

j=J+1 |ν(Aj)| ≤ 4ϵ.

Since ϵ is arbitrary, we get ν(A) =
∑+∞

j=1 ν(Aj) and we conclude that ν ∈M .
For any measurable partition {A1, . . . , Ap} ofX we get

∑p
k=1 |(νn−νm)(Ak)| ≤ ‖νn−νm‖ ≤ ϵ

for every n,m ≥ N . Taking the limit asm → +∞, we find
∑p

k=1 |(νn − ν)(Ak)| ≤ ϵ for every
n ≥ N and, taking the supremum of the left side over all measurable partitions {A1, . . . , Ap} of
X , we get ‖νn − ν‖ = |νn − ν|(X) ≤ ϵ. Hence, ‖νn − ν‖ → 0.
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Lemma 7.6. Let µ be a real or complex (depending on whether F = R or F = C) Borel measure
on X . For every f ∈ BC we have∣∣ ∫

X f dµ
∣∣ ≤ ∫

X |f | d|µ| ≤ ‖f‖u‖µ‖.

Proof. A consequence of Theorem 6.8.

Let µ be a Borel measure on X . We recall that µ is called regular if for every Borel set E we
have (i) µ(E) = inf{µ(U) |U open ⊇ E} and (ii) µ(E) = sup{µ(K) |K compact ⊆ E}.

Definition. If µ is a real Borel measure on X , then µ is called regular if µ+ and µ− are regular.
If µ is a complex Borel measure on X , then µ is called regular if Re(µ) and Im(µ) are regular.
The space of all regular real or complex Borel measures on X is denoted by

MR(X,BX).

We writeMR instead ofMR(X,BX) if there is no danger of confusion.
It is clear that, if µ is a Borel measure and µ(E) < +∞, then (i) and (ii) in the definition of

regularity are equivalent to the following: for every ϵ > 0 there is an open U ⊇ E and a compact
K ⊆ E so that µ(U \K) < ϵ.

Proposition 7.55. Let µ be a real or complex Borel measure on X . Then µ is regular if and only
if |µ| is regular.

Proof. Let µ be real. If µ is regular, then µ+ and µ− are regular and, thus, for every Borel set E
and ϵ > 0 there are open U+, U− ⊇ E and compactK+,K− ⊆ E so that µ+(U+ \K+) < ϵ and
µ−(U−\K−) < ϵ. We setK = K+∪K− ⊆ A andU = U+∩U− ⊇ A and then µ+(U \K) < ϵ
and µ−(U \K) < ϵ. We add and find |µ|(U \K) < 2ϵ and, hence, |µ| is regular.
Now let |µ| be regular. Then for every Borel set E and ϵ > 0 there is an open U ⊇ E and a
compact K ⊆ E with |µ|(U \K) < ϵ and, since µ+, µ− ≤ |µ|, we get the same inequalities for
µ+ and µ−. Therefore, µ+ and µ− are regular and so µ is regular.
If µ is complex, the proof is similar and uses the inequalities |Re(µ)|, | Im(µ)| ≤ |µ| and |µ| ≤
|Re(µ)|+ | Im(µ)|.

Theorem 7.17.MR is a closed linear subspace ofM and, hence, a Banach space.

Proof. If µ1 and µ2 are regular Borel measures on X , then |µ1| and |µ2| are regular. Therefore,
for every Borel set E and ϵ > 0 there are open U1, U2 ⊇ E and compact K1,K2 ⊆ E so that
|µ1|(U1 \K1) < ϵ and |µ2|(U2 \K2) < ϵ. We set K = K1 ∪K2 ⊆ E and U = U1 ∩ U2 ⊇ E,
and thus we find the same inequalities for K and O. We add, using |µ1 + µ2| ≤ |µ1| + |µ2|, and
we find |µ1 + µ2|(U \K) < 2ϵ. Hence, |µ1 + µ2| is regular and so µ1 + µ2 is regular.
It is even simpler to prove that, if µ is regular and κ ∈ F , then κµ is regular.
ThereforeMR is a linear subspace ofM .
Now let (µn) be a sequence inMR converging to µ inM . We consider any Borel set E and ϵ > 0
and find N so that ‖µN − µ‖ < ϵ and then, since |µN | is regular, we find an open U ⊇ E and a
compact K ⊆ E so that |µN |(U \K) < ϵ. Then |µ|(U \K) ≤ |µN |(U \K) + ‖µN − µ‖ < 2ϵ
and, thus, µ is regular. Therefore,MR is closed inM .

