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Chapter 1

Measures.

1.1 oc-algebras.

Definition. Let X be a set, and S be a collection of subsets of X. We call S a c-algebra of subsets
of X if it is non-empty, closed under complements, and closed under countably infinite unions.
This means:

(i) there exists at least one A C X so that A € S,

(i) if A € S, then A° € S,

(iii) if A, € S foralln € N, then |2 A, € S.

The pair (X, S) of a set X and a o-algebra S of subsets of X is called a measurable space. The
sets A € S are called S-measurable subsets of X.

If there is no danger of confusion, every A € S shall be called measurable subset of X or just
measurable set.

Proposition 1.1. Every o-algebra of subsets of X contains the sets ) and X, it is closed under finite
unions (and, thus, under countable unions), under countable intersections, and under set-theoretic

differences.

Proof. Let S be any o-algebra of subsets of X.
Let A, € Sforalln € N. Then AS € S for all n € N. Therefore | J> A¢ € S, and hence
(U2 Ag)e € S. Since

M2t An = (Ua27 45),
we get that ﬂ:{i‘i A, €S.
LetAq,...,Axy € S. Weconsider A,, = Ay foralln € N,n > N, and we have that Uﬁlzl A, =
U3 A,,. Since [J125 A,, € S, we conclude that )\, A, € S.
Similarly, we have that 02[21 A, = ﬂ:ﬁ A,,. Since ﬂzg A, € S, we get that ﬂgzl A, €8S.
Now let A€ S. Then A€ S,andso) = ANA°cSand X = AU A° e S.
Finally, let A, B € S. Then B¢ € S,andso A\ B=ANB¢eS. ]

Here are some simple examples.
Example. The collection {(}), X } is a o-algebra, the smallest possible, of subsets of the set X.

Example. P(X), the collection of all subsets of X, is a o-algebra, the largest possible, of subsets
of X.

Example. If £ C X, then {(), E, E¢, X } is a o-algebra of subsets of X. In fact, it is the smallest
o-algebra of subsets of X containing F.



Example. Let X be uncountable. The collection S = {A C X | either A or A€ is countable} is
a o-algebra of subsets of X. Let us see why.

Firstly, () is countable, and so S is non-empty.

If A € S, then, considering cases, we see that A¢ € S.

Finally, let A,, € S foralln € N. Ifevery A,, is countable, then U+ A, is also countable, and so
U A, € S. Otherwise, at least one of the A¢, say AL is countable Since (> A,)° C A5,
we have that ({2 A,,)¢ is also countable, and so again | J/> 4,, € S.

The following result is useful.

Lemma 1.1. Let S be a o-algebra of subsets of X. Then for every finite or infinite sequence (A,)
in S there exists a finite or infinite, respectively, sequence (By,) in S such that:

(i) B, C A, foralln,
(ii)) BiuByU---=A1UAsU -+,

(iii) the B, are pairwise disjoint.
Proof. We consider By = Ay,and B, = A, \ (A1 U---UA,_;) forall relevant n > 2. O

Of course we know that a sequence (z,,) of real numbers is called increasing or decreasing if
xn < xn4q for all nor, respectively, if x,41 < z,, for all n. Similarly, a sequence (f,,) of real
valued functions, with A as their common domain of definition, is called increasing or decreasing
if f, < fnt1 on A for all n or, respectively, if f,+1 < f, on A for all n. Now, a sequence (Aj,)
of sets is called increasing or decreasing if A, C A, for all n or, respectively, if A,11 C A,
for all n.

Exercises.
1.1.1. Let A, C X for every n € N. We set
lim,, o An = UiZT (M2 A)), Timno oo An = M2 (Ui A))-

Only iflim,, ,, A, = lim,, | oo Ap, we define

limg, o0 Ay = lim,, Ay =1limy, o Ay,

Prove the following.

(1) lim A, ={zx € X |z € A, forall large enough n}.
(ii) limy, 100 A = {2 € X |2 € A, for infinitely many n}.
(iii) (lim

(iv) lim,

my, 40
s too An) = 1im,, s 4 00 AS and (limy,_s 400 A,,)¢ = lim AS.

lim, A, Climy sjo0 Ay

(v) If (Ay,) is increasing, then lim,, ;o 4, = U+°° A,

(vi) If (Ay,) is decreasing, then lim,,—; 1 oo A;, = ﬂ+°° A,

(vii) If A, € B, foralln, thenlim, ., A, Clim, ., B, and lim,, o0 Ay, C limy,_s 4 o0 By,.

(viii) If A,, = B, if n is even, and A, = C, if n is odd, then lim A, = BNnC, and
lim,, 100 Ay = BUC.

—n—-+00

——n—-+0o0

(ix) If A, = B, U C, for all n, then (lim, , B,) U (lim, ,, C,) C lim, _, A, and
hmn—>+oo An - (hmn—H-oo Bn) (hmn—H-oo Cn)
(x) If A, = B, N C, for all n, then (lim,_,,  B,) N (lim, ,, Cp) = lim, _, A, and

1imy, 4 00 An € (limy 400 Br) N (limy 100 C).

1.1.2. Let Sx be a o-algebra of subsets of X, and f : X — Y. Then
Sy ={BCY|f!(B)eSx}

is called the push-forward of Sx by f on Y. Prove that Sy is a o-algebra of subsets of Y.
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1.1.3. Let Sy be a o-algebra of subsets of Y, and f : X — Y. Then
Sx ={f'(B)| B € S}
is called the pull-back of Sy by f on X. Prove that Sx is a o-algebra of subsets of X.

GENERATED o-ALGEBRAS.

Proposition 1.2. The intersection of o-algebras of subsets of X is a o-algebra of subsets of X.

Proof. Let S be any collection of o-algebras of subsets of X, and consider Sp = ({S|S € S}.
Since ) € S forall S € S, we get ) € Sy, and so Sy is non-empty.

Let A € Sp. Then A € S forall § € S. Since every S € S is a g-algebra, A° € S forall S € S.
Therefore, A¢ € Sp.

Let A, € Sy foralln € N. Then A,, € SforallS € Sandalln € N. Sinceevery S € Sisa
o-algebra, U:{i‘j A, € Sforall S € S. Thus, U:i'i A, € 8. O

Definition. Let C be any collection of subsets of X. The intersection of all o-algebras S of subsets
of X such that C C S is called the o-algebra generated by C and we denote it S(C). Le.

S(C) = (S |S is a o-algebra of subsets of X and C C S}.

Note that there is at least one o-algebra S of subsets of X such thatC C S, namely S = P(X).
Note also that the term o-algebra used for S(C) is justified by its definition and Proposition 1.2.
The next straightforward result serves as a tool in many of the following proofs.

Proposition 1.3. Let C be any collection of subsets of X. Then S(C) is the smallest o-algebra S
of subsets of X such that C C S. In other words,

(i) S(C) is a o-algebra of subsets of X,
(i) C € S(C),
(iii) if S is any o-algebra of subsets of X such that C C S, then S(C) C S.

Proof. Obvious from the definition of S(C). O
Looking back at two of our examples of o-algebras, we easily get the following.

Example. Let £ C X, and consider C = {E'}. Then S(C) = {0, E, E¢, X }.

In fact, {(), E, E°, X } is a o-algebra of subsets of X and C C {0, E, E°, X }. Moreover, there
can be no smaller o-algebra S of subsets of X such that C C S, since such a g-algebra S must
necessarily contain (), X and E°, besides E.

Example. Let X be an uncountable set, and consider C = {A C X | A is countable}. Then
S(C) = {A C X | either A or A€ is countable}.

We know that {A C X | either A or A° is countable} is a o-algebra of subsets of X and, ob-
viously, C € {A C X | either A or A€ is countable}. Also, there is no smaller o-algebra S of
subsets of X such that C C &, since any such o-algebra S must contain all the complements of
countable subsets of X, besides the countable subsets of X.

Exercises.

1.1.4. Let Cy, Ca be two collections of subsets of X. If C; C Cy C S(Cy), prove S(C1) = S(Ca).

1.1.5. Let C1,Cy be two collections of subsets of X. Prove that S(C;) = S(C2) if and only if
Cl - S(Cz) and CQ - S(Cl)



1.1.6. Let X be a set. In the next three cases find S(C).
() C = 0.

(i))C={F|E C F C X} for some fixed £ C X.
(iii) C = {F' | F' is a two-point subset of X }.

1.1.7. Let Sx be a o-algebra of subsets of X, and f : X — Y, and let Cy be a collection of subsets
of Y. If f71(B) € Sx forall B € Cy, prove that f~}(B) € Sy forall B € S(Cy).
Hint. You may consider the push-forward Sy of Sx by f on Y (see exercise 1.1.2).

1.1.8. Let C be a collection of subsets of X . Prove that for every A € S(C) there is some countable
subcollection D of C so that A € S(D).
Hint. Prove that | J{S(D) | D is a countable subcollection of C} is a o-algebra of subsets of X.

ALGEBRAS AND MONOTONE CLASSES.

Definition. Let A be a collection of subsets of X. We call A an algebra of subsets of X if it is
non-empty, closed under complements, and closed under unions. This means:

(i) there exists at least one A C X so that A € A,

(ii) if A € A, then A° € A,

(iii) if A, B € A, then AUB € A

Proposition 1.4. Every algebra of subsets of X contains the sets ) and X, it is closed under finite
unions, under finite intersections, and under set-theoretic differences.

Proof. Similar to the proof of Proposition 1.1. O
Example. Every o-algebra of subsets of X is also an algebra of subsets of X.

Example. If X is an infinite set, then the collection A = {A C X | either A or A€ is finite} is an
algebra of subsets of X, but not a o-algebra of subsets of X.

The proof that A is an algebra is similar to the proof in the last example of the first subsection. To
prove that A is not a o-algebra, we consider any countably infinite A C X so that A° is infinte. If
A = {x1,z2,...}, then the sets A,, = {z1,...,x,} belong to A and U:{i’i A, = A, but A does
not belong to A.

Definition. Let M be a collection of subsets of X. We call M a monotone class of subsets of X if
it is closed under countable increasing unions and under countable decreasing intersections. le.
(i) if A, € M for alln € N and (Ay,) is increasing, then |J>S A, € M,

(i) if A, € M for alln € N and (A,) is decreasing, then (/> A, € M.

It is obvious that every o-algebra is a non-empty monotone class.

Proposition 1.5. The intersection of monotone classes of subsets of X is a monotone class of sub-
sets of X.

Proof. Take any collection M of monotone classes of subsets of X, and My = ({M | M € M}.
Let A,, € My foralln € Nand (A,,) be increasing. Then A,, € M forall M € Mandalln € N.
Since every M € M is a monotone class, we have that U:{i‘j A, € M forall M € M. Thus,
U:{g A, € My, and so My is closed under countable increasing unions.

Similarly, let A,, € My forall n € N and (A,,) be decreasing. Then A4,, € M for all M € M and
all n € N. Since every M € M is a monotone class, we have that (/> A,, € M forall M € M.
Hence, ﬂ:{i’i A, € My, and so My is closed under countable decreasing intersections. ]



Definition. Let C be any collection of subsets of X. The intersection of all monotone classes M
of subsets of X such that C C M is called the monotone class generated by C and we denote it
M(C). Le.

M(C) = (M | M is a monotone class of subsets of X and C C M}.

There is at least one monotone class M of subsets of X such that C C M, namely M =
P(X). We also note that the term monotone class used for M(C) is justified by its definition and
Proposition 1.5.

Proposition 1.6. Let C be any collection of subsets of X. Then M(C) is the smallest monotone
class M of subsets of X such that C C M. In other words,

(i) M(C) is a monotone class of subsets of X,
(ii) C € M(C),
(iii) if M is any monotone class of subsets of X such that C C M, then M(C) C M.

Proof. Obvious from the definition of M (C). O
Proposition 1.7. Let A be an algebra of subsets of X. Then M(A) = S(A).

Proof. S(A) is a o-algebra and, hence, a monotone class. Since A C S(.A), Proposition 1.6
implies M(A) C S(A).

Now it is enough to prove that M(.A) is a o-algebra. Since A C M(.A), Proposition 1.3 will then
immediately imply that S(A) C M(.A), and this will conclude the proof.

M(A) is non-empty, since ) € A C M(A).

Now fix any A € A and consider the collection
My={BCX|AUBec M(A)}.

It is very easy to show that A C M 4 and that M 4 is a monotone class of subsets of X.

In fact, if B € A,then AUB € A C M(A),and so B € M.

Also, let B,, € M4 forall n € N and (B),) be increasing. Then AU B,, € M(A) foralln € N
and (A U B,,) is increasing. Since M (A) is a monotone class, | > (A U B,,) € M(A). Since

IS(AUBYZ) =AU (UZE? Bn)a

we get A U (U:i‘j B,) € M(A), and so Ut B, € M. Therefore, M is closed under
countable increasing unions.

In the same manner we can prove that M 4 is closed under countable decreasing intersections, and
we conclude that it is a monotone class.

Proposition 1.6 implies M (A) C M 4. This means:

AUB e M(A) forall Ae Aandall B M(A). (1.1)

Now fix any B € M(.A) and consider Mp ={A C X |AU B € M(A)} again.
We just proved that M g is a monotone class of subsets of X. Moreover, (1.1) implies A C Mp.
Again, Proposition 1.6 implies M(.A) C M g, which means:

AUB e M(A) forall Ae M(A) andall B € M(A). (1.2)
Now consider the collection

M= {ACX|A° e M(A)}.



Assume that A,, € M for every n € N and that (A,,) is increasing. Then A¢ € M(A) for every
n € Nand (A¢) is decreasing. Since M (.A) is a monotone class, we get that (1] AS € M(A).

Since
M2t 45 = (Ui 4a)"
we have that (|J2] 4,)° € M(A) and so |J,; > A, € M. Therefore, M is closed under
countable increasing unions.
In the same manner we can prove that M is closed under countable decreasing intersections, and

we conclude that M is a monotone class. Moreover, A C M (because, if A € A, then A € A,
and so A° € M(A), and so A € M). Hence, M(A) C M, which means:

A e M(A) forall A e M(A). (1.3)

Now (1.2) and (1.3) imply that M (.A) is an algebra of subsets of X.
Finally, let A,, € M(A) for all n € N. We consider B,, = Ay U --- U A,, for all n. Since M(A)
is an algebra, B,, € M(A) for all n. It is clear that (B,,) is increasing, and, since M(.A) is a

monotone class, U:g B, € M(A). But
+ +

and so J!25 A, € M(A).
Therefore, M(.A) is a o-algebra. O

Exercises.

1.1.9. Let A be an algebra of subsets of X. Prove that A is a o-algebra if and only if it is closed
under countable increasing unions.

1.1.10. Prove that the intersection of algebras of subsets of X is an algebra of subsets of X.
1.1.11. Find M(C) in the three cases of exercise 1.1.6.

1.1.12. Prove that every finite collection of subsets of X is a monotone class of subsets of X.

RESTRICTION OF A ¢-ALGEBRA.

Definition. Let C be any collection of subsets of X, and Y C X. We define
ClY ={ANnY|AecC}.

This is a collection of subsets of Y, and we call it the restriction of C on 'Y .

Proposition 1.8. Let S be a o-algebra of subsets of X, andY C X. Then S|Y is a o-algebra of
subsets of Y. If, also, Y € S, then S|Y ={ACY|Ae€ S}.

Proof. Since ) € S, we havethat) =) NY € S]Y.
Let B € S]Y. Then B=ANY forsome A € S. Since

Y\B=(X\A)NY
and X \ A € S,wehavethatY \ B € S|Y.
Let B,, € S|Y for every n € N. Then for each n there is A,, € S so that B,, = A,, NY. Since
UiSS Br = Ui (AnNY) = (Ui 4n) NY

and | A, € S, we find that |, B,, € S]Y.

Therefore, S|Y is a o-algebra of subsets of Y.

NowletY € S.

If Be S|Y,thenB = ANY forsome A € S,andso B C Y and B € S. Therefore,
Be{C CY|C e S} Conversely,if Be {C CY|C € S},then BC Y and B € S. We set
A=DB,andweget B=ANY and A € S. Hence, B € S]Y. O
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Proposition 1.9. Let C be a collection of subsets of X, andY C X. If S(C|Y') is the o-algebra of
subsets of Y generated by C|Y, then S(C1Y) = S(C)|Y.

Proof. If B € C|Y,then B = ANY forsome A € C C S§(C), and so B € S(C)]|Y. Thus,
ClY C S(C)]Y. Proposition 1.8 says that S(C)|Y is a o-algebra of subsets of Y, and now
Proposition 1.3 implies S(C1Y) C S(C)]Y.

Now we define the following collection of subsets of X:

S={ACX|ANY € S(C]Y)}.

We have that ) € S, because )NY = () € S(C]Y).
IfAeS, then ANY € S(C]Y). Then X \ A € S, since

(X\A)NY =Y \(ANY) e S(C]Y).
If A, € Sforalln € N, then A, NY € S(C|Y) for all n € N. This implies that
(Un214n) NY = U, %54 NY) € S(C]Y),

andso | J> A, € S.

We conclude that S is a o-algebra of subsets of X.

IfAeC,thenANY €C|lY CS(C]Y),andso A € S. Thus, C C S, and now Proposition 1.3
implies S(C) C S.

Now, for an arbitrary B € S(C)]Y, we have that B = ANY for some A € S(C) C S and, thus,
B € §(C]Y). Hence, S(C)|Y C S(C]Y). O

Exercises.

1.1.13. Let Y C X, and A be an algebra of subsets of X. Prove that A]Y is an algebra of subsets
of Y.

BOREL o-ALGEBRAS.

Definition. Let X be a topological space, and T be the topology of X, i.e. the collection of all
open subsets of X. The o-algebra of subsets of X which is generated by T, namely the smallest
o-algebra S of subsets of X such that T C S, is called the Borel c-algebra of X and we denote
it Bx. Le.

Bx =S(T).

The elements of Bx are called Borel subsets of X, and Bx is also called the o-algebra of Borel
subsets of X.

If there is no danger of confusion, we shall say open set instead of open subset of X and Borel
set instead of Borel subset of X.

By definition, all open sets are Borel sets and, since Bx is a o-algebra, all closed sets (which
are the complements of open sets) are also Borel sets. Hence, every countable intersection of open
sets and every countable union of closed sets is a Borel set.

If X is a topological space with topology 7 and if Y C X, then, as is well-known (and easy
to prove), the collection 7Y = {U NY |U € T} is a topology of Y which is called the relative
topology or the subspace topology of Y.

Proposition 1.10. Let Y C X. If X is a topological space and Y has the subspace topology, then
By = Bx|Y.

Proof. An application of Proposition 1.9: By = S(T'Y) =S(7T)]Y = Bx Y. O
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Thus, the Borel subsets of Y (with the subspace topology of Y ) are just the intersections with
Y of the Borel subsets of X.

Examples of topological spaces are the metric spaces. The most familiar metric space is the
Euclidean space R™ with the usual Euclidean metric. Because of the importance of R™ we shall
pay particular attention to Bg~. Instead of B~ we shall use the simpler symbol B,,:

Bn - BRH.

The typical bounded orthogonal parallelepiped with axis-parallel edges in R" is a set of the
form S = I; x --- x I, where each I; is a bounded interval in R. The bounded orthogonal
parallelepipeds with axis-parallel edges are called closed or open or open-closed or closed-open if
they are, respectively, of the form Q = [a1,b1] X - -+ X [ay, by] or R = (a1,b1) X -+ X (an, by) or
P = (a1,b1] x -+ X (an,by] or T' = [a1,b1) X -+ X [an, by,). An orthogonal parallelepiped with
axis-parallel edges S = I1 x --- x I, is empty if at least one of the [} is the empty interval in R.

If we allow at least one of the intervals /; in R to be unbounded (and none of them to be empty),
then S = Iy x --- x I, is the typical unbounded orthogonal parallelepiped with axis-parallel
edges in R". Again, certain unbounded orthogonal parallelepipeds with axis-parallel edges in R"
are closed or open or open-closed or closed-open.

Since orthogonal parallelepipeds with axis-parallel edges will play a role in much of the fol-
lowing, we agree to call them, for short, n-dimensional intervals or intervals in R".

The typical open-closed interval in R™ is of the form P = (ay,b1] X - -+ X (ap, by], where
—o00 < aj < bj < oo forall j. (Of course, when we write (a, +00] we mean (a, +00).) The
space R" is an open-closed interval, as well as any of the half spaces {(z1,...,zy)|z; < b;} and
{(z1,...,2n) |a; < z;}. In fact, every open-closed interval in R" is, obviously, the intersection
of 2n such half-spaces.

Proposition 1.11. All n-dimensional intervals are Borel sets in R™.

Proof. A half-space of the form {(z1,...,zy)|z; < b;j} or of the form {(z1,...,zy)|2; < b;}
is a Borel set in R”, since it is an open set or a closed set, respectively. Similarly, a half-space of the
form {(x1,...,2,) |a; < x;} or of the form {(z1,...,2y)|a; < x;} is a Borel set in R". Now,
an interval S in R" is the intersection of 2n such half-spaces and so it is a Borel set in R". O

Proposition 1.12. (i) If C is the collection of all closed or of all open or of all open-closed or of all
closed-open bounded intervals or of all bounded intervals in R", then B, = S(C).

(ii) If C is the collection of all intervals (a,+o0) in R, then B; = S(C).

Proof. (i) In all cases, Proposition 1.11 implies C C B,,, and so S(C) C B,,.

To show the opposite inclusion we consider any open subset U of R™. For every x € U there
is a small open ball B, centered at z which is included in U. Now, considering the case of C
being the collection of all closed bounded intervals, there is a @, = [a1,b1] X -+ X [an, by
containing x, which is small enough so that it is included in B, and hence in U, and with all
Q1. --,0n,b1,. .., by, being rational numbers. Since x € (), C U for all z € U, we have that

U= Uer Q-

But the collection of all possible @), is countable, and so the general open subset U of R” can be
written as a countable union of sets in the collection C. Therefore, every open subset U of R"
belongs to S(C). Since S(C) is a o-algebra of subsets of R”, and since B,, is generated by the
collection of all open subsets of R”, we conclude that 5, C S(C).

Of course, the proof of the last inclusion works in the same manner with all other types of intervals.
(ii) Again, we have that C C By, and so S(C) C B;.

Moreover, (a,b] = (a,+00) \ (b,+00) € S(C) for all (a,b]. By (i), the collection of all (a, b]
generates B. Therefore, B; C S(C). O
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Proposition 1.13. The collection
A= { U,]f:l P ‘ keN, P,..., P, are pairwise disjoint open-closed intervals in ]R”}

is an algebra of subsets of R™. In particular, the following are true:

(i) The intersection of two open-closed intervals is an open-closed interval.

(ii) For all open-closed intervals P, Py, . .., Py, there are pairwise disjoint open-closed intervals
Pl,...,P/sothat P\ (PiU---UPy,)=P/U---UP[
(iii) For all open-closed intervals P, ..., P, there are pairwise disjoint open-closed intervals

Pl,...,P/sothat PLU---UP, =P/U---UP].

Proof. If P' = (a},b}] x -+ x (al,,b,] and P" = (af,b]] x -+ x (al, b"] are not disjoint, then

n“n n»-n

a;j < bj forall j, where a; = max{aj}, aj} and b; = min{b’, b7}, and then

P' NP’ = (a1,b1] x -+ x (an, ba].

This proves (i).
IfA = Ule P/ and A" = Ué’:1 P/, where the open-closed intervals P, ..., P are pairwise
disjoint and the open-closed intervals Py’, ..., P/’ are also pairwise disjoint, then

A'NA" =Ucicr 1<j< (PN P]).

The sets I/ N Py’ are pairwise disjoint open-closed intervals, as we have just seen.

Thus, A is closed under finite intersections.

Consider the open-closed interval P = (ay,b1] X - -+ X (an, by]. It is easy to see that P° can be
written as the union of 2n pairwise disjoint open-closed intervals. To express this in a concise way,
for every I = (a, b] denote I = (—co, a] and I(") = (b, +oc] the left and right complementary
intervals of I in R (they may be empty). If we write P = I; X --- X I, then P€ is equal to

TOXxRx- xR U (I"xRx- - xR)
U(lelél)xRx--'xR) U (I1XI§T)><R><--~><]R)

U(le---xIn,gxI(lllxR) U (le---xIn,ZxIT_) x R)

n

1
U@ XX Ty x IOY U (I X -+ X Ty x I,

i.e. the union of pairwise disjoint open-closed intervals. Thus, the complement P¢ of every open-
closed interval P is an element of A.

Now, if A = Ule P;, where the open-closed intervals P, ..., P are pairwise disjoint, is any
element of A, then A = ﬂle P¢ is a finite intersection of elements of A. Since A is closed
under finite intersections, we have that A° € A, and so A is closed under complements.

Finally, if A", A” € A, then A’ U A” = (AN A"%)¢ € A, and so A is closed under finite unions.
Therefore, A is an algebra of subsets of R™, and then (ii) and (iii) are immediate. O

It is convenient for certain purposes, and especially because functions are often infinite valued,
to consider R = R U {+00, —00} and C = C U {co} as topological spaces and define their Borel
o-algebras.

The e-neighborhood of a point z € R is, as usual, the interval (z — €, x + €). Now we define the
e-neighborhood of 400 to be (1, +0o0], and the e-neighborhood of —oo to be [—co, —1). We also
say that U C R is an open subset of R if every point of U has an e-neighborhood (the € depending
on the point) which is included in U. It s trivial to see (justifying the term open) that the collection
of all open subsets of R is a topology of R, namely that it contains the sets () and R and that it is

closed under arbitrary unions and under finite intersections. It is obvious that a set U C R is an
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open subset of R if and only if it is an open subset of R. In particular, R itself is an open subset of
R. It is also obvious that, if a set U C R is an open subset of R, then U N R is an open subset of
R. Therefore, the topology of R coincides with its subspace topology as a subset of R.

The next result says, in particular, that we may construct the general Borel subset of R by taking
the general Borel subset of R and adjoining none or any one or both of the points +0o, —oo to it.

Proposition 1.14. (i) B; = B1|R, where we denote B the Borel o-algebra of R.

(ii) By = {A, AU {+o00}, AU {—o0}, AU {+00, —00} | A € By }.

(iii) If C is the collection containing {+oo} or {—o0} and all closed or all open or all open-closed
or all closed-open or all bounded intervals in R, then B; = S(C).

(iv) If C is the collection of all intervals (a,+o00] in R, then By = S(C).

Proof. (i) Immediate from Proposition 1.10.
(ii) R is open in R, and so R € B;. Now (i) and the last statement in Proposition 1.8 imply that

Blz{AgR|Aegl}.

Therefore, if A € By, then A € B;. Also, [—00, +00) is open in R, and so {+00} € Bj. Similarly,
{—o00} € By and {+00, —¢} € By, and we conclude that

{A, AU {+00}, AU {~o00}, AU {400, ~oc} | A € B} CB..

Conversely, let B € B; and consider A = BNR € By. Then B = Aor B = AU {40} or
B =AU{—o00}or B= AU {+00, —0o0}, and we conclude that

Bi C {A, AU {400}, AU {—00}, AU {+00,—c0} | A € By }.

(iii) Let C = {{+00}, (a,b]| — 00 < a < b < +00}.

From all the above we get that C C 1, and so S(C) C B;.

If A € By, then Proposition 1.12 implies A € S(C). In particular, R € S(C), and so (—o0, +00] =
R U {400} € 8(C). Therefore, {—cc} = R\ (—o00, +oc] € §(C), and {+00, —c0} = {+oc} U
{—o0} € S§(C). From all these and from (ii) we conclude that

By ={A, AU {+o0}, AU{—00}, AU {400, -0} | A € B} C S(C).

The proof is similar for all other choices of C.
(iv) We have that C C B1, and so S(C) C B;.
Now, {+00} = N (n, +00] € S(C). Also (a,b] = (a,+00] \ (b,+00] € S(C) for all (a,b].
By (iii), the collection containing {+occ} and all (a, b] generates B;. Therefore, By C S(C). O

We now turn to the case of C = C U {oo}.

The e-neighborhood of a point x = (x1,22) = x1 + ixz2 € C is, as usual, the open disc
B(ase) = {y = (y1,y2) € C|ly — x| < e}, where |y — | = (n — 21)? + (2 — 22)2) /2 We
define the e-neighborhood of oo to be the set {y € C ‘ ly| > %} U {0}, i.e. the complement of a
closed disc centered at O (together with the point o). We say that U C C is an open subset of C
if every point of U has an e-neighborhood (the ¢ depending on the point) which is included in U.
The collection of all open subsets of C contains () and C and it is closed under arbitrary unions and
under finite intersections, thus forming a topology of C. It is clear that U C C is an open subset
of C if and only if it is an open subset of C. In particular, C itself is an open subset of C. Also, if
U C C is an open subset of C, then U N C is an open subset of C. Therefore, the topology of C
coincides with its subspace topology as a subset of C.

As in the case of R, we may construct the general Borel subset of C by taking the general Borel
subset of C and at most adjoining the point oo to it.
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Proposition 1.15. (i) By = By]C, where we denote By the Borel o-algebra of C.
(ii) By = {A,A U {OO} | A e BQ}

(iii) If C is the collection of all closed or all open or all open-closed or all closed-open or all
bounded intervals in C = R?, then By = S(C).

Proof. The proof is very similar to (and slightly simpler than) the proof of Proposition 1.14. [
Exercises.

1.1.14. Let Y C X. If T is a topology of X, prove that 7|Y is a topology of Y.

1.1.15. Let X be a topological space, and F be the collection of all closed subsets of X. Prove
that Bx = S(F).

1.1.16. If X, Y are two topological spaces and f : X — Y is continuous, prove that f~!(B) is a
Borel subset of X for every Borel subset B of Y.
Hint. Exercise 1.1.7 may help.

1.1.17. If Y is a Borel subset of the topological space X, prove that By = {A C Y | A € Bx}.

1.1.18. (i) Let C be the collection of all half-spaces in R™ of the form {(x1,...,z,) |a; < xj},
where j = 1,...,nand a; € R. Prove that B, = S(C).

(i) Let C be the collection of all open balls B(x; ) or of all closed balls B(z;r), where z € R™
and r > 0. Prove that B, = S(C).

1.1.19. Let C be the collection of all open discs B(z;r) or of all closed discs B(x; 1), where z € C
and r > 0. Prove that Bs = S(C).

1.1.20. Let X be a metric space. Prove that every closed subset of X is a countable intersection of
open subsets of X, and that every open subset of X is a countable union of closed subsets of X.
Hint. If F is a closed subset of X, consider the sets U,, = {z € X | d(z,y) < % for some y € F},
where n € N and d is the metric of X.

1.1.21. Let X be a topological space, Y be a metric space, and f : X — Y. Prove that the set
{z € X | f is continuous at x} is a countable intersection of open subsets of X.

Hint. Consider the sets Uy, = (J,cy int (f~'(B(y; +))) for n € N, where int(A) is the interior
of A C X, and B(y;r) is the open ball in Y with center y € Y and radius r > 0.

1.1.22. Let X be a topological space, ¥ be a metric space, and f : X — Y for k € N.
Assume that Y is complete and separable, and that every fj, is continuous on X. Prove that
{z € R™|(fx(x)) converges} is a countable intersection of countable unions of closed subsets
of X.

Hint. Consider the sets Uy, = U, s Uy2] N, 25 /5 (B(y; +)) forn € N, where A is a countable

set which is dense in Y, and B(y; r) is the closed ball in Y with center y € Y and radius > 0.

1.2 Measures.

Definition. Let (X, S) be a measurable space. A function ji : S — [0, +0o0] is called a measure
on (X,8)if

(i) p(0) =0,

(ii) pu( Ut Ay) = 2 W(Ay) for all sequences (A,) of pairwise disjoint elements of S.

The triple (X, S, 1) of a set X, a o-algebra S of subsets of X and a measure pon (X, S) is called
a measure space.
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If there is no danger of confusion, we shall say that i is a measure on S or a measure on X.
Recall that each A € S is called a measurable set. Now, the quantity 1( A) is called the p-measure
of A or, if there is no danger of confusion, just the measure of A.

Note that the values of a measure are non-negative real numbers or 4c0.

Property (ii) of a measure is called o-additivity. Sometimes a measure is also called o-additive
measure to distinguish from a finitely additive measure ;. which, by definition, satisfies ;(()) = 0
and M( Ufj:l An) = Zivzl w(Ay) forall N € N and all pairwise disjoint A;,..., Ay € S.

In fact, it is easy to see that a (0-additive) measure on a o-algebra is finitely additive. Indeed,
if Ay,..., Ay € S are pairwise disjoint, we take A,, = () (and hence p(A,,) = 0) forn > N, and

then

n(Unzs An) = n(Un25 An) = 025 w(An) = 300y i(An)-
Example. The simplest measure on a measurable space (X, S) is the zero measure which is de-
noted 0 and it is defined by 0(A) = 0 for every A € S.

Example. Let X be an uncountable set and consider S = {A C X | either A or A€ is countable}.
We define: ;1(A) = 0, if A is countable, and p(A) = 1, if A€ is countable.

Then it is clear that () = 0, and let A1, Ao, ... € S be pairwise disjoint. If all A,, are countable,
then [ J;>S A, is also countable, and we get

n(UnZi An) = 0= 32,2 p(An).

Now, assume that one of the A;,, say A, is uncountable. Then for all n # ng we have A, C A7, ,
and so A,, is countable. Therefore, (A,,) = 1, and u(A,) = 0 for all n # ng. Moreover,
(U5 Ap)e € AS,, and so (U, A,)° is countable. Thus,

p(UpZ An) = 1= 32,27 u(An).
Therefore, p is a measure on X.

Example. We consider the measurable space (X, P(X)), and we define £ : P(X) — [0, +00] in
the following manner. We set #(A) = card(A), i.e. the cardinality of A, if A is a finite subset of
X. We also set f(A) = 400 if A is an infinite subset of X.

Clearly, #(0) = card()) = 0. Now let Aj, As, ... be pairwise disjoint subsets of X. If at most
finitely many of the A,, are non-empty and those which are non-empty are finite, then U+°° Ay is
also finite, and

H(US Ay) = card (25 An) = 30025 card(A4,) = 3725 #(An).

If either at most finitely many of the A,, are non-empty and at least one of those which are non-
empty is infinite or if infinitely many of the A,, are non-empty, then U+°° A, is infinite, and

(U+Oo A ) too = :3 (An).
Therefore, £ is a measure on (X, P(X)), and it is called the counting measure on X.

Example. Again, we consider the measurable space (X, P(X)) and a particular o € X, and we
define 0, : P(X) — [0, +oc] as follows. We set d,,(A) = 1, ifxzg € A, and 0,,(A) = 0, if
i) ¢ A.

Of course, d,,(0) = 0. Let Ay, Ag, ... be pairwise disjoint subsets of X. If zy ¢ A,, for every n,
then ¢ ¢ U:{g A,,, and so

IO(U+OOA)_O_Z+005 ( )
If zy € A, for some n, then this n is unique, and also o € UJr A,,. Hence,

0ao (Un21 An) =1 = 32,27 20 (An)-

Therefore, 0, is a measure on (X, P(X)), and it is called the Dirac measure at z( or the Dirac
mass at xg.
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Proposition 1.16. Let (X, S, 1) be a measure space.

(i) If A,B € Sand A C B, then u(A) < u(B).

(i) IfA,Be€ S, AC Band u(A) < o0, then u(B\ A) = u(B) — u(A).

(iii) If A1, As, ... € S, then (|25 An) < 35025 n(Ap).

(iv) If Ay, Ag, ... € S and (A,,) is increasing, then u( Un:l An) = limy,— 400 p(Ap).

W If A1, As, ... €S, n(An) < +oo for some N and (A,) is decreasing, then ji( (1] A,) =
limy, 400 (Ap).

Proof. (i) We write B = AU (B \ A). By finite additivity of s,

u(B) = u(A) + u(B\ 4) = u(A).

(if) From both sides of 1(B) = u(A) + u(B '\ A) we subtract p1(A).
(ii1) Due to Lemma 1.1, there are By, Bo, ... € S which are pairwise disjoint, and satisfy B,, C A,
for all n, and | J> B,, = U, 2] An. By o-additivity of x and (i), we get

p(U2S An) = n(Ui2 Ba) = 30025 w(Bn) < 300255 p(An).

(iv) We have that
UnZi An = A1 U (U2 (A \ 4g)),

where all sets whose union is taken in the right side are pairwise disjoint. Applying o-additivity
(and finite additivity),

p(UnSS An) = p(An) + 35055 p(Agp \ Ag) = nEm (A1) + 32000 p(Aper \ Ar))
= lim_ (A UURZ (kg \ Ag)) = lim p(Ay).

n—-+0o n—+oo

(v) We write A = ()] A,,. Then (Ay \ A,) is increasing and | > (Ayx \ 4,) = Anx \ A. So
from (iv) we get
limy, oo (AN \ Apn) = u(An \ A).

Now, u(An) < +oo implies p(A,) < +oo foralln > N and p(A) < +oo. From (ii) we get
limy, oo ((AN) = 1(An)) = p(AN) — p(A)
and, since p(Ayn) < 400, we find lim,,_, 4 o p1(A4y) = p(A). O

Property (i) of a measure is called monotonicity, property (iii) is called 6-subadditivity, prop-
erty (iv) is called continuity from below, and property (v) is called continuity from above.

Definition. Let (X, S, 1) be a measure space.

(i) w is called finite if 1(X) < +o0.

(ii) p is called o-finite if there exist X1, Xo,... € S so that
for all n.

(iii) p is called semifinite if for every E € S with u(E) = +oc thereisan F € S sothat F C E
and 0 < p(F) < +o0.

(iv) We say that E € S is of finite y-measure if () < +oo.

(v) We say that E € S is of o-finite y-measure if there exist £y, Fo, ... € Ssothat E C U:i‘i E,
and p(Ey) < +oo for all n.

X Xn = X and p(X,,) < 400

n=1

If there is no danger of confusion, we may say that E is of finite measure or of o-finite measure.
Some observations related to the last definition are immediate.

1. If p is finite, then all sets in S are of finite measure. More generally, if £ € S is of finite
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measure, then all subsets of £/ which belong to S are of finite measure.

2. If p is o-finite, then all sets in S are of o-finite measure. More generally, if £ € S is of o-finite
measure, then all subsets of £/ which belong to S are of o-finite measure.

3. The collection of sets of finite measure is closed under finite unions.

4. The collection of sets of o-finite measure is closed under countable unions.
5. If u is finite, then it is also o-finite.

Lemma 1.2. Let (X, S, i) be a measure space. If i is o-finite, then

(i) there exist pairwise disjoint X1, Xo,... € S so that Uzg Xn, = X and p(X,) < +oo for
every n.

(ii) there exist X1, Xs, ... € S so that (X,,) is increasing and \J'>S X,, = X and p(X,,) < +00
for every n.

Proof. By definition, there exist X/, X3,... € S so that |J'> X! = X and (X)) < +oo for
every n.

(1) Due to Lemma 1.1 there are pairwise disjoint X7, Xo,... € S so that ;“3 X, = X and
X, C X/, for every n. From the last inclusion we get 1(X,,) < u(X]) < 4oco for every n.

(i) We take the successive unions X; = X{ and X,, = X| U---U X/ for n > 2. Then, clearly,
(X,,) is increasing and | J>5 X,, = X. Moreover, u(X1) = u(X}) < +00 and also

w(Xn) < p(X7) + -+ pu(X5,) < +oo
forn > 2. O

Proposition 1.17. Let (X, S, 1) be a measure space. If u is o-finite, then it is semifinite.

Proof. By Lemma 1.2, there are X1, X»,... € S so that (X)) is increasing and U:i'i X,=X
and p(X,) < +oo for all n.
Let E € S have pu(E) = +o0. Since (E N X,,) is increasing and |,/ (F N X,,) = F, we get

limy, 400 w(E N Xp) = p(E) = +00.
Hence, u(ENX,,) > 0forsome ng. Also, FENX,,, C Eand u(ENXy,) < pu(Xy,) < +o0. O
Definition. Let (X, S, i) be a measure space. E € S is called u-null if u(E) = 0.

If there is no danger of confusion, we shall say that F is null instead of p-null.
The following is trivial but basic.

Proposition 1.18. Let (X, S, i) be a measure space.
(i) If E € S is null, then every subset of E/ which belongs to S is also null.
(ii) If E1, Es, ... € S are all null, then UZS& E,, is null.

Proof. The proof is based on the monotonicity and on the o-subadditivity of . O

LINEAR COMBINATIONS OF MEASURES.

Proposition 1.19. Let j1, v be measures on the measurable space (X,S) and X € [0, +00).
(i) We define the function u+ v : S — [0, +00] by

(u+v)(E)=p(E)+v(E) forall Ec€S.

Then p + v is a measure on (X, S).
(ii) We define the function A\ : S — [0, 4+00] by

(M) (E) =Au(E) forall E€S

(where we follow the convention: 0 (+00) = 0 whenever A = 0 and u(E) = 400). Then A\ is a
measure on (X, S).
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Proof. (i) We have (u+ v)(0) = pu(@) + v(0) =0+ 0= 0.
If Ay, As, ... € S are pairwise disjoint, then
(4 1) (UnZ] An) = 1(UnZ3 An) +v(UnZ5 An) = 3050 a(An) + 3232 v(4n)
= Zn:l(:u( n) + V(An)) = n:l(“ + V)(An)
Hence, i 4 v is a measure on (X, S).

(i) We have (Ap)(0) = A p(0) = A0 = 0.
If Ay, As, ... € S are pairwise disjoint, then

M) (UnZ3 An) = Ap(UnZy An) = AD2050 m(An) = 32,20 Aa(An) = 32525 (M) (An).-
Hence, Ap is a measure on (X, S). O

Definition. Let 11, v be measures on the measurable space (X, S) and A € [0, +00). The measures
w~+ v and A\ on (X, S) which are defined in Proposition 1.19 are called sum of 1 and v and
product of 1 by \.

Thus, we may define more general non-negative linear combinations
A1pin + -+ Anfin
of measures.
Exercises.

1.2.1. Let X be uncountable and define u(E) = 0, if E C X is countable, and u(E) = +oo, if
E C X is uncountable. Prove that y is a measure on (X, P(X)) which is not semifinite.

1.2.2. Let X be infinite and define u(E) = 0, if E C X is finite, and p(E) = +o0, if E C X is
infinite. Prove that 1 is a finitely additive measure on (X, P (X)) which is not a measure.

1.2.3. Let p be a finitely additive measure on the measurable space (X, S).
(1) Prove that g is a measure if and only if it is continuous from below.
(ii) If (X)) < +o0, prove that u is a measure if and only if it is continuous from above.

1.2.4. Let (X, S, 1) be a measure space. If A € S, B C X and u(AAB) = 0, prove that B € S
and (B) = u(A).

1.2.5. Let (X, S, 1) be a measure space and A;, Ag, ... € S. See exercise 1.1.1, and prove that:
(@) p(lim,_,, o Ay) <lim, .. p(A,),

(ii) iy 00 p0(An) < p(Timyyo0 Ap), if (U2 An) < +o0,

(iii) p(limp— 400 Ay) =0, if S 1u(Ay) < +oo.

1.2.6. Let 1 be a semifinite measure on the measurable space (X, S). Prove that for every E € S

with y(E) = 400 and every M > O thereis an F' € S sothat ¥ C F and M < u(F) < +oc.
Hint. Consider the sup{u(F) | F € S,F C E, u(F') < +0o0}.

1.2.7. Let (X, S, 1) be a measure space and E € S be of o-finite measure. If {D; };c; is a collec-
tion of pairwise disjoint sets in S, prove that the set {i € I | u(E N D;) > 0} is countable.
Hint. If i(E) < +oo and n € N, prove that the set {i € I | u(E N D;) > 1} is finite.

1.2.8. Let (115,) be an increasing sequence of measures on the measurable space (X, S). We define
p(E) = limy,_y 4o pin(F) for all E € S. Prove that u is a measure on (X, S).
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1.2.9. Let (X, S, i) be a measure space. Prove that for all n and Ay, ..., A, € S we have

N( U?:l AJ) + Zk even (Zlgz’1<~--<ik§n M(Ail n---nN Alk))
=2k odd ( X1<iy<cipan (Ai - N AG)).

This is called inclusion-exclusion formula.

1.2.10. Let (X, Sx, px) be a measure space and f : X — Y. We consider the push-forward of
Sx by fonY ie. the o-algebra Sy = {B C Y | f~1(B) € Sx} (see exercise 1.1.2). We define

py(B) = px(f~1(B)), B e Sy.
Prove that iy is a measure on (Y, Sy). It is called the push-forward of ux by fon Y.

1.2.11. Let (Y, Sy, py ) be a measure space and f : X — Y be one-to-one on X and onto Y. We
consider the pull-back of Sy by f on X i.e. the o-algebra Sx = {f~1(B) | B € Sy} (see exercise
1.1.3). We define

nx(A) = py(f(A4), AeSx.
Prove that px is a measure on (X, Sx). It is called the pull-back of iy by f on X.

1.2.12. Let (X, S, i) be a measure space.

(i) If A, B € S and u(AAB) = 0, prove that u(A) = u(B).

(ii) Define A ~ Bif A, B € S and u(AAB) = 0. Prove that ~ is an equivalence relation on S.
For the rest we assume that 1(X) < 400, and we define d(A, B) = u(AAB) forall A, B € S.
(iii) Prove that d is a pseudometric on S. This means: 0 < d(A, B) < +oc, d(A, B) = d(B, A)
and d(A,C) <d(A,B)+d(B,C) forall A,B,C € S.

(iv) On the set S/ of all equivalence classes we define d([A], [B]) = d(A, B) = u(AAB) for
all [A], [B] € §/~. Prove that d([A], [B]) is well defined and that d is a metric on S/ ..

1.2.13. Let A be an algebra of subsets of X. If

(i) u(0) =0,

(i) w(U;25 45) = 32725 i(A;) for all pairwise disjoint Ay, Ay, ... € A with [J]5] 4; € A,
then we say that p : A — [0, +00] is a measure on (X, A).

Prove that if x4 is a measure on (X, .A), where A is an algebra of subsets of X, then y is finitely
additive, monotone, o-subadditive, continuous from below and continuous from above (provided
that, every time a countable union or countable intersection of elements of .4 appears, we assume

that this is also an element of A).

1.2.14. Let ((Xn,Sn, ,un)) be a sequence of measure spaces, where the X,, are pairwise dis-

joint. We define X = /> X,,, S = {E C X|ENX, € S, forall n € N} and pu(E) =
T (BN X,) forall E € S.

(i) Prove that (X, S, ) is a measure space. It is called the direct sum of ((X,, Sy, un)) and it is

denoted @1 (X, S fn)-

(i1) Prove that p is o-finite if and only if u,, is o-finite for all n € N.

POINT-MASS DISTRIBUTIONS.

Before introducing a particular class of measures we shall define sums of non-negative terms over
general sets of indices. We shall follow the standard practice of using both notations a(i) and a;
for the values of a function a on a set I of indices.
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Definition. Let [ be a non-empty set of indices, and a : I — [0, +00|. We define the sum of the
values of a by

Sierai=sup{ > cpai } F is a non-empty finite subset of I}.
If I =0, wedefine ", ;a; = 0.

Of course, if F' is a non-empty finite set, then

N
ZieF i = D 1 @iy

where F' = {a;,, ..., a;, } is an arbitrary enumeration of F".
We first make sure that this definition extends a simpler situation.

Proposition 1.20. If I is countable and I = {iy,i9,...} is an arbitrary enumeration of I, then
Sier @i = Y155 ai, foralla: I — [0, +00).

Proof. For arbitrary N we consider the finite subset F' = {i1,...,ix} of I. Then, by the definition
of ) ;. ai, we have

N
Dokl Gig = D iep @i S D ie i

Since N is arbitrary, we get Z;ﬁ ai, <Y ier G-

Now for an arbitrary non-empty finite /' C I we consider the indices of the elements of F' provided
by the enumeration I = {iy, s, . ..} and we take the largest, say N, of them. Of course, this implies
F C {iy,i9,...,in}. Therefore

N +
Dier @i S D pq @i < D0p2] iy
Since F is arbitrary, we find, by the definition of ) _;_; a;, that 3,y a; < Z;ﬁ‘i Q.- O

Proposition 1.21. Let a : I — [0,+00]. If Y ..;a; < +00, then a; < +oo for all i € I and the
set {i € I|a; > 0} is countable.

Proof. Let) ;. a; < +oo.
We take any iy € I. Considering the finite set F' = {io}, we see that

Qig = D _jer @i < D ier @i < +00.
Now, for arbitrary n € N, we consider the set
Iy={iel|a;>1}.
If F' is an arbitrary finite subset of [,,, then
% card(F) < > icpai < iy Qi

Hence, the cardinality of the arbitrary finite subset of I, is not larger than the number n Zz‘e 7 @i,
and so I, is finite. But we have that

{i €I]a; >0} = I,
and so {7 € I |a; > 0} is countable. O

Proposition 1.22. (i) If a,b : I — [0, +o0] and a; < b; foralli € I, then ) ;. a; <> i ;1 b;.
(i) Ifa:1—[0,4+00land J C I, theny . ;a; <), ;a;
(iii) If a : I — [0,+oc] and J = {i € I'|a; > 0}, then ), ra; = >, ; a;
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Proof. (i) For arbitrary finite F* C I we have

EieF a; < ZieF bi < Zie[ bi.

Taking the supremum over the finite subsets F' of I, we find Zie 10 < Zie 7 bi.
(ii) For arbitrary finite I C J we have that F' C I, and so

ZiEF a; < Zie[ Q-

Taking the supremum over the finite subsets F' of J, we get Y .. ;a; < Y . a;.

(iii) Since J C I, (ii) implies that >, ;a; < >, 7 a;.

For an arbitrary finite ' C I we write F, = {i € F'|a; > 0} and F; = {i € F'|a; = 0}. Then
FiUF,=Fand F; N F, =0, and also F}; C J. Hence,

DR @i = ZiEFl a; + ZiGFQ a; = ZieFl ai <Y iey G
Taking the supremum over the finite subsets F' of I, we get >,y a; < ) . ; a;. O

Proposition 1.23. Let I = | J;,c i Jx, where K is non-empty and the Jy, are non-empty and pairwise
disjoint. Then for every a : I — [0,+00] we have ) ;. a; = Y ok (ZiEJk a;).

Proof. We take an arbitrary finite F' C I and we consider the finite sets Fy, = F'N J;,. We observe
that the set
L={kecK|F,+#0}

is a finite subset of K. Then, using trivial properties of sums over finite sets of indices, we find
ZiEF a; = ZkeL (Z’iEFk; ai)‘
The definitions of » , ; and of 3, ;- imply that

Dier @i < Yper (Xies, i) < Xper (Xies, @i)-

Taking the supremum over the finite subsets F' of I we find 37,y ai <37 (Diey, i)
Now we take an arbitrary finite L C K, and an arbitrary finite Fj, C Ji for each £ € L. Then
>oker (Xier, i) is, clearly, a sum (without repetitions) over the finite subset ¢, Fi of 1.

Hence
Srer (Xier, @) < Xier ai-
Taking the supremum over the finite subsets F}, of J; for each k € L, one at a time, we get that
kel (ZiEJk ai) < Yies -
Taking the supremum over the finite subsets L of K, we get >, i (e I ai) <Yierai. O
After this short investigation of the general summation notion we define a class of measures.
Proposition 1.24. Let X be non-empty and a : X — [0, +oc]. We define j : P(X) — [0, +o0] by
WE) =3 cpas forall ECX.
Then p is a measure on (X, P(X)).

Proof. It is obvious that pu()) = > 5 a, = 0.
If By, E», . .. are pairwise disjoint and £ = U:i'i E,,, we have

WE) =3 er s =D pen (erEn aﬂ?) = nen M(En) = 2—2 (En),

applying Propositions 1.20 and 1.23. O
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Definition. The measure on (X, P(X)) defined in Proposition 1.24 is called the point-mass dis-
tribution on X induced by the function a. The value a,, is called the point-mass at x.

Example. Consider the function which assigns point-mass a; = 1 at every € X. It is easy to
see that the induced point-mass distribution is f}, i.e. the counting measure on X.

Example. Take a particular g € X and the function which assigns point-mass a,, = 1 at zy and
point-mass a, = 0 at all other points of X. Then the induced point-mass distribution is d,,, i.e.
the Dirac measure at xg.

Exercises.

1.2.15. Let X be non-empty and consider a finite A C X. If a : X — [0, +00) satisfies a;, = 0
for all x ¢ A, prove that the point-mass distribution 1 on X induced by a can be written as a
non-negative linear combination of Dirac measures: 1 = > 4 00,

1.2.16. Let I be a set of indices, a,b : I — [0,400] and k € [0, +00).
(i) Prove that ) ., a; = O ifand only if a; = 0 forall i € I.

(i) Prove that ), _; ka; = k), a; (consider 0 (+00) = 0).

(iii) Prove that . ;(a; + b;) = > ;e ai + > cp bi

1.2.17. Let I, J be two sets of indices and consider any a : I x J — [0, 4+o00]. Using Proposition
1.23, prove that

dier (ZjeJ ai,j) = E(i,j)elwai,y‘ = Eje] (Zie[ am‘)-
Recognize as a special case of this the result of exercise 1.2.16 (iii).

1.2.18. Let X be non-empty and consider the point-mass distribution p defined by the function
a: X — [0, +o0]. Prove that

(1) p 1s semifinite if and only if a;, < +oo forevery z € X,

(ii) p is o-finite if and only if a, < +oo for every x € X and the set {zx € X |a, > 0} is
countable.

1.2.19. (i) Let X be any non-empty countable set. Prove that every measure i on (X, P(X)) isa
point-mass distribution.

(ii) Consider the measure in exercise 1.2.1. Prove that this measure is not a point-mass distribution.

1.2.20. A generalization of exercise 1.2.14.

Let {(X;, Si, i) | @ € I} be acollection of measure spaces, where the X; are pairwise disjoint. We
define X = J;c; Xi, S={E C X |ENX; € §;foralli c I}and u(E) = > ,.;mi(ENX;)
forall £ € S.

(i) Prove that (X, S, ;1) is a measure space. It is called the direct sum of {(X;, S;, 11;) |7 € I} and
it is denoted @, ; (X, Si, 114)-

(ii) Prove that p is o-finite if and only if the set J = {i € I'| u; # 0} is countable and p; is o-finite
forall: € J.

COMPLETE MEASURES.

Proposition 1.18 says that a subset of a y-null set is also p-null, provided that the subset is contained
in the o-algebra on which the measure p is defined.

Definition. Let (X, S, 1) be a measure space. Suppose that for every E € S with u(E) = 0 and
every F' C E it is implied that F € S (and hence (F) = 0). Then p is called complete and
(X, S, u) is called a complete measure space.
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Thus, a measure 1 is complete if the o-algebra on which it is defined contains all subsets of all
p-null sets.

Definition. I/ (X, Sy, p1) and (X, Sa, o) are two measure spaces on the same set X, we say that
(X, S2, u2) is an extension of (X, S1, 1) if S1 C Sz and p1(E) = po(E) for all E € Sy.

Theorem 1.1. Let (X, S, 1) be a measure space. Then there is a unique smallest ~complete exten-
sion (X,8,1) of (X, S, ). In other words, there is a unique measure space (X,S, i) so that

(i) (X, S, 1) is an extension of (X, S, ),
(ii) (X, S, 1) is complete,
(iii) if (X, S, Tn) is another complete extension of (X, S, i), then it is an extension also of (X, S, Ti).

Proof. We shall first construct (X, S, 7). We define
S={AUF|AcSand F C E forsome E € S with u(E) = 0}.

We shall prove that S is a o-algebra.

We write ) = 0 U (), where the first () belongs to S and the second () is a subset of ) € S with
w(0) = 0. Therefore, ) € S.

Let B€S. Then B = AUF,where A € Sand F C E for some E € S with u(E) = 0. We then
write B¢ = Ay U Fy, where Ay = (AUE)“and F; = E\ (AUF). Then A; € Sand F; C E.
Hence, B¢ € S.

Let By, By, ... € S. Then for every n we have B,, = A, U F},, where A,, € S and F},, C E,, for
some E,, € S with u(E,) = 0. Now

UnZi Bn = (Un 23 An) U (ULZ5 F),
where | J/> A, € Sand U F, C U B, € S with

p(Un2] En) <3020 p(Ey) =0

and hence (U, E,) = 0. Thus, |J> B, € S.

Now, we construct 7.

Forevery B € S we write B = AU F, where A € Sand F C E for some E € S with u(E) = 0,
and we define

7i(B) = n(A).

To prove that 7z( B) is well defined, we assume that B = A’ U F’, where A’ € S and F’ C FE’ for
some E' € S with u(E’) = 0, and we shall prove that 1(A) = u(A’). Since AC B C A'UFE/,
we have

p(A) < p(A) + p(E') = n(4)

and, symmetrically, u(A") < u(A).

To prove that 7z is a measure on (X, S), write () = () U () as above, and get i(0) = u(0) = 0.

Let also By, Bs, ... € S be pairwise disjoint. Then B,, = A,, U F},, where A,, € S and F,, C E,,
for some E,, € S with u(E,) = 0. Observe that the A,, are pairwise disjoint. Then

U—i—ooB _(U+OOA) (U+ooF)
and ;2] F, C U B, € S with
(U+OO E ) Zn 11“( ) 07
and hence ,u( U:{i’i En) = 0. Therefore,
(U+OOB) (Ungn) Zn 2 (Ay) = Zn 2L F(Bp).
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We now prove that 7z is complete. Let B € S with 7i(B) = 0 and let B’ C B. Write B = AU F,
where A € S and F' C E for some E € S with u(E) = 0, and so u(A) = 1i(B) = 0. Then write
B'=0uUB,with() € Sand B’ C E', where E' = AUFE € S and u(E") < pu(A) + p(E) = 0.
Hence, B’ € S.

To prove that (X, S, 1) is an extension of (X, S, i), we take any A € S and we write A = AU (),
where () C 0 € S with u(0) = 0. This implies that A € S and i(A) = u(A).

Now suppose that (X, S,7) is another complete extension of (X, S, y1). Take any B € S, and
then B = AU F, where A € S and F C E for some E € S with u(E) = 0. Butthen A,E € S

and 7i(E) = p(E) = 0. Since 7 is complete, we get that also F' € S and hence B= AU F € S.
Moreover,

a(A) < w(B) <a(A) + a(F) = n(A),

=
=l

which implies
i(B) = i(A) = u(A) = [(B).
It only remains to prove the uniqueness of a smallest complete extension of (X, S, ). This is

obvious, since two smallest complete extensions of (X, S, ) must be extensions of each other
and, hence, identical. ]

Definition. If (X, S, ) is a measure space, then its smallest complete extension is called the com-
pletion of (X, S, ).

Exercises.

1.2.21. Let (X, S, ) be a measure space. We say that E C X belongs locally to Sif ENA €S
forall A € S with p(A) < +oo. We define S = {E C X | E belongs locally to S}.

(i) Prove that S C S and that S is a o-algebra. If S = S, then (X, S, p) is called saturated.
(ii) If p is o-finite, prove that (X, S, p1) is saturated.

We define [i(E) = u(E),if E € S, and ji(E) = 400, if E € S\ S.

(iii) Prove that 7 is a measure on (X, S), and, hence, (X, S, 1) is an extension of (X, S, y).
(iv) If (X, S, ) is complete, prove that (X, S, 1) is also complete.

(v) Prove that (X, S, [i) is a saturated measure space.

(X, S, i) is called the saturation of (X, S, 11).

RESTRICTION OF A MEASURE.

Let (X, S, i) be a measure space and Y € S. We recall that the restriction S1Y of the o-algebra
Sofsubsetsof X onY isS|Y ={ACY |AeS}

Proposition 1.25. Let (X, S, i) be a measure space, Y € Sand S|Y = {ACY |A e S}. We
define u|Y : S1Y — [0, +oc] by

(WY)(A) = p(A), AeSlY (iee AcS, ACY).
Then Y is a measure on (Y,S|Y).
Proof. Exercise. 0

Definition. Let (X, S, 1) be a measure space and Y € S. The measure 1Y on (Y,S|Y) of
Proposition 1.25 is called the restriction of 1 on (Y,S|Y).

Informally speaking, we may say that ;] is the same as p but applied only to the measurable
subsets of Y.
There is a second kind of restriction of a measure.
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Proposition 1.26. Let (X, S, i) be a measure space andY € S. We define py : S — [0, +o0| by
py(A) =p(ANY), AeS.

Then py is a measure on (X, S) with the properties:
() py(A) = p(A)ifAe S, ACY,
(i) py (A) =0ifAe S, ACY"

Proof. We have py (0) = p(0NY) = p(0) = 0.
If A1, Ay, ... € S are pairwise disjoint, then

uy (U2 45) = n((UiZ 45) nY) = n(UfZ(4; 0Y)
= SV u(A; 0Y) = I iy (4)),

Therefore, py is a measure on (X, S) and its two properties are trivial to prove. O

Definition. Let (X, S, 1) be a measure space andY € S. The measure vy on (X, S) of Proposi-
tion 1.26 is called the Y -restriction of 1 on (X, S).

Informally speaking, we may describe the relation between the two restrictions of 1 as follows.
The restriction py assigns value 0 to all sets in S which are included in the complement of Y while
the restriction 1]Y simply ignores all those sets. Both restrictions py and 1]Y assign the same
values (the same to the values that  assigns) to all sets in & which are included in Y.

UNIQUENESS OF MEASURES.

The next result is very useful when we want to prove that two measures are equal on a o-algebra
S. It says that it is enough to prove that they are equal on an algebra which generates S, provided
that an extra assumption of o-finiteness of the two measures on the algebra is satisfied.

Proposition 1.27. Let A be an algebra of subsets of X and let i, v be two measures on (X, S(A)).
Suppose there are Ay, As, ... € Aso that (Ay) is increasing, \J1>S A, = X and p(A,) < +o0
and v(Ay) < +oo for all n.

If i, v are equal on A, then they are equal also on S(A).

Proof. (a) We assume that ;(X) < +oo and v(X) < +o0.
We define the collection

M ={E € S(A) | u(E) = v(E)}.

It is easy to see that M is a monotone class. Indeed, let £y, Fs, ... € M and (E,,) be increasing
and U+°° FE, = E. By continuity of measures from below, we get

limy, 100 w(Ep) = w(E), limy, i v(E,) =v(E).

Since p(E,) = v(E,) for all n, we find u(E) = v(E), and so E € M. Now, we just repeat the
same argument, assuming that (E,,) is decreasing and ﬂ:{i’i E,, = FE, and using the continuity of
measures from above and the assumption x(X) < 400 and v(X) < +oo.

Since M is a monotone class including A, Proposition 1.4 implies that M(A) C M. Now,
Proposition 1.5 implies that S(A) C M, and so u(E) = v(E) forall E € S(A).

(b) We consider the general case: we do not assume that p(X) < 400 or that v(X) < +o0.

For each n, we consider the A,,-restrictions of u, v on (X, S(A)). Namely,

pa,(E)=w(ENA), va,(EF)=v(ENA,) forall E e S(A).
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Then all 114, and v4, are finite measures on (X, S(A)), since pa, (X) = u(A,) < +oo and
va,(X) =v(4,) < +oo.
If A € A then AN A,, € A forall n,and so

pa, (A) = (AN Ap) = v(ANAp) = va,(A4).
Now, by the result of (a) we get that 114, and v4, are equal on S(A). Le.
wWENA,) =pa,(E)=va,(E)=v(ENA,), EecS(A).

Now let E € S(A). Then (E N A,,) is increasing and | J/>(E N A,,) = E. Continuity of z and
v from below implies

limy, 400 W(ENA,) = p(E), limyiov(ENA,) =v(E).

Since u(E N Ay,) = v(E N A,,) for every n, we get u(E) = v(E).
Thus, u, v are equal on S(A). O

1.3 Measures from outer measures.

Definition. Let X be a set. A function p* : P(X) — [0, 400] is called an outer measure on X if
(i) p=(0) =0

(i) p*(E) < p*(F)if EC F C X,

(iii) p1* ( Ut E,) < S W (Ey) for all sequences (Ey,) of subsets of X.

Note that, if * is an outer measure on X, then p* (E') is defined for all subsets E of X . Property
(i1) of an outer measure is called monotonicity, and property (iii) is called o-subadditivity. It is
easy to see that an outer measure is also finitely subadditive: taking E,, = () for n > N, we get

i (UnCy Bn) = w7 (USSS Ea) < 0025 1 (Bn) = S0l 1 (Bn).-
Exercises.

1.3.1. Let p*, uf, 5 be outer measures on X and x € [0, +00). Prove that ku*, ui + p3 and
max{uj, us} are outer measures on X, where these are defined by the formulas (ku*)(E) =

1" (E) (consider 0 (+00) = 0), (15 + p)(E) = pui(E) + p3(E) and max{u, psH(E) =
max{u;(E), pu5(E)} forall E C X.

1.3.2. Let (1) be a sequence of outer measures on X . Define p*(E) = sup,, p (E) forall E C X.
Prove that * is an outer measure on X .

1.3.3. For every £ C N define A\(E) = lim,, oo w Prove that )\ is not an outer
measure on N,

CONSTRUCTION OF OUTER MEASURES.

Proposition 1.28. Let C be any collection of subsets of X so that ) € C, and let T : C — [0, +00]
satisfy T7(0) = 0. We define

1nf{zj 17(Cy) | C1,Cy, ... €C sothat E C Uj:OTC']}
forall E C X, where we agree that inf ) = +o0c. Then p* is an outer measure on X.

It is clear that, if there is at least one countable covering of E with elements of C, then the
set {Zj:"f 7(C;5)|C1,Ca, ... € Csothat E C U 1 C;} is non-empty. If there is no countable
covering of E with elements of C, then this set is empty, and so p*(E) = inf() = +oo.
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Proof. The inclusion () C Uj:oi’ () implies

and so p*(0) = 0.

Now, let A C B C X. Ifthere is no countable covering of B by elements of C, then p*(B) = 400
and the inequality p*(A) < p*(B) is obviously true. Otherwise, we take an arbitrary covering
B C U 1Cj with C1,Cy, ... € C. Then we also have A C U;":(Xf C; and, by the definition of
w(A), we get

pH(A) < 7 T(C).
Taking the infimum of the right side, we find p*(A4) < p*(B).
Finally, let us prove
w(UnST An) < 05 (1.4)

for all Aj, Ag,... C X. If the right side of (1.4) is equal to +oo, the inequality is clear. So
we may assume that the right side of (1.4) is < 4oo. Then u*(A,) < +oo for all n. Now
we take an arbitrary e > 0. By the definition of p*(A,,), there exist Cy, 1,Cp2,... € C so that
Ay, C U 1 Cnjand

S T(Cng) < 1 (An) + 57
Then
U A < U (n,j)ENXN Cn,j’

and so, using an arbitrary enumeration of N x N and Proposition 1.20, we get by the definition of
* +oo
(U2 Ay) that

n=1

e (Un2S An) < 3 jyensn T(Cng)-
Proposition 1.23 implies
w(UnZ3 An) <3055 (X757 7(Cng)) < 021 (07 (An) + 57) = 2,25 17 (An) + €

Since ¢ is arbitrary, this proves (1.4). O

CONSTRUCTION OF A MEASURE FROM AN OUTER MEASURE.

We shall see now how a measure is constructed from an outer measure.

Definition. Let 1* be an outer measure on X. We say that the set A C X is u*-measurable if
pr(ENA)+p*(ENAS) =u"(E) forall EC X.
We denote S+ the collection of all p*-measurable subsets of X.

Thus, a set A is p*-measurable if and only if it decomposes every subset £ of X into two
disjoint pieces, namely £ N A and E N A€, the outer measures of which add to give the outer
measure of the subset.

Observe that E = (ENA) U (EN A°),and so p*(F) < p*(ENA)+ p*(EN A°) due to the
subadditivity of *. Therefore, in order to check the validity of the equality in the definition, it is
enough to check the inequality

W (B0 A) + 1" (B A%) < i (B).
Furthermore, it is enough to check this last inequality whenever u*(E) < +oo.

Caratheodory’s Theorem. If 1" is an outer measure on X, then S~ is a o-algebra of subsets of
X. If we denote i the restriction of ©* on Sy, then (X, S+, i) is a complete measure space.
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Proof. We have
p(END) +p (BN = p*(0) + p*(E) = p*(E)

forall EC X,andso ) € S,-.
Let A € ;. Then

1 (B OVAY) + (B0 (A%)°) = 1 (E 0 A%) + i (BN A) = ' (B)

forall & C X. Therefore, A° € S, and so S, is closed under complements.

Now let A, B € S, and £ C X. For the first inequality below we use the subadditivity of
w*, for the second equality we use p*-measurability of B, and for the last equality we use the
w*-measurability of A:

p(EN(AUB)) 4+ (EN(AUB)®) = u (EN(AUB))+ u*(EN(A°N B°))
<p(EN(ANDBY))+pu* (EN(BNA9)
+u"(EN(ANB))+ p" (EN(A°N B9))
= (ENA)+p"(ENA°) = p*(E).

Thus, AU B € S,+, and by induction we get that S« is closed under finite unions. Since it is also
closed under complements, S+ is an algebra of subsets of X, and so it is also closed under finite
intersections and under set-theoretic differences.

Let A,B € S, and AN B = (). Then for all E C X we have

W(EN(AUB)) = p*((EN(AUB)|NA) + 1" ([EN(AUB) N A) = p*(ENA) + p* (BN B).

By an obvious induction we find that, if Ay,..., Ay € S, are pairwise disjoint and &/ C X is
arbitrary, then

p(EN(ALU--UAN)) = p (ENA) + -+ p (ENAy).
Now, if Ay, Ag, ... € S« are pairwise disjoint and ¥ C X is arbitrary, then for all N we have
P(ENAD)+ -+ (ENAN) = p*(EN (A U---UAN)) < p*(EN (U2 An))
by the monotonicity of u*. Hence
YaS (BN Ay) < pt (B0 (UL An)).
The opposite inequality is immediate by the o-subadditivity of u*:
p(EN (Un214n)) = 1 (UpZ1 (B N Ap)) < 35250 i (BN Ay).
We conclude with the equality
P R(ENA) =p (En(UlN 4,)) (1.5)

for all pairwise disjoint A1, Aa,... € S~ andall £ C X.
If Ay, As,... € S~ are pairwise disjoint and &/ C X is arbitrary, then, since S+ is closed under
finite unions, Uﬁle A, € S~ forall N. Hence

p(E) = p (BN (UnZy An)) + 1 (B0 (Uny An)°)
>SN BN A + (B0 (U 4.)9),

where we used the finite version of (1.5) for the first term and the monotonicity of ©* for the second.
Since N is arbitrary,

pH(E) = Y2 w (BN Ay) + (BN (Ui 4n)°)
= (B0 (U2 4n)) + (B0 (U2 An)°)
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by (1.5). Therefore, U 1 An € Sy

If Al, Ao, ... €S, are not necessarlly pairwise disjoint, then in the spirit of Lemma 1.1 we write
=Ajand B, = A, \ (41 U---UA,1) for all n > 2. Since S+ is an algebra, all B,, belong
to S « and they are pairwise dlS_]Oll’lt Hence A, = U+°° B, € §,,~. We conclude that S,

is a o-algebra.
We now define 1 : S+ — [0, +00] as the restriction of 1, i.e

p(A) = p*(A) forall Ae Sy
Using I/ = X in (1.5), we get that for all pairwise disjoint Ay, Aa,... € S,

S u(An) = S it (An) = (U2 An) = n(U2S An).

Since p(0) = p*() = 0, we see that (X, S+, i) is a measure space.
Finally, let A € S,,» with i(A) = 0 and B C A. Then

and so
p(ENB)+p (ENBS) < p*(B) + ' (E) = p* (E)

forall E C X. Therefore, B € S+, and so p is complete. O
As a by-product of the proof of Caratheodory’s Theorem we get the useful

Proposition 1.29. Let u* be an outer measure on X.

(i) If B C X and p*(B) = 0, then B is p*-measurable.

(ii) We have Zn T (ENA,) =p* (E N (U:ﬁ An)) for all pairwise disjoint |*-measurable
Al,AQ, ...andall E Q X.

Proof. The proof of (i) is in the last part of the proof of the Theorem of Caratheodory, and (ii) is
just (1.5). O

Thus, every outer measure u* produces a specific o-algebra, the elements of which are the p*-
measurable sets, and a measure p, which is the same as p* but applied only on the p*-measurable
sets and not on all subsets of the whole space X. If there is no danger of confusion, we shall call
the p*-measurable sets just measurable sets (and keep in mind that they are defined by a specific
procedure starting from the outer measure p*).

The most widely used method of producing measures is based on the Theorem of Caratheodory
and it is the one we just described: one starts with an outer measure p* on X and produces the
measure space (X, S+, it). There is another method of producing measures, the so-called Daniell
method which we shall describe later.

Exercises.

1.3.4. Let 4* be an outer measure on X and Y C X.
(i) Define (p*Y)(E) = p*(F) for all E C Y, and prove that 4*|Y is an outer measure on Y.

(ii) Define pj-(F) = p*(ENY) forall E C X, and prove that 15, is an outer measure on X.
Moreover, prove that Y is y5,-measurable.

1.3.5. Let X # (). We define: p*(E) = 0,if E = (), and p*(F) = 1, if ) # E C X. Prove that
p* is an outer measure on X, and that () and X are the only p*-measurable subsets of X.

1.3.6. Let 11* be an outer measure on X. If Ay, Ay,... € S, and (A,,) is increasing, prove that
limy, o0 " (E N Ap) = p* (BN (U2 An)) forevery E C X.
Hint. Use Proposition 1. 29
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1.3.7. Let u* be an outer measure on X and p be the induced measure (the restriction of 1*) on
Sy« If E,G C X we say that G is a ;/*-measurable cover of E'if: £ C G, G € S+, and for all
A € S, for which A C G\ E we have p(A) = 0.

(i) If G1, G2 are p*-measurable covers of E, prove that u(G1AG2) = 0 and hence p(G1) =
1(Ga).

(i) Suppose £ C G, G € S, and p*(E) = p(G). If p*(E) < o0, prove that G is a pu*-
measurable cover of F.

1.3.8. We say ¥ C R has a condensation point at infinity if £ has uncountably many points
outside every bounded interval.

Forany E C R define: p*(E) = 0, if E is countable, p*(E) = 1, if E' is uncountable and does not
have a condensation point at infinity, and p*(E) = 400, if E has a condensation point at infinity.
Prove that p* is an outer measure on R, and that A C R is p*-measurable if and only if either A
or A€ is countable. Does every EF C R have a p*-measurable cover? (See exercise 1.3.7).

1.3.9. Consider the collection C of subsets of N which only contains () and all the two-point subsets
of N. Define: 7(C) = 0,if C = 0, and 7(C) = 2,if C € C, C # (. Calculate u*(E) for all
E C N, where p* is the outer measure defined as in Proposition 1.28. Prove that () and N are the
only p*-measurable subsets of N.

1.3.10. Extension of a measure, 1.

Let (X, Sp, 10) be a measure space. Define
p,*(E) = mf{ Z;}—:cxla ,U()(Aj) } Al,AQ, ... € 80 so that - Uj_:o? AJ}

for every £ C X. Proposition 1.28 implies that ;* is an outer measure on X. We say that u* is
induced by the measure 1.

(i) Prove that p*(E) = min {po(A4) | A € Sp, E C A}.

(i) If (X, Sy, i) is the complete measure space resulting from p* by Caratheodory’s Theorem
(i.e. p is the restriction of 11* on S,+), prove that (X, S+, i) is an extension of (X, Sp, o).

(iii) Assume that &' C X, and A1, As,... € Sg,and E C ;;Oi’ Aj, and pu(A;) < 4oo for all j.
Prove that £ € S, if and only if there is some A € Sy so that E C A and p*(A\ E) = 0.

(iv) If 1 is o-finite, prove that (X, S+, i) is the completion of (X, So, j10).

(v) Let X be an uncountable set, So = {A C X | either A or A€ is countable} and po(A) = (A)

for every A € Sp. Prove that (X, Sp, 1) is a complete measure space and that Sp» = P(X).
Thus, the result of (iv) does not hold in general.

(vi) See exercise 1.2.21 and prove that (X, S,«, 1) is always the saturation of the completion of
(X7 807 /'LO)

1.3.11. Extension of a measure, II.
Let Ag be an algebra of subsets of X, and p be a measure on (X, .Ap) (see exercise 1.2.13). Let

pr(B) = inf { Y7 no(A;) | Ar, Az, ... € Ag so that E C (J/5] A;}

for all £ C X. Proposition 1.28 implies that p* is an outer measure on X. We say that p* is
induced by the measure p.

(i) Prove that p*(A) = uo(A) for every A € Ap.
(ii) Prove that every A € Ay is p*-measurable, and so S(Ag) C S+

Thus, if (X, S+, i) is the complete measure space resulting from * by Caratheodory’s Theorem
(i.e. p is the restriction of u* on S,«), then (X, S+, 1t) is an extention of (X, S(Ag), 11), and this
is an extention of (X, Ay, 10).

(iii) If (X, S(Ap), v) is another measure space which is an extension of (X, .4y, o), prove that
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v(E) < u(F)forall E € S(Ap), and that v(E) = p(FE) forall E € S(Ap) with p(E) < +oo.
(iv) If the original (X, Ay, j10) is o-finite, prove that 4 is the unique measure on (X, S(Ag)) which
is an extension of g on (X, .Ayp).

1.3.12. Let p* be an outer measure on X. We say that u* is a regular outer measure if for every
E C X thereis A € S+ sothat £ C A and u*(E) = pu(A) (where f is the usual restriction of /*
on S,+).

(i) Prove that y* is a regular outer measure if and only if ©* is induced by some measure on some
algebra of subsets of X (as described in exercise 1.3.11).

(ii) Consider the outer measure p* in exercise 1.3.8. Is p* a regular outer measure?

1.4 Lebesgue measure.

VOLUME OF INTERVALS.

We consider the quantity vol,, (.S), the n-dimensional volume of S, defined for any bounded inter-
valS =11 x --- x I, in R" by

vol,, (S) = length(I;) - - - length([,,).

Clearly, vol,,(S) < +oo for every bounded interval S. Moreover, if S = I} X --- X I, then
vol,(S) = 0if and only if at least one of the /; is an one-point interval or the empty interval. Note,
also, that, if n = 1, then the one-dimensional volume of a bounded interval in R is just its length.

Proposition 1.30 summarizes some geometrically obvious properties of volumes of bounded
intervals.

Proposition 1.30. (z) We consider P = (ay,b1] X - X (an, n| and, foreach k = 1,... n, we take
aj = cg)) < cl(C) < < cl(cm’“) = by. We consider P;, .. (cg“_l),c(lzl)]x' : -x(cgf”_l),cgf”)]

forl < i1 < mq,...,1 < inp < my, and we say that the intervals P;, . ;. result from P by

subdivision of its edges. Then voly(P) = 31 i <oy 1<in<my, VOIn(Piy,..in)-

(ii) Assume that P, Py, ..., P, are bounded open-closed intervals, that Py, ..., P, are pairwise
disjoint and that P = Ué‘:l P;j. Then vol,(P) = Zé’:l vol, (Pj).
(iii) Assume that P, Py, ..., P, are bounded open-closed intervals, that Py, ..., P, are pairwise

disjoint and that Ué’:l P; C P. Then Zé’:l vol, (Pj) < vol,(P).
(iv) Assume that P, Py, ..., P, are bounded open-closed intervals and that P C Ué’:1 Pj. Then

vol, (P )<Z _, vol,(P;).

(v) Assume that Q) is a bounded closed interval, that Ry, ..., Ry are bounded open intervals and
that Q C \U\_y R;. Then vol,(Q) < Y24, voln(R;).

Proof. (1) For the second equality in the following calculation we use the distributive property of
multiplication of sums:

Elgilgmh...,lgingmn vol, (P iy, )
(i) _ (il—l)) o (C(in) (zn—l))

= Z1gz’1§m1,“.,1§z‘ngmn(01 n Cn

— Zlgilgml(cgil) _ Dy Sier o (clim) _ (i)
= (b1 —a1) -+ (bp — an) = vol,(P).

(i) Let P = (a1,b1] X -+ X (an,bn] and P; = (a{), 0] x -+ x (a0 forj = 1,... 1.
Forevery k =1,...,n we set

(O my a0, 0y
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so that a;, = c,(CO) < c,(fl)

a,&l), . ,a,(j), b;c ), e b,gl) in increasing order and so that there are no repetitions. Of course, the

smallest of these numbers is aj, and the largest is by, otherwise the Py, ..., P, would not cover P.

It is obvious that every interval (a,(cj ), b,(cj )] is the union of some successive among the intervals

(

- < ckm’“) = by. This simply means that we rename the numbers

(c,(co), c,(gl)], ce (C,(!nkil)7 c,(f”’“)] ' ' '
We now set P, ;, = (cgll_l),cgll)] X -ee X (c,(f"_l),cgf")] forl <ip <mq,...,1<i, <m,.

It is clear that the intervals P, . ;. result from P by subdivision of its edges. It is also (almost)
clear that the intervals among the F;, . ;, which belong to a P; result from it by subdivision of its
edges, and that every F;, ;. is included in exactly one from Py, ..., P} (because the P,..., P,
are disjoint and cover P).

Now, using (i) for the first and third equality, and grouping together the intervals P;, . ;, which
are included in the same P; for the second equality, we find

l
vol,(P) = E1gilgm1,...,1gingmn vol, (P, i,) = 23:1 (ZP
l
= Zj:l VOln(Pj).

(iii) We know from Proposition 1.13 that P\ (P, U---U P)) = P; U --- U P/ for some pairwise
disjoint bounded open-closed intervals P/, ..., P,. Then P =P, U---UP UP{U---U P, and
so (ii) implies

volu(P) = Yy vola(P)) + 5 vola(P) = 34 vola (Py).

(iv) We first write P = P] U- - U P where P; = P; N P are open-closed intervals included in P.
We then write
P=PU(P\P)U--U(P\(P[U--UP,)),

where each of these [ pairwise disjoint sets can, by Proposition 1.13, be written as a finite union of
pairwise disjoint bounded open-closed intervals:

Pl =P, P\(PU---UP_)=PP U UPY for2<j<l.
Now, using (ii) for the equality and (iii) for the two inequalities, we get
vol,, (P) = vol,,(P]) + Z] o (307 voly, (PT(,{)))
< vol,(Py) + Ej:Q vol, (P)) < Zj:l voly (Fj).

(v) Let P and P; be the open-closed intervals with the same edges as ) and, respectively, I2;.
ThenPCQC R U---UR; C PLU---U P, and we get

vol, (Q) = vol,(P) < Zé‘:1 VOln(f)j) = Zé‘:l VOln(Rj)
using (iv). O

LEBESGUE MEASURE.

Now we consider the collection C of all bounded open intervals in R™ and the 7 : C — [0, +o0]
defined by 7(R) = vol,(R) = (b1 —aq) - - - (b, —ay,) forevery R = (aq,b1) X -+ - X (ap, by) € C.
If we define

mf{Z 23 voly ( j)‘Rth,.. GCsothatECU }

for all E C R", then Proposition 1.28 implies that m} is an outer measure on R".
We observe that, since R” = |J;> Ry, where Ry, = (—k,k) x --- x (—k, k), there is a
countable covering by elements of C for every £ C R".
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Now Caratheodory’s Theorem implies that the collection Sy« of m;,-measurable sets is a o-
algebra of subsets of R", and, if m,, is defined as the restriction of my on Sy, then m,, is a
complete measure on (X, Sy« ). Now we simplify the notation and instead of S,,x we write L,

Ly = S .
So L,, is the o-algebra of m -measurable subsets of R"™, and m,, is a complete measure on (X, £,,).

Definition. £,, is called the o-algebra of Lebesgue subsets of R", my, is called the Lebesgue outer
measure on R"™, and m,, is called the Lebesgue measure on R".

We shall also say that m} is the n-dimensional Lebesgue outer measure and that m,, is the
n-dimensional Lebesgue measure. If there is no danger of confusion, we shall say Lebesgue set
instead of Lebesgue subset of R"™.

Our aim now is to study properties of Lebesgue sets and especially their relation with the Borel
sets or even more special sets in R”, like open sets or closed sets or unions of intervals.

Proposition 1.31. (i) Every bounded interval S in R"™ is a Lebesgue set, and my(S) = vol, (.9).
(ii) Every countable subset A of R™ is a Lebesgue set and m,,(A) = 0.

Proof. (i) Let Q = [a1,b1] X -+ X [an,by] and R = (a1 — €,b; +€) X -+ X (an — €,by, + €).
Then Q C R, and by the definition of m,, we get
my(Q) < voly(R) = (b1 — a1+ 2€) - - (b — ayn + 2¢).

Since € > 0 is arbitrary, we find m; (Q) < vol,(Q).

Now we take any covering, Q C Uj:"f Rj, of @ by bounded open intervals [2;. Since () is

compact, there is [ so that ) C U§'=1 R;, and then Proposition 1.30 implies

vol,(Q) < 23:1 vol, (R;) < ;r:‘xf vol, (R;).

Taking the infimum of the right side, we get vol,,(Q) < m}(Q), and so

my;, (Q) = vol, (Q). (1.6)

Let S be a bounded interval and a1, b1, . . ., an, b, be the end-points of its edges.

Ifa; < bj forall j,then Q" C S C Q", where Q' = [a; +€,b1 — €] X -+ X [an, + €,b, — €] and
Q" =la1—€,b1+€ X+ X [an— € b, +¢€ for small € > 0. Then m} (Q') < m*(S) < m}(Q"),
which, due to (1.6), becomes

(b1 — a1 —2€) - (b —an —2¢) <m;(S) < (by —ay + 2€) -+ - (by, — ap, + 2¢).
Since € > 0 is arbitrarily small, we find
m;, (S) = vol,(S). (1.7)

If a; = b; for at least one j, then of course vol,(S) = 0. Moreover, we have S C Q", where
Q" =la1 —€,b1 + € X -+ X [a, — €, by, + €], as before. Then m} (S) < m*(Q"), which, due to
(1.6) again, becomes

my (S) < (b1 — a1 + 2¢) - - - (by, — ay, + 2€).

Since € > 0 is arbitrarily small, we find m;; (S) < vol,(S). And, since vol,,(S) = 0, we get (1.7)
again. Therefore, (1.7) holds for every bounded interval S.

