EXTENDIBLE CHARACTERS AND MONOMIAL GROUPS OF ODD ORDER

MARIA LOUKAKI

ABSTRACT. Let GG be a finite p-solvable group, where p is an odd prime. We establish a connection
between extendible irreducible characters of subgroups of G that lie under monomial characters
of G and nilpotent subgroups of G. We also provide a way to get “good” extendible irreducible
characters inside subgroups of G. As an application, we show that every normal subgroup N of a
finite monomial odd p, g-group G, that has nilpotent length less than or equal to 3, is monomial.

1. INTRODUCTION

A finite group G is called monomial (M-group) if each of its complex irreducible characters can
be induced from some linear character of some subgroup of G. One of the outstanding questions
in the theory of monomial groups is

Question 1. Is a normal subgroup N of an M-group G itself an M-group?

It was shown by Dornhoff [5] and independently by Seitz [18] that the answer is yes when N
is a normal Hall subgroup of GG, and conjectured that the answer is always yes. For M-groups
of even order, Dade [3] and van der Waall [19] showed separately that the answer could be no.
They constructed an example of a monomial group of order 7 - 2% which has a normal subgroup of
index two that is not monomial. In their common example both N and G/N have even order. So
Question 1 remains open when N or G/N or both have odd order. We remark, that there has been
evidence (see for example [8, 10, 13, 16, 17] ) suggesting that the answer to the above question is
yes if G is an odd M-group.

In [14] we prove

Theorem A. If G is a monomial group of order p®q®, where p and q are odd primes and a,b are
non-negative integers, then any normal subgroup N of G is again monomial.

That is, for monomial odd p®qb-groups G the answer to Question 1 is yes.

For the proof of Theorem A a special type of reductions was followed. These reductions are
based on an observation of M. Isaacs, according to which the Clifford theory for abelian normal
subgroups L of a group G preserves monomiality of characters (see exercise (6.11) in [7]). Firstly
we fix a monomial group G, a normal subgroup N of G and an irreducible character ¢ € Irr(V).
This way we form the triple 7' = (G, N, ). Now we apply Isaacs observation to normal subgroups
L of G that are contained in N and linear characters of L that lie under . In particular, if L is any
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normal subgroup of G contained in N, and A is a linear character of L lying under v, then we may
pass from G to the stabilizer G(\) of A in G, without loosing the monomiality of those irreducible
characters of G(\) that lie above A. This way we get a new triple 77 = (G(X\), N(A), ), that
we call a linear reduction of T , where ¥ € Irr(IN(A)) is the A-Clifford correspondent of ), and
thus induces . Clearly G(\) may not be a monomial group, but every irreducible character of
G (M) lying above A is still monomial. Repeated applications of the same type of reductions leads
to a “minimal” triple 77 = (G’, N',4’), where N' I G' < G and ¢/ € Irr(N’) induces ¥ to N,
and where no more reductions can be performed to 77 (a more detailed analysis on the triples and
their reductions is given in Section 3 below). We call T" a linear limit of T. If Z(T") is the center
of the induced character (¢/)¢, then there is a unique linear character ¢’ of Z(T") lying under
(¥ We call ¢’ the central character of the triple T and Z(T") the center of T'. Furthermore,
Isaacs observation implies (see Proposition 3.17 below) that every irreducible character in Irr(G’)
that lies above ¢’ is monomial. Also the kernel Ker(¢’) of ¢’ is a normal subgroup of G’, while
Ker(¢") < Ker(¢'). The question partially answered in [14] is

Question 2. Assume that N is a normal subgroup of an M-group G. Let ¢ be any irreducible
character of N. Does there exists a linear limit (G', N',v{") of (G, N,1) with the quotient group
N'/(Ker (') nilpotent?

It is clear that a positive answer to Question 2 implies a positive answer to Question 1. What
we actually prove in [14] is that Question 2 has a positive answer when G is an odd p, g-group.