We recall Theorem 1.23 which says that, if for every open subsetO ofX there is an increasing
sequence of compact sets whose interiors coverO, then every locally finite Borel measure is regular
and, hence,MR =M .

We also recall Theorem 2.2 which says that, if X is locally compact and Hausdorff, K ⊆ X
is compact, U ⊆ X is open and K ⊆ U , then there is an f ≺ U so that f = 1 onK. Lemma 7.6
is a generalization of this fact to more than one open sets.
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Lemma 7.7. LetX be locally compact and Hausdorff. IfK ⊆ X is compact and U1, . . . , Un ⊆ X
are open so thatK ⊆ U1∪· · ·∪Un, then there exist f1 ≺ U1, . . . , fn ≺ Un so that f1+· · ·+fn = 1
onK.

Proof. From the hypothesis, K \ (U2 ∪ · · · ∪ Un) ⊆ U1 so there is an open V1 so that cl(V1) is
compact andK \ (U2 ∪ · · · ∪ Un) ⊆ V1 ⊆ cl(V1) ⊆ U1.
Then K ⊆ V1 ∪ U2 ∪ · · · ∪ Un and, hence, K \ (V1 ∪ U3 ∪ · · · ∪ Un) ⊆ U2. So there is an open
V2 so that cl(V2) is compact andK \ (V1 ∪ U3 ∪ · · · ∪ Un) ⊆ V2 ⊆ cl(V2) ⊆ U2.
Then K ⊆ V1 ∪ V2 ∪ U3 ∪ · · · ∪ Un. Continuing inductively, we replace one after the other the
U1, . . . , Un with open V1, . . . , Vn so that cl(V1), . . . , cl(Vn) are compact and K ⊆ V1 ∪ · · · ∪ Vn
and cl(Vj) ⊆ Uj for all j.
By Theorem 2.2, there are g1, . . . , gn so that gj ≺ Uj and gj = 1 on cl(Vj) for all j. Also there
exists g0 : X → [0, 1] so that g0 = 1 onK and g0 = 0 out of V1 ∪ · · · ∪ Vn.
We define fj =

gj
1−g0+g1+···+gn

for every j = 1, . . . , n.
If for any x ∈ X the g0(x) = 0 is not true, then x ∈ V1 ∪ · · · ∪ Vn and then gj(x) = 1 for some
j = 1, . . . , n. Therefore, 1 − g0 + g1 + · · · + gn ≥ 1 on X and, hence, f1, . . . , fn : X → [0, 1]
are all continuous on X .
Clearly, supp(fj) ⊆ supp(gj) and thus fj ≺ Uj for all j. Also, f1+· · ·+fn = g1+···+gn

1−g0+g1+···+gn
= 1

onK because g0 = 1 onK.

Definition. Let K be compact and U1, . . . , Un be open subsets of X and K ⊆ U1 ∪ · · · ∪ Un. If
f1 ≺ U1, . . . , fn ≺ Un and f1 + · · · + fn = 1 on K, then the collection {f1, . . . , fn} is called a
partition of unity forK relative to its open cover {U1, . . . , Un}.

Theorem 7.18. Let X be locally compact and Hausdorff and µ ∈MR. Then

‖µ‖ = sup
{∣∣ ∫

X f dµ
∣∣ ∣∣ f ∈ C0, ‖f‖u ≤ 1

}
.

Proof. For all f ∈ C0 with ‖f‖u ≤ 1, Lemma 7.5 implies that |
∫
X f dµ| ≤ ‖f‖u‖µ‖ ≤ ‖µ‖.

Therefore, sup
{∣∣ ∫

X f dµ
∣∣ ∣∣ f ∈ C0, ‖f‖u ≤ 1

}
≤ ‖µ‖.