Consider a bounded open-closed interval P and a bounded open interval R. Take the open-closed
interval Pr with the same edges as R. Then (1.7) implies

my (RN P) <m)(PrN P)=vol,(PrN P) (1.8)
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and we also have
my (RN P°) <my(PrN P°). (1.9)

Now Proposition 1.13 implies Pp N P¢ = Pp \ P = P U --- U P} for some pairwise disjoint
bounded open-closed intervals P, ..., Pj. From (1.9) and (1.7) we get
mi(RNPE) < T, mi(P) = T, volu (). (1.10)
And now from (1.8) and (1.10) and from Proposition 1.30 we get
m* (RN P) +m:(RN P¢) < vol,(Pr N P) + ¥ vol,(P}) = vol,(Pr) = vol,,(R).
We have just proved that
my (RN P)+my (RN P°) <vol,(R). (1.11)

Now consider any bounded open-closed interval P and any £ C R™ with m (E) < 4o0. Take,
for arbitrary € > 0, a covering £ C U;':OT R; of E by bounded open intervals R; so that

2 voly(Ry) < mi(E) + .

Using the o-subadditivity of m;, and (1.11), we get

my(E N P)+my(ENP) <32 my(Rj N P) + Y% myy (R N P°)
= 322 (my (R 0 P) + my,(R; N PC))

<Y voln(Ry) < miy(E) + €.
This implies m) (E N P) +m}(E N P°¢) < m}(FE), and so P is a Lebesgue set.
If T' is any bounded interval at least one of whose edges is a single point, then m; (T') = vol,,(T) =
0, and so, by Proposition 1.29, T is a Lebesgue set. Now, any bounded interval S differs from the

open-closed interval P, which has the same edges as .5, by finitely many (at most 2n) 1"’s, and so
S is also a Lebesgue set. Moreover, m,,(S) = m} (S) = vol,(S5).

(ii) If z € R™, then {z} is a degenerate interval, and so m,,({z}) = vol,({z}) = 0. Now, if
A = {x1,29,...} C R is an infinite countable set, then A = | J;>;{z.} is a Lebesgue set, and

ma(A) = 302 ma({z}) = 0.
Of course, the same is true if A is finite. ]

Proposition 1.32. Lebesgue measure is o-finite but not finite.

Proof. R" = Ug:i Qk, where Q = [k, k] x -+ x [=k, k] and m,,(Qr) = vol,(Qx) < +0o0
for all k.
On the other hand, m,, (R™) > m,(Qx) = (2k)" for all k£, and so m,,(R") = +o0. O

LEBESGUE MEASURE AND BOREL SETS.

Proposition 1.33. A/l Borel sets are Lebesgue sets, i.e. B, C Ly,

Proof. Proposition 1.31 says that, if C is the collection of all bounded intervals in R", then C C L,,.
But then 5, = S(C) C L,,. O
Proposition 1.34. Let E C R”. Then

(i) E is a Lebesgue set if and only if there is a set A, which is a countable intersection of open sets,
such that E C A and m}(A\ E) = 0.

(ii) E is a Lebesgue set if and only if there is a set B, which is a countable union of compact sets,
such that B C E and m},(E \ B) = 0.
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Proof. (i) Assume that there is a set A, a countable intersection of open sets, such that £ C A and
mi(A\ E) =0. Then A € B,,,andso A € L,,. Also, by Proposition 1.29, A\ E € L,,. Hence,
E=A\(A\E)e€L,.

For the converse, consider, by means of Proposition 1.32, Y7, Y5, ... € £, so that R" = ;:;"1’ Y
and m,,(Yy) < +oo forall k. Define E, = ENY}, and then get £ = UZS Ejandm, (E)) < 400
for all k.

For all k and arbitrary [ € N we consider a covering Fy, C U;;Of Rg-k’l)

(k1)
I;

by bounded open intervals
so that

+°° >y vol, (R§k’l)) < mn(Ep) + -

The set U*:D = ;;O‘f ng’l) is open, and we have that £}, C U®D and

mn(U(kJ)) < Z;_:OT mn(R§k7l)) = too VOl (R(k )) < mn(Ek)

1
Jj= J 12k

from which we get
mn( Uk \ Ey) < l2k

Now, the set U) = (72 U*D is open, with E C U and UV \ E C ;5 (UFD \ Ey), from
which we get

mn (U \E><Zk % ma(UED\ By) < 1 e = 1.
Finally, we define A = (/% . Then E C A and

mp(A\E) <m,(UV\ E) <1

for all /, and so my, (A \ E) = 0.

(if) Assume that B is a countable union of compact sets so that B C E and m (E \ B) = 0. Then

B € B,,, and so B € L,,. Also, by Proposition 1.29, E\ B € L,,. Thus, E = BU (E'\ B) € L,,.

Now take E € L,,. Then E° € L,, and by (i) there is a set A, a countable intersection of open sets,

so that E¢ C A and m,, (4 \ E€) = 0.

We set B = A°, a countable union of closed sets, and we get m,,(E \ B) = m,(A\ E¢) = 0.

Now, let B = U;“:O‘f F}, where each Fj is closed. We then write F; = |J; 2} F} , where Fj;, =
N([—k, k] x -+ x [k, k]) is a compact set. This proves that B is a countable union of compact

sets: B = U pyenxn £k O

Proposition 1.34 says that every Lebesgue set is, except from a null set, equal to a Borel set.

Proposition 1.35. (i) m,, is the only measure on (R", B,,) satisfying m,,(S) = vol,,(S) for every

bounded interval S.

(i) (R™, Ly, my,) is the completion of (R™, By, my,).

Proof. (i) Let u be a measure on (R", B,,) with x(S) = vol,,(.5), and hence 1(S) = m, (), for

all bounded intervals S. If S = I; x --- x I, is an unbounded interval, we take any increasing

sequence (Sg) of bounded intervals (for example, S, = S N ([—k, k] X -+ x [—k, k])) so that
Ui25 Sk = S, and we get that

w(S) = limy_s 1 oo 1(Sk) = limg_y 4 oo My (Sk) = M (S).
Therefore,
M( U;n:1 Pj) = Z;n:1 :U’(‘P]) = ZT:1 mn(Pg) = mn(U;n:l P])
for all pairwise disjoint open-closed intervals P, ..., P,,. So the measures p and m,, are equal on

the algebra A = { U;n:l P; ‘ m € N, Py, ..., P, pairwise disjoint open-closed intervals in R”}.
By Proposition 1.27, the two measures are equal also on S(A) = B5,,.
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(i) Let (R™, B,,, My, ) be the completion of (R™, B,,, m,,).

By Proposition 1.33, (R™, £,,,m,,) is a complete extension of (R", B,,,m,,). Hence, B,, C L,
and m,,(E) = m,,(FE) for every E € B,,.

Now take any E € L,,. Proposition 1.34 implies that there is a Borel set B so that B C F and
my(E\ B) = 0. Once more, Proposition 1.34 imples that there is a Borel set A sothat E\ B C A
and m,(A\ (E\ B)) = 0. Then

mp(A) = mu(A\ (E\ B)) + m,(E\ B) = 0.

Since A € B, we have A € B,,. Now, since £\ B C A and m,,(A) = m,(A) = 0, and since
(R™, B, my,) is complete, we get that £\ B € B,,. We also have B € B,,, and so B € B,,. Hence,
E=BU(E\B)€B,.

Therefore, £,, C B,,, and the proof is complete. ]

Proposition 1.36. Let m,(E) < +oc. Then E € L,, if and only if for any € > 0 there are pairwise
disjoint bounded intervals S, . .., S; (of any kind we like) so that m,(EA(S1U---US))) < €

Proof. Let E € L,, and m,,(E) < +00. We consider a covering £ C U+°° R’ by bounded open
intervals 1% such that

T2 voln(R)) < mn(E) + 5.

Now we consider the bounded open-closed interval Pj’ which has the same edges as R’,, and then
we have E C [ J;°] P} and

+o00 €
12y Vol (Pf) < my(E) + 1.

We take m so that Z+ i1 Voln (P]) < §, and we observe the inclusions

E\(Uj 1P/) J= m+1P/ (UT=1PJ/)\EQ( ;_ETPJ/)\E

Thus,
ma(B\ (UfLy P))) < X755 1 vola(P)) < 4,
mn ((UjLy P)) \ B) < mn(U;ZT Pf) — mn(E) < 4.
Adding, we find
ma(EA(UL P)) < 5.

Proposition 1.13 implies that there are pairwise disjoint bounded open-closed intervals P, ..., P
so that (JIL, P = U:_, P, and so

ma(EA Uiz, Pr)) < &

Using a technique which appeared in the proof of Proposition 1.31, for each P, we can find an
interval Sy, (of any kind we like) so that S, C Py, and

Then the Sy, . .., S; are pairwise disjoint, and | J,_, S € L_, Px. Moreover,
(Ui:l Pk) \ (U€c=1 Sk) - U§¢=1(Pk \ Sk),
and so

m”((U?ﬁ:l Pp) \ (Ugc:l Sk)) < mn(UL:l(Pk’ \ Sk)) = 22:1 mp (P \ Sk) < chzl %= 5

Since

A(Ufk:l Sk) < (EA(Uic:l Pk)) U ((Ué:l Pk) \ (U2:1 Sk))v
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we finally get
mn (BA (U Sk)) < 5+ 5 =

Conversely, assume that for every £ € N there is a set By, a finite union of pairwise disjoint
bounded intervals, so that
m;;(EABk) <

We consider the set
and since By, € L,, for all k, we have that F' € L£,,. Then

for every m, and so

mi(F\ B) < 35255, mi(Bi\ E) < 3025, mi(BAE) < 3025 o = gor
for every m. Hence m},(F'\ E)) = 0, which implies that F'\ E € L,,.
Also,
E\F =UpZ (M2 (BN Br)) = UnZys (M (E\ Br)) € UpZ (B 1\ Bn)

for every M, and so

my(B\ F) < 3020 mn(B\ Bm) < 302 mi(BABR) < 300 o = gt
for every M. Hence m,(E \ F) = 0, which implies that £\ F' € L,,.
Now, since E = (E\ F)U(ENF)=(E\F)U(F\ (F\E)),wegetthat E € L,,. O

Exercises.

14.1.If A € £,, and A is bounded, prove that m,,(A) < +oo. Give an example of an A € L,
which is not bounded but has m,,(A) < +oco.

142.Let A = QN [0,1]. If Ry,..., Ry, are open intervals so that A C (JI*; R;, prove that
1 < 7%, voli(R;). Discuss the contrast to mj(A4) = 0.

1.4.3.Let £ C R™ with m},(E) > 0,and 0 < o < 1. Prove that there is a non-empty bounded
open interval R so that m) (E N R) > «a vol,(R).

1.4.4.Let E C R" be a Lebesgue set, and § > 0. If m,,(F N R) > 0 vol,(R) for all bounded
open intervals R, prove that m,,(E°) = 0.
Hint. Use the result of exercise 1.4.3.

LEBESGUE MEASURE AND SIMPLE TRANSFORMATIONS.

Some of the simplest and most important transformations of R™ are the translations and the linear
transformations.
Every z € R"™ defines the translation by z, namely the function 7, : R™ — R" given by

T.(z) =x+2 xeR".

Then 7, is an one-to-one transformation of R™ onto R™ and its inverse transformation is 7_,. For
every £ C R" we define
E+4+z={x+z|ze€ E}=1,(E).

If S is any bounded interval in R™, then any translation transforms it onto another interval (of
the same type) with the same volume. In fact, if a1, b1, . . ., ay, b, are the end-points of the edges

37



of S, then S + z has a; + 21,b1 + 21,...,an + 2, by + 2z, as end-points of its edges, where
z = (z1,...,2n). Therefore,

Vol (S +2) = ((b1 + 21) — (a1 + 21)) -+ ((bn + 2n) — (an + 21))
=(by —ay) - (bn — ap) = vol,(S5).

So we may say that the volume of intervals in R™ is invariant under translations. We shall see
that the same is true for the Lebesgue measure of Lebesgue sets in R™.

Proposition 1.37. (i) L, is invariant under translations: A + z € L, for every A € L, and
z € R™

(i) my, is invariant under translations:
mp(A+ 2) = mp(A)
forevery A € L, and z € R".

Proof. Let E C R™ and z € R™. Then for all coverings £ C U;r:“f R; by bounded open intervals
Rjweget E+ 2z C ;“:O‘f(Rj + z). Therefore,

mi(E+z) < ;;Of vol,(R; + z) = j:“f vol,(R;).

Taking the infimum of the right side, we find that m} (E + z) < m} (E). Now, applying this to
E + z translated by —z, we get

mi(E) = miy((E + 2) — 2) < miy(B +2).

n

Hence, m) (E + z) = m}(E) forall E C R™ and z € R".
Suppose now that A € £,, and F C R™. We have
my(EN(A+2))+my(EN(A+2))
=m},((E—2)NAl+2)+m([(E—z)N A+ z)
=m},((E—2z)NA)+m)((E—2)NA°) =m}(E —z) =m}(E).

n
Therefore, A + z € L, and m, (A + 2) = m:(A+ z) = m)(A) = m,(A). O
As is well known, a linear transformation of R” is a function 7" : R™ — R" such that
T(z+y) =T(@) +T(y), T(ka)=rT(a)

forall z,y € R" and k € R.

Every linear transformation 7" : R™ — R™ has a determinant, det(T") € R. The linear transfo-
mation 7" : R” — R" is one-to-one if and only if it is onto if and only if det(7) # 0. Moreover, if
det(T) # 0, then T—! : R — R" is also a linear transformation and det(7~!) = (det(7"))~!. Fi-
nally, if ', T, T are linear transformations of R” and 7' = T3 0T, then det(T") = det(77) det(T3).
All these are standard results of Linear Algebra.

Proposition 1.38. Let T' : R" — R" be a linear transformation. If A € L,,, then T(A) € L,, and
mn(T(A)) = | det(T)| mn(A).

If det(T) = 0 and my(A) = +o00, we interpret the right side as 0 (+00) = 0.
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Proof. At first we assume that det(7") # 0.
If T has the form
T(z1,22,...,%n) = (Ax1,22,...,Tp) (1.12)

fora certain A € R\ {0}, thendet(T") = A. Also, if R = (a1,b1) X - - - X (ap, by,), then, depending
on whether A > 0 or A < 0, we have, respectively,

T(R) = (Aa1, Aby) X (ag,b2) X -+ X (an,by) or (Aby,Aay) X (ag,b3) X -+ X (an,by),

Thus, T'(R) is an interval and m,,(T'(R)) = |A| my,(R) = | det(T)| my(R).
If T has the form

T(:El,l'g, ey i1, L4y Li41y - - .,:L‘n) == (l’i,$2, ey i1, L1y L4145 - - - ,:L‘n) (113)
for a certain ¢ # 1, then det(7') = —1. Also, if R = (a1,b1) X -+ X (an, b,) as before, then
T(R) = (ai,bi) X (ag,bg) X oo X (aifl,bifl) X (al,bl) X (ai+1,bi+1) X e X (an,bn).

Thus, T'(R) is an interval and, again, m,,(T(R)) = m,(R) = | det(T")| m,(R).
Now, let 1" have the form

T(.%’l, v s Lj—1y Ly Lj41y .- ,J)n) = (.1‘1, ey Lj—1,T5 +1‘1,1‘i+1, N ,$n) (114)

for a certain ¢ # 1. Then det(7") = 1. Now it is more convenient to work with an interval of the
form

S = a1, b1] x -+ X [aj—1,bi-1] X (@i, bi] X [@i+1,big1] X -+ X [an, by). (1.15)
Then T'(S) is not an interval any more. In fact,
T(S) = {(yla .- 7yn) ’y] € [a‘]?bj] fOI’j ?é iv Yi — Y1 € (alabl]}
We also define the following three auxilliary sets:

L =[a1,b1] x -+ X [aj—1,bi—1] X [a; + a1,b; + a1) X [@it1,bit1] X -+ X [an, by],
M = {(yl,ayn) |yj € [ajvb]] fOI’j #Za a; + a1 Syl < a’i"'yl},
N ={(y1,---,yn) ly; € laj,b;] for j #i, b; + a1 <y < b +y1}.

It is easy to see that
TS)NM =0, LNN=0, T(SYUM=LUN, N=DM+z,

where z = (0,...,0,b;—a;,0,...,0). Moreover, L is an interval and so it is a Borel set. It is easy
to see that M, N are closed sets and so they are also Borel sets. Now, from 7'(S) = (LU N) \ M
we get that 7'(S) is also a Borel set. Then we have

M (T(S)) + mn(M) = mp(T(P) U M) = mp(LUN) = mp(L) + mn(N)

and
Mmp (M) = mp(M + 2) = my,(N).

Hence, L, S being intervals,
mn(T(S)) = myp(L) = vol, (L) = vol,(S) = m,(S) = | det(T)| m,(S).

Now, if R = (a1,b1) X -+ X (an, by,) is any bounded open interval, we take the corresponding
interval S of the form (1.15) with the same endpoints as R. Then R C S and m,,(R) = my,(S),
and we get T(R) C T'(S) and

mp(T(R)) < ma(T(5)) = | det(T)| mn(S) = [ det(T)[ mn(R).
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We have shown that for every linear transformation 7" of the above three types (1.12), (1.13), (1.14)
we have

my,(T(R)) < |det(T)| mn(R)
for every bounded open interval R. (In the first two cases, it was obvious that 7'( R) was an interval,
and so T'(R) € B,,. In the third case, with a little more work, we can also show that T'(R) € B,
and that the equality m,,(T'(R)) = | det(T)| m,(R) holds, but we do not really need this for the
rest of the proof.)
Let, again, T" be any linear transformation of one of the above three types. Take any £ C R"”
and consider an arbitrary covering £ C U 1 R; by bounded open intervals R;. Then T'(E) C

TXT(R;), and so

=1
T(E)) < 32720 mi(T(R))) < [det(T)| 32725 ma(Ry) = | det(T)| 32757 voln (R;).
Taking the infimum over all such coverings, we conclude that

my,(T(E)) < [det(T)| my, (E).

n

If T is any linear transformation with det(7") # 0, then, by a well-known result of Linear Algebra,
there are linear transformations 77, . .., T, where each is of one of the above three types so that
T =1Tjo---oTn. Applying the last result repeatedly, we find

m, (T(E)) < [det(Th)| - - [det(Ty )| my, (E)| = | det(T)[ my,(E)

n

for every E C R™. If in this inequality we use the set T'(E) in the place of £ and 7! in the place
of T', we get
my(E) < |det(T~)|my,(T(E)) = | det(T)|'my,(T(E)).

n

Combining the last two inequalities, we conclude that

my,(T(E)) = [det(T)| m;,(E)

n

for every linear transformation 7" with det(7") # 0 and every £ C R™.
Now let A € L£,,. For all E C R™ we get

mi(ENT(A)) +mis(EN(T(A)) = m (T(T(E ) NA)) +m:(T(T~H(E) N A%))
= |det(T)| (m (T~ (E) N A) + m:(T~H(E) N A%))
= [ det(T)|m ( Y(E)) = m;,(B).
Thus, T'(A) € L,,. Moreover,
mp(T(A)) = my(T(A)) = |det(T')| my,(A) = | det(T')| my (A).

n

If det(T') = 0, then V' = T'(R") is a linear subspace of R" with dim(V) < n — 1. We shall
prove that m,, (V') = 0 and, since T'(A) C V, from the completeness of m,, we shall conclude that
T(A) € L, and

mn(T(A)) = 0 = [det(T)[ mn(A)

for every A € L,,.
We consider any basis { f1, . .., fm } of V withm = dim(V') < n—1, and we complete it to a basis
{fi,--+, fms fm+1s- - - fn} of R™. We consider the linear transformation S : R™ — R™ given by

S(xlfl + -+ xnfn) = (xl, c.. ,.%'n).
Then S is one-to-one, and so det(S) # 0. Moreover,
SV)={(z1,...,2m,0,...,0) | z1,...,zm € R}

We have S(V) = U2 Qx, where Qi = [k, k] x -+ x [k, k] x {0} x --- x {0} (the first
m factors of Q) are equal to [—k, k]). Each Qy, is a closed interval in R" with m,,(Qr) = 0.
Therefore, m,, (S(V')) = 0, and this implies m,, (V) = | det(S)|~*m,(S(V)) = 0. O
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Two special examples of linear transformations of R™ are the dilations and the reflection.
Every A > 0 defines the dilation /) : R" — R", given by

I\(z) =Xz, xeR"™

Then [) is an one-to-one linear transformation with det(/,) = A\™. The inverse linear transformation
of [y is Iy /. For every E C R" we define

AE ={X\z|xz € E} =1\(F)

and we have
mp(AA) = A"my, (A)

forall A € L,,.
Another linear transformation is r : R” — R", reflection through 0, defined by

r(z)=—z, xeR"™
Reflection  is one-to-one with det(r) = (—1)", and it is the inverse of itself. We define
—E={-z|zeE}=r(E)

for all E C R™ and we have
mp(—A) = mp(A)

forall A € C,,.
Ifb, by,...,b, € R™, then the set

MZ{b—i-/ilbl—l—---—i-/inbn‘OS/ﬂSl,...,ognngl}

is the typical bounded closed parallelepiped in R™. One of the vertices of M is b, and then
b1,..., by, (interpreted as vectors) are the edges of M which start from b. For such an M we
define the linear transformation 7" : R™ — R" by

T(x) =T(x1,...,on) =211 + - + by, == (21,...,2,) € R™

We also consider the translation 7, and the unit cube Qo = [0,1]" = [0,1] x - -- x [0, 1] in R™. We
observe that M = 7, (T(Qo)), and now Propositions 1.37 amd 1.38 imply that M is a Lebesgue
set and

mp (M) = mp(T(Qo)) = |det(T)| mn(Qo) = | det(T)|.

The columns of the matrix of 7" with respect to the standard basis {ey, . . ., e, } of R™ are the vectors
T(e1) = bi,...,T(en) = b,. We conclude with the rule: the Lebesgue measure of a bounded
closed parallelepiped is equal to the absolute value of the determinant of the matrix having as
columns the sides of the parallelepiped starting from one of its vertices. Of course, it is easy to see
that the same is true for any bounded parallelepiped.

A hyperplane of R™ is a set of the form V' + z, where z € R™ and V is a linear subspace of R™
with dim(V) =n — 1.

Proposition 1.39. If A is included in a hyperplane of R™, then A is a Lebesgue set and m.,,(A) = 0.

Proof. If V is a linear subspace of R” with dim(V') = n — 1, then there is a linear transformation
T : R" — R"sothat V = T(R") and det(T") = 0. Now, Proposition 1.38 implies that V'
is a Lebesgue set and, as we saw in the proof of Proposition 1.38, we have m,, (V') = 0. Then
Proposition 1.37 says that V' + z is a Lebesgue set and m,,(V + z) = m, (V) = 0.

Now, if A C V' + z, then by the completeness of Lebesgue measure we have that A is a Lebesgue
set and m,,(A) = 0. O
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Exercises.

1.45.Let T : R® — R" be an isometric linear transformation. This means that 7" is a linear
transformation satisfying |7'(z) — T'(y)| = |x — y| for every x,y € R" or, equivalently, 77" =
T*T = I, where T is the adjoint of 7" and [ is the identity transformation.

Prove that m,,(T(A)) = m,(A) forevery A € L,,.

1.4.6. A parallelepiped in R” is called degenerate if it is included in a hyperplane of R".
Prove that a parallelepiped M is degenerate if and only if m,, (M) = 0.

1.4.7. State in a formal way and prove the rule “volume = base area x height” for parallelepipeds
in R".

1.4.8. Prove that m,, is the only measure p on (R™, 8,,) which is invariant under translations (i.e.
w(A + z) = u(A) for all A € B, and all z € R™), and which satisfies u(Qo) = 1, where
Qo =1[0,1] x --- x [0,1].
Hint. For every m € N and for all cubes of the form @ = [21,21 + L] x -+ X [z, 20 + 2],
prove that 14(Q) = ()"

1.4.9. Let E C R™ be a Lebesgue set with m,,(E) > 0. Prove that the difference set of £, i.e. the
set D(E) = {z —y|x,y € E}, includes some open interval in R™ which is centered at 0.

Hint. Take o = % Then exercise 1.4.3 says that there is a non-empty bounded open interval R =
I x---xI, sothatm,(ENR) > « vol,(R). Consider the open interval R = J; X - - X J,,, where
Jj, is the open interval in R which is centered at 0 and with length(.J;) = 2(1 — o'/™) length(Iy).
Provethat EN (E +2)NR # () forall z € R'.

1.4.10. Let E C R" be a Lebesgue set, and A be a dense subset of R™. If m,,(EA(E +2)) =0
for all z € A, prove that m,,(F) = 0 or m,,(E€) = 0.

THE CANTOR SET AND THE CANTOR FUNCTION.

If z € R", then {x} is a degenerate interval, and so m,({z}) = vol,({z}) = 0. In fact, every
countable set in R™ has Lebesgue measure zero: if A = {1, x9, ...}, then

m(4) = S5 ma({as}) = 0.

The aim of this subsection is to construct an uncountable set in R whose one-dimensional
Lebesgue measure is zero.

We start with the interval Iy = [0,1], we then take I; = [0, %] U [, 1], we continue with
I, =0, %] U [%, %] U [%, g] U [%, 1] and so on: at every stage we divide each of the intervals which

we get at the previous stage into three subintervals of equal length and we keep only the two closed
subintervals on the sides.

We thus construct a decreasing sequence (I},) of closed sets so that every I, consists of 2"
closed intervals all of which have the same length 3% We define

C =M Ik

and call it the Cantor set.
C' is a compact subset of [0, 1] with m;(C) = 0. To see this we observe that for every k we
have
0 < ml(C) < ml(Ik) = 2]{33%

and that limg_, 4 (%)k =0.
We shall prove, by contradiction, that C' is uncountable: let us assume that C' = {z1,x2,...}.
We shall now describe an inductive process of picking one of the subintervals constituting each [.
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It is obvious that every z; belongs to I, since it belongs to C'. At the first step we choose
the interval IV to be the subinterval of I; which does not contain x1. Now, [ (1) includes two
subintervals of I, and at the second step we choose the interval 1 (2) to be whichever of these two
subintervals of (1) does not contain x9. (If both do not contain x2, we just take the left one.) And
we continue inductively: if we have already chosen 1 (k=1) from the subintervals of I L—1, then this
includes two subintervals of I.. We choose as I (k) whichever of these two subintervals of 7(*=1)
does not contain . (If both do not contain x, we just take the left one.)

This produces a sequence (I(¥)) of closed intervals with the following properties:

() I®) C I, for all k,

(i) I®) C 1*:=1) for all k,

(iii) length(/(®)) = 2, and so limy_, o length(I¥)) =0,

(iv) 1, ¢ I for all k.

From (ii) and (iii) we conclude that the intersection of all I(*) contains a single point: ﬂzj{ k) =
{z(} for some xy. From (i) we see that xy € I}, for all k, and so zy € C. Therefore, xy = xj, for
some k € N. But then 29 € I®) and, by (iv), the same point x;, does not belong to (%)

We arrived at a contradiction, and we conclude that C' is uncountable.

Now, for each k& € N we shall define a function fj : [0, 1] — [0, 1] as follows. We observe that
the set [0, 1]\ I consists of 2¥ — 1 open intervals, and we denote these intervals Jl(k)7 e Jéf)_l,
going from left to right:

k k
0,1\ =JP U ugy

We define f(0) = 0, fx(1) = 1, then we define f, to be constant zj—k on J](k) forj=1,...,28-1,
and, finally, we define f to be linear on each of the 2% subintervals of I, in such a way that fj, is
continuous on [0, 1]. The resulting function fy, is strictly increasing on each of the 2¥ subintervals
of I, and constant on each of the 2¥ — 1 subintervals of [0, 1] \ .

We observe that the subintervals of [0, 1] \ I;_; are also subintervals of [0, 1] \ I; and that
fr—1 = fir on each of them. Moreover, on each of the subintervals of I the functions fr_1, f
are increasing, they coincide at the endpoints and the difference of their common values at the
endpoints is 2%1 Therefore, we get that | fr, — fr—1| < Qk—l_l on each of the subintervals of I
and, hence, |fr — fr—1| < 2,€—1,1 everywhere on [0, 1] for all £ > 2. This implies that the series of
functions f1 + 3725 (fx — fx_1) converges to a function, say f, uniformly on [0, 1]:

fi4+ 055 (fk — fro1) = f  uniformly on [0, 1].
The k-th partial sum of the series is f1 + (f2 — f1) + -+ + (fx — fx—1) = f, and so
limg 1o f = f uniformly on [0, 1].

Since fx(0) = 0 and fi(1) = 1 for all k, we have that f(0) = 0 and f(1) = 1. Moreover, f
is increasing on [0, 1] since it is the limit of increasing functions on [0, 1]. Furthermore, all f}, are
continuous on [0, 1] and from uniform convergence we conclude that f is continuous on [0, 1].

)forallj =1,...,25—1. But we observe

that for al/l m > k we have f,, = fr oneach J j(k). Therefore, f is constant 237 on J j(k) for all k&
andall j =1,...,2F — 1.
The function f is called the Cantor function. We restate its main properties:

The function fj, was defined to be constant 2]7 onJ j(k

(i) f is increasing and continuous on [0, 1].
(if) f(0) = O and f(1) = 1, and f is constant on each of the subintervals of [0,1] \ C. More
precisely, for every k£ > 1 the function f is constant ;—k on J ;k) forall j =1,...,2F — 1.

It is standard to extend the Cantor function on R by defining f = 0 on (—o00,0) and f = 1 on
(1,+00). Thus, f is continuous and increasing on R.

Exercises.
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1.4.11. An example of an m1-null uncountable set which is dense in an interval.

Let QN [0,1] = {w1,22,...}. Take U(e) = U=} (25 — 57,25 + o7) and A = N2 U ().
(i) Prove that m1 (U (¢)) < 2e.

(i) If e < £, prove that [0, 1] is not a subset of U (e).

(iii) Prove that A C [0, 1] and m4(A) = 0.

(iv) Prove that Q N [0, 1] C A, and that A is uncountable.

1.4.12. Prove that the Cantor set is perfect: it is closed and has no isolated points.

1.4.13. (i) Prove that for every sequence (ay,) in {0,1,2} the series > 3k converges and its
sum is a number in [0, 1].

Conversely, prove that for every number x in [0, 1] there is a sequence (ay) in {0, 1,2} so that
T = Zzg g—’,g Then we say that 0.ajas . . . is a ternary expansion of x and that a;, as, . . . are the
ternary digits of this expansion.

(i) If = € [0,1] is of the form z = g%, where m = 1(mod3) and N € N, prove that = has
exactly two ternary expansions: one of the form 0.a; ...an_11000... and another of the form
0.(11 AP aN_10222 e

If z € [0,1] is either irrational or of the form z = %, where m = 0(mod 3) or m = 2(mod 3)
and N € N, prove that x has exactly one ternary expansion which is not of either one of the above
forms.

(iii) Let C be the Cantor set. If 2 € [0, 1], prove that 2z € C'if and only if x has at least one ternary
expansion containing no ternary digit 1.

1.4.14. More Cantor sets.

(a) We take an arbitrary sequence (e) so that 0 < ¢, < % for all k. We split I, = [0, 1] into
the three intervals [O, % — 61], (% — €1, % + 61), [% + €1, 1], and we form [ as the union of the
two closed intervals. Inductively, if we have already constructed I as a union of certain closed
intervals, we split each of these intervals into three subintervals of which the two side ones are
closed and their proportion to the original is % — €. Then we denote [; the union of the new
intervals. Clearly, I}, consists of 2* disjoint closed intervals.
We set K = {25 I

1

Observe that, if ¢, = § for every k, then K = C, i.e. the usual Cantor set.

(1) Prove that K is compact, has no isolated points, includes no open interval, and is uncountable.
(ii) Prove that m; (K) = limg_y oo (1 — 2€7) - - - (1 — 2¢g).

(iii) Taking 0 < € < 1, and ¢} = 5% for all k, prove that mi(K) >1—e.

Hint. (1 —a1)---(1—ax) >1— (a1 +---+ag) forall kand all ay, ..., a; € (0,1].

(iv) Prove that m (K) > 0 if and only if Y2/ ex < +oc.

Hint. Use the inequality in the hint for (iii) and also that 1 — a < e~ for all a.

(b) We can produce Cantor sets in R™. Using the sequence (¢e) and the sequence (1) of closed
subsets of [0, 1] in part (a), we consider the cartesian products I;> = Ij,x - - -x Ij,. Then I’ = [0,1]"
is the closed unit cube in R", and every I is the union of 2k1 closed cubes. Each of the 2(k—1)n
cubes of I}’ ;| contains 2" cubes of I;. Now, if K is the set of part (a), then the cartesian product
K™ = K x --- x K is the intersection of the I}}, i.e. K" = ﬂ;ﬁ I;.

Adjusting (1)-(iv) of part (a), prove that K™ is compact, has no isolated points, includes no open
interval, is uncountable, has m,, (K™) = limg_, 4 oo ((1—2¢€1) - - - (1—2€g))", and that m,, (K™) > 0
if and only if 3 €, < +oc.

A NON-LEBESGUE SET IN R.

For any z,y € R we write
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ifx —y € Q. Itis easy to see that ~ is an equivalence relation. Indeed, * ~ x, because
r—x=0€Q. Also, ifx ~y,thenz —y € Q,and theny —x = —(x —y) € Q,andso y ~ x.
Finally, ifz ~ yandy ~ z,thenz—y € Qandy—z € Q,andthenz—z = (z—y)+(y—2) € Q,
and then x ~ z.

It is easy to see that every equivalence class of ~ has non-empty intersection with [0, 1]. Indeed,
let £ be any equivalence class of ~, and let x € £. Since Q is dense in R, there exists r €
QN [—z,—z + 1]. Now we consider y = x + r, and then y € [0, 1]. Alsoy ~ x,and so y € &.

Now, using the Axiom of Choice, we form a set IV containing exactly one element from the
intersection of each equivalence class of ~ with [0, 1].

Obviously, N C [0, 1]. Our aim is to prove that N is not a Lebesgue set in R.

We form the set

A=U, conj-1,y(NV + ).

We shall need three properties of A.
() If ri,r2 € QN [—=1,1] and r1 # ro, then (N +11) N (N +r2) = 0.
Indeed, if x € (N 4+ r1) N (N +rg),thenz — 7,2 —rg € N. Butz ~x —ryand x ~ x — 19,
and so N contains two different elements from the equivalence class of ~ which contains x.
(i) A C [-1,2].
This is clear, since N C [0, 1] implies N 4+ r C [—1, 2] for every r € QN [—1, 1].
(iii) [0, 1] C A.
Indeed, let z € [0, 1] and let us consider the equivalence class £ of ~ which contains x. Then
N contains exactly one element T from £ N [0,1]. ThenZ € N and z — 7 € Q. We consider
r=x—T,and thenr € QN [—1,1]. Hence,z =T +r € N + r for some r € QN [—1, 1], and
sox € A.

Now let us suppose that IV is a Lebesgue set in R. By (i) and by the invariance of m under
translations, we get that

my(A) = Ere@ﬂ[—l,l] mi(N +7) = ZreQﬁ[—l,l] mi(N).

If m1(IN) > 0, then m;(A) = 400, contradicting (ii). If m;(N) = 0, then m(A) = 0, contra-
dicting (iii).
Therefore, N is not a Lebesgue set in R.

Exercises.

1.4.15. Another construction of a non-Lebesgue set in R.

Consider the equivalence relation ~ which we used in this section, and let L be a set containing
exactly one element from each of the equivalence classes of ~.

(i) Prove that R = | J, (L + r), and that the sets L + r are pairwise disjoint.
(ii) Prove that the difference set of L (see exercise 1.4.9) contains no rational number # 0.
(iii) Using the result of exercise 1.4.9, prove that L is not a Lebesgue set in R.

1.4.16. Non-Lebesgue sets in R are everywhere, 1.

We shall prove that every £ C R with mj(E) > 0 includes at least one non-Lebesgue set in R.
(i) Consider the non-Lebesgue set N C [0, 1] which was constructed in this section, and prove
that, if B C N is a Lebesgue set, then m;(B) = 0. Therefore, if M C N has mj (M) > 0, then
M is a non-Lebesgue set in R.

(if) Consider an arbitrary £ C R with mj(E) > 0, and o = 1 — mj(N). Then 0 < a < 1.
Exercise 1.4.3 implies that there is a bounded interval (a, b) so that mj(E N (a,b)) > a (b — a).
Now, the set N’ = (b — a)N + a is included in [a, b], and has mj(N') = (1 — a)(b — a). If
M’ C N'"has mj(M’) > 0, then M’ is not a Lebesgue set in R.

(iii) Prove that £ N N’ is not a Lebesgue set in R.
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1.4.17. Non-Lebesgue sets in R are everywhere, I1.
Consider E C R with mj(E) > 0.

(i) Consider the set L in exercise 1.4.15. Then E' = {J,.cq (£ N (L +1)). Prove that the difference
set (exercise 1.4.9) of each E N (L + r) contains no rational number # 0.

(ii) Use the result of exercise 1.4.9, and prove that, for at least one r € Q, the set £ N (L + r) is
not a Lebesgue set in R.

1.4.18. Not all Lebesgue sets in R are Borel sets, and not all continuous functions map Lebesgue
sets onto Lebesgue sets.

Let f : [0,1] — [0, 1] be the Cantor function. We define g(x) = f(z) + « forx € [0, 1].

(i) Prove that g is continuous, strictly increasing, one-to-one, and onto [0, 2]. Its inverse function
g~ :[0,2] — [0, 1] is also continuous, strictly increasing, one-to-one, and onto [0, 1].

(ii) Prove that the set A = ¢([0,1] \ C), where C' is the Cantor set, is an open set in R, with
mi(A) = 1. Therefore, the set E = g(C) is a closed set in R, with m;(E) = 1.

(iii) Exercises 1.4.16 and 1.4.17 provide us with non-Lebesgue sets M C FE. For any such set M,
consider the set K = g~ (M) C C. Prove that K is a Lebesgue set in R.

(iv) Using exercise 1.1.7, prove that K is not a Borel set.
(v) g maps K onto M.

1.5 Borel measures on topological spaces.

LEBESGUE-STIELTJES MEASURES ON R.

Lemma 1.3. If —0o < a < b < oo and F : (a,b) — R is increasing, then

(i) F(z+) = inf{F(y) |z <y} ifz € [a,b),

(i) F(a—) = sup{F(y) |y < o} if = € (a, ]

(iii) F(z—) < F(z) < F(a+) < F(y) < F(z—) < F(2) < F(z4) ifa <z <y < z < b,

(iv) F(z+) = limy_,o4 F(y£) if z € [a,b),

(v) F(z—) = limy_,, F(yx) if x € (a,b).

Proof. Exercise. O

We consider ag, by with —oco < ag < by < +o0 and an increasing function F' : (ag, by) — R.
We define a non-negative function 7 acting on bounded subintervals of (ag, by ), as follows:

7((a,0)) = F(b=) = F(a+),  7([a,b]) = F(b+) — F(a—),
7((a,b]) = F(b+) — F(a+),  7([a,b)) = F(b—) — F(a—).

The mnemonic rule is: if the end-point is included in the interval, then we approach it from outside
of the interval, while, if the end-point is not included in the interval, then we approach it from
inside of the interval.

We use the collection of all bounded open subintervals of (ag, by) and the function 7 to define,
as an application of Proposition 1.28, the following outer measure on (ag, bo):

i(E) = inf { Z] T 7((aj,b5)) | (az,b;) € (ag, by) forall j sothatECU °(aj,b5)}

for every £ C (ag, by). Caratheodory’s Theorem implies that the collection of p},-measurable
sets is a o-algebra of subsets of (ap,by). As we know, this o-algebra is denoted S t, but we
shall simplify the notation using the symbol Sg. The restriction of ;7. on the o-algebra of u7.-
measurable sets, i.e. Sg, is denoted . Thus, we get the measure space

((a0,b0), SF, ptr)
which, by Caratheodory’s Theorem, is complete.
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Definition. The measure i is called the Lebesgue-Stieltjes measure induced by the (increasing)
Sunction F : (ag,by) — R.

If F(z) = z forall z € R, then 7(5) = vol; () for all bounded intervals S and, in this special
case, i coincides with the 1-dimensional Lebesgue measure m; on R. Thus, Lebesgue-Stieltjes
measure is a generalization of Lebesgue measure.

Following the same procedure as with Lebesgue measure, we shall investigate the relation
between the o-algebra Sp and the Borel subsets of (ag,by). Proposition 1.40 is analogous to
Proposition 1.30.

Proposition 1.40. (i) Let P = (a,b] C (ag,by) and a = ¢ < ¢ < ... < ™ = p Jf
P = (Y 0], then 7(P) = 7 | 7(P).

(ii) Assume that P, Py, ..., P, are bounded open-closed subintervals of (ag,by), that Py, ..., P
are pairwise disjoint and that P = ngl P;j. Then T(P) = Eé-:l 7(P;).

(iii) Assume that P, Py, ..., P; are bounded open-closed subintervals of (ag, by), that Py, ..., P,
are pairwise disjoint and that Ué‘:l P; C P. Then Zé-:l 7(Pj) < 7(P).

(iv) Assume that P, Py, ..., P, are bounded open-closed subintervals of (ag,by) and that P C
Uj=1 P Then 7(P) < 35, 7(F)).

(v) Assume that () is a bounded closed interval, that Ry, . . ., Ry are bounded open subintervals of
(ao, bo) and that Q@ C Ué’:l R;. Then 7(Q) < Eé-:l 7(R;).

Proof. (1) We have a telescoping sum:
Sy T(B) = 2 (F(D+) = F( V1) = F(b+) — Fa+) = 7((a, ).

(i1) Exactly one of P, ..., P, has the same right end-point as P. We rename and call it P;. Then
exactly one of P, . .., P,_1 hasright end-point coinciding with the left end-point of ;. We rename
and call it P,_;. We continue until the left end-point of the last remaining subinterval, which we
shall rename P, coincides with the left end-point of P. Then the result is clear from (i).

(iii) We know that P\ (P, U---U P) = P{ U--- U P, for some pairwise disjoint open-closed
intervals P{, ..., P/. Then P = (U‘lj:1 P;) U (Uf?:1 P/), and from (ii) we get
! k !
T(P) = Zj:l T(Py) + i T(F) = Zj:l T(Pj).

(iv) We write P = P] U --- U P/, where P/ = P; N P are open-closed intervals included in P.
Then we write
P=PU(P\P)U-U(P\(P{U:UPy)).

Each of'these [ pairwise disjoint sets can be written as a finite union of pairwise disjoint open-closed
intervals:

Pl =P, P\PU-UP_)=P)U---UPRY for2<;j<l.

Now, using (ii) for the equality and (iii) for the two inequalities, we get
T(P) = 7(P) + Xy (Cmly 7(P)) < 7(P)) + by m(P) < Yy ().
(v) Let Q = [a,b] and R; = (aj,b;). For small € > 0 we define P. = (a — ¢,b] and Pj, =
(aj,bj — €. Itis easy to see that P, C P U---U P, if € > 0 is small enough. Now, (iv) implies
that
F(b+) = F((a—e)+) < X0, (F((bj — €4) — F(a;+))
for small € > 0. We take the limit as ¢ — 0+, and we get
l !
T(Q) = F(b+) — F(a—) < Zj:l (F(bj_> - F(aj"’)) = Zj:l T(R;)

using Lemma 1.3. O
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Proposition 1.41 corresponds to Proposition 1.31.
Proposition 1.41. Every bounded subinterval S of (ag, by) is pj.-measurable and j1p(S) = 7(S).

Proof. Let Q = [a,b] C (ag, bo).
Then
pr(Q) <7((a—eb+e) = F((b+e)—) - F((a —e)+)

for all small enough € > 0. Taking the limit as ¢ — 0+ and using Lemma 1.3, we get
pr(Q) < F(b+) — Fla—) = 7(Q).

For every covering () C U;;of R; by bounded open subintervals R; of (ag, by), there is (by com-
pactness) ! so that ) C Ué‘:1 R;. Proposition 1.40 implies

7(Q) < Xy T(Ry) < L7 (Ry)-

Hence 7(Q) < p3(Q), and we conclude that

for all closed intervals @ C (ag, bo).
IfP = (a,b] - (ao,bo), then

pr(P) < 7((a,b+€)) = F((b+€)—) — F(at)
for all small enough € > 0. We take the limit as e — 0+, and we get
pp(P) < F(b+) — F(a+) = 7(P).

If R = (a,b) C (ao, bo), then
pr(R) < 7((a,0)) = 7(R).
Now let P = (a,b] and R = (¢, d) be included in (ag, by). We take Pr = (¢, d — €], and we write

(RN P) = pp((PROP)U((d—€,d) N P)) < pp(PrN P) + pp((d —¢,d))
< r(PROP)+ F(d—) — F((d - €)+)

by the previous results. The same inequalities, with P¢ instead of P, give
pr(ROPY) < pup(PrN P+ F(d—) = F((d - €)+).
We sum the last two inequalities, and we find
pp(ROP) + pp(RNPY) < 7(PRrOP) + pp(PrN P+ 2(F(d-) — F((d - €)+)).
Now, we have Pr N P¢ = P U---U P, for pairwise disjoint open-closed intervals P;, and we get
7(PrN P) + pjp(Pr 0 P) < 7(PRNP) + Yy 1 (P)
<7(PROP)+ Y, 7(P)) = 7(Pr)
by our first results and Lemma 1.3. Therefore,

pr(ROP) +pup(RNPY) < 7(Pr) + 2(F(d=) — F((d - €)+))
=F((d—e€)+) — F(c+) +2(F(d—) — F((d — €)+)).

Taking limit as ¢ — 04, we find

pp(RNP)+ pp(RN P < F(d—) — F(c+) = 7(R).
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We proved that
pp(ROP) + pp(RNP) < 7(R)

for all bounded open intervals R and bounded open-closed intervals P included in (ag, bp).
Now, we consider an arbitrary £ C (ao, by) with u(E) < 4o0o0. We take a covering £ C
;;Of R; by bounded open subintervals R; of (ag, by) so that

SIS T(R)) < wip(E) + e
By o-subadditivity of ;. and by the last result we find
Pi(BENP)+pp(ENPY) < Y75 (0p(Ry N P) + (RN P)) < S 7(R)) < pp(E) +e.
Taking limit as ¢ — 04, we find
pr(ENP)+ pp(ENPY) < pp(E),

concluding that P € Sp.
IfQ = [ b] C (ap, bo), we take any increasing (ay) in (ag, bp) so that limy_, ; ~ a; = a and then
Q= ﬂ he1 > (ak, b] € Sp. Moreover, by our first result,

pr(Q) = pr(Q) = 7(Q).

If P = (a,b] C (ap,bo), we take any decreasing (a) in (a, b] so that limy_, { ., ax = a, and we
get that

pur (P) = limys oo pp([ag, b]) = limg oo (F(b+) — Far—)) = F(b+) = F(at) = 7(P).

If T = [a,b) C (ag, by), we take any increasing (by) in [a, b) so that limy_, o, b, = b, and we get
that T = |J;>[a, bx] € Sr. Moreover,

pr(T) = limy s oo pur(la, b)) = limps oo (F(br+) — Fa—)) = F(b—) — F(a—) = 7(T).

Finally, if R = (a,b) C (ag, by), we take any decreasing (ax) and any increasing (by) in (a,b) so
that limy ., o ax = a, limg_, 1 oo by = band a1 < by. Then R = UZ;’? [ak, b] € Sp. Moreover,

pr(R) = limyqo0 i ([ak, b)) = limp oo (F(be+) — F(ap—)) = F(b—) — F(a+) = 7(R).

We have thus proved that i (S) = 7(S) for every bounded interval S C (aq, bo). O
Proposition 1.42 corresponds to Proposition 1.32.

Proposition 1.42. pr is o-finite. Moreover, ur is finite if and only if F' is bounded.

Proof. We take any decreasing (ay) and any increasing (by,) in (ag, bg) so that limy_, 1 o ar = ay,
limy,_, 4 oo bx = bo. Then (ag, by) = U:f{ [ak, br] and pr([ag, b)) = F(bp+) — F(ag—) < 400
for all k. Hence, ur is o-finite.

We know that pr((ag, bo)) = F(bo—) — F(ap+). Therefore, if pu is finite, then —oco < F'(ap+)
and F(bp—) < +oo. Since all values of F' lie in the bounded interval [F'(ag+), F'(bop—)], we
get that F' is bounded. Conversely, if F' is bounded, then F'(ag+) and F'(by—) are finite, and so
uF((ao,bo)> < Ho00. ]

It is easy to prove that the collection of all subintervals of (ag,by) generates the o-algebra
of all Borel subsets of (ap, bo). Indeed, let C be the collection of all intervals in R and F be the
collection of all subintervals of (ag, by). It is clear that 7 = C|(ao, by), and then Propositions 1.9
and 1.10 imply that B(ao,bo) = Bl—| (ao, b()) = S(C)—‘ (a(], bo) = S(]:)

Proposition 1.43 corresponds to Proposition 1.33.
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Proposition 1.43. A/l Borel subsets of (ag, by) belong to Sp.

Proof. Proposition 1.41 implies that the collection F of all subintervals of (ag, by) is included in
Sr. By the discussion of the previous paragraph, we conclude that B, 5,y = S(F) C Sk. O

Proposition 1.44 corresponds to Proposition 1.34.

Proposition 1.44. Let E C (ag, by). Then

(i) E € S if and only if there is an A C (ag, by), which is a countable intersection of open sets,
such that E C A and j1;,(A\ E) = 0.

(i) E € Sg ifand only if there is a B, which is a countable union of compact sets, such that B C FE
and pi5,(E'\ B) = 0.

Proof. The proofis exactly the same as the proof of the similar Proposition 1.34. Only the obvious
changes have to be made: m,, changes to ;r, and m;; to u7,, R™ changes to (ag, by), vol,, changes
to 7, and L,, changes to Sg. ]

Therefore, every set in Sg is, except from a pup-null set, equal to a Borel set.
Proposition 1.45 corresponds to Proposition 1.35.

Proposition 1.45. (i) up is the only measure on ((ao, bo), B(ao,bo)) satisfying pp(S) = 7(S) for
all bounded intervals S C (ag, by).

(ii) (a0, bo), Sr, pur) is the completion of ((ao, bo), B(agp)» 1F)-

Proof. The proof is similar to the proof of Proposition 1.35. Only some obvious notational modi-
fications are needed. O

It should be observed that the Lebesgue-Stieltjes measure of a set {z}, consisting of a single
point z € (ao, bp), is equal to

pr({z}) = Fz+) = Fz—),

i.e. to the jump of F" at . In other words, the measure of a one-point set is positive if and only if
F is discontinuous there. Also, observe that the measure of an open subinterval of (ag, by) is 0 if
and only if F' is constant on this interval.

It is very common in practice to consider the increasing function F' with the extra property
of being continuous from the right. In this case the measure of an open-closed interval takes the
simpler form

pr((a,b]) = F(b) — F(a).

Proposition 1.46 shows that this is not a serious restriction.

Proposition 1.46. Given any increasing function on (ag, by) there is another increasing function
which is continuous from the right so that the Lebesgue-Stielties measures induced by the two
functions are equal.

Proof. Given any increasing F' : (ag, by) — R, we define Fy : (ag,by) — R by Fy(z) = F(z+)
for all x € (ag,bp). It is immediate from Lemma 1.3 that Fj is increasing, that Fj is continuous
from the right, i.e. Fy(xz+) = Fy(x) for all x, and that Fy(x+) = F(x+), Fo(z—) = F(x—) for
all z. Now, F{y and F' induce the same Lebesgue-Stieltjes measure on (ay, by), simply because the
corresponding functions 7(5) (from which the constructions of the measures p 5, , (15 start) assign
the same values to every interval S C (aq, bp). O

The functions Fy and F' of Proposition 1.46 have the same jump at every x and, in particular,
they have the same continuity points.
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Example. We consider the Cantor function f : R — [0, 1] which is increasing, continuous and
bounded. We call 11 the Cantor measure on (—oo, +00).

Since f is continuous, we have that pr({x}) = 0 for every x. We recall that f is constant on
every subinterval of [0, 1] \ C, where C is the Cantor set, and that f is constant 0 on (—o0, 0] and
constant 1 on [1, +00). Therefore, pi¢((—00,0]) = p¢([1,4+00)) = 0, and i ¢(J;n) = 0 for each
of the subintervals Jy, Ja, ... of [0,1] \ C. Since f(0) = 0and f(1) = 1, we get

pp((=o0, +00)) = ps([0,1]) = f(1) = f(0) = 1.

Moreover,
pp(C) = p([0,1]) = 02 i (Jm) =1 =302 0= 1.

Since y1f(C') = pf((—o0,+00)) = 1, we get that pus(A) = 0 for every Borel set A in R with
ANC =0.

Finally, since the difference of the values of f at the endpoints of each of the 2* subintervals of
I}, (look at the construction of C) is equal to %, we have that py(I) = 2% for each of these

subintervals I of I.

BOREL MEASURES ON TOPOLOGICAL SPACES.

Definition. Let X be a topological space and (X, S, 1) be a measure space. The measure (i is
called a Borel measure on X if Bx C S, i.e. if all Borel subsets of X are measurable.

Observe that, for 14 to be a Borel measure, it is enough that all open sets are measurable. This
is because Bx is generated by the collection of all open sets.

Example. Lebesgue measure m,, on R™ is a Borel measure.

Example. Every Lebesgue-Stieltjes measure i on any interval (ag, bp) is a Borel measure.
It is easy to see that up(K) < oo for every compact K C (ag,bp). Indeed, we have K C
[a,b] C (ag, by) for some a, b, and so

pr(K) € pr(la,b]) = F(b+) — Fla—) < +oo.

In fact, Proposition 1.47 says that Lebesgue-Stieltjes measures are the only Borel measures 4 on
an interval (ag, bo) with the property that 1([a, b]) < +oo for every [a, b] C (ao, bo).

Proposition 1.47. Let —oco < ag < by < +o0 and ¢y € (ag,bp). Also let 1 be a Borel measure
on (ag,bg) so that p([a,b]) < +oo for every [a,b] C (ag,by). Then there is a unique function
F : (ap,by) — R, which is increasing and continuous from the right, so that . = up on Biag,b0)
and F(co) = 0. For any other function G : (ag,by) — R, which is increasing and continuous
from the right, we have: u = ugq if and only if G differs from F by a constant.

Proof. We define F'(z) = u((co,x]), if co < x < by, and F(z) = —p((z, col), if ap < = < co.
F is real valued, and it is clear, by the monotonicity of u, that F' is increasing.
We take any decreasing (x,,) so that lim,,_, 4 o 2, = 2. If ¢p < z, by continuity of x from above,
we get

limy 400 () = iMoo 1((c0, ) = pi((co, ) = F(a).

Also, if < ¢g, then x,, < ¢g for large n, and, by continuity of x from below, we get
limy, s 00 F(z) = — limy,—s 100 (20, c0]) = —p((2, co]) = F(x).

Therefore, F' is continuous from the right at every .
Now we have that

pr((a,b]) = F(b) — F(a) = p((a,b]),

51



where the second equality becomes clear by considering cases: ¢ < b < ¢p, a < ¢o < b and
cp < a < b. We easily get the same result, namely p(S) = p(.S), for all other types of intervals
S, and then Proposition 1.45 implies that up = g on By py)-

Let G : (ap,byp) — R be increasing and continuous from the right, and let ug = pu(= pr) on
B(ag,b0)- Then we have that

G(x) = G(eo) = pa((co, 7)) = pr((co, 2]) = F(x) = F(co)

for all x > ¢q. Similarly,

G(eo) = G(x) = pa((x; co]) = pr((z, col) = F(eo) — F(x)

for all z < ¢g. Thus, F, G differ by a constant: G — F' = G(cg) — F(co) on (ag, bp). Moreover,
if F(co) = 0= G(cp), then F, G are equal on (ay, bo). O

If the Borel measure p of Proposition 1.47 satisfies u((ag, ¢p]) < 400, then we may make a
different choice for F' than the one we made in the proof of Proposition 1.47. We add the constant
1((ag, co]) to the function F in the proof, and we get the function

F(z) = u((ap,z]), =z € (ap,bp).

This last function is called the cumulative distribution function of .

A central notion related to Borel measures is the notion of regularity, and this is because of the
need to relate the general Borel set (a somewhat obscure object) to appropriate open or closed sets.

We recall that a topological space X is called Hausdorff if for every 1, z2 € X with x1 # x9
there are disjoint open neighborhoods V., V,., of 21, 9, respectively. We know that every compact
subset of a Hausdorff topological space is closed and, hence, a Borel set.

Let F be a Borel subset of a Hausdorff topological space X and i be a Borel measure on X.
It is clear that u(K) < p(E) < pu(U) for all compact K and open U with K C E C U. Hence,

sup{u(K) | K compact, K C E} < u(E) < inf{u(U) |U open, E C U}.

Definition. Let X be a Hausdorff topological space and 1 be a Borel measure on X. Then p is
called regular if the following are true for every Borel subset E of X :

(i) p(E) = inf{p(U) |U open, E C U},
(i) p(E) = sup{u(K) | K compact, K C E}.

In other words, p is regular if the measure of every Borel set can be approximated from above
by the measures of larger open sets and from below by the measures of smaller compact sets.
In the proof of Proposition 1.48 we shall use the Euclidean norm || - ||z on R", defined by

|z|l2 = (22 + -+ 22)Y? forall x = (z1,...,zn).

We also recall the Euclidean open balls in R™: the open ball with center x € R™ and radius r > 0
is
B(z;r) ={y e R |[ly — zfl2 < r}.

Proposition 1.48. Let O be any open subset of R". Then there is an increasing sequence (Kp,) of
+oo
compact sets so that | J,, =) K., = O.

Proof. We consider the sets
Kn={zcO||zlla <mand |y —z|2 > L forall y ¢ O}.

The set K, is bounded, since ||z||2 < m forall z € K,,.
Let (x;) be a sequence in K, converging to some z in R". From ||z;[|2 < m for all j, we get
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|z]]2 < m. Also, from ||y — ;|2 > L forall j and forall y ¢ O, we get ||y — z||> > L for all
y ¢ O. Thus, z € K,,, and so K, is closed.

Therefore, K, is compact.

It is clear that K, C K,,+1 C O for all m.

Now we take any = € O, and an € > 0 such that B(x;e) C O. We also consider any m € N such
that m > max {||z|2, 1}, and then it is trivial to see that z € K,,. Thus, Ut® K, = 0. O

Theorem 1.2. Let X be a Hausdorff topological space and 11 be a Borel measure on X. We assume
that for every open set O there is an increasing sequence of compact subsets of O which cover O,
and that there is an increasing sequence of open sets with finite p-measure which cover X. Then:

(i) p(K) < +oo for every compact set K.

(ii) For every Borel set . and every ¢ > 0 there is an open set U and a closed set F' so that
FCECUandw(U\F) <e Ifalso u(E) < 400, then F' can be taken compact.

(iii) For every Borel set E there is a set A, which is a countable intersection of open sets, and a
set B, which is a countable union of compact sets, so that B C E C A and u(A\ B) = 0.

(iv) w is regular.

Proof. There is an increasing sequence (G, ) of open sets so that (G, ) < +oco for every m and
Ur® G = X.

m

Now, let K be compact. Since K C ULOZOI Gy, there is M so that K C Un]‘le Gy. Then

p(K) < Z%:l W(Gm) < +00,

and we have proved (i).

(a) Let u(X) < +oo0.

We consider the collection S of all Borel sets E/ with the property expressed in (ii), namely, that
for every € > 0 there is an open U and a closed F'sothat ' C E C U and p(U \ F) < e.

We take any open O, and any € > 0. By assumption there is an increasing sequence (K,,) of
compact sets so that J°, K, = O. Then (O \ K,,) is decreasing and ()/>% (O \ K,,,) = 0.
Since p(O \ K1) < p(X) < 400, continuity of 1 from above implies that

limp—s 400 11(O \ Kp) = 0.

Hence, there is some m so that u(O \ K,,,) < €. Considering U = O and F' = K,,, we get
F COCUand pu(U\ F) < e. Thus, all open sets belong to S.

If £ € S and e > 0 is arbitrary, there is an open U and a closed F so that ¥ C E C U and
uw(U \ F) < e. Then Fis open, U€ is closed, U¢ C E¢ C F*° and

W(F\U®) = p(U\ F) < e.

This implies that ¢ € S.
Now, we take F'y, Fs,... € Sand F = U;OT E;. If e > 0, for each E; there is an open U; and a

closed F so that F} C E; C Uj and u(Uj \ F}) < 5;. We consider B = ;r:“f F} and the open
set U = jzof Uj,andthen BC E CU. ThenU \ B C U;ff(Uj\F;),and S0
WU\ B) < Y05 wUi \ F)) < 05 55 = e

Since B is not necessarily closed, we consider the closed sets F; = F U --- U Fj’ . Then (Fj) is
increasing and U;;O‘f F; = B, and so (U \ Fj) is decreasing and ;;OT(U \ Fj) = U\ B. Since
w(U\ F1) < p(X) < 400, continuity of 1 from below gives

limj oo (U \ Fj) = p(U\ B).
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Thus, there is some j so that (U \ Fj) < e. The inclusion F; C E C U is clearly true. We
conclude that £ € S.

Therefore, S is a g-algebra. Since S contains all open sets, we have that Bx C S, and we have
finished the proof of the first statement of (ii) in the special case p(X) < +o0.

(b) Let E be a Borel set such that there is some open G with E C G and u(G) < +o0.

We consider the G-restriction pi; of p, which is defined by g (A) = u(A N G) for all Borel sets
A. Clearly, pg(X) = pu(G) < +o0.

By the result of (a), for any ¢ > 0 there is an open U’ and a closed F so that F C F C U’ and
pa(U'\ F) < e. We consider the openset U = U'NG. Since E C G,weget FCECUCG
and W(U\ F) = pg(U\ F) < e.

Therefore, the first statement of (ii) is now proved with no restriction on x(X) but only for Borel
sets which are included in open sets of finite y-measure.

(c) Now, we consider the general case, and the sequence (G, ) of open sets as in the beginning of
the proof.

For any Borel set E we consider the Borel sets

Ei=ENdGy, Em:Eﬂ(Gm\Gm_l) for all m > 2,

and we have that £ = U . Since F,, € G,,, (b) implies that for each m and every e>0
there is an open U, and a closed F,, sothat F,, C E,,, C Uy, and u(Up, \ Fp) < Now we
consider the sets

2777 .

U=U'%Un F=UZ Fn.

Then U is clearly open, and it is easy to see that F' is closed. Indeed, let x € F°¢ = ﬂ+°° ES.
Then x € G for some large M. Also, x € ﬂM FS, and ﬂ 1 F5, 1s open. Hence, there is

an open neighborhood U, of x which is included in G N ﬂm: - Since Gy is included in
i1 F&. we get that U, is included in (%, F¢, = F°. Therefore, F* is open.
Finally, F C E C U, and, as in the proof of (a), we have U \ F' C U,f;ol(Um \ F,), and so

N(U\F)Sszlﬂ(Um\F) Zm 12m* :

This concludes the proof of the first statement of (ii).
(d) Let u(E) < 4-o00. There are an open U and a closed I so that ' C £ C U and (U \ F) < §.

By assumption, there is an increasing sequence (K,,,) of compact sets so that U+°° K, = X.
Then the sets F,,, = F' N K are compact, the (F,) is increasing and | J'*°, F},, = F. Hence,
(E\ F,,) is decreasing and (>, (E\ F};,) = E\ Fand u(E\ F1) < u(E) < +oo By continuity

of i from above,
limy, oo (B \ Frp) = (E\ F) < §.
Hence, there is m so that (£ \ F;,) < §, and so

WU\ F) = p(U\ E) + (B \ Fyy) < €

This proves the second statement of (ii).
(e) Let E be a Borel set. We take open U; and closed Fjj so that F; C E C Uj and u(U; \ Fj) < 1.

i
We define A = ﬂ LUjand B = U+°° F;,and then B C E C A. Now, for all j we have

p(ANB) < u(U; \ Fy) < 1.

and so u(A \ B) = 0. We consider the compact sets K, of part (d), and we define the compact
sets K, = F; N Ky,. Then B = U(j,m)eNxN K m, and we conclude the proof of (iii).

() If w(E) = +o0, then we have that ;(U) = +oo for all open U such that £ C U, and so we get
pu(E) = inf{u(U)| U open, E C U}.
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If u(E) < 400, then, from (i), for every ¢ > 0 there is an open U sothat E C U and u(U\ F) < e.
This implies
p(U) = p(E) + p(U\ E) < p(E) + ¢,

and so again u(E) = inf{u(U) |U open, E C U}.
Finally, from (iii), there is some B = U;rf:ol H]., where all H/, are compact, so that B C E and
w(E\ B) = 0. Hence,

u(B) = u(B) + u(E\ B) = p(E).
We take the compact sets H,, = Hj U---UH},, and then (H,y,) is increasing and | J**°, H,,, = B.
Then

limy,— oo ft(Hp) = p(B) = p(E),

and so sup{u(K) | K compact, K C E} = u(E). O

Example. Let us consider the Euclidean space R” with any Borel measure p on R™ such that
u(B(0;m)) < 400 for every m € N.

Then Proposition 1.48 implies that R™ and y satisfy the assumptions of Theorem 1.2, and so, in
particular, p is regular.

A special case of this is the Lebesgue measure m,, on R,

Example. Let (ag, bp) be an interval in R and i be a Borel measure on (ag, by) so that u([a, b]) <
+oo for every [a, b] C (ag, bp).

It is easy to see, by means of Proposition 1.48, that the assumptions of Theorem 1.2 are satisfied,
and so p is regular. On the other hand, since Proposition 1.47 implies that p is a Lebesgue-Stieltjes
measure, this result (the regularity of 1) is also easily implied by Proposition 1.44.

Exercises.

151 If —co< o <22 < -+ <2y < +ooand 0 < Aq,..., Ay < 400, then find (and draw)
the cumulative distribution function of y = ij:l Akl -

1.5.2. Let 1 be a Borel measure on R so that y(K) < +oo for every compact & C R and so that
p((—00,0]) < +oo. Prove that there is a unique F' : R — R, which is increasing and continuous
from the right, so that 4 = pp and lim,_, o F'(z) = 0. Which is this function?

1.5.3. If u, v are regular Borel measures on the Hausdorff topological space X and A € [0, +00),
prove that Ay and p + v are regular Borel measures on X.

1.5.4. Let 1 be a Borel measure on the topological space X. A point z € X is called a support
point for x if u(U,) > 0 for every open neighborhood U, of .
The set

supp(p) = {x € X |z is a support point for u}

is called the support of 1.
(i) Prove that supp(p) is a closed set.
(ii) If X is Hausdorff, prove that (K = 0 for all compact sets K C (supp(u))©.

(iii) If X is Hausdorff and 4 is regular, prove that i ((supp(x))) = 0, and that (supp(u))® is the
largest open set which is p-null.

1.5.5. If f is the Cantor function, prove that the support (exercise 1.5.4) of 17 is the Cantor set C'.

1.5.6. Let F' : R — R be any increasing function. Prove that the complement of the support
(exercise 1.5.4) of the measure yr is the union of all open intervals on each of which F' is constant.
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1.5.7. Leta : R — [0, +o0] induce the point-mass distribution x on (R, P(R)). Then p is a Borel
measure on R.

(i) Prove that ;(K) < +oo for every compact K C Rifand only if > 5 _pa, < +oo for
every i > 0. -

(ii) In particular, prove that, if ;1 (K) < 400 for every compact K C R, then {x € R |a, > 0} is
countable.

(iii) If u(K) < +oo for every compact K C R, find (in terms of the function a) an increasing,
continuous from the right £/ : R — R so that 4 = pp on By. Describe the sets E such that
13- (E) = 0 and find the o-algebra Sg of all ;},-measurable sets. Is Sp = P(R)?

1.5.8. Let i be a o-finite regular Borel measure on the Hausdorff topological space X and Y be a
Borel subset of X. Prove that both restrictions, 1|Y and py, are regular Borel measures.

1.5.9. Let p be a regular Borel measure on the Hausdorff topological space X so that u({x}) =0
for all z € X. A measure satisfying this last property is called continuous. Prove that for every
Borel set A with 0 < p(A) < +oo and every ¢ € (0, u(A)) there is some Borel set B so that
B C Aand u(B) =t.

1.5.10. Let X be a separable and complete metric space and let u be a Borel measure on X such that
(X)) = 1. Prove that there is a B, which is a countable union of compact sets, so that (B) = 1.

1.5.11. Let 7 = {0, X'} be the trivial topology on the non-empty set X. Prove that every subset
of X is compact, while the only Borel sets in X are () and X.

1.5.12. Let X be a Hausdorff topological space and 1. be a measure on (X, Bx) which satisfy the
assumptions of Theorem 1.2. Let Y be an open or closed subset of X with its subspace topology
and let 11]Y be the restriction of i on (Y, By ). Prove that Y and p]Y also satisfy the assumptions
of Theorem 1.2.

METRIC OUTER MEASURES.

Let (X, d) be a metric space. As usual, we denote B(z; ) the open ball in X with center z € X
and radius r > 0, i.e.
B(a;r) = {y € X [d(y, ) <r}.

We recall that, if £/, F" are non-empty subsets of X, the quantity
d(E,F) =inf{d(z,y) |z € E,y € F}
is the distance between I and F.

Definition. Let (X, d) be a metric space and 11* be an outer measure on X. We say that p* is a
metric outer measure if
W (BUF) = 1 (E) + p*(F)

for every non-empty sets E, F' C X with d(E, F) > 0.

Proposition 1.49. Let (X, d) be a metric space and |1* be an outer measure on X. Then, the
measure j1 which is induced by ji* on (X,S,») is a Borel measure (i.e. all Borel subsets of X are
w*-measurable) if and only if 1* is a metric outer measure.

Proof. We assume that all Borel sets are /*-measurable, and we take arbitrary non-empty E, F' C
X with d(E, F') > 0. We consider r = d(£, F') and the open set U = |J, . B(x;7). Itis clear
that E C U and F NU = {). Since U is p*-measurable, we have

p(EUF)=p* (EUF)NU) 4+ p* ((EUF)NU®) = p*(E) + p*(F).
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Therefore, p* is a metric outer measure on X.
Now let 1* be a metric outer measure. We consider any open set U C X. If A is a non-empty
subset of U, we define

Ap={z € Al|d(z,y) > L forevery y ¢ U}.

It is obvious that (A,,) is increasing. If x € A C U, there is r > 0 so that B(z;7) C U. Now, if
we take n € N so that % < r,then x € A,,. Therefore, U:ﬁ A, = A.

Now, we define By = A; and B,, = A, \ A,,— forall n > 2, and we have that the sets By, Bo, ...
are pairwise disjoint and that JT> B,, = A.

Ifz € Ay, and z € B9, then z ¢ A, 11, and so there is y ¢ U so that d(y, z) < %_H Then

d(z,2) > d(w,y) — d(y,2) > + - 5 = 5y

Therefore, d( Ay, Bpt2) > (n+1) > 0 for every n. Since A, 12 O A, U By12, we find

1 (Ant2) > 05 (Ap U Bpyo) = p*(An) + " (Bn2).
By induction, we get
p*(Br) + p*(Bs) + -+ + " (Bag-1) < p*(A2k—1),

p(B2) + p"(Ba) + -+ p" (Bak) < i (Agg)-

If Zk 1 1 (Bak—1) = +oo then limy_, o p*(Agx—1) = 400 and, if Zk 1 1 (Bag) = 400,
then limy_, o p*(A2r) = +00. Since the sequence (11*(A,,)) is increasing, in both cases we get
limy, 4 oo p*(Ay,) = +00. Since p*(Ay) < p*(A) for all n, we get

limy, oo 1" (An) = p*(A).

IfS°7% p*(Bag—1) < +ooand 3212 1*(Bay) < 400, then S 11*(By,) < +oc. So for every
¢ > 0 there is n so that > nt1 1 (Br) < e. Now, from A = A, U (Ukifl_H By) we get

pH(A) < (An) + k20 1 (Br) < i (An) +e.

This implies that
limy,— 400 p* (An) = p*(A).

Therefore, in any case, lim,,— o0 p#*(A,) = p*(A) forall A C U.
Now, we take an arbitrary £ C X, and we consider A = F N U and the corresponding sets A,,.
Since E N U*¢ C U€, we have that

d(An, ENU®) > d(Ay,U¢) > L >0

1
by the definition of A,,. Therefore,

1(E) > p* (A, U (ENU®)) = p*(A,) + 1" (BN U
for all n. Taking the limit as n — +o00, we find

p(E) z p (ENU) +p"(ENUS).

Thus, every open set U is p*-measurable, and so every Borel set is ;1*-measurable. O
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HAUSDORFF MEASURE, HAUSDORFF DIMENSION.
Let (X, d) be a metric space. The diameter of a non-empty set £ C X is defined by
diam(E) = sup{d(z,y) | =,y € E}
and the diameter of ) is defined by diam((}) = 0.
If cl(E) is the closure of E C X, then it is easy to see that diam(cl(E)) = diam(FE).
We take an arbitrary 6 > 0, and we consider the collection Cs of all subsets of X of diameter
not larger than §. We fix o with 0 < a < 400, and we consider the function 7,5 : Cs — [0, +00]

defined by 7, 5(E) = (diam(E))® for every E' € C5. We are now ready to apply Proposition 1.28,
and for any £ C X we define

hY, = inf { 3125 (diam(E;))* | diam(E;) < 6 forall j and E C U=} E;}.
We have that h;, s 1s an outer measure on X, and we further define
ho(E) = sups.o hy, 5(E), ECX.

We observe that, if 0 < §1 < d9, then the set whose infimum is h; 5 (E) is included in the set

whose infimum is £}, 5 (E). Therefore, b7, 5 (E) < h}, 5 (E), and so

h(E) = lims_o4 b, 5(E), E C X.

Proposition 1.50. Let (X, d) be a metric space and 0 < o < +oo. Then h}, is a metric outer
measure on X.

Proof. We have h7,(0) = sups- 1Y, 5(0) = 0, since /}, 5 is an outer measure for every § > 0.
If E C F C X, then for every § > 0 we have

s (E) < hg 5(F) < ho(F).
h

Taking the supremum of the left side, we find 2} (E) < h’(F).

IfE = jzof E;, then for every § > 0 we have

no(B) < 32750 It 5(Ej) < 52757 hi(E)),

and, taking the supremum of the left side, we find A} (E) < Z+°° h:(Ej).
Therefore, R}, is an outer measure on X.
Now, we consider any E, F' C X with d(E, F) > 0.
Ifhi(EUF) =400, then b (EUF) < hl(E)+ h’(F)implies h*,(EFUF) = hl(E)+h(F).
Now, we assume that b, (E U F') < 400, and so h¥, ;(E U F') < 400 for every § > 0. We take
arbitrary § so that 7
0<d0<d(E,F)
and an arbitrary covering
EUF C U= 4

with diam(A;) < ¢ for every j. It is obvious that each A; intersects at most one of the E and F'.
We define B; = A;, if A; intersects F, and B; = (), otherwise. Similarly, we define C; = A;, if
Aj intersects F, and C; = (), otherwise. Then

EC U;_:OE)B]'? Fc U;_:O?CJ
and so
W s(B) < S (diam(B))°, W 5(F) < ¥4 (diam(C))°
Adding, we find
hs(B) + B s(F) < 37127 (diam(4))7,

and, taking the infimum of the right side, 1}, ;(E)+hy, 5(F) < h7, s(EUF). Now, taking the limit
asd — 0+, weget h' (E)+ hl(F) < hi(EUF). Finally, since h* (EUF) <h(FE)+hi(F),
we conclude that b} (E'U F) = h},(E) + h}(F). O
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Definition. Let (X, d) be a metric space and 0 < o < +oo. We call k), the a-dimensional
Hausdorff outer measure on X, and the measure ho, on (X, Syx) is called the o-dimensional
Hausdorff measure on X.

Proposition 1.51. If (X, d) is a metric space and 0 < a < 400, then h,, is a Borel measure on
X. Namely, Bx C Sp:.

Proof. Immediate, by Proposition 1.49 and 1.50. O

Lemma 1.4. Let (X, d) be a metric space, E be a Borel setin X, and 0 < a1 < ay < +oo. If
ha, (E) < 400, then hq, (E) = 0.

Proof. Since hy, (E) = ha, (E) < 400, we have that b}, 5(E) < +oo for every 6 > 0. We fix
such a § > 0, and we consider a covering £ C U;r:“f A; by subsets of X with diam(A;) < ¢ for
all j so that
121 (diam(A4;))* < by 5(B) +1 < b (B) + 1.
Then
ho,s(E) < 30777 (diam(A;))*2 < g2 57000 (diam(A;))™ < (g, (E) +1)5%2~1.

as,0

Taking the limit as 6 — 0+, we find hj,, (E) = 0, and s0 hq, (E£) = 0. O

Proposition 1.52. Let (X, d) be a metric space and E be a Borel set in X. Then there is an
ap € [0, +0o0] (depending on E) such that: ho(E) = 400 for every o € (0, ), and ho(E) =0
Sor every a € (o, +00).

Proof. We consider various cases.

If ho(E) = 0 for every a > 0, then it is enough to define oy = 0.

If ho(E) = +oo for every @ > 0, then it is enough to define g = +o0.

Otherwise, there are «; and ap in (0, +00) so that 0 < hq, (F) and he, (E) < 4o00. In this case,
Lemma 1.4 implies a1 < ag, and hy(E) = +oo for every a € (0, 1), and h(E) = 0 for every
a € (ag,+00). Now, we consider

ag = sup{a € (0,400) | ho(E) = +0o0}.
Then oy € [aq,0]. Again, Lemma 1.4 implies ho(E) = +oo for every a € (0, ap), and
ha(E) = 0 for every a € (ag, +00). O

Definition. If E is any Borel subset of a metric space (X, d), the ay of Proposition 1.52 is called
the Hausdorff dimension of I, and it is denoted

dlmh(E)

In other words, we have 0 < dimy,(F) < 400, and ho(E) = +oo for 0 < a < dimy,(F), and
ha(E) = 0 for o > dimy, (E). If a = dimy, (E), then h, (F) can take any value in [0, 400].

Proposition 1.53. For every Borel set E in the Euclidean space R™ we have dimy,(E) < n. More-
over, there is a positive constant c,, depending only on n, so that hy,(E) = c,m,(E). Therefore,
ifmy(E) > 0, then dimy(E) = n.

Proof. Consider an arbitrary o > n and any bounded Borel set E. We take a closed cube () large
enough so that ¥ C (). By subdividing each of the edges of () into N intervals of the same length
we can subdivide () into N™ closed cubes @5, j = 1,..., N", of the same Lebesgue measure. If
the side length of () is /, then the diameter of ) is /n [ and the diameter of each Q); is @ Now,
E is covered by the union of all (), and so

hZ,\/m/N<E) < ij:rll (@)a = (1\\{?9:- (1.16)
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Therefore,

ha(B) = Hmy s oo B oy

Now, if E is not bounded, we can write it as £ = U 1 Bk, where all Ej, are bounded Borel sets.
Hence, h,(E) = 0 again.

Since ho(E) = 0 for all & > n, we get that dimy,(E) < n.

Now, we consider the closed cube

E)=0.

Qo =10,1] x --- x [0,1] = [0,1]™.

Let 9 > 0, and let Qp C U+°° E; with diam(E;) < ¢ for all j. Then each E; is contained in a
closed ball B; of radius dlam(E ) Also, the closed ball B; is contained in a closed cube Q; of
side-length 2d1am( ;). Therefore, Qo C U 7 @, and so

1 =myu(Qo) < Z Ima(Q)) = j:o?(z diam(E;))".
Thus, o < Z ! (diam(E}))™. Taking the infimum of the left side, we get

g7 < I, 5(Qo) < 1 (Qo) = ha(Qo).

On the other hand, we may repeat the argument at the beginning of this proof with the closed cube
@ = Qq, which has side length [ = 1, and with o = n. Then (1.16) becomes

W Qo) < 00 ()" = mn2,
Finally,
hn(Qo) = Moo b7, o/ (Qo) < "/2.

We conclude that 0 < h,(Qo) < +oc.
Now it is easy to show (exactly as with the Lebesgue measure m,,) that for all Borel sets A, all
z € R™ and all A > 0 we have

(A + 2) = hu(A),  hn(AA) = Ahy(A).

This implies that h,, (Q) = I"h,(Qo) for every closed cube @), where [ is the side length of (). But
we also have that m,,(Q) = I"m,(Qo), and so

for every closed cube @, where ¢, = ZZ((QQ%))' We may easily extend this result, i.e. h,(S) =

cnmp(S), to all bounded intervals S with rational vertices (indeed, such an interval can be de-
composed into pairwise disjoint cubes), and then to all bounded intervals. Now, Proposition 1.35
implies that the Borel measures h,, and c,,m,, are equal. ]

Example. We shall calculate the Hausdorff dimension of the Cantor set C' C [0, 1].

From Proposition 1.53 we know that 0 < dim, (C) < 1.

We consider the sets I, which are involved in the construction of C' = ﬂ w—1 1i- Each I}, consists
of 2% closed intervals of 1ength and, since C' C [, we get

he, 1/3k(0) < 2k (3%)“ — (%)k

log2

If > @,

2
then 55 < 1, and we get

(C)=0 fora> 12

ha(C) = lll’nk_>+oo h* Tog3

a,1/3k
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. log 2
Therefore, dimy, (C) < %.

Now, we consider o = i?ég’ and we take any § with 0 < 6 < %, and any covering C' C Uj:of E;

with diam(E;) < ¢ for all j. Considering the closure cl(E;) of each E;, we have that C' C
;;O‘f cl(E;) and diam(cl(E;)) = diam(E;) < J. Therefore, without loss of generality, we may

assume that every E; is a Borel set.

We also consider the Cantor measure 7, where f is the Cantor function.

Now, assume that E£; N C' # () and diam(E;) > 0. Then there is exactly one k& € N so that

sk% < diam(E;) < 3%

Then E; N I, # () and, since diam(FE;) < 3%, we have that F/; intersects exactly one, say I, of the
2% subintervals of I;. Hence,

pi(Ej) = pp(ByNI) < pp(I) = 5 = 527 = goms < 2(diam(E;))”.
Next, assume that F; N C' # () and diam(E;) = 0. Then E; contains only one point, and so
pf(Ej) = 0 = 2(diam(Ej))".

Finally, if E; N C' = 0, then
py(Ej) =0 < 2(diam(E;))*.

In any case we have pf(E;) < 2(diam(E;))® for all j. Therefore,
L= pp(C) < 32750 g (By) < 23577 (diam ().
Taking the infimum of the right side, we get that % < h, 5(C) forall § with 0 < 6 < %, and so

< limgs_o4+ hz’é(c) = ho(C) for a= {ggg

DO

Hence, dim,(C) > iggg, and we conclude that dimy, (C') = }25 2.

Exercises.

1.5.13. Let K be the set constructed in part (a) of exercise 1.4.14 using €, = ¢ for all k, where
0 < € < 3. Prove that dim,(K) = (log2)/(log 1%;). Thus, by varying € in the interval (0, §)
we get Borel sets in R whose Hausdorff dimensions cover the whole range between 0 and 1.
Find a Borel set K in R with dimj (K) = 0.
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Chapter 2

Measurable functions.

2.1 Measurability.

Definition. Let (X, Sx) and (Y,Sy) be measurable spaces and f : X — Y. We say that f is
(Sx, Sy )-measurable if f~1(E) € Sx forall E € Sy.

If the second space (Y, Sy ) is R or C or R or C or R™ with the corresponding o-algebra of Borel
sets, then we just say that f is Sx-measurable. If, moreover, the first space (X,Sx) is R™ with
the o-algebra of Borel sets or the o-algebra of Lebesgue sets, then we just say that f is Borel
measurable or Lebesgue measurable, respectively. And, if (X,Sx) is a topological space with
the o-algebra of Borel sets, then we just say that f is Borel measurable.

In the general case and if there is no danger of confusion, we may just say that f is measurable.

If f : X — R, then it is also true that f : X — R. Thus, according to the definition we
have given, there might be a conflict between the two meanings of Sx-measurability of f. But,
actually, there is no such conflict. Indeed, suppose that f is (Sx,3;)-measurable. If £ € B,
then ENR € By, andso f~1(E) = f~Y(ENR) € Sx. Hence, f is (Sx, B1)-measurable.
Conversely, let f be (Sx,B;)-measurable. If E € By, then E € By, and so f~1(FE) € Sy.
Hence, f is (Sx, B1)-measurable.

The same question arises when f : X — C, since it is then also true that f : X — C. Exactly
as before we may prove that f is (Sx, B2)-measurable if and only if it is (Sx, B2)-measurable,
and so there is no conflict in the meaning of Sx-measurability of f.

Example. Any constant function is measurable.
Indeed, let (X, Sx ) and (Y, Sy ) be measurable spaces and f(z) = yp € Y forall z € X. We take
an arbitrary E € Sy. If yg € E, then f}(E) = X € Sx. Ifyo ¢ E, then f~1(E) = € Sx.

Proposition 2.1. Let (X, Sx) and (Y, Sy) be measurable spaces and f : X — Y. Suppose that
Cy is a collection of subsets of Y so that S(Cy) = Sy. If f "Y(E) € Sx forall E € Cy, then f is
(Sx, Sy )-measurable.

Proof. We consider the collection
Sy ={ECY|f(E)eSx}

of subsets of Y. (According to exercise 1.1.2, this is the push-forward of Sx.)

Since f~1(0) = 0 € Sx, we get that () € S},

Let E € S}. Then f~1(E) € Sy, and so f1(E®) = (f~1(E))° € Sx. Hence, E¢ € S}..

Let E; € S, forall j. Then f~!(E;) € Sx forall j,and so f (U=} E;) = U= F1(E)) €
Sx. Hence, Uj:"‘f Ej € Sy.

Therefore, S}, is a o-algebra of subsets of Y.

Since, by hypothesis, Cy C Sj,, we get that Sy = S(Cy') C Sj,. This concludes the proof. O
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Proposition 2.2. Let X, Y be topological spaces and f : X — Y be continuous on X. Then f is
(Bx, By )-measurable.

Proof. Let Ty be the topology of Y, i.e. the collection of all open subsets of Y. By continuity
of f, for all E € Ty we have that f~!(E) is an open subset of X, and so f~!(E) € By. Since
S(Ty) = By, Proposition 2.1 implies that f is (Bx, By )-measurable. O

COMPOSITION.