In this paper we publish two of the main tools, Theorems B and D below, needed for the proof of
Theorem A, that we think, are interesting in themselves, and provide an explanation of the approach
we have used in [14]. As an easy consequence of these two theorems we prove that Question 2 has
a positive answer when G is an odd p, g-group and N is a normal subgroup of nilpotent length < 3,
(Theorems C and E).

For the general case we used in [14], apart from Theorems B and D, what we called there
“triangular sets”. This is quite a complicated machinery. Fortunately E. C. Dade came up with
an easier correspondence than the one the triangular sets provide, thus we are able to prove the
general case without their use as we will see in a forthcoming paper.

When applying the linear reductions described above, we often reach a situation were G satisfies
the following

Condition X. P is a normal p-subgroup of G, for some odd prime p, such that its center Z(P)
is mazimal among the abelian G-invariant subgroups of P. Furthermore, ( € Irr(Z(P)) is a G-
invariant faithful irreducible character of Z(P), and thus Z(P) is a cyclic central subgroup of G.

In particular, suppose that P is a normal subgroup of G and « € Irr(P). Let (G', P',a’) be a
linear limit of (G, P, ), and assume that ¢’ is the central character of (G', P, a’). Then the groups
G’/ Ker(¢') and P’/ Ker(¢') satisfy Condition X (see Proposition 3.7 below). Assume further that
N < G contains P while N/P is a g-group for some prime g # p. In order to answer Question 2
in this special case, it would be enough to show that a ¢-Sylow subgroup @’ of G’ N N’ satisfies
[, P'] < Ker(¢’). This is actually true, and it follows from the fact that every irreducible character
of G’ lying above ¢’ is monomial. Theorem B handles this situation.
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Theorem B. Assume that G is a finite p-solvable group where p is some odd prime. Let P 1G
be a normal p-subgroup of G that along with ¢ € Irr(Z(P)) satisfies Condition X. Assume further
that S QG is a nilpotent normal p'-subgroup of G and 3 € Irr(S). Let x € Irr(G) be an irreducible
monomial character of G, that lies above { x 3 and satisfies x(1)y = B(1). If Q is any p'-subgroup
of G such that PQ <G, then @ centralizes P.

Based on Theorem B we actually show

Theorem C. Assume that G is a finite monomial group. Assume further that G has normal
subgroups M < N such that M is nilpotent with odd order and N/M is nilpotent. Then the answer
to both Questions 1 and 2 above is yes.

Note that in Theorem C the group G need not be a p, g-group, not even odd.

Now assume that N has nilpotent length 3. In particular, assume that Q <M <N are all normal
subgroups of G with @ being a g-group, M/Q a p-group and N/M being a g-group, for two odd
primes p # ¢. By induction we may assume that, after performing the necessary linear reductions,
the group M is nilpotent. So the obstacle this time is of the form Q1 < P x Q1 I P x Q < G,
where now both G, P and G, @) satisfy Condition X and in addition, every irreducible character
of G lying above two specific G-invariant characters a x § € Irr(P X (1) is monomial. Again,
in order to answer Question 2 we need to show that @) centralizes P. But this time we can’t so
easily guarantee the existence of a monomial character of G with the correct degree. Observe that
according to Theorem B we need a monomial character of G whose degree has the g-part equal
to B(1). If the character § extends to G then this problem is solved using some basic m-theory.
Unfortunately, there is no reason for 3 to extend, but we can replace him with another “good” one
as the following theorem shows.

Theorem D. Let P be a p-subgroup, for some odd prime p, of a finite group G. Let QQ1,Q be
q-subgroups of G, for some odd prime q # p, with Q1 < Q. Assume that P normalizes QQ1, while
Q normalizes the product P - Q1. Assume further that (8 is an irreducible character of Q1. Then
there exists an irreducible character 8% of Q1 such that

P(B) = P(5"),
Q(B) < Q(B”) and No(P(B)) < Q(5”),
BY extends to Q(B").

Theorem B along with Theorem D, enables us to prove:

Theorem E. The answer to both Questions 1 and 2 is yes if G is an odd monomial p, g-group and
N has nilpotent length 3.