By the definition of ‖µ‖, there are pairwise disjoint Borel sets A1, . . . , An ⊆ X so that ‖µ‖− ϵ <
|µ(A1)| + · · · + |µ(An)|. Since µ is regular, for every j there is a compact Kj ⊆ Aj so that
|µ|(Aj \ Kj) <

1
n ϵ. Therefore, ‖µ‖ − 2ϵ < |µ(K1)| + · · · + |µ(Kn)|. Since K1, . . . ,Kn

are pairwise disjoint, it is easy to prove that there are pairwise disjoint open U1, . . . , Un so that
Kj ⊆ Uj for all j and, taking them smaller if we need to, we may assume that |µ|(Uj \Kj) <

1
n ϵ

for all j. Then for every j there is fj ≺ Uj so that fj = 1 onKj .
Finally, we define κj = sign

( ∫
Uj
fj dµ) for each j and f = κ1f1 + · · ·+ κnfn.

It is easy to see that ‖f‖u ≤ 1. Therefore,∣∣ ∫
X f dµ

∣∣ = ∣∣∑n
j=1 κj

∫
Uj
fj dµ

∣∣ = ∑n
j=1

∣∣ ∫
Uj
fj dµ

∣∣
≥

∑n
j=1 |µ(Kj)| −

∑n
j=1

∣∣ ∫
Uj\Kj

fj dµ
∣∣

> ‖µ‖ − 2ϵ−
∑n

j=1 |µ|(Uj \Kj) > ‖µ‖ − 3ϵ.

Since ϵ > 0 is arbitrary, we conclude that sup
{∣∣ ∫

X f dµ
∣∣ ∣∣ f ∈ C0, ‖f‖u ≤ 1

}
≥ ‖µ‖ and the

proof is complete.

Definition. Let X be locally compact and Hausdorff. For every µ ∈ MR we define lµ : C0 → F
by

lµ(f) =
∫
X f dµ for all f ∈ C0.

Proposition 7.56. Let X be locally compact and Hausdorff. For every µ ∈ MR the function lµ
belongs to (C0)

∗. Moreover, ‖lµ‖∗ = ‖µ‖.
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Proof. We have lµ(f1 + f2) =
∫
X(f1 + f2) dµ =

∫
X f1 dµ+

∫
X f2 dµ = lµ(f1) + lµ(f2). Also,

lµ(κf) =
∫
X(κf) dµ = κ

∫
X f dµ = κlµ(f). These imply that lµ is a linear functional.

Theorem 7.16 together with Proposition 7.16 imply that ‖lµ‖∗ = ‖µ‖.

Definition. Let X be locally compact and Hausdorff. We define J :MR → (C0)
∗ by

J(µ) = lµ for all µ ∈MR.

Proposition 7.57. The function J is an isometry fromMR into (C0)
∗

Proof. Exercise.

We recall that, if F = R, then C0 is a Banach lattice and that a linear functional l : C0 → R is
called non­negative if l(f) ≥ 0 for every f ∈ C0 such that f ≥ 0 (i.e. f(x) ≥ 0 for all x ∈ X).

F.Riesz­Radon­Banach­Kakutani Theorem. The real case. Let F = R and X be locally
compact and Hausdorff.
(i) For every l ∈ (C0)

∗ there exists a unique regular real Borel measure µ onX so that l = lµ, i.e.
so that l(f) =

∫
X f dµ for all f ∈ C0.

If l is non­negative, then µ is non­negative.
(ii) The function J is an isometry fromMR onto (C0)

∗.

Proof. (i) We consider first the case of a non­negative l ∈ (C0)
∗.

For each open O ⊆ X we define

µ(O) = sup{l(f) | f ≺ O}

and then for each E ⊆ X we define

µ∗(E) = inf{µ(O) |O open ⊇ E}.