Proposition 2.3. Let (X,Sx), (Y,Sy), (Z,Sz) be measurable spaces and let f : X — Y and
g:Y — Z. If fis (Sx,Sy)-measurable and g is (Sy,Sz)-measurable, then go f : X — Z is
(Sx, Sz)-measurable.

Proof. Forall E € Sy wehave g~ '(E) € Sy, andso (go f)"HE) = f'(¢g ' (E)) € Sx. O

Hence, composition of measurable functions is measurable.

MEASURABILITY AND SIMPLE TRANSFORMATIONS OF R".

We recall that the function 7, : R” — R” given by 7,(x) = x + z for all x € R" is called
translation by z. The inverse of 7, is 7_, given by 7_,(z) = = — z. If A C R", then

T, A= T1,(A4), 7_,:71.(A) = A

There is a corresponding translation by z of a function f : A — Y, where A C R"”. This is
the function
T(f)=for_,:1(A) =Y

given by
T.(f)(x) = f(r—x(x)) = f(x — 2), z€T,(A)=A+=z.

We note that the domain of definition of the translation of f by z is the translation of the domain

of definition of f by z.
Proposition 2.4 says that the translation of a measurable function is a measurable function.

Proposition 2.4. Let (Y, Sy) be a measure space and A € L. If f : A — Y is (L,]A, Sy)-
measurable, then 7,(f) : 7,(A) = Y is (L, |7:(A), Sy )-measurable.

Proof. 1f we prove that 7_, : 7,(A) — Ais (£,]7:(A), £, ] A)-measurable, then, in view of
Proposition 2.3, the proof will be complete.
Solet E € L,]A,ie. EC Aand E € L,,. Then

(sz)—l(E) =T1.(E) C 7:(A), (sz)_l(E) =T:(E) € Ly,
where the second relation is implied by Proposition 1.37. Hence (7_.) " '(E) € £,]7.(4). O

Now we consider any linear transformation 7" : R"” — R" with det(7") # 0, so that the inverse
linear transformation 7! : R” — R" is also defined. If A C R™, then

T:A—=T(A), T7!':T(4) - A.

There is a corresponding linear transformation of a function f : A — Y, where A C R"™. This
is the function
T(f)=foT 1 :T(A) =Y

given by
T(f)(x) = f(T"}(x), = €T(A).
Proposition 2.5 says that the linear transformation of a measurable function is a measurable
function.
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Proposition 2.5. Let (Y, Sy) be a measure space and A € L. If f : A — Y is (L,]A, Sy)-
measurable, then T'(f) : T(A) — Y is (L,,]T(A), Sy )-measurable.

Proof. As in the proof of Proposition 2.4, if we prove that T~ : T(A) — Ais (£, |T(A), L, ] A)-
measurable, then Proposition 2.3 will conclude the proof.
Solet E € L,]A,ie. EC Aand E € L,,. Then

(T7H™HE) =T(E) S T(4), (T™H)7HE)=T(E) € La,
where the second relation is implied by Proposition 1.38. Hence (T~!)~Y(E) € £,]T(A). O

As a special case of an invertible linear transformation we consider the function [, : R® — R"”,
i.e. the dilation by A > 0, given by [, (z) = Az for all z € R™. The inverse of [ is [ 5.

The corresponding transformation of the function f : A — Y, where A C R", is the function
IN(f) = folyy:In(A) = Y given by

W) (@)= fluya(@) = f(5), zel(A)=IA

The function I (f) is called dilation of f by .

Another special case of an invertible linear transformation is the function r : R® — R", i.e.
the reflection, given by r(xz) = —x for all z € R™. The inverse of r is itself.

The corresponding reflection of the function f : A — Y, where A C R", is the function
r(f) = for:r(A) — Y given by

RESTRICTION AND GLUING.
If f: X — Y and A C X is non-empty, then the function f]A : A — Y, defined by

(f1A)(x) = f(x) forall z € A,

is the usual restriction of f on A.

Proposition 2.6. Let (X, Sx), (Y,Sy) be measurable spaces and f : X — Y be (Sx,Sy)-
measurable. If A € Sx is non-empty, then f|A is (Sx|A, Sy )-measurable.

Proof. Let E € Sy. Then
(f1ATHE) ={z € A[(flA)(2) e B} ={z € A[ f(z) e E} = {z € X | f(z) e E} N A
= fYE)NA.
Now, since f~1(E) € Sy, we get that (f]4)"}(E) € Sx]A. O

We may say that measurability of a function on the whole space implies its measurability on
every (measurable) subset of the space.

Proposition 2.7. Let (X, Sx), (Y, Sy) be measurable spaces and f : X — Y. Let the (finitely
many or infinitely many) non-empty A1, As, ... € Sx be pairwise disjoint and AyUAsU- - - = X.
If f1A; is (Sx 1A, Sy )-measurable for all j, then f is (Sx, Sy )-measurable.

Proof. Let E € Sy. Then f~Y(E) N A; = (f]4;)"1(E) € Sx]A; for all j. This implies that
fTYUE)NA; € Sx forall j,andso fHE) = (fYE)NA)U(fTHE)NA)U--- € Sx.
Therefore, f is (Sx, Sy )-measurable. O

64



Thus, measurability of a function separately on complementary (measurable) subsets of the
space implies its measurability on the whole space.

There are two operations on measurable functions that are taken care of by Propositions 2.6
and 2.7. One is the restriction of a function f : X — Y on some non-empty A C X and the
other is the gluing of functions f]A; : A; — Y to form a single f : X — Y, whenever the
countably many A; are non-empty, pairwise disjoint and cover X. The rules are: restriction of
a measurable function on a measurable set is measurable, and gluing of measurable functions
defined on measurable subsets results to a measurable function.

Example. Let X, Y be topological spaces, f : X — Y, and A1, As, ... € Bx be pairwise disjoint
and A; UAyU--- = X. Letalso every f]A4;: Aj — Y be continuous on A;.

By Proposition 2.2, each f]A; : Aj — Y'is (BAj , Sy )-measurable. Since Ba, = Bx]A;, wehave
that each f]A; : A; — Y is (Bx]A;, Sy )-measurable. Therefore, f is (Bx, By )-measurable.
Loosely speaking, if a function is piecewise continuous, then it is Borel measurable.

FUNCTIONS WITH ARITHMETICAL VALUES.

Proposition 2.8. Let (X, S) be a measurable space and f : X — R™. Let, foreachj =1,...,n,
fj + X — R denote the j-th component function of f. Namely, f(x) = (fi(x),..., fu(z)) for all
x € X. Then f is S-measurable if and only if every f; is S-measurable.

Proof. Let f be S-measurable.
Let [ be any interval in R. We consider the interval S = R x --- X R X I xR x --- x RinR",
where [ is its j-th factor. Then

D) ={z e X|fi(z) e I} = {z € X[ f(z) € S} = fF7(S).

Since S € B, we get f~1(S) € S and so fj_l(I) € S. Since the collection of all  generates 3,
Proposition 2.1 implies that f; is S-measurable.

Now let every f; be S-measurable.

Let S =1; x --- x I, be any interval in R"™. Now

U8 ={re X|f(2) € 8} =M1 {z € X | fi(2) € i} = My f77 ' (T))-

Since fj_l(I ;) € S forall j, we get f~1(S) € S. The collection of all intervals S generates B,,,
and Proposition 2.1, again, implies that f is S- measurable. U

Loosely speaking, measurability of a vector function is equivalent to measurability of all its
component functions.
The next two results give simple criteria for measurability of real or complex valued functions.

Proposition 2.9. Let (X, S) be a measurable space and f : X — R. Then f is S-measurable if
and only if f~*((a, +0)) € S forall a € R.

Proof. Since (a,+00) € By, one direction is trivial. The other direction is a corollary of Proposi-
tion 2.1, since, by Proposition 1.12, the collection of all intervals (a, +00) generates ;. O

Of course, in the statement of Proposition 2.9 one may replace the intervals (a, +oc0) by the
intervals [a, +00) or (—o0, b) or (—o0, b].
If f : X — C, then the functions Re(f) : X — R and Im(f) : X — R are defined by

Re(f)(xz) =Re(f(x)), Im(f)(z) =Im(f(z)) forallx e X

and they are called the real part and the imaginary part of f, respectively.

Proposition 2.10. Let (X, S) be a measurable space and f : X — C. Then f is S-measurable if
and only if bothRe(f) : X — Rand Im(f) : X — R are S-measurable.
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Proof. An immediate application of Proposition 2.8. O
The next two results investigate extended-real and extended-complex valued functions.

Proposition 2.11. Let (X, S) be a measurable space and f : X — R. The following are equiva-
lent.

(i) f is S-measurable.

(i) f1({+o0}) €S, fHR) € S, and, if A = f~(R) is non-empty, the function f]A: A — R
is S| A-measurable.

(iii) f~1((a,+00]) € S forall a € R.

Proof. Using Proposition 2.6, we easily see that (i) implies (ii).

Now, we assume (ii). We consider the sets B = f~}({+o00}) and C = f~}({—oc}) = (AU B)“.
Both B and C belong to S, and the restrictions f|B = +oo and f|C = —oo are constants, and so
they are, respectively, S| B-measurable and S|C-measurable. Then Proposition 2.7 implies that
f is S-measurable, and so (ii) implies (i).

It is clear that (i) implies (iii).

Now, we assume (iii). Proposition 1.14 says that the collection of all (a, +oc] generates B1. Then
Proposition 2.1 implies that f is S-measurable, and so (iii) implies (i). O

Proposition 2.12. Let (X, S) be a measurable space and f : X — C. The following are equiva-
lent.

(i) f is S-measurable.

(i) f71(C) € S, and, if A = f~1(C) is non-empty, the function f1A : A — Cis S| A-measurable.

Proof. Using Proposition 2.6, we easily see that (i) implies (ii).

We assume (ii), and we consider the set B = f~1({oc}) = (f71(C))“.

Then B € S, and the restriction f]|B = oo is constant, and so it is S|B-measurable. Then
Proposition 2.7 implies that f is S-measurable, and so (ii) implies (i). 0

Exercises.

2.1.1. Let (X,S) be a measurable space and f : X — R. Prove that f is S-measurable if
f~Y((a,+00]) € S foralla € Q.

2.1.2. Prove that every monotone f : R — R is Borel measurable.

2.1.3. Let (X, S) be a measurable space and assume that the collection { F\ } xcgr of subsets of X
which belong to S has the properties:

(1) E\ C Ey forall A\, k with A < &,

(i) U,\GR Ey=X, ﬂAeR Ey =10,

(iii) N, wor B = Ey forall A € R.

Consider the function f : X — R defined by f(z) = inf{A € R|x € E\,}. Prove that f is
S-measurable and that F\ = {x € X | f(z) < A} forevery A € R.

How will the result change if we drop any of the assumptions in (ii) and (iii)?

SUM AND PRODUCT.

The next result is that sums and products of real or complex valued measurable functions are
measurable functions.

Proposition 2.13. Let (X, S) be a measurable space and f,g : X — R or C be S-measurable.
Then f + g, fg are S-measurable.
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Proof. (a) In the case f,g : X — R, we consider H : X — R? defined by H(z) = (f(x), g(z))
for all z € X. Proposition 2.8 implies that H is S-measurable. Now, we consider ¢, : R? — R
defined by

Py, 2)=y+z Yy, 2)=yz

Since ¢, 1) are continuous, Proposition 2.2 implies that they are Borel measurable. Therefore, by
Proposition 2.3, ¢ o H,1p o H : X — R are S-measurable. But,

goH=f+g, voH=fyg.

(b) In the case f,g : X — C, we consider Re(f),Im(f),Re(g),Im(g) : X — R, which, by
Proposition 2.10, are all S-measurable. Then part (a) implies that

Re(f + g) = Re(f) +Re(g), Im(f+g)=Im(f)+ Im(g),

Re(fg) = Re(f)Re(g) — Im(f)Im(g), Im(fg)=Re(f)Im(g)+Im(f)Re(g)
are all S-measurable. By Proposition 2.10 again, f + ¢, fg are S-measurable. O

If we want to extend the previous results to functions with infinite values, we must be more
careful.
The sums (400) + (—0), (—00) + (400) are not defined in R and neither is oo + co defined

in C. Hence, when we add f,g : X — R or C we must agree on how to treat the summation on,
respectively, the set

B={reX|f(z) = +oo, gla) = —oc or f(z) = —00, g(z) = +oc}
or the set
B={zeX|f(zx)=o00, g(x) = oo}

There are two standard ways to do this. One is to ignore the bad set and consider f + ¢ defined
on A = X \ B on which it is naturally defined. The other way is to choose some appropriate h
defined on B and define f + g = h on B. The usual choice for h is some constant, e.g. h = 0.

Proposition 2.14. Let (X, S) be a measurable space and f, g : X — R be S-measurable. Then
theset B={x € X | f(z) = +00, g(x) = —o0 or f(x) = —o0, g(x) = +oo} belongs to S.

(i) If A= X \ B, then the function f + g : A — R is S| A-measurable.

(i) Let h : B — R be S|B-measurable. We define (f + g)(z) = f(z) + g(x), if v € A, and
(f +9)(z) = h(z), ifz € B. Then f + g : X — R is S-measurable.

Similar results hold if f,g: X — Cand B = {z € X | f(z) = 00, g(x) = oo}

Proof. Let f,g: X — R be S-measurable.
We have

B = (f'({#+oc}) ng ' ({—oo})) U (f 1 ({—00}) Ng~ ' ({#0})),
andso B € S.

(i) We consider the sets:
C = {zeX|f(z),gx) € R).

Dy ={z € X|f(z) = +o0, g(x) # —oc or f(z) # —o0, g(x) = +oo},
Dy ={z e X|f(x) =—00, g(x) # 400 or f(x) # +o0, g(x) = —o0},

It is clear that C', D1, Dy € S, that A = C'U Dy U Do, and that the three sets are pairwise disjoint.
The restriction of f + g on C' is the sum of the real valued f]C, g]C. By Proposition 2.6, both
f1C, g]C are S]C-measurable. Now, since

(f +9)1C = (f1C) + (910,
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Proposition 2.13 implies that (f + g)|C is S|C-measurable. The restriction (f + g)] D1 = +o00,
is S| D;-measurable. Also, the restriction (f + g)| D2 = —oo is S|Dy-measurable. Finally,
Proposition 2.7 implies that f + g : A — R is S| A-measurable.

(i1) This is immediate after the result of (i) and Proposition 2.7.
The case f,g : X — C is similar, if not simpler. O

Thus, there is always a measurable sum of measurable functions.
For multiplication we make the following

Convention: (+00)0 = 0(+00) = 0in R and 000 = 0oo = 0 in C.
Thus, multiplication is always defined and we may say that the product of measurable functions
is measurable.

Proposition 2.15. Let (X, S) be a measurable space and f,g : X — R or C be S-measurable.
Then the function fg is S-measurable.

Proof. Let f, g : X — R be S-measurable.
We consider the sets

A={zeX|f(x)g(z) e R},

Ci={zeX|flx) =400, g(x) >0 or f(x) =—o0, g(z) <0
or f(z) >0, g(x) =400 or f(z) <0, g(x) = —o0},

Cy={zx e X|f(x)=—00, g(x) >0 or f(x) =400, g(z) <0
or f(z) >0, g(x) = —oc0 or f(x) <0, g(z) = +o0},

D={zeX|f(x)==to00, g(x) =0o0r f(z) =0, g(z) = £oo}.

These four sets are pairwise disjoint, their union is X and they all belong to S.
Now, we have

(f9)1A = (F1A)(g14).

By Proposition 2.6, f| A, g] A are S| A-measurable, and then Proposition 2.13 implies that (fg)] A
is S| A-measurable. The restriction (fg)]C1 = +o00is §|C1-measurable. Similarly, the restriction
(fg)]C2 = —o0 is S|Ca-measurable. Finally, (fg)|D = 0 is S| D-measurable.

Now, Proposition 2.7 implies that fg is S-measurable.

If f,g : X — C, the proof is similar and slightly simpler. O

ABSOLUTE VALUE AND SIGNUM.

The action of the absolute value on infinities is: | + 00| = | — 00| = +00 and |oo| = +o0.

Proposition 2.16. Let (X, S) be a measurable space and f : X — R or C be S-measurable. Then
the function |f| : X — [0, +o0] is S-measurable.

Proof. Let f : X — R. The function | - | : R — [0, +00] is continuous, and so it is Borel
measurable. Therefore, | f|, the composition of | - | and f, is S-measurable.
The same proof applies in the case f : X — C. O

Definition. For every z € C we define: sign(z) = &, if 2 # 0 and z # oo, and sign(0) = 0, and

:m,

sign(oo) = oc.

If we denote C* = C \ {0, 00}, then the restriction sign]C* : C* — C is continuous. The
restriction sign|{0} is constant 0 and the restriction sign|{co} is constant co. Now, Proposition
2.7 implies that sign : C — C is Borel measurable.

All this applies in the same way to the well-known function sign : R — R defined by:
sign(z) = 1,if0 < z < 400, and sign(z) = —1, if —oo < x < 0, and sign(0) = 0. Hence,
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sign : R — R is Borel measurable.
For all z € C we may write
z = |z|sign(z)

and this is called the polar decomposition of 2.

Proposition 2.17. Let (X, S) be a measurable space and f : X — R or C be S-measurable. Then
the function sign(f), defined by sign(f)(x) = sign(f(x)) for all x € X, is S-measurable.

Proof. If f : X — R, then sign(f) is the composition of sign : R — R and f. Hence, the result
is clear by Proposition 2.3. The same argument applies if f : X — C. U

Exercises.

2.1.4. Let (X, S) be a measurable space and f : X — R or C be S-measurable. We agree that
0P = +o0 and (+00)? = 0 if p < 0. Prove that, for all p € R, p # 0, the function |f|P is
S-measurable.

MAXIMUM AND MINIMUM.

Proposition 2.18. Let (X, S) be measurable space and f, g : X — R be S-measurable. Then the
Sunctions max{ f, g}, min{f, g} : X — R are S-measurable.

Proof. If h = max{f, g}, then we have

ht((a,+oc]) ={z € Ala<h(z)} ={z € X|a < f(x) ora < g(z)}
={reX]a< f(x)}U{z e X|a<g(x)}
= 7 ((a, +o00]) U g~ ((a, +o0]).

Hence, h~1((a, +oc]) € S for all @ € R. Now, Proposition 2.11 implies that h is S-measurable.
And then we get that min{ f, g} = — max{—f, —g} is also S-measurable. O

The next result is about comparison of measurable functions.

Proposition 2.19. Let (X, S) be a measurable space and f,g : X — R be S-measurable. Then
{reX|fx)=g(z)} eSand{z e X|f(z) <g(x)} €S.
Iff,g: X — Cis S-measurable, then {x € X | f(z) = g(x)} € S.

Proof. Consider the set A = {z € X | f(z) € R, g(x) € R} € S. Then f]A, g|A are S]A-
measurable, and so (f — g)]A = (f]A) — (g]A) is S| A-measurable. Hence, the sets

{z € Alf(2) =g(2)} = ((f - 9)1A) " ({0})

{z e Al f(x) <g(2)} = ((f — 9)14A) " (00, 0))
belong to S| A, and so they belong to S. Therefore,

{re X|f(z)=g(2)} = {z € A| f(x) = g()} U (S~ ({-o0}) N g~ ({~00}))
U (f ({+oo}) ng™ ({+oc})) €.

In a similar manner,

{zeX|f(x) <glx)}={reAlf(x) <g(x)}U(f ' ({—o0})Ng~((—o0,+oq)))
U (fH([~o00, +00)) N g~ ({+o0})) € S.

The case of f,g: X — C and {x € X | f(x) = g(z)} is even simpler. O
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TRUNCATION.

There are many possible truncations of a function.
Definition. Let f : X — R and «, B € R so that o < .
We define f((f)) = min { max{f,a}, 3}

We write f®) instead off(@)o). Le. f® = min{f, 8}.
We write f ) instead off((;r)oo). Le. f(o) = max{f,a}.
The functions f((f )) ) f(«) are called truncations of f.

In other words, we have: f((f)) () = f(z),ifa < f(z) < B, f((f)) () = o, if f(x) < a, and
f@) = B,if B < f(x). Also: fP)(@) = f(x), if f(z) < B,and fO)(x) = 8,if B < f(2).
Finally: fo)(z) = f(z),ifa < f(z), and fo)(z) = o, if f(z) < o

Proposition 2.20. Let (X, S) be a measurable space and f : X — R be S-measurable. Then all

truncations f((f )) are S-measurable.

Proof. The proof is obvious from f((f )) = min { max{ f, a}, B} and Proposition 2.18. O

An important role is played by the following special truncations of f : X — R. They are the
functions f* : X — [0, +oc] and f~ : X — [0, +oc], which are defined by the formulas

ft = foy =max{f,0}, f~ =—f0 =—min{f,0} = max{—f,0},

and they are called, respectively, the non-negative part and the non-positive part of f.

If S is a o-algebra of subsets of X and f : X — R is S-measurable, then both f* and f~ are
S-measurable. It is also trivial to see that either f*(z) = 0 or f~(z) = 0 for every z € X. Le.
fTf~ =0. Also

ffrf=1U =t

There is another type of truncations used mainly for extended-complex valued functions.

Definition. Let f : X — R or C and r € [0, +00]. We define ") f(x) = f(x), if | f(z)| < r, and
") f(z) = r sign(f(2)), if r < |f(=)].
The functions ") f are also called truncations of f.

We observe that, if f : X — R, then ") f = f((i)T)

Proposition 2.21. Let (X, S) be a measurable space and f : X — R or C be S-measurable. Then
all truncations ") f are S-measurable.

Proof. The case f : X — R is clear, since (" f = f (i)r).
In the case f : X — C we consider the function ¢, : C — C defined by: ¢,(v) = =, if |z| < r,

and ¢, (z) = r sign(z), if r < |z|. We easily see that ¢, is Borel measurable. Now, " f=g.of,
and so (") f is S-measurable. O

Exercises.

2.15.Let f: X — R. Ifg,h: X — Raresuchthat g,h > 0and f = g — h on X, prove that
ff<gand f- <honX.

2.1.6. Let (X, S, i) be a measure space, f : X — R or C be S-measurable, and 0 < M < +oo.
Ifu({z € X|[|f(z)| = +o0}) = 0 and p({z € X [[f(z)] > M}) < +o0, prove that for every
€ > 0 there is a bounded S-measurable g : X — R or C so that u({z € X | g(x) # f(z)}) < e
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LIMITS.

The next group of results is about various /imiting operations on measurable functions. The rule
is, roughly: the supremum, the infimum and the limit of a sequence of measurable functions are
measurable functions.

Proposition 2.22. Let (X, S) be a measurable space and (f;) be a sequence of S-measurable
Junctions fj : X — R. Then all functions sup;cy [, infjen fj, limj_ oo fj and lim, .,  f; are
S-measurable.

Proof. Leth = sup,cy fj: X — R. We have

h™((a,+o<]) = {zr € Ala < h(z)} = {z € X |a < f;(x) for at least one j}
= U5z € Xa < fi(@)} = U2 f;7 ((a, +00)),

and so h~!((a, +c]) € S for every a € R. Now, Proposition 2.11 implies that h is S-measurable.

Therefore, infjey fj = — sup,cn(—f;) is also S-measurable.
And, finally, lim; o f; = infjen(supg>; fx) and lim, ., f; = sup,cn (inf>; fx) are S-
measurable. 0

Proposition 2.23. Let (X, S) be a measurable space and (f;) be a sequence of S-measurable
Sunctions f;j : X — R. Then the set A = {x € X | lim;_,~ f;(x) exists in R} belongs to S.

(i) The function lim;_, 1o fj : A — R is S| A-measurable.

(i) Let h : A° — R be S| A%-measurable. We define (limj_, 1 f;)(x) = limj_ 4o f(2), if
xz € A and (limj_, fj)(x) = h(x), if x € A°. Then lim;_,; fj : X — R is S-measurable.
Similar results hold if f; : X — C forall j and A = {z € X | lim;_,; f;(z) exists in C}.

Proof. Suppose that f; : X — R forall j.
Since limj_, f;(2) exists if and only if lim;_, o fj(z) = lim; , . fj(x), we have that

A= {2 € X| iMoo fi(@) = lim,_, , . f5(2)}.

Now, Proposition 2.22 implies that mﬁm fj and mj 100 /7 are both S-measurable, and then

Proposition 2.19 implies A € S.

(i) It is clear that the function lim;_, o f; : A — R is just the restriction of mj_>+oo f; (and of
lim; , . fj) on A, and so it is S| A-measurable.

(i1) The proof of (ii) is a direct consequence of (i) and Proposition 2.7.

The case of complex valued (or extended complex valued) functions can be reduced to what we
just proved and it is left as an exercise. O

SIMPLE FUNCTIONS.

Definition. Let E C X. The function xp : X — R defined by xg(x) = 1, if x € FE, and
xe(x) =0, ifx ¢ E, is called the characteristic function of E.

Of course, E determines its xg. But also, conversely, x g determines its corresponding F.
Indeed, £ = {z € X | xp(z) = 1} = (xg) "' ({1}).
The following are trivial:

AXE + KXF = AXE\F + (A + K)XBEnF + KXP\BE;  XEXF = XEnF, XEBe=1—XE
forall E, F C X andall A\, x € C.

Proposition 2.24. Let (X, S) be a measurable space and E C X. Then x g is S-measurable if
andonly if E € S.
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Proof. If xp is S-measurable, then £ = (yg) ' ({1}) € S.

Conversely, let E € S. Then for an arbitrary Borel set F' in R or C we have: (xg) }(F) = 0 if
0¢ F,1¢ F,and (xg) Y(F)=Eifl€ F,0¢ F,and (xg) }(F)=E¢if1 ¢ F,0 € F, and
(xg) Y(F)=Xif0€ F,1 € F. Inany case, (xg) }(F) € S, and so xg is S-measurable. []

Definition. 4 function defined on a non-empty set X is called a simple function on X if its range
is a finite subset of C. If, in particular, the range of the simple function is a subset of R, then we
may say that it is a real valued simple function. Also, if the range of the simple function is a subset
of [0, +00), then we may say that it is a non-negative simple function.

We note that simple functions never take infinite values.
The following proposition describes completely the structure of simple functions.

Proposition 2.25. (i) A function ¢ : X — C is a simple function on X if and only if it is a linear
combination with complex coefficients of characteristic functions of subsets of X.

(ii) For every simple function ¢ on X there are m € N, distinct k1, . . ., ky € C and non-empty
pairwise disjoint F, ..., E,, C X with U;nzl E;j = X sothat = k1XE, + "+ EmXEy,. This
representation of ¢ is unique (apart from rearrangement).

(iii) If S is a o-algebra of subsets of X, then the simple function ¢ on X is S-measurable if and
only if all Ey, in the representation of ¢ described in (ii) belong to S.

Proof. Let

¢ =211 NXEy,
where \; € Cand F; C X for all j. We consider any 2 € X, and then either = belongs to no F},
in which case ¢(z) = 0, or, by considering all the sets F},, ..., F};, which contain x, we have that
() = Aj, +- - -+ \j,.. Hence, the range of ¢ contains at most all the possible sums Aj, +- - -+,
together with 0, and so it is a finite set. Thus, ¢ is simple on X.
Conversely, let ¢ be simple on X, and let the range of ¢ consist of the distinct x1, ..., s, € C.
We consider

Ej={z € X|d(z) = r;} = ¢~ ({r}).
Then every x € X belongs to exactly one of these sets, and so Ey, ..., E,, are pairwise disjoint
and X = F; U---U FE,,. Now it is clear that

(ZS = ZTZl ﬁjXEja

because both sides take the same value at every x.
If

!/
¢ = ZZZ1 “;XEzf

. . o e p o y .
is another representation of ¢ with distinct ; and non-empty pairwise disjoint £ covering X,

then the range of ¢ is exactly the set {x,...,x] ,}. Hence, m’ = m and, after rearrangement,
Ky = K1,..., K], = Km. Therefore,

Ej = ¢ ({sj}) = 67 ({r}) = B,

for all 7. We conclude that the representation is unique.
Now, if all E; belong to S, then, by Proposition 2.24, all xg; are S-measurable, and so ¢ is also
S-measurable. Conversely, if ¢ is S-measurable, then all E; = ¢~ ({x;}) belong to S. O

Definition. The unique representation ¢ = k1XE, + - - - + kmXE,, of the simple function ¢, which
is described in part (ii) of Proposition 2.25, is called the standard representation of ¢.

If one of the coefficients in the standard representation of a simple function is equal to 0, then
we usually omit the corresponding term from the sum (but then the union of the pairwise disjoint
sets which appear in the representation is not necessarily equal to the whole space).

72



Proposition 2.26. Any linear combination with complex coefficients of simple functions is a simple
function and any product of simple functions is a simple function. Also, the maximum and the
minimum of real valued simple functions are real valued simple functions.

Proof. Let ¢, be simple functions on X and p, ¢ € C. Assume that Ay, ..., A, are the values of
¢,and K1, . . ., Ky, are the values of ¢. It is obvious that the possible values of p¢ + ¢ are among
the nm numbers pA; + qx;, and that the possible values of ¢ are among the nm numbers \;x;.
Therefore, both functions p¢ + ¢, ¢p1p have a finite number of values. If ¢, 1) are real valued, then
the possible values of max{¢, ¢} and min{¢, )} are among the n + m real numbers \;, x;. O

Proposition 2.27. (i) Given f : X — [0, +00], there exists an increasing sequence (¢py,) of non-
negative simple functions on X which converges to f pointwise on X. Moreover, (¢,,) converges
to f uniformly on every subset of X on which f is bounded.

(ii) Given f : X — Ror C, there is a sequence (¢,) of real valued or complex valued, respectively,
simple functions on X which converges to f pointwise on X and so that (|¢y,|) is increasing.
Moreover, (¢y,) converges to f uniformly on every subset on which f is bounded.

If S is a o-algebra of subsets of X and f is S-measurable, then the ¢, in (i) and (ii) can be taken
to be S-measurable.

Proof. (i) For every n,k € Nwith 0 < k < n? — 1, we define the sets
Enr =[5, 51Y), F.=f"(n,+x])

and the non-negative simple function

2_1 k
Un =Y iy ¥XE,, T NXE,-

For each n the sets
E?LO) En,lv sy En,nz—la Fn

are pairwise disjoint and their union is X . Observe that if f is S-measurable then all £, ;. and F,
belong to S, and so 1, is S-measurable.
For every n we have

wn:%§f<%:wn+% oneach E, ., 1, =n<f on F,.

Now, if f(x) = 400, then z € F), and so ¢,,(x) = n for every n. Hence lim,,_, o0 ¢n () = f(2).
If 0 < f(x) < 400, then for all large n we have 0 < f(x) < n. So for each large n there is a
unique k with 0 < k < n? — 1 and % < f(x) < % Then z € E,, 1, and so ¥, (z) = % Hence

ng(x)—wn(x)<%

for large n. This implies that limy,—, o ¥ (z) = f(x).
Therefore,
lim, 5400 ¥ = f pointwise on X.

If K C X and f is bounded on K, then there is an ng so that f(z) < ng for all z € K. Hence,
for all n > ny we have
0< f(z) —tn(z) <1 forallz € K.

Thus,
limy,— 400 ¥y = f uniformly on K.

Now, for every n, we consider the simple function

¢On = max{y, ..., Y}
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If f is S-measurable, then every ¢ is S-measurable, and so every ¢,, is S-measurable. We have
proved that 0 < ¢, < f on X for every k, and so we have that 0 < ¢,, < f on X for every n.
Moreover, ¢, = max{i1,...,¥n} > 1n, and so ¥, < ¢, < f on X for every n.
Therefore,

limy, 400 ¢ = f pointwise on X,

and, if K C X and f is bounded on K, then
limy, 400 ¢ = f uniformly on K.

Finally,
¢n+1 = max{¢1, ey %Z)m ¢n+1} > max{@bl, oo 771Z)7l} = ¢n

on X for every n, and so (¢, ) is increasing on X.

(i) Let f : X — R. We consider the functions f, f~ : X — [0, +o0]. If f is S-measurable,
then f*, f~ are both S-measurable.

By (i) there are increasing sequences (p,,) and (g, ) of non-negative simple functions on X con-
verging to, respectively, fT and f~ pointwise on X and uniformly on every subset of X on which
f is bounded (because on such a subset f*, f~ are also bounded). Now it is obvious that, if we set

On = Dn — Gn,

then ¢,, is a real valued simple function on X which is S-measurable if f is S-measurable. It is
clear that (¢,,) converges to f pointwise on X and uniformly on every subset of X on which f is
bounded. Since 0 < p,, < fTand 0 < g, < f~, we have that p,, = ¢ and ¢, = ¢,,. Hence

|¢n| = Pn + qn,

and so the sequence (|¢y|) is increasing on X .

Now let f : X — C. We consider A = f~!(C), the restriction f]A : A — C, and the functions
Re(f]1A),Im(f]A): A—R.

If f is S-measurable, then these two functions are S| A-measurable.

By the previous case there are sequences (7,,) and (s, ) of real valued simple functions on A con-
verging to, respectively, Re(f]A) and Im(f]A) pointwise on A and uniformly on every subset of
A on which f] A is bounded. Now, if we set

d)n =Ty + 1Sy,

then ¢,, is a complex valued simple function on A which is S| A-measurable if f is S-measurable.
It is clear that (¢,,) converges to f| A pointwise on A and uniformly on every subset of A on which

f]A is bounded. Also
|¢n‘ =V T721 + 8%7

and so the sequence (|¢y|) is increasing on A.
If we also define ¢,, = n on A€, then the proof is complete. O

Exercises.

2.1.7. (i) Prove that a Borel measurable f : R — R is also Lebesgue measurable.
(i1) Find a function f : R — R which is not Lebesgue measurable.

(ii1) Using the Lebesgue but not Borel set constructed in exercise 1.4.18, find a function f : R — R
which is Lebesgue measurable but not Borel measurable.

2.1.8. Give an example of a function f : R — R which is not Lebesgue measurable so that | f| is
Lebesgue measurable.
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2.1.9. Starting with an appropriate function which is not Lebesgue measurable, give an example of
an uncountable collection { f; };c; of Lebesgue measurable functions f; : R — R so that sup,.; f;
is not Lebesgue measurable.

2.1.10. (i) Prove that, if G : R — R is continuous and H : R — R is Borel measurable, then
H o G : R — R is Borel measurable.

(i1) Using exercise 1.4.18, construct a continuous G : R — R and a Lebesgue measurable H :
R — R sothat H o G : R — R is not Lebesgue measurable.

2.1.11. We say that ¢ : X — C is an elementary function on X if it has countably many values.
Is there a standard representation for an elementary function?

Prove that for any f : X — [0, +00), there is an increasing sequence (¢,) of non-negative ele-
mentary functions on X so that lim,,_, 1 ¢, = f uniformly on X. If S is a g-algebra of subsets
of X and f is S-measurable, prove that the ¢,, can be taken to be S-measurable.

2.2 The role of null sets.

Definition. Let (X, S, i) be a measure space. We say that a property P(x) holds u-almost every-
where on X or for u-almost every x € X, if the set {x € X | P(x) is not true} is included in a
u-null set.

We may also say: P(z) holds p-a.e. on X and P(x) holds for u-a.e. z € X. More simply:
P(z) holds a.e. on X and P(x) holds fora.e. x € X.

It is clear that, if P(x) holds fora.e. z € X and y is complete, then {x € X | P(z) is not true}
is contained in S, and so its complement {z € X | P(x) is true} is also contained in S.

Proposition 2.28. Let (X, Sy, j1) be a measure space and (X, Sx , i) be its completion, and as-
sume A € Sx has u(A¢) = 0. Let (Y, Sy ) be a measurable space and f : A — Y be (Sx | A, Sy)-
measurable. If we extend f on X in an arbitrary manner as a function F' : X — Y, then the
extended function F is (Sx, Sy )-measurable.

Proof. We consider an arbitrary function  : A° — Y, and we define F' : X — Y by F(x) =
f(z),ifx € A,and F(z) = h(z), ifx € A°.
We take an arbitrary £ € Sy, and we write

FYE)={z e A|f(z) € E}U{z € A°|h(z) € B} = f"Y(E) U {z € A°| h(z) € E}.

The first set belongs to Sx | A and hence to Sx, and the second set is a subset of A°. Therefore,
F~Y(E) € Sx, and so F is (Sx, Sy )-measurable. O

In other words, if (X, Sx, 1) is a complete measure space, we get that, if f is defined a.e. on
X and it is measurable on its domain of definition, then any extension of f on X is measurable.

Proposition 2.29. Let (X, Sx, 1) be a measure space and (X,Sx, i) be its completion. Let
(Y,Sy) be a measurable space and f : X — Y be (Sx,Sy)-measurable. If g : X — Y is
equal to f a.e on X, then g is (Sx, Sy )-measurable.

Proof. There exists N € Sx so that {z € X | f(z) # g(z)} € N and p(N) = 0.

We consider A = N¢ € Sx, and then f]A: A — Y is (Sx|A, Sy )-measurable. Since g = f on
A, we see that g : X — Y is an extension of f]A : A — Y. Now, Proposition 2.28 implies that ¢
is (Sx, Sy )-measurable. O

In the particular case of a complete measure space (X, Sx, i), we get that, if f is measurable
and g is equal to f a.e., then g is also measurable.
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Proposition 2.30. Let (X, S, u) be a measure space and (X, S, 1) be its completion. Let (f;)
be a sequence of S-measurable functions f; : X — Ror C. If f : X — R or C is such that
f=1limj_ i fjae on X, then f is S-measurable.

Proof. There exists N € S so that {x € X | f(x) # limj_ 4 fj(x)} € N and pu(N) = 0.

We consider A = N© € S, and then f]A = lim;_, ;o fj]A on A.

Now, every f;]A is S]A-measurable, and so f]|A is S|A-measurable. Since f = f]A on A,
Proposition 2.28 implies that f is S-measurable. O

Again, in the particular case of a complete measure space (X, S, i) we get that, if (f;) is a
sequence of measurable functions and its limit is equal to f a.e., then f is also measurable.

Proposition 2.31. Let (X, S, u) be a measure space and (X, S,E) be its completion. If g : X — R
or C is S-measurable, then there is a S-measurable f : X — Ror Cso that g = f a.e. on X.

Proof. (a) Let E € S. Then there are A, M € S with u(M) = 0 so that E = AU F for some
F C M. Then xg # xaonlyon E\ A C M, andso ygp = x4 a.c. on X.

(b) Now, let ¢ : X — R or C be a S-measurable simple function with standard representation

O = K1XE, T+ EmXEp,-

Then Ey,. .., E,, € S, and by the result of (a), there are Ay, ..., A,, € S so that XE; = XA; a.€.
on X for every j. Then
Y =kKi1xA + 0+ EmXAn,

is a S-measurable simple function. Since

{z € X|o(x) # d(x)} CUjli{zr € X |xg,(x) # xa, ()},

we have that g({z € X | ¢(x) # ¢(x)}) = 0, and so ¢ = 1) a.e. on X.

(c) Finally, let ¢ : X — R or C be S-measurable. Proposition 2.27 implies that there are S-
measurable simple functions ¢, : X — R or C so that lim,,_, { o ¢, = g on X.

By (b), there are S-measurable simple functions %, : X — R or C so that ¢,, = ¥, a.e. on X.
We consider the set

Then B € S and fi(B) = 0, and we have that ¢,, = 1), for every n on BC. Since B¢ € S, there
are A, M € S with (M) = 0 so that B¢ = AU F for some F' C M. Since A C B¢, we have
that ¢,, = 1, for every n on A, and so lim,,_, { o ¥, = g on A.

Also, since A € S and every 1), is S-measurable, we have that every v, ] A is S| A-measurable,
and so g] A = limy,_, 4 o0 (¢ | A) is S| A-measurable.

Now, we consider f : X — R or C to be equal to g] A on A and equal to 0 on A¢. Then f is
S-measurable. Also, A° C BU M and

(B U M) < (B) + (M) = 7i(B) + u(M) = 0.
Therefore, g = f a.e. on X. O
Exercises.

2.2.1. Let (X, S, ) be a measure space.

(i) Let f,g,h: X > Y.If f =gae. on X and g = ha.e. on X, prove that f = h a.e. on X.
(i) Let f1, f2,91,92 : X — R. If fi = fo ae. on X and g1 = g2 a.e. on X, prove that
fi+g1=f2+g2and fig1 = fag2 a.e. on X.

(i) Let fj,g; : X — Rsothat f; = gj a.e. on X forall j € N. Prove that sup;c f; = sup;ecy gj
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a.e. on X. Similar results hold for inf, lim and lim.

(iv) Let fj,g; : X — Rsothat f; = g; a.e. on X forall j € N.

If A= {z e X|Ilimj_ i fj(x) exists} and B = {x € X | lim;_,; g;j(x) exists}, prove that
AAB C N forsome N € S with u(N) = 0, and that lim;_, | o, f; = lim;_,~ g; a.e. on AN B.
If, moreover, we extend both lim;_, o, fj and lim;_, { o, g; by a common function & on (A N B)¢,
prove that lim;_,, o f; = lim;_, | gj a.e. on X.

2.3 Lusin’s Theorem

A topological space X is called locally compact if for every x € X there is an open V' C X such
that z € V and cl(V) is compact.

Lemma 2.1. Let the topological space X be locally compact and Hausdorff. For every x € X
and every open U C X with x € U there is an open W C X such that x € W, cl(W) C U and
cl(W) is compact.

Proof. There is an open V' C X such that z € V and cl(V) is compact. Let Vo = V N U. Then
Vo is open, and x € Vp C U. Since bd(Vp) C cl(Vp) C cl(V'), we have that bd(Vp) is a closed
subset of a compact set, and so bd(V}) is compact.
For every y € bd(Vj) we have = # y, and so there are open W, Y,, such that z € W, y € Y, and
Wy NY, = 0. Now, since bd(Vo) € U, epa(vy) Yy there are y1, ..., yn € bd(Vp) such that

bd(Vp) C Yy, U---UY,,.
Now let W =VonW,, N---NW,,.
Then W is open, and x € W. We also have that

Wﬂ<Yy1 U...UYyn) :®
Then, since Y;,, U---UY), is open, we get that

A(W)N (Y, U---UY,) =0,

and so cl(W) Nbd(Vpy) = 0. Now, since W C V;, we get cl(W) C Vp, and so cl(W) C U.
Finally, cI(W) C V, CV Ccl(V), and so cl(W) is compact. O

Lemma 2.2. Let the topological space X be locally compact and Hausdorff. If K C X is compact
and U C X is open and K C U, then there is an open W C X such that K CW C cl(W) C U
and cl(W) is compact.

Proof. By Lemma 2.1, for every 2z € K there is an open W, C X such thatz € W, cl(W,) C U
and cl(W,) is compact. Since K C | J, o Wa, there are 1, ..., z, € K such that

KCW, U UW,,.

Let W =W, U---UW,, .
Then
(W) =cl(Wy,)U---Ucl(W,,,).

Therefore, W is open, cl(I¥) is compact, and K C W C c|(W) C U. O
We know that, if X is a topological space and f : X — C is continuous, then the set

supp(f) = cl({z € X | f(x) # 0})

is called the support of f. Clearly, supp(f) is a closed subset of X. Also, clearly, f(x) = 0 for
every x ¢ supp(f). Now, let us assume that F' is a closed subset of X such that f(z) = 0 for
every x ¢ F. Then, {x € X | f(x) # 0} C F, and, since F is closed, we get that supp(f) C F.
Therefore, supp(f) is the smallest closed set outside of which f = 0.

There is a more general version of the following result in Topology.
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Urysohn’s Lemma. Let the topological space X be locally compact and Hausdorff. If K C X is
compact and U C X is open and K C U, then there is a continuous f : X — [0,1] so that f =1
on K and supp(f) is a compact subset of U.

Proof. By Lemma 2.2, there is an open B; so that cl(B;) is compact and
KCByCcl(By) CU.
Then there is some open B/, so that cl(B; /5) is compact and
K C By Ccl(By2) C By,
Similarly, there are some open B, /4 and Bs 4 so that cI(By ) and cl(Bj3),) are compact and
K C Byjy Ccl(Byys) € Byja Ccl(By) C Bsy Ccl(Bs)y) C By

Continuing inductively, we see that to every rational of the form r = £ with 0 < k < 2"

27L
corresponds some open set B, so that cl(B,) is compact and so that
KCB,Ccl(B,)CBsCcl(Bs) CU

for every two such rational r, s with » < s. Let Qg be the set of all these rational numbers. It is
easy to see that Q is dense in [0, 1].
Now, we define:

g(x) =inf{r € Qq|z € B,}, ifx € By, ¢g(z)=1, ifx € BY.

We see that g = 0 on K and that g : X — [0, 1], and we shall prove that g is continuous on X.
Letz € X and e > 0.
If0 < g(z) < 1, there are r, 7', s € Qg so that

g(x) —e<r<r <g(r)<s<g(z)+e.

Ify € Bs,then g(y) < s < g(z) +e Ify ¢ cl(B,), theny ¢ B,,andso g(y) > r > g(z) — €.
Also, x € By and z ¢ B,/, and so x € cl(B,)¢. Hence, the open set V' = B, N cl(B,)° contains
x, and we have that

g(z) —e<gly) <g(zr)+e foreveryyecV.

Therefore, g is continuous at x.
If g(x) = 1, we take, like before, 7, 7' € Qg so that

g(z) —e<r<r <g(x).
Then we easily see that the open set V' = cl(B,)¢ contains x, and that
g(x) —e<g(y) <1< g(zx)+e foreveryyeV.

Hence, g is continuous at .
Similarly, if g(z) = 0, we take s € Qg so that

0<s<e.
Then we get that the open set V' = B, contains z, and that
g(x) —e<0<g(y) <e=g(x)+e foreveryyelV.

Hence, g is continuous at .
Finally, we take f = 1 — g. Then f : X — [0, 1] is continuous on X, and f = 1 on K. Also
f = 0 outside cl(B7). Hence, supp( f) is contained in cl(B;) which is a compact subset of U. [

78



If X is a topological space and U C X is open, then for a function f we write
f=U

whenever f : X — [0, 1] is continuous on X and supp(f) is a compact subset of U.
Thus, Urysohn’s Lemma says that, if X is locally compact and Hausdorff, X' C X is compact
and U C X is open and K C U, then there is a function f so that f < U and f = 1 on K.

Lusin’s Theorem. Let the topological space X be locally compact and Hausdorff and 1 be a
regular Borel measure on X. If f : X — R or C is Borel measurable and f is finite a.e. on X
and f = 0 outside a set of finite measure, then for every € > 0 there is a continuous g : X — R
or C so that g = 0 outside a compact set of finite measure and p({z € X | f(x) # g(x)}) < e If
f has certain bounds a.e. on X, then g can be chosen to have the same bounds on X.

Proof. (a) Let E be any Borel set in X with y(F) < 400 and let € > 0. Then there is a compact
K and an open U sothat K C E C U C X and u(U \ K) < e. By Urysohn’s Lemma, there is
a function g sothat g < U and g = 1 on K. Obviously,g = xg = lon K,andg = xg =0
outside U. Therefore,

p{z € X|xe(@) # 9(@)}) < U\ K) <e

We also observe that supp(g) C U is compact and p(U) < 400, and so g is 0 outside a compact
set of finite measure.

(b) Now we consider a non-negative Borel measurable simple function ¢ : X — [0, M] which is
0 outside some set of finite measure. We may write

O = K1XE, T+ KkXEy»

where F1, . .., Ey are pairwise disjoint Borel sets of finite measure and 1, . . . , kK > 0. Then from
part (a) there are continuous g1, ..., g : X — [0,1] so that u({x € X [ xg;(z) # g;(2)}) < 1
for all j, and so that each g; is 0 outside a compact set of finite measure. Now, we consider

h =rkig1 + -+ Kigk

which is continuous and non-negative on X, and which is 0 outside a compact set of finite measure.
Then

{z e X|o(x) # h(x)} S{r € X[xp (z) # g1(x)} U- - U{z € X |xp,(z) # g(z)},

and so

p{z € X[o(x) # h(x)}) < +---+
Now, we take g = h(™) = min{h, M}.
Then g : X — [0, M] is continuous on X and 0 outside a compact set of finite measure. Since

{z € X|o(x) #g(2)} C {z € X[o(z) # h(z)},

we get ju({z € X | 6(x) # g(@)}) < e.
(c) Next let f : X — [0, M] be Borel measurable and 0 outside some set of finite measure. By

Proposition 2.27, there is an increasing sequence (¢y) of non-negative Borel measurable simple
functions which converges uniformly to f on X. All ¢ are 0 outside the same set of finite measure.
By taking an appropriate subsequence we may assume that

= €.

o

0<f—¢r<5 onX
for every k. We consider the non-negative Borel measurable simple functions
Y1 = o1, Y= ¢ — Qp—1 for k > 2.
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All ¢, are 0 outside the same set of finite measure and it is clear that

SNk =f onX.

Moreover,
Vp < f — o1 < 551 on X fork > 2.

Now, from part (b) there are continuous and non-negative g, on X so that

p({r € X [Yr(x) # gr(2)}) < 55, g < 2,%1 on X for k > 2.

We may also assume that all g, are 0 outside the same compact set of finite measure. Then the
series Z;ﬁ gx converges uniformly on X, and the function

gk="h

is non-negative and continuous on X and is 0 outside a compact set of finite measure. We also
have that

{z € X|f(2) # hx)} € UiZi{z € X [4u(@) # g(@)},
and so
p({z € X[ f(z) # h(@)}) < X2 5 =«
Finally, we consider g = h(*) = min{h, M}.
Then g : X — [0, M] is continuous on X and 0 outside a compact set of finite measure. Since

{z € X|f(z) #g(2)} C{z € X|f(z)# h(z)},

we get u({z € X [ f(z) # g(2)}) <e.
(d) Let f : X — [0, +00] be Borel measurable and finite a.e. on X and 0 outside some set, say E,

of finite measure.
We consider the sets
Fp={zeX|k< f(x)}

for k € N. Then (F}) is decreasing and
221 B = {z € X| f(z) = +oo}.
Since F; C E, we have pu(Fy) < +o00, and so
limg 00 p(Fx) = p({z € X | f(x) = +00}) = 0.

Therefore, there is some M so that u(Fys) < §. Now we consider fM) = min{f, M}, and then
fOM) - X — [0, M] is Borel measurable, f(*) = 0 outside F, and

p({z € X | f(2) # fMD(2)}) = u(Fu) < 5.

From part (c) there is a continuous g : X — [0, +00) which is 0 outside a compact set of finite
measure so that

p{z € X[ fM(2) # g(2)}) < §.

Since
{zeX|f(x)#g@)} C{reX|fM(x)#g@)}UlreX|fla)# M)},

we get pu({z € X | f(a) # g@)}) < § + § =«

We have finished the proof in the case of functions f : X — [0, +00]. By considering the non-
negative and non-positive parts of a function f : X — R, and, after that, the real and imaginary
parts of a function f : X — C, we can easily finish the proof in the general case. We leave these
last details as an exercise. O
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Loosely speaking, every Borel measurable function which is finite a.e. on X and 0 outside
a set of finite measure is equal to a continuous function with compact support except on a set of
arbitrarily small measure.

We recall that Theorem 1.2 gives conditions on a Hausdorff topological space X and a Borel
measure 4 on X so that p is regular.

Exercises.

2.3.1. Is it possible to nullify the set of non-equality in Lusin'’s Theorem?
Take X[p,+) : R — R and prove that there is no continuous g : R — R so that x[g 1o0) = ¢
mi-a.e. on R

2.3.2. Let X, Y be topological spaces of which Y is Hausdorff, and i be a Borel measure on X so
that p(U) > 0 for every non-empty open U C X. Prove that, if f, g : X — Y are continuous and
f=gae. on X, then f =gon X.

2.3.3.(a) Let i be a Borel measure on the topological space X and f : X — C be a Borel
measurable function. In the spirit of exercise 1.5.4 about supports of Borel measures, a pointxz € X
is called a support point for f if u({y € U, | f(y) # 0}) > 0 for every open neighborhood U,
of z. The set

supp(f) = {x € X |z is a support point for f}

is called the support of f.

(i) Prove that supp(f) is a closed set.

(ii) If X is Hausdorff, prove that u({x € K| f(z) # 0}) = 0 for all compact K C (supp(f))°.
(iii) If X is Hausdorff and p is regular, prove that f = 0 a.e on (supp(f))¢, and that (supp(f))€ is
the largest open set on which f = 0 a.e.

(b) Assume that the p appearing in (a) has the additional property that (U) > 0 for every open
U. Use exercise 2.3.2 to prove that for any continuous f : X — C the two definitions of supp(f)
(the usual one, which we mentioned in this section, and the one in (a)) coincide.

2.3.4. Let f : R™ — R be continuous at m,-a.e. x € R™. Prove that f is Lebesgue measurable.

2.3.5. Let X be a locally compact and Hausdorff topological space so that for every open set O
there is an increasing sequence of compact subsets of O which cover O. If, moreover, p is a Borel
measure on X such that u(K) < +oo for every compact set K, prove that y is regular.

Hint. Prove that there is an increasing sequence of open sets of finite u-measure which cover X
and then use Theorem 1.2.

2.3.6. Let X be a locally compact and Hausdorff topological space which is separable, i.e. there is
a countable dense subset of X. Prove that for every open set O there is an increasing sequence of
compact subsets of O whose interiors cover O. If, moreover, 4 is a Borel measure on X such that
u(K) < 400 for every compact set K, prove that i is regular.

81



82



Chapter 3

Integrals.

3.1 Integrals.

In this whole section (except in the last subsection about point-mass distributions) (X, S, u) will
be a general but fixed measure space. At some places we may also deal with a second measure
space (X, S, v).

INTEGRALS OF NON-NEGATIVE SIMPLE FUNCTIONS.

Definition. Let ¢ : X — [0, +00) be a non-negative measurable simple function.
If ¢ =11 KkXE, IS the standard representation of ¢, we define

fX ¢du = kL, kp(Er).

We say that | @ dp is the integral of ¢ over X with respect to i or, shortly, the p-integral of ¢.
Sometimes we want to see the independent variable in the integral and we write [ ¢(x) dp(x).

If there is no danger of confusion, we shall simply say integral instead of p-integral.

In the definition of | @ dp we observe that if one of the values ry of ¢ is equal to 0, then, even
if the corresponding set E}; has infinite measure, the product ki ( E)) is equal to 0. Therefore, the
set where ¢ = 0 does not matter for the calculation of the integral of ¢.

Example. We consider the measure space (X, P(X), d,) for some zp € X. Every simple func-
tion ¢ : X — [0, +00) is measurable, and let ¢ = > ;" | ki x g, be the standard representation of
¢. Then z( belongs to exactly one Ey, say Ej,. Now, 0, (Ek,) = 1, and d5, (E)) = 0 for k # ko.
Also, XEy, (o) = 1, and x g, (z0) = 0 for k # ko. Hence,

Jx @ dbng = 3Tk Kkdag (Er) = Kk = 255 KX B (T0) = ¢(0)-
Proposition 3.1. Let ¢ = 2?21 AjXF;, where 0 < \j < +oo for all j and the sets F; € S are
pairwise disjoint. Then [ ¢dp =371 Nju(Fy).
Proof. The representation ¢ = 2?21 AjXF; in the statement may not be the standard represen-
tation of the simple function ¢. In fact, the numbers \; are not assumed different, and it is not
assumed either that the sets F; are non-empty or that they cover X.

(a) If all F} are empty, then x; = 0 on X for all j, and we get ¢ = 0 = 0 xx as the standard
representation of ¢. Therefore

fx pdp=0u(X)=0= Z?:l Aji(E}),

since p1(F;) = 0 for all j.
(b) If at least one Fj is non-empty, we rearrange sothat F; # 0, ..., F; # 0, Fj1; =0,..., F, = 0.
(We may have [ = n.) Then

¢ =35 NixEy, Sy Mu(Fy) = Y Au(F)),
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and the equality to be proved becomes [ ¢ du = 22:1 Njp(Fj).
If the F; do not cover X, we introduce the non-empty set Fj,1 = (F} U --- U F})¢ and the value
Ai+1 = 0. We can then write

0 =50 Aixrys X NinlEy) = 350 Au(Ey),

and the equality to be proved becomes [ ¢ du = ZIH Aj(Fy).

In any case, using the symbol & for [ or [ + 1, we have to prove that, if ¢ = Z§:1 AjX Fjs where
all Fj € S are non-empty, pairwise disjoint and cover X, then [ ¢ du = Z§:1 Aj(Fy).

It is clear that A1, ..., \; are all the values of ¢ on X, perhaps with repetitions. We rearrange in
groups, so that

)\1::>\k1 :K/]_7
Abi+1 =0 = Ak tky = K2,
Akiotkmo141 = 0 = Mkidetk, = Fm

are the different values of ¢ on X (and, of course, k1 + --- + k, = k). Foreveryi =1,...,m

we define
k k;
Ei = LJ]14'I;'1++ +k‘1 1+1 - {ﬂf € X | Qb( ) - I{i}a

and then ¢ = Zf;l ki X E; 1 the standard representation of ¢.
By the definition of [ ¢ dy, we get

[y ddp =T kip( i) = Sy ma(SF R u(E)
= 3 (Xt ) = X8 A u(Fy),

and the proof is complete. O

Proposition 3.2. (i) If ¢,¢ : X — [0, +00) are measurable simple functions and 0 < A < +o00,
then [ (¢ +¥)du= [y ¢dp+ [y Wdpand [ Apdp =X [ pdp.

(ii) If v, v are measures and ¢ : X — [0, +00) is a measurable simple function and 0 < \ < +o0,
then [y ¢pd(p+v) = [y ddu+ [y ddvand [ pd(Ap) = X [ pdp.

Proof. (1) If A = 0, then A\¢ = 0 = 0 xx is the standard representation of ¢, and so
JxAopdp=0u(X)=0=0 [y opdu= X[ ddpu.

Now let 0 < A < +o0. If ¢ = Z;n:l ;X E; is the standard representation of ¢, then A\¢ =

> i1 AkjXE; is the standard representation of A¢. Hence,

fX)\¢dM:ZT:1)\HjN(E) )\Zj 1’%]”( _Afx¢du

Now, let ¢ = Z;"Zl kiXE; and ¢ = > AixF, be the standard representations of ¢ and . It is
trivial to see that

X = Ulgjgm,lgign(Ej n Fz)

and that the sets E; N F; € S are pairwise disjoint. It is also clear that ¢ + v is constant x; + \;
on each E; N Fj, and so

O+ ¥ =2 1 <jemi<i<n(F T Ai)XE;NF-
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Proposition 3.1 implies

>J L 0>

>J L 0>

= Zj:l “j(zi 1 H(E; ﬁF')) +Zi 1 ‘(Zj 1 H(E; ﬂFz‘))
:Zz'nzﬂfj,“( )+Zz 1 Aip(F fxﬁbdll‘i‘fxwdﬂa

(i) Let ¢ = 2211 r; Xk, be the standard representation of ¢. Then

Ix @dp+v) =370 wi(p+v)(Ej) = 350 ki (u(Ej) + v(E;)))
= 27;1 Kipu(Ej) + ZTzl Kkiv(E;) = fX pdu+ fX ¢ dv.
Also,
fxﬁﬁd()‘ﬂ) Z 1R (M) (E ):Z;'nzl’ijAM(E)—)‘Zg 1 R (Ej —Afxﬁbd/ﬁ
and the proof is complete. O]

Proposition 3.3. (i) If ¢, : X — [0, +00) are measurable simple functions and if ¢ < 1) on X,
then [y ¢pdp < [ dp.
(ii) If u, v are measures so that u < v and ¢ : X — [0,+00) is a measurable simple function,
then [y ¢pdp < [y ¢dv.

Proof. (i) Let¢ =371 kjxk; and ¢ = 37| AixF, be the standard representations of ¢ and 1.
Whenever E; N F; # (), we take any x € E; N F;, and we find

ki = d(x) < P(x) = N,

and so kju(E; N F;) < N\u(E; N F;). The same is obviously true even when E; N F; = ().
Therefore,

fX ¢dlLL E] 1'%]#( ) Zl<]<m 1<i<n KZJ/L(E mF)
< Z1§jgm,1gign )‘iH(Ej Nr;) = E?:l Aip(F5) = fX Y dp.

(i1) Let ¢ = ZT:l r; Xk, be the standard representation of ¢. Then
Jx ddu = Z; 1 Ki(E )<Z] VRV (Ey) = [y ¢dv,
since p1(E;) < v(Ej) and k; > 0 for all j. O

Proposition 3.4. Let ¢ : X — [0, +00) be a measurable simple function and (Ay,) be an increasing
sequence of measurable sets so that +°° 1 An = X. Then lim,,_, | fX oxA, dit = fX o d.

Proof. Leto =>"" =1 KiXE; be the standard representation of ¢. Then we have
OXAn = D gy KjXE; X An = Do jey KiXE;N ARy
and Proposition 3.1 implies
limy, 4 oo fX oxa, dip = 1limy, 1 o0 Z;"Zl kip(EjNAy) = Z;”Zl kipn(Ej) = fX o du,
since (E; N Ay) is increasing, | J125 (E; N A,,) = Ej, and  is continuous from below. O

Proposition 3.5. Let ¢, 1, ¢2,... : X — [0,400) be measurable simple functions so that the
sequence (¢y,) is increasing on X.

(1) If lim, 4 oo O, < P on X, then limy,_, o fX On du < fX o dy.
(it) If ¢ < limy 400 o on X, then fX ¢ dp < limy, 400 fX ¢n dp.
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Proof. By Proposition 3.3, the sequence ( S x ®n d,u) is increasing, and so lim,_, | |  Pndp
exists in [0, +-00].

(i) Proposition 3.3 implies [ ¢n dp < [ ¢ dp for all n, and so0 limy, o0 [ G dp < [y ¢ dp.
(i) We consider an arbitrary « € [0, 1), and we define

Ap={z € X|ao(x) < dp(x)} €S.
It is easy to see that (A,,) is increasing and U:i’i A, = X. Now, we have that a¢x 4, < ¢, on
X, and Propositions 3.2, 3.3 and 3.4 imply
afyodp= [y addu=1lim, o [y apxa, dp <lim, i [y Gndp.
From this we get [ ¢ dp < limy, o [y ¢n dpu by taking the limit as o« — 1—, O

Proposition 3.6. Let ¢1, 11, P2, 102... : X — [0, +00) be measurable simple functions so that
the sequences (¢y,) and (1) are increasing on X. If lim, oo ¢, = limy, 4 o0 ¥y, on X, then

1My s yoo [y Gn dp = 1My, oo [y tn dpt.

Proof. For each k we have

wk < hmn—>+oo wn = hmn—>+oo ¢n

on X. Now, Proposition 3.5 implies

fX W d,u < hmnﬁ%»oo fX ¢n d,u

Taking the limit as k — 400, we get limy, o0 [y ¥n dpp < limy s oo [ ¢ dp.
The reverse inequality is proved symmetrically. O

Proposition 3.7. Let ¢ : X — [0,+00) be a measurable simple function. Then [y ¢dp = 0 if
and only if p = 0 a.e. on X.

Proof. 1If ¢ = Z;’;l k;XE; 18 the standard representation of ¢, then fX ddp =y kei(Ey).
Hence, [ ¢ dp = 0 if and only if p(Ej) = 0 for all & for which ;, > 0.
Now, since

Uk: >0 Bk = {z € X[ ¢(x) > 0},
we get
Dok >0 H(ER) = p({z € X[ ¢(x) > 0}).
Thus, [ ¢dp = 0 ifand only if u({z € X |$(z) > 0}) = Oifand only if p = 0 a.e. on X. [

INTEGRALS OF NON-NEGATIVE FUNCTIONS.

In this subsection we shall take for granted the notion of the integral [ ¢ dy for measurable simple
functions ¢ : X — [0, +00) and also all the relevant properties which we saw in the previous
subsection.

Definition. Let f : X — [0, 00| be a measurable function. We define the integral of f over X
with respect to | or, shortly, the u-integral of f by

Jx fdp =Tlim, o [ éndp,

where (¢y,) is any increasing sequence of non-negative measurable simple functions on X such
that limy,_, 1 oo ¢, = f on X.

We say that f is integrable over X with respect to p or p-integrable over X if [ « [ du is finite,
ie. [y fdu < +oc.

We may use the symbol [ f(x)du(x) if we want to see the independent variable in the integral.
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Proposition 3.6 guarantees that |  J dp is well defined and Proposition 2.27 implies the exis-
tence of at least one sequence (¢,,) as in the definition.

If there is no danger of confusion, we shall simply say integral and integrable instead of u-
integral and pu-integrable.

Example. We consider the measure space (X,P(X),d,,) for some z9p € X. Every function
f: X — [0, +00] is measurable, and let (¢,,) be any increasing sequence of non-negative simple
functions on X such that lim,,_, ;o ¢, = f on X. We have shown that [  On ddzy = Pn(x0) for
every n, and we get

fX fd(S:m = f(xo)

by taking the limit as n — +o0.

Proposition 3.8. (i) Let f,g : X — [0, +-00| be measurable functions and let \ € [0,+00). Then
Ix(f+9)du= [y fdu+ [y gduand [ N\fdu=X [ fdu.

(ii) If v, v are measures and f : X — [0, +00] is a measurable function and 0 < X\ < +oo, then
Jx fdlp+v)= [y fdu+ [y fdvand [ fd(Ap) =X [y fdu

Proof. We consider increasing sequences (¢,,) and (¢,,) of non-negative measurable simple func-
tions on X so that limy, 4 ¢, = f and limy,— 400 ¥, = g on X.

(i) Now, (¢, + 1y,) and (A\¢,,) are increasing sequences of non-negative measurable simple func-
tions on X such that lim,,—, y o (¢p, + 1) = f + g and limy,—, oo A, = Af on X.
We know that

fX((pn‘f’wn)dﬂzfX(bnd,U/"i_wand,ua fX)\¢nd,U/:)\fx¢nd,u

for all n. These imply [ (f +g)du = [y fdu+ [y gdpand [ Afdu = X [ f dp, by taking
the limit as n — 4o00.

(i1) We have that

for all n. These imply [ fd(pn+v) = [ fdu+ [y fdvand [ fd(Ap) = X [ fdu, by
taking the limit as n — +o0. O

Proposition 3.9. (i) Let f, g : X — [0, +00] be measurable functions such that f < g on X. Then
[x fdu < [y gdp
(ii) If p,v are measures so that n < v and f : X — [0,+00] is a measurable function, then
Jx fdu < [y fdv.

Proof. We consider increasing sequences (¢,,) and (¢,,) of non-negative measurable simple func-
tions on X so that limy, 0 ¢, = f and limy,— 400 ¥, = g on X.

(1) For every k we have that ¢, < f < g = lim,,_, 1 ¥, on X, and Proposition 3.5 implies

fX¢kdﬂ < hmn—H—oo fandﬂz fngu'

Taking the limit as k — 400, we conclude that [ fdu < [y gdp.
(i) We have that
fX(z)nd,u < fX¢ndV

for all n, and, taking the limit as n — 400, we find fX fdu < fX fdv. O

Proposition 3.10. Let f : X — [0, +00] be measurable. Then [y fdp = 0 if and only if f = 0
a.e. on X.
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Proof. We take an increasing sequence (¢,,) of non-negative measurable simple functions on X

so that limy,_, ;o ¢, = f on X, and then lim,, s, o [y bn dp = [ f dp.

Let [ « J du = 0. Since the sequence ( S x ®n d,u) of non-negative numbers is increasing, we have
that fX ¢n du = 0 for all n. Then ¢, = 0 a.e. on X for all n, and so f = 0 a.e. on X.
Conversely, let f = 0 a.e. on X. For every n we have 0 < ¢, < f on X, and so ¢, = 0 a.e. on
X. Then [y ¢y dp = 0 forall n, and so [, fdp = 0. O

Proposition 3.11. Let f : X — [0, +o0] be integrable. Then
(i) f(x) < +ocforae = € X,
(ii) the set {x € X | f(x) > 0} is of o-finite measure.

Proof. (i) We consider the set B = {x € X | f(z) = +o0} € Sand any r € (0, +00).
Now, we have that ryp < f on X, and Proposition 3.9 implies
ru(B) = [y rxpdp < [y fdp < +oo.
This implies p(B) < 2 [ f dy, and, taking the limit as r — oo, we find ;(B) = 0.
(i) We consider the sets A = {z € X | f(x) # 0} and Ac = {x € X | |f(z)| > €} fore > 0.
Then ex 4, < f on X, and exactly as before, we get
e(Ae) = [y exa dp < [y fdp < +oo.
Thus, u(A.) < +oo foralle > 0. Since A = J;25 A/, we get that A is of o-finite measure. [

Proposition 3.12. Let f,g : X — [0, +-00| be measurable and f = g a.e. on X. Then

@) [xgdp= [y fdu
(ii) if f is integrable, then g is integrable.

Proof. (i) We consider the set A = {x € X | f(z) = g(z)} € S, and then p(A°) = 0.
We have that fxac = 0 a.e. on X, and Propositions 3.8 and 3.10 imply
Jx Fdp= [x(Fxa+ Fxac)dp = [ Fxadp+ [x fxacdu = [x fxadp.

Similarly, we get [ gdp = [y gxadp.
Now, since fx4 = gxa on X, we find [, fdu = [, gdp.
(ii) If f is integrable, then fX fdp < 400. Now, (i) gives fX gdu < +00,and g is integrable. [

Exercises.

3.1.1. Let f : X — [0,400] be measurable. Let A = {Ey,..., E;}, where [ € N and the non-
empty sets F1, ..., E} € S are pairwise disjoint and cover X. Such a A is called S-partition of
X. We define S(f, A) = X', m;u(E;), where mj = inf{f(z) |z € E;}.

Prove that [ fdpu = sup{S(f,A)|A is a S-partition of X}.

INTEGRALS OF EXTENDED-REAL VALUED FUNCTIONS.

Now we shall take for granted the notion of the integral [ + f dp for measurable f : X — [0, +-00]
and also all the relevant properties which we saw in the two previous subsections.

Definition. Let f : X — R be a measurable function and f+,f~ : X — [0, +oc] be the non-
negative and non-positive parts of f. If at least one of [  fHdpand S [ dp is finite, we define
Jx fdu=Jx frdu— [ f~dp.

Then | « [ du is called the integral of f over X with respect to y or, simply, the p-integral of f.
We say that [ is integrable over X with respect to {1 or p-integrable over X if [ x [ du is finite.
As in the case of non-negative functions, we may write [ f(x)du(x) if we want to see the inde-
pendent variable in the integral.
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If there is no danger of confusion, we shall say integral and integrable instead of u-integral
and p-integrable.

We note that, if [\ fTdu = [y f~dp = 400, then [y fdu is not defined. On the other
hand, if [, f*du =+4ocand [ f~ dp < +oo, then [ fdu = 4o0. Also, if [, f*du < 400
and [y f~ dp = 400, then [y fdu = —oo. Finally, if [ fTdu < +ooand [y f~ du < +oo,
then [ f dp is a real number and so f is integrable.

Example. We consider the measure space (X, P(X), d5,) for some zy € X. Then every function
f : X — Ris measurable.

We know that [ f* dd,, = fT(x0)and [y f~ dds, = f~(x0). Since at least one of () and
[~ (x0) equals 0, we have that [, f dd,, is defined. Subtracting the two equalities, we get

Jx [ dozy = f(x0).

Thus, integration with respect to the Dirac measure at xq coincides with the so-called point eval-
uation at x.

Proposition 3.13. Let f : X — R be measurable. Then f is integrable if and only if f+ and f~
are integrable if and only if | f| is integrable.

Proof. The first equivalence is clear from the definition. The second equivalence is due to Propo-
sition 3.8 and the equality f* + f~ = |f| on X. O

Proposition 3.14. Let f : X — R be integrable. Then
(i) f(x) e Rforae =€ X,
(ii) the set {x € X | f(x) # 0} is of o-finite measure.

Proof. Since the integrability of f implies the integrability of | f|, the result is immediate by ap-
plying Proposition 3.11 to | f]. O

Proposition 3.15. Let f, g : X — R be measurable and f = g a.e. on X. Then

(i) if [y f du is defined, then [ g dy is defined and [y gdp = [y fdp,
(ii) if f is integrable, then g is integrable.

Proof. From f = ga.e. on X weget f© = ¢g" a.e.on X and f~ = g~ a.e. on X. Hence,

Jx Frdu=[ygtdp, [y f dp=[yg dp.

(i) Now, let [ f dp be defined. Then either [, f* dy is finite or [ f~ dy is finite, and so either
Jx g% dpis finite or [ g~ dp is finite, and so [ g dy is defined. Also,

Ixfdp=[x frdu— [y [Tdu= [xg"du— [y~ du= [ gdp.

(i) If f is integrable, then [ « f dp is a real number. From (i) we have that |  gdu is also a real
number, and so g is integrable. O

Proposition 3.16. Let f, g : X — R be measurable and let us consider any measurable definition
of f +¢. Then

(i) lffX fdu, fX g du are both defined and they are not opposite infinities, then fX(f +g)duis
defined and [ (f + g)dp = [ fdu+ [y gdpu,

(i) if f, g are integrable, then f + g is integrable.

Proof. (i) If [ ~ fdu, / x 9 dp are both defined and they are not opposite infinities, then either
Jx [ dp <400, [ g~ du < +ooor [y fTdu < 400, [ gt du < +oo.
Let [y fTdp < +ooand [y g7 du < +oo.
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Proposition 3.11 implies that, if A = {x € X | f(z) # +00, g(x) # 400}, then u(A€) = 0.
We consider F' = fx4 and G = gx 4. Then F,G : X — [—00, +00) are measurable, and F' = f
ae.on X and G = ga.e. on X. Also, F™ = ftaee.on X and G™ = g" a.e. on X.
The advantage of F, G over f, g is that F'(x) + G(x) is defined for every x € X.
We observe that for all measurable definitions of f + g we have ' + G = f + g a.e. on X.
Therefore, because of Proposition 3.15, it is enough to prove that [ (F' + G) dy is defined and
that [\ (F +G)du= [ Fdu+ [ Gdp.
From

F=F"—-F <F' G=G'-G <G*

on X weget F+G < F"+G"onX,andso (F+ G)" < F* +G" on X. Hence,
[x(F+G)Tdu< [ Frdu+ [ GTdu= [y frdu+ [y g™ du < +oo0,

and so [ (F + G) dy is defined.
We now have

(F+)t—(F+G) =F+G=(F"+G") - (F +G7)
or, equivalently,
(F+G) "+ F +G =(F+G)” +F"+G*.

Hence,

Jx(F+G)Tdu+ [ Fdu+ [y G du= [ (F+G) du+ [ Frdu+ [ GTdp.
Because of the finiteness of the integrals [, (F + G)" du, [ F* dpu, [ Gt dp, we get

Jx(F+G)du= [((F+G)* du— [((F+G)du

= [y Frdu+ [ GTdpu— [ Fdp— [ G dpu= [ Fdu+ [y Gdp.

If [ f~dp < +ooand [y g~ dp < +00, then the proof is similar.

(ii) Let f, g be integrable. For every measurable definition of f + g we have |f + g| < |f| + |g|
on X, and so

fx|f+9’dﬂﬁfx|f|d,u+fx lgl dp < +00.
Hence, f + g is integrable O

Proposition 3.17. Let f : X — R be measurable and ji, v be two measures. Then

(i) lffX fdu, fX f dv are both defined and they are not opposite infinities, then fX fdlp+v)is
defined and [ fd(p+v) = [ fdu+ [y fdv,

(ii) if f is p-integrable and v-integrable, then f is (u + v)-integrable.

Proof. () If [ < [ du, S  J dv are both defined and they are not opposite infinities, then either
Jx fmdp < 400, [ fTdv < Fooor [ fTdu < +oo, [ fTdv < +oo.

Let [ ftdu < +ooand [ fTdv < +oc.

Then

Jx frdlp+v)= [y fTdu+ [y fTdv < +oo,
and so [y fd(u+ v) is defined. We also have that
Jx frdlu+v) =[x f~du+ [ f~dv,

and, subtracting these two equalities, we get [ cfdp+v)= / x Jdu+ /  fdv.
If fX f~dp < 400 and fX f~ dv < +o0, then the proof is similar.
(i1) Let f be u-integrable and v-integrable. Then

Tx lfldp+v) = [ |fldu+ [ |fldv < 400,

and so f is (u + v)-integrable. O
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Proposition 3.18. Let f : X — R be measurable and A € R. Then

(i) if [y f du is defined, then [ \f dy is defined and [ A\f dp= X [y fdp,

(i) if f is integrable, then \f is integrable.

Proof. (i) Let [ f du be defined. Then at least one of [ f* duand [y f~ dy is finite.
If A\ > 0, then (A\f)™ = Af* and (\f)~ = Af~. Therefore, at least one of

SxO) T du=X [ frdu,  [x(AN)"du= X[y f~du
is finite. Hence, [ Af dp is defined, and

Sx Mfdp= [x )T dp— [x )7 dp =[x fTdp— [ [~ dp) =X [y fdp

If A <0, then (A\f)* = —Af~ and (A\f)~ = —\f™T, and the previous argument can be repeated
with no essential change.

If A = 0, then the result is trivial.

(i) If f is integrable, then [ |Af|dp = |A| [y | f| dpu < 400, and so Af is integrable. O

Proposition 3.19. Let f : X — R be measurable and \ € [0, +cc).

() If [ fdp is defined, then [y f d(Ap) is defined and [y fd(Ap) = X [y fdp.
(i) If f is u-integrable, then f is Au-integrable.

Proof. (i) Either [ [~ du < +ooor [y fTdu < 4.

Let [ f*dp < +oc.

Then

Sy £HdOw) = X [ £+ dp < +o,
and so [y fd(Ap) is defined. We also have that

fX f_d()\M) = )‘fxf_ d,u,
and subtracting these two equalities we get the equality in (i).
If [ f~ du < 400, then the proof is similar.
(ii) If f is p-integrable, then [y |f|d(Ap) = A [ |f|dp < +00, and so f is Au-integrable. [

Proposition 3.20. Let f,g : X — R be measurable. IffX fdup and fX g du are defined and if
f<gonX, then fodu < fng,u.

Proof. If [ fdu = —ooor [y gdu = oo, then the inequality [ fdu < [y gdpu is obviously
true. So we assume that [, f~ du < 400 and [ gt dp < +oc0.
From f < g = gt — g~ < g" weget ft < g™ on X. Similarly, we get g~ < f~ on X.
Therefore,

Jx frdu< [y gtdu<+oo, [yvg du< [y f~dp<+oc.

So we can subtract the inequalities [, f*du < [, gt dpand [ g~ du < [ f~ dp, and then

we get [ fdu < [ gdp. O
Proposition 3.21. Ler f : X — R be measurable. If [y f du is defined, then | [ fdu| <
fX ‘f| dp.

Proof. We have that

| [x Fdp| =[x fTdu— [y fdu| < [x fTdu+ [x fdu= [x(FT+ ) dp= [ |fldn

since [y fTdp > 0and [y f~du > 0. O
Exercises.

3.1.2.1f f,g,h : X — R are measurable, g, h are integrable and g < f < h a.e. on X, prove that
f is also integrable.
Hint. Prove that f~ < g~ a.e. on X and f* < h™ a.e. on X.

91



INTEGRALS OF EXTENDED-COMPLEX VALUED FUNCTIONS.

Now we shall take for granted the notion of the integral |  J dp for measurable f : X — R and
also all the relevant properties which we saw in the three previous subsections.

Definition. Let f : X — C be measurable. Then |f| : X — [0, +00] is measurable, and we say
that f is integrable over X with respect to  or, simply, u-integrable over X, if | « |fldp < +oc.

If there is no danger of confusion, we shall say integrable instead of p-integrable.

Proposition 3.22. Let f : X — C be integrable. Then
(i) f(x) e Cforae. =€ X,
(ii) the set {x € X | f(x) # 0} is of o-finite measure.

Proof. Immediate application of Proposition 3.11 to | f|. O
Let f : X — C be integrable. By Proposition 3.22, the set D t» defined by
Dy={zreX|fz)eCt=f(C)eS
has a null complement. Thus, the function fxp, is measurable, and

fxp, =[f ae onX.

The advantage of fxp, over f is that fxp, is complex valued, i.e. fxp, : X — C. Therefore,
the real and imaginary parts of fxp,, namely Re(fxp,) : X — Rand Im(fxp,) : X — R, are
defined on X. We also have that

|Re(fXDf)| < |fXDf| < |f|7 |Im(fXDf)| < |fXDf| < ‘f|

on X . Hence,

Jx IRe(fxp,)|du < [y |fldu < +oo, [y [Im(fxp,)ldu < [ |fldp < +oc.

Thus, Re(fxp,) and Im(fxp,) are integrable real valued functions, and so [, Re(fxp,) du and
Jx Im(fxp,) du are defined and they are real numbers.

Definition. Let f : X — C be integrable and Dy = {x € X | f(z) € C}. We define

[x fdu= [¢Re(fxp,)du+i [y Im(fxp,)du,

and we call it the integral of f over X with respect to u or the u-integral of f over X. If we want
to see the independent variable in the integral we may write | + f(x)dp(x).

If there is no danger of confusion, we shall say integral instead of p-integral.

We shall make a few comments regarding this definition.
(1) The integral of an extended-complex valued function is defined only if the function is integrable,
and then the value of the integral is a complex number. On the contrary, the integral of an extended-
real valued function is defined either when the function is integrable (and then the value of the
integral is a real number) or in certain other cases (and then the value of the integral is either 400
or —o0).
(ii) We used the function fxp,, which is equal to f on Dy and equal to 0 on D%, simply because
we need complex values in order to be able to consider their real and imaginary parts. We may
allow more freedom and use a function F* which is equal to f on Dy and equal to i on D, where
h is an arbitrary S| D;-measurable complex valued function on D;i. Then we have that F' = fxp,
a.e. on X, and so Re(F) = Re(fxp,) and Im(F') = Im(fxp,) a.e. on X. Now, Proposition 3.15
implies

JxRe(F)du = [y Re(fxp,)du, [xIm(F)du= [y Im(fxp,)dpu.
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Therefore, there is no difference between the possible definition

Jx fdu= [y Re(F)du+i [y Im(F)dp

and the one we have given. Of course, the function 0 on DJ% is the simplest of all possible choices
for h.

(iii) If f : X — C is complex valued on X, then Dy = X, and so the definition of | + [ dp takes
the simpler form:

fod'“: fXRe(f)d,u-l-ifXIm(f)d,u.

In the same case we also have that

Re ( [y fdu) = [y Re(f)dp, Im( [y fdu) = [yIm(f)dp.

Example. Again, we consider the measure space (X, P(X), dy,) for some o € X. Then every
function f : X — C is measurable.

We know that [ |f|dd, = |f[(z0) = |f(z0)|, and so f is integrable if and only if f(zo) € C.
In this case, we have that g € Dy, and so

Jx Re(fxp;) ddzy = Re(fxp,)(w0) = Re(f(x0)),
JxIm(fxp,) ddz, = Im(fxp,)(x0) = Im(f(zq)).
Combining the two equalities, we get
fX fddzo = f(SUO)

We find again that integration with respect to the Dirac measure at x( coincides with point evalu-
ation at x.

The next result is obviously helpful and we shall make use of it very often.

Lemma 3.1. If f : X — C is integrable, there is an integrable F : X — C so that F = f a.e. on
Xand [ Fdu= [y fdu.

Proof. We just consider F' = fxp,, where Dy = f~1(C). O
Proposition 3.23. Let f,g : X — C be measurable and f = g a.e. on X. If f is integrable, then
g is integrable and [y gdp = [y fdp.

Proof. Let f = ga.e. on X and f be integrable. Then |f| = |g| a.e. on X, and so g is integrable.
Now, Lemma 3.1 says that there are F, G : X — Csothat F' = fae.on X and G = gae. on X
and also

JxFdu=[x fdp, [¢Gdu= [xgdpu.

From f = ga.e. on X we getthat F' = G a.e. on X. This implies that Re(F') = Re(G) a.e. on X
and Im(F) = Im(G) a.e. on X. Hence,

Jx Fdp= [y Re(F)du+i [ Im(F)dp = [ Re(G)dp+i [ Im(G)dp = [ Gdp,

andso [y fdu = [y gdp. O

Proposition 3.24. Let f,g : X — C be integrable and let us consider any measurable definition
of f +g. Then f + g is integrable and [ (f + g)dp = [ fdp+ [y gdp.
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Proof. Let f, g be integrable. For every measurable definition of f + g we have |f +g| < |f|+ 9]
on X, and so [y [f +gldu < [ |fldn+ [y |gldn < +o00. Hence, f + g is integrable, and
so there are integrable F,G : X — Csothat F = fae. on X and G = g a.e. on X. This
implies that for all measurable definitions of f + g we have F'+ G = f + g a.e. on X, and so, by
Proposition 3.23, we have

Ixfdp=[xFdu, [ygdp= [(Gdu, [((f+g)du= [((F+G)du

Therefore, it is enough to prove that [, (F + G) du = [ Fdu+ [ Gdpu.
Now,
JxRe(F +G)dp = [(Re(F)du+ [ Re(G)dp,

Jx Im(F + G)dp = [y Im(F) dp + [ Im(G) dp.
Combining, we get [ (F 4+ G)du = [y Fdu+ [ Gdp. O
Proposition 3.25. Let f : X — C be u-integrable and v-integrable. Then f is (1 + v)-integrable
and [y fd(p+v) = [y fdu+ [y fdv.

Proof. If f is p-integrable and v-integrable, then [ | f|d(u+v) = [ [f|du+ [y |fldv < 400,
and so f is (1 + v)-integrable. Then there is a (1 + v)-integrable F' : X — C sothat F' = f a.e.
on X. From Proposition 3.23 we get

Jxfdu= [y Fdu, [yfdv= [ Fdv, [(fdu+v)=[yFdp+v).

Now,
JxRe(F)d(p+v) = [y Re(F)du+ [y Re(F)dv,

JxIm(F)d(p+v) = [ Im(F)dp+ [ Im(F) dv.
Then [\ Fd(p+v) = [y Fdu+ [y Fdv,andso [y fd(p+v)= [y fdu+ [y fdv. O

Proposition 3.26. Let f : X — C be integrable and A\ € C. Then \f is integrable and Jx Mfdp =
Ay fdp.