Section 2 below contains the proof of Theorem B that is the key step for the proof of Theorem
C. The proof of Theorem C can be found in Section 4, while in Section 3 we go through the basic
definitions and properties of linear limits and we state related theorems, needed for the proof of
Theorems C and E. In sections 5 and 6 we prove Theorems D and E, respectively. All the groups of
this paper are assumed to be finite. In addition, all the modules have finite dimension. The notation
and terminology follows [7], with a few exceptions. That is, we write Ny/(K) or N(M in K) for
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the normalizer of M in K, whenever M, K are subgroups of a finite group G. Also if ¢ € Irr(M)
we denote by K(¢) the stabilizer of ¢ in K. In addition, we use the terminology of [2] when
symplectic modules are concerned. So, if F is any finite field of characteristic p, and G is any finite
group, we say that a finite-dimensional FG-module B is a symplectic FG-module if B carries a
symplectic bilinear form < -,- > that is invariant by G. For any FG-submodule S of B3, we denote
by St := {t € B| < S,t >= {0}} the perpendicular FG-submodule to S. The FG submodule
S of B is called isotropic if S < St, and it is called self-perpendicular if S = S+. We say that
B is anisotropic if it contains no non—trivial isotropic FG-submodules. Furthermore, B is called
hyperbolic if it contains some self-perpendicular FG-submodule S.

Acknowledgment Most of the work of this paper is part of my thesis, done under the guidance
of my adviser E. C. Dade. I thank him for the enormous amount of hours he has spent on this thesis,
all the inspiring discussions and his endless support. I would also like to thank the Mathematics
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2. PROOF oF THEOREM B

We begin with an equivalent form of Theorem 3.2 in [2].

Theorem 2.1. Suppose that F is a finite field of odd characteristic p, that G is a finite p-solvable
group, that H is a subgroup of p-power index in G, that B is an anisotropic symplectic FG-module
and that S is an FG-submodule of B. Then the G-invariant symplectic form on B restricts to
a G-invariant symplectic form on S. If S, with this form, restricts to a hyperbolic symplectic
FH-module S|, then S = 0.

Proof. Since B is symplectic and FG-anisotropic, so is its FG-submodule §. Theorem 3.2 of [2],
applied to S, tells us that S is FG-hyperbolic if S|y is FH-hyperbolic. In that case S is both
F G-anisotropic and FG-hyperbolic. So it must be 0. O

We can now prove Theorem B

Proof. In view of Condition X, Z(P) is a cyclic central subgroup of G, and it is maximal among
the abelian subgroups of P that are normal in G. So every characteristic abelian subgroup of P
is contained in Z(P) and thus is cyclic. Hence P. Hall’s theorem (see Theorem 4.9 in [6]) implies
that either P is an abelian group or it is the central product

(2.2a) P=T06Z(P),
where T' = Q1 (P) is an extra special p-group of exponent p, and
(2.2b) TNZP)=Z(T).
In the case that P = Z(P) is an abelian group, Theorem B holds trivially, as P = Z(P) < Z(G)
is centralized by G. Thus we may assume that P > Z(P) and (2.2) holds.

Since x lies above ¢ x 3 € Irr(Z(P) x S), Clifford’s theorem implies the existence of a unique
irreducible character ¥ of G(8) = G(¢ x ), that also lies above ¢ x 8 and induces y in G.
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Furthermore, the hypothesis that x(1),, = (1), implies that |G : G(53)| is a power of p, since
|G : G(B)| divides x(1)/8(1). So we get

(2.3) Y1)y = (\PG(l))p’ =x(1)y = 4(1).
By hypothesis, x is a monomial character. Furthermore, Z(P) x S is a nilpotent normal subgroup
of G. Hence we can apply Theorem 3.1 in [17]. We conclude that ¥ € Irr(G(¢ x 3)) is also

monomial. Therefore there exists a subgroup H of G(3), and a linear character A € Lin(H) that
induces ¥ = A6 Clearly \ also induces y = A°.