IfO1, O2 are open andO1 ⊆ O2, then f ≺ O1 implies f ≺ O2 and, thus, µ(O1) ≤ µ(O2). Hence,
µ∗(O) = µ(O) for each open O.
If f ≺ O, then l(f) ≤ ‖l‖∗‖f‖u ≤ ‖l‖∗. Therefore, µ(O) ≤ ‖l‖∗ and, thus, µ∗(E) ≤ ‖l‖∗ for
every E ⊆ X .
It is obvious that µ∗(∅) = µ(∅) = 0 and also that µ∗(E1) ≤ µ∗(E2) for all E1, E2 with E1 ⊆ E2.
Let now E = E1 ∪E2 ∪ · · · . For each j we take an open Oj ⊇ Ej so that µ(Oj) < µ∗(Ej) +

ϵ
2j

and set O = O1 ∪ O2 ∪ · · · . Let f ≺ O and then set K = supp(f) ⊆ O. Then there is N
so that K ⊆ O1 ∪ · · · ∪ ON and we consider a partition of unity {f1, . . . , fN} for K relative to
{O1, . . . , ON}. Then f = ff1 + · · ·+ ffN and ffj ≺ Oj for each j and, hence,

l(f) = l(ff1) + · · ·+ l(ffN ) ≤ µ(O1) + · · ·+ µ(ON ) ≤ µ(O1) + µ(ON ) + · · · .

This implies that µ(O) ≤ µ(O1)+µ(ON )+ · · · ≤ µ∗(E1)+µ
∗(E2)+ · · ·+ ϵ and, since E ⊆ O,

we get µ∗(E) ≤ µ∗(E1) + µ∗(E2) + · · ·+ ϵ and, finally, µ∗(E) ≤ µ∗(E1) + µ∗(E2) + · · · . We
conclude that µ∗ is an outer measure on X .
By the Caratheodory process we define the σ­algebra of µ∗­measurable subsets ofX on which the
restriction of µ∗ is a measure.
Consider any openO and anyE. We take an openO′ ⊇ E with µ(O′) < µ∗(E)+ϵ and f ≺ O′∩O
so that l(f) > µ(O′ ∩O)− ϵ. The set O′ \ supp(f) is open and we take g ≺ O′ \ supp(f) so that
l(g) > µ(O′ \ supp(f))− ϵ. We observe that f + g ≺ O′, whence

µ∗(E) + ϵ > µ(O′) ≥ l(f + g) = l(f) + l(g) > µ(O′ ∩O) + µ(O′ \ supp(f))− 2ϵ

≥ µ∗(E ∩O) + µ∗(E \O)− 2ϵ.
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Hence µ∗(E) ≥ µ∗(E ∩ O) + µ∗(E \ O) and this means that O is µ∗­measurable. Therefore,
the σ­algebra of µ∗­measurable sets contains all open sets and, thus, includes BX . We define µ
to be the restriction of µ∗ on BX . So µ is a non­negative Borel measure on X . Observe that µ is
identical to the already defined µ on the open sets, since we proved that µ∗(O) = µ(O) for each
open O. We shall now prove that

µ(K) = inf{l(f) | f ∈ C0 and χK ≤ f on X} (7.13)

for all compact K ⊆ X . We take any f ∈ C0 with f ≥ χK (e.g. f ≥ 0 on X and, in particular,
f ≥ 1 on K) and consider the open set O = {x ∈ X | f(x) > 1 − ϵ} ⊇ K. If g ≺ O, then
g ≤ 1

1−ϵ f on X and then l(g) ≤ 1
1−ϵ l(f), since l is non­negative. Therefore, µ(O) ≤ 1

1−ϵ l(f),
whence µ(K) ≤ 1

1−ϵ l(f). Since ϵ > 0 is arbitrary, this implies that µ(K) ≤ l(f) and, thus,
µ(K) ≤ inf{l(f) | f ∈ C0 and χK ≤ f on X}. We now take an open O ⊇ K with µ(O) <
µ(K) + ϵ and then an f ≺ O so that f = 1 on K. Then f ≥ χK and l(f) ≤ µ(O) < µ(K) + ϵ.
Since ϵ is arbitrary, inf{l(f) | f ∈ C0 and χK ≤ f on X} ≤ µ(K).
We shall next prove the regularity of µ.
For each Borel set E we have µ(E) = µ∗(E) = inf{µ(O) |O open ⊇ E} and this is the first
regularity condition.
We take any Borel set E and find an open O ⊇ E so that µ(O) < µ(E) + ϵ. We then find g ≺ O
so that l(g) > µ(O) − ϵ and set K = supp(g) ⊆ O. For each f ∈ C0 with f ≥ χK we get that
f ≥ g and then l(f) ≥ l(g). From (7.4) it is implied that µ(K) ≥ l(g). Therefore, we have a
compactK ⊆ O with µ(K) > µ(O)− ϵ. Since µ(O \ E) = µ(O)− µ(E) < ϵ, there is an open
O′ ⊇ O \ E so that µ(O′) < 2ϵ. We now define L = K \ O′ and observe that L is a compact
subset of E and that E \L ⊆ (O \K)∪O′. Thus, µ(E)− µ(L) ≤ µ(O \K) + µ(O′) < 3ϵ and,
hence, µ(E) = sup{µ(L) |L compact ⊆ E}. This is the second regularity condition.
Finally we shall prove that l(f) =