Proof. Let f be integrable. Then [ [Af|du = |A| [y |f|du < 400, and so Af is also integrable.
Then there is an integrable F' : X — Cso that F' = f a.e. on X. Then, \F' = Af a.e. on X, and
Proposition 3.23 implies

Jx M du= [ AFdp, [y fdu= [y Fdpu.

From Re(AF) = Re(A\) Re(F) — Im(\) Im(F) and Im(AF’) = Re(\) Im(F') 4+ Im(A\) Re(F') we
get
Jx Re(AF) du = Re(X) [y Re(F) dp —Im(X) [y Im(F) dp,

Jx Im(AF) dpe = Re(A) [ Im(F) dp + Im(X) [ Re(F) dp.
From these two equalities we easily get

[  AFdp = A [ Re(F) dp + i) [y Im(F) dp = X [ Fdp.

Hence, [ AMfdp =X [ fdp. O

Proposition 3.27. Let f : X — C be p-integrable and )\ € [0, +o0). Then f is A\u-integrable and
S FAOw) = A [ f dp.
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Proof. Let f be p-integrable. Then [ |f|d(Au) = A [y |fldp < 400, and so f is also Au-
integrable. Then there is a p-integrable F' : X — C so that F' = f p-a.e. on X. Of course, this
implies that £ = f Au-a.e. on X, and Proposition 3.23 implies

Ix fdu= [x Fdu, [xfdu) =[x FdAu).
Now,
[ Re(F) (M) = A [ Re(F)dp, [y Im(F) d(Ms) = A [ Im(F) dp.
Hence, [y F'd(A) = X [y Fdu,andso [y fd(Au) = X [y fdp. O
Proposition 3.28. Let f : X — C be integrable. Then | [ f du| < [y | f|dp.

Proof. There is an integrable F' : X — C so that F' = f a.e. on X. By Proposition 3.23, it is
enough to prove | [y Fdu| < [y |F|dp.
We consider the complex number

A =sign( [y Fdp),

and we get

| [y Fdu| = A [y Fdp= [y \Fdu=Re ( [y AFdp) = [y Re(AF)du < [y |Re(AF)| dp
< [x MFldp < [ [Fldp,

since [A\| < 1. O

THE LIMIT THEOREMS.
The next five theorems are probably the most important results of integration theory.

Monotone Convergence Theorem (Lebesgue, Levi). Let f, f1, fo,... : X — [0, +00] be mea-
surable so that [y, < fni1 a.e. on X forall n and limy,_,  fr, = f a.e. on X. Then

limp s yoo [y frdp = [y fdp.

Proof. (a) Assume that f,, < f,,+1 everywhere on X for all n and lim,— oo fr, = f everywhere
on X.

The sequence ( | x fn du) is increasing and it is bounded above by [ « [ du. Hence, the limit
limy, 4 oo [y fr dpexists and limy, oo [ fudp < [y fdp.

Now we consider an increasing sequence (¢,,) of non-negative measurable simple functions on X
so that lim,,_, { o ¢, = f on X. Then for each k we have ¢y, < f = lim,,, 1 fr.

We consider an arbitrary a € [0, 1), and, for any fixed k, we define

Ay = {2 € X |agy(x) < ful@)} € S.

Then (A,,) is increasing, | J>

n=1

A, = X, and a¢rxa, < fnon X. Hence,

« fX G dp = fX agp dp = limy, 4 oo fX agrx A, dp < limy 4 fX fndp,

where we used Proposition 3.4 for the second equality. Taking the limit as « — 1— and then taking
the limit as & — 400, we conclude that [ f du < lim,—, o [ fn dp, and the proof is complete.
Here is an alternative proof of the last inequality.

For each k we consider an increasing sequence (¢, ) of non-negative measurable simple functions
on X so that limy, 4 o ¥k, = fi on X. We define the non-negative measurable simple functions

(bn = maX{qybl,n; oo 7¢n7n}~

Then we have

¢n = max{wl,na s 71/}71,71} S max{fl, .. 7fn} = fn S f
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on X. Also,

d)n = maX{¢17n, ey ¢n,n} < max{¢1,n+1v cee 71/)n,n+1}
< max{wlm—i-la ceey Q;Z)n,n-s-la ¢n+1,n+1} = ¢n+1

on X. Therefore, lim,,_, | o ¢, exists, and lim,,_, | o ¢, < f on X. Moreover, if & < n, we have

On = max{wl,m cee awn,n} > max{wl,m ceey ¢kz,n}a

and, taking the limit as n — 400, we get

1imn—>+oo ¢n > max{fh- . 7fk} - fk

for every k. Now, taking the limit as k — 400, we get lim,— o0 ¢, > f on X.
We conclude that (¢, ) is increasing and lim,,—, 4~ ¢, = f on X, and so

fX fdp=1lim,_ fX Op dp < limy, 4 oo fX fndu.

(b) In the general case there is some A € S with u(A€) = 0 so that f,, < f,,+1 on A for all n and

lim;, 4 oo fn = fon A. Then frxa < fntr1xa on X forall nand limy, 4 o0 frxa = fxaon X,
and so from part (a) we get

limy o0 [ faxadu = [ fxadp.

Since f = fxa a.e. on X and f,, = fn x4 a.e. on X for every n, Proposition 3.12 finally implies
limy, s yoo [y fudp= [y fdp. O

Non-negative Series Theorem. Let s, f1, fa, ... : X — [0, 00| be measurable and 3" f, =
sa.e. on X. Then

w21 Jx udi =[x sdp.

Proof. We consider the partial sums s = f; + --- + fi. Then s < siy1 on X for all & and
limg_, 1 Sk = s a.e. on X, and so

:3 X Jndp=1limg_, 4 ZI:L:I fX Jndp = 1limg_, 4o fX Sk dp = fX sdp

by the Monotone Convergence Theorem. O
Fatou’s Lemma. Let f, f1, fa,... : X — [0, +00] be measurable and f = lim,_, . fy, a.e. on
X. Then

fodM < liimn—»i—oo fX Jndu.

Proof. We define g,, = infy>,, fi for each n. Then every g, : X — [0, +00] is measurable, and
we have that g, < f,, on X and g,, < g, +1 on X for all n and lim,,_, { o g, = f a.e. on X. Then

fX Jdp =limy 4 fX Gndp <lim, .. fx fndp
by the Monotone Convergence Theorem. O

Dominated Convergence Theorem (Lebesgue). Let f, f1, f2,...: X - RorCandg: X —
[0, +00] be measurable. Let also limy,_, o~ fr, = fa.e. on X, |fn] < g a.e. on X for all n and
fX gdu < +oo. Then all f, f,, are integrable and

limp s yoo [y frdp = [y fdp.
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Proof. From |f,| < ga.e. on X, weget [\ |fuldpu < [y gdp < +o0,andsoall f, are integrable.
Also, from | f,,| < g a.e. on X and lim,,_, ;~ fr, = f a.e. on X, we get | f| < g a.e. on X, and so
f is also integrable.

Now, there are integrable F, Fy, Fo,...: X - RorCsothat I'= fae. on X and F}, = f,, a.e.
on X for all n. Then

f)(fnd,u:fXFndluv fxfdﬂ:fXFdM7

and so is enough to prove limy, o [y Frdp = [y F dpu.

We have that |F},| < g a.e. on X for all n, and lim,,_, y» F};, = F a.e. on X.

(a)Let F,F, : X — R.

Since 0 < g+ F, a.e. on X and 0 < g — F}, a.e. on X for all n, Fatou’s Lemma implies

fX(g:i:F)d,uSliﬁmn_&o@fx(giFn)d,u,
and so
Jxgdu® [y Fdu < [y gdp+1lim, (& [y Fodp).
Since [ g du is finite, we get

+ [ Fdp <lim, ,, (& [ Fodp).

Therefore,
limy o0 [ Fndp < [y Fdp <lim, . [y Fydp,
and this implies limy, oo [ Fndp = [ Fdpu.
(b)Let F, F,, : X — C.
From |Re(F,)| < |F,| < ga.e. on X for all n and lim,,_, 4~ Re(F},,) = Re(F) a.e. on X, and
from part (a) we have that

limy, oo [ Re(Fy) dp = [ Re(F) dp.

Similarly,

limy, 4o [ IM(Fy) dp = [ Im(F) dpu.
Therefore, limy, o0 [y Frndp = [y Fdpu. O
Series Theorem. Let f, f1, fa,... : X — R or C be measurable. If Y y [faldp < +o0,
then

(1) S22 fa(x) converges for a.e. x € X,
(ii) if Y125 fn = s a.e. on X, then

ot Jx fadu = [y sdp.
Proof. (i) We define S = >} | f|. From the Non-negative Series Theorem we have
[ Sdp =312 [ | fal dp < +o0.

This implies S(z) < +oo fora.e. # € X. Therefore, the series 37 f,,(x) converges absolutely,
and hence converges, for a.e. x € X.

(if) We consider the partial sums s = fi + --- + fx. Then |sg| < |fi|+ -+ |fx] < Sa.e. on
X forall k, and limg_, o s, = s a.e. on X. Hence,

2 S i =Ty oo S5y [ fdp = T oo [y s = [y s dp
by the Dominated Convergence Theorem. O
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Exercises.

3.1.3. Let f, f, : X — [0, +00] be measurable with f,, < fa.e. on X forall nand lim,, 1o fr, =

fa.e. on X. Prove that lim,, o [y fudp = [y fdp.
Hint. Use Fatou’s Lemma.

3.14.Let f, f, : X — [0,+00] be measurable and lim,,_, o f, = f a.e. on X. If there is
M < +o0so that [y f, du < M for infinitely many n, prove that [ f du < +oc.

3.1.5. Let f, f, : X — [0,+0c0] be measurable so that f, 11 < f, a.e. on X for all n and

limy, 4o fn = fae. on X and [ fidpu < 4o00. Prove that limy, o [y fndp = [y fdpu.
Hint. Use the Monotone Convergence Theorem.

3.1.6. Use either Fatou’s Lemma or the Series Theorem to prove the Monotone Convergence The-
orem.

3.1.7. Let 11 be o-finite. Prove that there is f : X — [0, +-00] such that f(z) > 0 for every z € X
and fod,u < ~4o00.

Hint. Consider pairwise disjoint X1, X»,... € S which cover X and so that 0 < p(X;) < 400
for all j. Then let f = a; on X, where the a; > 0 are chosen appropriately.

3.1.8. Assume that f : X — [0, 400] is measurable, 0 < [ fdu < 400, and 0 < a < +o0.
Prove that the limit I = lim,—, oo n [ log (1+ (%)a) dpexists,and that: I = [, fdp,ifoa =1,
and [ = +oo,if0<a<1l,and I =0,if1 < a < +o0.

Hint. Consider the case o = 1 first, using the Monotone Convergence Theorem.

3.1.9. Uniform Convergence Theorem.
Let f,, : X — R or C be integrable and let lim,,_, { o f, = f uniformly on X. If u(X) < +o0,
prove that f is integrable and that lim,, o [y fudp = [y fdp.

3.1.10. Bounded Convergence Theorem.
Let f, fn : X — R or C be measurable. If ;(X) < 400 and there is M < +oc so that | f,,| < M
a.e. on X forall n and lim,,_,;  f, = f a.e. on X, prove that lim,, s o [y fndp = [y fdpu.

3.1.11. Let f, f, : X — R or C be measurable and g : X — [0, +-00] be integrable. If |f,| < g
a.e. on X for all n and lim,,_, {  f,, = f a.e. on X, prove that lim,, o [y |fn — f|dp = 0.
Hint. Prove that | f,, — f| < 2g a.e. on X.

3.1.12. Let f, g, f» : X — R be measurable and Jx 9~ dp < +o0. If g < f ae. on X forall n

and f =lim, ,  f,a.e onX,provethat [ fdu <lim, [y fndp.
Hint. Prove that f,, + g~ > 0 a.e. on X.

3.1.13.Let f,f, : X = RorCandg,g, : X — [0,+00] be all measurable. If |f,| < g, a.e.
on X for all n, if lim,, oo [y gndp = [ gdp < 400 and if lim,, o fr = fa.e. on X and

limy,— 40 gn = g a.e. on X, prove that limy, oo [ frndp = [y fdp.
Hint. Aplly Fatou’s Lemma to (g, + f5) and to (g, — fn).

3.1.14.Let f,f, : X — R or C be integrable and lim,,_,,~ f, = f a.e. on X. Prove that

limy, 4 o0 fX |fn — fldp = 0 if and only if lim,,— 4 o fX | fnl dp = fX | f] dp.
Hint. One direction is trivial. For the other direction, use |f,, — f| < |fn| + | f| and the result of
exercise 3.1.13.

3.1.15. Continuity of an integral as a function of a parameter.
Let f: X x (a,b) = Rand g : X — [0, 4+00] be such that

(i) g is integrable and, for every t € (a,b), f(-,t) is measurable,
(ii) fora.e. z € X, f(z,t) is continuous as a function of ¢ on (a, b),
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(iii) for everyt € (a,b), |f(z,t)] < g(x) forae. x € X.

Define F(t) = [ f(x,t) du(x) forall t € (a,b) and prove that F' is continuous on (a, b).
Hint. Assume lim, 400ty = t and use the Dominated Convergence Theorem to prove that
lim, 00 F(ty) = F(2).

3.1.16. Differentiability of an integral as a function of a parameter.

Let f: X X (a,b) - Rand g : X — [0, +0o0] be such that

(i) g is integrable and, for every ¢ € (a,b), f(-,t) is measurable,

(ii) for at least one to € (a,b), f(-,tp) is integrable,

(iii) for a.e. € X, f(x,t) is differentiable as a function of ¢ on (a,b) and ‘%(m, t)| < g() for
every t € (a b). Thus, % : A x (a,b) = R for some A € S with u(X \ A) = 0.

Define F(t) = [ f X (x,t) du(x) for all t € (a,b) and prove that F' is differentiable on (a, b) and
that 4 (t) " % (x,t) du(z) forall t € (a,b).

Hmt Assume limy, s 400 tn = t and use the Dominated Convergence Theorem to prove that
. F(tn)=F() _
limy oo = = [y G (2,1) dpu(a).

APPROXIMATION BY SIMPLE FUNCTIONS.

Proposition 3.29. Let f : X — R or C be integrable. Then for every € > 0 there is an integrable
simple function ¢ : X — R or C so that fX |f —oldu < e

Proof. (a)If f : X — [0, +00] is integrable, there is an increasing sequence (¢,,) of non-negative
measurable simple functions so that lim,, , ~ ¢, = f on X and lim,,_, ; f x Pndp = f < fdu.
Then for some n we have

Ix fdp—e< [x bndp < [y fdp,

and so ¢, is integrable and

Jx lf = bnldp = [ (f — dn)dp < e

(b) Now, if f : X — R is integrable, then [y, f*du < oo and [y f~ du < +oc. By (a) we
have that there are non-negative integrable simple functions x, ¥ so that

Jxlff=xldu<g,  [x|f~ —4ldu<s.
We consider the integrable simple function ¢ = x — ¢ : X — R, and we get
Jx lf =¢ldu < [ |fF = xldu+ [x |f~ —dldp<e

(c) Finally, let f : X — C be integrable. Then there is an integrable ' : X — C so that F' = f
a.e. on X. The functions Re(F),Im(F") : X — R are both integrable. By (b) we know that there
are real valued integrable simple functions , 1 so that

[y IRe(F) = xldu < §, [y |Im(F) — | du < §.

We consider the integrable simple function ¢ = x + ) : X — C, and we get

Jx|f—éldp= [ |F—¢ldu < [ |Re(F) — x| dpu+ [y [Im(F) — 9| dp < e.

So the proof is complete in all cases. O
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INTEGRALS OVER SUBSETS.

Let A € Sand f : X — R or C be measurable. In order to define an integral of f over A we
have two natural choices. One choice is to take fx 4, which is equal to f on A and equal to 0
on A¢, and consider [ « fxadp. Another choice is to take the restriction f]A of f on A, and
consider [, (f]A)d(u]A) with respect to the restricted measure 4] A on the restricted o-algebra
(A,S]A). The following lemma says that the two procedures are equivalent and that they give the
same results.

Lemma 3.2. Let A € S and f : X — R or C be measurable.

W) If f : X — Rand either [y fxaduor [,(f1A)d(u]A) is defined, then the other is also
defined and [y fxadu= [,(f1A4)d(u]A).

(i) If f : X — Cand either [y |fxaldwor [, |f1A| d(n]A) is finite, then the other is also finite
and [ fxadp= [,(f1A)d(u]A).

Proof. (a) We take a non-negative measurable simple function ¢ on X with its standard represen-

. m
tation ¢ = > 70 KjXE; - N .
Then we have ¢y 4 = ijl KjXE;nA, With

Jx dxadp = 3770 kip(E; N A).

On the other hand, ¢|A = Z;nzl KiXE;NA has

Ja(@14) d(u] A) = 350 k(W1 A)(E; 0 A) = 3500 kju(E; N A).

(b) Now let f : X — [0, +00] be measurable. We consider an increasing sequence (¢,,) of non-
negative measurable simple functions on X so that lim,,_, { o ¢, = f on X.

Then (¢, x 4) is increasing and lim,, oo dnxa = fxa on X. Also, (¢, ]A) is increasing and
limy,—, o0 ¢ | A = f]A on A. Now, by part (a) we get

fX fxadp =limy, fX Gnxadp = limy, 4 oo fA dnlA)d fA d(p]A).
(©) If f : X — R is measurable, then fTx4 = (fxa)" and f"xa = (fxa)~ on X, and also
(f1A)"T = fT]Aand (f]A)~ = f~]A on A. Hence, by part (b) we get

Jx(Uxa)tdu= [ fxadp= [,(fT1A)d(u]A) = [,(f] (114)
and, similarly,
Jx(fxa)”dp= [,(f1A)" d(u]A).

These prove (i). -
(d) Finally, let f : X — C be measurable. Then |fxa| = |f|x4 on X and |f]A| = |f|]A on A.
By part (b) we have

fx|fXA’dN fx|f|XAd,u fA ‘fHA fA|f A|d ] )

and so fx4 and f] A are simultaneously integrable or non-integrable.
Assuming integrability, there is an integrable F' : X — C so that F' = fx 4 a.e. on X. Itis clear
that x4 = fxa ae. on X and F'|A = f]A a.e. on A. Therefore, it is enough to prove that

Jx Fxadp= [,(F]A)d(u]A). Now, part (c) implies
J Re(Fxa)dp = [y Re(F)xad = [, (Re(F)]A) d(u]A) = [, Re(F|A) d(ys] A).

Similarly,
S Im(Fxa) dis = [ Im(F] 4) d(] A).

Thus, [ Fxadp = [,(F1A)d(u]A). O
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Definition. Let A € S and f : X — R or C be measurable.
@Iff: X = Rand Jx fxadu or, equivalently, [,(f1A)d(u]A) is defined, then we say that
[ 4 [ du is defined as

Jafdn =[x fxadu= [,(f1A)d(1]A).
(i) If f + X — C and fx is integrable over X or, equivalently, f]A is integrable over A, then
we say that f is integrable over A and we define [, f du exactly as in (i).

Proposition 3.30. Let f : X — R or C be measurable.
@ Iff: X — Rand fX f du is defined, then fA f du is defined for every A € S.
(ii) If f : X — C is integrable, then f is integrable over every A € S.

Proof. (i) Let [ f dpube defined. We have (fxa)T = fTxa < fTand (fxa)” =fxa< [~
on X. Thus, either [ (fxa)Tdu < [ fTdu < +ooor [(fxa) du < [ [~ dp < 400,
Therefore, | « Jxadp is defined, and so S 4 J dpis also defined.

(ii) Let f be integrable. Then [ [fxaldu < [y |f]dp < +00, and so fx4 is integrable. O

Proposition 3.31. Let f : X — R be measurable and [ f dy be defined. Then either [, f du >
—oo forall A€ Sor [, fdu < +ooforall AcS.

Proof. Let [y f~dp < +oo. Wehave (fxa)” = f~xa < f~ on X. Then

[x(Fxa)~du < [y f~du < +o0,

andso [, fdu= [y fxadu>—ocoforall AeS.
Similarly, if [ f du < +oo,then [, fdu < 4oo forall A € S. O

Theorem 3.1. Let f : X — R be measurable and fX f du be defined, or let f : X — C be
integrable.

(i) [y fdp=0forall Ae S with u(A) =0,

(i) S0 Ja, fdp= [, fduforall pairwise disjoint Ay, A, ... € S with A = Uf= A,

(iii) limy, sy o0 [, fdp = [, fdp for all Ar,As, ... € S such that (A,) is increasing and
Unli4n = 4,

(iv) limy,_, 4 fAn fdu = [, fduforall A1, Ay, ... € S such that (Ay) is decreasing and
A, =Aand | fAN fdp| < +o0 for some N.

n=1

Proof. (i) This is easy because, if 1(A) = 0, then fxy4 = 0 a.e. on X.

(ii) Let Ay, Ag, ... € S be pairwise disjoint and A = U:{g A,

(@) If f : X — [0, +o0] is measurable, then, since :{i’i fxa, = fxa on X, the Non-negative
Series Theorem gives

,fi'i Anfduz :{2 XfXAndl'L:foXAdl’L:fAfdl’l"
M)Iff: X - Rand [y f~ du < +oo, we apply (a) and we get
W2 S, A= [, f du, 223 Sa, o du= [, f dp < oo,

Subtracting, we find >, w, fdu= [, fdpu
If f: X - Rand [ f*du < 400, then the proof is similar.
(c)If f : X — C and f is integrable, we have by (a) that

o2 e W xanl dp =302 [a 1fldp = [, |fldp < +oo.
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Now, since 3% fxa, = fxa on X, we get

:gi Anfd,u: 7—:—3 XfXAndlu’:foXAdlu’:fAfdu

by the Series Theorem.
(iii) We have that A = A; U ( z;’z (Ag\ Ak—l)) , where the sets in the union are pairwise disjoint.
We apply (ii) and we get

Jafdp= fA1 fdp+ Z;;"; fAk\A,H fdp = fAl fdp+lim, 00 >0 fAk\A,H fdu
= limy,_, oo [, fdp.

(iv) We have that (Ay \ Ay,) is increasing and | J>5 (Ay \ A,) = Ay \ A. So (iii) implies

limy, 40 fAN\An fdp = fAN\Afd,u- (3.1

Now, from the equality
Japafdu+ [y fdup= [, fdu

and from ! fAN f d,u| < 400 we get ’ fA f d,u’ < +00. From the same equality we then get

fAN\Afd'u = fAN fdp— [, fdp.

Similarly,
fAN\An fdp = fAN fdp— fAn fdp
for all n > N, and now (3.1) implies

fANfdu_limn%+OOfAnfdM:fANfdM_fAfd/’I“

Because of | fAN fdp] < +oo again, we get lim, ;o0 Ja, Fdp= [, fdpu O

We must say that all results we have proved about integrals |  over X hold without change
for integrals [, over an arbitrary A € S. To see this we either repeat all proofs, making the
necessary minor changes, or we just apply those results to the functions multiplied by x 4 or to
their restrictions on A. As an example let us look at the following version of the Dominated
Convergence Theorem.

Let f, fi,fo,...: X = RorCandg: X — [0, +00] be measurable. Let also lim,,_, o frn = f
ae.on A, |fn] < ga.e on Aforall n and ngdu < 400. Then lim,,_, | o fA fndu = fA fdu.
Indeed, the assumptions imply that lim,, o0 frnxa = fxa a.e. on X, |foxal < gxa ae. on X
for all n and [  9xa dp < +o0. Then the Dominated Convergence Theorem (for X) implies

limy,— 4 o0 fA S dp = limy, 4o fX Jrxadp = fX fxadp = fAfd,u-

Alternatively, the same assumptions imply lim,, 1~ fn|A = f]|Aacon A, |f,|A| < g]Aae.
on Aforallnand [,(g]A)d(u]A) < 400. Again, the Dominated Convergence Theorem (for A)
implies

limp s yoo [y frdp = limnsyoo [4(fn]A) d(u]A) = [4(F14) d(u]A) = [, fdp.
Exercises.

3.1.17. Consider the measure space (X, P(X), 6,,) for some xg € X and any f : X — R. Prove
that [, f do., = f(z0),if2zo € A, and [, fdd,, =0, if zo ¢ A.

102



3.1.18. Let f, f,, : X — [0, +0o0] be measurable. Assume that lim,,_,;~ f, = f a.e. on X and

limy 400 [y fndp = [y fdp < 400, and prove that limy, o [, fndp = [, f dp for every
AeS.
Hint. Aplly Fatou’s Lemma over both A and A°.

3.1.19. (i) Let f : X — R or C be integrable. Prove that for every ¢ > 0 there is E € S with
p(E) < +ooand [ |f|dp <e.
Hint. Consider E = {z € X‘ |f(z)] > L} forlarge n € N.

(ii) Let f be Lebesgue integrable over R™. Prove that for every € > 0 there is a compact K C R”
so that [, | f| dmy < e.
Hint. Consider K to be a large closed ball in R™ with center 0.

3.1.20. Let f : X — R or C be integrable. Prove that for every € > 0 there is § > 0 so that:
] fEfdM‘ < eforall E € § with u(E) < 4.
Hint. One may prove it first for simple functions and then use Proposition 3.20.

3.1.21. Mean values.
Let f : X — R or C be integrable and F' be a closed subset of R or C. If ﬁ fE fdu € F for

every E € § with u(E) > 0, prove that f(z) € F fora.e. x € X.

Hint. T E € S,0 < u(E) < +oo, |f(x) —yo| < 1o forall z € E, then }ﬁ fEfdu—yo‘ < 7y.
Now, consider the open set U = R\ F or C \ F, and prove that u({z € X | f(z) € U}) = 0,
using a covering of U by countably many closed intevals or closed discs which are contained in U.

POINT-MASS DISTRIBUTIONS.

Consider the point-mass distribution p induced by a function @ : X — [0, +oc] through the
formula

N(E) = Z:pGE g

forall E C X.
We observe that all functions f : X — Y, no matter what the measure space (Y, Sy) is, are
(P(X), Sy )-measurable.

Proposition 3.32. If f : X — [0, 400] then [y fdpu =73, cx f(z) as.

Proof. If ¢ is anon-negative simple function on X with standard representation ¢ = Z;‘Zl KjiXE;»
then

fx pdp = Z;‘L:I Kip(Ej) = Z?:l “J(erEj aw) = Z?:l (erEj “J‘%)
= Z?:l (Z:pGEj ¢($)%) =2 zex (%) aa,

where the last equality is implied by Proposition 1.23.
Now, we take an increasing sequence (¢, ) of non-negative simple functions so that lim,,_, { o, ¢, =
fon X, and then limy, o [y ¢ndp = [ f dp. Since

Jx ondp =3 pcx On(r) az <3 cx f(2) az,

we find [, fdp <3 .y f(x) a, by taking the limit as n — +oo0.
If F is any finite subset of X, then

ZacEF ¢n($) ay < erX ¢n(x) Ay = fX On du.

Taking the limit as n — +o0, we get Yo f () az < [y f dp. Now, taking the supremum over
the finite subsets of X, we find }__ v f(2) az < [ fdp. O
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We would like to extend the validity of Proposition 3.32 to (extended-) real valued or complex
valued functions, but we do not have a definition for sums of (extended-) real valued or complex
valued terms! We can give such a definition in a straightforward manner, but we prefer to use the
theory of the integral developed so far.

The amusing thing is that any series ), _; b; of non-negative terms over the general index set
I can be written as an integral

zEI flbdﬂ

where f is the counting measure on I (and we freely write b; = b(4)). This is a simple application
of Proposition 3.32: we justtake X = I, f =b,and a; = 1 forall i € I.

Using properties of integrals, we may prove corresponding properties of sums. For example,
it is true that

dierbit i) = 2crbi+ Y iercin Dier Abi = A i b

for every non-negative b;, ¢; and . The proof consists in rewriting

[(b+e)dt = [;bdt+ [yedt, [ Abdt=A [ bdt

in terms of sums.
For every b € R we write b = max{b,0} and b~ = —min{b,0}, and then we have that
b=0b"—b and|b| = bT + b

Definition. [ I is any index set and b : I — R, we define the sum of (b;);cr over I by

Zia bi = Zie[ b;r - Zie] b;

only when either ;. b < 400 or Y .. by < +oo We say that (b;)icr is summable (over I)
if'>" e bi is finite or; equivalently, if both >, b and Y, b are finite.

Since we can write

Zielbi:Zielb;—_ZzeI i —f1b+dﬁ_f1b dﬁ—ffbdﬁ

and also
Zie[|bi|zzzel 7 Jrzzel 7 _flb+dﬂ+flb dtt_fl|b|dt1

we may say that (b;);c; is summable over I if and only if b is integrable over I with respect to the
counting measure £ or, equivalently, if and only if 3, |bi| = [, |b] dff < +00. Also, >, b; is
defined if and only if | 1 bdt is defined and, in this case, they are equal.

Further exploiting the analogy between sums and integrals, we have:

Definition. [f I is any index set and b : I — C, we say that (b;);c; is summable over I if
Zie[ |bi| < +oo0.

This is the same condition as in the case of b : I — R.

Proposition 3.33. Let b : [ — R or C. Then (b;);c; is summable if and only if {i € I |b; # 0} is
countable and > |bi, | < +o0o, where {iy,ia, ...} is an arbitrary enumeration of T.

Proof. An application of Propositions 1.20 and 1.21. U
In particular, if (b;);cs is summable then b; is finite for all 7. This allows us to give the

Definition. Let b : I — C be summable over I. We define the sum of (b;);cr over I as
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Therefore, the sum of complex valued terms is defined only when the sum is summable and,
in this case, this sum has a finite value. Again, we can say that if b : I — C is summable over
(which is equivalent to b being integrable over / with respect to the counting measure) then

Eie] bi = f[bdﬂ'

We shall see now the form that some of the important results on general integrals take when
we specialize them to sums. They are simple and straightforward formulations of known results
but, since they are very important when one is working with sums, we shall state them explicitly.
Their content is the interchange of limits and sums. It should be stressed that it is very helpful to
be able to recognize the underlying integral theorem behind a property of sums.

Monotone Convergence Theorem. Let b, by, ba, ... : I — [0,+0c]. If (b ) is increasing for all
i € I andlimy, s o0 by = bi foralli € I, then limy, s o0 > ;e bni = D i bi
Non-negative Series Theorem. Let by, bo,... : I — [0,+0c]. Then > ;c; (4% bo,) =
+oo b
net (Xier bni)-
Fatou’s Lemma. Let b,by,by,... : I — [0,+00]. Ifb; = lim ., _ b,; foralli € I, then
Zie[ bl < 1i7n’1n—>—‘,-oo Zie[ bnai' . .
Dominated Convergence Theorem. Let b,b1,b,... : I — RorCandc : I — [0,+00]. If

limy, oo bpi = b; foralli € I, and |bp;| < c; foralli € I andn € N, and ), ;c; < +00,
then hmn_>+00 Zie[ bnﬂ' = ZiEI b;.
Series Theorem. Let by, by,... : I — Ror C. If Y20 (3,c/ |bnil) < +oo, then 3725 by
converges for everyi € I .and 3 ;c; (3572 bni) = 30025 (Xics b )-

Observe that ) is the only f-null set. Therefore, saying that a property holds f-a.e. on I is
equivalent to saying that it holds at every point of I.

Now we go back to the general case, where p is the point-mass distribution induced by the
function a : X — [0, +00], and f : X — R. Using Proposition 3.32, we get

fo+dM:erXf+(x)alv fX frdp=3"ex [ (@)aq.

Then [y fdpu is defined if and only if either [ f*du < +ooor [y f~ du < 400, and in this
case we have

fxfdﬂ = fX frdu— fX fodp = erx fH(z)a, — erx [ (x)az = erX f(x)ay.

Moreover, f is integrable if and only if

[ |fldp = cx | f(@)|as < +oo.

This is also true when f : X — C, and in this case we have

Jx Fdn =3 pex Re(f(z)xp; (2))az + i3 e x Im(f(2)xD, (2))aq,
where
Dy ={ € X| f(x) # .
Since ) .y |f(z)laz < Ho0, it is clear that f(x) = oo can happen only if a, = 0, and

a; = +oo can happen only if f(x) = 0. But, then f(x)a, € C for all x € X and, moreover,
f(x)xp,(x)a, = f(z)a, forall x € X. Therefore, we get

S £ = pex Re(H)@)as +i Yo I(F) (@) = Xex f()a
Now we have arrived at the complete interpretation of sums as integrals.
Proposition 3.34. Let 11 be the point-mass distribution induced by a : X — [0, +00].
W Iff: X =R, then [ fduis defined if and only if ", x f(x)ay is defined and, in this case,
we have [ fdp =73 cy f(x)as.

(i) If f : X — C, then f is p-integrable if and only if >, . | f(x)]as < 400 and, in this case,
the equality in (i) is true.
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3.2 Lebesgue integral.

A function f : R” — R or C is Lebesgue integrable if it is Lebesgue measurable and also integrable
with respect to m,,. For example, it is easy to see that every continuous f : R™ — R or C which is
0 outside some bounded set is Lebesgue integrable. Indeed, f is then Borel measurable, and, if Q) is
any closed interval in R™ outside of which f is 0, then | f| < M xq, where M = max{|f(z)||z €
Q} < +o0. Therefore,

fRn |f] dmy, < MfRn xqQ dmy, = Mmy(Q) < +oo.

LEBESGUE INTEGRAL VS RIEMANN INTEGRAL.

We shall now investigate the relation between the Lebesgue integral and the Riemann integral. We
recall the definition of the latter.

We consider a bounded closed interval @ = [a1,b1] X -+ X [an, by] in R™, and a bounded
function f : @ — R. If] € Nis arbitrary and @)1, . . ., Q; are arbitrary closed intervals which have
pairwise disjoint interiors and so that Q = Q1 U - - - U @, then we say that A = {Q1,...Q;} isa
partition of Q. If P, P;, ..., P, are the open-closed intervals with the same sides as, respectively,
Q,Q1,...,Q, then {Q1,...,Q;} is a partition of @ if and only if the Py, ..., P, are pairwise
disjoint and P = P; U --- U F;. Now, since f is bounded, for each (); we may consider the real
numbers m; = inf{f(z) |z € Q;} and M; = sup{f(x) |z € Q;}. We then define the lower
Darboux sum and the upper Darboux sum of f with respect to the partition A as, respectively,

B(f0) = my volo(Q)),  (f;A) = S Mj vol, (@)
Ifm =inf{f(z) |z € Q}, M = sup{f(x) |z € Q}, we have that
m<mj; < M; <M

for every j. Using Proposition 1.30 (and working with the corresponding open-closed intervals),
we see that -
m vol,(Q) < X(f;A) < X(f; A) < M vol,(Q).

IfA] = {le), ... ,Ql(ll)} and Ay = {Q:(lz), ... ,Ql(j)} are two partitions of (), we say that Ay is
finer than A, if every QZ@) is included in some Qél). Then it is obvious that, for every le) of Aq,

the QZ@) of Ay which are included in le) form a partition of Q§1). Therefore, from Proposition
1.30 again,

mgl) VOIn(le)) < Zi:Q@)CQQ) mz(Z) VOln(QZ@))
o=
S LigPcq!) M vol, () < MY vol,(QV).
Summing over all j = 1,...,1; we find

S(f; A1) < E(f;82) < B(f;A2) < B(f3A).

Now, if A = {le), e Ql(ll)} and Ay = {ng), ce Ql(j)} are any two partitions of ), we form
their common refinement A = {le) N Qz@) |1<j<l,1<i<ls},and we get

S(f; A1) <E(f;A) < B(f;A) < B(f;A9).

We conclude that

m vol,(Q) < X(f; A1) < X(f;A2) < M vol,(Q)
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for all partitions A1, Ag of Q). Now, we define
f f=sup{E(f; A) | A partition of Q}, (Rn)TQf = inf{3(f; A) | A partition of Q}

and we call them, respectively, the lower Riemann integral and the upper Riemann integral of
f over Q. It is then clear that

m Vol (Q) < (Rn) [ f < (Ru) [ of < M volu(Q).

Q

We say that f is Riemann integrable over Q) if (R,,) i 0 f= (RN)TQ f. In this case we define

Rn) Jo f = (Ra) [, f = (Ru) [ of

and we call it the Riemann integral of f over Q.

Lemma 3.3. The bounded f : Q — R is Riemann integrable over the bounded closed interval )
if and only if for every € > 0 there is a partition A of Q so that X(f; A) — X(f; A) < e

Proof. For the sufficiency, we take an arbitrary ¢ > 0. Then for the corresponding A we have
Ru)Jof = (Ra) [, <T(f:8) = 5(f;4) <

This implies the equality of the upper and lower Riemann integrals of f over Q.
For the necessity, we assume (R,,) [ o f=MRn/[ o> and then for each € > 0 we take partitions

A1, Ay of ) so that

fQ § f A ) (f A? fo“‘ 2
Then - -
E(fiA) = E(f;A) < X(f;A9) —E(f;A1) <€
for the common refinement A of Ay and As. ]

Proposition 3.35. If f : Q — R is continuous on the bounded closed interval (), then f is Riemann
integrable over Q.

Proof By uniform continuity of f on @, for any ¢ > 0 there is a § > 0 so that | f(z) — f(y)| <
oL (Q) for all x,y € QQ whose distance is < §. We take any partltlon A={Q1,...,Qi} of Q, so

that every @; has diameter < . Then |f(z) — f(y)| < ;i oy forall z,y on the same ;. This
implies that for every @ we have M; —m; < 5r<py. Hence

_ . ;
E(f;A) = E(f;4) = E] 1 (M —my) voln(Q;) < VoI, (Q) Zj:l vol, (@) = €,
and Lemma 3.3 implies that f is Riemann integrable over Q. O

Theorem 3.2. If f : Q — R is Riemann integrable over the bounded closed interval Q) and we
extend f as 0 outside Q, then [ is Lebesgue integrable and [y, f dm, = fQ fdm, = (Rn) fQ f.

Proof. Lemma 3.3 implies that, for every k € N, there is a partition Ay = {ng), cey Ql()]:)} of Q
so that

S(f5 A — 2(f: Ap) < L.

We consider the simple functions
l l k
Yk =20 1m( )Xp(k Ok =27 M]( )Xpm,
J
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k) _ - (k) (k) _ (k) (k)
where m; = inf{f(z) |z € Q;"} and M;"" = sup{f(z)|z € Q;"} and P;" is the open-

closed interval with the same sides as Q;k). Clearly, all ¥, ¢ are Borel measurable. Now, we
have

limk—H-oo i(f7 Ak) = (Rn) fQ I 1imk—>+oo Z(fa Ak) = (Rn) fQ I

It is clear that ¢, < fxp < ¢ on R” for all k, where P is the open-closed interval with the same
sides as (). It is also clear that

S i dimn = S m ) voly (PF) = T m vol, (QSY) = B(f; Ap)

k k k k S
Jon O1 iy = Y M vol, (P) = S0 M vol, (1) = B(£; A).
Hence,
limy, 4 f]Rn Y dmy, = limg_, 4 fRn ¢ dmy = (Rn> fQ [
We define
9= m wkv h = m ¢k7
k=400 k—+o00
and then g, h are Borel measurable, and g < fxp < h on R™.
Fatou’s Lemma implies

Hence, g = ha.e. on R, and so fxp = g = h a.e. on R". Since g, h are Borel measurable, we
have that fy p is Lebesgue measurable. Since f = 0 outside (), we have that f # fxp only on a
subset of @ \ P,and so f = fxp a.e. on R". Hence, f is Lebesgue measurable.

Now, f is bounded and f = 0 outside @, and so |f| < Kxq, where K = sup{|f(z)||z € Q}.
Thus, [p, |f| dmn, < Kmy(Q) < 400, and so f is Lebesgue integrable.

Another application of Fatou’s Lemma gives

fRn(h - fXP) dm,, < liimkﬁ+oo fRn (¢k - fXP) dm, = (Rn) fQ f— fRn fxpdmy,

fRn (fXP - g) dmy, < liimk‘)«‘roo fRn (fXP - 1/%) dm,, = fRn fXP dmy, — (Rn) fQ f
Hence,
fRn hdm, < (Ry) fo < fRngdmn.

Since f = g = h a.e. on R™, we conclude that (R,,) fQ [ = Jgn [ dmy. O

The converse of Theorem 3.2 does not hold. There are bounded f : () — R which are Lebesgue
integrable but not Riemann integrable over ().

Example. We define f(x) = 1, if x € @ has only rational coordinates, and f(xz) = 0, ifx € Q
has at least one irrational coordinate. If A = {Q1, ..., Q} is any partition of @), then all (); with
non-empty interior (the rest do not matter because they have zero volume) contain at least one x
with f(z) = 0 and at least one x with f(z) = 1. Hence, for all such @); we have m; = 0 and
M; =1, and so £(f;A) = 0 and S(f; A) = vol,(Q) for every A. Thus, (Rl)fo = 0 and

(Rn)TQ f =vol,,(Q), and so f is not Riemann integrable over Q).
On the other hand, if we extend f as O outside (), then f = 0 a.e on R", and so f is Lebesgue
integrable over R" with [p,, f dm, = |, o fdmn =0.

Theorem 3.2 incorporates the notion of Riemann integral in the notion of Lebesgue integral. It
says that the collection of Riemann integrable functions is included in the collection of Lebesgue
integrable functions and that the Riemann integral is the restriction of the Lebesgue integral on
the collection of Riemann integrable functions. This provides us with greater flexibility over the
symbol we may use for the Lebesgue integral, at least in the case of bounded intervals [a, b] in the
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one-dimensional space R. The standard symbol used in Infinitesimal Calculus for the Riemann
integral (R1) f[a p f is the familiar

f: f(z) dx

We may now use the same symbol for the Lebesgue integral

f[a,b] fdmy = f[ab dml( )

without the danger of confusion between the Riemann and the Lebesgue integrals when the function
is integrable both in the Riemann and in the Lebesgue sense. Now, since the one-point sets {a},
{b} have zero Lebesgue measure, the Lebesgue integrals f[a . fdma, [ (@] fdmi, f[a b fdmq

and [ (a.b) f dm;y are all the same. Therefore, we may use the symbol f; f(x) dx for all these
Lebesgue integrals. This is extended to cases where the Riemann integral does not apply. For
example, we may use the symbol
+o0
f o f(x)dx

for the Lebesgue integral fR f dm; and, likewise, the symbol f;oo f(z) dx for the Lebesgue in-
tegral f[a’Jroo) f dm; and the symbol ffoo f(z) dx for the Lebesgue integral f(foo’b] fdmy.
Theorem 3.2 provides us with a powerful tool to calculate Lebesgue integrals, at least in the
case of R. If a function f is Riemann integrable over a closed interval [a, b] C R, we have many
techniques (integration by parts, change of variable, primitives etc) to calculate its f; f(z)dx
which is the same as f[a,b} f(z) dmq(z). Moreover, if the given f is Riemann integrable over in-

tervals [ag, bx] with limg_, o ar = —oo and limg_, y o by = +oo and if we can calculate the
integrals f;: f(z)dz = f[ak bk] f(x) dml( ), then it is a matter of being able to justify the limit
limg_ 1 oo f[ak bl S (z) dmy(z) = [g f(x) dmy(z) in order to calculate the Lebesgue integral over

R. To do this we may try to use the Monotone Convergence Theorem or the Dominated Conver-
gence Theorem.

Exercises.

3.2.1. The graph and the volume under the graph of a function.

Let f : R" — [0,+00]. If Af = {(z1,. .., Zn, Tpt1) |0 < zpy1 < f(21,...,2)} C R and
Gr = {(z1,...,Tn, Tnp1) | Tnp1 = fx1,...,20)} C R"*+! and if f is Lebesgue measurable,
prove that Ay, Gf € Lpy1 and mpy1(Af) = fRn [ dmy, and my, 11 (Gy) = 0.

Hint. Prove my41(Ag) = fRn ¢ dm,, when ¢ : R™ — [0, +00) is a Lebesgue measurable simple
function.

3.2.2. Improper Integrals.

Let f : [a,b) — R, where —oco < a < b < +o0. If f is Riemann integrable over [a, ¢] for every
¢ € (a,b) and the limit lim._,j_ fac f(x) dz exists in R, we say that the improper integral of f
over [a, b) exists and we define it as faﬁb f(@)de =limey— [7 f(2)dx

We have similar terminology and definition for fal:_ f(z) dz, the improper integral of f over (a, b].
(i) Let f : [a,b) — [0,+00) be Riemann integrable over [a, | for every ¢ € (a,b). Prove that
the Lebesgue integral ff f(x) dx and the improper integral f:b f(x) dx both exist and they are
equal.

(if) Let f : [a,b) — R be Riemann integrable over [a, c] for every ¢ € (a,b). Prove that, if the
Lebesgue integral f; f(x) dx exists, then f:b f(x) dx also exists and the two integrals are equal.

(iii) Prove that the converse of (ii) is not true in general: look at the fourth function in exercise
3.2.4 or at (ii) and (iii) of exercise 3.2.18.

(iv) If fa_w |f(z)] dx < 400 (then we say that the improper integral is absolutely convergent),

prove that f:b f(x) dx exists and is a real number (then we say that the improper integral is
convergent.)
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3.2.3. Using improper integrals (see exercise 3.2.2), find the Lebesgue integral fj;o f(x)dx (ifit
exists), where f(z) is any of the functions:

ﬁ’ ei‘x|a ?12X[D,+oo)<$)7 %7 ﬁu ‘wl%/QX[—l,l}(x% :OCi on X[n, n—i—l)( )
1 n+1 1 n+1
:g C ) Xn, n-‘rl)( ) :g. %X[n,n-‘rl)(x)a Z+Oo i X[n,n+1)(x)'

3.2.4. Apply the Fatou’s Lemma for Lebesgue measure on R and the sequences ( f,,), where f,,(x)
is any of the functions:

X(n,n+1)(33)7 X (n,+00) (x), nx(oé)(x), 1+ sign ( sin & x)
3.2.5. If f is Lebesgue integrable over [—1, 1], prove that lim,,_, f_ll 2" f(x)dx = 0.

3.2.6. Prove that the limit I = lim;_, | o % fa+°°
I= %,ifa:O,andI: 1,ifa < 0.

HtQ > dx exists, and that: I = 0, if 0 < a, and

3.2.7. Prove that the limit I = lim,, 4 o0 fo (1+ ) —T dx exists, and that: I = % ifl < a,
and I = +oo,ifa < 1.

3.2.8.Let f : R — R or C be Lebesgue integrable. Prove F(x f f(t)dt is a continuous
function of x on R.

3.2.9. Continuity of translations.

If f : R" — Ror C is Lebesgue integrable, prove limy,_,o [, |f(x — h) — f(2)| dmy(z) = 0.
Hint. Prove it first for continuous functions which are 0 outside a bounded set, and then use The-
orem 3.12.

3.2.10. Let Q@ C R™ be abounded closed interval and xg € Q. If f : @ — R is Riemann integrable
over  and g : @ — R coincides with f on @ \ {zo}, prove that g is also Riemann integrable over

Q and that (R,,) fQ 9= (Rn) fQ !

3.2.11. Let @ C R" be a bounded closed interval, A € Rand f, g : @ — R be Riemann integrable
over . Prove that f + g, A\f and fg are all Riemann integrable over @) and (R,,) fQ( f+g9 =

fo+ ngand Rn) fQ Af = A(Rn) fo
3.2.12. Let @ C R"™ be a bounded closed interval.
(i) If the bounded functions f, fr :+ @ — R are all Riemann integrable over ) and f;, T f on Q,
prove that (Ry,) [o fi T (Rn) Jo f

(i1) Find bounded functions f, fe - Q — R so that fr T f on @ and so that all f; are Riemann
integrable over (), but f is not Riemann integrable over Q).

1 o~ 5222 +1)

3.2.13. Consider the functions f(z) = 3 ( [ et dt)2 and h(z) = J; S dt.
(i) Using exercise 3.1.16, prove that f’(x) + h'(x) = 0 and, hence, f(z) + h(x) = 7 for every x.
(i1) Prove that

fj;o e=3t dt = V2.

3.2.14. (i) Using exercise 3.1.16, prove that the function F'(¢ f 00 gt sinz 7o is differentiable
on (0, +00), and that ng (t) = for every ¢ > 0. Find the limy 4 oo F( ), and conclude that
F(t) = arctan 1 for every ¢ > 0.

1-|-t2

(ii) Prove that the function M is not Lebesgue integrable over (0, +00).
(iii) Prove that the improper 1ntegra1 (exerc1se 3.2.2) f THeO ST g0 exists.

—+00 sinx do.

(iv) Justify the equality lim;_, o F'(¢ fo
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(v) Conclude that .
foHJroo Y dr =

(vi) Prove that the limit I = limy o0 L [77F°° 900%) gy exists, and that: T = 0, if 0 < a, and
I=1,ifa=0,and I =1,ifa <O0.

32.15. LetHy = {z =z + iy € C|z > 0}, and consider I' : H; — C defined by

us
5

I'(z) = 0+OO t*~le~tdt.

This is called the gamma-function.

(1) Prove that this Lebesgue integral exists and is finite for every z € H..

(i1) Using exercises 3.1.15 and 3.1.16, prove that g—g, % are continuous on H , and that ‘g—g(z) =
—ig—g(z) for every z € H.. This means that I" is holomorphic on H, .

(iii) Prove that I'(z 4+ 1) = 2I'(z) for every z € H, and that I'(1) = 1.

Prove that I'(n) = (n — 1)! for every n € N.

(iv) Prove that I'() = /7.

3.2.16. Let £ C R"™ be bounded. ‘

We define the inner Jordan content c.) (E) of E to be the supremum of > ", vol,,(R;) for all
m € N and all pairwise disjoint open intervals Ry,. .., %, with U;”:l R; C E. We also define
the outer Jordan content c\) (E) of E to be the infimum of 7", vol,(R;) for all m € N and
all open intervals Ry, ..., R, with E C U;n:1 R;.

(i) Prove that the values of ) (E) and o) (E) remain the same if in the above definitions we use
closed intervals instead of open intervals.

(ii) Prove that e (E) < o) (E) for every bounded E C R™.

Now, E is called a Jordan set if c,(f)(E) =¥ (E), and the value ¢, (F) = e (E) = c,(f)(E) is
called the Jordan content of F.

(iii) If 07(10) (E) = 0, prove that F is a Jordan set.

(iv) Prove that all bounded intervals S C R"™ are Jordan sets and ¢, (S) = vol,(S).

(v) Prove that F is a Jordan set if and only if for every ¢ > 0 there exist pairwise disjoint open
intervals Ry, ..., Ry, and open intervals 1},..., R} so that JiL, R; C E C Ur, R, and
Sy volu(R) = 3L voly(Ry) < e.

(vi) Prove that E is a Jordan set if and only if cto) (bd(E)) = 0, where bd(F) is the boundary of
L.

(vii) Prove that the collection of bounded Jordan sets is closed under finite unions and set-theoretic
differences. If E, . .., E; are pairwise disjoint Jordan sets, prove that ¢, (E) = 22:1 cn(Ej).

(viii) If E is closed, prove that m,(E) = 0 implies ¢,(E) = 0. If E is not closed, then
this result may not be true. For example, if £ = Q N [0,1] C R, then my(E) = 0, but
cgi) (E)=0<1= Cgo) (E), and so E is not a Jordan set. (See exercise 1.4.6.)

(ix) If E is a Jordan set, prove that E is a Lebesgue set and m,(E) = ¢, (E).

(x) Let E C @, where @ is any bounded closed interval. Prove that F is a Jordan set if and only
if x g is Riemann integrable over (), and that, in this case, ¢, (E) = (Ry,) [, o XE-

(xi) Let Q) be a bounded closed interval, f, g : Q — R be bounded and £ C () be a Jordan set with
cn(E) = 0. If f is Riemann integrable over Q and f = g on @ \ E, prove that g is also Riemann
integrable over (), and that (R,,) fQ f=(Rn) fQ g.

3.2.17. Lebesgue s characterisation of Riemann integrable functions.

Let @ C R” be a bounded closed interval and f : Q — R be bounded. For any x € () we define

wy(z) = lims_o4 sup{|f(z') — f(z")| |2, 2" € Q, |2’ — x| <6, |2" — x| < 0},
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and we call it the oscillation of f at x.
(i) Prove that f is continuous at z if and only if wy(x) = 0.
(ii) Prove that for every € > 0 the set {z € Q |wy(x) > €} is closed.

(iii) Assume that {x € Q| f is discontinuous at x} is a m,,-null set.

Take any € > 0 and prove that there are closed subintervals @}, . . . , Q; of Q with pairwise disjoint
interiors so that {x € Q|wys(z) > €} € Q] U---U Q) and vol,(Q}) + -+ + vol,(Q)) < e
Then prove that there are closed subintervals Q7, ..., Q) of @ so that Q,...,Q;,QY,...,Q,
form a partition A of @, and then prove that X(f; A) — X(f; A) < (M — m + vol,,(Q))e, where

— inf{f(z) |z € Q}, M = sup{f() | = € Q}.

Conclude that f is Riemann integrable over Q).

(iv) Assume that f is Riemann integrable over Q).

Take any € > 0 and consider a partition A = {Q1, ..., Qx} of @ so that X(f; A) —X(f; A) < €2
Consider those subintervals among the @1, . .., Q) which intersect the set {x € Q |ws(x) > €},
and prove that the sum of their volumes is < e. Thus, m,({z € Q |w¢(z) > €}) <e.

Conclude that {z € Q| f is discontinuous at x} is a my,-null set.

LEBESGUE INTEGRAL AND SIMPLE TRANSFORMATIONS.

Another topic is the effect on Lebesgue integrals of translations and linear transformations of the
space.

Proposition 3.36. Let A € L,, and f : A — R or C be L,,] A-measurable.
(i) IffA f dmy, is defined, then f 7. (f) dm,, is defined and

frz(A) T.(f)dmn = [, f dmy.

(i) If [ is Lebesgue integrable over A, then T,(f) is Lebesgue integrable over 7,(A) and the
equality in (i) is again true.

Proof. Let¢ : A — [0, +00) be a Lebesgue measurable simple function and let ¢ = > 7% kjxk;
be its standard representation. Then

J4ddmy, = Z;nzl Kimn(E;).
It is clear that
T(9) (@) = d(w — 2) = 3700 kjxE; (0 — 2) = D000 KixE () = D00 KX (i) (T),
from which we get
fTZ(A) 72(¢) dmy = Z] 1 KM (T2(Ej)) = Z;n | kgmn (Ej) = fA ¢ dmy,.

Now we pass to the case of f : R” — [0, +00] by considering an increasing sequence of simple
functions, and then we pass to the case of f : R” — R by considering the non-positive part and
the non-negative part of f, and then to the case of f : R® — C by considering the real part and the
imaginary part of f. All this is already standard and it is left as an exercise. O

The equality f 7.(f) dmyn = [, f dmy, can be written

fA+z fla = z)dmy(z) = [, f(y) dmn(y).

We can view this as change of variable formula. We write y = (7,) ! (x) = x — z or, equivalently,
x = 1,(y) = y + 2, and we employ the informal rule for the change of differentials:

dmp(z) = dmy(y).
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Proposition 3.37. Let T : R™ — R"™ be a linear transformation with det(T') # 0 and A € L,, and
f: A= RorC be L, A-measurable.

() If [, f dmy, is defined, then fT (f) dmy, is defined and
Jreay T(f) dmp = | det(T)| [, f dm.

(ii) If f is Lebesgue integrable over A, then T'( f) is Lebesgue integrable over T'( A) and the equality
in (i) is again true.

Proof. Let ¢ : A — [0,+00) be a Lebesgue measurable simple function and let ¢ = Z;nzl KjiXE;
be its standard representation. Then

Jaddmn =370 Kjma(E;).
It is clear that
T(¢)(z) = H(T~H(2)) = X271y wyxr, (T (@) = 74 kX1 (2),
from which we get
Jray T(@) dmn = 3770 kima(T(E))) = | det(T)| 32714 wjma(Ej) = [det(T)| [ ¢ dma.

As in the proof of Proposition 3.36, we pass to the case of f : R™ — [0, +00| by considering
an increasing sequence of simple functions, and then we pass to the case of f : R” — R by
considering the non-positive part and the non-negative part of f, and then we pass to the case of
f : R® — C by considering the real part and the imaginary part of f. O

The equality fT T(f)dmy = |det(T)| [, f dm,, can be written

fT(A) f(T7 () dmy(z) = | det(T)| [, f(y) dmn(y).

Again, this expresses a change of variable formula. We write y = T~'(z) or, equivalently, z =
T(y), and we employ the informal rule for the change of differentials:

dmy,(x) = |det(T)| dm,(y).

As special cases of linear transformations we consider the dilations and the reflection, and we
get the equalities

,\Ln f/\A ( ) dmp (2 fA y) dmy(y), f f(=z) dmy(x fA y) dmy(y)
forall A > 0.
Exercises.

3.2.18.Let QN [0,1] = {ry,r2,...} and 372 |an| < +o00. Prove that the series 3, g v

converges absolutely for mi-a.e. x € [0, 1].
3.2.19. LetQ = {ry,r9,...}. Prove that the series Z:i’j e~ lz=ral converges formi-a.e. x € R.

3.2.20. The Fourier transforms of Lebesgue integrable functions.
Let f : R® — R or C be Lebesgue integrable over R™. We define the function f: R™ — C by

= Jrn €T f (@) dimg (2),

where x - € = x1&1 + - - - £,€y, 1s the Euclidean inner product. The function fis called the Fourier
transform of f.
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(i) Prove that fi-\fg = ]?1 + fg and X}‘ = )\f.

(ii) If g(z) = f(z — a) for my-a.e. x € R", prove that g(§) = 6_27”“'5]?(5) for all £ € R™.

(iii) If g(z) = e~ 2797 f () for my-a.e. z € R™, prove that §(£) = f(¢ + a) forall € € R,

(iv) If g(z) = f(z) for mp-a.e. z € R™, prove that §(¢) = f(—ﬁ) for all £ € R"™.

W IfT : R" — R" is a linear transformation with det(7") # 0 and g(z) = f(T'x) for my-a.e.
x € R", prove that g(§) = m f((T*)_l(g)) for all £ € R™, where T is the adjoint of T'.

(vi) Prove that fis continuous on R".

(vii) Prove that | f(€)| < Jgn 1f ()] dmy () for every & € R™.

(viii) (The Riemann-Lebesgue Lemma) Prove that f(¢) — 0 as |¢| — +o00.

Hint. Prove that [p,, e 2™7¢ f(z) dmy(x) = § [pn e 2™ ¢(f (z — ﬁ) — f(x)) dmy(z) and
then use the result of exercise 3.2.12.

3.2.21. Let T : R™ — R” be an isometric linear transformation (see exercise 1.4.5). Prove that
fR" foT tdm, = f]R" f dm,, for every Lebesgue measurable f : R®™ — R or C, provided that
at least one of the two integrals exists.

3.2.22. Let f : R® — Ror C. We say that f is 1-periodic if f = for, ' forevery k € Z". In other

words, f is 1-periodic if f(x1,...,2,) = f(z1 — k1, ..., 2, — ky) forevery (x1,...,2,) € R

and every (k1,...,k,) € Z™.

(i) Let f be 1-periodic, A € L, and k € Z. Provethat [, f dm,, exists ifand only if f771( 4y fdmn
k

exists and, in this case, we have [, f dm, = [ 1) f dmn.

(ii) Let f be 1-periodic, and y € R™. Prove that f yn f dmy exists ifand only if f 1
exists and, in this case, we have f[o 1y fdm, = f ~1(0.1)n f dm,,.

(0,1)" fdmn

3.3 Lebesgue-Stieltjes integrals.

Let —0o < ag < by < +oo. We know that every continuous f : (ag,bg) — R or C is Borel
measurable. On the other hand, also every monotone f : (ag,by) — R is Borel measurable. This
is seen by observing that f~!(I) is an interval, and hence a Borel set, for every interval I in R.
Now, if F': (ag,bp) — R is an increasing function and pp is the induced Borel measure, then f,
in both cases, satisfies the necessary measurability condition, and the integral |, (a0,b0) f dup exists
provided, as usual, that either f(ao,bo) frdup < +o0 or f(ao,bo) f~dup < +oo in the case of
f : (ag,by) — R, and that Jiao.00) 1/ diur < +oc in the case of f : (ag, bo) — C.

In particular, if f, besides being continuous or monotone, is also bounded on an interval S C
(ao, bo) with up(S) < 400, then it is integrable over S with respect to |ip.

We shall prove three classical results about Lebesgue-Stieltjes integrals.

Observe that the cases [a, b], [a, b), (a, b] and (a, b) for the interval S may give different corre-
sponding integrals |, ¢ J dup. This is because the one-point integral

Sy £ i = F@pr({a}) = f@)(Fle+) — F(z—)
may not be zero.

Proposition 3.38. (Integration by parts) Let F, G : (ag,bp) — R be two increasing functions and
W, g be the induced Lebesgue-Stieltjes measures. Then

f(a,b] G(x+)dpr(z) + f(a o Fz—)dug(z) = G(b+)F(b+) — G(a+)F(at)

Sforall a,b € (ag, by) with a < b. In this equality we may interchange F with G.
Similar equalities hold for the other types of intervals, provided we use the appropriate limits of
F, G at a,b at the right side of the above equality.
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Proof. We consider a sequence of partitions A, = {c . clk)} of [a, b] so that
limg_y 4 oo max{cg-k) - cg-k_)l 1<) <} =0.
We also introduce the simple functions
=3 g 4 _ F (k)
9 = 22 Gle " HX () oy T = Sk ey )X (), )

It is clear that
G(at) < gr < G(b+), Flat) < fr < F(b—)

for all k.
For any = € (a, b] we consider the interval ( g )1, gk)] containing « (where j depends upon both k&
and ). Then gi(x) = G(c( )+) and fi(x) = F( 5’—)1+)- Since hrnk_>+oo(c§-k) cﬁk)l) =0, we

have that limg_, 4 o c(k)1 = limg— 400 c(k) = z, and so
hmk—H—oo gk(SU) = G($+), lil’nk_>+oo fk(x) = F(m—)
Now, we have that

S G R +) = P 4) = [ 90(@) dur (@),

S P (G +) — G 4) = [ fol@) duc ().

We apply the Dominated Convergence Theorem and we get

limy,_, oo ZJ L Gl (k) )(F(c§k)+) — F(cg-k_)l—k)) = f(mb] G(z+) durp(z),

. ) k k
limy o0 3 F(A (G +) = G 4) = [ Fla—) dua(@).
Adding, we find
G(b+)F(b+) — G(a+ = Ja y Gla+) dup(x) + fab z—) dpg(z).
We work in the same way for all other types of intervals. O

The next two results concern the reduction of Lebesgue-Stieltjes integrals to Lebesgue inte-
grals. This makes the calculation of the former more accessible in many situations.

Proposition 3.39. Let F' : (ag, bg) — R be increasing and have a continuous derivative on (ag, bo).
Then

= Jp F'(w) dm (x)
for every Borel set E C (ay, bo). Also

Sraomy F@) dir(@) = [0 o0 F(@)F' (@) dm ()

for every Borel measurable f : (ag,bg) — R or C for which either of the two integrals exists.

Proof. The assumptions on F’ imply that it is continuous and that F’ > 0 on (ag, by). The Fun-
damental Theorem of Calculus for Riemann integrals implies that for every [a,b] C (ag,by) we
have

iy F' (@) dma(z) = F(b) = F(a) = pr([a, b]).

By the continuity of F, this equality holds for all intervals (a, b], [a, ), (a,b) in (ag, by).
Now we define the Borel measure x4 on (ag, bg) by

= fE F'(z) dmq(x)
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for every Borel set E C (ag, bg). It is easy to see that 4 is a measure indeed. Clearly, u(0) = 0,
and p(E) > 0 for all Borel E C (ag, by). Also, the o-additivity of 1 is an immediate consequence
of Theorem 3.1.
Now we have u(S) = pp(S) for every bounded interval S C (ag,bp). Then Proposition 1.45
implies that 1 = pp, and so

e (E) = [ F'(x) dmy (x)

for every Borel set £ C (ag, bp).
Considering arbitrary linear combinations of characteristic functions, we get

f(aovbO) ¢(x) dur () = f(ao,bo) ¢(x)F/($) dmy(x)

for all Borel measurable simple functions ¢ : (ag, by) — [0, +00).
The rest is a standard exercise. UJ

Proposition 3.40. Let F : (ag, bg) — R be increasing and G : (a,b) — R be bounded and have a
continuous derivative which is Lebesgue integrable over (a,b), where ag < a < b < by. Then,

Jap G(@) dup(z) = G(b=)F(b=) = Gla+)F(a+) = [, F(z=)G (x) dmi(z)
= G(b—)F(b—) — G(a+)F(a+) — f(a,b) F(z4)G'(x) dmq ().

Proof. (a) Letus assume that G is also increasing on (a, b). Then its extension as G(a—+) on (ag, a]
and as G(b—) on [b, b) is increasing on (ao, bp). We apply Proposition 3.38 and we get

Jiap) G@) dpr(z) = GO=)F(b=) = Glat)Flat) = [,y F2—) duc(z).

Now, the integral f(a b) F(z—)G'(xz) dmi(x) exists, since F'(x—) is bounded on (a,b) and G’ is
Lebesgue integrable over (a, b), and Proposition 3.39 implies

Sy C@) dpr(z) = GO-)F(b=) — Glat)F(at) — [y Fle—)G' (x) dmi (x).
(b) In the general case, we take an arbitrary xo € (a, b), and we have that

forevery z € (a,b). Now, (G')* and (G’)~ are non-negative, continuous and Lebesgue integrable
over (a,b), and we have G = G; — G2 on (a, b), where

G1(@) = Gl0) + [y 0y (GVF(O) dma (1), Gala) = [y 0y (G (8) dma (1)

forall z € (a,b). By the continuity of (G')* and (G’)~ and the Fundamental Theorem of Calculus,
we have that G| = (G)T > 0and G, = (G')~ > 0 on (a,b). Hence, G; and G2 are both
increasing with a continuous derivative which is Lebesgue integrable over (a, b), and so from (a)
we have

Jray Gil@) dup() = Gi(b-)F(b-) — Gilat)Fla+) — [, Fla—)Gi(x) dmi ()
for i = 1, 2. We subtract these two equalities and we get the desired equality. O

From the proof of Proposition 3.40 it is worth keeping in mind the fact that an arbitrary GG
with a continuous derivative integrable over an interval (a, b) can be decomposed as a difference,
G = G1 — G, of two increasing functions with continuous derivatives integrable over (a, b).

Exercises.
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3.3.1. Consider the function g : R — R defined by g(z) = \/% I e~2 dt.

(i) Prove that g is continuous, strictly increasing, with g(—oo) = 0 and g(400) = 1 (see exercise

T1,2

3.2.13), and with continuous derivative ¢'(z) = \/%e 2
(i1) The Lebesgue-Stieltjes measure ji, induced by g is called the distribution or measure of
Gauss. Prove that ;14(R) = 1, that pu4(E) = \/% I5 e~2%" dz for every Borel set in R, and that

Jg f(@) dpg(z) = 127T fj;o f(sz:)e_%:‘”2 dx for every Borel measurable f : R — R or C for which
either of the two integrals exists.

3.3.2. (i) Consider the Cantor set C and the Iy = [0, 1], I1, I2, . . . which were used for its construc-
tion. Prove that the 2¥~! subintervals of I;,_; \ I, are the (% +- - -+§’,§—:}+3%, Lt -+§';§%i+3%),
where each of aq, ..., ap_q takes the values 0 and 2.

(ii) Prove that the Cantor function f is constant f(x) = 5§ + -+ a’ggl + 2% on the above subin-
terval (4 + -+ 5t + 30, &+ + 5 + 35)

(iii) If G : (0,1) — R has continuous derivative which is Lebesgue integrable over (0, 1), prove:

Z;:g a1,...,ap—1€{0,2} (% +oF ‘1;;1 + 2%) (G(a?1 +-- + 3 1 + 3%)
G5 )
f(01) x) dpg ().

(iv) In particular, prove that |, on< dug(x) = %
(v) Prove that [, e 2™ quip(z) = e ™ limg 4 oo ]_[j | COs (2”5) for every £ € R.

3.3.3.Let F, G : R — R be increasing and assume that F'G is also increasing.
(i) Prove that pipq(E) = [ G( :c+ )durp(x + fE x—) dug( ) for every Borel set £ C R.

(ii) Prove that [ f( d/rFG = Jp f(@)G(z4) dup(x) + [ f(x)F(x—)dug(x) for every
Borel measurable f : R —Ror (C for Wthh at least two of the three 1ntegrals exist.

334.If F : R = Ris increasing and continuous and f : R — [0, +oo] is Borel measurable,

prove that [ f(F(x))dur(x fF (too) f( ) dt.
Show, by example, that this may not be true if F' is not continuous.

3.3.5. Riemann's criterion for convergence of a series.
Assume F' : R — [0, 400) is increasing and ¢ : (0, +00) — [0, +00) is decreasing. Let a,, > 0
for all n and §{n|a, > g(z)} < F(z) forall x € (0,+00) and f(o +oO)g(:c) dpp(x) < 4o0.

Prove that 3,72 a,, < 400,

REDUCTION TO INTEGRALS OVER R.

Let (X, S, 1) be a measure space.

Definition. Let f : X — [0, 4+o00] be measurable. Then the function Ay : [0,+00) — [0, +00],
defined by

Ap(t) = p({z € X[t < f(x)}),
is called the distribution function of f.
Some properties of A are easy to prove. It is obvious that \; is non-negative and decreasing
on [0, 400). Also, continuity of x from below implies that \; is continuous from the right on

[0, +00). Hence, there exists some ¢y € [0, 4-o00] with the property that A ¢ is +-00 on the interval
[0, to) (which may be empty) and Ay is finite on the interval (fo, +00) (Which may be empty).
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Proposition 3.41. (Chebychev) If f : X — [0, +00]| is measurable, then

Af(t) < lfxfdlu
Jorevery t € (0,400).
Proof. We consider the set A = {z € X |t < f(z)} € S. Then

tAr(t) = tu(A) =t [ xadp < [y fdp,
sincetya < fon X. O

Proposition 3.42. Let f : X — [0,400] be measurable and G : R — R be increasing with
G(0—) = 0. Then
Sy GUF@)=) dunle) = [ro o) Mi(8) diici(t):

Moreover, if G has continuous derivative on (0,400), then
Jx GU@) dplx) = [ig_4oe) A (OC(£) dma () + Ap(0)G(0+).

In particular,

S F@) du(e) = [ 4o At dma (D).

Proof. (a) Let ¢ be a non-negative measurable simple function on X with standard representation
o= Z;”Zl KjiXE;» where we omit the value 0. We rearrange so that 0 < k1 < --- < Ky, and then

w(Er) + p(Es) + -+ p(Ep), if0<t<r

w(E2) + -+ 4+ uw(Ey), if k1 <t < ko
Ap(t) =

w(Em), ifkme1 <t <km

0, i <t

Then

Jio 00y Ao() duc(t) = ((Er) + p(B2) + -+ + p(Ep)) (G(r1-) — G(0-))
+ (W) + -+ p(En)) (Gr2—) — G(r1-))

+ u(Em) (G(”m_) - G(Hm—l_))
= G(r1—)u(Er) + G(ra—)u(E2) + -+ + G(6m—)(Em)
= [x G(¢(x)—) du(z),

since G(¢(x)—) is a simple function taking value G(x;—) on each E; and value G(0—) = 0 on
(E1U---UEpR)".

(b) Now we consider any measurable f : X — [0, +00| and any increasing sequence (¢, ) of non-
negative measurable simple functions on X so that lim,,_, o ¢, = f on X. Then (G(¢n(z)—))
is an increasing sequence of functions so that

limy, oo G(dn(z)—) = G(f(2)—)

for every z € X, and so

limy, ., oo [y G(én(2)=) du(z) = [ G(f(x)=) du()
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by the Monotone Convergence Theorem.
Also (A4, ) is an increasing sequence of functions so that lim,,_, ;o Ay, = Ay on [0, +00). Hence,

limy, 4 oo f[o7 too) Ao () dic(t) = f[Q ooy A (E) dpc(t)

by the Monotone Convergence Theorem.

Applying the result of (a) to each ¢,,, we get [, G(f(x)—) du(x f[o o) A7 () A ().

Now, Proposition 3.39 implies the second equality of the statement and the special case G(t) =t

implies the last equality. O
Exercises.

3.3.6. Let (X, S, ) be a measure space and f : X — [0,400]| be p-integrable. Prove that

3.3.7. Let (X, S, i) be a measure space and f : X — [0, +oc] be measurable. Prove that

3 2nez 2"0(27) < [ f(@) du(z) < 3z 2"Ap(27).

Conclude that f is integrable if and only if ) | _, 2"\ ;(2") is finite.

3.3.8. Let (X, S , 1) be a measure space f X — [0,400] be measurable and 0 < p < +o0.
Prove that [, f(2)? du(z) = p [37 2= A () dt.

3.3.9. Let (X, S, 1) be a measure space and f,g : X — [0, +00] be measurable. The f, g are
called equidistributed if A (t) = A (¢) for every t 6 [0, +oo)

If f, g are equidistributed, prove that [ f(x)? du(z) = [y g(x)? du(x) for every p > 0.

Hint. See exercise 3.3.8.

3.3.10. Let (X, S, p) be a measure space and ¢, ¢ : X — [0,+00) be two measurable simple
functions, and let ¢ = Z;nzl kiXE; and ¢ = > o1 AixF, be their standard representations so that
0<kr < - <kKpand 0 < A\ < --- < A\, (Where we omit the possible value 0).

If ¢ and ¢ are integrable, prove that they are equidistributed (see exercise 3.3.9) if and only if
M="n,K1 =A,...,km = Amand u(E1) = p(F1),..., u(En) = p(Fp).

3.4 Integrals on Borel measure spaces.

Let X be a Hausdorff topological space and ;. be a Borel measure on X. It is easy to see that
every continuous f : X — R or C, which is 0 outside some compact set of finite measure,
is integrable with respect to p. Indeed, since f is continuous, it is Borel measurable. Also, let
K be a compact set with p(K) < +oo outside of which f is 0. Then |f| < Myg, where
M = max{|f(z)||x € K} < 4o0. Therefore,

[ |fldu < M [y xrdp = Mp(K) < +oo,

and so f is integrable.

APPROXIMATION BY CONTINUOUS FUNCTIONS.

Theorem 3.3. Let the topological space X be locally compact and Hausdorff and i be a regular
Borel measure on X and let the Borel measurable f : X — R or C be integrable. Then for every
€ > 0 there is a continuous g : X — R or C which is 0 outside some compact set of finite measure

sothat [y |g— fldp < e
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Proof. By Proposition 3.29, there is an integrable Borel measurable simple function ¢ : X — R
or C so that

Jx 16— fldu < 5.
Let ¢ = > /' | KkXE,» Where E1, ..., Ey, are pairwise disjoint Borel sets and all kj, are # 0.
Since ¢ is integrable, we have that p(E)) < +oc for all k.
From the regularity of i, we have that there are compact K, and open Uy, so that K, C Fy C Uy
and p(Uy \ Kj) < n for all k, where > 0 will be chosen appropriately in a moment.
Urysohn’s Lemma implies that there are continuous functions g;, : X — [0, 1] so that g = 1 on
K} and supp(gy) is a compact subset of Uy.
Now we consider g = Y ;" | Kk k-
Then g : X — R or C is continuous and equal to 0 outside some compact set of finite measure.
Indeed, g = 0 outside the compact K = |J;"_, supp(gx) with

p(K) < 370 n(Us) < 370 (u(Br) + 1) < +oo.

Moreover, we have g, = 1 = xpg, on Kj, and g, = 0 = xg, on U, and |g;, — xg,| < 1 on
Ui \ Kj. Hence,
Jx lgke — xE | di < p(Ug \ Ki) < 1.

Therefore,
I lg = ldu < 37000 Ikl [x lgr — xm [ dp < 23l |sl.

— €
Now we choose ) = 5x~m——  SHTAE and we get

fx‘g_¢|dﬂ<§-

Hence,
Sxlg=fldu < [ lg—oldu+ [y]o— fldu <e

and the proof is complete. O]

We recall that Theorem 1.2 gives conditions on a Hausdorff topological space X and a Borel
measure ¢ on X so that p is regular.
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Chapter 4

Product measures.

4.1 Product c-algebra.

If I is a general set of indices, then the elements of the cartesian product ] [, ; X; are the functions
x: I — ;e Xi with the property: x(i) € X; for every i € I. It is customary to use the notation
x;, instead of z(), for the value of x at i € I and, accordingly, to use the notation (z;);c; for the
element z € [[,.; Xi.

If I is a finite set, say I = {1,...,n}, we use the traditional notation (z1,...,z,) for the
element (7;);eq1,....n) and we use the notation [T, X or Xy x--- x X, for Hie{17”'7n} X;. And

if I is countable, say I = N = {1,2,...}, we write (z1, x2, . ..) for the element (x;);cn and we
write j:of Xior X1 x Xo x --- for [ [;ey Xi

Definition. Let (X;,S;) be a measurable space for every i € I. We consider the o-algebra of
subsets of the cartesian product [ [, ; X; which is generated by the collection

C= {HZ—E] A; ‘ A; # X, for at most finitely many i € I, and A; € S; if A; # Xi}.
This o-algebra S(C) is called the product 6-algebra of S; and it is denoted by
®i6[ Si.

In particular, @' ; S; is generated by the collection of all sets of the form A; x --- x A,
where A; € §; forall i = 1,... n. Similarly, ®Z+:°f §; is generated by the collection of all sets
ofthe form Ay X -+ X A, X Xp41 X Xppyo X ---, wheren € Nand A; € S; foralli =1,...,n.

Proposition 4.1. Let (X;,S;) be a measurable space for every i € I and C; be a collection of

subsets of X; so that S; = S(C;) for every i € I. Then Q),.; S; = S(C), where
C = {Hie] A; ‘ A; # X for at most finitely many i € I, and A; € C; if A; # Xi}.

Proof. Tf C is the collection in the definition of ), ; S;, then C C C,andso S(C) C S(C).
Now we fix some j € I, and for every A; C X; we define A; = Hz’e[ Y;, where Y; = X for
i # jand Y; = A;. We then consider the collection

S]* = {AJ | Aj C Xj and Aj S S(C)}

We can easily show that S7 is a o-algebra of subsets of X; and that C; C S7. Therefore, S; =

S(C;) € ;. This means that for every A; € S; we have 47 € S(C).
Now, every element of C is a finite intersection (i.e. for a finite collection of indices j € I) of sets

of the form A7, and so C C S(C). Hence, S(C) C S(C). O

In particular, ®?:1 S; is generated by the collection of all sets of the form A; x --- x A,,
where A; € C; foralli =1,...,n. Also, ®Z+:°f S; 1s generated by the collection of all sets of the
form A} X -+ x Ay X Xpy1 X Xpyo X ---,wheren € Nand A; € C; foralli =1,... n.
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SECTIONS OF SETS AND FUNCTIONS.

Letz € Hz'e 7 X;. Then z is a function with domain of definition I and values x; € X; for all
i € 1. Now, if J C I, then we may consider the restriction x y of x on J. Then «x ; is a function with
domain of definition J and values (z7); = x; € X, forall i € J. In other words, z; € HiGJ X;.

If I = {1,...,n}, then we use the notation z = (z1,...,2,) € X1 X --- x X,,. Now, if
J = {i1,...,im}p with1l <43 < -+ < iy < nisasubset of I, then, accordingly, we use the
notation z; = (z4,,...,2;,) € X;; X -+ x X; . For example, if x = (21, x2, x3, x4, x5), then
(1,35} = (21,23, 25).

We may also consider the complement J¢ = I \ J of J C I. Then, besides the restriction
xy of x on J, we may also consider the restriction z jc of x on J°. We have x; € HiEJX,»
and xjc € [[;cje Xi. Also, (25); = x; € X; foralli € Jand (z)c); = x; € X; for all
1 € J¢ Clearly, x uniquely determines =y and x j.. Conversely, x is uniquely determined by its
restrictions x y and x je. Indeed, ify € Hie sX;andz € Hie je X; are given, then there is a unique
x € [[;e; Xisothatw; =y and x jc = 2: we define x; = y;, if i € J, and z; = 2;, if i € J.

For example, if & = (21, 22, 73, 74, 75), then 2y 351 = (71, 73, 25) and x5 4y = (T2, 74). It
is obvious that x = (z1, z2, r3, 24, T5) uniquely determines the restrictions y = (x1, 3, x5) and
z = (22, x4) and is uniquely determined by them.

Thus, we have an identification between [ [, ; X; and ( [Lics Xi) X ( [Lice Xi). We identify
the element x of the first space with the pair (y, z) of the second space, whenever y = =y and z =
x je. For example, we identify x = (x1, x9, x3, x4, x5) With (y, z) = ((xl,xg,x5), (IE2,134)). It
must be stressed that these are formal identifications (logically supported by underlying bijections)
and not actual equalities.

Definition. Let A C [[,.; Xjand J C I and z € []; ;o X;. We define

ieJe
A ={y €llics Xi|(y,2) € A},
We call A, the z-section of A.

It is clear that every z-section of A is a subset of [ [, ; X;.
For example, if A C X7 x Xy x X3 x Xy x X5 and (z2,24) € X9 X Xy, then we have
A(I27Jﬁ4) = {(.1‘1,$3,$5) | (1‘1,$2,$3,x4,x5) c A} C X7 x X3 X X5.

Definition. Let f : [[,c; Xi = Y and J C I and z € [[;c;c Xi. Wedefine f. : [[;c; Xi =Y
by
fz(y) = f(y7 Z) forall Yy e Hie] Xi.

We call f, the z-section of f.

For example, if f : X7 x X x X3 X X4 x X5 — Y and (x2,x4) € X2 X X4, then f(m’u) :
X1 X X3 X X5 —Yis deﬁnedby f(x27x4)(1‘1, xrs3, 1'5) = f(xl, T2,T3, T4, .21?5) for all (1‘1, xrs3, 1'5) S
X1 X X3 X X5.

Whenever J¢ = {j} is a one-point set, then, for simplicity, we prefer to write A, and f; ,
instead of A,y and f(, .

Proposition 4.2. Let (X;,S;) be a measurable space for every i € I and let J C I and z €
[Licje Xi- If A C [ Xi belongs to Q1 Si, then A, C [[;c; Xi belongs to Q¢ ; Si.

Proof. We fix z € [[;c;c Xi and we consider the collection S of all A C [[,.; X; with the
property that A, € &), ; Si.

We shall prove that S is a o-algebra of subsets of ] [;; X;.

Forthe §) C [[;,c; Xiwehave (). =0 € @,.;Si,andso ) € S.

Let A€ S. Then A, € @, Si. Hence,

(Ac)z = (AZ)C € ®i€J Si,
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and so A¢ € S.
Let A, € S foralln € N. Then (4,). € @, S; foralln € N. Hence,

(Uj{g An)z = :z(An)z € ®i€J Si,

and so J; 2] 4, € S.

Now we fix a k € I and an A}, € S); and we consider the set A} = []
i # k,and Y}, = Aj. We observe that, if k € J, then (A}). =[]
i # k,and Yy, = Ag. Also, if k € J then (A}). = [Lics
both cases we have that (A}). € &),.;Si, andso A} € S.
Now we observe that every element in the original collection C which generates ),.; S; is a
finite intersection of sets A} (for a finite collection of indices & € I), and so C C S. Therefore,
Xier Si € S. Thus, if A € @, Sithen A € S,andso A, € Q,c; Si. O

ser Yi» where V; = X, if
icy Yi, where Y; = X; ifi € J,
Y;, where Y; = X, foralli € J. In

Proposition 4.3. Let (X;,S;), (Y,S) be measurable spaces for every i € I and let J C I and
z € HieJc X If f Hie] X, > Yis (®i€[ Si, S)-measurable, then f, : HiEJ X, = Yis
(®;cs Si, S)-measurable.

Proof. Let B € S. Then f~1(B) € ®,.; Si. Since
(f2)"1(B) = (f1(B))=,
Theorem 4.1 implies that (f.)~}(B) € @, Si- O

The last two theorems say, in informal language, that sets or functions which are measurable
on a product space have all their sections measurable on the appropriate product subspaces.

PRODUCTS OF BOREL 6-ALGEBRAS.

Example. We consider R" = []"" | R, and, for each copy of R, we consider the collection of all
bounded 1-dimensional intervals as a generator of B1. Proposition 4.1 implies that the collection
of all bounded n-dimensional intervals is a generator of )" ; ;. But we already know that the
same collection is a generator of 13,,. Therefore,

B = ®?=1 B:.

This can be generalised.
If ny + - - - + ng = n, we formally identify the typical element (z1,...,z,) € R™ with

((SU]_, e 7$n1), (1)n1+1, e ,:cn1+n2), ey (Jln1+.‘.+nk71+1, e 75Un1+~~+nk))a

i.e. with the typical element of H§:1 R™i. In other words, we consider the identification:
R = []%_, R™
J=1 )

Now, Proposition 4.1 implies that ®?:1 By, is generated by the collection of all H§:1 Aj, where
A; is an n;-dimensional bounded interval. By the above identification, H§:1 Aj is the typical

n-dimensional bounded interval, and so ®§:1 B,,, is generated by the collection of all bounded
intervals in R™. But the same collection generates 3,,, and we conclude that

B, = ®§:1 B"j‘

Let X be any non-empty set. We recall that a topology T of X is any collection of subsets of X
which contains () and X and which is closed under arbitrary unions and under finite intersections.
The elements of a topology 7 of X are called open subsets of X, and the complements of the open
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subsets of X are called closed subsets of X. A set X with a topology of X is called fopological
space.

It is well known (and trivial to show) that any intersection of topologies of X is a topology
of X. Now, let C be an arbitrary collection of subsets of X. We consider all the topologies of X
which include C, and we take their intersection. This is, clearly, the smallest topology of X which
includes C, it is called the topology of X generated by C and it is denoted 7 (C).

Definition. Let X; be a topological space with topology T; for every i € 1. We consider the
collection

C= {Hz‘el U; ’ U; # X; for at most finitely many i € I, and U; € T; if U; # XZ}
Then T (C) is called the product topology of T],.; X:.

We say that a topological space X is second countable if there is a countable collection of
open subsets of X such that every open subset of X can be written as a (necessarily, countable)
union of open sets contained in this collection.