The product HS forms a subgroup of G. Furthermore,
Claim 1. |G : HS| is a power of p, and (\79)|s = 3.

Proof. Clearly Clifford’s theorem implies
LI]|S =m: ﬁa

for some integer m > 0. Hence deg(¥) = mdeg(3). By (2.3) we have ¥(1),, = £(1). Thus m

is a power of p. As H < HS < G(f), the induced character A5 lies in Irr(HS) and induces
(AIHEB) = \GB) =¥, So

deg(A"®) - |G(B) : HS| = deg(¥) = mdeg(B).

Clifford’s theorem also implies that M75|g = r3, for some integer r. As deg(\f°) = |HS : H| =
|S: HN S| we get that both deg(A\#¥|g) and r are p/-numbers. But

rdeg(3) - |G(B) : HS| = deg(A"®) - |G(B) : HS| = mdeg(p),

with m a p-number. Hence r = 1, while |G(5) : HS| is a power of p. This, along with the fact that
G(B) has p-power index in G, completes the proof of the claim. O

The fact that A € Lin(H) induces irreducibly to G implies that the center, Z(G), of G is a
subgroup of H. This, along with the fact that Z(P) < Z(G), implies

(2.4) Z(P) < Z(G) < H.

Let @ be any p’-subgroup of G that satisfies N := PQ < G. In order to show that @ centralizes
P, we can, without loss, assume that S is a subgroup of @, or else we may work with the p’-group
QS that also satisfies P(QS) = (PQ)S < G. Let E := [P,Q]. Then FE is a characteristic subgroup
of N and thus a normal subgroup of G. Furthermore S centralizes F, since F is a subgroup of P.
Even more, we have

Claim 2. E = [P, Q)] is an abelian group.

Proof. Suppose not. Then E is a non-abelian normal subgroup of G contained in P =T+ Z(P). As
Z(P) < Z(G) (by (2.4)), we have E = [P,Q] = [T, Q] < T, where T' = Q;(P). Furthermore, Z(E) is
an abelian normal subgroup of G, contained in 7' < P. Hence Z(FE) is contained in TNZ(P) = Z(T).
As E is non-abelian and Z(T") has order p, we conclude that Z(E) = Z(T) < Z(P) < Z(G).
Therefore E = [T, Q] is an extra special subgroup of T' of exponent p, and its center is central in
G. Hence the group E satisfies condition (4.3a) in [2]. In addition, @ is a p’-subgroup of G such
that QFE is normal in G (as P = [P,Q]|Cp(Q) and thus G = ENg(Q)). Since P is a p-group, the
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commutator subgroup [F, Q] = [[P, Q], Q] coincides with E = [P, Q]. Hence (4.3b) in [2] holds with
@ here, in the place of K there.

As the index of HS in G is a power of p, and PQ = N is a normal subgroup of G, we conclude
that HS contains a p’-Hall subgroup of PQ. Hence HS contains a P-conjugate of Q). Therefore,
we may replace H and A by some P-conjugates, and assume that HS contains (. (Observe that
because P < G([3), the P-conjugate of H is still a subgroup of G(3) while the corresponding
P-conjugate of A induces ¥ in G(f3).)

The subgroup HN(E x S) of E x S is equal to (HNE) x (HNS), since |E| and |S| are relatively
prime. This implies that

HSN(ExS)=(HN(ExS))-S=(HNE) xS.

Hence HNE = HSN E. Thus H N FE is a normal subgroup of HS. Furthermore, the restriction
A une of A to HNE is a linear character of H N E that is clearly H-invariant. It is also S-invariant,
as S centralizes E > H N E. Hence A gnp is HS-invariant. We conclude that the restriction of the
irreducible character A5 of HS to H N E is a multiple of the linear character M ang. Of course
the irreducible character A5 of HS induces irreducibly to x € Irr(G), and lies above a non-trivial
character of Z(E) (as Z(E) < Z(P) and ¢ € Irr(Z(P)) is faithful). Hence we can apply Lemma
(4.4) and its Corollary (4.8) of [2], using HS here in the place of H there, and A5 here in the
place of ¢ there. We conclude that HS N E = H N E is a maximal abelian subgroup of E.