∫
X f dµ for every f ∈ C0.

If f is real, we write f = f+ − f−, where f+ ≥ 0 and f− ≥ 0 are the non­negative and non­
positive parts of f . Therefore, due to the linearity of l and of the integral, it is enough to consider
f ≥ 0 and, multiplying with an appropriate positive constant, we may assume that f ∈ C0 and
0 ≤ f ≤ 1 on X .
We take an arbitraryN ∈ N and defineKk = {x ∈ X| f(x) ≥ k

N } for 0 ≤ k ≤ N . For each k =
1, . . . , N we have that Kk is compact and, obviously, K0 = X . Also for each j = 0, . . . , N − 1
we define fj = min

{
max

{
f, j

N

}
, j+1

N

}
− j

N . We have that fj ∈ C0 and 1
NχKj+1 ≤ fj ≤ 1

NχKj

for each j = 0, . . . , N − 1 and also f = f0 + f1 + · · · + fN−1. Adding the last inequalities and
integrating, we find

1
N (µ(K1) + · · ·+ µ(KN )) ≤

∫
X f dµ ≤ 1

N (µ(K0) + · · ·+ µ(KN−1)). (7.14)

From χKj+1 ≤ Nfj and (7.13) it is implied that µ(Kj+1) ≤ l(Nfj) = Nl(fj). FromNfj ≤ χKj

it is implied that Nfj ≺ O and, thus, Nl(fj) ≤ µ(O) for every open O ⊇ Kj . Hence, from the
definition of µ(Kj) = µ∗(Kj) we get that Nl(fj) ≤ µ(Kj). Therefore, 1

N µ(Kj+1) ≤ l(fj) ≤
1
N µ(Kj) and, adding,

1
N (µ(K1) + · · ·+ µ(KN )) ≤ l(f) ≤ 1

N (µ(K0) + · · ·+ µ(KN−1)).

Thi and (7.14) imply∣∣ ∫
X f dµ− l(f)

∣∣ ≤ 1
N (µ(K0) + · · ·+ µ(KN−1))− 1

N (µ(K1) + · · ·+ µ(KN ))

= 1
N µ(K0 \KN ) ≤ 1

N µ(X) ≤ 1
N ‖l‖∗

and, since N is arbitrary, l(f) =
∫
X f dµ.

That µ is finite (and, hence, a real measure) is clear from the beginning of the proof. In fact, for
every f ≺ X we have l(f) ≤ ‖l‖∗‖f‖u ≤ ‖l‖∗ and, thus, µ(X) = sup{l(f) | f ≺ X} ≤ ‖l‖∗.
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Now we consider the case of a general l ∈ (C0)
∗.

Proposition 7.13 implies that there are non­negative l+, l− ∈ (C0)
∗ so that l = l+ − l− and

‖l+‖∗ ≤ ‖l‖∗, ‖l−‖∗ ≤ ‖l‖∗. Now from the previous theorem we know that there are regular
finite Borel measures µ+ and µ− on X so that l+(f) =

∫
X f dµ+ and l−(f) =

∫
X f dµ− for

every f ∈ C0. Therefore, for the regular real Borel measure µ = µ+ − µ− we have l(f) =
l+(f)− l−(f) =

∫
X f dµ+ −

∫
X f dµ− =

∫
X f dµ for every f ∈ C0.