Proposition 4.4. Let X; be a topological space for every i € I and let X = [[,c; Xi have the
product topology. Then Q),.; Bx, € Bx. If, moreover, I is countable and every X; is second
countable, then Q. ; Bx, = Bx.

Proof. Let 7T; be the topology of X; for every i € I. Then Bx, = S(7;). Proposition 4.1 implies
that &),.; Bx, = S(C), where

C= {Hiel U; ‘ U; # X, for at most finitely many ¢ € I, and U; € T; if U; # Xi}.

But, by the definition of the product topology 7 of X, we have that C C T C S(7) = Bx.
Therefore, &), Bx, € Bx.

Now, let I be countable and every X; be second countable. Since X; is second countable, there is
a countable collection C; of open subsets of X; so that every open subset of X; can be written as a
countable union of sets contained in C;. We consider

C = {Hiel U; ‘ U; # X; for at most finitely many ¢ € I, and U; € C; if U; # Xi}.

Then C is countable. Moreover, since C C C, we get S(C) C S(C) = X1 Bx, -

Now, we consider the collection 7* which contains () and all unions (necessarily, countable) of
elements of C. It is clear that 7* C S(C) C &), Bx,. Every finite intersection of elements of
T* is either () or a countable union of finite intersections of elements of C. But it is easy to see that
every finite intersection of elements of C belongs to C and so it is a countable union of elements
of C. Therefore, 7* is closed under finite intersections, and, since it is obviously closed under
arbitrary unions, it is a topology of X.

We have already mentioned that every element of C is a union of elements of C, and so C C 7.
Thus, 7 = T(C) € T* € @, Bx;. Therefore, Bx = S(T) € Q,c; Bx;- O

Example. We consider R"” = [["_; R, where I = {1,...,n}. Wealso consider J = {i1,...,im}
with 1 < i3 < --+ < ip < n. Wetake &k = n — m and we write J¢ = {i},...,i,} with
1<ih <o <) <.

We naturally identify [ [, ; R with R™, writing each y = (2;,,...,7,,) a3y = (y1,...,Ym). We
also identify [ ], ;. R with R¥, writing each z = (@ifs--- ) asz = (21,..., 2k).

Therefore, K, ; B1 = By, and Q¢ j B1 = By. Also, B, = B,,, @ By.

Now, if A is a Borel set in R", then, for arbitrary z € [[,c ;o R = R, the z-section A, of A is a
Borel set in R™.
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Example. We consider any E C R, which is not a Borel set, and A = {(z,2) € R? |z € E}.
Since all 1-dimensional sections of A are either empty or one-point sets, they are Borel sets in R.
We shall see that A is not a Borel set in R?.

Indeed, we assume that A is a Borel set in R?, and we consider the invertible linear transformation
T : R? — R? defined by T'(z1, x5) = (B5%2, 21222),

Then T(A) = {(z,0)|x € E} is a Borel set in R?, and so all 1-dimensional sections of T'(A)
must be Borel sets in R. In particular, the (horizontal) section 7'(A)y = {z | € F} = E must be
a Borel set in R, and so we arrive at a contradiction.

Exercises.

4.1.1. (i) The function 7; : [[,c; Xi — X defined by 7;(z) = x; forall x = (4)icr € [[;c; X,
is called the j-th projection of [ [, _; X; or the projection of [ [, ; X onto its j-th component X;.
If A; C X, prove that w;l(Aj) = [l;cr Yi. where Y; = X, ifi € I,i # j,and Y; = A;.

(ii) Let (X}, S;) be a measurable space for every i € I. Prove that the product o-algebra Q) ; S; is
the smallest o-algebra S of subsets of [ [, ; X suchthat7; : [[,.; X; = X;is (S, S;)-measurable
forevery j € I.

i€l el
(iii) Let (X}, S;) be a measurable space for every i € I, and (Y, S) be a measurable space, and
io € I,and g : X;, — Y be (S;,,S)-measurable. If we define f : [[;c; Xi = Y by f((2i)icr) =
g(x4,), prove that f is (), Si, S)-measurable.

(iv) Let (X;, 7;) be a topological space for every i € I. Prove that the product topology is the
smallest topology on [ [,.; X; such that r; : [[,.; X; — X is continuous for every j € I.

4.1.2. Let (X;, S;) be a measurable space for every ¢ € I and let C; be a collection of subsets of

X so that S; = S(C;) for every i € I. Prove that Q),.; S; = S(C), where

C= {ILic; Ei | E; # X; for at most countably many i € I, and E; € C; if E; # X;}.

4.13.Let R” = R" \ {0}.
(i) If U is open in R?, prove that RYU = {rx |r > 0,2 € U} is open in R.
(ii) If A is a Borel set in R”, prove that R* A is a Borel set in R”.

4.2 Product measure.

In this section we shall limit ourselves to cartesian products of finitely many spaces and, for sim-
plicity, we shall work with two measure spaces.

We fix the measure spaces (X1, S1, p1), (X2, S2, p2) and (X7 X X5, 51 ® Sz). We know that
S1 ® 89, by its definition, is generated by the collection

C:{Al XA2|A1 € Sy, AQGSQ}.

We observe that X; x X5 and @ x () = () belong to C.

The elements of C play the same role that n-dimensional intervals play for the introduction
of Lebesgue measure on R™. We agree to call these sets (S; ® Sz)-measurable intervals or, for
simplicity, just measurable intervals in X; x X5, a term which will be justified by Theorem 4.3,
and denote them by

R = Al X AQ.
Proposition 4.5. The A = {R1U---UR,,, |m € N, Ry, ..., Ry, pairwise disjoint elements of C}
is an algebra of subsets of X1 X Xo.

Proof. Similar to the proof of Proposition 1.11. We first prove that R* N R” € C forall R', R" € C.
This implies that A is closed under finite intersections. Then we prove that R° € A for every
R € C. This implies that A is closed under complements. Finally, we prove that A is closed under
finite unions. The details are left to the reader as an exercise. O
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For each R = Ay x Ay € C, we define the quantity

T(R) = p1(A1)p2(Az),
which plays the role of volume of the measurable interval R.

Definition. For every EE C X1 x X5 we define
p*(E) =inf{ 3% 1 R;)| Ri € C forall i, and E C J % R;}
Theorem 1.8 implies that ©* : P(X; x X3) — [0, +00] is an outer measure on X X Xo.

Proposition 4.6. Let R, R; be measurable intervals for every i € N.
W IR U R, then 7(R) < Y75 7(Ry).
(ii) If R = U R; and the R; are pairwise disjoint, then T(R) = > %0 7(R;).

Proof. (i) Let R = Ay x Asand R; = Ai,l X AZ"Q.
From A; x Ay C Uj:of(Azl X A;2), we get that

XA ($1)XA2 (xQ) = XA1x Ay (x17x2) < Z:_:o? XAi1xA;i 2 (3:'1,:62) = j_:olO XA (xl)XAm (xQ)

for every 1 € X1, z2 € Xo. Integrating over X; with respect to 11, we find

p1(Ar)xa, (m2) < 3% 11 (Asp)xa,, (42)

for every 2 € X,. Integrating the last relation over Xy with respect to 2, we get

p1(An)pz(A2) < ST p (A pe(Ai2).
(i) We use equalities everywhere in the above calculations. O

The next result justifies the term measurable interval for each R € C.

Theorem 4.1. Every R € C is i*-measurable, and 1*(R) = 7(R). Moreover, S1 @ Sy is included
in the o-algebra S« of p*-measurable subsets of X1 x Xa.

Proof. (a) Let R € C. From R C R, we get u*(R) < 7(R). Proposition 4.4 implies 7(R) <
S0 r(R;) for every covering R C |J;1 R; with R; € C. Hence, 7(R) < u*(R), and we
conclude that p*(R) = 7(R).

(b) Let R, R’ € C. Proposition 4.3 implies that there are pairwise disjoint Ry, ..., R,, € C so that
R'\ R = Ry U---U R,,. By the subadditivity of 1*, the result of (a) and Proposition 4.4, we get

pH(ROR)+ " (R\R) < p'(R'NR) + p*(Ry) + -+ + p* (Rn)
=7(RNR)+7(R1)+ -+ 7(R,) = 7(R).
(c) Let R € Cand E C X; x X, with u *(E) < 4o00. For any ¢ > 0 there is a covering

E C U R; with R; € C such that > 7(R;) < p*(E) + e. By the result of (b) and the
subadd1t1v1ty of u*, we get

p(ENR)+p*(B\R) < X (0¥ (R N R) + 5" (Ri \ R)) < X5 7(Ri) < w(E) +e.

Since € is arbitrary, we get u*(E N R) + p*(E \ R) < p*(E), and we conclude that R is p*-
measurable.
Therefore, C C S,+. Since S1 ® Sy is generated by C, we have that S; ® Sp C S, O
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Definition. The measure induced from y* is called the product measure of 111, 110 and it is denoted

H1 @ 2.

We denote by
Sﬂl Ru2

the o-algebra S, of /*-measurable subsets of X1 x Xo.
Thus, (X1 % X2, S @uss 1 & p2) is a complete measure space.

Theorem 4.3 implies that
S1® 8 C SM1®M2

and
(Ml X ,uz)(Al X Ag) = ,ul(Al)ug(AQ) forall Ay € 81,45 € Ss.

It is very common to consider the restriction, also denoted 111 ® 2, of 11 ® po on S1 @ So.

Theorem 4.2. If 111 and o are o-finite measures, then

(i) p1 @ o is the unique measure 1 on (X1 x Xo, 81 @ Sa) such that pu( Ay x Az) = 1 (A1) ua(Asg)
forevery Ay € S§1, A5 € Sy,

(i1) (X1 X X2, S @puss 11 © p2) is the completion of (X1 x X2, 81 ® Sa, 1 ® o).

Proof. (i) We consider the algebra A of subsets of X; x X9 which is described in Proposition 4.3.
Let 11 be any measure on (X; x Xo,S1 ® S2) such that pu(R) = (u1 ® u2)(R) for every R € C.
Then, by additivity of measures, we have that u(R; U---URy,) = (1 @ p2)(R1 U - - - U Ry, for
all pairwise disjoint Ry, ..., Ry, € C. Therefore, the measures p and pq ® uo are equal on A.
Since fi1, po are o-finite, there exist A; 1 € S1, Aj 2 € Sp with 11 (A4;1) < 400, p2(A4;2) < +00
and A;1 T X1, Ai2 T Xo. This implies that the R; = A;1 X A; 2 € C have the property that
R; T X1 x Xy and that u(R;) = (p1 ® po)(R;) = p1(Ai)pua(Aiz) < +oo for every i.

Since S ® S2 = S(C) = S(A), Theorem 1.7 implies that i and 111 ® po are equal on §; ® Ss.
(ii) (X1 x X2, Sy 0u0, 1 @ p2) is a complete extension of (X1 X X5, 81 ® Sa, 1 ® p2), and
so it is an extension of the completion (X, S ® Sa, 11 ® p2). Hence, it is enough to prove that
SH1®M2 - 81 ® 82'

Let A € S; @, With (11 ® p2)(A4) < 4o00.

For each k € N there is a covering A C U;Of Ry, ; by measurable intervals so that

ST T(Re) < (111 © pa)(A) + 1.

We define By, = ;r:of Ry ; € §1 ® 8o, and we have that A C By, and

(11 ® p2)(A) < (1 © p2)(Br) < (11 @ p2)(A) + 1.

Now, we define B = (> By € S; ® Sa. Then A C B and (111 ® p2)(A) = (p1 ® pa)(B).
Therefore, (1 ® p2)(B\ A) = 0.

Now, let A € S, @, With (111 ® p2)(A) = +o00.

We consider the specific measurable intervals R; which we used in the proof of part (i), and the
A; = AN R,;. These sets have (11 ® u2)(A;) < +oo, and, by the previous paragraph, there are
B; € §; ® Sgsothat A; C B; and (1 ® pe)(B; \ A;) = 0. We define B = Uziolo B, € §1 ® 8.
Then A C B, and, since B\ A C f:c’f(BZ \ A;), we conclude that (p; ® p2)(B\ A) = 0.

We proved that foreach A € S, g, thereis B € S; ®Ss sothat A C Band (u ®pu2)(B\A) = 0.
Considering B \ A, there is C € S; @ Sy so that B\ A C C and (11 ® p2)(C \ (B '\ A)) = 0.
Of course, (11 ® p2)(C) = 0.

Now we observe that A = (B\ C)U(ANC),where B\C € S ®S2and ANC CC €& R85
with (g1 ® p2)(C) = 0. This says that A € S; ® Ss. O
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Now we shall examine the influence to the product measure space of replacing the measure
spaces (X1, S1, p1), (X2, S2, p2) with their completions (X1, S1, 1), (X2, S, 12)-

Theorem 4.3. (i) The measure spaces (X1, 81, 1), (X2, So, p2) induce the same product measure
space as their completions (X1, S1,1i1), (X2, So, i2). Namely,

(X1 X X2, Spyopss 1 @ p2) = (X1 X Xo, Spreps, 1 @ [12)-

Moreover, the above product measure space is an extension of both (X1 X X2,81 ® Sa, 1 ® p2)
and (X1 x X2,81 ® Sa, i1 ® [i2), of which the second is an extension of the first.

(ii) If 1 and o are o-finite measures, then (X1 X Xo, Sy @us 11 @ p2) is the completion of both
(X1 X X2,81 ® So, p1 @ pa) and (X1 X Xo2,81 @ Sa, i1 ® [12).

Proof. (i) We recall that to construct the product measure space (X1 X Xo, Sy ous, 1 ® p2), we
consider all (S; ® Sy)-measurable intervals of the form R = A; x Ay forany A; € S1, Ag € Sa,
and we define the outer measure

= inf { ZZ 1T ( | R; are (81 ® S2)-measurable intervals, and E C U }

where 7(R) = u1(A1)u2(Ag) forall R = Ay x As. Similarly, to construct the product measure
space (X1 X Xo, Surems, i1 ® I2), we consider all (§; @ S)-measurable intervals of the form
R = A; x Ay forany Ay € S1, Ay € Sy, and we define the outer measure

= inf { S o(R:) | R; are (S; ® Sz)-measurable intervals, and E C Uit R;},

where 0(R) = fi1(A1)f2(Az) forall R = Ay x As.

Our first task will be to prove that the two outer measures p* and v* are identical.

We observe that all (S ® Sz)-measurable intervals R are at the same time (S; ® Sy )-measurable
and that o(R) = 7(R) for them. Hence, v*(F) < p*(E) forevery E C X x Xo.

Now let £ C X; x X9 with v*(E) < 400, and let € > 0. Then there is a covering £ C U;;Of R;
with (S ® S)-measurable intervals R; so that

Zz 10-( ) *(E)+€

Forall i we have R; = A;1 x A; 2 with A;1 € S1, A; 2 € So. Then there are B; 1 € S1, Bia € So
so that A@l C BZ'J,AZ‘,Q C Bz‘,2 and M(Ai,l) = ul(Biyl),m(A@Q) = /,LQ(BZ"Q). We form the
(S1 ® Sa)-measurable intervals R, = B;; X B; 2 and we have R; C R) and o(R;) = 7(R),) for
all 7. We now have a covering £ C Uj:of Rl with (S; ® Sz)-measurable intervals R/, and this
implies

pHE) < YT (R = 5 o(Ri) < v*(E) + e

Hence, ©*(E) < v*(E). If v*(F) = 400, then p*(E) < v*(E) is obviously true.

We conclude that p*(E) = v*(E) forevery E C X x Xo.

The next step in forming the product measures is to apply Caratheodory’s Theorem to the common
outer measure y* = v*, and we find the common complete product measure space

(X1 x X2, Spy@psy 1 @ p2) = (X1 X X2, Sgreps, i1 © fiz)

where S, 9, = Sureps 18 the symbol we use for S« = S+, and u1 ® p = 1 ® @z is the
restriction of p* = v* on §;» = Sy«

Finally, Theorem 4.3 says that S; @ S and S; ® S, are included in S5, and, since every
(S1 ® Sy)-measurable interval is also a (S; ® Sz)-measurable interval, we have that S; ® Sy is
included in S; ® Ss. Thus, $; ® S2 € S ® S C Syyops-

(i1) The proof is immediate from Theorem 4.4. O
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The most basic application of Theorem 4.5 (in its formulation with more than two components)
is related to the n-dimensional Lebesgue measure. The next result is no surprise, since the n-
dimensional Lebesgue measure of any interval in R™ is equal to the product of the 1-dimensional
Lebesgue measures of its edges: my, ([Tj_,[a;,b;]) = [1j=, m1([aj, bs]).

Theorem 4.4. Letn =nq + - - - + ny.

(i) The Lebesgue measure space (R™, L,,, my,) is the product measure space of the Borel measure
spaces (R", By, my,; ) and, at the same time, the product measure space of the Lebesgue measure
spaces (R, Ly, mp;).

(ii) The Lebesgue measure space (R™, L,, my,) is the completion of both (R, ®§:1 By, mp) =
(R™, B,,, my,) and (R™, ®§:1 Ly, mp), of which the second is an extension of the first.

Proof. We know that ®§:1 By, = By, that (R", L,,;, my,,) is the completion of (R"7, By, ;, my,, ),
and that m,,; is a o-finite measure. Hence, Theorem 4.5 implies that the Borel measure spaces
(R", B,;, my;) and the Lebesgue measure spaces (R"/, L,,;, my,;) induce the same product mea-

sure space (R”, S®k m ,®§:1 My, ), and that this is the completion of both measure spaces
j=1""n; ‘

(R™, By, ®?:1 my,) and (R", ®§:1 L, ®?:1 my,; ), of which the second is an extension of the
first.

Theorem 4.3 implies that (®§:1 mp,)(R) = H§:1 My, (A;) for every Borel measurable inter-
val R = H§:1 Aj. In particular, (®§:1 My, ) (S) = vol,(S) for every bounded interval S in
R™. Now Theorem 1.13 implies that ®§:1 my,; = my on B,. Hence, (R", By, ®§:1 My,) =
(R™, By ).

The proof finishes, since, by Theorem 1.13, (R", L£,,, my,) is the completion of (R"™, B,,, m,,). O

Itis, perhaps, surprising that, although the Lebesgue measure spaces (R"7, £,,,, m, ;) are com-
plete, the product (R, ®§:1 Ly, my) is not complete (when k > 2, of course).

Example. We consider any non-Lebesgue set A C R, and the £ = A x {0} x --- x {0} C R™.
We also consider the Lebesgue measurable interval R = R x {0} x --- x {0} C R™. We have that
E C Rand m,(R) = mi(R)m1({0}) - --m1({0}) = 0. If we assume that (R", @’_, L1,my)
is complete, then we conclude that F € ®;L:1 L1. We now take z = (0,...,0) € R"! and, then,
the section £, = A must belong to £1. This is not true, and so we arrive at a contradiction.

Exercises.

4.3 Multiple integrals.

The purpose of this section is to describe the mechanism which reduces the calculation of product
measures of subsets of cartesian products and of integrals of functions defined on cartesian products
to the calculation of the measures or, respectively, the integrals of their sections. The gain is
obvious: the reduced calculations are performed over sets of lower dimension.

As in the previous section, for the sake of simplicity, we restrict to the case of two measure
spaces.

We recall that, if £ C X x X9 and 1 € X7, then the x1-section of £ is defined by

EI1 = {xQ € Xo ‘ (561,56‘2) S E} C Xs.
Similarly, if zo € X5, then the xs-section of E is defined by
E*2 = {131 c Xi | (l‘l,l‘z) S E} - Xl.

We do not write F,, in order to avoid confusion with .
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Theorem 4.5. Let (X1, S1, p1) and (Xo, S, p2) be o-finite and let (X1 X X9, 81 ® Sa, 11 & 2)
be their restricted product measure space.

IfE € 51 ® S8y, then B, € Sy for every x1 € X1 and E™? € S for every xo € Xo. Moreover,
the function x1 — po(Ey, ) is Si-measurable, the function xo — 1 (E*?) is So-measurable, and

(1 @ p2)(E) = [, p2(EBxy) dpn (1) = [y, p1(E™) dps(x2).

Proof. We observe that the first statement, namely that £, € Sp forevery 1 € X; and E*? € §;
for every zo2 € Xp, is a direct consequence of Theorem 4.1 and it holds without the assumption
about the o-finiteness of 1, .

We denote A the collection of all E € S; ® So which have all the properties in the conclusion of
the theorem.

(a) Every measurable interval R = A; x Aj belongs to V.

Indeed, R, = 0,ifx1 ¢ Ay, and R,, = Ao, if 21 € A;. Hence, ua(Ry,) = p2(A2)xa, (z1) for
every 1 € X1, and so the function 21 — pa(R,) is S1-measurable. Moreover, we have

[, #2(Raey) dpa (1) = pa(A2) [ xa, din = pa(Az)pa (A1) = (11 @ pa)(R).

The same arguments hold for x2-sections.

(b) Let B, ..., E,, € N be pairwise disjoint. Then E = Ey U ---UE,, € N.

Indeed, from E;, = (E1)g, U--- U (Ep)g, forevery 21 € X;, we have that £, € Sy for every
z1 € Xy and po(Ey,) = pa((E1)g,) + -+ + p2((Em)z, ) for every 1 € X;. Then the function
x1 — p2(Ey,) is S;-measurable, and

Jx, t2(Eay) dpa (1) = 3700 [ #2((Bj)ay) dpa (1) = 3070, (1 @ p2) (Ej) = (11 @ p2) (E).

The same arguments hold for x2-sections.

(c)Let E,, € N foreveryn € Nand E,, T E. Then E € N.

Indeed, from (E,),, T E,, for every 21 € X, we have that F,, € S, for every 1 € X.
Continuity of uy from below implies that puo((Ey)z,) T pe(Ey,) for every z1 € X, and so
the function x; — pe(Ey,) is Si-measurable. By continuity of p; ® uo from below and by the
Monotone Convergence Theorem, we get (111 ® p2)(E) = [ x, H2(Ez,) dpa (21).

The same can be proved, symmetrically, for xo-sections.

(d) Let R = A; x Az be any measurable interval with 1 (A1) < +o00 and ps(A2) < +o0o, and let
N5, be the collection of all sets £ € S; ® Sy for which EN R € N.

IfE, € Ngforallnand E,, | E, then E € Ny.

Indeed, E,,NR | ENR,andso (E,NR);, | (ENR),, forevery z; € X;. Hence, (ENR),, €
Sy for every 1 € X;. Now, for every 1 € X; we have (E1 N R);, € R,,. Since either
R., = As or R;; = (), and since pz(Az2) < +oo, by the continuity of po from above, we find
p2((En N R)z, ) 4 p2((EN R),,) for every 21 € Xi. Hence, the function 21 +— o ((E N R),,)
is S1-measurable. Now, from our calculations in (a) we have that o ((En N R)xl) < p2(Ryy) =
/,LQ(AQ)XAl (.%'1) Since le MQ(A2>XA1 (xl)dul(azl) = ,u,l(Al)/L2<A2) < —+o00, the Dominated
Convergence Theorem implies that

Jx, #2((Bn N R)zy) dpn(x1) 4 [y, p2((E 0 R)y ) dpa (1),

We also have that (111 @pu2)(E1NR) < (p1®p2)(R) = pi(Ar)pua(Az) < +oo. Hence, continuity
of 1 ® pe from above implies that (1 ® p2)(E, N R) | (w1 @ pe)(E N R). Therefore,

(1 @ p2)(ENR) = [ p2((ENR)z,) dpn(x1).

Since all arguments hold for xo-sections as well, we get that E N R € N, and so E € Ng.
IfE, € Ngforallnand E, © E, then E,, "Rt EN R, and the result of (¢) implies that £ € Ng.
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Therefore, the collection Ay is a monotone class of subsets of X7 x Xo.

Now, let E1, ..., E,, € Ny be pairwise disjoint and £ = E; U - - - U E,,. Then the result of (b)
impliesthat ENR = (E1NR)U---U(E,,NR) € N, andso E € Ng. From (a), we have that V'
contains all measurable intervals, and so Mg contains all elements of the algebra A of Proposition
4.3. Therefore, Ny includes the monotone class generated by A, which, by Theorem 1.1, is the
same as the o-algebra generated by A, namely S; ® So.

Thus, ENR € N forall E € §; ® Sy and all measurable intervals R = Ay x Ag with 1 (A1) <
+oo and pg(Az) < +oo.

(e) Since p1 is o-finite, there are Ay ,, € Sy so that Ay, T X1 and p11 (A1) < +oo for every n.
Similarly, there are As ,, € Sy so that Ay, T X2 and pa(Asz ) < 400 for every n. Now, we form
the measurable intervals R,, = Aj, x Az ,.

We consider any E € §; ® Sy. From the result of (d), we have that E,, = F N R, € N for every
n. Since E,, T E, the result of (¢) implies £ € V. O

Theorem 4.6. Let (X1, S1, j11) and (X2, Sa, p2) be o-finite and let (X1 X X2, Syi@pus, 1 © p2)
be their product measure space.

If E € S, 0u, then B, € §2f0r pi-a.e. x1 € Xy and E*? € §1f0r po-a.e. xo € Xo.
Moreover, the 11-almost everywhere defined function x1 — fg(E,,) is S1-measurable, the jis-
almost everywhere defined function xo — i1 (E*?) is Sy-measurable, and

(11 @ p2)(E) = [y, M2(Ex,) dfin(z1) = [y, i (E™) diiz(22).

Proof. Let E € S, @u,. Since, by Theorems 4.4 and 4.5, (X1 X X2, S, @puss 1 ® p2) is the
completion of (X x X2, 81 ® Sa, p1 ® p2), there are A, M € S ® Sy so that (1 ® o) (M) =0
and £ = AU F forsome F' C M.
Now, we apply Theorem 4.7 to A and M.
We have that A,,, M,, € S for every 1 € X;. Moreover, the function z1 +— pa(M,,) is
S1-measurable, and

Jx, #2(Mzy) dpn (1) = (1 ® po) (M) = 0.

Hence, po(M,,) = 0 for py-a.e. 1 € X;. Since B, = A, U F,, and F,, C M,, for every
71 € X1, we have that B, € S; and 1i2(E,,) = po(As,) for pp-ae. x1 € Xj.

Also, since the function 21 — u2(A,, ) is S1-measurable, we have that the function 21 — fi2(Ey, )
is S;-measurable.

Finally, by Theorem 4.7 again, we have

(11 ® p2)(E) = (11 @ p2)(A) = [x, #2(As,) dua(21) = [y, 12(Ey,) dii(21).-

All these arguments hold for x2-sections as well. O

Example. Let us think about the difference between Theorems 4.7 and 4.8.

We have R” = RF x R!, where n = k + L.

We know that B, = B ® B, and let us consider any Borel set £/ in R”. Theorem 4.7 implies
that for every z € R' the section E, is a Borel set in R¥, that the everywhere defined function
z — my(E,) is Borel measurable, and that

mn(E) = [p mi(E2) dmy(z).

On the other hand, we cannot have the same result for Lebesgue sets, because £,, 2 L ® L;.
The relevant fact is that £,, = Sy, 0m, (1.. Ly, is the completion of £, ® £;). So let us consider
any Lebesgue set £ in R™. Theorem 4.8 implies that for m;-a.e. every z € R! the section E, is
a Lebesgue set in R”, that the m;-almost everywhere defined function z — my(E.) is Lebesgue
measurable, and that

mp(F) = le mg(E,) dmy(2).
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We recall that, if f : X1 x Xo — Y and 21 € X, x5 € Xo, then the corresponding sections
for 1 Xo =Y, f¥2: X1 = Y of f are defined by

le (332) = f(CL‘l,I‘Q) for o € XQ, fiz(l,l) = f($1,$2) for T € X3.

Theorem 4.7. Let (X1, S1, p1) and (X2, So, o) be o-finite and let (X1 x X2, 81 ® So, p11 @ ji2)
be their restricted product measure space.

(i) (Tonelli’s Theorem) I/ f : X; x Xo — [0,+00] is S; ® So-measurable, then f;, is So-
measurable for every x1 € X1 and f*2? is S1-measurable for every xo € Xo. Moreover, the
function x1 — fX2 fay (x2) duo(x2) is S1-measurable, the function xo le f2(x1) dpa (z1) is
So-measurable, and

Jx f(@) d(p @ p2)( le (fX2 (1, 22) dpa (.’L'Q)) dpy(z1)
= sz (le (z1,22) din (961)) dpo(x2).

(ii) (Fubini’s Theorem) If f : X x Xo — R or C is S} ® Sy-measurable and j11 @ pio-integrable,
then fy, is So-measurable for every x1 € X1 and pg-integrable for py-a.e. x1 € X1, and f*?is S;-
measurable for every xo € Xo and pi-integrable for po-a.e. xo € Xo. Moreover, the pi-almost
everywhere defined function z1 — | Xo faq (x2) duo(x2) is Si-measurable and i -integrable, the
po-almost everywhere defined function xo — [ X, f*2(x1) dpq (x1) is Sa-measurable and jio-
integrable, and the equalities in (i) are true.

Proof. We observe that in both (i) and (ii) the measurability of the sections f,, and f*? is an
immediate application of Theorem 4.2 and does not need the assumption about o-finiteness.

(i) We consider the characteristic function g of an £ € §1 ® So.
Theorem 4.7 implies that (xg)z; = XE,, 1 S2-measurable for every 21 € X and the function

21 [, (XB)z: (22) dpz(22) = [y, XE,, (22) dua(22) = p2(Ey,)

is S1-measurable. Finally, we have

Jx xE(@) d(pn @ p2) (@) = (11 @ p2)(E) = [y, p2(Eq) dpa (1)
= Jx, (fx2 (XE)z, (22) dpa(x2)) dp (1)
=[x, (Jx, xe(@1,22) dug(x2)) dpa (1)
The argument for x2-sections is the same.
Now, we consider a §; ® Sy-measurable simple ¢ : X1 x X9 — [0, +00) with standard represen-
tation ¢ = > 0" kX g, Then ¢zy = D71 Kj(XE; )z, for every z1 € Xi. By the results in the

case of a single characteristic function, we get that ¢, is Sy-measurable for every z; € X; and
that the function

21 [y, bai (2) dpa(z2) = 37701 K [, (XEB; e, (22) dpa(22)

is S1-measurable. Also,

Jx (@) d(p1 @ po) () = 3270 K [ X, (@) d(pn © p2)(2)
= > ki [, ([x, X8 (21, 22) dpa(22)) dpn (1)
= le (fX2 1, %9 d,ug(xg)) dpq (x1).
The argument for x»-sections is the same.
Finally, we consider a S ® Sp-measurable f : X7 x X9 — [0, +0c]. Then there are S; ® So-

measurable simple ¢,, : X1 x X9 — [0,400] so that ¢, T f on X; X Xo. From our results
so far, every ¢,, satisfies the conclusions of (i), and, since (¢y,)z, T fz, for every z; € X; and
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(¢pn)™2 1 f*2 for every xo € Xo, an application of the Monotone Convergence Theorem implies
that f also satisfies the conclusions of (i).

(i) If f : X7 x X — [0, 4+00] is S; ® Sy-measurable and p11 ® po-integrable, then (i) implies

Ix, (x, fl@1,m0) dus(a2)) dpn(x1) = [, ([x, f $1,$2)du1(3€1)) dpa(z2)
= [x f(x)d( @ p2)(2) < +o0.

Hence, [y fu (22) dpa(x2) < 400 for pi-ae. 1 € X1 and le f*2(x1) dpy(z1) < o0 for
po-a.e. xo € Xo. Therefore, the conclusion of the theorem is true for non-negative functions.
If f : X1 x X5 — Ris S; ® So-measurable and 111 @ po-integrable, the same is true for f ™ and f~
and, by the result for non-negative functions, the conclusion is true for these two functions. Since
for = (fN)zy — (f 7 )ay forevery zp € Xy and f%2 = (f1)%2 — (f)*2 for every 3 € Xo, the
conclusion is, by linearity, true also for extended real valued functions.

If f: X1 x Xo — CisS; ® Se-measurable and 1 ® po-integrable, the same is true for Re(f)
and Im(f). By the result for real valued functions, the conclusion is true for Re(f) and Im(f).
Since fy, = Re(f)z, +¢Im(f),, for every 21 € X; and f*2 = Re(f)* + iIm(f)** for every
x2 € Xo, the conclusion is, by linearity, true also for complex valued functions.

Finally, let f : X1 x X5 — C be S; ® Sy-measurable and ;11 ® po-integrable. Then the set
E = f71({c0}) € 81 ® Sy has (1 ® p2)(E) = 0. Theorem 4.7 implies that pa(Ey,) = 0 for
pi-a.e. x1 € Xy and pg (E*2) = 0 for pg-a.e. z2 € Xo.

If we define F' = fxpe, then F' : X; X Xo — Cis &} ® Sa-measurable and p1 ® po-integrable,
and so, by the result for complex valued functions, the conclusion of the theorem holds for F'.
Since F' = f holds (u; ® pg)-a.e. on X7 x Xo, we have

le wx, F@) d(pn @ po)(z) = fxlxXQ f(@) d(p ® p2) ().

We, also, have that F,, = f,, on X2 \ E,,, and so F,;, = f;, holds p9-a.e. on Xo for u;-a.e.
r1 € Xi. Therefore, f,, is uo-integrable and fX2 fz, (2) dpo(ze) = fX2 Fy, (z2) dus () for
pi-a.e. 1 € Xp. This implies

i U, F@rswe) dpa(ws)) dpn (1) = [x, ([x, Fw1,22) dpz(ws)) dpa (1)

and, equating the corresponding integrals of F', we get

Jx f(@)d(pn @ p2)(2) = [, (fX2 (21, 2) dpo(x2)) dp (21).
The argument is the same for x2-sections. ]

Theorem 4.8. Let (X1, S1, p11) and (X2, Sa, p2) be o-finite and let (X1 X Xo, Syy@pus, 1 © p2)
be their product measure space.

(i) (Tonelli’s Theorem) If f : X1 X Xo — [0,+00] is Sy, @u,-measurable, then fy, is Sa-
measurable for y-a.e. 1 € X and {2 is S;-measurable for pa-a.e. xo € Xo. Moreover,
the py-almost everywhere defined function r1 — sz fur (22) dfiz(x2) is Sy-measurable, the jia-
almost everywhere defined function xo — | x, [ (@1) dpa(zq) is Sy-measurable, and

Jxtixx, F@) d(pn @ p2)(x) = [y, ([x, (21, 22) dia(x2)) diin ()
= Jx, (Jx, f(z1,22) dpi(z1)) dfiz(@2).

(ii) (Fubini’s Theorem) If f : X1 x X5 — R or C is S, g u,-measurable and j11 ® po-integrable,
then f., is So-measurable and Tiz-integrable for yi-a.e. x1 € X1, and f*2 is S;-measurable
and p-integrable for ug-a.e. xo € Xa. Moreover, the uy-almost everywhere defined function
x> [ X, fo1 (22) dfiz(22) is S1-measurable and Ji1-integrable, the ip-almost everywhere defined
Sunction xy — | x, [ (@) dpi(zq) is Sy-measurable and Tiz-integrable, and the equalities in (i)
are true.

134



Proof. The proof follows the same line as the proof of Theorem 4.9, starting with the characteristic
function x g of a set & € S, @, and using, for this case, Theorem 4.8 instead of Theorem 4.7.
The rest of the proof is the same, with only minor modifications, which are left to the reader as an
exercise. O

Example. Let us think about the difference between Theorems 4.9 and 4.10, based on the equality
R” = RF x R!, where n = k + [, as we did for the difference between Theorems 4.7 and 4.8.

We know that 3,, = B, ® B;, and let us consider any Borel measurable f : R” — C. Theorem 4.9
implies that the section f, : R¥ — C is Borel measurable for every z € R! and Lebesgue integrable
for my-a.e. z € R/, that the m;-almost everywhere defined function z — Jar f2(y) dmy(y) is
Borel measurable and Lebesgue integrable, and that

Jan F(@) dman(x) = [o ( Jgr £y, 2) dmi(y)) dm(z).

On the other hand, we cannot have the same result for Lebesgue measurable f : R® — C. Since
Ly, = Sm,em, (e. Ly is the completion of £, ® L;), Theorem 4.10 implies that the section
f. : RE — C is Lebesgue measurable and Lebesgue integrable for m;-a.e. z € R, that the my-
almost everywhere defined function z +— ka f=(y) dmy(y) is Lebesgue measurable and Lebesgue
integrable, and that

Jon 1@) dmn(@) = Jou (Jen Sy, 2) dma(y)) dmy(2).

The power of the Theorems of Tonelli and of Fubini lies in the resulting successive integration
formula for the calculation of integrals over product spaces and in the interchange of successive
integrations. The function f to which we may want to apply Fubini’s Theorem must be S, g, -
measurable and p; ® pe-integrable. The Theorem of Tonelli is applied to non-negative functions
f which must be S, ,,,-measurable. Thus, the assumptions of the Theorem of Tonelli are, except
for the sign, weaker than the assumptions of the Theorem of Fubini.

The strategy, in order to calculate the integral of f over the product space by means of suc-
cessive integrations or in order to interchange successive integrations, consists of three steps. The
first is to prove that f is S,,, ¢, -measurable. The second step is to apply Tonelli’s Theorem to | f|
to get

Jxiexo 1F @) d(ua @ p2) (@) = [, ([x, [f (21, 22)| diz(22)) dfi (1)
=[x, (Jx, |f (@1, 22)| dir(a1)) diz(x2).
We need to estimate one of the two successive integrals, to see if [ xixx, (@) d(pn ® po)(z) is

finite. If this is true, i.e. if f is u1 ® uo-integrable, then we take the third step: we apply Fubini’s
Theorem to find the desired

= fX2 (fX1 (21,22 dm(xl)) dfiz(x2)
by calculating one of the two successive integrals.

Of the three steps the first, namely proving the S, ¢ ,.,-measurability of f, is more subtle and
sometimes difficult to do.

Exercises.

4.3.1. Consider the measure spaces (R, B1,m1) and (R, P(R), ), where { is the counting measure.
IfE = {(xl,xg) |0 < x1 = z9 < 1}, prove that all numbers (m; ® §)(F fR 2 ) dmi(zy)
and [ my(Ey,) di(zz) are different.

4.3.2. Consider amyn = Lifm =n, an, = —11fm = n+1and ay,, = 0 in any other case.
Then > "2 ( 2001 Gm, n) + :f:ol ( chi G n) Explain, through the Theorem of Fubini.
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4.3.3. Suppose that (X, S, 1) is a measure space and f : X — [0, +00] is S-measurable. Consider
Ay ={(z,y) e X xR|0<y < f(z)} and Gy = {(x,y) € X x R|y = f(x)} and prove that
both Ay and Gy are S ® Bi-measurable. If, moreover, y is o-finite, prove that (i ® mq)(Ayf) =
fX fdpand (n®mq)(Gy) = 0. A special case appears in exercise 3.2.1.

4.3.4.Let (X, S, 1) be a o-finite measure space and f : X — [0, +o0] be S-measurable. Calcu-
lating the measure p ® pg of the set Ay = {(x,y) € X x R|0 <y < f(z)}, prove Proposition
3.14.

4.3.5. Consider measure spaces (X1,S1, p1) and (Xo, Sa, p2), a Sp-measurable f; : X3 — C
and a Sp-measurable fo : Xs — C. Consider the function f : X; x Xo — C defined by

f(a1,22) = fi(z1) fa(w2).
Prove that f is S1 ® Sy-measurable.
If f} is integrable with respect to 111 and f5 is integrable with respect to 9, prove that f is integrable

with respect to y1 ® po and that [ fd(u ®@ p2) = [ frdu [y, f2dpo.

4.3.6. From [ S0 4y = [ (f0+oo e~*! dt) sinz dz, prove that [, toosing gy 7. (See also
exercises 3.2.2 and 3.2.18.)

4.3.7. Let f, g : R — R or C be £,,-measurable.

(i) Prove that H : R" x R™ — R or C defined by H(x,y) = f(x — y)g(y) is L2,-measurable.
Now, let f and g be integrable with respect to m,.

(ii) Prove that H is integrable with respect to may, and [po, [H| dmaon < [pn |f| dmn [ga |9] dim.
(iii) Prove that for my,-a.e. © € R" the function f(z — -) g( ) is integrable with respect to my,.
The a.e. defined function f x g : R™ — R or C by (f * = Jon f@ = y)g(y) dmy(y) is
called the convolution of f and g.

(iv) Prove that f « g is integrable with respect to my,, that [, (f*g) dmy = [pn [ dmy [ g dmy,
and [p, |f * gldmp < [u [fldmay [ 9] dmy.

(v) Prove that, for every f, g, h, f1, fo which are Lebesgue integrable, we have m,-a.e. on R” that
frg=gxf,(frg)xh=[x(gxh), Af)xg=A(f+g)and (fr+ fo) xg=fixg+ faxg.

(vi) Prove that m = fﬁ, where fis the Fourier transform of f (exercise 3.2.13).

4.3.8. Let K be a set in [0, 1] of the type considered in exercise 1.4.14 with m;(K) > 0. Prove
that {(z,y) € [0,1] x [0,1]|z —y € K} is a compact subset of R? with positive ms-measure,
which does not contain any measurable interval of positive mo-measure.

4.3.9. Let  and v be two locally finite Borel measures on R”, which are translation invariant.
Namely: (A + x) = pu(A) and v(A + ) = v(A) for every x € R™ and every A € B,,.
Working with [, pn XA(2)xB(z + y) d(p ® v)(2,y), prove that either n = Av or v = Ay for
some A € [0, +00).

Conclude that the only translation invariant locally finite Borel measure on R™ which has value 1
at the unit cube [0, 1]" is the Lebesgue measure 1m,,.

4.3.10. Let E C [0, 1] x [0, 1] have the property that every horizontal section £, is countable and
every vertical section F,, has countable complementary set [0, 1]\ E,. Prove that E is not Lebesgue
measurable.

4.3.11. Let (X, Sx, 1) be a measure space and (Y, Sy') be a measurable space. Suppose that for
every z € X there is a measure v, on (Y, Sy) so that for every B € Sy the function z — v, (B)
i1s Sx-measurable.

We define v(B) = [ vo(B) du(z) for every B € Sy.

(i) Prove that v is a measure on (Y, Sy ).

(i) If g : Y — [0, +00] is Sy-measurable and if f(z) = [, g dv, for every z € X, prove that f
is Sx-measurable and [ fdu = [, gdv.
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4.3.12. If I, I, are two sets of indices with their counting measures, prove that the product measure
on I; X Iy is its counting measure. Applying the Theorems of Tonelli and Fubini, derive results

about the validity of Zi1€[1,i26]2 Ciio = Zz‘leh (ZiQGIQ Ciryin) = Zigelg (Zz‘leh Ciyin)-

4.3.13. Consider the interval R = (a,b] x (a, b, and partition it into Ay = {(¢t,s) € R|t < s}

and Ay = {(£,5) € R[s < t}. Writing (ug ® pr)(R) = (ke ® pr)(A1) + (ke © pr)(A2),
prove Proposition 3.11.

4.3.14. (i) Prove Theorem 4.8 replacing the o-finiteness of (X1, S1, 1) and (X2, Sa, 112) with the
o-finiteness of £ € S, op,-

(ii) In Theorem 4.10, prove Tonelli’s Theorem replacing the o-finiteness of (X1, Sy, p1) and of
(X2, Sy, ii2) with the assumption that the set f~1((0, +00]) has o-finite (11 ® u2)-measure.
Also, prove Fubini’s Theorem omitting the o-finiteness of (X1, S, p1) and of (Xa, Sa, p2).

4.4 Surface measure on S" 1,

Forevery z = (z1,...,2,) € R} =R"™\ {0} we write

2z S”_l,

lll

T':”l'H:(l'%—i-+.’L’%)1/2€R+:(0,+OO), Y

where S"~1 = {y € R" | ||ly|| = 1} is the unit sphere of R™.
The mapping ® : R? — Rt x S*~1, defined by

(@) = (ry) = (el Z).
is one-to-one and onto, and its inverse ® ! : Rt x §"~! — R” is given by
¢ (ry) =z =1y.

The elements r = ||z|| and y = H%II are called the polar coordinates of = and the mappings

® and ®~! determine an identification of R with the cartesian product RT x S"~!, where every
point x # 0 is identified with the pair (r, y) of its polar coordinates.

As usual, we consider S”~! as a metric subspace of R”. This means that the distance between
points 3/, 3" € S"~! is their Euclidean distance ||y’ — || considered as points of the larger
space R™. The open ball in S”~! with center y € S"~! and radius § > 0 is the spherical cap
S(y;6) = {y' € S |||y’ — y|| < &}, which is the intersection with S*~! of the Euclidean ball
B(y;0) = {x € R*|||x — y|| < }. In fact, the intersection with S*~! of an arbitrary Euclidean
open ball in R" is, if non-empty, a spherical cap of S* 1.

It is easy to see that there is a countable collection of spherical caps with the property that
every open set in S” ! is a union (countable, necessarily) of spherical caps from this collection.
Indeed, such is the collection of the (non-empty) intersections with S"~! of all open balls in R™
with rational centers (i.e. points in R™ with all their coordinates being rational) and rational radii.

If we equip R x S*~! with the product metric d((r,y), (v',y')) = max{|r — 7’|, |y — ¥'||},
then ® : R?” — Rt x S» 1and ! : Rt x S"~! — R” are both continuous.

Proposition 4.7 contains information about the Borel structures of R”? and of R*, S"~! and
their product Rt x S"~1,

Proposition 4.7. (i) Bp+ysn-1 = Br+ ® Bgn-1.
(ii) ®(E) is a Borel set in Rt x S"~! for every Borel set E in R?, and ®~'(F) is a Borel set in
R” for every Borel set I in RT x S*~1,

(iii) MA = {ry|r € M,y € A} is a Borel set in R? for every Borel set M in R and every Borel
set Ain S"L
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Proof. (i) A corollary of Proposition 4.2.

(ii) Since @ is continuous, it is (Bgrr, B+ xsn-1)-measurable. Hence, ®~!(F) is a Borel set in
R” for every Borel set F' in RT x S*~!. Similarly, the second statement is a consequence of the
continuity of @1,

(iii) Let M be a Borel setin R and A be a Borel setin S”~!. Then M x A is a Borel set (measurable
interval) in R* x S"~!. From (ii) we have that M A = ®~!(M x A) is a Borel set in R”. O

A set I' C R” is called a positive cone if ro € T for every r € RT and every z € T
or, equivalently, if " is closed under multiplication by positive numbers or, equivalently, if " is
invariant under dilations. If B C R?, then the set R™B = {rb|r € R" b € B} is, obviously, a
positive cone and it is called the positive cone determined by B. It is easy to see that, if I' is a
positive cone and A = I' N1 S" 1, then I is the positive cone determined by A, and, conversely, if
A C S" ! and T is the positive cone determined by A, then I' N S”~! = A. In other words there
is a one-to-one correspondence between subsets of S”~! and positive cones of R".

The next result expresses a simple characterization of open and of Borel subsets of S”~! in
terms of the corresponding positive cones.

Proposition 4.8. Let A C S 1.

(i) A is open in S*~! if and only if the cone R A is open in R™.

(ii) A is a Borel set in S"~! if and only if R* A is a Borel set in R” if and only if (0, 1] A is a Borel
set in RT.

Proof. (i) Let A be open in S*~!. Then Rt x A is open in RT x S"~!. Now, the continuity of ®
implies that RT A = ®~1(R* x A) is an open set in R”.

Conversely, if Rt A is open in R”, then A = (RTA) N'S"~ ! is open in S" L.

(i) If A is a Borel set in S®~!, Proposition 4.5 implies that R™ A and (0, 1] A are Borel sets in R”.
Conversely, if either RT A is a Borel set in R” or (0, 1] A is a Borel set in R?, then A = (RTA) N
S*1 = ((0,1]A) N S" ! is a Borel set in S*~ L. O

Proposition 4.9. If we define
on-1(A) = nmy((0,1]A)

for every A € Bgn-1, then 0,1 is a measure on (S"~1, Bgn-1).

Proof. By Proposition 4.5 (or 4.6), for every Borel set A in S"~! the set (0, 1) A is a Borel set in
R?, and so 0,,—1(A) is well defined.

We have 0,1 (0) = nm, ((0,1]0) = nm,(0) = 0.

Moreover, if Ay, Ag, ... € Bgn—1 are pairwise disjoint, then the sets (0, 1] A1, (0, 1] Ag, . .. are also
pairwise disjoint. Hence,

on1 (U] Aj) = nmn ((0, 11U 4;) = nma (U;Z7((0,1]4)))
_Z+1”mn(( 1]A ) Z+10n 1(A )
and so 0,1 is a measure on (S*!, Bgn-1). O

Definition. 7he measure o,,_1 on (Snfl, Bsn—1), which is defined in Proposition 4.7, is called the
(n — 1)-dimensional surface measure on S" 1.

Lemma 4.1. If we define
= [yr"tdr
for every N € By, then p is a measure on (R, Br+).

Proof. A simple consequence of Theorem 3.9. O
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Lemma 4.2. If we define my,(F) = m,(®~(F)) for every Borel set F in R™ x S"~1, then my, is
a measure on the measurable space (RT x S"~1 Bpi gn-1).

Proof. ®~'(F) is a Borel set in R? for every Borel set Fin RT x S"~!, and so m,,(F) is well

defined.

Clearly, 7, (0) = mn (27(0)) = mn(0) = 0.

If F1, Fy, ... are pairwise disjoint, then ®~1(F}), ®~1(F), . .. are also pairwise disjoint, and
i (U;2Y Fy) = mn@‘l( f_"i’ Fy)) = ma (U2 @71 (F))) = 25 mn (@7 (F)))

Jr —~
and so 1, is a measure on (RT x S"~1, Bpi  gn-1). O

Lemma 4.3. On the measurable space (R x S*™! Bpiygn-1) = (RT x S"71 Bt @ Bgn-1)
the measures my, and p ® o,_1 are identical.

Proof. The equality Br+ygn—1 = B+ ® Bgn—1 is in Proposition 4.5.

If A is a Borel set in S”~L, then the sets (0, b]A and (0, 1] A are Borel sets in R? and the first is a
dilate of the second by the factor b > 0. Hence, m,,((0,b]A4) = b"m,((0,1]A) for every b > 0,
and so

ma((a,b]A) = mx (((0,5]4)\ ((0,a]A)) = mn((0,]4) —mn((0,a]A) = (0" —a")man((0,1]A)

for every a,b with 0 < a < b < 400.
Therefore, if A is a Borel set in S”~!, then

min((a,b] x A) = m (@7 ((a, 8] x A)) = mn((a,b]A) = (" — a")mx((0,1]A)
= U 01 (A) = [l " dr on-1(A) = p((a,b]) op-1(A)
= (p®@on_1) ((a,b] x A).

Now, we define
H(N) = (N x A),  v(N) = (p& 0_1)(N x A)

for every Borel set N in R™. It is easy to see that ji, v are Borel measures on R, and, by what we
just proved, they satisfy 1((a, b]) = v((a, b]) for every interval in R*. This, obviously, extends to
all finite unions of pairwise disjoint open-closed subintervals of R™. Now, Theorem 1.7 implies
that the two measures are equal on the o-algebra generated by the collection of all these sets, which
is equal to Bg+. Therefore, m, (N x A) = (p ® 0,,—1)(N x A) for every Borel set N in R* and
every Borel set A in S" 1.

Finally, Theorem 4.4 implies the equality of the two measures, since p and 0,1 are o-finite. [

If E C R?, we consider the set ®(E) C R x S*~1. We also consider the r-sections
®(E), ={y €S" | (ry) € 2(B)} = {y € 8" ' [ry € E}
and the y-sections
O(E)Y ={reR"|(r,y) e ®(E)} ={r e R"|ry € E}
of ®(E). We extend the notation as follows.
Definition. [f E C R", we define, for every r € RT and every y € S*~1,
E.={yeS"!|rycE}, EY={reR"|ryecE}

and call them the r-sections and the y-sections of E, respectively.
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Observe that £ may contain 0, but this plays no role: the sections of E are the same as the
corresponding sections of £ \ {0}. Thus, the sections of E are, by definition, exactly the same
as the sections of ®(E \ {0}). This is justified by the informal identification of E \ {0} with

(£ {0}).

Theorem 4.9. Let E be any Borel set in R". Then E, is a Borel set in S*! for every r € RT
and EY is a Borel set in RT for every y € S"~1. Moreover, the function r v c,_1(E,) is By+-
measurable and the function y — | Ev "~ dr is Bgn—1-measurable. Also,

= [ on 1 (B dr = [guoy ([ 7" dr) don—1(y).

Proof. Theset E'\ {0} is a Borel set in R?. Proposition 4.5 implies that ®(E \ {0}) is a Borel set
in Rt x S"~1, and Lemmas 4.2 and 4.3 imply

mn(E) = mn(E\{0}) = mn(®(E\{0})) = (p © on-1)(®(E\ {0})).
Also E, = ®(E \ {0}), and EY = ®(E \ {0})¥. The rest is a consequence of Theorem 4.7. [

We shall see a simple description of the completion of the measure space (S" !, Bgn-1,0,_1)
in terms of positive cones.

Definition. Let (S"~1,S,,_1,0,_1) be the completion of the measure space (S* 1, Bgn-1,0,_1).

Proposition 4.10. [f A C S™ L then
(i) A€ S,_1ifand only if RY A € L, if and only if (0,1]A € L,,
(ii) op—1(A) = nmn(((), I]A) forevery A€ S, 1.

Proof. (i) If A € S,,—1, there exist Aj, Ay € Bgn—1 with 0,,_1(A2) = 0 so that Ay C A and
A\ A; C A,. Proposition 4.5 implies that the positive cones Rt A; and RT A5 are Borel sets in
R" with Rt A; C RT A and (RTA) \ (RTA;) C RT A;. Lemmas 4.2 and 4.3 (or Theorem 4.11)

imply

mp(RT Az) = my(P(RT Ag)) = mp(RY x Ag) = (p@0y-1)(RT x Ag) = p(RT)oy—1(A2) = 0.
Hence, RTA € L,,.

Conversely, let Rt A € L£,. Then, there are Borel sets By, By C R"™ with m,(By) = 0, so

that By C RtA and (RTA) \ By C Bs,. For every r € R we have that (By), C A and
AN\ (B1)r C (B2)r. Theorem 4.11 implies that

ST 0na1((Ba), )"t dr = my(Bs) =0,

and so 0,_1((B2)r) = 0 for mj-a.e. r € (0,400). If we consider such an r, since (Bj), and
(B3), are Borel sets in S” !, we conclude that A € S,,_.

IfRTA € L,, then (0,1]4 = (RTA) NB,, € L,, where B,, is the closed unit ball of R” centered
at 0. Conversely, if (0, 1]4 € L, then RT A = [J; %5 k((0, 1]A) € L,,.

(ii) Let A € S,,—1. Then there are Ay, Ay € Bgn-1 with 0,,_1(A2) = 0 so that Ay C A and
A\ A; C Aj. Then the sets (0, 1]A; and (0, 1] A2 are Borel sets in R” with (0,1]A4; C (0,1]A
and (0,1]A\ (0,1]A; C (0,1]As. We conclude that

on—1(A) = op_1(A1) = nmy,((0,1]A1) = nm,((0,1]A4),
since my, ((0,1]A2) = fan 1(A2) = 0. O

The next result is an extension of Theorem 4.11 to Lebesgue sets.
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Theorem 4.10. Let E € L,,. Then E,. € S,,_1 for my-a.e. r € RY and EY € L1 for o,_1-a.e.
y € S"~L. Moreover, the m1-almost everywhere defined functionr — o,,_1(E,.) is L1-measurable
and the o, _1-almost everywhere defined function y — f Ev " Vdr is S,,_1-measurable. Also,

fo On— 1 ) ldr = fSn—l (ny pn-t d’l“) dan_l(y).

Proof. Since E € L,, there are Borel sets By, By in R™ with m,,(B2) = 0 so that By C F and
E\ By C Bs. Theorem 4.11 implies that, for every r € R, (By), and (Bs), are Borel sets in
S"~1 with (By), C E, and E,. \ (Bi), C (Ba),. From Theorem 4.11 again,

ST 0ue1((Ba),)r"dr = my(Bs) = 0,

and so 0,,_1((B2)) = 0 for mi-a.e. r € R*. Hence, E, € S;,—1 and 0,_1(E;) = 05,—1((B1))
for mi-a.e. r € RT.

Similarly, for every y € S"~!, (B;)Y and (Bs)¥ are Borel sets in RT with (B;)Y C EY and
EY\ (B1)Y C (By)Y. Also

fgn—l (f(BQ)U Tn_l d’r‘) dO'nfl(y) = mn(Bg) = 0,

and so f(B2)y r"~Ldr = 0foro,_1-a.e. y € S*"L. This implies that m;((B2)Y) = 0 for o,,_1-a.e.
y € S*~1, and so E¥ € £ and [, " tdr = f(Bl)y r"~Ldr for o,_i-a.e. y € S*L.
Finally,

m(E) = ma(B1) = o> on1(B1))r" Ve = [7 o1 (B,

mn(E) = my(B1) = [gu (f L dr) don—1(y) = Jonor ([ 7" 1 dr) dop—1(y)
from Theorem 4.11. O

The rest of this section consists of a series of theorems which describe the so-called method of
integration by polar coordinates.

Definition. Let f : R" — Z. For every r € Rt and every y € S"! we define the functions
fr: St = Zand fY:RY — Z by

fry) = 12(r) = f(ry).
fr is called the r-section of f and fY is called the y-section of f.
Theorem 4.13 treats integration by polar coordinates for Borel measurable functions.

Theorem 4.11. (i) If f : R" — [0, +o0] is Brn-measurable, then f, is Bsn—1-measurable for
every r € RY and fY is Bg+-measurable for every y € S"'. Moreover, the function v
Jsn—1 fr(y) don—1(y) is Bg+-measurable, and the function y f0+oo fY(r)r"—tdr is Bgn-1-
measurable. Also

Jn (@) drin (2 (fsn 1f y) don_1(y))r" =" dr
= fSTH ( 0 (ry)r”_ldr) don_1(y).

(i) If f : R™ — R or C is Brn-measurable and m.,-integrable, then f, is Bsn—1-measurable for
every r € RT and o,_1-integrable for mi-a.e. v € RY, and fY is Bg+-measurable for every
y € S" ! and my-integrable for o,,_1-a.e. y € S™=1. Moreover. the my-almost everywhere de-
fined function v — [,y fr(y) don_1(y) is Bg+-measurable and m,-integrable, the oy, _1-almost
everywhere defined function y — f0+oo fY(r)yr"—Ydr is Bsn-1-measurable and o,,_1-integrable,
and the equalities in (i) are true.
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Proof. (i) If f = xp, then the results are the same as the results of Theorem 4.11. Using the
linearity of the integrals, we can prove the results in the case of a simple function ¢ : R® —
[0, +oc]. Finally, applying the Monotone Convergence Theorem to an increasing sequence of
simple functions, we can prove the results in the general case f : R" — [0, 4+00].

(ii) We use the results of (i) to pass to the case of functions f : R" — R, by writing them as
f = fT — f~. We next treat the case of f : R"” — C, by writing f = Re(f) + i Im(f), after we
exclude, in the usual manner, the set f~*({co}). O

Theorem 4.14 treats integration by polar coordinates for Lebesgue measurable functions.

Theorem 4.12. (i) If f : R"™ — [0, +00] is L,,-measurable, then f, is S,,—1-measurable for mi-a.e.
r € RY and fY is L1-measurable for o, _1-a.e. y € S*L. Moreover, the mi-almost everywhere
defined function r fS”71 fr(y) don—1(y) is Li-measurable, and the o,_1-almost everywhere

defined function y — f0+°o fY(r)r"=tdris S,_1-measurable, and

Jon [ (@) dma(2) = (fsn 1f y) doy—1(y))r" ' dr
= fSn,l ( 0 (ry)r”*1 dr) don—1(y).

(i) If f : R® — R or C is L,-measurable and m,-integrable, then f, is S,_1-measurable and

on_1-integrable for my-a.e. v € R, and fY is L1-measurable and m1-integrable for o,,_1-a.e.

y € S"L. Moreover, the mi-almost everywhere defined function r fS”71 fr(y) don—1(y)

is Li-measurable and m;-integrable, and the o,_1-almost everywhere defined function y +—
* fY(r)yr"Ydr is S,,_1-measurable and o,,_1-integrable, and the equalities in (i) are true.

Proof- We use Theorem 4.12 in the way that we used Theorem 4.11 to prove Theorem 4.13. [

Definition. 4 set E C R" is called radial if x € E implies that ' € E for all 2’ with ||2'|| = ||z||.
A function f : R™ — Z is called radial if f(x) = f(2') for every x, 2’ with ||z|| = |||

It is obvious that E is radial if and only if x g is radial. _
If the set 2 C R™ is radial, we define the radial projection £ of E by

E={reR"|z e E when ||z =r} CR".

Also, if f : R™ — Z is radial, we define the radial projection f: R* — Z of f by

Jr) = f(@) forall € R with |l2]| = r.

Itis obvious that a radial set or a radial function is uniquely determined from its radial projection
(except from the fact that the radial set may or may not contain the point 0 and that the value of
the function at 0 is not determined by its radial projection).

Proposition 4.11. (i) The radial set E C R" is in Brn or in Ly, if and only if its radial projection
is in Bg+ or, respectively, in L1. In any case we have

mn(E) = 01 (S"71) [zrtdr.

(ii) If (Z,Sz) is a measurable space, then the radial f : R" — Z is (Brn,Sz)-measurable or
(L., Sz)-measurable if and only if its radial projection is (Bg+, Sz )-measurable or, respectively,
(L1,Sz)-measurable.

(ii)) If f : R™ — [0, +o0] is By, or L,,-measurable or if f : R" — R or C is By, or L,,-measurable
and my,-integrable, then

o £ (@) dma() = ona(8771) J Fryr =t
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Proof. (i)If E € Brn or E € L, is radial, then for every y € S"~! we have EY = E, and so the
result is a consequence of Theorems 4.11 and 4.12.

For the converse we consider the collection of all subsets of RT which are radial projections of
radial Borel sets in R™. Then we prove easily that this collection is a o-algebra which contains all
open subsets of R™, and so it contains all Borel sets in RT.

Now, if F is radial and E ¢ L1, then there are Borel sets M7, My in R with ml(Mg) = 0so
that M; C Eand E \ My C M>s. We consider the radial sets F1, E5 C R™ so that F; = M and
E2 M. By the result of the previous paragraph, F1, F> are Borel sets. Then we have £ C E
and F' \ E; C Es. Since

0= mu(B2) = fins (g v dr) donoy = 001 (8™1) [ v,

we have that fEZ r"~Ldr =0, and so ml(Evg) = 0. This implies that £ € L;.
(i1) A consequence of the definition of measurability and the result of part (i).
(iii) A consequence of Theorems 4.13 and 4.14. O

Exercises.

4.4.1. Consider, for any p > 0, the function f : R"™ — [0, +o0], defined by f(z) = H;”p.
(i) Prove that f is not Lebesgue integrable over R"™.
(ii) For any ¢ > 0, prove that f is integrable over {x € R™ | ||z|| > ¢} if and only if p > 1.

(iii) For any R < +o0, prove that f is integrable over {x € R" | ||z|| < R} ifand only if p < 1.

4.4.2. The volume of the unit ball in R™ and the surface measure of S"~1.

) Ifv, = mn(]BB ) is the Lebesgue measure of the closed unit ball of R™ centered at 0, prove that
Up = 20y 1f0 1—t2) tdt.

(i1) Set J,, = fo (1— t2) T dt for n > 0 and prove the inductive formula J,, = ”T_l Jn_9,n > 2.
(ii1) Use properties of the gamma-function (see exercise 3.2.15) to prove that

an/2

n— /2
reymy (8T =7

mn(Br) = Nn/2)

4.4.3. The integral of Gauss and the measures of B,, and of S"~1.

HwH

Define I, = [z € dmy,(z).
(1) Prove that I,, = I{* for every n € N.
(i1) Using integration by polar coordinates, prove that /o = 27 and, hence,

Jon e dimp(2) = (27)3

n 7‘2
(iii) Using integration by polar coordinates, prove that (27)2 = o,_1(S" 1) f0+oo e zr"Ldr
oxn/2 an/2

and, hence, an,l(S”_l) = Tn/2) and m,(B,) = T(n/2)+1)"
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Chapter 5

Convergence of functions.

5.1 a.e. convergence and uniform a.e. convergence.

The two types of convergence of sequences of functions which are usually studied in elementary
courses are the pointwise convergence and the uniform convergence. We recall briefly their defi-
nitions and simple properties.

Let A be an arbitrary set and f, f, : A — R or C for every n € N. We say that f, — f
pointwise on A if f,,(x) — f(x) for every x € A. In case f(x) is finite, this means that for every
€ > 0 there is an ny = ng(€, x) so that | f,,(z) — f(x)| < e for every n > ny.

Let A be an arbitrary set and f, f, : A — C for every n € N. We say that f,, — f uniformly
on A if for every € > 0 there is an ng = ng(e€) so that | f,(z) — f(z)| < e for every z € A and
every n > ng or, equivalently, sup,c 4 | fn(x) — f(x)] < € for every n > ng. In other words,
fn — f uniformly on A if and only if sup,c 4 | fn(x) — f(x)| = 0 as n — +o0.

It is obvious that uniform convergence on A implies pointwise convergence on A. The converse
is not true in general.

Example. Let f,, = X(0,2) ° (0,1) — R for every n. Then f, — 0 pointwise on (0, 1) but not
uniformly on (0, 1).

Let us describe some easy properties.

The pointwise limit (if it exists) of a sequence of functions is unique. The same is true for the
uniform limit.

Let f,9, fn,gn : A — Cforalln € N. If f, — f and g, — ¢ pointwise on A, then
fn+9gn — f+gand frg, — fg pointwise on A. The same is true for uniform convergence,
provided that in the case of the product the two sequences are uniformly bounded: this means that
there is an M < +o0 so that | f,,(x)| < M and |g,(x)| < M for every x € A and every n € N.

Let f,, : A — C for every n € N. We say that (f,,) is Cauchy uniformly on A if for every
€ > O there is an ny = ng(e) so that | f,,(z) — fi(z)| < e forevery € A and every n, m > ng or,
equivalently, sup,c 4 | fn(z) — f(x)| < € for every n,m > ng. In other words, (f,,) is Cauchy
uniformly on A if and only if sup,c 4 | fn(z) — fm(2)| = 0asn,m — +o0.

If (f,) is Cauchy uniformly on A then there is an f : A — C so that f,, — f uniformly on
A. Indeed, we have that for every e > 0 there is an ng = ng(e) so that | f,(x) — f(z)] < € for
every € A and every n,m > ng. This implies that for every x € A the sequence (f,(x)) is a
Cauchy sequence of complex numbers, and so it converges to some complex number. Let us define
f:A— Cby f(x) = limy,— o0 fn(x). Now, if in the above inequality | f,,(z) — fi(z)] < € we
let m — +oo, we get that | f,,(z) — f(z)| < € for every z € A and every n > ng. Therefore,
fn — f uniformly on A.

It is almost straightforward to extend these two notions of convergence to measure spaces.

Let (X, S, ) be an arbitrary measure space.
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We have already seen the notion of a.e. convergence. If f, f,, : X — R or C forevery n € N,
we say that f,, — f (pointwise) a.e. on A € Sifthereisaset B € S, B C A, sothat u(A\B) =0
and f,, — f pointwise on B.

If f, f, : X — RorC forevery n € N, we say that f,, — f uniformly a.e. on A € S if there
isaset B € S, B C A, sothat u(A\ B) = 0, f and f,, are finite on B for all n and f,, — f
uniformly on B.

It is clear that uniform a.e. convergence on A implies a.e. convergence on A. The converse is
not true in general and the counter-example is the same as above.

If f, — f'ae. onAand f, — f”ae. onA,then f/ = f” ae. on A. Indeed, there are
B,C € S, B,C C Asothat uy(A\ B) = u(A\ C) = 0 and f,, — [’ pointwise on B and
fn — f" pointwise on C. Therefore, f,, — f’ and f,, — f” pointwise on BN C, and so f' = f”
on BN C. Since u(A\ (BN C)) = 0, we get that f' = f” a.e. on A. This is a common
feature of almost any notion of convergence in the framework of measure spaces: the limits may
be considered unique only if we agree to identify functions which are equal a.e. on A. This can be
made precise by using the tool of equivalence classes in an appropriate manner but we postpone
this discussion for later.

We can similarly prove that if f,, — f’ uniformly a.e. on A and f,, — f” uniformly a.e. on
A, then f' = f" a.e. on A.

Moreover, if f, g, fn,gn : A — C for every n and f,, — f a.e. on A and g, — ¢ a.e. on
A, then f, + g, — f + gae. on Aand f,g, — fgae. on A. The same is true for uniform
a.e. convergence, provided that in the case of the product the two sequences are uniformly a.e.
bounded: namely, that there is an M < o0 so that |f,| < M a.e. on A and |g,| < M a.e. on A
for every n.

Exercises.

Except if specified otherwise, all exercises refer to a measure space (X, S, i), all sets belong to S
and all functions are S-measurable.

5.1.1.Let f, f,, : A— C forevery n € N.

(i) If ¢ : C — C is continuous and f,, — f a.e. on A, prove that ¢ o f,, — ¢ o f a.e. on A.

(i) If ¢ : C — C is uniformly continuous and f,, — f uniformly a.e. on A, prove that ¢ o f,, —
¢ o f uniformly a.e. on A.

5.1.2.If f, — fae on Aand |f,| < ga.e. on A forevery n € N, prove that | f| < g a.e. on A.

5.13.1f E, C Aforeveryn € Nand xg, — f ae. on A, prove that there exists £ C A so that
f = xg a.e. on A. What is the relation between the three sets: I, lim F,,, lim E,, ? (See exercise
1.1.1)

5.1.4.Let u(A) < +ocand f,, : A — R or C for every n € N and every f, be finite a.e. on A.

(i) Prove that there exists a g : A — [0, +00) and a sequence (r,,) in R so that | f,| < r,g a.e.
on A for every n.

Hint. Forevery n € Nthereisak,, € Nsothat u(E,) < %,Where E,={x € Al|fu(z)] > kn}.
Let F, = U{2>° Exand F = (' F,. Then u(F) = 0. Now let A,, = A\ F}, sothat A,, T A\ F.
Consider ¢ = 1 on Ay and ¢ = max{1, f1,..., fn—1} on A, \ A,_1 for n > 2 and prove that
|fn| < kngOI’IA\F.

(ii) Prove that there is a sequence (),,) in R™ so that \,, f, — 0 a.e. on A.
5.1.5. Let u(A) < +ooand f, : A — R or C for every n € N and every f,, be finite a.e. on A
and f,, — O a.e. on A.

(i) Prove that there exists a g : A — [0,+00) and a sequence (¢,) in RT so that €, | 0 and
| fnl < €ng a.e. on A for every n.
Hint. Look at the hint of exercise 5.1.4.

(ii) Prove that there is a sequence ()\,,) in R™ so that A, T +oc0 and A, f, — 0 a.e. on A.
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5.2 Convergence in the mean.

Let (X, S, 1) be a measure space.

Definition. Let all f, f, : X — R or C be S-measurable, and all f, f,, be finite a.e. on A.
We say that f, — f inthemeanon A€ Sif [, |fn — fldp — 0asn — +oc.
We say that ( f,) is Cauchy in the mean on A € S if [, | fn — fm|dp — 0 as m,n — +oc.

Proposition 5.1. If f,, — [’ and f,, — " in the mean on A, then ' = f" a.e. on A.

Proof. We have

Jalf =" du < [yl fn = Fldu+ [y 1 fn = f"ldp — 0
as n — +o00. Hence, [, |f' — f”|dpn=0,and so f' = f"” a.e. on A. O

Proposition 5.2. Let f,, — f and g, — g in the mean on A and \ € C. Then
Q) fn+ gn — [+ g inthe mean on A.
(ii)) Af, = A\f in the mean on A.

Proof. We have
Jal(fn+gn) = (F+ @) du < [y 1o = Fldu+ [419n — gldp — 0,
fA|)‘fn_/\f|dﬂz |>‘|fA|fn_f|dﬂ_>O
asn — +oo. O

It is trivial to prove that, if f,, — f in the mean on A, then (f,,) is Cauchy in the mean on A.
The following basic theorem expresses the converse.

Theorem 5.1. If (f,,) is Cauchy in the mean on A, then thereis f : X — C so that f, — f in the
mean on A. Moreover, there is a subsequence ( fy, ) so that f,, — f a.e. on A.
Corollary: if f,, — f in the mean on A, there is a subsequence ( fy, ) so that f,, — f a.e. on A.

Proof. For every k € N there is n;, € Nso that [, [fn, — fm|dp < 2% for every n,m > mny.
Since we may assume that each ny, is as large as we like, we may inductively take (nj) so that
ny < ng41 for every k. Therefore, (fy, ) is a subsequence of ( f,).

From the construction of ny and from ng < ngi1, we get fA | — o ldp < 2% for every k.

Then the S-measurable function G : X — [0, +00], defined by G = Z;ﬁ‘i | frpsr — frplon A
and by G = 0 on A€, satisfies

fXGd,U:Z;_;Xl) A|fnk+1 _fnk|d:u < z;:iolQLk =1

Hence, G is finite a.e. on A, andso >} (frpis ()= fn,, (z)) converges fora.e. x € A. Therefore,
thereisa B € S, B C Asothat (A \ B) = 0and 3/ (fue,, (¥) — fn,(2)) converges for
every x € B. Now, we define the S-measurable function f : X — C by

f= fra +Z—k~_§?(fnk+1—fnk), on B
0, on B¢

On B we have that

f = fn1 + 1imK—>+oo Zf:_ll (fnk+1 - fnk) = 1imK—>+oo an-
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and so (fy,, ) converges to f a.e. on A.
We also have on B that

’an_f|:|an_fn1_ zg(fnkﬂ_fnk)’
= |Z£(:711(fnk+l - fnk) - Ziol(fnkﬂ - fnk)| < Z;SK ‘fnkJrl - fnk|
for all K. Hence,

fA‘an _f|d/‘§ ZZ_EOK A|fnk+1 _fnk|d:u< ZZ_EOKQ% = 21{% —0

as K — +oo.
Since ng — +00 when k — +o00, we get

fA|fk_f’dN§fA‘fk_fnk’dﬂ+fA‘fnk_f‘d,u_>07

and we conclude that f,, — f in the mean on A. O

Example. We consider the functions f1 = x(0,1), fo = X(O,%),f:s = X(%,l),fzx = X(07%)>f5 =
X(1,2) fe = X(21) fr= X(0,1) fs = X(1,2); fo = X(2,3); fi0 = X(3,1) and so on.

It is clear that f(O,l) |fnldmi — 0, and so f,, — 0 in the mean on (0, 1). Theorem 5.1 implies
that there exists a subsequence converging to 0 a.e. on (0, 1), and it is easy to find many such
subsequences: for example, the functions f1 = X(0,1), f2 = X(0,1)> f1= X (0,1 fr= X(0,) and
so on, form one such subsequence.

But it is not true that f,, — 0 a.e. on (0,1). In fact, if = is any irrational number in (0, 1), then
x belongs to infinitely many intervals of the form ("“ﬂ‘ll, %) (for each value of m there is exactly
one such value of k), and so (f(z)) does not converge to 0. It easy to see that f,,(z) — 0 only

for every rational z € (0, 1).

We may now complete Proposition 5.2 as follows.

Proposition 5.3. Let f,, — f and g, — g in the mean on A.
(i) If there is M < +00 so that | f,| < M a.e. on A for all n, then |f| < M a.e. on A.

(ii) If there is M < +00 so that |fo| < M a.e. on A and |ga| < M a.e. on A for all n, then
fngn — fg in the mean on A.

Proof. (i) Theorem 5.1 implies that there is a subsequence ( f,,, ) so that f,,, — f a.e. on A. Since
| fre] < M a.e. on A for every k, we get that | f| < M a.e. on A.

(i1) Using the result of (i), we have
fA|fngn_fg|d:UJ§ fA|fngn_fgn|dﬂ+f,4‘fgn_fg|d:u
SMfA|fn_f‘d/‘+MfA|gn_g|d:UJ—>0

asn — +oo. O
Exercises.

Except if specified otherwise, all exercises refer to a measure space (X, S, i), all sets belong to S
and all functions are S-measurable.

5.2.1.If f,, — f in the mean on A and |f,,| < g a.e. on A for all n, prove that | f| < g a.e. on A.

52.2.1f f, — fae. onAand|f,| < gae. on Aforallnand [, gdu < +oo, prove that f, — f
in the mean on A.

5.2.3. Look at exercise 5.1.3. If E,, C A forall nand x g, — f in the mean on A, prove that there
exists E C A so that f = xg a.e. on A. Prove that u(FE,AFE) — 0.

5.24.Let £, C Aforall n. If u(E,AE,,) — 0asn,m — +oo, prove that there exists £ C A
so that u(FE, AFE) — 0asn — +o00. Prove that the metric space (S/.~,d) of exercise 1.2.13 is
complete.
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5.3 Convergence in measure.

Let (X, S, 1) be a measure space.

Definition. Let all f, f,, : X — R or C be S-measurable, and all f, f,, be finite a.e. on A.

We say that f, — f in measure on A € S if u({x € A||fn(x) — f(z)] > €}) = 0asn — +o0
for every e > 0.

We say that (fy,) is Cauchy in measure on A € S if u({x € A||fu(x) — fm(z)] > €}) — 0 as
n, m — 400 for every € > 0.

A useful trick is the inequality

p{z € Alf(2) + g(2)| =2 a+0}) < p({z € Al[f(2)] = a}) + u({x € Allg(z)| > b}),

which is true for every a, b > 0. This is due to the set-inclusion

{z e Allf(z) +g(2)| Z a+ b} C{z € A|[f(z)] = a} U{z € Al|g(x)] = b}.
Proposition 5.4. If f,, — [’ and f,, — [" in measure on A, then f' = f" a.e. on A.
Proof. We have

w(fz € Al1f(@) — F'(@)] > ) < u({z € A||fule) — F(o)] > £)

+u({z € Al[falz) = f'(2)| 2 §}) = 0
This implies u({z € A||f'(z) — f"(x)] > €}) = 0 for every € > 0.
Now we have
{v e Alf/(z) # f"(2)} = UiZ {z € A[|f'(2) = f"(2)] = 1 }-

Since all terms in the union are null sets, we get that {z € A| f'(x) # f”(x)} is a null set, and we
conclude that f' = f” a.e. on A. O

Proposition 5.5. Let f,, — f and g, — g in measure on A and \ € C. Then

(i) fn+ gn — [ + g in measure on A.

(ii)) Af, = \f in measure on A.

(iii) If there is M < +o0 so that | f,| < M a.e. on A for all n, then |f| < M a.e. on A.

(iv) If there is M < o0 so that |f,| < M a.e. on A and |g,| < M a.e. on A for all n, then
fngn — fg in measure on A.

Proof. (1) We apply the usual trick and we have

p{w € Al|(fa+90) (@) = (f +9)@)| = ) < pu({w € Al falo) = f(2)| > §})
+u({z € Allga(z) - g(x)| > §}) =0

asn — +00.
(i1) The case A = 0 is trivial. If A # 0, then

n({z € A| M a(@) = M (@) > e}) = p({w € A| |fu(2) = f(2)] > 5}) = 0

asn — +oo.
(iii) We write

p({z € Al|f(@)| > M +e}) < p({z € A||fola r>M+2})
+u({z € Al|falx) <>z§)
=pu({z € Allfu(z) = f(z)| = §}) =0
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asn — +oo. Hence, u({z € A||f(x)| > M + €}) = 0 for every ¢ > 0.
We have
{z e Allf(@)] > M} =U S {z € A[|f(2)] > M + £}

and, since all sets of the union are null, we find that u({z € A||f(x)] > M}) = 0. Hence,
|f| < M ae. on A.

(iv) Applying the result of (iii),

p({x € A||fa@)gale) — F@)9(@)] 2 ) < p({o € A|[ful@)gn(2) = Fa@)g(@)] 2 5})
+u({z € Al lfal@)g(@) — flx)g(x)| = §})
< p({z € Allga(@) — g(2)| > 357 })
+u({z € Allful@) = f(@)| = 557}) = 0
asn — —+oo. -

It is easy to see that if f,, — f in measure on A, then ( f;,) is Cauchy in measure on A. Indeed,

p{e € Allfa@) = fn(@)] = ) < p({z € Alfal@) - f@)] = 5})
+u({z e Al|fm(z) — f(z)| = §}) =0

asn,m — —+00.

Theorem 5.2. If (f,,) is Cauchy in measure on A, then there is f : X — C so that f,, — f in
measure on A. Moreover, there is a subsequence ( fy, ) so that f,, — f a.e. on A.
Corollary: if f,, — f in measure on A, there is a subsequence ( fy, ) so that f,, — f a.e. on A.

Proof: ForeverykeNwehavethatu({xeA’\fn — fm(z )|>2i,c ) = 0asn,m — +oc.
Hence, there is nj, € N so that pu({z € A||fu(x) — fm(2)| > 55 }) < 5 for every n,m > n.
Since we may assume that each ny is as large as we like, we may inductively take (ny) so that
ny < ng41 for every k. Thus, (f,, ) is a subsequence of ( f,,), and from the construction of n; and
from ny, < njqq weget p({z € A ‘ | s () = frp (2)] > 2%}) < 2%@ for every k. For simplicity
we write

Ey = {x €A ‘ ‘fnk+1(x) - fnk(l')‘ > 2%}7

and so p(Ey) < 2% for all k. We also define the subsets of A:
Fp =i Ex, =Nt® F, =lim Ey.

Then
p(F) < p(Fn) < 300550 w(Br) < Y02, 5 = gt

for every m. This implies u(F) = 0.
Now, let z € A\ F. Then there is m so that z € A\ F,,,, which implies that x € A\ E}, for all
k > m. Therefore, | fy, ., (z) — fn,(2)| < 1 for all K > m, and so

+Eom|fnk+1($)_fnk( )| <Z ik:%

Thus, the series 3> (fn, 1 (@) = fn, (x)) converges for every x € A\ F', and we may define
f: X—>Cby

f= fn1+z (fnk+1 fnk)> on A\ F
0, on A°UF

From
= fm + limg oo Z f”k+1 fnk) = limg 100 an
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on A\ F and from p(F') = 0, we get that (f,,, ) converges to f a.e. on A.
Now, on A \ F},, we have

|fnm_f‘ = ‘fnm_fm_ ;::i(fnkﬂ_fnk)’

-1
= ‘Z;cnzl (fnk+1 B f”k) B ;ci_jl)(fnkﬂ - fnk)| < Z;iom ’f’n«lﬁ—l - fnk‘ < 2771%1
Therefore, {z € A||fy,.(z) — f(z)| > 575 } C Fy,. This implies that

p({z € Allfo, (@) = f(@)] > g7=1}) < w(Fn) < o=t

Now, we consider an arbitrary ¢ > 0 and mg € N large enough so that - < e. Then for every

2m071
m > mgo we have

{z € Allfnn(2) = f(@)] > €} € {z € Al fn, (2) = f(2)] > g1},

and so
p{z € Al|fn,(2) — f(2)] > €}) < ga=x =0

as m — +o0. Therefore, f,, — f in measure on A.
And, finally, since ny — 400 as k — 400, we have that

u({z € Al|fu(x) = f(2)] 2 €}) < u({z € Af|fu(2) = fu, ()] = 5})
+u({z € Allfu, (@) = f(2)| > §}) =0
as k — o0, and we conclude that f,, — f in measure on A. O

Example. We consider the example just after Theorem 5.1. If 0 < € < 1, then the sequence of
the values of my({z € (0,1) ||fn(x)| > €}) is 1, %, %, %, %, %, i, %, i, %, ..., and converges to 0.
Hence, f,, — 0 in measure on (0, 1). But, as we have seen, it is not true that f,, — 0 a.e. on (0, 1).

Exercises.

Except if specified otherwise, all exercises refer to a measure space (X, S, ), all sets belong to S
and all functions are S-measurable.

5.3.1.If ¢ : C — Cisuniformly continuous and f;,, — f inmeasure on A, prove that ¢o f,, — ¢of
in measure on A.

5.3.2.If f,, — f in measure on A and |f,,| < g a.e. on A for all n, prove that | f| < g a.e. on A.

5.3.3. Look at exercises 5.1.3 and 5.2.3. If E,, C A forall n and xg, — f in measure on A, prove
that there exists £ C A so that f = yg a.e. on A. Prove that u(E,AFE) — 0.

5.3.4. Let £ be the counting measure on (N, P(N)). Prove that f,, — f uniformly on N if and only
if f,, — f in measure on N.

5.3.5. A variation of the Lemma of Fatou.
If f, > 0a.e. on Aforall nand f, — f in measure on A, prove [, fdu <lim, . [, fndp.

5.3.6. (i) If u(A) < +oo and sup,, .y |hn(z)| < oo fora.e. z € A, prove that for every 6 > 0 there
isa B C Asothat u(A\ B) < and sup,¢ g pen [hn(7)| < +00.

(ii) If u(A) < 400, and f,, — f and g,, — g in measure on A, prove that f,,g,, — fg in measure
on A.

5.3.7. (i) If u(A) < +o0, prove that f,, — f in measure on A if and only if [, 1J‘rf|*};f‘f| dp — 0.

e+p({z€A || fn(z)— f(z)|[>€})
>0 Tretp({zeA[fu(2)— f()[=Ze})

(i1) Prove that f,, — f in measure on A if and only if inf, — 0.

5.3.8.If f, — f in measure on A, prove that A\;, () — Af(t) for every t € [0, 4o00) which is a
point of continuity of A ;.
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5.4 Almost uniform convergence.

Let (X, S, 1) be a measure space.

Definition. Let all f, f,, : X — R or C be S-measurable, and all f, f, be finite a.e. on A.

We say that f,, — [ almost uniformly on A € S if for every 6 > 0 thereis B € S, B C A, so
that W(A\ B) < § and f,, — f uniformly on B.

We say that ( fy,) is Cauchy almost uniformly on A € S if for every § > 0 thereis B € S, B C A,
so that (A \ B) < § and (f,,) is Cauchy uniformly on B.

Proposition 5.6. If f,, — [’ and f,, — [" almost uniformly on A, then f' = f" a.e. on A.

Proof. Let us assume that u(E) > 0, where E = {z € A| f'(z) # f"(z)}.