Let P := P/Z(P). Then P is a symplectic Z,G-module, since it affords the G-invariant sym-
plectic bilinear form ¢ defined as ¢(z,y) = (([z,y]), for all z,y € P (where z and y are the
images of z,y in P). According to the hypotheses of the theorem, Z(P) is the maximal abelian
G-invariant subgroup of P. Hence P is an anisotropic Z,G-module. If E is the image of E in P,
i.e., E~ E/Z(E), then E is a symplectic Z,G-submodule of P, as E is normal in G. Furthermore,
E is Z,H S-hyperbolic as HS N E is a maximal abelian HS-invariant subgroup of E. Since the
index [G : HS] is a power of p, Theorem 2.1 forces E to be trivial. Hence E = Z(FE) is abelian,
and the claim follows. O

Now E = [P, Q)] is an abelian subgroup of P normal in G. According to the hypotheses of the
theorem, Z(P) is a maximal such subgroup of P. Therefore 1 < [P,Q] < Z(P) < Z(G). So Q
centralizes [P, @], which implies that [P, Q, Q] = 1 and thus [P, Q] = [P, Q,Q] = 1.

This completes the proof of the theorem. O

An immediate consequence is

Corollary 2.5. Assume that a finite p-solvable group G satisfies Condition X for its normal p-
subgroup P and the character ¢ € Irr(Z(P)). Assume further that x is a monomial character of G
that lies above ¢ and its degree is a power of p. If Q is any p’-subgroup of G so that PQ < G then
Q centralizes P.
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3. LINEAR LIMITS

In this section we give the basic definitions and properties of ordered triples and their linear
limits. A more detailed approach on the subject that actually contains most of the results that
follow, can be found in [4].

We denote by T the family of all ordered triples (G, N,v), where G is a finite group, N is a
normal subgroup of G and v is an irreducible character of N. Until the end of the section we fix
an element 7' = (G, N, ) of . We define the center Z(T) of T to be the center of the induced
character 9, and the central character ¢(T) to be the unique linear character of Z (T') lying under
¢&. Then Z(T) is a normal subgroup of G contained in N, while ¢(¥) is a G-invariant linear
character of Z(T). So the restrictions of both ¢ and 1% to Z(T') are multiples of (7). Even more,
Z(T) is fully characterized by Proposition 2.3 in [4], that we partly restate here.

Proposition 3.1. The center Z(T) is the largest normal subgroup L of G contained in N such that
Y € Irr(N) lies over some G-invariant linear character \ of L. Any other such L is a subgroup of
Z(T), and the corresponding X is the restriction of ¢T) to L, while the restriction of 1 to L equals

P(L)A.

We also define the kernel Ker(T') to be the kernel of ¢/“. So Ker(T') is Coreg(Ker(v))), and thus
is contained in Ker(). In addition, Ker(T') = Ker(((™)) (see the second section in [4] for a detailed
analysis of character triples).

A subtriple of T is any triple 7" = (G', N’,4) contained in ¥, with G’ being a subgroup of G,
and ¢’ being any irreducible character of N’ = G’ N N lying under . We write 7" < T to denote
that T” is a subtriple of T'. If there exists some normal subgroup L of G contained in N and a linear
character \ € Lin(L) lying under v, then the stabilizer G’ = G()\) of X in G is a subgroup of G,
while N' = NNG' is the stabilizer N’ = N(X) of A in N. Furthermore, the A-Clifford correspondent
" of 1 in N’, is the unique irreducible character of N’ lying above A\ and inducing v. So the triple
T(\) = (G',N',4)') is a subtriple of T. By a linear reduction of T we mean any subtriple 7" < T
of the form T’ = T(\), for some L and )\ satisfying the above conditions. A linear reduction7”
is called proper if T' # T. If the only possible linear reduction of T is T itself, then T is called
linearly irreducible. A subtriple T of T is called a multilinear reduction of T if there is some finite
chain Ty, T4, ..., T, of subtriples T; < T, starting with Ty = 7' and ending with 7,, = T”, such
that each T; is a linear reduction of T; 1 , for all i = 1,2,...,n. A linear limit of T is a linearly
irreducible multilinear reduction of T, i.e., it is a multilinear reduction of 7' that has no proper
linear reductions.