To prove the uniqueness of µ, we assume that there are regular real Borel measures µ1, µ2 so
that l(f) =

∫
X f dµ1 =

∫
X f dµ2 for all f ∈ C0. We consider the regular real Borel measure

µ = µ1 − µ2 and then we have
∫
X f dµ = 0 for all f ∈ C0. Theorem 7.16 implies that ‖µ‖ = 0

and, hence, µ = 0.
(ii) Clear after Proposition 7.51.

F.Riesz­Radon­Banach­Kakutani Theorem. The complex case. Let F = C andX be locally
compact and Hausdorff.
(i) For every l ∈ (C0)

∗ there exists a unique regular complex Borel measure µ onX so that l = lµ,
i.e. so that l(f) =

∫
X f dµ for all f ∈ C0.

If l is non­negative (in other words if l(f) ≥ 0 for every non­negative f ∈ C0), then µ is non­
negative.
If l is real (in other words if l(f) ∈ R for every real f ∈ C0), then µ is real.
(ii) The function J is an isometry fromMR onto (C0)

∗.

Proof. (i) For the general l ∈ (C0)
∗ Proposition 7.18 implies that Re(l) is a bounded real­linear

functional on C0 with ‖Re(l)‖∗ = ‖l‖∗.
If we apply this to−il ∈ (C0)

∗ we get that also Im(l) = Re(−il) is a bounded real­linear functional
on C0 with ‖ Im(l)‖∗ = ‖ − il‖∗ = ‖l‖∗.
Now from the previous theorem we know that there are regular real Borel measures µ1, µ2 on X
so that Re(l)(f) =

∫
X f dµ1 and Im(l)(f) =

∫
X f dµ2 for every real f ∈ C0. Therefore, if we

define µ = µ1 + iµ2, then µ is a regular complex Borel measure on X and for every real f ∈ C0

we have l(f) = Re(l)(f) + i Im(l)(f) =
∫
X f dµ1 + i

∫
X f dµ2 =

∫
X f dµ. Therefore, for every

f ∈ C0, we get l(f) = l(Re(f)) + il(Im(f)) =
∫
X Re(f) dµ+ i

∫
X Im(f) dµ =

∫
X f dµ.

If l ∈ (C0)
∗ is real, then Im(l)(f) = 0 for all real f ∈ C0. This implies that µ2 = 0 and, thus,

µ = µ1 is a real measure.
If l ∈ (C0)

∗ is non­negative, then for every real f ∈ C0 we can write f = f+ − f− with
f+, f− ≥ 0 on C0. Since l(f+), l(f−) ≥ 0, we get that l(f) = l(f+) − l(f−) is real for every
real f ∈ C0. From the previous case we conclude that µ is a real measure and that l(f) =

∫
X f dµ

for every real f ∈ C0. By the results of the previous theorem (including the uniqueness) we get
that µ is a (non­negative) finite measure.
Again the uniqueness of µ is a consequence of Theorem 7.16.
(ii) Clear after Proposition 7.51.

Finally, ifX is locally compact and Hausdorff, then there is an isometry fromMR onto (C0)
∗.

Now we may identify every µ ∈ MR with the corresponding lµ ∈ (C0)
∗ which is defined by

lµ(f) =
∫
X f dµ for all f ∈ C0. We may view every µ ∈ MR as a bounded linear functional on

C0 and if we write µ instead of lµ, then the defining relation of lµ can be written

µ(f) =
∫
X f dµ, f ∈ C0, g ∈MR.

Definition. Let X be locally compact and Hausdorff and (µn) be a sequence inMR. We say that
(µn) converges weakly* to µ ∈MR if

∫
X f dµn →

∫
X f dµ for all f ∈ C0. In this case we write

µn
w∗−−→ µ.

If we identify every µn ∈ MR and µ ∈ MR with the corresponding lµn ∈ (C0)
∗ and lµ ∈

(C0)
∗ then

∫
X f dµn →

∫
X f dµ is equivalent to lµn(f) → lµ(f). Therefore, the definition we
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gave for µn
w∗−−→ µ inMR is the same as the definition of lµn

w∗−−→ lµ in (C0)
∗ which is a special

case of the definition of weak* convergence in the case of the general dual space.

Proposition 7.58. Let X be locally compact and Hausdorff and (µn) be a sequence inMR such
that limn→+∞

∫
X f dµn exists in F for all f ∈ C0. Then

supn∈N ‖µn‖ < +∞.