Thereis B € S, B C Asothat u(A\ B) < @ and f, — f’ uniformly on B. Similarly, there is
C €S8,CC Asothat u(A\C) < “E)and f, — f” uniformly on C. We consider D = BN C,
and we have that (A \ D) < u(FE) and f,, — f" and f,, — f” uniformly on D. Of course this
implies that f' = f” on D, andso D N E = ().

But then E C A\ D. Therefore, u(E) < pu(A\ D) < u(E), and we arrive at a contradiction. [

Proposition 5.7. Let f,, — f and g, — g almost uniformly on A. Then

() fn + gn — f + g almost uniformly on A.

(i) Afn, = Af almost uniformly on A.

(iii) If there is M < +o0 so that | f,| < M a.e. on A for all n, then |f| < M a.e. on A.

(iv) If there is M < 400 so that |f,| < M a.e. on A and |g,| < M a.e. on A for all n, then
fngn — fg almost uniformly on A.

Proof. (i) Foreach § > 0, thereis B’ € S, B’ C A, so that u(A\ B') < $ and f,, — f uniformly
on B, and there is B” € S, B” C A, so that u(A \ B”) < g and g, — ¢ uniformly on B”. We
consider B = B’ N B”, and then (A \ B) < 6 and f,, — f and g,, — ¢ uniformly on B. Then
fn + gn — f + g uniformly on B, and, since J is arbitrary, we conclude that f,, + g, — f + ¢
almost uniformly on A.

(i1) This is easier, since, if f, — f uniformly on B, then Af,, — A f uniformly on B.

(iii) Let us assume that u(E) > 0, where E = {z € A||f(x)| > M}.

Thereis B € S, B C A, so that u(A\ B) < u(FE) and f, — f uniformly on B. Then we have
|f] < M ae.onB,andso u(BNE)=0.Now, u(E) = u(E\ B) < u(A\ B) < u(E), and we
arrive at a contradiction.

(iv) Exactly as in the proof of (i), for every § > 0 there is By € S, B; C A, so that u(A\ By) < §
and f,, — f and g, — g uniformly on B;. By the result of (iii), we have |f| < M a.e. on A.
Hence, there is By € S, Bo C A so that u(A \ B2) = 0 and |fyl, |gn|,|f| < M on By. We
consider B = Bj N By, and then (A \ B) = p(A\ By) < 0. Now, on B we have that

’fngn_fg| < |fngn_fgn|+|fgn_fg| §M|fn_f|+M‘gn_g|7

and so f,g, — fg uniformly on B. We conclude that f,, g, — fg almost uniformly on A. O

One should notice the difference between the next result and the corresponding Theorems 5.1
and 5.2 for the other two types of convergence: if a sequence converges in the mean or in measure,
then a.e. convergence holds for some subsequence, while, if it converges almost uniformly, then
a.e. convergence holds for the whole sequence (and so for every subsequence).

Before the next result let us consider a simple general fact.

Assume that there is a collection of functions g; : B; — C, indexed by the set I of indices,
where B; C X for every i € I, and that f,, — g; pointwise on B; forevery i € I. Ifx € B; N B;
forany i, j € I, then by the uniqueness of pointwise limits we have that g;(x) = g;(z). Therefore,
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all limit functions have the same value at each point of the union B = | J;.; B; of the domains of
definition. Hence, we can define a single function f : B — C by f(x) = gi(z), where i € I is
any index for which z € B;, and then clearly f,, — f pointwise on B.

Theorem 5.3. If ( f,) is Cauchy almost uniformly on A, then thereisan f : X — Csothat f, — f
almost uniformly on A. Moreover, f, — f a.e. on A.
Corollary: if f,, — f almost uniformly on A, then f, — f a.e. on A.

Proof. For every k € N there exists By € S, By C A sothat u(A\ Bg) <  and (f,,) is Cauchy
uniformly on Bj. Therefore, there is a function g : Br — C so that f,, — g¢; uniformly and,
hence, pointwise on Bj,.

By the general result of the paragraph just before this theorem, there is an f : B — C, where
B = U} By, so that f,, — f pointwise on B. But (A \ B) < u(A\ By,) < % for every k, and
so u(A\ B) = 0. If we extend f : X — C by defining f = 0 on B¢, we conclude that f,, — f
a.e. on A.

By the general construction of f, we have that g, = f on By, and so f,, — f uniformly on Bj. If
§ > 0 is arbitrary, we just take k large enough so that + < &, and we have that z(A4 \ By) < 4.
Therefore, f,, — f almost uniformly on A. O

Exercises.

Except if specified otherwise, all exercises refer to a measure space (X, S, u), all sets belong to S
and all functions are S-measurable.

54.1.1f ¢ : C — C is uniformly continuous and f,, — f almost uniformly on A, prove that
¢ o fn — ¢ o f almost uniformly on A.

5.4.2.If f,, — f almost uniformly on A and |f,,| < g a.e. on A for all n, prove that | f| < g a.e.
on A.

5.5 Relations between various types of convergence.

In this section we shall see three results describing some relations between the four types of conver-
gence: a.e. convergence, convergence in the mean, convergence in measure, and almost uniform
convergence. Many other results are consequences of these.

Let (X, S, 1) be a measure space.

Theorem 5.4. If f,, — f almost uniformly on A, then f, — f a.e. on A.

The converse is true under the additional assumption that either

(i) (Egoroff) p(A) < +oo and all f, f,, are finite a.e. on A

or

(ii) there is a g : A — [0, +o00] so that [, gdu < +o0 and |fy| < g a.e. on A for every n.

Proof. The first statement is included in Theorem 5.3.(A4) < 400
(i) Let u(A) < 400 and f,, — f a.e. on A and all f, f,, be finite a.e. on A.
For each k,n € N we consider

En(k) = U, {2 € A |fm(x) = f(z)| > L}

IfC = {z € Al fu(z) — f(2)}, then it is easy to see that (!> E,(k) C A\ C. Since
p(A\ C) = 0, we get u(('2 En(k)) = 0 for every k. From E,(k) | N2 E,(k), from
p(A) < +oo and from the continuity of x from above, we get that u(E,(k)) — 0 as n — +oo.
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Hence, for an arbitrary § > 0 there is nj, € N so that u(E,, (k)) < 2%.
We define
E =X E,(k), B=A\E,

and we have
w(E) < 3202 i(Eny (k) < 6.

Also, for every z € B and for every k > 1 we have that | f,,,(z) — f(z)| < £ forall m > ny, or,
equivalently, sup,c s | fm(z) — f(2)| < % for all m > ny. This implies, of course, that f,, — f
uniformly on B. Since (A \ B) = p(E) < J, we conclude that f,, — f almost uniformly on A.
(ii) Let [, gdu < 400 and f, — fae. on Aand|f,| < ga.e. on A forall n.

Then |f| < g a.e. on A and, since ngd,u < 400, all f, f, are finite a.e. on A. Therefore,
|fr. — f| < 2g a.e. on A for all n. Using the same notation as in the proof of (i), this implies that
thereisan F' C E,(k), F € S, so that B, (k) \ F C {z € A|g(z) > 5}, and so

W(En(k)) = p(En(k) \ F) <u({m€A\g ) > 55 })-
Now, it is clear that [, g du < +oo implies u({z € A|g(x) > 3z }) < +oc. Therefore, we may
apply again the continuity of 1 from above to find that u( n(k)) — 0asn — +oo. From this
point we repeat the proof of (i) word for word. O

Example. If f,, = x(n,41) for every n > 1, then f,, — 0 everywhere on R, but it is not true that
fn — 0 almost uniformly on R.

Indeed, if 0 < § < 1, then every Lebesgue measurable B C R with m; (R\ B) < § has non-empty
intersection with every interval (n,n + 1), and so sup ¢ | fr(z)| > 1 for every n.

In this example we have m (R) = 400, and it is easy to see that there is no g : R — [0, +00] so
that [, g(x) dmi(z) < +oc and f, < g a.e. on R for every n. In fact, if f, < ga.e. on R for
every n, then g>1lae. on(1,400).

Theorem 5.5. If f,, — f almost uniformly on A, then f, — f in measure on A.
Conversely, if f, — f in measure on A, then there is a subsequence ( fy, ) so that f,, — f almost

uniformly on A.

Proof. Let f, — f almost uniformly on A. We take an arbitrary ¢ > 0.

Then for every 6 > O thereis B € S, B C A, so that u(A \ B) < ¢ and f,, — f uniformly on B.
Now, there exists an ng € Nsothat | f,(z)— f(z)| < eforallm > ng and every = € B. Therefore,
{z € A||fn(x) — f(z)] > €} C A\ B and, thus, u({z € A||fn(z) — f(x)| > €}) < § forall
n > ng. This implies that u({z € A||fn(x) — f(x)| > €}) = 0asn — 400, and so f,, — f in
measure on A.

The idea for the converse is already in the proof of Theorem 5.2.

Let f,, — f in measure on A.

Then forall k € Nwe have pu({z € A||fn(z)— f(2)] > 2%}) — 0asn — 4o00. Hence, there is
nj, € Nsothat u({z € A||fu(x) — f(x)| > 55 }) < 3¢ foralln > ny, and we may also assume
that nj, < ng4 for all k. Therefore, (f,,, ) is a subsequence of ( f;,) such that

p({z € Al fa(2) = f@)| > 55 }) < 3¢
for all k. Now, we consider
Ep={x € Al|fn,(2) — %t Fn=UisS, Bk
Then
p(Fm) < 35025 1(By) < 3025, 5 = ot

for every m.
Ifz € A\ Fy,, thenz € A\ E, forevery k > m, andthen|fnk( )= f(@)] < 5= ! forevery k > m.

This implies that sup,c 4\, [fni (%) — f(2)] < 55 L for all k > m, and so fnk — f uniformly on
A\ Fy,. Since u(Fy,) < 2”1%1 for all m, we conclude that f,,, — f almost uniformly on A. [
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Example. We consider the example just after Theorem 5.1. There, f,, — 0 in measure on (0, 1)
but it is not true that f,, — 0 almost uniformly on (0, 1). In fact, if we take any § with 0 < 6 < 1,
then every Lebesgue measurable B C (0, 1) with m;((0,1) \ B) < ¢ must have non-empty
intersection with infinitely many intervals of the form (%, %) (at least one for each value of m),
and so sup,c | fn(x)| > 1 for infinitely many n.

The converse in Theorem 5.6 is a variation of the Dominated Convergence Theorem.

Theorem 5.6. If f,, — f in the mean on A, then f, — f in measure on A.

The converse is true under the additional assumption that there exists a g : X — [0, +00] so that
Ja9dp < +ocand |f,| < g ae on A

Proof. If f,, — f in the mean on A, then

u{e € Al lfule) — @) = }) <L [y |fa— fldu—0

as n — +o0. Therefore, f,, — f in measure on A.

Let us assume that the converse is not true. Then there is some ¢y > 0 and a subsequence ( fy, )
of (fy) so that [, |fn, — fldu > € for every k > 1. Since f,, — f in measure, Theorem
5.2 implies that there is a subsequence (fnkl) so that fnkl — fae. on A. From ’fnkl’ < ga.e.
on A we find that |f| < g a.e. on A. Now the Dominated Convergence Theorem implies that
N ‘f"lkl — fldu — 0asl — 400, and we arrive at a contradiction. O

Example. Let f,, = nx g 1) foralln. If 0 < e <1, then p({z € (0,1) |[fn(2)] = €}) = 10
as n — 400, and so f,, — 0 in measure on (0, 1). But fol | fn|dmi = 1, and so it is not true that
frn. — 0 in the mean on (0, 1).
On the other hand, there can be no g : (0,1) — [0, +-00] so that fol gdmy < +ooand |f,| < g
a.e. on (0,1) for all n. Otherwise, we would have that g > n a.e. on each interval [%_H, 1), and
S0
1 +oo 1/ _ N\t _ N\t —

fO gdml > ng 1/(7;’LL+1) ndml - ng n(% B %H) - ng %H = +00,

resulting in a contradiction.

Exercises.

Except if specified otherwise, all exercises refer to a measure space (X, S, u), all sets belong to S
and all functions are S-measurable.

5.5.1.If f,, — f’ with respect to any of the four types of convergence (a.e., in the mean, in mea-
sure, almost uniformly) on A and f,, — f” with respect to any other of the same four types of
convergence, prove that f' = f” a.e. on A.

5.5.2. Prove the Dominated Convergence Theorem using the second converse part of Theorem 5.4.

5.5.3. A variation of the Dominated Convergence Theorem.

Let [, gdp < o0 and | f,| < ga.e. on Aand f, — f in measure on A. Prove that [, f,, du —
Ja £ dp.

Hint. One can follow three paths. One is to use Theorem 5.6. Another is to reduce to the case
of a.e. convergence and use the original version of the theorem. The third path is to use almost
uniform convergence.

5.5.4. A variation of Egoroff’s Theorem for continuous parameter.
Let 1(A) < +ooand f : A x [0,1] — C have the properties:

(@) f(-,y) : A — Cis S-measurable for every y € [0, 1]

(b) f(z,-) : [0,1] — C is continuous for every x € A.
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(i) If e, > 0, prove that {x € A||f(z,y) — f(z,0)| < e forall y < n} belongsto S.

(ii) Prove that for every § > 0 thereis B C A sothat u(A\B) < d and f(-,y) — f(+,0) uniformly
on B asy — 0+.

5.5.5. Prove the converse part of Theorem 5.6 using the converse part of Theorem 5.5.

5.5.6. The exact relation between convergence in the mean and convergence in measure.

In all that follows every f,, is integrable over A.

We say that the indefinite integrals of ( f,,) are uniformly absolutely continuous on A if for every
€ > 0 there exists § > 0 so that | [, f du| < € forall n and all E C A with u(E) < 6.

We say that the indefinite integrals of ( f,,) are equicontinuous from above at () on A if for every
sequence (E},) of subsets of A with Ej; | () and for every € > 0 there exists k so that | || B, frndul <
e for all kK > kg and all n.

Prove Vitali’s Theorem: f,, — f in the mean on A if and only if f,, — f in measure on A and the
indefinite integrals of (|fy|) are uniformly absolutely continuous on A and equicontinuous from
above at () on A.

How is Theorem 5.6 related to Vitali’s Theorem?

5.5.7.1f f : R™ — C is continuous in each variable separately, prove that f is Lebesgue measur-
able.
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Chapter 6

Signed measures and complex measures.

6.1 Signed measures.

Let (X, S) be a measurable space.

Definition. 4 function v : S — R is called a signed measure on (X, S) if

(i) either v(A) # —oo forall A € S or v(A) # +oo forall A € S,

(i) v(0) = 0,

(iii) I/(szof Aj) = ijof v(A;) for all pairwise disjoint Ay, As, ... € S.

Ifv(A) € Rforevery A € S, then v is called a real measure.

It v(A) > 0 for every A € S, then v is called a non-negative signed measure. If v(A) < 0 for
every A € S, then v is called a non-positive signed measure.

It is obvious that v is a non-negative signed measure if and only if it is a measure. Also, v is a
non-negative signed measure if and only if —v is a non-positive signed measure.
Proposition 6.1. Let v, v1, v9 be signed measures on (X, S) and X € R.
(i) If either v1(A) # —o0, 1a(A) # —oo forall A € S or vi(A) # +o0, v2(A) # +oo for all
A €S, then we can definevy + 19 : S — R by
(v1 +12)(A) = vi(A) + 1o(A) forall A€ S.

Then vy + vy is a signed measure on (X, S).
(ii) We define the function \v : S — R by

(Av)(A) = Av(A), forall AeS

(Where we follow the convention: 0 (£00) = 0 whenever A = 0 and v(A) = +o0). Then \v is a
signed measure on (X, S).

Proof. Similar to the proof of Proposition 1.16. O

Definition. Let v, vy, 1o be signed measures on the measurable space (X,S) and X € R. The
signed measures v1 + vo and \v on (X, S) which are defined in Proposition 6.1 are called sum of
vy and vy and product of v by \.

Example. Let 111, 12 be two measures on (X, S).

If po(X) < 400, then pg(A) < po(X) < 4oo forevery A € S. Then v = pg — po is well-
defined, since v(A) = pu1(A) — p2(A) > —ua(A) > —occo forall A € S, and v is a signed measure
on (X,S)

Similarly, if 1 (X) < 400, then v = p; — o is a signed measure on (X, S) with v(A4) < +o0
forall A € S.

Thus, the difference of two measures, at least one of which is finite, is a signed measure.

Clearly, the difference of two finite measures is a real measure.
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Example. Let ;. be a measure on (X, S) and f : X — R be a measurable function such that the
integral [ fdp is defined. Lemma 3.10 says that [, f du is defined for every A € S. If we
consider the function A : S — R defined by A\(A) = [ 4 fdp forall A € S, then Proposition 3.6
and Theorem 3.9 imply that X is a signed measure on (X, S).

Definition. The signed measure A which is defined in the last example is called the indefinite
integral of f with respect to u and it is denoted fu. Thus, the defining relation for fu is

(fu)(A) = [, fdu, A€S.

In case f > 0 a.e. on X the signed measure f is a measure, since (fu)(A) = [, fdp >0
for every A € §. Similarly, if f < 0a.e. on X, the fu is a non-positive signed measure.

Continuing the study of this example, we shall make a few remarks. That the |  J dpis defined
means that either [ f du < +ooor [ [~ du < +oo.

Let us consider the case [ f*du < +oo first. Since (f*u)(X) = [ fTdu < 400, the
signed measure f i is a finite measure. The signed measure f ™~ is a measure (not necessarily
finite). Also, for every A € S we have (fTp)(A) — (f~p)(A) = [ fTdu— [, f dp =
Jafdu = (fu)(A). Therefore, in the case [, fTdu < oo the signed measure fu is the
difference of the measures ™y and f~u of which the first is finite:

fu=ftu—fp

Similarly, in the case [ v J 7 dp < +oothe signed measure fp is the difference of the measures
fTpand f~p of which the second is finite, since (f~p)(X) = [y f~ dp < +oc.

Property (iii) in the definition of a signed measure v is called the o-additivity of v. It is trivial
to see that a signed measure is also finitely additive.

A signed measure is not, in general, monotone: if A, B € Sand A C B,then B = AU(B\ A)
and, hence, v(B) = v(A) + v(B\ A), but v(B \ A) may not be > 0.

Theorem 6.1. Let v be a signed measure on (X, S).

(i) Let A,B € Sand A C B. Ifv(B) < +o0, then v(A) < +o0 and, if v(B) > —oo, then
v(A) > —oc. In particular, if v(B) € R, then v(A) € R.

(i) IfA,BeS, AC Bandv(A) € R, thenv(B\ A) = v(B) — v(A).

(iii) If A1, Ag, ... € Sand A, 1 A, then v(A,,) — v(A).

(iv) If A1, A, ... € S, v(AN) € R for some N and A,, | A, then v(A,) — v(A).

Proof. (i) We have v(B) = v(A) + v(B \ A). If v(A) = 400, then (B \ A) > —o0, and so
v(B) = +oo. Similarly, if v(A) = —oo, then v(B \ A) < +00, and so v(B) = —oc0.
The proofs of (ii), (iii), (iv) are the same as the proofs of the analogous parts of Theorem 1.4. [

Property (iii) is called continuity from below and property (iv) is called continuity from
above.

6.2 The Hahn and Jordan decompositions.

Let (X, S) be a measurable space.

Definition. Let v be a signed measure on (X, S).

(i) P € S is called a non-negative set for v if v(A) > 0 for every A€ S, AC P.
(ii) N € S is called a non-positive set for v if v(A) < 0 for every A€ S, A C N.
(iii) Q € S is called a null set for v if v(A) = 0 forevery A€ S, A C Q.

158



It is obvious that an element of & which is both a non-negative and a non-positive set for v is
a null set for v. It is also obvious that, if 1 is a measure, then every A € S is a non-negative set
for p.

Proposition 6.2. Let v be a signed measure on (X, S).

i is a non-negative set for v an € S, P' C P, then P' is a non-negative set for v.
) If P i gati t dP' €S8, P CP,then P'i gati t

ii 1, Pa, ... are non-negative sets for v, then | J, 2] Py, is a non-negative set for v.

ji) If Py, Ps, gative set. then \J;{25 P i gative set

The same results are also true for non-positive sets and for null sets for v.

Proof. (i) Trivial.

(i) Let A € S, A C U} Pr. We consider A; = ANPyand Ay = AN (P, \ (PLU---UP,_1))
for k > 2. Then A = U;;’(l’ Ap, the Ay, Ay, ... € § are pairwise disjoint, and A C P for all k.
We then have v/(A) = 3"/ v(A4x) > 0. O

Theorem 6.2. Let v be a signed measure on (X, S). Then there exist a non-negative set P and a
non-positive set N for v which form a partition of X, i.e.

PUN=X, PNN-=0.

If Py is a non-negative set and N1 is a non-positive set for v which form a partition of X, then
PAP; = NANj is a null set for v.

Proof. We consider the case when —oco < v(A) for every A € S, and we define the quantity
xk = inf{v(N) | N is a non-positive set for v/}.

Since () is a non-positive set with (()) = 0, we have that x < 0.

Now, we consider a sequence (/Ny) of non-positive sets for v so that v(N) — r, and we consider
the set N = |J;>; Ny. By Proposition 6.1, N is a non-positive set for v. Thus, (N \ Ni) < 0
for every k, and so k < v(N) < v(Ny) for every k. Taking the limit as & — +oo, we find that
—00 < V(N) = k.

Therefore, N is a non-positive set for v of minimal v-measure, and we shall prove that the set
P = X \ N is a non-negative set for v.

Let us assume that P is not a non-negative set for v. Then there is Ag € S, Ag C P, with
—o0 < v(Ap) < 0. The set Ay is not a non-positive set or, otherwise, the set N U Ay would be a
non-positive set with (N U Ag) = v(N) + v(Ap) < v(N), contradicting the minimality of N.
Therefore, there is at least one subset of Ay in S having positive v-measure. This means that

10 :=sup{v(B)|B €S,B C Ay} > 0.

Since 0 < TOTj’rl < 19, thereisa B; € S, B; C Agpsothat 0 < TOTSA < v(By) < 19. We consider
Ay = Ap \ Bi, and we have that —oco < v(A;) < v(A1) + v(B1) = v(Ap). Here we are using
Theorem 6.1 to imply v(A;),v(B;) € R from v(A4p) € R.

Let us suppose that we have constructed sets Ag, A1,..., A, € Sand B1,..., B, € S so that
AngAn—lggAlnggNa Bn:An—l\Anw-'aBleO\Ala

Tr—1 :=sup{v(B)|B€S,BC A1} >0 forallk=1,...,n,

0< T}:’jﬁ <v(Bg) <T1pq forallk=1,... ,n,

(6.1)
— 00 < V(Ap) <v(An—1) < - <v(A1) <v(Ap) <0< 4o0.

Now, A,, is not a non-positive set for v for the same reason that Ag is not a non-positive set for v.
Therefore, there is at least one subset of A,, in S having positive v-measure. This means that

T :=sup{v(B)|B € S,BC A,} > 0.
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Then there is B,4+1 € S, B - (Bn+1) < 7. We consider A,,11 =
Ap \ Bp+1, and we have that —oo o < y(AnH) < y(AnH) + v(Bpt1) = v(Ay).

Thus, we have constructed, inductively, two sequences (A, ), (By,) satisfying properties (6.1).
Now the sets By, Ba, ... and ()1 A,, are pairwise disjoint and Ag = (/> 4,) U (U5 B).
Therefore,

v(Ao) = v(M21 An) + 021 v(Bu),

from which we get 327> v(B,,) < +oc. This implies that v/(B,,) — 0, and, by the third property
(6.1), we have that 7,1 — 0.

By continuity from above of v, the set A = (/> A,, € S has v(A) = lim,,_ o v(A,) < 0.
Moreover, A is not a non-positive set for v for the same reason that Ag is not a non-positive set
for v. Therefore, thereisa B € S, B C A so that v(B) > 0. But then B C A,, for all n, and so
0 < v(B) < 7, for all n. We, thus, arrive at a contradiction with the limit 7,, — 0.

In the same way we can prove that, in the case when v(A) < +oo for every A € S, there is a
non-negative set P for v of maximal v-measure, and then that the set N = X \ P is a non-positive
set for v.

Thus, in any case there exist a non-negative set P and a non-positive set N for v which form a
partition of X.

Now, let P, be a non-negative set and N7 be a non-positive set for v so that P, U Ny = X and
Pi NNy = (). Then, since P\ P, = Ny \ N C PN Ny, theset P\ P, = Ny \ N1is both a
non-negative set and a non-positive set for v, and so it is a null set for v. Similarly, P\ P = N\ V;
is a null set for v, and we conclude that their union, i.e. PAP; = NANy,isanull set forv. [

Definition. Let v be a signed measure on (X, S). Every partition of X into a non-negative set and
a non-positive set for v is called a Hahn decomposition of X for v.

Proposition 6.3. Let v be a signed measure on (X, S).
(i) If P and N constitute a Hahn decomposition of X for v, then

v(P) = max{v(A)|A € S}, v(N)=min{r(A)|Ac S}.

(ii) If v(A) < o0 for every A € S, then v is bounded from above. If —oo < v(A) for every
A € S, then v is bounded from below.

Proof. (i) If A € S,thenv(P\ A) > 0, because P\ A C P. This implies
v(P)=v(PNA)+v(P\A) >v(PNA) >0
and, similarly, v(N) < v(N N A) < 0. Therefore,
v(A)=v(PNA)+v(NNA) <v(PNA) <v(P),
v(A)=v(PNA)+v(NNA)>v(NNA)>v(N).
(i1) This is a consequence of the result of (i). O

Definition. Let 111, puo be two measures on (X,S). We say that py, uo are mutually singular (or
that 1 is singular to uo or that uo is singular to 1) if there exist A1, As € S so that Ay is null
for us and As is null for py and Ay U Ay = X, Ay N Ay = 0.
We use the symbol

pi-Lpo

to denote that i1, uo are mutually singular.
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In other words, two measures are mutually singular if there is a set in S which is null for one
of them and its complement is null for the other.

If 111, pio are mutually singular and A, A, are as in the definition, then it is clear that y1 (A) =
p1(AN Ap)and pa(A) = pa(A N Ay) for every A € S. Thus, we may informally say that pi1 is
concentrated on A1 and s is concentrated on As.

Theorem 6.3. Let v be a signed measure on (X, S). There exist two measures v and v~ at least
one of which is finite, so that

v=vt—v, vtliv.

If vif, vy are two measures on (X, S), at least one of which is finite, so that v = v{" — v and
+

vt Luy, then v = vt and vy = v,

Proof. We consider any Hahn decomposition of X for v: let P be a non-negative set and NV be a
non-positive set for v sothat PUN = X and PN N = ().

We define v+,v™ : § — [0, +00] by

vt (A)=v(ANP), v (A)=-v(ANN) forevery AcS.

It is trivial to see that v+, v~ are measures on (X,S). If v(A) < +oo for every A € S, then
vT(X) =v(P) < +oo,and so v is a finite measure. Similarly, if —oo < v(A) forevery A € S,
then v~ (X) = —v(NN) < +00, and so v~ is a finite measure.
Also,

v(A) =v(ANP)+v(ANN) =vt(A) —v (A4)

forall A€ S,andsov =v —v—.

If A€ Sand A C N, thenv™(A) =v(AN P) = v(B) = 0. Therefore, N is a null set for v.
Similarly, P is a null set for »—, and so v Ly~

Now, let vj", v be two measures on (X, S), at least one of which is finite, so that v = v;" — v
and v;" Lv; . Then there exist P, € S which is null for v;” and Ny € S which is null for v} so
that P, UN; = X and P, N Ny = 0.

Then for every A € S we have

vH(A) =v(ANP)=v{(ANP)—v (ANP) <v (AN P) <vi(A).
Also,
v (A) =v (AN P) + v (ANNy) = v (AN P) = v (AN P) — vy (AN Py)
=v(ANP)=vT(ANP) —v (ANP) <vT(AnP) <vt(A).

Hence, v} (A) = v+ (A) forevery A € S, and so vj" = v+,
The proof of v;” = v~ is similar. O

Definition. Let v be a signed measure on (X,S). We say that the mutually singular measures
v, v™, whose existence and uniqueness is proved in Theorem 6.3, constitute the Jordan decom-
position of v.

We call v the non-negative variation of v and v~ the non-positive variation of v. We recall from
the proof of Theorem 6.3 that v, v~ are defined by

v (A)=v(ANP), v (A)=-v(ANN) forevery A€S,

where P, N constitute any Hahn decomposition of X for v.
We call the measure |v| = vt + v~ the absolute variation of v, and we call the quantity |v|(X)
the total variation of v.
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For the measure || we have that
v|(A) =vT(A) +v (A) =v(ANP)—v(ANN) forevery A€ S.
We observe that the total variation of v is equal to
v[(X) = v(P) = v(N),

where the sets P, N constitute a Hahn decomposition of X for v. Thus, the total variation of v is
equal to the difference between the largest and the smallest values of v.

Moreover, the total variation is finite if and only if the absolute variation is a finite measure if
and only if both the non-negative and the non-positive variations are finite measures if and only if
the signed measure takes only finite values.

Proposition 6.4. Let v be a signed measure on (X, S). Then
vT(A) =max{v(B)|B€S,BC A}, v (A)=-min{v(B)|BeS,BC A}
forevery A € S.

Proof. Let P, N constitute any Hahn decomposition of X for v.
Then for every B € S, B C A we have

v(B)=v(BNP)+v(BNN)<v(BNP)=v"(B) <v(A).
On the other hand, if we consider By = A N P, then we have By € S, By C A and
vt(A) =v(ANP) = v(By).
The proof of v~ (A) = —min{v(B) |B € §, B C A} is similar. O
Proposition 6.5. Let v, vy, v9 be signed measures on (X, S). If v1 + vy is defined, then
(i +w)" <vf +u, (4w <vp +vy, vt < ul+ .

Proof. Let P, N constitute any Hahn decomposition of X for vy + 5. Then for every A € S we
have

(1 +1v2)T(A) = (1 + ) (ANP) =11 (ANP) + (AN P) < v (ANP) + v (AN P)
< v (A) + vy (4),
and so (11 + o))" < v + 15

The proof of (11 + v2)~ < vy + v, is similar, and then, adding the two inequalities, we get
lv1 +vo| < vi| + |val. O

Proposition 6.6. Let v be a signed measures on (X,S) and k € R.
(i) If k > 0, then (kv)" = kvt and (kv)™ = kU™
(ii) If k <0, then (kv)T = —kv™ and (kv)™ = —kvT.

(i) kv | = [+] ],

Proof. (i) Let P, N constitute any Hahn decomposition of X for v. If K > 0, then P, N constitute
a Hahn decomposition of X for kv as well. Hence, for every A € S we have

(kv)T(A) = (kv)(AN P) = kv(AN P) = kvt (A),
(kv)"(A) = (kv)(ANN) = k(AN N) = kv (A).

(i1) The proof is similar: if x < 0, then N, P constitute a Hahn decomposition of X for xv.
(iii) A consequence of the results of (i) and (ii). O
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Definition. Let A € S. If A1,..., A, € S are pairwise disjoint and A = |Jj._, Ay, then
{Ay,..., Ay} is called a (finite) measurable partition of A.

Theorem 6.4. Let v be a signed measure on (X, S) and let |v| be the absolute variation of v. Then
W|(A) = sup { >p_y [v(Ak)| | n € N,{Ay,..., An} is a measurable partition of A}
forevery A € S.

Proof. Let M = sup {>;_; [v(Ar)||n € N,{A1,..., A,} is a measurable partition of A},
and let P, N constitute a Hahn decomposition of X for v.
We have

lv(A)| = [v(ANP)+v(ANN)| < [v(ANP)|+ [v(ANN)| =v(ANP)—v(ANN) = |v|(A)
for every A € S. Therefore, if {41, ..., A, } is any measurable partition of A € S, then we have

2 k=1 V(AR < 2052 [VI(Ag) = [v[(A).

Hence, M < |v|(A).
Now, {AN P, AN N} is a particular measurable partition of A for which we have

V(AN P)|+ [v(ANN)|=v(ANP)—v(ANN) = |v|(4).
Hence, |v|(A) < M. O
It is useful to note something which appeared in the proof of Theorem 6.4, namely that
lv(A)| < |v|(A) forall AeS.

The next two propositions treat the special case of a signed measure which is the indefinite
integral of a function with respect to a measure.

Proposition 6.7. Let ;1 be a measure on (X,S), f : X — R be measurable and fX fdu be
defined. Then the sets P = {x € X | f(x) > 0} and N = {x € X | f(x) < 0} constitute a Hahn
decomposition of X for the signed measure fu. We also have

(fw*=fTp, (fw)”=f"p

Thus, the indefinite integrals f*u and f~ u constitute the Jordan decomposition of f j.. Moreover,

|ful = |flu

Proof. If A € Sand A C P, then (fu)(A) = [, fdu > 0, while, if A C N, then (fu)(A) =
i) 4 f dpu < 0. Therefore, P is a non-negative setand NV is a non-positive set for fu. Since PUN =
X and PN N = (), we conclude that P, N constitute a Hahn decomposition of X for f .

Now,

(f)T(A) = (F)(ANP) = [4op Fdp= [, fxpdu= [, fTdu=(fTu)(A)
and, similarly,

(fu)~(A) = =(fu)(ANN) == [,y fdu=— [ fxndu= [, [~ du= (f~p)(A)

for every A € S. Therefore, (fu)™ = fTpand (fu)™ = f~p.
Finally, [fu| = (fu)* + (fu)™ = ftu+ fp=|f|p -
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Clearly, another Hahn decomposition of X for fu consists of the sets P = {x € X | f(z) > 0}
and N = {z € X | f(z) < 0}.

Proposition 6.8. Let i be a measure on (X, S), f : X — R be measurable and fX f du be defined.
Let E € S.

(i) E is a non-negative set for fu if and only if f > 0 a.e. on E.

(ii) E is a non-positive set for fu if and only if f < 0 a.e. on E.

(iii) E is a null set for fu if and only if f = 0 a.e. on E.

Proof. (i)Let f > Oae. onE. IfA € S, A C E,then f > 0a.e. on 4, andso (fu)(A) =

[ fdp > 0. Thus, E is a non-negative set for f/u.
Conversely, let E be a non-negative set for fu. If e > 0 and A = {x € F'| f(z) < —¢}, then

0< (f/‘)(Ae) = fAe fd,UJ < _EM(Ae)v

and so p(A¢) = 0. Now, we have that {z € E| f(z) < 0} = U A1 /n, and we conclude that
p({x € E| f(z) < 0}) = 0. Therefore, f > 0 a.e. on E.

The proof of (ii) is identical to the proof of (i), and (iii) is a consequence of (i) and (ii). O
Exercises.

6.2.1. Let v be a signed measure on (X, S) and let 1, 112 be two measures on (X, S) at least one
of which is finite. If v = p1 — g, prove that v+ < py and v~ < po.

6.2.2. Let f be the Cantor function on [0, 1] extended as 0 on (—o0,0) and as 1 on (1, 4+00) and
let ¢ be the Lebesgue-Stieltjes measure on (R, B1) induced by f. Prove that i p Lm;.

6.2.3. (i) Recall that for every a € R the non-negative part and the non-positive part of a are defined
byat = max{a,0}anda” = —min{a, 0}. Provethat (a+b)* < a*+b" and (a+b)~ < a™ +b~
for every a, b € R for which a + b is defined.

(ii) Let v be a signed measure on (X, S) and let v+ and v~ be the non-negative and the non-positive
variation of v, respectively. Prove

v (A) =sup { > v(Ap)T ’ n € N,{Ay,..., A} is a measurable partition of A},

v=(A) =sup { Y }_, v(Ar)” |n € N,{Ay,..., A} is a measurable partition of A}
forevery A € S,

6.3 Complex measures.

Let (X, S) be a measurable space.

Definition. 4 function v : S — C is called a complex measure on (X,S) if
i) v(0) =0,
(ii) V(U;rg Aj) = Z;;Of v(A;) for every pairwise disjoint Ay, As, ... € S.

It is trivial to prove, taking real and imaginary parts, that the functions Re(v), Im(v) : § — R,
which are defined by Re(v)(A) = Re(v(A)) and Im(v)(A) = Im(v(A)) for every A € S,
are real measures on (X, S), and so they are bounded. That is, there is an M < 400 so that
|Re(v)(A)] < M and |Im(v)(A)| < M for every A € S. This implies that [v(A)| < 2M for
every A € S, and we have proved the

Proposition 6.9. Let v be a complex measure on (X,S). Then v is bounded, i.e. there is an
M < 400 so that |[v(A)| < M forevery A € S.
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Proposition 6.10. Let v, vy, vo be complex measures on (X, S) and \ € C.
(i) We define the function vi +v9 : S — C by

(1 +12)(A) = v1(A) + 12(A) forall A€ S.

Then vy + vy is a complex measure on (X, S).

(ii) We define the function A\v : S — C by
(M) (A) = Av(A), forall A€ S.

Then A\v is a complex measure on (X, S).
Proof. Similar to the proof of Proposition 1.16 or of Proposition 6.1. O

Definition. Let v, 1, v9 be complex measures on the measurable space (X,S) and \ € C. The
complex measures vy + v2 and \v on (X, S) which are defined in Proposition 6.10 are called sum
of v1 and vo and product of v by .

In particular,
v =Re(v) +ilm(v).

Lemma 6.1. Let K C C be finite. Then there is M C K, so that | >\ Al > & Yk |Al-
Proof. C is the union of
Q1 ={XRe(A) = [Im(N)[}, Q2 ={A|Re(A) < —[Im(A)|},
Qs ={A[Im(A) > [Re(N)[}, Qa4 ={A|Im(}A) < —[Re(A)]}.
If Aq,...,  \n € @1, then
M+ 4+ A > Re(Ar + -+ Ap) =Re(M1) +--- + Re(\,) > %(\All 4+ )

The same is true if Ay, ..., A, all belong to one of Q2, @3, Q4.
Now, we split K in four pairwise disjoint subsets K1, Ka, K3, K4, so that each contains elements
of K in 1, Q2, @3, Q4, respectively. Then at least one of them, say M, satisfies

Z)\EM |)‘| > %ZAeK ’)‘|

and so
| Xaemr A = 75 Xnenr M = 155 Zner A 2 § Cnere A

Proposition 6.11. Let v be a complex measure on (X, S). If for every A € S we define
W|(A) = sup { > p_1 [v(Ak)| |n € N,{Ay,..., An} is a measurable partition of A},
then the function |v| : § — [0, +00] is a finite measure on (X, S).

Proof. 1t is obvious that |v|() = 0.

Now, let A', A%,... € S be pairwise disjoint and A = U;':Of Al

If{A1,..., Ay} isan arbitrary measurable partition of A, then, forevery j, {A1NA7, ... A,NAT}
is a measurable partition of A7. This implies,

Sro (AR = S [ I v(Ae N AT < SR (202 [v(Ag 0 A7)
=22 (X (AR N AT)[) < 3015 v (A7)
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Taking the supremum of the left side of this inequality, we get |v|(A) < Z+ lv|(A7).

Now, we fix an arbitrary N € N and foreach j = 1,..., N we con51der any measurable parti-
tion {A{, e ,A%].} of A7. Then {Al,.. A}“, o AN AgN, i N+1 AJ} is a measurable
partition of A, and so

!V!(A)ZZL(Z L lv(Ay )"“( —N+1 )|>23 1(2 v(A )D

Taking the supremum of the right side of this inequality, we get |v|(A4) > Z ", [V|(A7). Now,
taking the limit as N — 400, we find |v|(A) > jﬁf lv|(A7).

Hence, [v[(A) = Y127 |[v[(A7), and so |v| is a measure on (X, S).

Finally, we shall prove that |v| is finite, i.e. that |v|(X) < +oc0. One way to prove this is to use
the same result for real measures, considering the real measures Re(v) and Im(v). This is done as
follows. We consider an arbitrary measurable partition { Ay, ..., 4, } of X, and we have

D k=t (AR < 30k [Re(W)(Ap)| + 2ok—y [Tm(v) (Ap)| < [Re(v)[(X) + [Im(v)|(X).
Taking the supremum of the left side of this inequality, we get
W|(X) < |Re(v)|(X) + [Im(v)|(X) < 00,

since the signed measures Re(v) and Im(v) have finite values.
Another way to prove that |v|(X) < 4o is the following.
We assume that |v|(X) = 400, and we claim that there are By, B, ... € S so that

B12By2B32D ..., [|(Bg)=+oo, |v(Bg)|=>k-1

for every k. We take B; = X and we assume that we have proven the existence of the first
By, ..., Bg. Since |v|(By) = +o0, there is a measurable partition { Ay, ..., A, } of By so that

2om=1 [V(Am) = 6(|v(B)| + k).

According to Lemma 6.1, there are some of the Ay, ..., A,, which we may assume that they are
the Aq,..., A;, so that

| St v(Am)| 2 § 30 W(A)| = [V(By)] + k.
We consider S = Ufn:l A,, C By, and then
w(S)| = |v(By)| + k.

Since |v|(S) + |v|(Br \ S) = |v|(By) = +00, we have that either |v|(S) = +oo or [v|(Bg \ S) =
+o00. In the first case we consider Byy1 = S C By, and then |v(Byy1)| > |v(Bg)| + k > k. In
the second case we consider By,11 = By \ S C By, and then |v(By41)| > |v(S)| — |v(Bg)| > k.
In any case we have proven the existence of an appropriate By 1, and so we have proven the claim.
Now we consider the pairwise disjoint A} = By \ B2, A = B\ Bs, ... and the Bo, = ;»:o? B;.
Then

v(B1) — v(Bso) = v(B1 \ Bso ):V(UJrOO Ap) =30 v(AR)

= 1lmk*>+oo Zm 1 I/(A ) = 11mk*>+oo(V(Bl) — I/(Bk»
Therefore limy_, o ¥(Bg) = V(Bx), i.¢. [V(Bx)| = +00, and we arrive at a contradiction. [

Definition. Let v be a complex measure on (X, S). The measure |v| defined in Proposition 6.9 is
called the absolute variation of v and the number |v|(X) is called the total variation of v.
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It is useful to note something which we have already noted for signed measures. If v is a
complex measure, then
lv(A)] < |v|(A) forall A€ S.

Indeed, we may consider { A} as a measurable partition of A, and then the definition of |v|(A)
implies the above inequlity.

Proposition 6.12. Let v, vy, vy be complex measures on (X,S) and A € C. Then

(i) [v1 + vo| < 1| + [vo] and [Av] = [A]]v],

(i) |Re(v)| < [v|, [Im()| < [v], [v] < [Re(v)| + [Im(v)].

Proof. (i) We consider an arbitrary measurable partition { Ay, ..., A, } of A € S, and we have

2= [+ o) (AR < 3oy [ (AR)] + 205 [v2(Ak)] < 1] (A) + |2 (A).

Taking the supremum of the left side, we find |1 + 12|(A) < |v1[(A) + |v2|(A).
In the same manner, we have

2=t [ (W) (AR)] = A oy [ (AR)] < [A][v[(A)-

Taking the supremum of the left side, we find [Av|(A) < |A||v|(A). If A # 0, we apply the last
inequality to the number } and to the signed measure Av, and we get |v/|(A4) < ‘—}\' |Av|(A). From

the two inequalities we get |A\v|(A) = |\||v|(A) for every A € S and every A # 0. Finally, this
last equality is obviously true if A = 0.

(ii) In the same manner, if { Ay, ..., A, } is any measurable partition of A € S, we have
> k=1 [Re(V)(Ap)| < 32k [v(AR)] < [vI(A),

2 k=t [ M) (Ap)] < 305y v(AR)] < [V|(A),
Taking the supremum of the left sides of these two inequalities, we find | Re(v)|(A) < |v|(A) and
| Im(v)[(4) < |v[(A).
The last inequality is a consequence of the result of (i). O

Example. Let 1 be a measure on (X,S) and f : X — C be a p-integrable function. Lemma
3.10 implies that [ 4 f dp is a complex number for every A € S and Theorem 3.9 implies that the
function A : § — C, which is defined by A(A) = [, f du forevery A € S, is a complex measure
on (X,S).

Definition. The complex measure \ which is defined in the last example is called the indefinite
integral of f with respect to | and it is denoted by f . Thus,

(fu)(A) = [ fdu, Ae€s.

The next result is the analogue of Proposition 6.6.

Proposition 6.13. Let (1 be a measure on (X, S) and f : X — C be integrable with respect to yu.
Then

Ful(A) = [yl fldp

forevery A € S. Hence,
|ful = [f]p-
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Proof. 1f {A1,..., Ay} is an arbitrary measurable partition of A € S, then

Yot [(f)(Ar)l = >0y ‘ fAk fdﬂ‘ <Dkt fAk |fldp = [, |fldp.

Taking the supremum of the left side of this inequality, we get | fu|(A) < [, |f] dp.
Since f is integrable, it is finite a.e. on X. If N = {z € X | f(z) # oo}, then u(N¢) = 0, and
Theorem 2.1 implies that there is a sequence (¢,,) of measurable simple functions so that

¢m — sign(f),  [om| T [sign(f)| <1

on N. Defining each ¢, as 0 on N¢, we have that all these properties hold a.e. on X.
If ¢y = 307 Kk XE,,, is the standard representation of ¢, then |, x| < 1 forall k =
1,...,nm, and so

}fA fom dlu«‘ = |ZZ;”1 Km k fAﬂEmyk fd,u‘ < ZZZH ‘(f/l,)(Aﬂ ETn,k)’ < |fﬂ|(A)v

where the last inequality is true since {AN Ey, 1,..., AN Ey, 5, } is a measurable partition of A.
By the Dominated Convergence Theorem we get that

Jalfldp= [, fsign(f)du < |ful(A).
We conclude that | fu|(A) = [, |f] du forevery A € S. O

Exercises.

6.3.1. Let v be a real or complex measure on (X, S). If v(X) = |v|(X), prove that v = |v|.

6.3.2. Let v be a signed or complex measure on (X, S). We say that { A1, Ao, ...} is a countable
measurable partition of A € S, if Ay, € S for all k, the sets A1, Ag, ... are pairwise disjoint and
A=A UAU---.

Prove that |v|(A) = sup{> /> [v(A)|| {A1, Az, ...} is a countable measurable partition of A}
forevery A € S.

6.4 Integration.

Let (X, S) be a measurable space. -
The next definition treats only the case when both f and v have their values in R.

Definition. Let v be a signed measure on (X,S). If f : X — R is S-measurable, we say that
the integral fX fdv of f over X with respect to v is defined if both fX fdvt and fX fdv™ are
defined and they are neither both +oo nor both —oo. In such a case we write

Jx fdv= [y fdvT — [ fdv.
Moreover; we say that [ is integrable over X with respect to v if [ < [ dv is finite.

Proposition 6.14. Let v be a signed measure on (X,S) and f : X — R be measurable. Then f
is integrable with respect to v if and only if f is integrable with respect to both v+ and v~ if and
only if f is integrable with respect to |v|.

Proof. [y fdv is finite if and only if both [y fdv™ and [y fdv~ are finite or, equivalently,
Jx |fldvt < 4oc0and [ |f|dv™ < 4oc or, equivalently, [y |f|d|v| < +oco if and only if f is
integrable with respect to |v/|. O
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Now, let v be a signed measure or a complex measure on (X,S) and f : X — R or C be
S-measurable. If [ | f| d|v| < +oo0, then f is finite |v|-a.e. on X and the |v|-almost everywhere
defined functions Re(f), Im( f) satisfy [ |Re(f)|d|v| < +o0and [ |Im(f)|d|v| < 4. Since
|Re(v)| < |v] and |Im(v)| < |v|, Lemma 6.6 implies that all integrals [, |Re(f)|d|Re(v)],
Jx IRe(f)|d|Im(v)], [ |Im )| d|Re(v)| and fX | Im(f)| d| Im(v)| are finite. Proposition 6.12
implies that [, Re )dRe(v), [y Re(f)d Im )> Jx Im(f) dRe(v) and [ Im(f) dIm(v) are all
defined and they are real numbers

Therefore, the following definition is valid.

Definition. Let v be a signed measure or a complex measure on (X,S) and f : X — R or C be
S-measurable. We say that f is integrable over X with respect to v if f is integrable with respect
fdv of f over X with respect to v is defined

and that its value is given by
Jx fdv = [y Re(f)dRe(v) — [ Im(f) dIm(v) +i [ Re(f) dIm(v) +i [ Im(f) dRe(v).

Of course, we have the particular formulas

Jx fdv=[yRe(f)dv+i [ Im(f)dv, [y fdv= [y [fdRe(v)+i[y fdIm(v),
all under the assumption that [ |f|d|v| < +oo.

Example. Let v be a signed measure on (X,S) and E € S so that v (E) < 400 or v~ (E) <
+00. Then [y xgdvt < 400 or [ xgdv~ < 400, respectively, and so [y xg dv is defined
and

Jxxedv = [y xpdvt — [ xpdv™ =vH(E) —v (E) =v(E).

Now, let v be a complex measure on (X, S) and E € S so that |[v|(E) < 4oc0. Then [ xgd|v| =
[V|(E) < +00, and so [ x g dv is defined and, from the previous case,

Jx xpdv = [y xpdRe(v) +i [y xp dIm(v) = Re(v)(E) + iIm(v)(E) = v(E).

We shall not try to extend all properties of integrals with respect to measures to properties of
integrals with respect to signed measures or complex measures. The safe thing to do is to reduce
everything to non-negative and non-positive variations or to real and imaginary parts.

For completeness, we shall only see a few of the most useful properties, like the linearity
properties and the appropriate version of the Dominated Convergence Theorem.

Proposition 6.15. Let v, 11, v; be signed or complex measures on (X,S)and f, f1,fo: X - R
or C be all integrable with respect to these measures. Then, for every A1, Ao € C, we have

JxAifi+Xafo)dv =X [y frdv+ Ao [y fody,
fX fdAvr + Aarn) = A1 fX fdvi+ Xo fX fduvs.
Proof. We reduce everything to real functions and signed measures. O

Theorem 6.5. (Dominated Convergence Theorem) Let v be a signed or complex measure on
(X,S), and all f,f, : X - RorCandg: X — [0,+00] be S-measurable. If f, — f and
| ful < g on X except on a set which is null for v, and if [ g d|v| < +oo0, then

Jx fandv — [y fdv.

Proof. A set which is null for v is, also, null for v+ and v, if v is signed, and null for Re(v) and
Im(v), if v is complex. Moreover, Lemma 6.6 implies that fX gdvT < 4ooand fX gdv™ < 400,
if v is signed, and [ g d|Re(v)| < 400 and [y gd|Im(v)| < 400, if v is complex.

Therefore, the proof reduces to the usual Dominated Convergence Theorem for measures. O
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Theorem 6.6. Let v be a signed or complex measure on (X,S) and f : X — R or C be such that
the [y f dv is defined. Then

| [x fdv] < [xIfldlvl.
Proof. We may assume that [ | f| d|v| < +oc or else the inequality is obvious.

If ¢ is a measurable simple function with standard representation ¢ = >, ki, and so that
|v|(E}x) < +oo for all k, then we have

| [x ¢dv| = | Yoy sk [ xm, dv] = | Xpey mrv(Br)| < X0y skl lv(Ey)|
< ke |Rkllv[(Br) = [x ol dv].
The proof in the case of a general function f is a standard limiting argument. O

A companion to the previous theorem is
Theorem 6.7. Let v be a signed or complex measure on (X, S). Then
W|(A) = sup{| [, fdv|| f is S-measurable, |f| <1 v-a.e. on A}

forevery A € S, where the functions f have real values, if v is signed, and complex values, if v is
complex.

Proof. Let M = sup {’ Ja fdl/’ }f is S-measurable, |f| < 1 v-a.e. on A}.
If f is S-measurable and |f| < 1 v-a.e. on A4, then |fxa| < x4 v-a.e. on X, and Theorem 6.6
implies
| [afdv| =[x fxadv] < [x[fxaldlv] < [x xadv| = [v|(A).
Hence, M < |v|(A).
Now, let { Ay, ..., A, } be any measurable partition of A.
Then Y, [v|(A)| = |V|(A) < 400, and so |v|(Ay) < +oo for all k. We consider the function
[ = p_1 KkXA,» Where k= sign(v(Ay)) for all k. Then |f| < 1 on A, and so

M > | [y fdv| = 5o s o xan dv] = | Zioy v (Ax)| = Xjoy [v(Ax)]-
Hence, M > |v|(A). O

Finally, we prove a result about integration with respect to an indefinite integral. This is im-
portant because, as we shall see in the next section, indefinite integrals are special measures which
play an important role among signed or complex measures.

Theorem 6.8. Let (1 be a measure on (X, S) and f : X — R or C be measurable so that Jx fdu
is defined. A measurable function g : X — R or C is integrable over X with respect to fu if and
only if g f is integrable over X with respect to . In such a case,

Jxgd(fu) =[x gf dp.
This equality is true in the case of S-measurable f,q : X — [0, 400| without any restriction.

Proof. We consider first the case of S-measurable f,g: X — [0, +00].
If g = x4 for some A € S, then

S xad(fp) = (Fn)(A) = [ fdu= [y xaf dp.

Thus, the equality | v9d(fp) = J 9/ dpuis true for S-measurable characteristic functions g. This
extends by linearity to S-measurable non-negative simple functions g, and then by the Monotone
Convergence Theorem to the general S-measurable non-negative g.

This implies that, in general, [ [g] d(|f|n) = [y |9f| dp.

From this we see that g is integrable over X with respect to fu if and only if, by definition, g is
integrable over X with respect to | fu| = | f|p if and only if, by the equality we just proved, g f is
integrable over X with respect to p.

The equality | vgd(fu) = S « 9f dp can now be established by reducing all functions to non-
negative functions and using the special case we proved. O
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6.5 Lebesgue decomposition, Radon-Nikodym derivative.

Let (X, S) be a measurable space.
We extend two definitions from section 6.2. We had formulated the first definition only for
signed measures and the second definition only for measures.

Definition. Let v be a complex measure on (X,S) and A € S. We say that A is a null set for v if
v(B) =0forevery B€ S, B C A

Definition. Let v1, vo be two signed or complex measures on (X, S). We say that vy, vs are mu-
tually singular if there exist A1, As € S so that Ay is null for vo and As is null for vy and
AjUAy =X, AjNAy=0.
We use the symbol

141 J_Z/Q

to denote that vy, vo are mutually singular.

Lemma 6.2. (i) Let v be a signed measure on (X,S) and A € S. Then A is null for v if and only
if it is null for both v, v~ if and only if it is null for |v|.
(ii) Let v be a complex measure on (X,S) and A € S. Then A is null for v if and only if A is null
Jfor both Re(v) and Im(v) if and only if A is null for |v|.

Proof. Let A be null for |v|. Forevery B € S, B C A, we have that |v(B)| < |v|(B) = 0, and
so A is null for v.

Conversely, let A be null for v. If {41, ..., A, } is any measurable partition of A, then v(Ay) =0
forall k,andso Y _,_, [v(Ag)| = 0. Hence, |v|(A) = 0, and so A is null for |v|.

If v is signed, then from |v| = v + v~ we have that A is null for both v, v~ if and only if it is
null for |v|.

If v is complex, then from v = Re(v) + ¢ Im(v) we have that A is null for both Re(v), Im(v) if
and only if it is null for v. O

Lemma 6.3. (i) Let vy and vy be two signed measures on (X,S). Then vy and vo are mutually
singular if and only if each of vi, vy and each of vy , vy are mutually singular if and only if |v1|
and |vs| are mutually singular.
(ii) Let vy and vy be complex measures on (X, S). Then, v and vo are mutually singular if and
only if each of Re(v1), Im(v1) and each of Re(v2), Im(vo) are mutually singular if and only if ||
and |va| are mutually singular.

Proof. The proof is a trivial consequence of Lemma 6.1. O

Lemma 6.4. (i) Let v,v1, vo be signed measures on (X,S) and A1, Ay € R. If vi1lv, valv and
Ay + \ovs is defined, then (A1 + Aavo) Lu.

(ii) Let v,v1,v9 be complex measures on (X,S) and A1, 2 € C. If v1 Ly, vo Ly, then (\v) +
o) Lu.

Proof. There are Ay, By, A, Bo € Ssothat AyUB; = X = AsUBy, AyNB; =0 = Ay N Bo,
Aq is null for v1, As is null for v and By, By are both null for v. Then By U By is null for v and
A1 N As is null for both v; and v, and, hence, for A\jv; + Agrve. Since (A1 NA2)U(B1UBg) = X
and (Al N Ag) N (Bl U Bg) = (), we have that ()\11/1 + )\QZ/Q)J_I/. O

Definition. Let 1 be a measure and v be a signed or complex measure on (X,S). We say that v
is absolutely continuous with respect to 11 if v(A) = 0 for every A € S with u(A) = 0, and we
denote this by

v L .
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Example. Let f : X — R or C be measurable so that the S « [ dp is defined (recall that in the
case of C this means that f is integrable). Then the indefinite integral f i is absolutely continuous

with respect to L.
This is obvious: if A € S has ;1(A) = 0, then (fu)(A) = [, fdu=0.

Lemma 6.5. Let 1. be a measure and v, vy, vo be signed or complex measures on (X, S).

(i) If v is signed, then v < p if and only if v < pand v~ < pif and only if |v]| < pu.

(ii) If v is complex, then v < p if and only if Re(v) < p and Im(v) < w if and only if |v| < p.
(i) If v < pand vy, then v = 0.

(iv) If v1, 1o are signed and A1, Ao € R and \v1 + Ao is defined and v1 < i, 1o < u, then
A1+ Aavg K .

(v) If v1,v9 are complex and A1, Ao € C and vy < p, vo K 11, then A\vy + Aavg < L.

Proof. (i-ii) Let |v| < p. If A € S, u(A) = 0, then |v(A)| < |v|(A) = 0, and so v(A) = 0.
Hence, v < pu.

Conversely, Let v < p, and let A € S with u(A) = 0. If {A4;,..., A,} is any measurable
partition of A, then z1(Ay) = 0 for all k, and so v(Ay) = 0 for all k. Hence, > ;._, [v(Ag)| = 0,
and this implies that |v|(A) = 0. Thus, |v| < p.

Since ¥(A) = 0 is equivalent to Re(r)(A) = Im(v)(A) = 0, the first equivalence is obvious.
If v is signed, then from || = vt + v~ we have that v < pand v~ < pifand only if || < p.
If v is complex, then from v = Re(v) + i Im(v) we have that Re(r) < p and Im(v) < p if and
only if v < p.

(iii) We consider sets M, N € Ssothat M UN = X, M NN = (), M is a null set for v and N is
anull set for . Then p(N) = 0 and v < p imply that N is a null set for v. Butthen X = M UN
is a null set for v, and so v = 0.

(iv-v) If A € S has u(A) =0, then v1(A) = v5(A) = 0, and so (A1 + Aan)(A) = 0. O

The next result justifies the term absolutely continuous at least in the special case of a finite v.

Proposition 6.16. Let 11 be a measure and v be a real or a complex measure on (X,S). Then
v < wif and only if for every € > 0 there is a 6 > 0 so that |v(A)| < € for every A € S with
pu(A) <.

Proof. Let us assume that for every e > 0 there is a 0 > 0 so that |v(A)| < e forevery A € S
with p(A) < 0. If u(A) = 0, then u(A) < 6 for every 6 > 0, and so |v(A)| < € for every € > 0.
Hence, v(A) = 0, and so v < p.

Conversely, let us assume that there is some ¢y > 0 so that for every § > 0 there is A € S with
u(A) < 6 and |[v(A)| > €. Then for every k € N there is Ay € S with u(A) < % and
V|(Ar) > |v(Ag)| > €. We consider By = U Ay, and then pu(By) < %%1 and |v|(By) >
|v|(Ag) > € for every k. If we set B = ﬂ;f{ By, then we have u(B) = 0. Since By | B, the
continuity of |v| from above implies |v|(B) > €. Therefore, |v| is not absolutely continuous with
respect to ;. Now Lemma 6.4 implies that v is not absolutely continuous with respect to . O

Theorem 6.9. Let 11 be a measure on (X, S).

(i) If \, A1, p, p1 are signed or complex measures on (X,S) so that A\ < p, A\ < pand pLp,
p1luand X+ p = A1 + p1, then A = Ay and p = py.

(i) If f, f1 : X — Ror C are p-integrable over X and fu = fiy, then f = fi p-a.e. on X.

(i) If f, f1 : X — R are S-measurable and the Jx fdp, [ f1 dpare defined and fu = fip, then
f = fi p-a.e. on X, provided that i restricted on the set {x € X | f(x) # fi(x)} is semifinite.

Proof. (i) There exist sets M, M1, N,N; € Swith MUN = X = My UN;, MNN = { =
M N Ny sothat N, Ny are null for p, M is null for p and M is null for p;. If we set K = NU Ny,
then K is null for 4 and K¢ = M N M is null for both p and p;. Since A < p, A\ < p, we have
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that K is null for both A and A;.
IfAeS,ACK,then

p(4) = p(A) + A(A) = pr(A) + A (A) = py ().
IfAeS,AC K¢ then p(A) =0 = p1(A). Therefore, for every A € S we have
p(A) = p(ANK) + p(ANK) = p1(ANK) + p1 (AN K°) = p1(4),

and so p = p;. A symmetric argument implies that A = A;.
(i) We have

Jalf = f)dp= [, fdu— [, frdp = (fu)(A) = (fir)(A) =0

for all A € S. Now, Theorem 3.3 implies f = f; pu-a.e. on X.

(ifi) Let t,s € Rwitht < s,andlet A, s = {z € X | f(z) <t <s < fi(z)}.

If 0 < p(Ats) < +oo, we consider B = Ay 5. If 1A ) = 400, we consider any B € S so that
B C A;sand 0 < pu(B) < +oo. In any case, we have

(fu)(B) = [g fdu < tu(B), (fip)(B)= [ frdu> su(B),

and so sy (B) < tu(B). This implies (B) = 0, which is false.
The only remaining case is ;1(A; ;) = 0. Now we observe that

{z e X|f(x) < file)} = Uy seq,ics Ats:

which implies u({z € X | f(z) < fi(x)}) = 0. Similarly, u({z € X | f(z) > fi(z)}) = 0, and
we conclude that f = f; p-a.e. on X. O

Lemma 6.6. Let 1, v be finite measures on (X, S). If u, v are not mutually singular, then there is
€0 > 0and Ay € S with u(Ag) > 0 so that % > eg forevery A e S, A C Ay with u(A) > 0.

Proof. For every n € N we consider a Hahn decomposition of the signed measure v — % . There
are sets P,, N,, € S so that P, UN,, = X, P, N N,, = () and P, is a non-negative set and N,, is
a non-positive set for v — % L.

We consider N = 1> N,,. Since N C N,,, we get (v — L1)(N) < 0 forall n. Then v(N) <
L 4(N) for all n and, since p(N) < 400, we have v(N) = 0.

We consider P = (J'> P,,, and then PUN = X and PN N = (). If 4(P) = 0, then y and v are
mutually singular. Therefore w(P) > 0, and this implies that p(Py) > 0 for at least one N. We
define A9 = Py for such an NV and we set ¢g = % for the same V.

Now, u(Ap) > 0. Since Ay is a non-negative set for v — ey, for every A € S, A C Ay with

w(A) > 0we get v(A) — eou(A) > 0, and so g ; > €. O

Lebesgue-Radon-Nikodym Theorem. The signed case. Let v be a o-finite signed measure
and p be a o-finite measure on (X, S). Then there exist unique o-finite signed measures X\ and p
on (X,S) so that

v=A+p, ALy, plpu.

Moreover; there exists a S-measurable f : X — R so that the | « [ du is defined and
A= fpu.

If f1 is another such function, then fi = f p-a.e. on X.
If v is non-negative, then \ and p are non-negative and f > 0 p-a.e. on X.
If v is real, then A and p are real and f is integrable over X with respect to .
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Proof. The uniqueness part of the statement is a consequence of Theorem 6.9. Observe that 1 is
o-finite, and so it is semifinite.

Therefore, we need to prove the existence of A, p and f.

(a) We first consider the special case when both p, v are finite measures on (X, S).

We define C to be the collection of all S-measurable f : X — [0, +oc] with the property

Jafdu<v(4), AeS.

The function 0, obviously, belongs to C and, if fi, fo € C, then f = max{fi, fo} € C. Indeed, if
A e S, weconsider Ay = {z € A fo(x) < fi(x)} and Ay = {z € A| fi(x) < fa(x)}, and we
have

fAde:fAlfdﬂ+fA2de:fAl fldﬂ+fA2 fadp < v(Ar) +v(As) = v(A).

We define
k=sup{ [y fdu|feC}. (6.2)

Since 0 € Cand [ fdp < v(X) forall f € C,wehave0 <k < v(X) < +oo.

Now, there is a sequence (f) in C so that [ f, du — k. We define gy = f1 and, inductively,
gn = max{gn_1, fn} forall n > 2. Then g,, € C for all n. We define f = lim,,_,~ gn, and then
gn T f. From [, gndp < v(A) forall n and all A € S we get, by the Monotone Convergence
Theorem, that [, fdu < v(A) forall A € S. Therefore, f € C, and so [y fdu < k. On the
other hand, we have that f, < g, < f forall n. Thus, [y f,du < [y fdp < & for all n and,
since | < Jndp — £, we conclude that

Jx fdp=r < +o0.

In other words, f is a maximazing element of C for (6.2).

Since (v — fu)(A) = v(A) — [, fdu > 0forall A € S, the signed measure v — fu is a finite
measure.

If v — fu and p are not mutually singular, then by Lemma 6.5 there is ¢g > 0 and Ap € S with
p(Ap) > 0 so that

v(A) ﬁ [y fdp= (V;JEAA))(A) > €
forall A e S, A C Ay with u(A) > 0. Thus,
Ju(f + €oxa,) du < v(A)
forall Ae S, AC Ay. Now forany A € S we have
Ja(f +eoxag) diw = [n 0, (f + €oxao) dp+ [ 4 4, (f + €0Xa5) dit

< V(AN Ag) + [ 4, (f + €oxao) dpp = V(AN Ag) + [ 4, fdpe
<v(ANAg) +v(A\ Ag) = v(A).

This implies that f 4 €yx 4, belongs to C, and so

w4 eop(Ao) = [ (f +eoxa,) du < k.

This is false and we arrived at a contradiction. Therefore, v — fu L p.
Weset p = v — fuand A = fu and we have the decomposition v = A + p with A < pu, pLp.
Both \ and p are finite measures and f : X — [0, +-00] is integrable with respect to x, since

AX) =[x fdp=r<+oo, p(X)=v(X)— [y fdu=v(X)—r<foo.

(b) We now suppose that both y, v are o-finite measures on (X, S).
Then there are pairwise disjoint Fy, F, ... € S so that X = |J;-> F, and p(Fy) < +oo for all k
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and pairwise disjoint G1,Ga, ... € S so that X = |J 5 G; and v(G}) < +oc for all . Then the
sets Fy, N G| are pairwise disjoint, they cover X and u(Fy, N G;) < +oo v(F, NG)) < +oo for
all k, 1. We enumerate them as E1, E», .. ., and then we have X = (J! E,, and u(E,) < +oo,
v(Ey,) < 4oo for all n.

We consider the restrictions u,, and v, of ¢ and v on each F,,. Namely,

pn(A) = w(ANE,), vn(A)=v(ANE,) forall AecS.
Then all p,,, vy, are finite measures on (X, S), and we also have

p(A) =37 n(A), v(A) =31 vn(A) forall A€ S.

n=1

Applying the results of part (a), we see that there exist finite measures A, p, on (X, S) and fi,-
integrable f,, : X — [0, +o0] so that

Un =An+ Pns An K iy, Pnliin, )‘n(A) = fA fndpn, forall AeS.

From v, (ES) = 0 we get that \,,(ES) = pn(ES) = 0. Now, since p,(A) = A, (A) = 0 for every
A eS8, AC E, therelation A, (A) = [ 4 fn dpipn, remains true for all A € S if we change f,, and
make it 0 on E};. Hence, we may assume that

fa=0 on B, M(A) = [4np fodp, forall AcS.
We define A\, p: S — [0, +o0] and f : X — [0, +o0] by

AA) = Y55 AlA), p(A) = Y% pulA), f(2) = Y5 fule) forall A€ S, € X.

It is trivial to see that A and p are measures on (X, S) and that f is S-measurable.

Now, the equality v = X\ 4 p is obvious.

If A € Shas u(A) = 0, then pp(A) = p(AN E,) = 0, and so A\, (A) = 0 for all n. Hence,
A(A) =0,and so A < p.

Since py, Ly, there is R,, € S so that R, is null for p,, and RS is null for p,. But, then R/, =
R, N E, is also null for p,, and R/ = RS U E¢ is null for p,,. Since R], is obviously null for all
fim, M # n, we have that R/, is null for y. Then R = (J>S R/, is null for y and R® = 1> RI°
is null for all p,, and, hence, for p. We conclude that p_L p.

The A and p are o-finite since A(E),) = A\, (Ey) < +o0 and p(Ey,) = pn(Ey) < +oo for all n.
Finally, for every A € S,

AA) = Z+Oo)\( ) = :L_g AmEnf"d“n: :ngmEnfdlu““
Z =1 AmEnfd:“:fAfdr“'

The fourth equality is true because | 5, [ din = I} 1, [ dy for all S-measurable f : X — [0, +oc].
This is justified as follows. If f = x4 with A € S, then the equality becomes p,(A N E,) =
u(A N E,) which is true. Then the equality holds, by linearity, for non-negative S-measurable
simple functions. Finally, by the Monotone Convergence Theorem, it holds for all S-measurable
f:X —[0,400].

Now, from (6.3) we conclude that A = fu and that A < .

() In the general case we have v = vt — v, and both v, v~ are o-finite measures on (X, S).
We apply the result of part (b) and we get o-finite measures A1, Ao, p1, p2 so that v = A1 + p1,
v =X+ poand N\ < i, Ay < i1, p1 L, poLp. Since either v+ or v~ is a finite measure, we
have that either A1, p; are finite or Ao, po are finite. Now, we consider A = A\ — g and p = p1 —pa,
and we have that v = A+ pand A < p, pLp.

There are also S-measurable f1, fa : X — [0, +0o0] so that Ay = fip and Ay = fop. Then, either
Jx frdp =AM (X) < +ooor [y fodp = Xa(X) < +00, and so either f; < +o0 p-a.e. on X or

(6.3)
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f2 < 400 p-a.e. on X. Hence, the function f = f; — fo is defined p-a.e. on X and the integral
Jx fdp = [y frdp— [ f2du exists. Now,

)\(A) :Al(A)_AQ(A) :fAfldﬂ_fAde,u:fAfd:u
forall A € S,and so A = fpu. O

Lebesgue-Radon-Nikodym Theorem. The complex case. Let v be a complex measure and 1
be a o-finite measure on (X, S). Then there exist unique complex measures A and p on (X, S) so
that

v=A+p, ALy, plpu.

Moreover, there exists a S-measurable f : X — C so that f is integrable over X with respect to
W and
A= fu.

If f1 is another such function, then f1 = f p-a.e. on X.
If v is non-negative, then \ and p are non-negative and f > 0 p-a.e. on X.
If vis real, then \ and p are real and f is extended-real valued.

Proof. The measures Re(r) and Im(v) are real measures, and, by the previous theorem which
deals with the signed case, we have that there exist real measures A1, A2, p1, p2 on (X, S) so that
Re(v) = A1+ p1, Im(v) = Ay + poand Ay < p, Ao < pand py Ly, polu. We define
A=A1+iXyand p = p1 +ip2. Thenv = A+ pand A < pand pLp. There are also p-integrable
fi,f2: X — Rsothat \; = fipand Ay = fou. The function f = f; +ifs : X — Cis p-a.e.
defined, it is u-integrable, and

(fu)(A) = [y fdp= [, frdu—+i [, fadp = Ai(A) +ida(A) = A(A)

forall A € S. Hence, A = fpu.
The uniqueness is an easy consequence of Theorem 6.11. O

Definition. (i) Let v be a signed measure or a complex measure and |1 be a measure on (X, S). If
there exist, necessarily unique, signed or complex measures X and p on (X, S), so thatv = XA+ p,
A L pand plp, then we say that X and p constitute the Lebesgue decomposition of v with respect
to p. Also, A is called the absolutely continuous part and p is called the singular part of v with
respect to [u.

(ii) Let v be a signed or complex measure and . be a measure on (X, S) so that v < . If there
exists a S-measurable f : X — R or C so that Jx [ du is defined and v = fpu, then f is called
a Radon-Nikodym derivative of v with respect to p. Any Radon-Nikodym derivative of v with
respect to | is denoted

&

The two Lebesgue-Radon-Nikodym Theorems say that, if v and i are o-finite, then v has a
unique Lebesgue decomposition with respect to . Moreover, if v and u are o-finite and v < p,
then there exists a Radon-Nikodym derivative of v with respect to u, which is unique if we disregard
p-null sets. This is true because v = v + 0 is, necessarily, the Lebesgue decomposition of v with
respect to u.

We should make some remarks about Radon-Nikodym derivatives.

1. The symbol % appears as a fraction of two quantities but it is not. It is like the well known

symbol % of the derivative in elementary calculus.

2. The definition allows all Radon-Nikodym derivatives of v with respect to i to be denoted by
the same symbol t%' This is not absolutely strict and it would be more correct to say that Z—Z is
the collection (or class) of all Radon-Nikodym derivatives of v with respect to . 1t is simpler to
follow the tradition and use the same symbol for all derivatives. Actually, there is no danger for

176



confusion in doing this, because the equality f = u or its equivalent v = fu acquires its real
meaning through the v(A) = [, fdu, A€ S.

3. As we just observed, the real meaning of the syrnbol 1s through the equality v(A) = [, g” du
for all A € S, which, after formally simplifying the fractlon (1), changes into the true equahty
A) = [,dv.

4. Theorem 6.9 implies that the Radon-Nikodym of v < u with respect to p, if it exists, is unique
when (1 is a semifinite measure, provided we disregard sets of zero y-measure.
The following propositions give some properties of Radon-Nikodym derivatives of calculus

type.

Proposition 6.17. Let vy, v2 be complex or o-finite signed measures and . be a o-finite measure
on (X,8). If v1 < p, vo K pand if vy + vo is defined, then v, + vy < pand

d(”}j:”Q) = ‘2’;1 + < d”2 p-a.e. on X.
Proof. We have (v +12)(A) = [, Cgﬁ dp+ [, 7 v gy = NG (44 4 d’f)du foralAeS. O

Proposition 6.18. Let v be a complex or a o-finite signed measure and . be a o-finite measure on
(X,S). Ifv < pand k € CorR, then kv < p and

Proof. We have (kv)(A) =k [, d;: dp = [,(rkg;) duforall A € S. O
The following is the chain rule.

Proposition 6.19. Let v be a complex or o-finite signed measure and ji1, o be o-finite measures
on (X,8). If v < p1 and py < pa, then v < pg and

dv _ dv dpy
duz du1 duz

Proof. If A € S has ,ug(A) = 0 then ul(A) = 0, and so v(A) = 0. Therefore, v < po.

uo-a.e. on X.

Theorem 6.8 implies that v/( f A dm dps = | A ddlfl Z/’g duo for every A € S. O
Proposition 6.20. Let (11 and 9 be two o-finite measures on (X, S). If p1 < po and py < p,
then

% % =1 pi-ae on X.
Proof. We have ju1(A) = [, dyuy forevery A € S, and so d’“ =1 pp-a.e. on X. Now the result
is a trivial consequence of Proposition 6.19. O

Proposition 6.21. If v is a o-finite measure on (X, S), then v < |v| and

‘d\u|‘_1 v-a.e. on X.

Proof. We have ‘dMHy\ = |d|y‘]y] =

V|}—1\u|-ae on X. O
Exercises.

6.5.1. Let f be the counting measure on (N, P(N)) and p be the point-mass distribution on N

induced by the function a,, = %, n € N. Prove that there is an ¢y > 0 and a sequence (Ej) of

subsets of N, so that (Ex) — 0 and #(E)) > ¢ for all k. On the other hand, prove that ff < p.

6.5.2. Let v, uuq be o-finite measures on (X1, Sy) and v, uo be o-finite measures on (X9, S2). If

v < p1 and vp K g, prove that vy ® v K g ® o and that ((Zlgff)) (x1,22) = 3;11 (xl)jzz (z2)

for (1 @ pg)-ae. (z1,22) € X7 x Xo.
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6.5.3. Let £ be the counting measure on (R, 7).

(i) Prove that m; < §. Is there any f so that m; = ff?

(i1) Is there any Lebesgue decomposition of ff with respect to m; ?
6.5.4. Generalization of the Lebesgue-Radon-Nikodym Theorem.

Let v be a signed measure and i be a o-finite measure on (X, S) so that v < p. Prove that there
is a measurable f : X — R, so that [ fdu existsand v = fp.

6.5.5. Generalization of the Lebesgue Decomposition Theorem.
Let v be a o-finite signed measure and 1 a measure on (X, S). Prove that there are unique o-finite
signed measures A, p on (X, S) so that A < u, pLpandv = X\ + p.

6.5.6. Let v, 11 be two measures on (X, S) with v < pu. If A = p + v, prove that v < A. If
f: X — [0,400] is measurable and v = f A, prove that 0 < f < 1 p-a.e. on X and v = %u.

6.5.7. Let v be a signed measure on (X,S). Prove that v, v~ < |v| and find formulas for the

Radon-Nikodym derivatives & d| I " and ‘fl‘”w

6.5.8. Let  be a finite measure on (X, S). We define d(A, B) = u(AAB) forall A, B € S.

(i) Prove that (S, d) is a complete metric space.

(ii) If v is a real or a complex measure on (X, S), prove that v is continuous on S (with respect to
d) if and only if v is continuous at () (with respect to d) if and only if v < p.

6.5.9. Conditional Expectation.

Let (X,S) be a measurable space and Sy be a o-algebra with Sy C S. Let i be a measure on
(X, S) which is o-finite on (X, Sp) and let us denote by the same symbol y the restriction of the
measure on (X, Sp).

If f: X — R or Cis S-measurable and S  J du exists, prove that there is a Sp-measurable
fo : X — Ror, respectively, C so that [ fodu existsand [, fodpu = [, fdp forall A € Sp.

If hg has the same properties as fy, prove that hg = fp p-a.e. on X.

Any fp with the above properies is called a conditional expectation of f with respect to Sp and it
is denoted by E(f|So).

Prove:

(i) E(f|S) = f p-a.e. on X.

(i) E(f + g/So) = E(f[So) + E(g|So) p-a.e. on X.

(iii) E(k f|So) = KE(f|So) p-a.e. on X.

(iv) If g is Sp-measurable, then E(gf|Sy) = gFE(f|So) pu-a.e. on X.
W IfS; C Sy C S, then E(f|S1) = E(E(f|So)|S1) p-a.e. on X.

6.6 Differentiation.

DIFFERENTIATION OF INDEFINITE INTEGRALS OVER R".

Let f : [a,b] — R be a Riemann integrable function. The Fundamental Theorem of Calculus says
that for every = € [a, b] which is a continuity point of f we have = [* f(y)dy = f(z). Of course,
this means that

lim, o4 (J57 fly)dy — [T f(y) dy) /r =lim,os ([T f)dy — [T77 f(y) dy) /r = f().
Adding the two limits, we find
lim, o4 ([ F(y)dy) /(2r) = f(2).

In this (and the next) section we shall prove a far reaching generalisation of this result: a
fundamental theorem of calculus for indefinite Lebesgue integrals and, more generally, for locally
finite Borel measures on R".
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Wiener’s Lemma. Let By, . .., By, be open balls in R™. There exist pairwise disjoint B;,, . . ., B;

so that my (B, ) + - -+ + my(B;,) > 3% My (Br U -+ U By,).

k

Proof. From By, ..., By, we choose a ball B;, with largest radius. (There may be more than one
balls with the same largest radius and we choose any one of them.) Together with B;, we collect
all other balls, its satellites, which intersect it and call their union (B;, included) C';. Since each
of these balls has radius not larger than the radius of B;,, we see that C; C B B where B} | is the
ball with the same center as B;, and radius three times the radius of B;, .

Therefore, m,,(C1) < mn(B;,) = 3"mu(B;,).

The remaining balls have empty intersection with B;, and from them we choose a ball B;, with
largest radius. Of course, B;, does not intersect B;,. Together with B;, we collect all other balls
(from the remaining ones), its satellites, which intersect it and call their union (B;, included) Cs.
Since each of these balls has radius not larger than the radius of B;,, we have Cy C B;;, where
B;, is the ball with the same center as B;, and radius three times the radius of B;,.

Therefore, m,,(Cs) < mn(B;‘Z) = 3"my(Bi,).

We continue this procedure and, since at every step at least one ball is collected (B5;, at the first step,
B;, at the second step and so on), after at most m steps, say at the kth step, the procedure will stop.
Namely, after the first k — 1 steps, the remaining balls have empty intersection with B;,, ..., B
and from them we choose a ball B;, with largest radius. This B;, does notintersect B;,, ..., B;, .
All remaining balls intersect B;, , they are its satellites, (since this is the step where the procedure
stops) and form their union (B3;, included) C},. Since each of these balls has radius not larger than
the radius of B;,, we have C); C B} , where B _is the ball with the same center as B;, and radius
three times the radius of B;, .

Therefore, m,, (Cy) < mn(B;-“k) = 3"my, (B, ).

Clearly, each of the original balls By, . . ., By, is either chosen as one of B;, , . . ., B;, oris asatellite
of one of B;,, ..., B;,. Therefore, By U---U By, = C; U---UC}, and so

Tg—1

mn(Bl U--- UBm) = mn(Cl J---uU Ck) < mn(01) -+ .- —l—mn(Ck)

and the proof is complete. O

Definition. Let f : R — R or C be Lebesgue measurable. We say f is locally Lebesgue inte-
grable if for all x € R" there is an open neighborhood U,, of x so that fUz |f(y)| dmy(y) < +o0.

Lemma 6.7. Let f : R" — R or C be locally Lebesgue integrable. Then [y, | f(y)| dmn(y) < +oo
for every bounded set M € L,

Proof. Let f be locally Lebesgue integrable and M € L,, be bounded. We consider any compact
K C R"sothat M C K. Such a K is the closure of M or just a closed ball or a closed cube
including M. For each z € K there is an open neighborhood U,, of z so that |, o, @) dma(y) <
+00. Since K C |, i Us, there are finitely many 1, . .., xp, sothat M C K C Uy, U---UU,,,.
This implies

S lF @) dman(y) < [y, F@ldmn(y) + -+ [, [f(@)ldmn(y) < +oo.

If, conversely, [,,[f(y)|dmn(y) < oo for every bounded set M € L,, then f is locally
Lebesgue integrable since fB(m) |f(y)| dmy,(y) < +oo for every x. O

Proposition 6.22. Let f, f1, f> : R™ — R or C be locally Lebesgue integrable and k € C. Then
(i) f is finite a.e. on R™,

(ii) f1 + fo is defined a.e. on R™ and it is locally Lebesgue integrable,

(iii) k. f is locally Lebesgue integrable.
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Proof. (i) Lemma 6.6 implies fB(o-k) |f(y)| dmy(y) < 400, and so f is finite a.e. on B(0; k) for

every k. Since R" = (J;°5 B(0; k), we have that f is finite a.e. on R™.
(ii) By the result of (i), both fi, f> are finite a.e. on R”, and so f; + fo is defined a.e. on R". We
have

fM‘fl(y)"i‘fQ(y)‘dmn <fM’f1 ’dmn +fM‘f2 ‘dmn(y)<+oo

for every bounded M € L,,, and, by Lemma 6.6, f1 + fo is locally Lebesgue integrable.
(iii) Similarly,
Ja 15 F @) dmn(y) = |8] [y, |£(y)] dmn(y) < 400
for all bounded M € L,,, and so «f is locally Lebesgue integrable. O

The need for local Lebesgue integrability (or for local finiteness of measures) is for definitions
like the following one to make sense. Of course, we may restrict to Lebesgue integrability if we
like.

Definition. Let f : R™ — R or C be locally Lebesgue integrable. Then M(f) : R™ — [0, +00],
defined by

M(f) (1‘) = SupBopen ball, B>x ﬁ(]@ fB ‘f(y)‘ dmn(y)
forall x € R"™, is called the Hardy-Littlewood maximal function of f.

Proposition 6.23. Let f, f1, f> : R™ — R or C be locally Lebesgue integrable and k € C. Then
(i) M(f1+ f2) < M(f1)+ M(fa),
(it) M(k f) = k[ M(f).

Proof. (i) For all x and all open balls B > z,
mm S 1) + @) dmn(y) < 5y Sz AW dma(y) + 5y [ 120)] dma(y)
< M(f1)(x) + M(f2) ().

Taking the supremum of the left side, we get M (f1 + f2)(z) < M (f1)(x) + M (f2)(x).
(ii) Similarly, for all  and all open balls B > x,

@y Jp [EF W) dma(y) = |61y 5 1f @) dma(y) < |s[M(f)(2)

and, taking the supremum of the left side, we get M (rkf)(x) < |k|M(f)(z). Now, if Kk # 0, we
apply this inequality to the number 1 and to the function s f, and we get M (f)(z) < W M(kf)(x).

The two inequalities imply M (xf)(x) = |k|M(f)(z). On the other hand, if x = 0, then the
equality is trivial. O

Lemma 6.8. Let f : R™ — R or C be locally Lebesgue integrable. Then for every t > 0 the set
{z e R"|t < M(f)(x)} is open in R™.

Proof. LetU = {z € R"|t < M(f)(z)} andz € U. Thent < M(f)(z), and so there is an
open ball B 3 x so that

o S 1 F @)l dma(y).

If we take an arbitrary 2/ € B, then

< ot 5 [T @) dma(y) < M(f)(2").
Therefore, B C U, and so U is open in R". .

Since {x € R™ |t < M(f)(x)} is open, it is also a Lebesgue set.
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Hardy-Littlewood Theorem. Let f : R” — R or C be Lebesgue integrable. Then for everyt > 0
we have

ma({z € R™ [t < M(f)(@)}) < % fau [F(y)l dmn(y).

