Anna Savvopoulou

Almost everywhere convergence of a case of weighted averages

Given a probability measure μ on \mathbb{Z} , Calderón and Bellow proved a weak type inequality for the maximal operator of $\mu_n(f(x)) = \sum_{k \in \mathbb{Z}} \mu^n(k) f(\sigma^k(x))$ where μ^n

denotes the convolution product. This talk will focus on the case of a sequence of probability measures on \mathbb{Z} , denoted by $\{\mu_n\}$, obtained inductively in the following way, $\mu_1 = \nu_1$, $\mu_2 = \nu_1 * \nu_2$, ..., $\mu_n = \nu_1 * \nu_2 * \cdots * \nu_n$, where each one of the ν_i is in turn a strictly aperiodic probability measure on \mathbb{Z} with expectation 0 and finite second moment. We will discuss the almost everywhere convergence of the operators $\mu_n f(x) = \sum_{k \in \mathbb{Z}} \mu_n(k) f(\sigma^k x)$ for $f \in L^1(X)$ and $x \in X$.

Throughout the talk σ will stand for a measure preserving transformation of a probability measure space X.