ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ
Λεωφ. Κνωσού, 714 09 Ηράκλειο. Τηλ: +30 2810393800, Fax +30 2810393881


Ομιλία
Plünnecke's inequality for different summands

Máté Matolcsi
Renyi Institute

Πέμπτη, 7 Αυγούστου 2008, Αίθουσα Ζ301

For finite sets of integers $ A_1, A_2 \dots A_n$ we first study the cardinality of the $ n$-fold sumset $ S=A_1+\dots
+A_n$ compared to those of $ n-1$-fold sumsets $ S_i=A_1+\dots
+A_{i-1}+A_{i+1}+\dots A_n$. We prove a superadditivity and a submultiplicativity property for these quantities, namely:

$\displaystyle (n-1)\vert S\vert \geq -1+\sum_{j=1}^n\vert S_j\vert, \ \ \ \ \ \ \mathrm{and}$ (1)

$\displaystyle \left\vert S \right\vert \leq \left( \prod _{i=1}^n \left\vert S_i \right\vert \right)^ {1\over n-1}.$ (2)

We next prove the following version of Plünnecke's inequality for different summands: assume that for finite sets $ A$, $ B_1,
\dots B_n$ we have information on the size of the sumsets $ A+B_{i_1}+\dots +B_{i_l}$ for all choices of indices $ i_1, \dots
i_l.$ Then there exists a non-empty subset $ X$ of $ A$ such that we have 'good control' over the size of the sumset $ X+B_1+\dots
+B_n$. This leads us to a generalization of inequality (2).

This is joint work with K. Gyarmati and I. Z. Ruzsa.

http://www.math.uoc.gr/analysis-seminar



Analysis Seminar 2008-08-04