Proof. We consider an arbitrary compact K C U = {z € R"|t < M(f)(x)}. Then for every
x € K wehavet < M(f)(z), and this implies that there is an open ball B, containing x so that

13 < 5B fB ‘f ‘ dmn( )
Since K C Ua:eK B, there are x1,...,2y, sothat K C By, U---U B . Wiener’s Lemma
implies that there exist pairwise disjoint By, , ..., By, so that

M (Byy U---U By, ) < 3"(mn(By, ) + -+ +mn(By,, ).
Then

IA

3" ( n(Bwil)‘i‘"""mn(Bmik))
3*(IB y)| dmy(y) + "‘fB )|dmn(y))
- ifBB @l dmaly) < 57 fRn 7wl dma(w).

IN

By the regularity of mn, the supremum of m,, (K) for all compact K C U is equal to m,,(U), and
we conclude that m,, (U) < 2= [o., [ f(y)| dma(y). O

Observe that m,,({z € R™ |t < M(f)(x)}) is nothing but the value at ¢ of the distribution
function Apz(s) of M(f). Therefore, another way to state the result of the Hardy-Littlewood The-
orem is

Macr) (&) < 5 g 1 () dimn(y).

Definition. Let (X, S, 1) be a measure space and g : X — R or C be S-measurable. We say that
g is weakly ji-integrable over X if there is a constant ¢ < +00 so that N 4|(t) < { for everyt > 0.

Another way to state the Hardy-Littlewood Theorem is: if f is Lebesgue integrable, then M ( f)
is weakly Lebesgue integrable.

Proposition 6.24. Let (X, S, 1) be a measure space, g,g1,92 : X — R or C be weakly -
integrable and x € C. Then

(i) g is finite a.e. on X,
(i) g1 + go is defined a.e. on X and it is weakly p-integrable,
(iii) kg is weakly p-integrable.

Proof. (i) Ajg(t) < § forall ¢ > 0 implies that

u({x € X||g(@)] = +oo}) < u({z € X|n < |ga)[}) <

for all n, and so u({z € X ||g(z)| = +o0}) = 0.

(i1) By (i) both g1 and g5 are finite a.e. on X, and so g1 + g2 is defined a.e. on X.
Ifp({r € X[t <|g1(x)[}) < G and p({z € X[t < |ga(2x)|}) < % forallt > 0, then

p({z e X[t <|gi(z) + g2(x)|}) < p({z € X | § <lgi(@)|}) + p({r € X | § <|g2(2)[})
< 2(:1-1-202

forall t > 0.
(iii) If u({zr € X |t <|g(x)|}) < § forall £ > 0, then

ul{z € X|t < |ng(a)|}) = u({z € X| & < la()|}) < %
forall ¢ > 0. -
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Proposition 6.25. Let (X, S, i) be a measure space and g : X — R or C be p-integrable. Then
g is weakly u-integrable.

Proof. We have
)‘lgl(t) = p({r € X[t <|g(x)[}) < %f{xEX‘t<‘g(;ﬁ)‘} lgldp < %fx gl dp

for all ¢ > 0. Therefore, A, (t) < § forall t > 0, where ¢ = [ |g| dp. O

Cc
t
Example. The converse of Proposition 6.25 is not true. Consider, for example, the function g(z) =
ﬁ, x € R™. Then

Jan l9(@) | dmyp(2) = 001 (SP71) 7 LrmVdr = 01 (S*Y) 7 Ldr = +o0.

But {z € R"|t < |g(x)|} = B(0;t~'/™), the open ball with center 0 and radius t~/". Thus,
Ngl (1) = mn (B(0s71/m)) = (t71/")"ma (B(0:1)) = ,
)-

where ¢ = m,,(B(0; 1)

The next result says that the Hardy-Littlewood maximal function of any f is not Lebesgue
integrable, except only when f = 0 m,-a.e. on R".

Proposition 6.26. Let f : R" — R or C be locally Lebesgue integrable. If M(f) is Lebesgue
integrable, then f = 0 my-a.e. on R™.

Proof. Let A= {x € R"| f(x) # 0}, and let us assume that m,,(A) > 0.

Since A = ;25 (A N B(0; k)), we get that m,, (A N B(0;k)) > 0 for at least one k > 1. We set
M = AN B(0;k), and we have got a bounded M € L,, so that m,, (M) > 0 and ||z| < k for
every € M. Since f(x) # 0 for every x € M, we have that [, |f(y)| dmy(y) > 0.

We consider any z with ||z|| > &, and we observe that there is an open ball B of diameter ||z||+k+1
containing x and including M. Then

ma(B) = (L) "m, (B(0;1)) < (251)"mi(B(0; 1)),
and so

M(f)(@) 2 sy Jo F Wl dmn(y) > s sy Ja 1F @) dmay) = 55

with ¢ = W Jas 1 f ()] dmy(y) > 0. This implies

Therefore, if M (f) is Lebesgue integrable, then m,,(A) = 0. 0

The next result is a direct generalization of the Fundamental Theorem of Calculus and the
proofs are identical.

Lemma 6.9. Let g : R™ — C be continuous on R™. Then
lim, 04+ m fB(:{;;r) l9(y) — g(z)| dmy(y) =0
for every x € R™.

Proof. Lete > 0 be arbitrary. Then there is & > 0 so that |g(y) — g(z)| < e for every y € R™ with
lly — z|| < 0. Then

m fB(m;r) l9(y) — g(z)[ dmy,(y) < m fB(x;r) edmp(y) =€

for every r < 4. O
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Lebesgue’s Theorem. Let f : R" — R or C be locally Lebesgue integrable. Then,

hmr—>0+m gﬁr)meT |f (x)‘dmn(y) =0

for mp-a.e. x € R™.

Proof. (a) Let f be Lebesgue integrable.
We consider an arbitrary € > 0. Theorem 3.14 implies that there is g : R” — C continuous on R"
so that [, |g — f|dmy < e. Forallz € R™ and r > 0 we get

B fB(mr If y) — f(z)] dmn(y)
< 8@ Joen @) = 9Wdma®) + 5wy Joen 19W) = 9(@)ldma(y)
+ B B Ig( ) = f(x)dmn(y)
< M(f = 9)(@) + mmmmy Jaen 19W) — 9(@) dma(y) + |g(2) — f(2)].
We set
AN @:7) = sy Saen [T @) = F(@)] dma(y)
and the last inequality together with Lemma 6.8 imply

Tim A()(sr) < M(f = 9)(@)+ 0+ lg(w) = £()].

Now for every t > 0 we get
my({z € R™ [t < lim A(f)(z;7)})

<mu({z e R"|L < M(f —g)(x)}) +m,({z e R"| 5 < |g(z) — f(2)|})

where the second inequality is a consequence of the Hardy-Littlewood Theorem. Since € is arbi-
trary, for all t > 0 we have m ({z € R" |t < lim,_04+ A(f)(z;7)}) = 0. By the subadditivity
of my,

my,({z € R"[0 < H A(f)(z;7r)})
< Zk: cmy ({z € R™| ¢ <limpoo4 A(f)(z57)}) =0,

and so m} ({x € R" |0 < lim,_04 A(f)(x;7)}) = 0.

Thus, lim, 04 A(f)(z;7) < 0 for my-a.e. z € R™ and, since A(f)(z;7) > 0 for every z € R
and r > 0, we conclude that lim,_,o+ A(f)(x;r) = 0 for mp-a.e. x € R™.

(b) Now let f be locally Lebesgue integrable. We fix an arbitrary £ > 2 and consider the func-
tion b = fxp(o:x)- Then h is Lebesgue integrable and for every = € B(0;k — 1) and every
r < 1 we have A(f)(z;r) = A(h)(z;7). By what we have already proved this implies that
lim, 04 A(f)(z;7) = 0 for my-a.e. * € B(0;k — 1). Since k is arbitrary, we conclude that
lim, 04 A(f)(z;7) = 0 for mp-a.e. z € R". O

Definition. Let f ]R” — Ror C be locally Lebesgue integrable. The set Ly of all v € R" for
which limy 04 -~ fB (@) [/ W) = f(@)[ dmn(y) = 0 is called the Lebesgue set of f.

Example. If z is a continuity point of f, then  belongs to the Lebesgue set of f. The proof of this
fact is, actually, the proof of Lemma 6.8.

Theorem 6.10. Let f : R® — R or C be locally Lebesgue integrable. Then for every x in the
Lebesgue set of f we have

lim, 0+ m fB(:c;r) fy) dmn(y) = f(z).
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Proof. Indeed, for all z € Ly we have

|mn(B1(x;r)) fB(ac;r) f(y) dmn<y) - f(l’)‘ < mn(Bl(gmﬂ)) fB(;v;r) ’f(y) - f(l‘)’ dmn(y) -0
asr — 0+. ]

Definition. Let x € R™ and C be a collection of sets in L,, with the property that there is a ¢ > 0
so that for every E € C there is a ball B(xz;r) with E C B(x;r) and m,(E) > cmy,(B(z;7)).
Then the collection C is called a thick family of sets at x.

Example. Any collection of cubes containing = and any collection of balls containing x is a thick
family of sets at .

Example. Consider any collection C all elements of which are bounded intervals .S containing x.
Let Ag be the length of the largest edge and ag be the length of the smallest edge of S. If there is
a constant ¢ > 0 so that Z—Z > cforevery S € C, then C is a thick family of sets at x.

Theorem 6.11. Let f : R® — R or C be locally Lebesgue integrable. Then for every x in the
Lebesgue set of f and for every thick family C of sets at © we have

1imEec,mn(E)—>0+ ﬁ(E) fE |f(y) — f(z)| dmy(y) = 0

limpee M (E)=0+ . (E) fE y) dmn(y) = f(x).

Proof. There is a ¢ > 0 so that for every E € C there is a ball B(z;rg) with E C B(x;rg) and
mp(E) > emyp(B(x;7E)). If © € Ly, then for every € > 0 there is a § > 0 so that 7 < ¢ implies

m fB(a;;r) |f(y) = f(x)| dmn(y) < ce.

If my,(E) < ¢d"my,(B(0;1)), then rg < §, and so
ﬁ(};) fE |f(y) — f(x)] dmn(y) < WM fB(ac;T’E) |f(y) — f(z)[dmn(y) <e.

Therefore, limpec ., (£)—0+ 77y mn fE |f(y) — f(x)|dm,(y) = 0.
The proof of the second limit is now trivial. O

DIFFERENTIATION OF BOREL MEASURES ON R".

Definition. Any signed or complex measure on (R™, B,,) is called a Borel signed or complex mea-
sure on R™.

Definition. Let v be a Borel signed measure on R"™. We say that v is locally finite if for every
x € R™ there is an open neighborhood U,, of = so that v(Uy) is finite.

This definition is indifferent for complex measures, since complex measures take only finite
values.

Proposition 6.27. Let v be a Borel signed measure on R™. Then v is locally finite if and only if v
and v~ are both locally finite if and only if |v| is locally finite.

Proof. Since |v| = vt + v, the second equivalence is trivial to prove. It is also trivial to prove
that v is locally finite if || is locally finite.

Let v be locally finite. For an arbitrary € R" there is an open neighborhood U, of z so that
v(U,) is finite. Since v(U,) = vt (U,) — v~ (U,), both v*(U,) and v~ (U,.), and so also |v|(U,)
are finite. Therefore, |v| is locally finite. O

Proposition 6.28. Let v be a locally finite Borel signed measure on R"™. Then v(M) is finite for
all bounded Borel sets M C R".
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Proof. Proposition 6.27 implies that |v| is locally finite. Now let M € B, be bounded. We
consider any compact K C R" so that M C K. For every x € K there is an open neighborhood
U, of z so that |v|(U,) < +o0. Since K C | J, i Uz, there are finitely many 1, .. ., 2,, so that
MCK CU; U---UUy, . This implies

(M| < [p[(M) < [v|(Us,) + - + [V|(Us,,) < +o0,
and so v(M) is finite. 0

Theorem 6.12. Let p be a locally finite Borel signed measure or a Borel complex measure on R™
with pLmy,. Then

for myp-a.e. x € R™.

Proof. If p is complex, then |p| is a finite Borel measure on R™. Proposition 6.27 implies that, if
p is signed, then |p| is a locally finite Borel measure on R™. Moreover, Lemma 6.22 implies that
|p| Lm,. Hence, there exist sets R, M € B,, with M U R = R", M N R = () so that R is null for
m,, and M is null for |p|.

We define

Allpl) (s ) = LB,

we take an arbitrary ¢ > 0, and we consider the set
My={zeM ’ t < lim—o4 A(|p|) (25 7) }-

Since |p| is a regular measure and |p|(M) = 0, there is an open set U so that M; C M C U and
|p|(U) < e. For each x € M, there is a small enough 7, > 0 so that
) — ol(B(zirs))

t < A(lp)(@;re) = M (B(zir2))
and B(xz;r,) CU.
We consider the open set V' = (J,c,,, B(z;72), and an arbitrary compact set X' C V. Now, there
exist finitely many z1,...,z, € M; so that K C B(x1;7%,) U -+ U B(xy; 72, ). Wiener’s
Lemma implies that there exist pairwise disjoint B(x;,;7s, ), . .., B(wi,; 72, ) so that

mn(B(xl;Tm) u..--u B(me rzm)) < 3n(mn(B(xi1§rxil)) + -+ mn(B(xik§ rxlk)))
All these imply that
mn(K) < %(‘p‘(3<xi1§7aml)) +F ‘p‘(B(i’Zkﬂ”ka))) < % ‘p‘(U) < % €.

By the regularity of m,, and since K is an arbitrary compact subset of V', we get m,, (V) < % €.
Since M; C V, we have that m) (M;) < % €. Since ¢ is arbitrary, we conclude that M, is a
Lebesgue set and m,, (M;) = 0.

Finally, since

{z € M| lim, 04 A(|p|)(z;7) # 0} = UZ] My,

we get lim, o1 A(|p|)(z;7) = 0 for my,-a.e. z € R™ Since A(|p|)(z;7) > 0 for all z € R™ and
all » > 0, we conclude that lim, o+ A(|p|)(z;7r) = 0 for m,-a.e. z € R™. O

Lemma 6.10. Let v be a locally finite Borel signed measure on R™. Then v is o-finite and let
v = \ + p be the Lebesgue decomposition of v with respect to my, where A\ < my, and pLm,,.
Then both )\ and p are locally finite Borel signed measures.

Moreover, if f is any Radon-Nikodym derivative of A with respect to my, then f is locally Lebesgue
integrable.
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Proof. Since R™ = (J;2] B(0; k) and v(B(0; k)) is finite for every k, we find that v is o-finite
and the first of the Lebesgue-Radon-Nikodym Theorems implies the existence of the Lebesgue
decomposition of v.

Since p_Lm,,, there exist R, N € B, with RUN = X, RN N = () so that R is null for m,, and
N is mull for p. From A < m,,, we see that R is null for A, as well.

Now let M € B,, be bounded. Since (M) is finite, Theorem 6.1 implies that v(M N N) is finite.
Now we have

AM)=AMNR)+ AMNN)=AMNN)=AMNON)+p(MNN)=v(MNN),

and so A(M) is finite. From v(M) = A(M) + p(M ) we get that p(M) is also finite. We conclude
that A and p are locally finite.

Again, let M € B, be bounded. Then [, f(z)dm,(x) = A(M) is finite. This implies that f is
locally Lebesgue integrable. O

Theorem 6.13. Let v be a locally finite Borel signed measure or a Borel complex measure on R".
If f is any Radon-Nikodym derivative of the absolutely continuous part of v with respect to m,,,
then (Bl
: v(B(x;r _
im0+ By = f(z)

for mp-a.e. x € R".
Proof. Let v = X\ 4 p be the Lebesgue decomposition of v with respect to m,,, where A < my,,
pLlm, and A = fm,. If v is signed, Lemma 6.9 implies that p is a locally finite Borel signed

measure and f is locally Lebesgue integrable. If v is complex, then p is complex and f is Lebesgue
integrable. Lebesgue’s Theorem and Theorem 6.12 imply

lim, % = lim, 04 m fB(I;T) I () dmy(y) + lim, o4 % = f(x)

for m,-a.e. x € R™. ]
Theorem 6.14. Let v be a locally finite Borel signed measure or a Borel complex measure on R".

If f is any Radon-Nikodym derivative of the absolutely continuous part of v with respect to m,,,
then, for mp-a.e. x € R",

. E
limgec m, (£)—0+ #(1;) = f(x)
for every thick family C of sets at x.
Proof. If p is the singular part of v with respect to m,,, then |p| Lm,,, and Theorem 6.12 implies

lim, 0 G

for my-a.e. x € R™.
Now, we consider any « for which lim, o+ % = 0, and any thick family C of sets at z.

Then there is ¢ > 0 so that for every E € C there is a ball B(z;rg) with E C B(x;rg) and
mn(E) > cmy(B(z;rEg)). For every € > 0 there is a § > 0 so that 7 < J implies

lpl(B(x;r))
i (B(@ir)) < ce.

Ifmy,(E) < ¢d"my,(B(0;1)), then g < §, and so

‘ < lpl(E S% lpl(B(z;rg)) <

= mn(F mn(B(z;rg)) €.

|55
This means that, for m,,-a.e. x € R",

limgec m, (£)-0+ % =

for every thick family C of sets at x.
We combine this with Theorem 6.11 to complete the proof. O
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Exercises.

6.6.1. A variation of the Hardy-Littlewood maximal function.

Let f : R™ — R or C be locally Lebesgue integrable.

We define M*(f)(x) = sup,~o —rgr=omy B fB (w:r) [ f W) dma(y) for every z € R™.

(i) Prove that the set {z € R™ |t < M*(f )( )} is open for every ¢ > 0.

(ii) Prove that o M (f)(z) < M*(f)(z) < M(f)(z) for every z € R™.

One may define other variants of the Hardy-Littlewood maximal function by taking the supremum

of the mean values of | f| over open cubes containing the point = or open cubes centered at the
point x. The results are similar.

6.6.2. Vitali’s Covering Theorem.

Let £ C R" and let C be a collection of open balls with the property that for every x € E and
every € > O thereisa B € C so that x € B and m,,(B) < e. Prove that there are pairwise disjoint
By, Ba, ... € Csothat mi(E \ ;> Bx) = 0.

6.6.3. Points of density.
mp (ENB(z;1))

Let £ € L,. Ifz € R", we set Dg(x) = limy_04+ (B whenever the limit exists.
Observe that this limit (if it exists) is a number in the interval [0, 1]. If Dg(z) = 1, we say that =
is a density point of .

(i) If x is an interior point of E, prove that it is a density point of F.
(ii) Prove that m,-a.e. x € E is a density point of .

(iii) For any o € (0,1) find 2z € Rand E € £; so that Dg(z) = . Also findx € Rand E € £,
so that D () does not exist.

6.7 Functions of bounded variation.
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Chapter 7

The classical Banach spaces.

7.1 Some facts from functional analysis.

NORMED SPACES.

Definition. Let Z be a linear space over the field F = R or over the field F = C and let the
Sunction || - || : Z — R have the properties:

() ||u+ | < |ul|l + ||v|, for all u,v € Z,

(ii) ||ku|| = |k|||ul|, for allw € Z and k € F,

(iii) ||u|| = O implies u = 0, where 0 is the zero element of Z.

Then, || - || is called a norm on Z and (Z, || - ||) is called a normed space.

If F =R, we say that (Z, || - ||) is a real normed space and, if F' = C, we say that (Z, || - ||) is
a complex normed space.

If it is obvious from the context which || - || we are talking about, we shall say that Z is a normed
space.

Proposition 7.1. If || - || is a norm on the linear space Z, then
(i) ||0|| = 0, where 0 is the zero element of Z,

(ii) || — u|| = ||ul|, for all uw € Z,

(iii) ||u|| > 0, for all u € Z.

Proof. Exercise. 0

Proposition 7.2. Let (Z, ||-||) be a normed space. If we defined : Z x Z — R by d(u,v) = [[u—v||
forallu,v € Z, then d is a metric on Z.

Proof. Exercise. 0

Definition. Let (Z, || - ||) be a normed space. If d is the metric defined in Proposition 7.2, then d
is called the metric induced on Z by || - ||.

Therefore, if (Z, || - ||) is a normed space, then (Z, d) is a metric space and we can study all
notions related to the notion of a metric space, like convergence of sequences, open and closed
sets and so on. Open balls in Z have the form B(u;r) = {v € Z|||lv — u|| < r}. A sequence
(upn) in Z converges to u € Z if ||u, — u| — 0 asn — +oo. We denote this by: u,, — w or
limy,—, 4 oo U, = u. Aset U C Z is open if for every u € U there is an r > 0 so that B(u;r) C U.
Any union of open sets is open and any finite intersection of open sets is open. The sets () and Z are
open. A set K C Zisclosed if Z \ K is open or, equivalently, if the limit of every sequence in K
(which has a limit) belongs to K. Any intersection of closed sets is closed and any finite union of
closed sets is closed. The sets () and Z are closed. A set K C Z is compact if every open cover of
K has a finite subcover of K. Equivalently, K is compact if every sequence in K has a convergent
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subsequence with limit in K. A sequence (u,,) in Z is a Cauchy sequence if ||u, — w, || — 0 as
n,m — 4oo. Every convergent sequence is Cauchy. If every Cauchy sequence is convergent,
then Z is a complete metric space.

Definition. If the normed space (Z, || - ||) is complete as a metric space (with the metric induced
by the norm), then it is called a Banach space.

If there is no danger of confusion, we say that Z is a Banach space.

Example. The space R” with the Euclidean norm defined by ||z|| = |z| = (27 + --- + 22)'/? is
a familiar real Banach space.

The space C" with the norm defined by ||z| = |=| = (Jz1|> +- - - + |2z,|?)"/? is a complex Banach
space.

There are some special results based on the combination of the linear and the metric structure
of a normed space. We first define, as in any linear space, u + A = {u +v|v € A} and KA =
{kv|ve A} forall AC Z,u € Z and k € F. We also define for every u € Z and every k > 0
the translation 7, : Z — Z and the dilation [, : Z — Z, by 7,(v) = v + v and [(v) = kv for
all v € Z. It is trivial to prove that translations and dilations are one-to-one transformations of Z
onto Z and that 7, ' = 7_,, and [;* = ,,. It is obvious that u + A = 7,(A) and KA = [ (A).

Proposition 7.3. Let (Z, || - ||) be a normed space.

(i) u+ B(v;r) = B(u+ v;r) for all u,v € Z and r > 0.

(ii) kB(v;r) = B(kv; |k|r) forallv € Z, k € F\ {0} and r > 0.

(iii) If up, = w and vy, — vin Z, then u, + v, - u+vin 2.

(iv) If Ky, — K in F and u, — win Z, then kpu, — Kuin Z.

) If up, — win Z, then ||uy|| — |lu].

(vi) Translations and dilations are homeomorphisms. This means that they, together with their
inverses, are continuous on Z.

(vii) If A is open or closed or compact in Z and u € Z, then u+ A is, respectively, open or closed
or compact in Z.

(viii) If A is open or closed or compact in Z and . € F \ {0}, then kA is, respectively, open or
closed or compact in Z.

Proof. Exercise. O

INNER PRODUCT SPACES.

Definition. Let Z be a linear space over the field I' = R or over the field ' = C and let the
Sunction (-,-) : Z x Z — F have the properties:

(i) (u1 + uz,v) = (u1,v) + (uz,v), for all uy,uz,v € Z,

(ii) (ku,v) = K{u,v), forallu,v € Z and k € F,

(iii) (u,u) > 0 for all w € Z and, also, (u,u) = 0 implies u = 0.

(iv) (v,u) = (u,v) for all u,v € Z.

Then, (-, -) is called an inner product on Z and (Z, (-, -)) is called an inner product space.

If ' = R, we say that Z is a real inner product space and, if /' = C, we say that Z is a
complex inner product space. Of coure, if F' = R, then property (iv) becomes (v, u) = (u,v) for
all u,v € Z.

Proposition 7.4. Let (Z, (-,-)) be an inner product space.

(i) (u,v1 + v2) = (u,v1) + (u,ve), for all u,v1,vs € Z,

(ii) (u, kv) = R(u,v), for all u,v € Z and k € F,

(iii) (0,v) = (u,0) = 0 for all u,v € Z.

(iv) (u 4+ v,u +v) = (u,u) + 2Re((u,v)) + (v, v) for all u,v € Z.

W) (u+v,u+v)+ (u—v,u—v)=2(u,u) +2{(v,v) for all u,v € Z.
i) |{u, v)|? < (u,u)(v,v) for all u,v € Z.
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Proof. The proofs of (i), (ii), (iii), (iv) and (v) are left as an exercise.
(vi) If w = 0 then the inequality takes the form of an equality: 0 = 0. Now let v # 0 and, thus,
(u,u) > 0. Then for every k € F' we get from (iv) that 0 < (ku + v, ku + v) = k|2 (u, u) +

2Re(k(u,v)) + (v,v). We finish the proof, using x = — <42 O

(u,u)*

[~

Proposition 7.5. If (Z, (-, -)) is an inner product space, we define ||u|| = ((u,u))/? for allu € Z.
Then || - || is @ norm on Z.

Proof. All properties of a norm are trivial to prove. We shall only prove the last property:

lu+vl* = (u+v,u+v) = (u,u) + 2Re((w,v)) + (v,0) < [[ul® +2/(u, v)| + o]
< Jull® + 2((u, )2 (o, 00) 2+ JJol? = JJull? + 2[fullllo]l + o1? = (Jull + [|o]])*

which implies that ||u + v|| < ||u|| + ||v|| for all u,v € Z. O

We see that every inner product space Z becomes a normed space with a norm which is defined
using the inner product of Z and whatever properties we prove for normed spaces they hold also
for inner product spaces.

Equalities (iv) and (v) of Proposition 7.4 take the forms ||u+v||? = |lu/|?> +2 Re({u, v)) +||v||?
and |ju + v[|? + ||u — v||? = 2|lu|?® + 2||v||>. Inequality (vi) is called the Cauchy-Schwartz
inequality and takes the form

[, )] < [l o]l

Definition. If the inner product space (Z, (-,-)) is complete (as a normed space) then it is called
a Hilbert space.

Example. R” with the Euclidean norm, defined by ||z|| = |2| = (27 +- - -+22)'/2, is a real Hilbert
space. Indeed, the well known inner product defined by (z,y) = -y = z1y1 +- - - + 2,y induces
the norm of the space.

Similarly, C" with the norm defined by ||z = |z| = (Jz1|> +- - - 4 |2n|?)"/? is a complex Hilbert
space. Now, the appropriate inner product is defined by (z,y) =z -y =211 + - - + Zn, Un.

Definition. Let (Z, (-, -)) be an inner product space. If (u,v) = 0, we say that u, v are orthogonal.
If (u,v) = 0 for every v € B C Z, then we say that u, B are orthogonal. If (u,v) = 0 for every
u€ AC Zandeveryv € B C Z, then we say that A, B are orthogonal. In each case we write,
respectively, u L. v, u 1. Band A 1 B.

Proposition 7.6. Let (Z, (-, -)) be an inner product space.

(i) If up, — wand vy, — v, then (uy, vy) — (u,v).

(i) If u L vand u L w, thenu L (v+ w). Also, ifu L v, then u L (kv) forall k € F.

(iii) If vy, — v and u 1 v, for alln, then u L v.

(v) If u L A, thenuw 1.V, where V is the closed linear subspace of Z generated by A. Also,
if A L B, then U L V, where U,V are the closed linear subspaces of Z generated by A, B,
respectively.

%) If i, . .., u, are pairwise orthogonal, then ||uy + - -+ + up|? = |lur|* + - - - + |Junl/*

Proof. Exercise. O

From now on, if there is no danger of confusion, we shall say normed space Z or inner product
space Z instead of normed space (Z, || - ||) or inner product space (Z, (-, -)).

F.Riesz Theorem. Let Z be a Hilbert space, u € Z and V' be a closed linear subspace of Z. Then
there is a unique vy € V such that ||u—wvl|| < |[[u—v|| forallv € V. This vy is the unique element
of V satisfying (u —vg) L V.
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Proof. Letd = inf{||u —v|||v € V'}.

Then d > 0 and there is a sequence (v,) € V so that ||u — v,| — d.

Since V is a linear subspace, we have that 3 (v, + v;,) € V and hence |[u — 3 (v, + vy)|| > d for
all n, m. Now we apply (v) of Proposition 7.4 to %(u — vy,) and %(u — vpy,) and get

[[vn = vml|* = QHU_URHQ'FQHU_’UW‘P_4HU_%(Un"‘vm)w < 2[lu—vp|* + 2~ |* — 4d>.

Taking the limit, we find ||v,, — vy, || — 0. Thus, (v,,) is a Cauchy sequence and since Z is complete,
we get v, — vg for some vy € Z. Also, since V is closed, vy € V. Now, v,, — vg implies that
llu — vn|| = ||lu — vol| and, hence, ||u — vo|| = d. Le. ||u — vo|| < ||u —v| forallv € V.

Now we take any x € F'and any v € V, v # 0. Since vg + kv € V, we get

llu = voll® < [lu — (vo + K0)|* = [lu — vol|* + 2Re(R{u — vo, v)) + |x|*||v].
Using k = — <um‘°2’”> we find |(u — vg, v)|?> < 0. Therefore, (u — vg,v) = 0 forall v € V and we
conclude that u — vg L V.
Ifu—vy L Vandu—wv; L V for some otherv; € V we get (v —vg) L V and, since vy —vg € V,
we find (v; —vp) L (v1 — vg). This implies v; — vop = 0 and so vy is unique. O

Definition. Let Z be a Hilbert space and V be a closed linear subspace of Z. For every u € Z
the unique vy € V which is such that (v — vo) L V is called the projection of v on V and it is
denoted Py (u).

Definition. Let Z be an inner product space and A C Z so that 0 ¢ A. The set A is called
orthogonal if u | v for all u,v € A, u # v. The set A is called orthonormal if it is orthogonal
and ||u|| = 1 for all u € A.

Every orthogonal set A can become orthonormal when we multiply every element of A by an
appropriate number so that its norm becomes 1. More precisely, the set B = {ﬁ ulu € A} is
orthonormal.

Bessel’s Inequality. Let Z be an inner product space and A C Z be an orthonormal set. Then for
every u € Z we have Y., 4 |(u, €)|* < [Ju]|?.

Proof. Take any finite subset {e1,...,e,} C A and consider vg = (u,e1)e; + -+ + (u, e, )en.
Part (v) of Proposition 7.6 implies [|vg||? = [{u, e1)|? + - - - + |(u, e,)|* and, hence,

(u —wo,v0) = (u,v0) — [lvoll* = {u,ex) (u, 1) + - + (u, en) (u, en) — wo||* = 0.
Therefore,
[{uyen)? + - 4 [(u, en) [P = Jlvoll? < Jlvoll* + [lu — vol|* = [lvo + (u —vo) |* = fJufl*.
Since this is true for every finite subset of A, we conclude that Y. 4 [(u, €)|* < [|ul|®. O

Proposition 7.7. Let Z be a Hilbert space and A C Z be an orthonormal set. If (Ke)eca is a
Samily in F indexed over A with Y 4 |ke|* < +00, then the sum Y 4 ke € can be defined as
an element of Z, and this element satisfies (), 4 ke €,V) = > c 4 Kele,v) forallv € Z.

In particular, (Y, ke e,€') = ke forall € € A. Moreover, the sum . 4 ke e belongs to the
closed linear subspace generated by A.

Proof. From ) _ 4 |Ke |2 < +o0 we get that the set of e € A for which k. # 0 is countable. Thus,
let eq, e, . . . be any enumeration of the elements of A with k. # 0 and then we have k. = 0 when
ec A\ {er,e,...}.

Now, if ey, e, . . . are finite, say ey, . . . , e,, then we obviously define Eee 4 Ke € to be the element
U = Ke, €1 + -+ + ke, €, and then u belongs to the closed linear subspace generated by A.
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Moreover, (u,v) = Ke, (€1,V) + -+ + Ke, (€n, V) = D ocq Kele, V).

If ey, e, ... are infinitely many, we consider the partial sums s, = Ke, €1 + - - - + Ke,, e, for all n.
Then for m < n we get ||s, — $m||? = ||Kepyr €ma1 4+ Kep €nl® = |Kepir |2+ 4 |Ken [
Now, 3712 [kex|? = e [e|? < +oc and this implies that [|s, — sp,,[| — 0 as n,m — +oo.
Since Z is complete, (s, ) convergestosomeu € Z andwedefine) | . 4 ke e = u = limy, | o 5p.
Since every s, belongs to the closed linear subspace generated by A, the same is true for u.
Furthermore, from s,, — w and from (s,,v) = kK¢, {(€1,v) + - -+ + K, (en, v) We find (u,v) =

Zz—g Key <ek’ U> = ZeeA H€<€7 ’U>. ]

Proposition 7.8. Let Z be a Hilbert space, A C Z be an orthonormal set and V' be the closed
linear subspace generated by A. Then for every u € Z the sum . ,(u,e) e can be defined as
an element vy of Z. This vy is equal to the projection Py (u) of uon V.

Proof. By Bessel’s inequality, we have Y. 4 [(u,e)|* < |lu[[* < +oc0. Now, Proposition 7.7
implies that the sum ) __ ,(u, e) e can be defined as an element v of Z which belongs to V' and
satisfies (vg, €) = (u,e) foralle € A. Thus, (u —vg) L e forall e € A. Therefore, (u —vg) L V
and we conclude that vy = Py (u). O

Combining the last result with the F. Riesz Theorem we conclude that

lu =2 ccalus e)ell <lu—23cyreell
for all (Ke)eca With Y, 4 |Ke|? < +o00.

Definition. Let Z be a Hilbert space and A C Z be an orthonormal set. We say that A is an
orthonormal basis of Z if the closed linear subspace generated by A is Z.

Proposition 7.9. Let Z be a Hilbert space and A C Z be an orthonormal set. Then the following
are equivalent:

(i) A is an orthonormal basis of Z.

(i) u=73  ca(u,e)eforallucZ.

(iii) ||ul]* = X e 4 u, €)? forall u € Z.

Proof. Let A be an orthonormal basis of Z. We consider the element vy = > . 4 (u, €) e and we
shall prove that © = vgy. Indeed, Proposition 7.8 says that vg is the projection of u on the closed
linear subspace generated by A, which is Z. But the projection of u on Z is w itself.

If we assume that u = Y, (u, €) e for all u € Z, then this implies that |[u[? = Y . 4 [(u, )|
forallu € Z.

Finally, let [|u||? = 3 . 4 |(u, €)|? forall u € Z. We assume that A is not an orthonormal basis of
Z, i.e. that the closed linear subspace V' which is generated by A is a proper subspace of Z. Thus,
thereisaw € Z \ V. By Proposition 7.8, the projection of w on V' is vg = > .. 4 (u, e) e and then
(u—wo) L V. Thus, (u —vo) L voand [Jul|* = [lu —voll? + [|vol|* > [Jvol* = Yce 4 [{u, €)]*.
We arrive at a contradiction and, hence, A is an orthonormal basis of Z. ]

2

Proposition 7.10. Every Hilbert space has an orthonormal basis.

Proof. We consider the family 7 = { A | A is an orthonormal subset of Z}.

This family is non-empty. Indeed, we may consider any u € Z with ||u|| = 1 and then A = {u}
is an orthonormal subset of Z.

We define a partial order < on F by: A1 < A if A; C As.

Now assume that G is a totally ordered subfamily of F. We consider the set Ag = (J 5 A and
then it is easy to prove that Ay is an orthonormal subset of Z. Since A < Ag forall A € G, we get
that Ag is an upper bound of G.

Zorn’s Lemma implies that there is a maximal element of F. I.e. there is an orthonormal subset A
of Z such that there is no orthonormal subset of Z which is strictly larger than A. We shall prove
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that A is an orthonormal basis of Z.
Assume that A is not an orthonormal basis of Z. Then the closed linear subspace V' generated by A
is strictly smaller that Z. Thus, there is some u € Z \ V. We consider the projection vy = Py (u)

of uw on V and we have that (u — vg) L V. Then v/ = u — vy # 0 and the element e = ”Tl/u u’
satisfies |le]| = 1 and e L V and, thus, e L A. Therefore, A U {e} is an orthonormal set strictly
larger than A and we get a contradiction. O

Definition. Let Z be a Hilbert space and A be an orthonormal basis of Z. For every u € Z the
series ) . 4(u,e) e is called the Fourier series of v with respect to A. Thus, every element of Z
is equal to its Fourier series with respect to any orthonormal basis of Z. The numbers (u, €), for
all e € A, are called the Fourier coefficients of u with respect to A.

If we consider any closed linear subspace V' of a Hilbert space Z, then V' is also complete
and, hence, a Hilbert space. Therefore, every closed linear subspace of a Hilbert space has an
orthonormal basis.

Proposition 7.11. Let Z be a Hilbert space. If Z has a countable orthonormal basis then Z is
separable. If 7 is separable then every orthonormal basis of Z is countable.

Proof. Let Z be separable and let A be any orthonormal basis of Z. Let also B be a countable
dense subset of Z. Then the open balls B(e; ?) for all e € A are disjoint and each of them
contains at least one element b, of B. The elements b, are disjoint and, thus, the mapping e — b,
from A into B is one-to-one. Therefore, A is countable.

Now let the orthonormal basis A of Z be countable. Then the set of all linear combinations of

elements of A with rational coefficients is countable and dense in Z. Therefore, Z is separable. [

BOUNDED LINEAR OPERATORS.

Definition. Let Z and W be two linear spaces over the same F and a functionT : Z — W. Then
T is called a linear transformation or a linear operator from Z to W if T'(u+v) = T(u) + T(v)
and T (ku) = KT (u) for all u,v € Z and all k € F.

The following are familiar from elementary Linear Algebra. Let T : Z — W be a linear
operator. Then 7" is one-to-one if and only if 7'(u) = 0 (the zero element of W) implies u = 0 (the
zero element of Z). The subset N(T') = {u € Z|T(u) = 0} of Z, called the kernel of T', is a
linear subspace of Z. Similarly, the subset R(T") = {T'(u) |u € Z} of W, called the range of T', is
a linear subspace of . Now, T is one-to-one if and only if N (7") = {0} and T is onto if and only
if R(T) = W.IfT : Z — W is one-to-one and onto, then the inverse function 71 : W — Z is
also a linear operator. In this case we say that the linear spaces Z and W are identified. By this we
mean that we may view the two spaces as a single space whose elements have two “names”. l.e.
we view the elements v of Z and T'(u) of W as a single element with the two names: « and T'(u).
In fact the linear relations between elements are unaffected by changing their “names™: z = u + v
ifandonly if 7'(2) = T'(u)+7'(v) and z = kuifand only if T'(z) = kT'(u). If T': Z — W is one-
to-one but not onto, then we may consider the restriction 7' : Z — R(T'). This is a linear operator
which is one-to-one and onto and we may say that the linear spaces Z and R(T') are identified and
that Z is identified with a linear subspace of W or that R(T') is a “copy” of Z inside W .

Definition. Let (Z, || - ||z) and (W, || - ||w) be two normed spaces and T : Z — W be a linear
operator. We say that T' is bounded if there is a constant M < +o0 so that | T(u)||w < M||ul|z
forallu € Z.

From now on when we have two normed spaces (Z, || - || z) and (W, || - ||w) we shall denote, for
simplicity, both norms with the same symbol || - ||. For instance, the relation ||T'(u)|lw < M||u||z
will be simplified to ||T'(u)|| < M||ul|.
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Theorem 7.1. Let Z and W be two normed spaces and T : Z — W be a linear operator. The
following are equivalent.

(i) T is bounded.

(ii) T is continuous on Z.

(iii) T is continuous at 0.

Proof. Suppose that T' is bounded and, hence, there is M < +oc so that [|T'(u)|| < M|u|| for
every u € Z. Ifu, — win Z, then | T(u,) — T(w)| = ||T(un — w)|| < M|ju, — u|| — 0 and,
thus, T'(u,,) — T'(u) in W. Therefore, T is continuous on Z.

If T' is continuous on Z, then it is certainly continuous at 0.

Suppose that T is continuous at 0. Then there is & > 0 so that ||T'(u)|| = ||T(uv) — T(0)|| < 1
for every u with ||u|| = |ju — 0| < 0. We take any u € Z \ {0} and any ¢ > 1 and we get
Hﬁu“ = & < §. Therefore, T(ﬁ u)|| < 1and, hence, |T(u)| < % ||ul|. This is trivially
true also for u = 0 and we conclude that ||T'(u)|| < £ ||ul| for every u € Z. Letting t — 1+, we
get | T(u)|| < M||ul, where M = 5. Therefore, T is bounded. O

Proposition 7.12. Let Z and W be two normed spaces andT' : Z — W be a bounded linear
operator. Then there is a smallest My with the property: | T (u)|| < Myl||ul|| for every u € Z. This
My is characterized by the two properties:

@) | T ()|l < Mo|lul for every u € Z,

(ii) for every M < My there is a w € Z so that | T(u)|| > M ||ul|.

Proof. We consider My = inf{M | ||T'(u)|| < M||ul| forevery u € Z}.

The set L = {M | ||T'(u)|| < M||u|| for every u € Z} is non-empty by assumption and included
in [0, +00). Therefore M exists and My > 0. We take a sequence (M,,) in L so that M,, — M)
and, from ||T'(u)|| < M,||lu| for every u € Z, we get | T(u)|| < Mo||u| for every u € Z.
Therefore, Mj is the smallest element of L.

If M < My, then M ¢ L and, hence, there is a u € Z so that ||T'(u)|| > M]||ul|. O

Definition. Let Z and W be two normed spaces and T : Z — W be a bounded linear operator.
The smallest M for which ||T'(u)|| < M/|ul| for every u € Z is called the norm of T and it is
denoted ||T||.

The zero linear operator 0 : Z — W is bounded and, since ||0(u)|| = 0 < 0]|u|| for every
u € Z, we have that ||0]| = 0. On the other hand, if 7" is a bounded linear operator with ||7'|| = 0,
then ||7'(u)|| < 0]|u|| = 0 for every w € Z and, hence, T is the zero linear operator.

Proposition 7.13. Let Z and W be two normed spaces and T : Z — W be a bounded linear

T
I = sup,e 7 ufo IT@)]| = supezuer 1T @)

operator. Then ||T'|| = sup,,¢ 7 ,, 0

Proof. 1tis clear that sup,,c =1 [|T(w)|| < sup,ez o<1 T (w)]]-
Hﬂ(?ﬁ)\\ _
u

Writing v = o for every u € Z '\ {0}, we have that ||v|| = 1. Therefore, sup,,¢ 7 ,,

[[ul]
suPuezu0 || () | < $UPuez uj=1 1T (@]
Forall uwith [lu]| <1, we get||T (u)|| < || T|[[[ul] < [T and, thus, sup,,c 7 <1 [T (w)[| < |IT'-

If we set M = sup,,c 7,40 I then T < Af and, hence, [|T(w)|| < M ||u|| for all u # 0.

([l ([l

Since this is obviously true for u = 0, we have that || 7| < M and this finishes the proof. O

Definition. Let Z and W be two normed spaces and T’ : Z — W be a bounded linear operator.
If T is onto W and | T (u)|| = ||ul| for every u € Z, then we say that T is an isometry from Z onto
W or between Z and W.

I T(u)|| = ||ul| for every w € Z (but T is not necessarily onto W), we say that T is an isometry
from Z into W.
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Proposition 7.14. Let Z and W be two normed spaces.
(i) If T is an isometry from Z into W, then T is one-to-one.
(ii) If T is an isometry from Z onto W, then T~ is an isometry from W onto Z.

Proof. Exercise. O

If T is an isometry from Z onto W, then it is not only that we may identify Z and W as linear
spaces (see the discussion before the definition of a bounded linear operator) but we may also
identify them as metric spaces: the distances between elements are unaffected by changing their
“names” |T(w) — T(0)|| = | T(u — v)|| = Ju - v].

If T is an isometry from Z into W, then T is an isometry from Z onto R(T") and we may
identify Z with the subspace R(T') of W or we may view R(7T') as a “copy” of Z inside W.

BOUNDED LINEAR FUNCTIONALS.

As in any linear space, we define a linear functional on Z to be a function [ : Z — F which
satisfies I(u + v) = I(u) + [(v) and I(ku) = kl(u) for every u,v € Z and k € F.
Since F' itself is a linear space, a linear functional is a special case of a linear operator.

Definition. Let Z be a normed space and | be a linear functional on Z. Then we say that [ is
bounded if there is an M < +00 so that |l(u)| < M ||ul|| for all u € Z.

Theorem 7.2 and Propositions 7.15 and 7.16 are special cases of Theorem 7.1 and Propositions
7.12 and 7.13. Hence, they do not need new proofs.

Theorem 7.2. Let Z be a normed space and | be a linear functional on Z. The following are
equivalent.

(i) 1 is bounded.

(i) l is continuous on Z.

(iii) 1 is continuous at 0.

Proposition 7.15. Let Z be a normed space and | be a bounded linear functional on Z. Then there
is a smallest My with the property: |l(u)| < M||ul| for every u € Z. This My is characterized by
the two properties:

(i) |l(u)] < Mo||u|| for every u € Z,

(ii) for every M < M there is a u € Z so that |l(u)| > M ||u].

Definition. Let Z be a normed space and | be a bounded linear functional on Z. The smallest M
Sor which |l(u)| < M||u|| for every u € Z is called the norm of | and it is denoted ||| ..

The zero linear functional 0 : Z — F' is bounded and, since |0(u)| = 0 < 0]|u|| for every
u € Z,we get ||0]|« = 0. Conversely, if | € Z* has ||l||. = 0, then |I(u)| < O]ju|| = 0 for every
u € Z and, hence, [ is the zero linear functional on Z.
li(w)]

[[ul

Proposition 7.16. Let Z be a normed space and | € Z*. Then |[|l|[. = sup,cy o

SUP e 7, fjuf=1 [1(w)] = Supyez jjuy<1 [1(w)]-

We define the sum [y + Iy : Z — F of two linear functionals [1,l3 on Z by (1 + l2)(u) =
l1(u) +l2(u) forall w € Z and the product sl : Z — F of a linear functional lon Z anda x € F
by (kl)(u) = kl(u) for all w € Z. It s trivial to prove that Iy + [ and x! are linear functionals on
Z and that the set Z’ = {l|1 is a linear functional on Z} becomes a linear space under this sum
and product. Z’ is called the algebraic dual of Z. The zero element of Z’ is the linear functional
0: Z — F defined by 0(u) = 0 for all u € Z and the opposite of a linear functional [ on Z is the
linear functional —[ : Z — F defined by (—!)(u) = —l(u) forallu € Z.

196



Proposition 7.17. Let Z be a normed space, 1, 11, l2 be bounded linear functionals on Z and v € F'.
Then Iy + lo and Kl are bounded linear functionals on Z and ||l1 + lo||« < ||l1]|« + ||l2]|« and
[l = |slll2]]

Proof. We have |(I1 + l2)(u)| < [l ()] + [l2(w)] < [[][llull + [[Tal[«[lull = Clxlle + [122[]+) llw]
for all u € Z. This implies that [; + I is bounded and that ||l + l2|[« < [|l1]« + [|l2]|«-

Similarly, |(xl)(uw)| = |&||l(u)| < |&|||l||«]|u]|| for all w € Z. This implies that ! is bounded
and that ||kl|. < |k|[|l]«. If & = 0, then the equality is obvious. If k # 0, to get the opposite

MHUH forallu € Z

||

and, hence, ||{[|« < (it O

||

inequality, we write |s||l(u)| = |(kl)(uw)| < ||Kl||«||u| and, hence, |I(u)] <

Definition. Let Z be a normed space. The set of all bounded linear functionals on Z or, equiva-
lently, of all continuous linear functionals on Z,

Z* = {l|l is a bounded linear functional on 7},

is called the topological dual of Z or the norm-dual of Z or just the dual of Z.

Proposition 7.17 together with the remarks about the norm of the zero functional imply that Z*
is a linear subspace of Z’ and that || - || : Z* — R is a norm on Z*.

Theorem 7.3. If Z is a normed space, then Z* is a Banach space.

Proof. Let (l,,) be a Cauchy sequence in Z*.
Forall u € Z we have |I,,(u) — I (w)| = |(ln — Im) (w)| < ||l — I« |lu]| = 0 as n,m — 4o0.
Thus, (I,,(u)) is a Cauchy sequence in F' and, hence, converges to some element of F'. We define
l:Z — Fby

l(u) = limy—y o0 In (1) forall u € Z.

It is easy to show that [ is linear, i.e. [ € Z’, and we shall show that [ € Z* and ||I,, — l||« — 0.
Now, there is IV so that ||l,, — ||« < 1foralln,m > N. Then |, (uw) —lm(w)| < ||ln—ln|l«]ju]] <
|u|| for all w € Z and all n,m > N and, taking the limit as n — +oo0 and m = N, we find
[l(u) — In(uw)| < ||u|| forall uw € Z. Therefore, |I(u)| < |In(w)| + ||u] < (||In]]« + 1)|lu| for all
u € Z. Hence, | € Z*.

Moreover, for an arbitrary ¢ > 0 there is N so that ||/, — l,,||« < € for all n,m > N. Then
[l () = L (w)| < |lln, — U ||«]Ju|| < €|lu|| forall w € Z and all n,m > N. Taking the limit as
m — +o0o, we find |, (u) — l(u)| < €||lu|| forallw € Z and all n > N. Therefore, ||l,, — ||« < €
foralln > N and, thus, ||l,, — {||« — 0. O

In case I’ = C, the linear space Z can also be considered as a linear space over R. Therefore
we may distinguish between real-linear and complex-linear functionals on Z. A complex-linear
functional on Z is the same as a linear functional on Z, i.e. a function [ : Z — C satisfying:
l(u+v) =l(u) +I(v) and l(ku) = kl(u) for kK € C and u,v € Z. A real-linear functional on
Z is a function [ : Z — R satisfying: I(u + v) = [(u) + [(v) and {(ku) = kl(u) for k € R and
u,v € Z.

Proposition 7.18. Let Z be a normed space over C. For every bounded linear functional (i.e.
complex-linear functional) | on Z the m = Re(l) is a bounded real-linear functional on Z with
lm|l« = ||l||l«. Conversely, for every bounded real-linear functional m on Z there is a unique
bounded linear functional l on Z so that Re(l) = m.

The two functionals 1, m satisfy the relation l(u) = m(u) — im(iu) for all u € Z.

Proof. 1fl : Z — C is a bounded linear functional on Z, then it is trivial to show that m = Re(!) :
Z — R is areal-linear functional on Z and we leave it as an exercise.

We have [(u) = Re(l)(u) + i Im(l)(u) and I(iu) = Re(l)(iu) + i Im(1) (iu). Since I(iu) = il(u),
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(1)(u) — Im(l)(u) for all w € Z. Equating real parts, we

we get Re(1)(iu) + ¢ Im(l)(iu) = iRe
= —m(iu) for all u € Z and, thus,

find Im(7)(u) = —Re(l)(iu)
l(u) = Re(l)(u) + i Im(l)(u) = m(u) —im(iu) forall u € Z.

Now, for all u € Z we have |m(u)| = |Re(l(w))| < [l(w)| < ||I]|«]|u|| and, hence, ||m ||« < |||
Also, if I(u) # 0, we consider = ‘ﬁ%' € C with || = 1 and we get

H(w)] = Kl(u) = l(ku) = Re(l)(ku) = m(ku) < [m(su)| < [lmll gl = [m]lu].

The inequality |I(u)| < [[m]«||u| is clearly true if [(u) = 0 and, hence, holds for all u € Z.
Therefore, ||I||. < ||m]|«.

Conversely, let m : Z — R be a bounded real-linear functional on Z. We define [ : Z — C by
l(u) = m(u) — im(iu) for all u € Z. It is obvious that Re(l) = m and it is easy to show that [ is
a linear functional on Z. That [ is bounded with ||/||.. = ||m/|. has already been shown above.
The uniqueness of [ with Re(l) = m has also been shown. Indeed, we proved that, if Re(l)(u) =
m(u) for all w € Z, then Im(l)(u) = —m(iu) for all u € Z and, hence, Im(l) is uniquely
determined by m. O

Proposition 7.19. Let Z be any inner product space. For any u € Z we define l, : Z — F by
ly(v) = (v,u) forallv € Z. Thenl, € Z* and ||l ||+« = ||u]|.

Proof. 1t is trivial to prove that [, is linear.
For every v € Z we have |l,,(v)| = |(v,w)| < ||v||||u|| and, thus, |[i,, ||« < ||«
On the other hand, |I,(u)| = ||u|?* = ||u||||u|| and thus ||I, ||« = |Ju]|. O

The following theorem shows the opposite in the case of a Hilbert space.

Theorem 7.4. Let Z be a Hilbert space. Then for every l € Z* there is a unique u € Z such that
l =1, i.e. such thatl(v) = (v,u) forallv € Z.

Proof. 1f | = 0 then we consider v = 0 and, clearly, we have [(u) = 0 = (v, u) forallv € Z.
Now, let [ # 0. Then the kernel N () of [ is a proper closed linear subspace of Z. We take any
ug € Z \ N(I) and the projection vg = Py ;y(uo) of ug on N(I). Then (ug — vo) L N(I) and we
consider the element

U(uo)

U = 7“%720“2 (up — vp).

Thus, u L N(I) and ||u] = X%l > ¢ and

[lwo—woll

H(u) = =) (1(ug) — 1(vo)) = =) I(ug) = Ll — )2,

[lwo—voll? luo—voll? luo—vo

Now,forallvEZwehavethatl(v—% u) = l(v) — E%l( ) =0. Hence,v—f%ueN(Z)

and, thus, (v — % u,u) = 0. This implies (v, u) = E— |u||? = I(v) forallv € Z. O

Proposition 7.20. Let Z be a Hilbert space. Then the mapping T : Z — Z* defined by T'(u) = [,
forall u € Z is an isometric conjugate-linear operator from Z onto Z*.

Proof. We have T'(u1 + u2)(v) = lyy4u, (V) = (v,ur + u2) = (v,u1) + (v,u2) = ly, (v) +
luy (V) = T(u1)(v) + T(uz)(v) forall v € Z and, hence, T'(u1 + u2) = T'(u1) + T'(uz2). Also,
T(ku)(v) = leu(v) = (v,ku) = E(v,u) = Kly(v) = T (u)(v) for all v € Z and, hence,
T(ku) = RT(u). Therefore, T' : Z — Z* is a conjugate-linear operator. Theorem 7.4 implies
that 7" is onto Z*. Also, ||T(u)l[+« = [[lull+« = [Jull. O
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NORMED LATTICES.
This subsection is only about real linear spaces.

Definition. We say that < is an order on the real linear space Z if it satisfies
(Q)u<uforaluecZ.

(i) If u,v € Z and uw < v andv < u, then u = v.

(i) If u,v,w € Z and uw < vandv < w, thenu < w.

) If u,v,w € Z andu < v, then u + w < v+ w.

W) Ifu,v € Z and k € RT and u < v, then ku < k.

If < is an order on the linear space Z, then (Z, <) is called an ordered linear space.

Properties (i), (ii), (iii) define the general order relation on any set. Properties (iv) and (v)
describe the connection between the order relation and the linear structure of the linear space Z.
For simplicity, from now on we shall say that Z (instead of (Z, <)) is an ordered linear space.

Definition. Let Z be an ordered linear space. The set Z+ = {u € Z|0 < u} is called the
non-negative cone of Z.

Proposition 7.21. Let Z be an ordered linear space. Then the non-negative cone Z™ is closed
under addition and under multiplication by positive real numbers. More precisely, (i) ifu,v € Z T,
thenu+v € Z*, (ii)ifu€ Z* and k € R, then ku € Z™.

Proof. Exercise. O

Definition. We say that the ordered real linear space Z is a linear lattice if every two elements of
Z have a least upper bound or, more precisely, if for every u,v € Z there is a w € Z such that
() u<wandv < w,

(ii) if w' € Z and u < w' and v < W', then w < w'.

The least upper bound w of u, v is denoted u \V v.

For every u € Z we denote u™ = uV 0, u~ = (—u) V0 and |u| = vV (—u) and call them the
non-negative part, the non-positive part and the absolute value of u, respectively.

Example. R" is a linear lattice under the order < defined by: x < yifz; < y;forallj =1,... n.
We have 2 V y = (max{z1,y1},...,max{z,, yn}).

Example. The real linear space R of all real valued functions f : X — R is a linear lattice under
the usual order < defined by: f < gif f(z) < g(x) forall z € X.

We have (f V g)(x) = max{f(z),g(z)} forall z € X.

Also f*(z) = max{f(z),0}, () = max{—f(2),0} and |f|(z) = max{f(z),~f(x)} =
|f(z)| forall z € X.

Proposition 7.22. Let Z be a linear lattice.

(i) If u,v € Z then the element w = u + v — u V v is the largest lower bound of u,v. More
precisely, (@) w < uand w < wvand (b), ifw' € Z and w' < uand w' < v, then w' < w.

(ii) For all uw € Z we have: ut —u~ =wand u* +u~ = |ul.

(iii) For all u € Z we have: (a) 0 < w if and only if u = u* if and only if u = |u|, (b)) u < 0 if
and only if u = —u™ if and only if u = —|ul.

(iv) For all u,v € Z we have u vV v = %lu_vl

Proof. Exercise. O

Definition. Let Z be a linear lattice. If u,v € Z, then the element w = u + v — u V v which was
defined in (i) of Proposition 7.22, i.e. the largest lower bound of u, v, is denoted u N v.

Therefore, in any linear lattice we have v Vv + u A v = u + v. We also see that (iv) of

.- . . _ utv—|u—v|
Proposition 7.22 implies u A v = ———.
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Definition. Let Z be a real linear space with a norm || - || and an order < under which it is a

linear lattice. Then we say that (Z,|| - ||, <) is a normed lattice if u,v € Z and |u| < |v| imply
[Jull < [lv]l.
Ifalso (Z,|| - ||) is a Banach space, then (Z,|| - ||, <) is called a Banach lattice.

Example. R™ with the order defined in one of the previous examples and with the Euclidean norm
is a Banach lattice.

Definition. Let Z be an ordered linear space. A linear functionall : Z — R is called non-negative
if it has non-negative values on the non-negative cone Z . This means: l(u) > 0 for allu € Z+.

Proposition 7.23. Let Z be a normed lattice. For everyl € Z* there are two non-negative bounded
linear functionals 1,1~ € Z* such that 1 = 1T —1~. Also, ||l ||« < ||[l||l« and |1~ ||« < ||I]|«

Proof. Foreachu € Z7 i.e. u > 0, we define
It (u) = sup{l(v) |v € Z,0 < v < u}.

Obviously, [T (u) > 1(0) = 0 and I (u) > I(u).
Also, if 0 < v < w, then ||v]| < ||ul| and, hence, I(v) < [I(v)] < ||I||«]|v]] < ||]|«||w||. Therefore,

() < |l < +oo. (7.1)
For every k € R and u € Z* we have

It (ku) = sup{l(v) |v € Z,0 < v < ku} = sup{l(kv) |v € Z,0 < v < u}

= rsup{l(v)|v € Z,0 <v <u} =rl"(u). (7-2)

If u,up € Z7,0 < vy < ujpand 0 < vy < wuo, then [(vy) + I(ve) = I(v1 + ve) and, since
0 < v + vy < up + ug, it is implied that I(v1) + I(v2) < I1(u1 + ug). Taking supremum
separately over vy and over v, we find I (uy) + 11 (u2) < 1T (uy + ug).
Now let 0 < v < uy + us. We set v; = u3 A v from which 0 < v; < wp and v; < v. If we
set v9 = v — vy, then it is easy to see that 0 < vy < w9 and of course v = vy + vo. Hence,
I(v) =U(v1) + l(ve) < 1T (ur) + 11 (ug) from which It (u1 + uz) < 17 (ug) + 11 (ug).
We conclude that

I (uy +ug) = 1 (uy) + 1 (ug). (7.3)
Until now [ (u) is defined only for u € Z*. For an arbitrary u € Z we have u = u™ —u ™, where
of course ut, u~ € ZT. We then define

M (w) =1 (u) — 1T (u) forall u € Z.
Observe that, if u = v — w forany v,w € Z*, thenu™ + w = u~ + v, and from (7.3):
)+ (w) =Tt +w) =0T +o) =1 (u") +1T(v).
(

Hence, [T (u) = 11 (v) — It (w).
If ui,us € Z, then ug + ug = (u1 + u;) — (u] + u, ) and from the last identity we get

Hur +ug) = l(uf +ud) —1(uy +uy) = Wul)+1(ud) —1(uy) —1(uy ) = L(ur) +1(ug). (7.4)

Ifu € Z and k € RY, then ku = kut — ku~ and (7.2) implies

I (ku) = 11 (ku™) — 1T (ku™) = kI (™) — kI (u™) = kI (u), (7.5)
while, if K € R, then ku = |k|u™ — |k|u™ and (7.2) implies, again,
IT(ku) = 1 (|klu™) =1 (|6lu™) = |s[IT (™) — |&)IT(uh) = &I (u). (7.6)
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By (7.4), (7.5) and (7.6), [t : Z — R is a linear functional.
If u € Z, then from (7.1) we get

()] = [ (") = 1 (7)) < max{I ("), 07 (um) b < max{ ][] [Ju™ ], 2] lu 1}
= (12l max{{lu ], [l 1} < [JE]]s[Jeell,

since 0 < ut <uland 0 < u™ < |ul.

Therefore, [T is a non-negative bounded linear functional of Z with [[I™]|« < ||I]|+.

We also define [~ = [T — [ : Z — R. This is, clearly, a linear functional of Z and it is non-
negative, since for every u € Z+ we have [~ (u) = It (u) — I(u) > 0. Also it is obvious that [~
is bounded, since |7 ||« = [[IT — ||« < I ||« + l|l« < 2||I||«. But we can find a better estimate
for the norm of [, namely ||I7 ||« < ||I]|+-

Indeed, if 0 < v < u, then 0 < u — v < wand, hence, I(v) — l(u) = —l(u —v) < [l(u—v)| <
2]+l = ol] < (121« ]|ull and, thus, I7 (u) = 17 (u) = {(u) < [[Ll[|u]]

Therefore, if u € Z, we have

7 ()] = 17 (") = 17 ()] < max{l™ (u"), 1 (u)} < max{[|][lu™], 12}
= [[2lls max{{Ju ™, u™ |1} < 2]l

and we conclude that ||I7 ]|« < |||+ O

EXTENSIONS OF LINEAR FUNCTIONALS.

Assume that Z is a normed space and that Z; is a linear subspace of Z with the same norm. If
lo: Zo —» Fand!l : Z — F are two bounded linear functionals and [ is an extension of [,
then ||lo||« < ||I||«. Indeed, for every u € Zy we have |lo(u)| = [I(u)|] < ||I]|<]|v| and, thus,
Iloll« < ||l||«. Therefore, when we extend a linear functional its norm increases (in the broad
sense). The next two very basic facts of Functional Analysis say that we can always extend a
linear functional from a subspace to the whole space keeping its norm fixed. The first theorem
deals with the case /' = R and the second theorem considers the case /' = C.

Hahn-Banach Theorem. Let Z be a normed space over R, Zy be a linear subspace of Z and
lo € Z§. Then there is at least one | € Z* which is an extension of ly so that |||« = ||I||+.

Proof. We consider the collection F the elements of which are all m with the following properties:
(i) m : D(m) — R is a linear functional on D(m) which is a linear subspace of Z,

(if) m is an extension of [y, i.e. Zyp = D(lp) C D(m) and lp(u) = m(u) for all u € Z,

(iii) [m(u)| < |[lo|l«|[ul| for all u € D(m), i.e. [|lo[[x = [lm]]..

Thus, the elements of F are all the extensions of [y on linear subspaces of Z, which have the same
norm as .

Then F is not empty, since [y € F, and we define the following order relation on F: m; < my if
me 1S an extension of my.

Now assume that G is a totally ordered subcollection of F. We define Z’' = | J{D(m) |m € G}.
Clearly, Zy C Z' C Z. Ifuy,uy € Z', there are my, mo € G so that uy € D(mq) and uy €
D(my). Since one of my,mg, say ma, is an extension of the other, we get that u1, us € D(mg)
and since D(msg) is a linear subspace of Z, we have that u; +ug € D(ms) and, thus, uq +us € Z'.
Similarly, if u € Z’, there is an m € G so that u € D(m) and, hence, for all k € R we have
ku € D(m) and, thus, ku € Z'. Therefore, Z’ is a linear subspace of Z. Now take any u € Z’,
whence u € D(m) for some m € G. If there is another m’ € G so that u € D(m/), then since
one of m,m’ is an extension of the other we get m(u) = m/(u). This implies that we can define
a function !’ : Z' — R so that '(u) = m(u) forany m € G with u € D(m).

We have seen that, if uq,us € Z’, then there is some m € G so that uj,us € D(m) and, thus,
U(ug 4+ uz) = m(uy +uz) = m(uy) + m(uz) = '(u1) + I'(uz). In the same way we can prove
that I’ (ku) = kl’(u) for all uw € Z’" and k € R. Therefore, !’ is a linear functional on Z’. It is clear
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that !’ is an extension of [y and that |I'(u)| < ||lo||«||u|| for allu € Z’. Thus, !’ € F. Itis also clear
that I is an extension of all m € G and, hence, I’ is an upper bound of G.
Now, Zorn’s Lemma implies that F has at least one maximal element. In other words there is
some [ with the properties (i), (ii) and (iii) so that there is no m with the same properties which is
a proper extension of [.
Now it is enough to prove that D(l) = Z.
To get a contradiction we assume that D(l) # Z and we take any ug € Z \ D(l). We consider the
linear subspace

W ={u+ rkup|u € D(l),k € R}.

Then D(l) is a proper subspace of W and we shall define a linear functional m : W — R so that
m(u) = l(u) for all w € D(1) and |m(u)| < ||[l]l«]|u]| = ||[lo]|«]|u| for all w € W. Then m is a
proper extension of [ with the properties (i), (ii) and (iii) and we arrive at a contradiction.

To define m we consider an a priori arbitrary kg € R and we consider

m(u + kug) = l(u) + kKo, ue D(),k eR.

Then it is easy to see that m is a linear functional on W and that m(u) = [(u) for every u € D(1).
It remains to choose kg so that |m(u + kug)| < ||l]|«]|u + Kugl| or, equivalently, |I(u) + krg| <
lZ|l]|w + Kuo)| for all w € D(I) and k € R.

When x = 0 what we want takes the form |/(u)| < ||||«||u|| and this is true independently of the
choice of kg. For £ # 0 what we have to prove takes the following successive equivalent forms:

[1(w) + wko| < ||[T]]«]|w + wuoll, uwe D),k #0
15 w) + w0l < Uz utuol,  weD@),s#0
[{(u) + kol < [[Ull+]lu+uoll,  weD()
—l(u) = lUfl+llu+ woll < ro < =l(w) + [[Ull«[[u+uoll,  we D). (7.7)

Now, if we prove that
—l(ur) = [Ull+llur +woll < —l(uz) + [[Ull«[lug +uoll, w1, uz € D(), (7.8)

then we get sup{—I(u) — [|ll|+[lu + uoll [v € D)} < inf{—I(u) + [|I]l[lu + uoll |u € D(1)}
and then we can choose any number k¢ between the supremum and the infimum and this number
certainly satisfies (7.7). But (7.8) is equivalent to [(ugz) — I(u1) < ||I||«(|Juz + uol| + ||u1 + wol]).
But I(ug) — l(u1) = l(ug — u1) < (Ul [uz — ]l < [[[«([Juz + uol| + [Jur + uol]). O

Bohnenblust-Sobezyk Theorem. Let Z be a normed space over C, Zy be a linear subspace of Z
and ly € Z§. Then there is at least one | € Z* which is an extension of ly so that ||lo||« = ||l||+

Proof. We know from Proposition 7.18 that my = Re(lp) is a real-linear functional on Z, with
llmoll« = ||lo||«. By the Hahn-Banach Theorem, there is a real-linear functional m on Z which is

an extension of mg with ||mg||. = ||m||«. By Proposition 7.18 again, there is a linear functional
[ on Z such that Re(l) = m. Then we have ||m|. = ||I||«, hence ||lo||« = |||+, and, also,
l(u) = m(u) —im(iu) = mo(u) — imo(iu) = lp(u) for all u € Zp, which means that [ is an
extension of . ]

Proposition 7.24. Let Z be a normed space. Then ||u|| = max{|l(u)||l € Z*,||l||« < 1} for all
u€ Z.

Proof. First we observe that for every [ € Z* with ||{||« < 1 we have |I(u)| < |[I]]<]|u] < ||ul.
Therefore, sup{|l(u)| |l € Z*, [|l]|« < 1} < ||u]|.

Now, we consider the linear subspace Zy = {ku|x € F'} of Z and we define [y : Zy — F by
lo(ku) = K||u|| forall k € F.

It is clear that [y is linear and that |ly(ku)| = |&|||u|| = ||<u|| for all & € F. Thus, ||lp|. = 1.
Then there is an [ € Z* which is an extension of [y with ||/||. = ||lo]|]« = 1. Since [I(u)| =
|lo(w)| = |lul|, the proof is finished. O
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Definition. Let Z be a normed space and Z* be its dual space. The dual of Z* is denoted Z**.

Proposition 7.25. Let Z be a normed space. For every w € Z we define L,, : Z* — F by
L,(l) = l(u) foralll € Z*. Then L,, € Z** and || Ly|| s = ||u]].

Proof. 1t is clear that L,, is linear.
Also, || Lull«s = sup{[La (D) [T € Z7, [[ll. <1} = sup{[l(u)| [l € Z*, ||l[[+ < 1} = [Jull, where
the last equality is due to Proposition 7.24. O

Proposition 7.26. Let Z be a normed space. The mapping T : Z — Z** defined by T'(u) = L, is
an isometry from Z into Z**.

Proof. Exercise. 0

Through the mapping 7" we may identify each u € Z with the corresponding T'(u) = L,, € Z**
and we may view every u € Z as a bounded linear functional on Z*. If we write u instead of L,,
then the relation L, (1) = I(u) becomes u(l) = [(u) foru € Z,1 € Z*. This symmetric relation
says that [ acts as a function on « and also that  (meaning: L,,) acts as a function on /.

Definition. If the mapping T : Z — Z** is onto we say that (Z, || - ||) is reflexive.
Proposition 7.27. Every Hilbert space is reflexive.

Proof. Let Z be a Hilbert space and take any L € Z**. We define | : Z — F by I(v) = L(1,) for
allv e Z.

We recall that [, € Z* is such that [, (w) = (w,v) forallw € Z.

We know that l,, 44, = ly, + Iy, and I, = R, and, hence, [ is a linear functional on Z. Also
()] = [L{)] < [[L[IEoll« = IL]l[v]| and, thus, I € Z* with [|I]] < [|L]|

Now, there is some u € Z so that | = [, i.e. I(v) = (v,u) forall v € Z. Of course this means

that L(l,) = l(v) = (u,v) forallv € Z.

On the other hand, T'(u)(l,) = l,(u) = (u,v) forallv € Z.
Therefore, T'(u)(l,) = L(l,) for all v € Z. Since every element of Z* is of the form [, for some
v e Z,we getthat T'(u) = L. O

WEAK AND WEAK* CONVERGENCE.

Definition. Let Z be a normed space and Z* be its dual space. We say that a sequence (uy,) in Z
converges weakly to u € Z if l(u,,) — 1(u) for every | € Z* and we write u, — u.

Similarly, we say that a sequence (l,,) in Z* converges weakly* to l € Z* if l,(u) — l(u) for
every u € Z and we write l,, — 1.

Proposition 7.28. If u, — win Z, then w, — win Z. Ifl, — lin Z*, then l,, = l in Z*.
Proof. Exercise. O

Therefore, convergence in Z is stronger than weak convergence in Z and convergence in Z*
is stronger than weak* convergence in Z*.

Definition. Let Z be a normed space.
F C Z is called weakly sequentially closed if (u,,) in F and u,, = w imply u € F.
F C Z* is called weakly* sequentially closed if (1) in F and l,, == | imply | € F.

Proposition 7.29. Let Z be a normed space. If F' C Z is weakly sequentially closed then it is
closed. If F C Z* is weakly* sequentially closed then it is closed.

Proof. Exercise. 0

203



Proposition 7.30. [f u,, — u then |[u|| < lim,, , , _ ||un|.-
Il 5 Lthen |1 < lim, . ||

Proof. For every | € Z* with ||l||. < 1 we have |I(uy)| < |luy|| for all n and, hence, |I(u)| <

lim, ,  |lun||. Proposition 7.24 implies |lu|| < lim,, _, ||y,
Similarly, for every u € Z with ||u|| < 1 we have |l,,(u)| < ||l,||« for all n and, hence, |I(u)| <
himn—H-oo ”lnH* Therefore’ HZH* S liimn—H-oo HZTLH* O

Proposition 7.31. Let Z be a normed space. Every closed ball in Z is weakly sequentially closed.
Every closed ball in Z* is weakly* sequentially closed.

Proof. Exercise. Use Proposition 7.30. O

Uniform Boundedness Principle. Let Z be a Banach space and (l,,) be a sequence in Z* so that
sup,,en [In(u)| < 400 for every u € Z. Then sup,,cy |||« < +oc.

Proof. For each k € N we consider Fj, = {u € Z ||l,(u)| < k forall n € N} C Z. Due to the
continuity of each [,, it is easy to show that every F}, is closed in Z. Also, because of the hypothesis
that sup,,c |1n(u)| < +oo for every u € Z, we get Z = |J; 25 Fi. Now, since Z is a complete
metric space, the classical Theorem of Baire implies that at least one of the sets F}, has non-empty
interior. Le. there is some ko and some ball B(ug; o) so that cl(B(uo;ro)) C Fk,. This means
that |[,,(u)| < ko for all n and all u € Z with ||u — ug|| < 7o. In particular, |I,,(ug)| < ko for all
n. Now, if ||u]| < 1, we have that || (rou + ug) — ug|| < 79 and, thus,

[l ()] = 5% ln(row)| = 7 | (rou + wo) — ln(uo)| < 7 (Iln(row + )| + [In(uo)|) < 52

To
for all n. This implies that |7, || < % for all n. O

Proposition 7.32. Let Z be a Banach space and (l,,) be a sequence in Z*.
(i) If (1,,) is weakly* convergent then sup,,cy ||In ||« < +oc.
(ii) If limy, o 1, (u) exists in F for every u € Z, then (l,) is weakly* convergent.

Proof. Assume that I, — . Then l,,(u) — I(u) and, hence, sup,,cy |In(u)| < 400 for every
u € Z. By the Uniform Boundedness Principle we get sup,, oy |/ln ||« < +00.

If limy, 4 o I (u) exists in F for every u € Z, then again sup,, oy |In(u)| < 400 forevery u € Z
and, as before, sup,,cy ||ln ||+ < +00. Now, we define [ : Z — F by I(u) = limy 4o I () for
all w € Z and it is easy to see that the linearity of all /,, implies the linearity of [. Moreover, if we
set M = sup,,cy ||ln ||+, then we have |I,,(w)| < ||in||«||u]| < M|u|| for all w € Z and, taking the
limit, |I(u)| < M|u||. Thus, € Z* and I,, = 1. O

Uniform Boundedness Principle. Let Z be a normed space and (uy,) be a sequence in Z so that
sup,,en [{(un)| < oo for every I € Z*. Then sup,,cy |Jun || < +oc.

Proof. For each k € N we consider Fj, = {l € Z* | |l[(up)| < k forall n € N} C Z*. It is easy
to see that every F}, is closed in Z* and, because of the hypothesis that sup,, . |I(uy, )| < 400 for
everyl € Z*, we get Z* = U;;’OI F},. Since Z* is a complete metric space, at least one of the sets
F}, has non-empty interior. Le. there is some ko and some ball B(ly;ro) so that cl(B(lp;ro)) C
F},. This means that |l(uy)| < ko for all n and all | € Z* with ||l — ly||. < 7. In particular,
[lo(un)| < ko for all n. Now, if ||I]|« < 1, we get ||(rol + lo) — lo||« < 7o and, thus,

[1(un)| = 75 [(rod) ()] = 75 (roln + lo) (w) — lo(w)| < 7 (|(rol + lo) (w)| + [lo(w)]) < 30

= g

for all n. Proposition 7.24 implies that ||u, || < % for all n. O
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Proposition 7.33. Let Z be a normed space and (uy,) be a sequence in Z.

(i) If (uy,) is weakly convergent then sup,,cy ||, || < +oc.

(ii) If imy, 4 o0 [(uy,) exists in F for every | € Z*, then there is an L € Z** so that l(uy,) — L(l)
Sfor every l € Z*. If, moreover, Z is reflexive, then (u,,) is weakly convergent.

Proof. (i) Exercise.

(ii) We consider the elements L,,, € Z**. Then lim,,—, o0 Ly, (1) = limy,— 40 [(uy,) exists in
for every | € Z* and Proposition 7.32 (applied to the Banach space Z*) implies that there is some
L € Z** sothat L,, — L as elements of the dual Z** of Z*. This means that I(u,,) = L, (I) —
L(l) foralll € Z*.

If Z is reflexive, then there is some u € Z so that L = L,, and, hence, [(u,) — L(l) = L,(l) =
I(u) foralll € Z*. Le. u, > u. O

Definition. Let Y be a non-empty set, (Y;,T;)icr be a family of topological spaces and consider
functions f; : Y — Y foreach i € 1. The smallest topology T, on'Y under which all functions f;
are continuous is called the weak topology on Y induced by the family of functions (f;)icr.

Proposition 7.34. Let Y be a non-empty set, (Y;,T;)icr be a family of topological spaces and
consider functions f; 'Y — Y for each i € I and let T,, be the weak topology on'Y induced by
(fi)ier Let also (X, T) be a topological space and f : X — Y. Then f is continuous if and only
ifall f; o f are continuous.

Proof. It is obvious that, if f is continuous, then all f; are continuous.

Conversely, assume that all f; o f are continuous. We define 7/ = {U C Y | f~1(U) € T}. Itis
easy to see that ) € 77, Y € T’ and that 7" is closed under unions and countable intersections.
Thus, 77 is a topology on Y. Now, if U; € T, then, since f; o f is continuous, we have that
F7Hf7H(Uh) € T and, hence, f;1(U;) € T'. Therefore, f; is continuous under the topology

T’ on Y. Since this is true for all ¢ € I, we get that 7, is smaller that 7’. This implies that
f~Y(U) € T forall U € Ty, and, hence, f is continuous. O

Definition. Let (Y, T;)icr be a family of topological spaces and let Y = [],c; Y be the product
space of all Y;. For each i € I we consider the projection 7; - Y — Y] defined by ;(y) = y; for
every y = (yi)icr- Then the weak topology on'Y induced by the family of projections (m;)icy is
called the product topology on'Y .

Definition. Let Z be a normed space.

The weak topology on Z induced by the family of functions Z* is called the weak topology on Z.
The weak topology on Z* induced by the family of functions (Ly,)ycz is called the weak™* topology
onZ*.

Proposition 7.35. Let Z be a normed space.
The weak topology on Z is weaker that the metric space topology on Z induced by its norm.
The weak* topology on Z* is weaker than the metric space topology on Z* induced by its norm.

Proof. Exercise. O

Thus, if K C Z is weakly closed, then it is closed. Similarly, if K C Z* is weakly* closed,
then it is closed.

WEAK AND WEAK* COMPACTNESS.

Definition. Let Z be a normed space.

K C Z is called weakly sequentially compact if every sequence in K has a subsequence which is
weakly convergent to an element of K.

K C Z* is called weakly* sequentially compact if every sequence in K has a subsequence which
is weakly* convergent to an element of K.
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Proposition 7.36. Let Z be a normed space.

Every weakly sequentially compact K C Z is weakly sequentially closed and bounded.

Every weakly* sequentially compact K C Z* is weakly* sequentially closed and -if Z is Banach-
bounded.

Proof. Exercise. 0

Theorem 7.5. Let Z be a separable Banach space. Then a K C Z* is weakly* sequentially
compact if and only if it is bounded and weakly* sequentially closed. In particular, every closed
ball in Z* is weakly* sequentially compact.

Proof. Assume that ||l,,||. < M < +oo for all n.

We consider a dense countable subset {uy, ua, ...} of Z.

Since |l,,(u1)] < Mluq]| for all n and since {y € F||y| < M]|u1||} is compact, there is a
subsequence (lg)) of (I,,) such that (l,(ll)(ul)) is a convergent sequence in F. lLe.

ngr—il:loo 1) (uy) exists in F.

Since \lg)(ug)\ < M ||ug]| for all n and since {y € F'||y| < M]|uz||} is compact, there is a
subsequence (l,(f)) of (lgl)) such that (lg) (ug)) is a convergent sequence in F'. Le.

ngl—li-loo 1) (uy) exists in F.

We continue inductively and for every u; we construct a sequence (z££ )) so that

nll)l}rloo 1) (uj) exists in F'

and so that (lﬁf )) is a subsequence of (lﬁf -1 ) for all j > 2 and (17(3)) is a subsequence of (I,,).

Now we consider the diagonal sequence

(15m).

n

This is a subsequence of (,,). Also for every j the sequence (l,(@n)) after its j-th term is a subse-

quence of (l,(f )) and, thus,

nli}}i-loo 1™ (uj) exists in F.

For simplicity we write [}, = lﬁln) and, thus, lim,,_, | [} (u;) exists in F' for every u;. We shall
prove that this is true for all u € Z.
We take any v € Z and any € > 0. Then there is a u; so that ||u — u;|| < € and then there is an ng

so that |0} (u;) — I, (u;)| < € for all m,n > ng. Hence,

[l () = Loy (w)] < |15, (w) = B (ug) |+ 185, (ug) = L (ug) | + |5 () — L ()]
< Mllu = ug|| 4 [15(uj) = Lo (ug)| + MJuj — ul] < (2M +1)e.

Therefore, the sequence (I (u)) is Cauchy in F' and lim,,_, o [} (u) exists in F.
Now we definel : Z — F by

l(u)= lim Iy (u) € F, u€ Z.

n—-+oo

Since all [} are linear on Z, it is clear that [ is a linear functional on Z. We also have that |l (u)| <
M||u|| for all n and all w € Z and, taking the limit,

W) < Mlul, weZ.

Therefore, | € Z* and I} 5 1. O
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Lemma 7.1. If Z* is separable, then Z is separable.

Proof. Let () be a countable dense subset of Z*. Clearly, we may assume that 0 ¢ ). For each
m € Q there is some w,, € Z so that |[u,,|| = 1 and [m(up)| > % |m.. Then the set P =
{um | m € Q} is countable.

Now we consider the closed linear subspace P which is produced by P, i.e. all limits of linear
combinations of elements of P. Then P is separable, since every element of P is the limit of linear
combinations of elements of P with rational coefficients.

It is enough to prove that P=12Z.

We assume that P is a proper subspace of Z and then there is some ug € Z \ P with |jug —u|| > 1
for all u € P. We consider the linear subspace Zg = {u + kug |u € P,x € F} and the linear
functional [y : Zyg — F' defined by

lo(u+ Kug) = kK, ue P,k eF.

We have that
llo(u+ ruo)| = K] < |K|[|£ u+uoll = [Ju+ ruol|

forallu € P and k € F. Therefore Iy € Zg with ||l]|. < 1.
Now there is some [ € Z* which is an extension of lp with [|lo||.« = ||{||..
Since @ is dense in Z*, there is some m € @ so that |[m — I||. < % |/m||.. Then u,, € P and,
thus, [(u,,) = 0. This implies that
3 Imlls < m(um)| = [m(um) = Uum)| < lm = Ulumll < 5 [Iml;
and we arrive at a contradiction. O

Lemma 7.2. If Z is reflexive and W is a closed linear subspace of Z, then W is also reflexive.

Proof. We define the usual isometry Ty : W — W** by
Tw (u)(l) = l(u), le W ueW

and we want to prove that it is onto W**. We know that the similar isometry 77 : 2 — Z**
defined by
Tz (u)(l) = l(u), le Z*ueZ

is onto.
We take an arbitrary L e W and consider any [ € Z*. We then define the restriction loflon W
and we have that | € W* with |||« < ||/||«. And finally we define L : Z* — F by

L(l)y=L(l), leZz".

It is easy to show that L is linear and, since |L(1)| = |L(1)| < ||L|l«x|ll]l+ < ||L]ss]|1]|+, we have
that L is bounded and ||L||xs < ||L||+«. Thus, L € Z**.

Now, since Tz is onto, there is a ug € Z so that Tz(ug) = L. Le. Tz(ug)(l) = l(up) for all
leZ.

For the moment we assume that ug ¢ W. Then there is some ¢ > 0 so that ||ug — u|| > ¢ for all
u € W. Now, as in the proof of Lemma 8.1, we consider the linear subspace Zy = {u + kug | u €
W, k € F'} and we define [y : Zy — F by

lo(u+ Kug) = K, uec W,k eF.
Then [ is linear and we have that
o (u + )| = || < B Lu+ugl| = Lju + ruo|
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forallu € W and k € F. Therefore, Iy € Z and we know that there is an [ € Z* which is an
extension of Iy with |||« = ||lo||«-
Now, the restriction [ of [ on W is the same as the restriction of [y on W, which is 0. Hence

1= (ug) = Tz (uo)(l) = L() = L(I) = L(0) = 0

and we get a contradiction.
Therefore, ug € W and now for every [ € W* we consider some I’ € Z* which is an extension of
l,i.e. sothat! =" and we get

Ty (uo) (1) = U(uo) = 1'(uo) = Tz (uo) (') = L(I') = L(1).
Thus, Ty (up) = L and Tyy is onto. O

Theorem 7.6. Let Z be a reflexive normed space. Then a K C Z is weakly sequentially compact
if and only if it is bounded and weakly sequentially closed. In particular, every closed ball in Z is
weakly sequentially compact.

Proof. Let (u,) beasequencein B, i.e. ||u,| < 1forall n. We consider the closed linear subspace
W of Z which is produced by all u,, i.e. all limits of linear combinations of all the u,,. Then W
is separable.
Lemma 7.2 implies that W is reflexive. Since W is separable and W** is isometric to W, we
get that W** is also separable. Now Lemma 7.1 implies that W* is separable too and we apply
Theorem 7.5 to the space W*.
We consider the isometry 7' : W — W** and the sequence (L,,) = (T'(uy,)) in W** which is
bounded since || Ly, ||+« = ||uy || < 1 for all n. Then there is a subsequence (L, ) which converges
weakly* to some L € W**. Le.

Lo, (1) = L)

for all [ € W*. Since T is onto, there is some u € W so that T'(u) = L. Now we have that
Wun,) =T (tn, )(I) = Ln, (1) = L(I) = T(u)(l) = l(u)
for all [ € W* and hence for all | € Z* and, thus, u,,, s u. Moreover, we get that

Jull < Lim fjup, || <1
k—+o0

and, hence, u € B. ]

Banach-Alaoglou Theorem. Let Z be a normed space and Z* be its dual. Then the closed unit
ball B* = {l € Z* | ||l||« < 1} is weak* compact.