If 77 = T()\) is a linear reduction of T then without loss (see Proposition 2.18 in [4]) we may
assume that A is a linear character of some normal subgroup L of G satisfying Z(7T) < L < N. In
addition, A not only lies under 1) but also lies above the central character () of T. Furthermore,
for any multilinear reduction 7" of T we have Z(T') < Z(T") while ¢(T) is the restriction of ¢(T") to
Z(T), see equation 2.24 in [4]. In addition Ker(T') = Ker(¢(M)) < Ker(¢(™)) = Ker(T").

The first remarks follow easily from the above definitions.
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Remark 3.2. If T/ = (G', N’, %) is a multilinear reduction of T'= (G, N, ), then any linear limit
T" of T' is also a linear limit of 7. In addition, Z(T") > Z(T") > Z(T) and Ker(T") > Ker(T") >
Ker(T).

Remark 3.3. Assume that H is a subgroup of G with N < H < G. Let S be the ordered triple
S=(H,N,¢). T = (G',N',¢') is a linear limit of T then S’ = (G' N H, N', ') is a multilinear
reduction of S with Z(T") < Z(S’). So we can get a linear limit S” = (H"”, N”,¢") of S’, and thus
of S, with N” < N’ and Z(T") < Z(S') < Z(S"). Furthermore, the central character ¢(T") of T" is
the restriction of ¢, and thus of ¢(5").

Remark 3.4. Let T/ = (G', N, ) be a linear limit of T'= (G, N, ). If B is a subgroup of G that
centralizes N, (that is B < Cg(N)) then B < G'.

Now assume that N < H < G, while the irreducible character § € Irr(H) of H lies above
Y eTrr(N). T = (G, N',4') is a multilinear reduction of T', then we form the group H' = HNG’
that we call the T"-reduction of H. Since T’ is a multilinear reduction of T, there is a chain of
linear subtriples Ty, Ty, ..., T, of T, starting with Ty = T and ending with T;, = 7" such that T;
is a linear reduction of T;_1, for all i = 1,...,n. So T; = T;—1()\;), where \; is a linear character
of some normal subgroup L; of G;—; with Z(T;—1) < L; < N;_;. Furthermore, ¢; € Irr(N;) is the
Ai-Clifford correspondent of 1,1 € Irr(N;—1). Because 6 € Irr(H) lies above 1, there is also a finite
chain of irreducible characters #; of H; = G; N H, starting with 6y = 6 and ending with 0,, = 6,
such that 6; is the unique \; -Clifford correspondent of 6;_1, for all t = 0,1,...,n. So 6; lies above
Y, forall e =0,1,...,n. We call # the T'-reduction of 6. It is clear from the definition of 6’ that
it lies above 1)’ and induces 0 in H. Actually ¢’ is the unique irreducible character of H' with these
properties by

Remark 3.5. Assume that N < H < G, and let 77 = (G', N',4’) be any linear reduction of T'. If
¢ is an irreducible character of H' = H N G’ that lies above v’ then ¢ is the T’-reduction of the
irreducible character ¢ of H.

Proof. According to [4] induction is a bijection between the irreducible characters of H' lying above
¢ and those of H lying above . Hence ¢ is an irreducible character of H and its T’-reduction
is ¢. O

If, in addition, H is a normal subgroup of G, then we clearly have

Remark 3.6. Assume that N < H are normal subgroups of G, while 6 € Irr(H|¢). So we can form
the triple S = (G, H,0). Then Z(S) > Z(T) and Ker(S) > Ker(T). It 7" = (G', N',4’) is a linear
limit of T, H' = HN G’ and ¢' € Irr(H') is the T'-reduction of 6, then the triple S’ = (G, H',¢)
is a multilinear reduction of S = (G, H, 0).