Also there is a µ ∈MR so that
∫
X f dµn →

∫
X f dµ for all f ∈ C0 and

‖µ‖ ≤ limn∈N ‖µn‖.

Proof. A corollary of Proposition 8.3.

Proposition 7.59. Let X be locally compact and Hausdorff, ν be a non­negative element ofMR
and (fn) be a sequence in L1(ν) such that limn→+∞

∫
X fng dν exists in F for all g ∈ C0. Then

there is a µ ∈MR so that
∫
X fng dν →

∫
X g dµ for all g ∈ C0. Also

‖µ‖ ≤ limn→+∞
∫
X |fn| dν,

∫
X |fn| dν < +∞.

Proof. We consider the (real or complex) measures µn = fnν onX . Then µn ∈MR for all n and∫
X fng dν =

∫
X g dµn, g ∈ C0.

The rest is an application of Proposition 8.11.

Proposition 7.60. Let X be locally compact and Hausdorff and assume that there is a countable
family P of open sets with the property: for every x and every open U with x ∈ U there is a
W ∈ P so that x ∈W ⊆ cl(W ) ⊆ U and cl(W ) is compact. Then C0 is separable.

Proof. Following the proofs of Lemma 2.2 and Theorem 2.2 we may easily prove that there is a
countable set A of continuous functions with the property: for every compact K and every open
U withK ⊆ U there is an f ∈ A so that f ≺ U and f = 1 onK.
Now we take any g ∈ C0 so that 0 ≤ g ≤ 1 on X and any ϵ > 0. We consider N ∈ N so that
1
N < ϵ.
We consider the sets Kj = {x ∈ X | j

N ≤ g(x) ≤ 1} for j = 1, . . . , N and Uj = {x ∈ X | j
N <

g(x) ≤ 1} for j = 1, . . . , N − 1. Let also U0 = X . Then every Kj is compact and every Uj is
open and

KN ⊆ UN−1 ⊆ KN−1 ⊆ UN−2 ⊆ · · · ⊆ K2 ⊆ U1 ⊆ K1 ⊆ U0.

Now we consider functions f1, f2, . . . , fN ∈ A so that

fj ≺ Uj−1 and fj = 1 on Kj for each j = 1, . . . , N.

Now it is easy to show that the function

f = 1
N

∑N
j=1 fj

satisfies ‖f − g‖u ≤ 1
N < ϵ.

Finally it is straightforward to extend this result to all g ∈ C0 and we leave this as an exercise.

Proposition 7.61. Let X be locally compact and Hausdorff and assume that there is a countable
family P of open sets with the property: for every x and every open U with x ∈ U there is a
W ∈ P so that x ∈ W ⊆ cl(W ) ⊆ U and cl(W ) is compact. If (µn) is a bounded sequence in
MR, then there is a µ ∈MR so that

∫
X f dµn →

∫
X f dµ for all f ∈ C0.

Proof. This is a corollary of Theorem 8.1 and Proposition 8.18.
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7.5 The spaces B(X,S) and L∞(X,S, µ) and their duals.

Definition. Let (X,S) be a measurable space. ThenB(X,S) is the space of all bounded measur­
able functions f : X → F . We define

‖f‖u = supx∈X |f(x)|, f ∈ B(X,S).

It is clear that B(X,S) is a linear space over F and that ‖ · ‖u is a norm on B(X,S).

Example. If S = P(X), then B(X,S) = B(X), i.e. the space of all bounded f : X → F .

Proposition 7.62. B(X,S) is a Banach space. If F = R, then B(X,S) is a Banach lattice.

Proof. Exercise.

Definition.We denote by
Mf (X,S)

the space of all finitely additive real or complex (depending on whether F = R or F = C)
measures on (X,S).
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1. Daniell integral.

2. Functions of bounded variation (in the chapter about signed and complex measures).

3. More exercises, especially for the last three chapters.

4. Probability. Probably not as a separate chapter. For example the notion of a probability
measure, and more things (Kolmogorov’s theorem etc) as exercises.

5. The Hilbert space structure of L2, orthonormal bases (like the einx) etc.

6. Haar measure.
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