Proof. We consider the case F' = R. The case ' = C is similar and we leave as an exercise.
If | € B*, then we have |l(u)| < ||u|| or equivalently I(u) € [—||ul|, ||u||] forall u € Z. We define
the product space

W = TLuez[=llull; [[u]

with the product topology (each closed interval has the usual Euclidean topology). By the Theorem
of Tychonov W is a compact topological space.
We also define the mapping 7" : B* — W by

() = (l(u))uez, L€ B*

and it is clear that 7" is one-to-one.
Let X = T(B*) C W sothat T~! : X — B*. Then for every x € X there is an [ € B* so that
x =T(l) = (I(u))yez and, thus,

(Lyo T~ (z) = Ly(l) = l(u) = mu(z), ue€ Z
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Therefore, L, o T~' = 7, for all w € Z. Now all 7, are continuous on W under the product
topology and, hence, they are continuous on X C W under the product topology. Therefore, all
Ly, 0T~ are continuous on X under the product topology and Proposition 7.34 implies that 7~ is
continuous from X under the product topology to B* under the weak* topology. Now it is enough
to prove that X is compact under the product topology and, since W is compact under the product
topology, it is enough to prove that X is closed under the product topology.

Let x € W be a limit point of X. Take u;,us € Z and consider an arbitrary ¢ > 0 and the open
intervals

Iul = (xul — €Ty T 6)7 qu = (qu — € Ty, + 6)7 IU1+M2 = ($u1+U2 — € Tuyug T+ 6)-

Consider also I, = R forall u € Z, u # wu1,us,u; + uo and take the open neighborhood
N = [l,ez Iu of . Then there is an 2/ € X so that 2’ € N. Le. thereis an [ € B* so that
T(l) = (I(u))uez € N orequivalently [(u1) € I, l(u2) € Iy, l(u1 + u2) € Iy 4y, This
means that

[Ty, — Lur)| < €, |zu, —Huz)| <€ |Tyytu, — H(u1 + u2)| < e.

Since I(u1)+1(u2) = l(ui+usg), we get |y, +Tuy, —Tuy +uy| < 3€and, hence, Ty, +Tyy = Ty tuy-
Similarly, we can prove that kx,, = x,, forallu € Z, k € R.
Now, if we define ! : Z — R by

l(u) = zy, u € Z,

then [ is a linear functional on Z. Moreover, for every u € Z we have that |l(u)| = |z,| < ||u]|
and hence [ is a bounded linear functional on Z with |||« < 1. Le. [ € B*. Therefore,

= (2y)uez = (l(u))uez = T(1)

with [ € B* and, hence, x € X. This implies that X is closed under the product topology. O

7.2 The spaces B(X), C(X), BC(X) and Cy(X).
Definition. Let X be non-empty and B(X) be the space of all bounded functions f : X — F.

If there is no danger of confusion we shall use the notation B for B(X).
The sum of two bounded functions and the product of a bounded function with a number are
bounded functions. Therefore, B is a linear space over F'.

Definition. We define
[fllu = supgex |f(2)]

forevery f € B.

It is easy to see that || - ||, is a norm on B. In fact, ||0]|, = sup,cx 0 = 0 and, if || f||, = 0,
then sup, v | f(x)| = 0 and, hence, f(z) =0 forall z € X.
Moreover, [l = sup,cox [/ ()] = [i| sup,ex | ()] = |l 1 and, fnally, () +g(x)| <
[f (@) + 1g(@)] <[ fllu + llgllu forall 2 € X and, hence, |[f + gllu < [ fllu + [[g]lu-

We call || - ||, the uniform norm on B.

If F = R, then, besides the uniform norm, B is equipped with the natural order defined by:
[ <gif f(z) < g(z) forall z € X. Thus, B is a normed lattice, since it is clear that | f| < |g]
implies || ], < ||g., forall f,g € B.

Theorem 7.7. B is a Banach space. Hence, if F' = R, then B is a Banach lattice.
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Proof. Let (f,) be a Cauchy sequence in B. Then for any z € X we have |f,(z) — fi(x)] <
| fn — fmllu — 0as m,n — +oo. This means that (f,(x)) is a Cauchy sequence in F' and,
therefore, it converges. We denote f(x) = lim,,—, 4 fr(x) and in this way a function f : X — F
is defined.

For e = 1 there is some N so that || f,, — fin||w < 1foralln,m > N. Inparticular, || f,, — f|lu < 1
foralln > N which implies that | f,,(z) — fx(x)| < 1forallz € X andn > N. Lettingn — o0,
we find | f(z) — fn(x)| < 1and, hence, |f(z)| < |fn(x)|+1 < | fn]lu+1< +ooforallz € X.
Therefore, f € B.

Now for any € > 0 there is some N so that ||f,, — fi||u < € for all n,m > N. This implies
|fn(x) = fm(x)| < eforallz € X andn,m > N. Letting m — +oo, we find | f,,(z) — f(z)| < €
forallz € X andn > N. Thus || f,, — f|lu < eforalln > N and (f,,) converges to f in B. [

From now on we shall assume that X is a topological space. This is natural, since our main
objects of consideration will be continuous functions and Borel measures on X .

Definition. The space C(X) consists of all continuous functions f : X — F.

We write C' instead of C'(X) if there is no danger of confusion.
Since the sum of two continuous functions and the product of a continuous function with a
number are continuous functions, the space C'is a linear space over F.

Definition. BC(X) = B(X) N C(X).

We may write BC for BC'(X).

BC is also a linear space and, as a subspace of B, we may (and do) use as norm the restriction
of || - ||, on it. In other words, we write || f||, = sup,cx | f(x)| for every f € BC.

Exactly as in the case of B, if F' = R, then BC'is a normed lattice.

Theorem 7.8. BC is a Banach space. Hence, if F' = R, then BC'is a Banach lattice.

Proof. In view of Theorem 7.12, it is enough to prove that BC' is a closed subset of B.

Let (f,) in BC converge to some f in B. Take any z € X and any ¢ > 0. Then there is some
N so that || f;, — fllo < § foralln > N and, in particular, ||fy — f|l. < §. By continuity of
fn there is some open neighborhood U of x so that | fn(y) — fv(z)| < § forally € U. Now
forally € U we have | f(y) — f(z)| < |f(y) — S|+ [[n (W) — In(@)] + [ fn(2) = f(2)] <
If = fnllu 4§+ |fn — fllu < €. Therefore, f is continuous at x and, since x is arbitrary, f is
continuous on X. Thus f € BC. O

We know that, if X is compact, then every continuous function f : X — F'is also bounded
on X. Therefore, if X is compact, then C' = BC.

Definition. Let f € C(X). We say that f vanishes at infinity if for every € > 0 there is a compact
K C X 5o that |f| < € outside K. We define

Co(X) ={f € C(X)| f vanishes at infinity}.

Again, we may simplify to Cj.

It is clear that Cy C BC and, in fact, that C is a linear subspace of BC'. We also take the
restriction on Cy of the uniform norm on BC, that is || f||, = sup,cy |f(z)| forall f € Co.

As in the cases of the spaces B and BC, if F' = R, then the space Cj is a normed lattice. If X
is compact, then Cy = C' = BC.

Theorem 7.9. Cy is a Banach space. Hence, if F' = R, then Cy is a Banach lattice.

Proof. Exercise. O

Lemma 7.3. The series 1 — 3129 %2;;_3)(1 — t2)™ converges to |t| uniformly on [—1,1].

210



Proof. Taylor’s theorem implies that /1 —2x = 1 — Z+°° 1327172:,3) "when(0 < z < 1and
hence we have that Z+°° %x” < 1when 0 < z < 1. Since every summand of the
series is non-negative, we may let + — 1— and we deduce that ZJ“X’ w < 1. Therefore,

the series 1 — Z+°° L3-(@n=3) in converges to some function uniformly on [0, 1]. The limiting

2nn!
function is continuous on [0, 1] and hence 1 — 2 = 1 — >/ L3 23:, 3) 27 uniformly on [0, 1].
It just remains to set * = 1 — t2 with t € [-1,1]. O

Kakutani-Krein Theorem. Let F' = R and X be compact. Let Z be a linear subspace of C(X) =
BC(X) with the following properties:

(i) the constant function 1 belongs to Z,

(ii) fVge€ Zforall f,g € Z,ie. Z is asublattice of C(X),

(ii) for every a,b € X with a # b thereis f € Z so that f(a) # f(b).

Then cl(Z) = C(X).

Proof. Take an arbitrary f € C(X) and a,b € X with a # b. Then there is h € Z so that
h(a) # h(b). It is clear that there are k1, k2 € R such that the function g, = K1h + k2 € Z
satisfies g, 5(a) = f(a) and gq(b) = f(b). Then there is an open neighborhood Uy, of b so that
|9a.p(x) = f(2)| < |gap(x) — gap(b)| + |f(b) — f(x)| < e forall z € U,. By compactness, there
are by,...,b, € X sothat X = U, U---UUy,. The function g, = gap, V-V Ga,p, belongs to
Z and gq(a) = f(a) and gq(x) > f(x) —eforallx € X.

Now there is an open neighborhood V,, of a so that |g,(x) — f(2)| < |ga(2) — ga(a)| + | f(a) —
f(z)| < eforall z € V,. By compactness, there are a1, ..., a,, € X sothat X =V, U---UV,
The function g = g4, A -+ A ga,, belongsto Z and f(z) — e < g(z) < f(z) + eforall z € X.
Thus we can approximate f uniformly by elements of Z and hence f € cl(X). O

Stone-Weierstrass Theorem. Let X be compact and Z be a linear subspace of C(X) = BC(X)
with the following properties:

(i) fg € Z forevery f,g € Z,

(ii) the constant function 1 belongs to Z,

(iii) f € Z for every f € Z,

(iv) for every a,b € X with a # bthereis f € Z so that f(a) # f(b).

Then cl(Z) = C(X).

Proof. Let Cr(X) C C(X) be the space of all real valued functions in C(X) and Zp C Z
be the space of all real valued functions in Z. Then Zp is a linear subspace of Cr(X) and has
the properties (i) and (ii). If a,b € X and a # b, there is f € Z so that f(a) # f(b). Then
Re(f) = 2 (f + f) and Im(f) = & (f — f) belong to Zg and either Re(f)(a) # Re(f)(b) or
m(f)(a) # Im(f)(b). Hence Zg has also the property (iv). It is easy to see that the linear space
cl(Zg) also has the properties (i),(ii) and (iv).
Now take f € cl(Zr) and € > 0 and consider & > 0 such that —K < f(z) < K forall z € X.
Lemma 7.3 implies that there is a real valued polynomial P(¢) such that Ht\ — P(t)| < £ forall
€ [-1,1]. Then H%| - P(%H < £ and hence || f(z)| — KP(%)‘ < eforallz € X.
The function KP(%) is of the form kg + k1 f + -+ + K, f™ and hence it belongs to cl(Zg).
Therefore, | f| is approximated by elements of cl(Zgr) and thus |f| € cl(Zg). This implies that
fVg= H%If—gl € cl(Zg) forall f, g € cl(Zr).
We see that the linear subspace cl(Zr) of Cr (X)) satisfies all the hypotheses of the Kakutani-Krein
Theorem and we conclude that cl(Zr) = Cr(X).
Now if f € C(X), then Re(f),Im(f) € Cr(X), hence Re(f),Im(f) € cl(Zr) and we finally
get that f € cl(Z). O

The next two results are well-known implications of the Stone-Weierstrass Theorem.
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Weierstrass Theorem. If X C R" is compact, then for every continuous f : X — F and every
€ > 0 there is a polynomial P(x1, ..., x,) with coefficients from F such that |f(x) — P(x)| < e
forallz € X.

Proof. Let Z C C(X) be the linear space of all polynomials P with coefficients from F'. Then Z
satisfies all hypotheses of the Stone-Weierstrass Theorem. O

Definition. Functions which are finite linear combinations with coefficients from F of functions
of the form e™F = e2r(kizitthntn) where k = (ki,...,k,) € Z", are called exponential
polynomials on R".

Theorem 7.10. For every continuous f : R™ — F which is 1-periodic with respect to every

coordinate of v = (x1,...,xy) and for every € > 0 there is an exponential polynomial P such
that |f(x) — P(z)| < e for all x € R™

Proof. Let T be the unit circle centered at 0 in R? and consider the compact T C R?".

Every continuous f : R"™ — [ which is 1-periodic with respect to every coordinate defines
f : T" — F through f(y1,...,yn) = f(x1,...,2,), where yp = 2™ for 1 < k < n.
Due to the 1-periodicity of f, the function fis well defined. It is easy to show that fis also
continuous on T". Indeed, if (y1,...,yn), (¥},-..,y,) are close to each other, then the corre-

sponding (x1,...,xy), (2],...,2]) can be chosen so that they are also close to each other and

rrn

hence f(z1,...,2n), f(2),...,2}) are close to each other.

Conversely, every continuous f : T" — F defines f : R® — F through f(z1,...,2,) =
f(eﬂ”l, ..., €7 This f is 1-periodic in every coordinate and continuous on R™.

Now take any continuous f : R™ — F which is 1-periodic with respect to every coordinate and
consider the corresponding f : T" — F which is continuous on the compact T" C R?". The
Weierstrass Theorem implies that there is a polynomial P such that |f(y) — P(y)| < e for all
y € T™. Then the P : R®™ — F which corresponds to Pisan exponential polynomial such that

|f(z) — P(z)| < eforallxz € R™. O

7.3 The spaces L”(X,S, ;1) and their duals.

In this section (X, S, 1) will be a fixed measure space.

Definition. [f 0 < p < +oo, we define the space LP(X,S, 1) to be the set of all measurable
functions f : X - F, F =Ror F = C, with

fx‘f‘pdﬂ< +00.

Thus, £1(X, S, 1) is the set of all functions which are integrable over X with respect to .
Whenever any of X, S, v is uniquely determined by the context of discussion, we may omit it
from the symbol of the space. Therefore, we may simply write £P or LP(X) or LP(u) etc.

Proposition 7.37. LP is a linear space over F.

Proof. We shall use the trivial inequality (a + b)? < 2P(aP + bP) for all a,b > 0. This can be
proved by (a + b)? < (2max{a, b})P? = 2P max{a?,bP} < 2P(aP + bP).

Now, if f1, fo € LP, then [y |f1 + foPdp < 2P [ |f1|P dp + 2P [ | f2|P dp < +oc and, hence,

fi+ f2 € LP.
Also, if f € LP and k € F, then [ |k f|P dp = |k[P [ | f|P dpw < +o0 and, hence, kf € LP. [

Definition. Let f : X — I be measurable. We say that f is essentially bounded on X (with
respect to 1) if there is M < +o00 so that |f| < M a.e. on X.
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Proposition 7.38. Let f : X — F be measurable. If f is essentially bounded on X, then there is
a smallest M with the property: |f| < M a.e. on X. This smallest My is characterized by:

() |f| < Mpae onX,

(i) p({z € X ||f(z)| > M}) > 0 for every M < M.

Proof. We consider the set A = {M | |f| < M a.e. on X} and My = inf A.

The set A is non-empty and is included in [0, +00) and, hence, M) exists. We take any sequence
(M,,) in A such that M,, — M,. From M, € A we find u({x € X ||f(z)] > M,}) =0
for every n and, since {z € X ||f(z)| > Mo} = U/ {x € X ||f(x)| > M,}, we have that
p({x € X||f(x)] > Mo}) = 0. Therefore, |f| < My a.e. on X.

On the other hand, if M < My, then M ¢ A and, hence, u({z € X ||f(z)| > M}) > 0. O

Definition. Let f : X — F be measurable. If f is essentially bounded, then the smallest M with
the property that | f| < M a.e. on X is called the essential supremum of f over X (with respect
to 1) and it is denoted by ess-supx ().

Again, we may simply write ess-sup(f) or ess-supx (f) instead of ess-supy ,(f)-

Definition. We define L®(X, S, 11) to be the set of all measurable functions f : X — F which
are essentially bounded on X.

Proposition 7.39. £ is a linear space over F.

Proof. 1f f1, fa € L, then there are sets Aj, Ay € S so that u(Af) = p(A45) = 0 and |f1] <
ess-sup(f1) on A; and | fa| < ess-sup(fa) on Ag. If we set A = A; N Ag, then we have p(A°) =0
and | f1+ fa| < |f1|+|f2| < ess-sup(f1)+ess-sup(f2) on A. Hence fi + f2 is essentially bounded
on X and ess-sup(f1 + f2) < ess-sup(f1) + ess-sup(fa).

If f € £ and k € F, then there is A € S with (A°) = 0 so that |f| < ess-sup(f) on A. We
now have |k f| < |k|ess-sup(f) on A. Hence xf is essentially bounded on X and ess-sup(xf) <
|k| ess-sup(f). If & = 0, this inequality obviously becomes equality. If £ # 0, we apply the
same inequality to L and r f and get ess-sup(f) = ess-sup(Z (kf)) < 2 ess-sup(r f). Therefore,

|r|

ess-sup(kf) = |k| ess-sup(f). O

Definition. Let 1 < p < +oco0. We define p’ = %, ifl<p<+oo p =400, ifp =1, and

p' =1, if p = +oo. Wesay that p' is the conjugate of p or the dual of p.

The definition in the cases p = 1 and p = +o0 is justified by lim,_, z% = +oo and by
limy, 4 o p%l =1.

It is easy to see that, if p’ is the conjugate of p, then 1 < p’ < +o0 and p is the conjugate of p/.
Moreover, p, p’ are related by the symmetric equality

1 1 _
st =1L
Lemma 7.4. Let 0 <t < 1 and a,b > 0. Then a'b'~t < ta + (1 — t)b.

Proof. A simple Calculus exercise. O

Holder’s Inequalities. Let 1 < p,p’ < 400 and p,p’ be conjugate to each other. If f € LP and
g € LV, then fg € L' and

(Jx [FIPdp) 2 ([ gl dp) /P, if 1 < p,p/ < +o0
Jx Ifgldu < Jx |fldp ess-sup(g), ifp=1,p =400
ess-sup(f) [x |9l du, ifp = oo, p =1

213



Proof. We start with the case 1 < p,p’ < +o0.

If [y |f|Pdp = O orif [y g du = 0, then either f = 0 a.e. on X or g = 0 a.e. on X and the
inequality is trivially true in the form of equality: 0 = 0.

So we assume that A = [ [f[Pdu > Oand B = [ lg|P" dpp > 0. Applying Lemma 7.3 with

_lq_4_q_1_1 _ @P o, lg@l” \fgl 1P, 1 lgl
t—p,l t=1 p—p,anda— v b= B Al/PBl/P’SPA +p, 5 ac.

on X. Integrating, we find m Jx | fgldu < % + T% = 1 and this implies the inequality we
wanted to prove.

Now letp = 1, p’ = +00. Since |g| < ess-sup(g) a.e. on X, we have that |fg| < |f]ess-sup(g)
a.e. on X. Integrating, we find the inequality we want to prove.

The proof in the case p = +o00, p’ = 1 is the same as in (b). O

, We get

Minkowski’s inequalities. Let 1 < p < +oo. If f1, fo € LP, then
(S 11+ foP di) P < ([ [ falP di)P + ([ [ fol? d)' /P, if 1 < p < +o0
ess-sup(f1 + f2) < ess-sup(f1) + ess-sup(f2), ifp=+o0

Proof. The case p = o0 is included in the proof of Proposition 7.39. Also the case p = 1 is
trivial and the result is already known. Hence, we assume 1 < p < 400.
We write | fi + fo|? < (Ifil + |fol)| fr + f2lP~ = [fullfo + folP " + [ foll fo + f2lP ' ace. on X

and, applying Holder’s inequality, we find
S 1+ FolP da < ([ LA di) 7 (i Lo+ fol @09 dpa) 7
+ (S ol d) 7 (S Ly + fol 070 dpr) ™
= (Jy Il du)" " ( [y | fr + fal? du)' "
+ (S 1P di) ([ 1o+ fol? du) ™
Simplifying, we get the inequality we want to prove. O

Definition. Let 1 < p < +o0 and (f,,) be a sequence in LP and f € LP. We say that f, — f in
the p-mean if as n — +00

fX|fn_f|pd,u—>07 ifl1<p< 4o
ess-sup(fn — f) = 0, ifp=+occ

We say that (f,,) is Cauchy in the p-mean if as n, m — +00
fX|fn_fm’pd,u—>0, ifl1<p< 4o
ess-sup(fn — fm) = 0, ifp =400

It is easy to see that, if (f,,) converges to f in the p-mean, then (f,,) is Cauchy in the p-mean.
Indeed, if 1 < p < +0o0, then, by Minkowski’s inequalities,

(S 1= FlP di) " < ([ [ = FIP )"+ ([ fon — P )P =0

as m,n — 4o0. The proof is identical if p = +oc.
The notion of convergence in the 1-mean coincides with the notion of convergence in the mean
on X. Theorem 7.7 is an extension of Theorem 5.1.

Theorem 7.11. If (f,,) is Cauchy in the p-mean, then there is f € LP so that f,, — f in the p-mean.
Moreover, there is a subsequence ( fy, ) so that f,, — f a.e. on X.
As a corollary: if f, — f in the p-mean, there is a subsequence ( fy, ) so that f,, — f a.e. on X.
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Proof. We consider first the case 1 < p < 4o0.

First proof. We have that for every k there is ny, so that [y |f, — fm[Pdu < 2%1, for every
n,m > ng. Since we may assume that each ny, is as large as we like, we inductively take (ny) so
that nj, < ng4 for every k. Therefore, (f,,, ) is a subsequence of (f,).

From the construction of ny and from n; < ngy1, we get that fX |fn,€+1 — faplPdp < 2%1, for

every k. We define the measurable function G : X — [0, +00] by G = ;% | frr — Sl IE
GK = Z]Ig(:_ll |fnk+1 - fnk| then

(e Ghe di) P < SR [y [ fnn — PP dp) /P < 1,

by Minkowski’s inequality. Since G 1 G on X, we find f x G dp < Tand, thus, G < +o0 ae.
on X . This implies that the series 335 ( fn, 1 () = fu, (x)) converges fora.e. z € X. Therefore,

there is a B € S so that u(B¢) = 0 and Z;‘:’C{(]‘}Lk+1 () — fn,(x)) converges for every x € B.
We define the measurable f : X — F by

F= for + 85 (fages — frn), onB
0, on B¢

On B we have that f = f,, + limg_, Ef:_ll(fnkﬂ — fn,) = limg_, 4 fn, and, hence,
fn, — [ a.e. on X. We also have on B that

‘an_f|:|an_fnl_ ;:;.Ol(fnkJrl_fnk)‘
= |Z£<:_11(fnk+1 - fnk) - ;z(fnk+1 - fnk)’ < EI—CEOK |fnk+1 - fnk‘ <G

for every K and, hence, | f,,, — f|P < GP a.e. on X for every K. Since we have [ GP du < +00
and that | f,,, — f| — 0 a.e. on X, we apply the Dominated Convergence Theorem and we find
that [y |fn, — fIPdu — 0as K — +oo.

From nj, — +00 as k — +oo and from Minkowski’s inequality, we get ([ [fr — f? du)'/P <
([x |5 = FanP i)Y + ([ | fap — fIP dp)*/P — 0 as k — +oc and we conclude that f, — f
in the p-mean.

Second proof. For every e > 0 we have that

w({z € X | (@) = fn(@)| > €}) < 2( [y [fu = Fnl? dps)''”

and, hence, (f,,) is Cauchy in measure on X. Theorem 5.2 implies that there is a subsequence
(fu,) so that f,,, — fa.e. on X.

Now, for every e > 0 there is an N so that [y |f, — fm[Pdu < € forall n,m > N. Since
ni — 400 as k — 400, we use m = ny, for large k and apply the Lemma of Fatou to get

fx|fn_f|pd/‘ gliimk—>+oofx|fn—fnk|pd/‘ <e€

for all n > N. Of course this says that f,, — f in the p-mean.

Now let p = +oc.

For each n,m we have a set A, ,, € S with (A7, ) = 0and | f,, — fim| < ess-sup(f, — fin) on
Ap,m. We define A =, ,, ,,, An,m and get that u(A°) = 0 and [f,, — fin| < ess-sup(fn — fm)
on A for every n, m. This says that ( f,,) is Cauchy uniformly on A and, hence, there is an f so that
fn — [ uniformly on A. Now, ess-sup(f, — f) < sup,ca |fu(z) — f(z)] = 0asn — +oo. O

If for every f € L we set

Np(f) =

{(fX ]f]pdu)l/p, if1 <p< +oo
P

ess-sup(f), if p=+4o0
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then (the proofs of) Propositions 7.37 and 7.39 and Minkowski’s Inequalities imply that the func-
tion NV, : LP — R satisfies

Np(fi + f2) < Np(f1) + Np(f2), Np(kf) = |k|Np(f)

for every f, f1, fo € LP and k € F.

The function NV, has the two properties of a norm but not the third. Indeed, N,(f) = 0 if and
only if f = 0 a.e. on X. The usual practice is to identify every two functions which are equal a.e.
on X so that IV, becomes, informally, a norm. The precise way to do this is the following.

Definition. We define the relation ~ on LP as follows: we write f1 ~ faif fi = fo a.e. on X.
Proposition 7.40. The relation ~ on LP is an equivalence relation.
Proof. Exercise. O

Like any equivalence relation, the relation ~ defines equivalence classes. The equivalence
class [f] of any f € LP is the set of all g € £P which are equivalent to f:

fl={9eLllg~ft={9€Ll|g=[ae on X}

Proposition 7.41. Let f1, fo € LP. Then
(i) [f1] = [f2] if and only if fi1 ~ faif and only if f1 = fo a.e. on X.

(@) If [l N[ fo] # O, then [f1] = [fo].
Moreover, LP = J e pv[f]-

Proof. Exercise. 0

Proposition 7.41 says that any two different equivalence classes have empty intersection and
that £? is the union of all equivalence classes. In other words, the collection of all equivalence
classes is a partition of LP.

Definition. We define
LP(X,S,p) = LY(X, S, p) [~ =S f € LX(X, S, )}

Again, we may write LP or LP(X) or LP(p) etc.
The first task is to carry addition and multiplication from £? over to LP.

Proposition 7.42. Let f, f1, f2,9,91,92 € LP and Kk € F.
() If f1 ~ g1 and fo ~ go, then f1 + f2 ~ g1 + go.
@) If f ~ g, then kf ~ Kg.

Proof. Exercise. O

Because of Proposition 7.41, another way to state the results of Proposition 7.42 is: (i) [f1] =

[g1] and [f2] = [g2] imply [f1 + g1] = [f2 + g2] and (ii) [f] = [g] implies [« f] = [kg]. These allow
the following definition.

Definition. We define addition and multiplication in L as follows:

(Al + [l =1A+ L) &lf]=I[sf].

Now it is a matter of routine to prove that the set L” becomes a linear space under this addition
and multiplication. The zero element of L? is the equivalence class [0] of the function 0 which is
identically 0 on X. The opposite of [f] is the equivalence class [— f].

The next task is to define a norm on P,
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Proposition 7.43. Let f1, fo € LP. If f1 ~ fa, then Np(f1) = Ny(f2) or, equivalently,

Ix lfilPdp = [ |falP dp, if1<p< oo
ess-sup(f1) = ess-sup(fa), ifp=+oo

Proof. Exercise. O

An equivalent way to state the result of Proposition 7.43: (i) [f1] = [fo] implies [y | f1|P dp =
Jx | f2|P dp, if 1 < p < +o00, and (ii) [f1] = [f2] implies ess-sup(f1) = ess-sup( f2), if p = +oo0.
These allow the:

Definition. We define for every [f] € LP

([ lfIPdu) P, if1 <p < +o0
ess-sup(f), if'p = o0

1Al = Np(f) = {

Proposition 7.44. The function || - ||, is a norm on LP.

Proof. |[[f1] + [f2lllp = [Ilf1 + folllp = Np(f1 + f2) < Np(f1) + Np(f2) = [[Allp + 2]l
Also, [|&[f]llp = I fllp = Np(rf) = || Np(f) = [&][|Lf]]l,-

If ||[f]ll, = 0, then N,(f) = 0. This implies f = 0 a.e. on X and, hence, f ~ 0 or, equivalently,
[f] is the zero element of LP. O

In order to simplify things and not have to use the bracket-notation [ f] for the elements of L7,
we shall follow the traditional practice and write f instead of [f]. When we do this we must have
in mind that the element f of L (and not the element f of £P) is not the single function f, but the
whole collection of functions each of which is equal to f a.e. on X.

For example:

1. When we write f; = fo for the elements fi, fo of LP, we mean the more correct [f1] = [f2] or,
equivalently, that f; = fs a.e. on X.

2. When we write [ x Jhdp for the element f € LP, we mean the integral S x Jhdp for the
element-function f € LP and, at the same time, all integrals [ gh dp (equal to each other) for all
functions g € LP such that g = f a.e. on X.

3. When we write || f||,, for the element f € L” we mean the more correct ||[f]||, or, equivalently,

the expression ([ | f|P du) l/p, when 1 < p < +o0, and ess-sup(f), when p = o0, for the
element-function f € £P and at the same time all similar expressions (equal to each other) for all
functions g € £? such that g = f a.e. on X.

The inequality of Minkowski takes the form

11+ Fallp < [lf2llo + [l f2ll

for every fi, fo € LP.
Holder’s inequality takes the form

1fglly < [1fllpllgll
forevery f € LP and g € LY.
Definition. We define (-,-) : L*> x L?> — F by
(f,9) =[x fgdp,  f.ge L
Proposition 7.45. The function (-, -) is well-defined and it is an inner product on L?.

Proof. If f1, f2,91,92 € L?sothat f; ~ foand g; ~ go, then fig1 ~ f2go and thus fX figrdu =
[ f29z dp. Therefore, (f, g) is well defined for any f, g € L?.
All properties of an inner product are very easy to verify. O
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Obviously
() =[x [fPdu=|fl3

This means that the norm induced by the inner product on L? is the same as the already defined
norm on L2

Theorem 7.12. All LP are Banach spaces. In particular, L? is a Hilbert space.

Proof. Let (fy) be a Cauchy sequence in LP. This means || f, — fu|, — 0, which says that
Jx | fn = fm|Pdp — 0,if 1 < p < 400, and ess-sup(f,, — fm) — 0, if p = +00. Now, Theorem
7.7 implies that the sequence (f,,) in £P converges to some f € LP in the p-mean. Therefore,
Jx | fn = fIPdp — 0,if 1 < p < 400, and ess-sup(f, — f) — 0, if p = +-00. This means that
| fn — fllp = 0 and (f,,) converges to the element f of LP. O

Definition. Let I be an index set and § be the counting measure on (I, P(I)). We denote
P(I) = LP(I,P(I), §).
In particular, if I = N, we denote [P = [P(N).

If 1 < p < +o0, then the function b = (b;);er : I — F belongs to IP(I) if, by definition,
7 1bJP df < 400 or, equivalently,
Dier [bilP < +oc.

If [b;| = +oc for at least one 7 € I, then ), |b;|P = +o0.
Definition. /1 < p < +oo, we say that b = (b;);c; is p-summable when ), |b;|P < +oo0.

Hence, b = (b;)cs is p-summable if and only if it belongs to [P (I). We also have

1ol = (Sies 1bal7) 7.

When 1 < p < +00, Minkowski’s inequality becomes
1 2) 13 1 D1 2) 1p 1
(Sier 6+ 0707 < (Sicr B 1) 77+ (S 671777

forall b = (bgl))iel and by = (bz@))iel which are p-summable. Similarly, when 1 < p,p’ < +00
and p, p’ are conjugate, Holder’s inequality becomes

Eie] |bic;| < (Ziel |bi|p) 1/p(ziel |Ci|p/)1/p/

for all p-summable b = (b;);c; and all p’-summable ¢ = (¢;);e;.

Since the only subset of I with zero f-measure is the (), we easily see that b = (b;);er is
essentially bounded on I with respect to £ if and only if there is an M < +o0 so that |b;| < M
for all ¢ € I. It is obvious that the smallest M with the property that |b;| < M for all i € T is the
Mo = sup;c; |bil.

Definition. We say that b = (b;)icr is bounded if sup;c; |b;| < +oc.

Therefore, b is essentially bounded on I with respect to § or, equivalently, b € [°°([) if and
only if b is bounded. Also,
||bl|loc = ess-sup(b) = sup;c; |b;|.

The inequality of Minkowski takes the form

1 2 1 2
SUp;ecr ‘bg ) + bz( )’ < SUp;¢c; \bg )’ + Sup;er |b1(' )\
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forall by = (bgl))iej and by = (652))1-6] which are bounded. When p = 1 and p’ = +o0, Holder’s

(2
inequality takes the form

Dier Ibicil < 3 ieq [bil - supsep [cil

for all summable b = (b;);c; and all bounded ¢ = (¢;);er.

The spaces [P (I) are Banach spaces. In particular, the space [%(I) is a Hilbert space. The inner
product on [2(I) is given by

(b,c) = ierbici

forall b = (b;)ies € 1*(I), ¢ = (¢;)icr € 12(1).

As we have already mentioned, a particular case is when I = N. Then

P = {a: = (x1,x2,...) ‘ Z;;’(l’ |zp P < —i—oo}, ifl <p<+oco

1° = {z = (x1,22,...) | sup>1 |zk| < 400}

The corresponding norms are

1 .
l2llp = (528 JaeP) 77, if 1< p < +o0

[ ]loo = supy>1 [k ]

For [? the inner product is
<x,y> = Zz:o? Tk Yk
for every x = (x1,22,...) € 1%,y = (y1,¥2,...) € 2.

Theorem 7.13. The set of all functions of the form e?>™F* = e2r(kizitethnn) yyhere | =
(k1,...,kn) € Z", is an orthonormal basis of L*([0, 1], my,).

Proof. It is easy to see that the functions e?>™** where k € Z", form an orthonormal set in
L2([0,1]™, my,).

Now take an arbitrary f € L?([0, 1], m,,) and any € > 0. There is a continuous g : [0, 1]" — F
whose support is contained in the open cube (0,1)" so that || f — g[I3 = [, jn [/ — gI* dimn < €.
We extend g to a function ¢ : R™ — F which is 1-periodic in each coordinate. The extended g is
also continuous on R".

Theorem 7.10 implies that there is an exponential polynomial P such that |g(x) — P(x)| < € for
allz € R™. Thus ||g— P||3 = Joap l9— P|?dm,, < €% and by the triangle inequality of the norm
we get ||f — Pll2 < 2e. Therefore, every f € L?([0,1]",m,,) is in the closed linear span of the
functions €2 where k € Z", and we conclude that these functions constitute an orthonormal
basis of L2([0, 1], m,,). O

Thus, the Fourier series of any f € L2([0, 1], m,,) with respect to the so-called exponential
orthonormal basis of all functions e (z) = €™ (k € Z") is the series Y,y (f, ) ek, L.e.

Skezn Sioape P2 dmy (y) €27

From now on p, p’ € [1, +00] are meant to be conjugate.

Theorem 7.14. Let g € L. If'1 <p < 4o0, then

lglly = max {| [ fgdu||f €L, | fl, <1}

If 1 is semifinite, the same is true when p = 1 but with max replaced by sup.
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Proof. (a)Let1 < p < +oo and, hence, 1 < p’ < +oo0.

For any f € LP with || f[|, < 1 we get by Holder’s inequality | [ fgdu| < || fllpllglly < lglly-
Therefore, sup {| [ fgdn|| £ € L7, | fllp < 1} < llgl-

If ||g||l,y = 0O, then the inequality between the sup and the ||g||,» obviously becomes equality. In-
deed, we have g = 0 a.e. on X and this implies fX fgdup =0 forevery f € LP.

Now let ||g|l, > 0. We consider fy defined by fo(z) = [g(z)[”'* sign(g(m))/HgHg:_l. Then

/ /1 / /-1
fo(x)g(x) = lg(@)|" /llglly,~" and, hence, [y fogdp = [y 19" dp/llglly ™" = llglly-
If 1 < p,p’ < 400, then, since p(p’ — 1) = p/, we have |fo(z)[P = |g(x) ]p'/HgHZ and, hence,

1follp = (S [fol? du)"” = 1.

If p = 400,p’ =1, then | fo(x)| = 1 and, thus, || fo|lcoc = ess-sup(fo) = 1.

We conclude that | g,y = max{} [x fodu| ’f e LP | fllp <1}.

(b)Letp = 1,p = +o0.

For any f € L' with [[f[li < 1 we have | [ fgdu| < [[fllillgllc < llglloc. Therefore,
sup {| [ fodu||f €LY fllh <1} < gl

If ||gllc = 0, then g = O a.e. on X. This implies that [ fgdu = 0 for every f € LP and the
inequality between the sup and the ||g||oo becomes equality.

Let||g|loc > 0. Foralle with0 < € < ||g||occ We get u({z € X |||g]lcc—€ < |9(2)] < |lglloc}) > 0.
If o is semifinite, there exists a B € Ssothat B C {z € X |||g]lcc — € < [9(z)] < ||glloc}
and 0 < p(B) < +oo. We define the function fy by fo(z) = sign(g(z))xs(x)/n(B). Then
Jol@)g(x) = lg()lx(x)/u(B) and, hence, [ fogdi = [, lg]du/u(B) > llgllso — c. Also,
fol@)] = x5(x) /(B and, hence, || folli = [y 1fol dpe = [iy dps/u(B) = 1.

These imply sup {| [ fgdu| | f € L', |[fli < 1} > [|glloc — € for every e with 0 < € < ||g]lo
and we conclude that ||g||cc = sup {| [y fodu||f € L', | fll1 < 1}. O

Definition. Let 1 < p < +o0. For every g € L¥ we define lg : LP — F by
ly(f) =[x fgdp,  feLP.

Proposition 7.46. Let 1 < p < +o00. Forevery g € Lp/ the function lg belongs to (LP)*.
Moreover, if 1 < p < 400, then ||lg||« = ||g||y and, if p =1, then ||l4]|« < ||glloo- If p =1 and p
is semifinite, then ||lg||« = ||g| -

Proof. We have ly(f1 + f2) = [ (fi + fo)gdu = [ frgdu + [y fagdp = 14(f1) + 1g(f2).
Also, ly(kf) = [y (kf)gdp =k [y fgdu = klg(f). These imply that [, is a linear functional.
Theorem 7.9 together with Proposition 7.16 imply that, if 1 < p < +o0, then ||ly]|« = [|g]|,. If
is semifinite, the same is true for p = 1.

fp =1, forall f € L' we have [ly()| = | fic fgdps < llglloell fI11- Hence, 1yl < [lgllo. O

Definition. Ler 1 < p < +oco. We define the mapping J : L — (LP)* by J(g) = lg for all
geL”.

Proposition 7.47. The function J is a bounded linear operator. If 1 < p < 400, then J is an
isometry from LP into (LP)*. This is true when p = 1, if ju is semifinite.

Proof. Exercise. 0

Lemma 7.5. Let | € (LP(X,S,u))*. If E € S, S|E ={A € S| A C E} is the restriction of S
on E and | E is the restricted measure on (E,S|E), we define [|E by

(1E)(h) = U(h),  he LP(E,S|E,ulE),

where h is the extension ofhasOon X \ E.
Then, [|E € (LP(E,S|E, | E))* and ||l|E||« < ||l||«. Moreover,

W(fxe) = UE)fIE),  feL’(X,S,p),
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where f|E is the restriction of f on E.

Proof. Forall h, hy, h2 € Lp(E S]E 1] E) we consider the corresponding extensions f E,BE €
LP(X,S, ). Since h1 + hg and rh are the extensions of h1 + hsy and xh, respectively, we have
(1) (h1+ha) = l(h1+ha) = l(h1) +1(h2) = (11 E)(h1)+ (I E)(hs) and (11 E)(kh) = I(xh) =
kl(h) = k(I1E)(h). This proves that [|E is linear and |([|E)(h)| = [I(R)] < ||l||l+]|R]lp
IlZ|l]||l, proves that []E is bounded and that ||[]E|[. < ||/]|..

If f e LP(X,S, ), then f]|E = fxg on X and, hence, (I|E)(f|E) = l(]?ﬁ?) =I(fxg) O

Definition. The [|E defined in Lemma 7.4 is called the restriction of | € (LP(X,S,u))* on
17(E,S|E, u] E).

Theorem 7.15. Let 1 < p < +o0.

(i) For every I € (LP)* there exists a unique g € L¥ so that | = lg (see the definition before
Proposition 7.46) i.e. so that I(f) = [y fgdu for every f € LP.

(ii) The function J is an isometry from L¥ onto (LP)*.

If v is o-finite, then (i) and (ii) are true also when p = 1.

Proof. (a) We consider first the case when 1 is a finite measure: p(X) < +oc.

Letl € (LP)*and 1 < p < 4o0.

Since [, [xaPdp = p(A) < 400, we have that x4 € LP for every A € S. We define the
functionv : S — F by v(A) =1(xa) forall A € S.

We have v(0) = I(xg) = 1(0) = 0.

If Ay, Ag, ... € S are pairwise disjoint and A = Uj:o‘f Aj, then x4 = ;;Of x4, Therefore,

IIZ =1 XA; XA||p fx j= nJrIXAj‘pdlu’:fX|XUj+:°Z+1Aj‘pdlu’
—/.L( j= n—‘,—lA)%M(@):Oa

by continuity of x from above. Linearity and continuity of l imply =", v(A;) = >0, l(xa;) =
1(3"5-1 xa;) = l(xa) = v(A) or, equivalently, that Z] Tv(A;) =v(A).

Hence, v is a real or complex measure (depending on whether F' = R or F' = C) on (X, S).

We observe that, if A € S has u(A) = 0, then v(A) = I(x4) = {(0) = 0 because the function x 4
is the zero element of LP. Therefore, v < p and by the Lebesgue-Radon-Nikodym Theorems there
exists a function g : X — F which is integrable over X with respect to y, so that [(x4) = v(A) =
i) A9dp = J v Xagdu for every A € S. By linearity of [ and of the integral this, clearly, implies
lg) = [ @9 dp for every measurable simple function ¢ on X. This extends to all measurable
functions in LP which are bounded a.e. on X. Indeed, let f € LP be such that |f| < M a.e. on X
for some M < +oo. We take any sequence (¢,,) of measurable simple functions with ¢,, — f and
|6n] T |f] on X. Then ¢ng — fg and [ng| < |fg| < M]|g|a.e. on X. Since [y |gdp < +oo,
the Dominated Convergence Theorem implies that | x Pngdp — | « Jgdu. On the other hand,
|pr, — fIP — 0on X and |p, — fIP < (|¢n| + | f])? < 2P|f|P on X. The Dominated Convergence
Theorem again implies that [ |¢,, — f|P du — 0 and, hence, ¢,, — f in LP. By continuity of [
we get that [ ¢ngdp = 1(¢n) — I(f) and, hence,

I(f) =[x fgdu (7.9)

for every f € LP which is bounded a.e. on X.

Now our first task is to prove that g € .

If 1 < p,p’ < 400, we consider a sequence (¢,,) of measurable non-negative simple functions on
X 50 that 1, 1 [g?" 1 on X. We define 6, (x) = tu(z) sign(g(x)). Then 0 < dng = wnlg| T
|g|P" a.e. on X and each ¢, is bounded a.e. on X . Hence,

[9nllp = [x ¥ndp < [y dnlgldp = [ dngdp=1Uen) < [Ullénllp < [12]ltonllp,
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where the last equality is justified by (7.9). This implies [y ¥} du = [[¢nh < IZ¥ and by the
Monotone Convergence Theorem we get [ [g|P du = lim, oo [5 ¥h dp < 12|, Therefore,
g € L and gy <[]l

If p = 1and p’ = +00, we consider any possible ¢ > 0 such thatthe set A = {z € X |t < |g(x)|}
has p1(A) > 0. We define the function f(z) = xa(x) sign(g(z)). Then

tu(A) < [ylgldu = [y fgdp=1(f) < N fll < N2llpn(A),

where the last equality is justified by (7.9). This implies that ¢ < ||{||. and, hence, |g| < ||I||« a.e.
on X. Therefore, g is essentially bounded on X with respect to v and ||g|loc < ||7]]«-

We have proved that in all cases g € L? and ||g||,» < [|I]]«.

Now consider an arbitrary f € LP and take a sequence (¢,,) of measurable simple functions on
X so that ¢,, — f and |¢,| T |f| on X. We have already shown by the Dominated Convergence
Theorem that ¢,, — f in LP and, hence, I(¢y,) — I(f). Moreover,

}fX ¢ngd,u_fx fgd,u‘ S fx|¢n_f|’g‘dﬂ S H‘bn_f”pHgHP' _>07

since ||g||,y < 4+o0. From I(¢y,) = [  ®ng dp we conclude that
= [y fgdu, forall f € LP.

Of coure this implies that [( ) = [,(f) for every f € LP and, hence, [ = I, = J(g). Therefore, .J
is an isometry from L? onto (L?)*.

Now assume that h € L?" also satisfies [ = I;,. Then .J(h) = [ = J(g) and, since .J is an isometry
(and, hence, one-to-one), we get that h = g a.e. on X.

(b) We suppose now that p is o-finite and consider an increasing sequence (Ey) in S so that Fy, T X
and pu(Ey) < +oo for all k.

Letl € (LP(X,S, pn))*.

For each k we consider the restriction [|E}, of [ on LP(Ey, S| E, 1| Ey) which is defined in
Lemma 7.4. Since [ | Ey, € (LP(Ey, S| Ey, 1| Ex))* and ||I] Ex ||« < ||l]|« and since (1] Ex)(Ey) =
11(Ey) < oo, part (a) implies that there is a unique g, € L¥ (Ey, S| Ey, ] Ex) with ||gx |, <
11 Ex]l« < [[Z]]+ and

(I1Ek)(h) = fEk hgi d(u] Ex), forall h € LP(Ey,S|Ex, u] Ey).
In particular,

W(fxe,) = (E)(f1Ex) = [, (f1Ek) gk d(u]Ex)  forall f € LP(X,S, p).

For h € LP(Ey, S| Ey, 1] Ey) take its extension hg on Fxq as 0 on Ej11 \ Fj. Since h= /l;a on
X, we get

[, hgi A Ex) = (11 Ex)(h) = U(h) = I(ho) = (1] Ex41)(ho) = =[5, hogr+1 d(1] Epsr)
= [ hogrs1 dp = fEk(hongﬂEk d(u1Ex) = [g, (gr+11Ek) d(p] Ex).

By the uniqueness result of part (a) we have that gx1|Fr = gx a.e. on Ex. We may clearly
suppose that g1 | Ex = gx on F}, for every k by inductively changing g1 on a subset of Ej, of
Zero measure.

Now we define the measurable function g on X as equal to g on each Ej. Le. g| Ex = gi on E},
for every k. Therefore, [(fxg,) = [5 ( Ek g|Ex) d(p] Ey) and, thus,

U(fXE,) = [g fodu  forall f € IP(X,S,p).
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If 1 < p' < 400, then, since |gx| 1 |g| on X, by the Monotone Convergence Theorem,
S gl dpe = Timy oo [ 101" dpt = Vim0 [y, |g " d(u] Ei) < |2 < +oo.

Hence, g € LP (X, S, p) and [|gl,r < [|I]+-
If p’ = 400, we have that |g| = |gk| < ||gkllco < 1] Ekll« < |||« a.e. on Ej for every k. This
implies |g| < |||« a.e. on X and, thus, g € L>°(X, S, i) and ||g|loc < [|I]]+.
Hence, in all cases, g € L (X, S, 1) and ||g[l,y < [|1]]-
For an arbitrary f € LP(X,S, u) we get || fxg, — flp = [x |fxB, — fIPdu = fEi |fIPdp =
S x XE¢ |fIP dp — 0 by the Dominated Convergence Theorem. By continuity of [ we have that
I(f) = limpioo l(fXxE,) = limg oo fEk fgdu = [y fgdu. The last equality holds since
1

’fEk fgdp — fogd,u,‘ = ’fE;; fgdﬂ| < (fE;; |f’pdu);”9”p’ — 0.
We have proved that

) =[x fgdu forall f € LP(X,S,u)
and, thus, [ = I, = J(g). Hence, J is an isometry from L¥' (X, S, u) onto (LP(X, S, j1))*.
Again, if h € LP (X, S, 1) also satisfies | = I, then J(h) = [ = J(g) and, since .J is an isometry,
we get that h = g a.e. on X.
(c) Now let 1 < p,p’ < +oo and p be arbitrary.
Letl € (LP(X,S, un))*.
We consider any £ € S of o-finite measure and the restriction [|E of [ on LP(E,S|E, u]E)
defined in Lemma 7.4. Since [|E € (LP(E,S|E,n|E))* and ||I]E||« < ||I||+, part (b) implies
that there is a unique g € LP' (E, S|FE, u] E) so that ||gg ||,y < |[[]E||+ < |/1||« and

(I1E)(h) = [phged(n|E)  forall h € LP(E,S|E, ulE).
In particular,

I(fxe) = (B = [p(f1E)gpd(u]E)  forall f € IP(X,S. p).

Now let E, I be two sets of o-finite measure with & C F'. Repeating the argument in the proof of
part (b), with which we showed that g;1 | Fx = gx a.e. on Ej, we may easily show (just replace
Ej by E and Ej,1 by F) that g |E = gg a.e. on E.
Now, we define

M =sup{ [, |ge|” d(|E) | E of o-finite measure }

and then, obviously, M < HZHZ: < +o00. We take a sequence (E,,) in S where each E,, has o-finite
measure so that

S, 198,17 d(11En) — M.

We define E = |J'> E,, and observe that E has o-finite measure and, hence, | Elg e? d(p)E) <
M. Since E,, C E, by the result of the previous paragraph gg | E,, = gg, a.e. on E,, and, hence,
Iz, 95, [P d(W)En) < [5geP d(u]E) < M. Taking the limit as n — +o00, this implies that

JglgpP d(u]E) = M. We set g = g and have [ |9 dp = [, lgp " d(u]E) = M < ||
Now consider an arbitrary f € LP(X,S, ). Theset ' = EU {zx € X | f(z) # 0} has o-finite
measure. By gr | E = gp a.e. on E we get

M = [glgsl’" d(W1E) = [glgel? d(u]F) < [glgel? d(u]F) + [p g lgr” d(p] F)
= Jp lgrl” d(p] ) <M.

Therefore, fF\E lgr|P" d(1]F) = 0 and, hence, gr = 0 a.e. on F'\ E. Now

= fE ﬂE gEd( fX fgdu
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Thus, I = I, = J(g) and, just as in parts (a) and (b), J is an isometry from LY (X, S, 1) onto
(LP(X, S, p)*. ,

Finally,if h € LP (X, S, u) also satisfies | = Ij,, then J(h) = [ = J(g) and, since .J is an isometry,
we get that h = g a.e. on X. O

We know thatif1 < p,p’ < +ooand %—i— 1&% = 1, then there is an isometry from L*’ onto (LP)*.
Also, there is an isometry from L' into (L>)*, but in general this is not onto. If y is o-finite, then
there is an isometry from L> onto (L!)*.

In all these cases we may identify every g € LP with the corresponding ly € (LP)* which is
defined by I4(f) = fX fgdu forall f € LP. Hence, we may view every g € L*" as a bounded
linear functional on L and if we write g instead of /,, then the defining relation of [, can be written

9(f) =[x fadu, feLr gelLr.

Observe the symmetry [ fgdu = [y gf du which permits us to write

9(f) = flg) =[x fodu,  feLP,gelLl.

Hence, every g € L*" acts as a bounded linear functional on all f € LP and is, thus, an element
of (L?)* and, conversely, every f € LP acts as a bounded linear functional on all g € L¥ and is,
thus, an element of (LP')*.

Proposition 7.48. If'1 < p < +o0, then L? is reflexive.

Proof. We have to prove that the mapping 7" : LP — (LP)** defined in Proposition 7.26 is onto.
We recall that 7" is defined by T'(f)(I) = I(f) foralll € (LP)* and every f € LP.

We consider p’ = z%' Then 1 < p/ < 400 and % + 1% =1.

Now, we recall the isometry J : LP' — (LP)* defined by J(g) = l,, where I,(f) = Jx fgdu for
all f € LP.

We consider any L € (L?)** and we define L = LoJ : L’ — F. Le. L(g) = (LoJ)(g) = L(l,)
forall g € L. Both L and .J are bounded and linear and, hence, L € (L?")*.

We also recall the isometry J' : LP — (LP')* defined by J'(f) = ly, where lf(g) = [y gf dp for
all g € L. Therefore, there is an f € LP so that L = J'(f) = ;. Then for every [ € (LP)* there
isage LP sothatl = J(g) =, and

(/)W) =Uf) =1,(f) = [x fodu=1;(9) = L(g) = L(ly) = L(1).
Hence, T(f) = Land T : LP — (LP)** is onto. O

Definition. Let 1 < p < 400 (in the case p = 1 we assume also that y is o-finite) and (f,,) be a
sequence in LP. We say that (f,,) converges weakly to f € LP if [ fngdu — [y fgdu for all
g € LP . In this case we write f,, — f.

Let 1 < p < 400 and (fy,) be a sequence in LP. We say that ( f,,) converges weakly* to f € L? if
Jx fagdp — [y fgduforall g € LY. In this case we write f,, —» f.

Let us see the case of weak convergence. If we identify every g € L¥' with the corresponding
lg € (LP)* then [y fagdu — [y fgdp is equivalent to ly(fn) — l4(f). Now, since for every
I € (LP)* thereisa g € L” so that! = [, we conclude that f,, = f is equivalent to I(f,,) — I(f)
for all [ € (LP)*. Therefore, the definition we gave for f,, — f in LP is a special case of the
definition of weak convergence in the case of the general normed space.

We have a similar comment for the case of weak* convergence. If we identify every f,, € L?
and f € LP with the corresponding I, € (L)* and ly € (LP")* then Jx fagdp — [y fgduis

w*

equivalent to lf, (9) — l¢(g). Therefore, the definition we gave for f,, — f in L? is the same as

224



the definition of I, = I in (L”")* which is a special case of the definition of weak* convergence
in the case of the general dual space.

We observe that, if 1 < p < 400, then the notions of weak convergence and weak* conver-
gence in L? coincide. The same is true when p = 1 if y is o-finite.

The next results are special cases of corresponding results of the previous section.

Proposition 7.49. Let 1 < p < +oo. If (fy) is a sequence in LP such that limy,_ o [y fngdp
exists in F for all g € Lpl, then

1fllp < lim, o oo 1 fnllp, suppen [lfnllp < +oo.
Proof. A corollary of Proposition 8.3. O

Proposition 7.50. Let 1 < p < 400 (in the case p = +00 we assume also that u is o-finite). If
(fn) is a sequence in LP such that lim,,_, fX fngdu exists in F forall g € LY, then there is

an f € LP so that [y fogdp — [ fgdp forall g € L.
Proof. A corollary of Proposition 8.3. O

Proposition 7.51. Let 1 < p < +o00. If (fy) is a bounded sequence in LP, then thereis an f € LP
so that [ fngdp — [y fgduforall g € L.

Proof. This is a corollary of Theorem 8.2 and Proposition 8.10. O

Proposition 7.52. Let (X, X, 1) be a measure space and a countable P C Y. with the property:
for every E € ¥ with u(E) < 400 and every € > 0 there is an A € P so that u(AAE) < e. If
1 <p< 4o, then LP(X, X, n) is separable.

Proof. (a)Let E € ¥ with u(E) < +ooand e > 0. We consider the A € P so that u(AAE) < €P
and we have that {x € X | xa(z) # xg(z)} = AAFE and, thus,

Ixa = xelp <e

(b) Now we consider a simple function ¢ = Y ,'_; ki X, so that pu(Ey) < +oo for each k and
any e with 0 < € < 1. We also take M = n + > p_; kx| + Sp_, (11(Ex))'/P. Then for every
k we find a rational A so that [\ — k| < a7 and, by the result of (a), an A;, € P so that
Ixa, — xEllp < 57- Then we consider ¢» = >~)'_; Apxa, and we get

19 = llp < 1 2 2k=1 Ae(xa, = x5) + 21 (A — Er)xE, Iy
< Dot Mellxa, = xEellp + 57 Sk ((Ex)) P
< gp(ne+ Y5y Ime]) + 57 S (W(BR)VP < 57 M =€
We observe that the set B of all functions ) is countable.

(c) Finally, we take any f € LP(X, %, u) and any € > 0. Then there is a simple function ¢ so that
¢ — fllp < §. By the result of (b) there is some ¢ € B so that [|1) — ¢||, < §. Then of course

1Y = fllp <e -

Proposition 7.53. Let 1 be o-finite and assume that there is a countable P C 3 with the property:
for every E € ¥ with u(E) < +oc and every € > 0 there is an A € P so that f(AAE) < e. If
(fn) is a bounded sequence in L™, then there is an f € L™ so that [ fogdu — [ fgdu for
all g € L.

Proof. This is a corollary of Theorem 8.1 and Proposition 8.16. O

Exercises.

225



7.3.1. Approximation

(i) Let f € LP(X,S, ) and € > 0. Prove that there exists a measurable simple function ¢ on X
so that || f — ¢||, < e. If p < +o00, then ¢ = 0 outside a set of finite measure.

(ii) Let f € LP(R™, L,,, my,) and € > 0. If p < +o00, prove that there exists a function g continuous
on R"™ and equal to 0 outside some bounded set so that || f — g, < e.

7.3.2. Let I be any index set and 0 < p < ¢ < 4o00. Prove that [P(I) C 19(1) and ||b|, < [|b]|,
for every b € IP(I).
7.33.Let u(X) < +ooand 0 < p < g < +o0. Prove that L9(X, ) € LP(X, u) and that
1 1
£l for every f € LI(X, o).

1fllp < u(X)?™
734.Let0<p<g<r<+4ooand f € LPN L". Prove that f € L7 and, if% = % + %,then
1£llg < IFIGIF117" Also prove that limg_,p || fllg = || fllp and limg—,— || fllg = || £l

73.5.Letl <p<r < +oo. Set Z = LPNL"and define || f|| = || f||, + || f||» for every f € Z.
(i) Prove that || - || is a norm on Z and that (Z, || - ||) is a Banach space.

(i) If p < g < r, consider the linear transformation 7" : Z — L7 with T'(f) = f forevery f € Z
(see exercise 7.2.4). Prove that T" is bounded.

7.3.6.Let0 <p < g<r<4ooand f € LI Ift > 0 is arbitrary, consider the functions defined
by g(z) = f(x) and h(z) = 0, if | f(x)| > t,and g(z) = 0 and h(x) = f(x), if |f(x)| < t. Prove
thatg € LP and h € L" and that f = g + h on X.

737.Letl <p <r < 4oo. Wedefine W = LP +L" = {g+ h|g € LP,h € L"} and, also,
Il = inf{llgllp + 2]l |g € LP,h € L", f = g + h} forevery f € W.

(i) Prove that || - || is a norm on W and that (W, || - ||) is a Banach space.

(ii) If p < ¢ < r, consider the linear transformation 7" : LY — W with T'(f) = f forevery f € L
(see exercise 7.2.6). Prove that T" is bounded.

738.Let 0 < p < ¢ < 4o0. Prove that LP(X) ¢ L9(X) if and only if X includes sets of
arbitrarily small positive measure and that L¢(X) ¢ LP(X) if and only if X includes sets of
arbitrarily large finite measure.

7.3.9.Let 1 < p < 400 and (fy,) be a sequence in L? so that || f,, — f||, — 0 for some f € LP.
Prove that f,, — f in measure.

7.3.10. Let 1 < p < +oo and (f,) be a sequence in LP so that | f,| < g a.e. for every n for some
g € LP. If f,, — f a.e. or in measure, prove that || f,, — f||, — 0.

73.11.Let1 < p < +ooand f, f, € LP for all n. If f, — f a.e., prove that || f, — f||, — 0if
and only if || fu[lp = [|f]lp-

7.3.12. Let 1 <p < +4ooand g € L>®(u).
We define the linear transformation 7" : LP(u) — LP(p) with T'(f) = gf for every f € LP(u).
Prove that 7' is bounded, that ||T'|| < ||¢||co and that ||T'|| = ||g||co if 1 is semifinite.

7.3.13. The inequality of Chebychev.
If0 <p < +ooand f € LP, prove that A () < || f||p/t* for 0 <t < 4oo0.

7.3.14. The general Minkowski's Inequality.
Let (X1, 81, 1) and (X2, S2, p2) be two o-finite measure spaces and 1 < p < +oc.
M Iff: X x X9 — [0,+00] is S; ® Sy—measurable, prove that

(S, (fx, fl@rwo) dus(e2)) dpn(20)) 7 < [, ([, Flxr,22)P dp(21)) 77 dpia ().

(i) If f(-,x2) € LP(X1,S1,p1) for po-ae. o € Xo and the function zo +— || f(-, z2)]|p is
in L'(X3, Sy, u2), prove that f(z1,-) € L'(Xa,Ss, po) for ui-a.e. 11 € X, that the function
z1 = [, f(z1,-) dpg is in LP(X1, Si, 1) and

(S, | S, £lrn,m2) dpa(a2)[” dpa (20)) P < [y, (S, |Fn,z)lP dpra (20)) P dppa ().
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7.4 The spaces M (X) and Mz(X).

Definition. Let (X, S) be a measurable space. The set of all real or complex (depending on
whether F' = R or F' = C) measures on (X, S) is denoted by M (X, S).

Therefore, all v € M (X, S) have only finite (real or complex) values.

If there is no danger of confusion, we shall use the symbol M instead of M (X, S).

We recall addition and multiplication on these spaces. If 11,10 € M, we define vy + 1o € M
by (v1 +12)(A) = v1(A) + 12(A) forall A € S. We also define kv € M by (kv)(A) = kv (A)
forall A€ Sandk € F.

It is easy to show that M is a linear space over F'. The zero element is the measure 0 defined
by 0(A) = 0 forall A € S. The opposite to v is —v defined by (—v)(A) = —v(A) forall A € S.

Definition. For every v € M we define

]l = [w[(X).
Thus, ||v|| is just the total variation of v.
Proposition 7.54. || - || is a norm on M.

Proof. Immediate after Propositions 6.6 and 6.9. O

Theorem 7.16. M is a Banach space.

Proof. Let (v,) be a Cauchy sequence in M. Then |v, — v, |(X) = [|[vn — Vi = 0asn,m —
+o0 and, hence, |V, (A) — v (A)| = [(n — vm)(A)] < |vn — vm|(A) < |vn — vm|(X) — O as
n,m — +oo. This implies that the sequence (v,,(A)) of numbers is a Cauchy sequence for every
A € S. Therefore, it converges to a finite number and we define v(A) = lim,_, oo v, (A) for
every A € S.

It is clear that v(()) = lim,,— o0 v (0) = 0.

Now, let A1, Ag, ... € S be pairwise disjoint and A = szof Aj. We take an arbitrary e > 0 and
find N so that ||v;, — v, || < € forall n,m > N. Since +°o Llvn|(A45) = |vn[(A) < 400, there

is some J so that Z] T11 lvnl(A5) < e From || < |un — vn| + |vn| we get that, for every
n >N,
g lvnl (A7) < 32755 0 lvm — ol (A7) + 3275511 ol (47)

< v = N UfZ541 A5 + € < fvn = v [(X) + e = ||l — vy | + e < 2¢.

(7.10)

ThenforanyKZJ—l—lananNwehavez]K:JH]yn( )|<EJ J+1 lvnl(Aj) < 2¢ and,

taking the limit as n — +o0, Z]K:J_H |v(Aj)| < 2e. Finally, taking the limit as X' — +o00, we
find

25 v(4))] < 26 (7.11)

From (7.10) we get [1,(4) — 7., ) = | 5 (AP < S5 [l (47) < 2¢ for
all n > N and, taking the limit as n — +o0,

[v(A) = 7oy v(4))] < 2e. (7.12)

Altogether, from (7.11) and (7.12) we have
W(A) = 725 v(A))] < [p(A) = i v(A))] + X055 v(4))] < 4e.

Since e is arbitrary, we get v(A) = S F ;21 v(4;) and we conclude that v € M.

For any measurable partition {A1,..., Ay} of X we get > 7 |(Vn —vim) (Ak)| < [|[vn —vm| < €
for every n,m > N. Taking the limlt as m — +o00, we find Zk:l |(vn, — v)(Ag)| < € for every
n > N and, taking the supremum of the left side over all measurable partitions {A;,..., A,} of
X, we get ||v, — v|| = |vn, — v|(X) < e. Hence, ||, —v| — 0. O
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Lemma 7.6. Let i be a real or complex (depending on whether F = R or F' = C) Borel measure
on X. Forevery f € BC we have

| [ Fdu| < [ 1f1dlul < 1 Flallel-

Proof. A consequence of Theorem 6.8. O

Let 11 be a Borel measure on X. We recall that g is called regular if for every Borel set F we
have (i) u(E) = inf{u(U) |U open 2 E} and (ii) u(E) = sup{u(K) | K compact C E'}.

Definition. If 1 is a real Borel measure on X, then p is called regular if u™ and = are regular.
If v is a complex Borel measure on X, then y is called regular if Re(u) and Im(u) are regular:
The space of all regular real or complex Borel measures on X is denoted by

Mg (X, Bx).

We write My instead of My (X, By) if there is no danger of confusion.

It is clear that, if 1 is a Borel measure and p(E) < +oo, then (i) and (ii) in the definition of
regularity are equivalent to the following: for every € > 0 there is an open U O E and a compact
K C Esothat u(U\ K) <e.

Proposition 7.55. Let i1 be a real or complex Borel measure on X. Then i is regular if and only
if |p| is regular:

Proof. Let u be real. If y is regular, then u™ and p~ are regular and, thus, for every Borel set E
and € > 0 there are open U, U~ 2 F and compact K™, K~ C Esothat u™ (Ut \ KT) < eand
p (U \K7)<e Weset K =KTUK~ C AandU =UTNU~ 2D Aandthen u™(U\K) < €
and (U \ K) < e. We add and find |p|(U \ K) < 2¢ and, hence, || is regular.

Now let |x| be regular. Then for every Borel set F and € > 0 there is an open U 2 E and a
compact K C E with |u|(U \ K) < € and, since ', u= < ||, we get the same inequalities for
p" and p~. Therefore, u* and p~ are regular and so p is regular.

If 1 is complex, the proof is similar and uses the inequalities | Re(u)|, | Im(u)| < |p| and |u| <
[Re(s2)| + [ m(p)]. 0

Theorem 7.17. My is a closed linear subspace of M and, hence, a Banach space.

Proof. 1f py and pug are regular Borel measures on X, then |uq| and |us| are regular. Therefore,
for every Borel set £/ and € > 0 there are open Uy, Us O FE and compact K1, Ko C FE so that
’Nl‘(Ul \ Kl) < e and ‘,U/Q‘(UQ \ KQ) <e Weset K =K{UKy CFEandU =U;1NU; DO FE,
and thus we find the same inequalities for K" and O. We add, using |u1 + pe| < |u1| + |pe|, and
we find |1 + p2|(U \ K) < 2¢. Hence, |p1 + pe| is regular and so p11 + o is regular.

It is even simpler to prove that, if x4 is regular and x € F', then xu is regular.

Therefore My, is a linear subspace of M.

Now let (1) be a sequence in My converging to p in M. We consider any Borel set E and € > 0
and find N so that ||uny — p|| < € and then, since |u | is regular, we find an open U O FE and a
compact K C E sothat |uy|(U \ K) < e. Then |u|(U\ K) < |un|(U\ K) + ||un — p|| < 2¢
and, thus, p is regular. Therefore, My is closed in M. ]

We recall Theorem 1.23 which says that, if for every open subset O of X there is an increasing
sequence of compact sets whose interiors cover O, then every locally finite Borel measure is regular
and, hence, Mpr = M.

We also recall Theorem 2.2 which says that, if X is locally compact and Hausdorff, K C X
is compact, U C X is open and K C U, then thereisan f < U so that f =1 on K. Lemma 7.6
is a generalization of this fact to more than one open sets.
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Lemma 7.7. Let X be locally compact and Hausdorff. If K C X is compactand Uy, ..., U, C X
are open so that K C UyU- - -UU,, then thereexist fi < Uy, ..., fn < Upsothat fi+---+fn, =1
on K.

Proof. From the hypothesis, K \ (Uz U --- U U,) C Uj so there is an open V; so that cl(V7) is
compactand K \ (UyU---UU,) C Vi Ccl(Vy) C Uy,

Then K CV;UUU---UU, and, hence, K \ (Vi UU3 U ---UU,) C Us,. So there is an open
Vs so that cl(V3) is compactand K \ (V1 UUs U ---UU,) C V5 C cl(Va) C Us.

Then K C V; U Vo UUs U ---U U,. Continuing inductively, we replace one after the other the
Ui,...,U, withopen Vi,...,V, sothatcl(V7),...,cl(V},) are compactand K C V; U--- UV,
and cl(V;) C U, for all j.

By Theorem 2.2, there are g1, ..., g, so that g; < U; and g; = 1 on cl(V}) for all j. Also there
exists gop : X — [0,1] sothat gg = 1 on K and go = O outof Vy U--- U V,.

We define f; = Hﬁggﬁ forevery j =1,...,n.

If for any = € X the go(z) = 0 is not true, then € V; U --- UV}, and then g;(z) = 1 for some
j=1,...,n. Therefore, 1 — go +¢1 + -+ gn > 1 on X and, hence, f1,...,fn : X — [0,1]
are all continuous on X.

Clearly, supp(f;j) € supp(g;) and thus f; < Uj; forall j. Also, fi+-- -+ fn = % =1
on K because gp = 1 on K.

Definition. Let K be compact and Uy, . .., U, be open subsets of X and K C Uy U---UUy,. If
fi<Ui,....fo <Uyand fi + -+ fn, = 1L on K, then the collection {fi, ..., fn} is called a
partition of unity for K relative to its open cover {Uy,...,Uy,}.

Theorem 7.18. Let X be locally compact and Hausdorff and 1 € My. Then

liall = sup {| [ £ du| | £ € Co. | fllu < 1}.

Proof. Forall f € Cy with || f||, < 1, Lemma 7.5 implies that | [ fdu| < || fllullpll < [l

Therefore, sup {| [y fdu|| f € Co, [ fllu < 1} < [|ull.
By the definition of |||, there are pairwise disjoint Borel sets Ay, ..., A, C X so that ||u]| —e <

|w(A1)| + -+ + [1(Ap)|. Since p is regular, for every j there is a compact K; C A; so that
lul(4; \ Kj) < Le Therefore, ||u|| — 2¢ < |u(K1)| + -+ + |u(Ky)|. Since Ky, ..., Ky
are pairwise disjoint, it is easy to prove that there are pairwise disjoint open Uy, . .., U, so that
K; C Uj for all j and, taking them smaller if we need to, we may assume that |u|(U; \ K;) < L e
for all j. Then for every j there is f; < Uj so that f; = 1 on Kj.

Finally, we define x; = sign ( ij fjdu) foreach jand f = k1 f1 + - + Knfn.

It is easy to see that || ||, < 1. Therefore,

| Jx fdn] = ‘Z?ﬂ Rj ij fjdp| = 2 =1 | ij fidp
> 325 D] = e Loy, Fi il
> ||pll — 26 = 32720 (U \ Kj) > [|pll — 3e.

Since € > 0 is arbitrary, we conclude that sup {| [y fdu|| f € Co,||fll < 1} > |ul| and the
proof is complete. O

Definition. Let X be locally compact and Hausdorff. For every i € Mg we definel, : Cy — F
by
W(f) =[x fdu  forall f e Cy.

Proposition 7.56. Let X be locally compact and Hausdorff. For every ji € Mg the function [,
belongs to (Co)*. Moreover, |1\« = ||p]|-
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Proof. We have I, (f1+ fo) = [ (fi+ fo)du = [ frdu+ [ fodp = 1,(f1) + 1u(f2). Also,
lu(kf) = [x(&f)du =& [y fdp = kl,(f). These imply that [,, is a linear functional.
Theorem 7.16 together with Proposition 7.16 imply that ||1,,||. = ||| O

Definition. Let X be locally compact and Hausdorff. We define J : Mg — (Cp)* by
J(pw) =1,  forall pc Mg.
Proposition 7.57. The function J is an isometry from Mg into (Cy)*
Proof. Exercise. O

We recall that, if ' = R, then (Y is a Banach lattice and that a linear functional [ : Cy — R is
called non-negative if [(f) > 0 for every f € Cp such that f > 0 (i.e. f(x) > 0 forall z € X).

F.Riesz-Radon-Banach-Kakutani Theorem. The real case. Let F' = R and X be locally
compact and Hausdorff.

(i) For every l € (Cy)* there exists a unique regular real Borel measure jion X so thatl =1, i.e.
sothatl(f) = [y fdpforall f € Cy.

If | is non-negative, then p is non-negative.

(ii) The function J is an isometry from Mg onto (Cy)*.

Proof. (i) We consider first the case of a non-negative [ € (Cp)*.
For each open O C X we define

1(0) = sup{l(f) [ f < O}
and then for each £ C X we define
w*(E) = inf{u(O) | Oopen D E}.

If O1, O9 are open and O; C Oa, then f < Oy implies f < O and, thus, 4(01) < u(O2). Hence,
p*(0O) = p(O) for each open O.

If f < O, then I(f) < ||ll|«||fllw < |l]|«. Therefore, (O) < ||I||« and, thus, p*(E) < ||I||« for
every EF C X.

It is obvious that 1*(0) = p(0) = 0 and also that u*(E7) < p*(Es2) for all £y, Es with By C Es.
Letnow E' = Ey U E3 U - - -. For each j we take an open O; 2 Ejj so that 4(O;) < p*(Ej) + 57
and set O = O UO2 U ---. Let f < O and then set K = supp(f) C O. Then there is N
so that K C O; U--- U Oyp and we consider a partition of unity {f1,..., fx} for K relative to
{O1,...,On}. Then f = ffi +---+ ffny and ff; < O; for each j and, hence,

W) =UFf) + -+ UFIN) < p(O1) + -+ p(On) < p(O1) + p(On) + -+ -

This implies that ;.(O) < p(O1) + u(On) + -+ < p*(Ey) + p*(E2) + - - -+ € and, since £ C O,
we get u*(F) < p*(Ey) + p*(E2) 4 - - - + € and, finally, u*(E) < p*(E1) + p*(E2) +---. We
conclude that ©* is an outer measure on X .

By the Caratheodory process we define the o-algebra of 11*-measurable subsets of X on which the
restriction of p* is a measure.

Consider any open O and any E. We take an open O’ O E with u(O’) < p*(E)+eand f < O'NO
so that [(f) > u(O’' N O) —e. The set O" \ supp(f) is open and we take g < O’ \ supp(f) so that
1(g) > pu(O" \ supp(f)) — €. We observe that f + g < O’, whence

pH(E) +e>p(0") 2 1U(f +9) =1U(f) +1(g) > n(O'NO) + pu(O" \ supp(f)) — 2¢
> (ENO)+p*(E\O) —2e.
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Hence p*(E) > p*(ENO) + p*(E \ O) and this means that O is p*-measurable. Therefore,
the o-algebra of y*-measurable sets contains all open sets and, thus, includes Bx. We define
to be the restriction of 4 on Bx. So yu is a non-negative Borel measure on X. Observe that p is
identical to the already defined p on the open sets, since we proved that 1*(O) = u(O) for each
open O. We shall now prove that

W(K) = inf{I(f)| f € Cp and xx < f on X} (7.13)

for all compact K C X. We take any f € Cy with f > xx (e.g. f > 0 on X and, in particular,
f > 1 on K) and consider the open set O = {z € X | f(z) > 1 —¢€} 2O K. If g < O, then
g < - fon X and then I(g) < = I(f), since [ is non-negative. Therefore, 1(O) < - I(f),
whence (K) < 1 1(f). Since € > 0 is arbitrary, this implies that u(K) < I(f) and, thus,
p(K) < inf{l(f)|f € Cpand xx < f on X}. We now take an open O DO K with p(O) <
pu(K) + eand thenan f < O sothat f = 1 on K. Then f > xx and I(f) < pu(O) < p(K) +e.
Since € is arbitrary, inf{{(f) | f € Cp and xx < f on X} < p(K).

We shall next prove the regularity of .

For each Borel set £ we have p(E) = p*(F) = inf{u(O) | O open D E} and this is the first
regularity condition.

We take any Borel set £ and find an open O D E so that u(O) < p(E) + €. We then find g < O
so that [(g) > u(O) — e and set K = supp(g) C O. For each f € Cy with f > xx we get that
f > gandthen I(f) > I(g). From (7.4) it is implied that u(K) > I(g). Therefore, we have a
compact K C O with u(K) > u(O) — €. Since u(O \ E) = p(O) — u(E) < e, there is an open
O 2 O\ E so that u(O") < 2e. We now define L = K \ O’ and observe that L is a compact
subset of F'and that E\ L C (O \ K)UO'. Thus, u(E) — u(L) < u(O\ K) 4+ u(0O") < 3e and,
hence, (E) = sup{u(L)| L compact C E}. This is the second regularity condition.

Finally we shall prove that I(f) = [ f dpu for every f € Cy.

If f is real, we write f = f* — f—, where f© > 0 and f~ > 0 are the non-negative and non-
positive parts of f. Therefore, due to the linearity of [ and of the integral, it is enough to consider
f > 0 and, multiplying with an appropriate positive constant, we may assume that f € Cp and
0<f<1lonlX.

We take an arbitrary N € N and define K, = {z € X| f(z) > %} for0 < k < N. Foreach k =
1,..., N we have that K}, is compact and, obviously, Ky = X. Also foreachj =0,...,N — 1
we define f; = min { max {f, %}, % — % We have that f; € Cj and %XKJ'H <f< %XKJ-
foreachj =0,...,N —landalso f = fo + fi +--- + fn_1. Adding the last inequalities and
integrating, we find

F(EL) + -+ p(KEN)) < [y fdp < 5 (u(Ko) + -+ p(En_1)). (714

From xr;,, < N fjand (7.13)itis implied that u( K1) < I(N f;) = NI(f;). From N f; < xk;
it is implied that N f; < O and, thus, NI(f;) < pu(O) for every open O O K. Hence, from the
definition of u(K;) = p*(K;) we get that NI(f;) < u(K;). Therefore, p(K;11) < I(f;) <
+1(K;) and, adding,

L(u(KL) + -+ plKN)) S UF) < F(u(Ko) + -+ p(Kn-1)).
Thi and (7.14) imply

| [ fdp—10f)] (W(Ko) + -+ + p(En_1)) — w7 (u(E1) + -+ pn(Kn))

(Ko \ Kn) < 5u(X) < Il

IN

L
N
L
N

and, since N is arbitrary, I(f) = [ f dp.
That y is finite (and, hence, a real measure) is clear from the beginning of the proof. In fact, for
every f < X we have [(f) < [[I[|+]|f]lu < [|Z]|+ and, thus, u(X) = sup{I(f) | f < X} < [|I].
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Now we consider the case of a general [ € (Cp)*.

Proposition 7.13 implies that there are non-negative [*,/~ € (Cp)* so that [ = [T — [~ and
NN« < |1l 11711« < |)l]|«- Now from the previous theorem we know that there are regular
finite Borel measures 1™ and i~ on X so that [T (f) = [y fdut and 7 (f) = [y fdu~ for
every f € Cy. Therefore, for the regular real Borel measure = pu™ — pu~ we have [(f) =
() =1(f) =[x fdu™ = [x fdu™ = [x fduforevery f € Co.

To prove the uniqueness of p, we assume that there are regular real Borel measures 1, pa so
that I(f) = [y fdu1 = [y fdug forall f € Cy. We consider the regular real Borel measure
= pi1 — po and then we have [ fdu = 0 forall f € Cy. Theorem 7.16 implies that ||u|| = 0
and, hence, 1 = 0.

(i1) Clear after Proposition 7.51. O

F.Riesz-Radon-Banach-Kakutani Theorem. The complex case. Let F' = C and X be locally
compact and Hausdorff.

(i) For every | € (Cy)* there exists a unique regular complex Borel measure jion X so thatl =1,
ie. sothatl(f) = [y fdpforall f € Co.

If 1 is non-negative (in other words if I(f) > 0 for every non-negative f € Cy), then i is non-
negative.

If Lis real (in other words if I(f) € R for every real f € Cy), then y is real.

(ii) The function J is an isometry from Mg onto (Cy)*.

Proof. (i) For the general [ € (Cj)* Proposition 7.18 implies that Re(/) is a bounded real-linear
functional on C with || Re(1) ||« = ||I]|«.

If we apply thisto —il € (Cp)* we get thatalso Im(/) = Re(—il) is a bounded real-linear functional
on Co with || Tm ()], = || = dlll. = [l

Now from the previous theorem we know that there are regular real Borel measures i1, o on X
so that Re(!)(f) = [y fdu1 and Im(1)(f) = [y f dus for every real f € Cp. Therefore, if we
define p = p1 + iu2, then y is a regular complex Borel measure on X and for every real f € ()
we have I(f) = Re(!)(f) +iIm(1)(f) = [ fdp +i [ fdp2 = [y fdp. Therefore, for every
f € Co,we get () = I(Re()) +il(tm()) = [ Re(F) du+i [y Im(f) du = [ f dp.

If | € (Cp)* is real, then Im(!)(f) = O for all real f € Cy. This implies that ;1o = 0 and, thus,
@ = p is a real measure.

If I € (Cp)* is non-negative, then for every real f € Cy we can write f = fT — f~ with
ft,f~ >00nCy. Since I(f1),1(f7) > 0, we getthat I(f) = I(fT) — I(f™) is real for every
real f € Cy. From the previous case we conclude that 1 is a real measure and that I(f) = [ v fdp
for every real f € Cy. By the results of the previous theorem (including the uniqueness) we get
that p is a (non-negative) finite measure.

Again the uniqueness of p is a consequence of Theorem 7.16.

(ii) Clear after Proposition 7.51. O

Finally, if X is locally compact and Hausdorff, then there is an isometry from Mg onto (Cp)*.
Now we may identify every ;i € Mz with the corresponding [, € (Cp)* which is defined by
Lu(f) =[x fduforall f € Cy. We may view every p € Mp as a bounded linear functional on
Co and if we write . instead of [, then the defining relation of /,, can be written

u(f)=Jx fdu,  f€Co g€ Mg.

Definition. Let X be locally compact and Hausdorff and (i,,) be a sequence in M. We say that
(1in) converges weakly* to i € MR if [ f dun — [y fdpforall f € Co. In this case we write

Mnﬁ):u'

If we identify every p, € Mg and € My with the corresponding I, € (Cp)* and [, €
(Co)* then [y fdun — [y fduis equivalent to I, (f) — 1,(f). Therefore, the definition we
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gave for j1, — uin Mg is the same as the definition of L = l,, in (Cp)* which is a special
case of the definition of weak™® convergence in the case of the general dual space.

Proposition 7.58. Let X be locally compact and Hausdorff and (1) be a sequence in My such
that limy, o, [y f dpin exists in F for all f € Cy. Then

SUPpeN HM”H < +00.

Also there is a i € My so that fX fdu, — fX fduforall f € Cyand

[l < T, oy [[ o]
Proof. A corollary of Proposition 8.3. O

Proposition 7.59. Let X be locally compact and Hausdorff, v be a non-negative element of Mr
and (f,,) be a sequence in L*(v) such that lim,,_, y fX fng dv exists in F forall g € Cy. Then
thereis a j € Mg so that [y fogdv — [y gdp forall g € Cy. Also

Proof. We consider the (real or complex) measures p,, = f,~ on X. Then u,, € Mg for all n and

Jx fngdv =[x gdpn, g€ Co.
The rest is an application of Proposition 8.11. O

Proposition 7.60. Let X be locally compact and Hausdorff and assume that there is a countable
family P of open sets with the property: for every x and every open U with x € U there is a
W e Psothatx € W C cl(W) C U and cl(W) is compact. Then Cy is separable.

Proof. Following the proofs of Lemma 2.2 and Theorem 2.2 we may easily prove that there is a
countable set A of continuous functions with the property: for every compact K and every open
U with K C U thereisan f € Asothat f < U and f =1 on K.
Now we take any g € Cy sothat 0 < g < 1 on X and any € > 0. We consider N € N so that
¥ <e
We consider the sets K; = {x € X\% <g(z)<ljforj=1,...,NandU; = {x € X\% <
g(x) <1} forj=1,...,N — 1. Letalso Uy = X. Then every K is compact and every Uj is
open and

Ky CUN1C KN 1CUN2C - C Ky CU C Ky CUp.

Now we consider functions f1, fa, ..., fn € A so that
fi=Uj—1and f;=1on K; foreachj=1,...,N.
Now it is easy to show that the function
f=% it

satisfies || f — gllu < & < e.
Finally it is straightforward to extend this result to all g € C and we leave this as an exercise. [J

Proposition 7.61. Let X be locally compact and Hausdorff and assume that there is a countable
family P of open sets with the property: for every x and every open U with x € U there is a
W e Psothatx € W C cl(W) C U and cl(W) is compact. If (ju,) is a bounded sequence in
Mg, then there is a jp € Mg so that [y f dpn — [y fdupforall f € Co.

Proof. This is a corollary of Theorem 8.1 and Proposition 8.18. O
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7.5 The spaces B(X,S) and L>°(X, S, ;1) and their duals.

Definition. Let (X, S) be a measurable space. Then B(X,S) is the space of all bounded measur-
able functions f : X — F. We define

[fllu = supzex [f(2)l,  f e B(X,3S).

It is clear that B(X, S) is a linear space over F' and that || - ||,, is a norm on B(X, S).
Example. If S = P(X), then B(X,S) = B(X), i.e. the space of all bounded f : X — F.
Proposition 7.62. B(X,S) is a Banach space. If F = R, then B(X,S) is a Banach lattice.
Proof. Exercise. O

Definition. We denote by
My (X, S)

the space of all finitely additive real or complex (depending on whether F = R or ' = C)
measures on (X, S).
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. Daniell integral.
. Functions of bounded variation (in the chapter about signed and complex measures).
. More exercises, especially for the last three chapters.

. Probability. Probably not as a separate chapter. For example the notion of a probability
measure, and more things (Kolmogorov’s theorem etc) as exercises.

. The Hilbert space structure of L2, orthonormal bases (like the e"?) etc.

. Haar measure.
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