The following is Proposition 2.21 in [4].

Proposition 3.7. Let T' = (G', N',¢)') be a linear limit of T. Then Z(T")/Ker(T") is the center
of N'/Ker(T") and is a cyclic group, which affords a faithful G’/ Ker(T")-invariant linear character
that inflates to ¢T') € Trr(Z(T")). Furthermore, Z(T")/Ker(T") is mazimal among the abelian
normal subgroups of G’/ Ker(T") contained in N’/ Ker(T").
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If N is a nilpotent group then we can easily see

Remark 3.8. Assume that IV is a nilpotent group. Let pq,...,p, be the distinct primes dividing
|N|. Then N = Nj X --- X Ny, where Nj; is the p;-Sylow subgroup of N, for each i = 1,...,n. Let
Y =1 X -+ X, with ¢; € Irr(V;) for i = 1,...,n, be the corresponding factorization of ). We
write T; for the triples T; = (G, N;, 1), for all i = 1,...,n. If T/ = (G}, N/,4}) is a linear limit
of T; for all such i, then the group G’ = G| N ---N G}, its normal subgroup N’ = Nj x --- x N/
and the irreducible character ¢’ = 9] x -+ x 9!, of N’ form a linear limit 7" = (G’, N',¢) of T.
Furthermore, if Z! is the center Z(T}) of T}, and ¢/ € Irr(Z}) the corresponding central character of
T/, foralli=1,...,n, then Z' = Z| x --- x Z, is the center Z(T") of T", while (' = (] x --- X ¢}, is
the central character of 7. In addition, the kernel of 7" satisfies, Ker(T") = Ker(T7) x - - - x Ker(T},).

Assume now that N/Z(T) is an abelian group. Then we can introduce an alternating bilinear
form (see section 5 in [4]) ¢ from N/Z(T) x N/Z(T) to the multiplicative group C* of complex
numbers, defined as

(3.9) c(@,9) = ¢ (1)),

for all elements Z,y of N/Z(T'), where x and y are pre-images of z and ¢ respectively, in N. The
action of G on N via conjugation makes ¢ a G/N-invariant bilinear form. As in the introduction
we define the perpendicular subgroup B+ for any subgroup B < N/Z(T), to be

(3.10) B+ ={z € N/Z(T) | ¢(B, ) = 1}.

We also call any subgroup B of N/Z(T) isotropic if ¢(B,B) = 1, and we say that N/Z(T)
is G/N-anisotropic if 1 is the only G/N-invariant isotropic subgroup of N/Z(T'). So the form
¢ is non-singular if and only if the perpendicular subgroup of N/Z(T) equals 1, and in this case
N/Z(T) becomes a symplectic G/N-group. Because the perpendicular subgroup of N/Z(T) is a
G /N-invariant isotropic subgroup of N/Z(T), if N/Z(T) is anisotropic as a G/N-group then it is
also symplectic. Also, Proposition 5.2 and Proposition 5.8 in [4] imply

Proposition 3.11. If N/Z(T) is a nilpotent group and T is linearly irreducible, then N/Z(T) is
an abelian anisotropic G /N -group.

This, along with Proposition 5.9 in [4], implies

Proposition 3.12. Assume that T = (G',N',¢)) is a linear limit of T, where N'/Z(T") is a
nilpotent group. Then 1 vanishes on N' — Z(T"), and is a multiple of (") on Z(T'). Hence
(') = G

Assume now that the abelian factor group N/Z(T) is a symplectic G/N-group, i.e., assume that
the form ¢ defined above is non-singular. (As we noted above, if T is linearly irreducible then
N/Z(T) is a symplectic G/N-group.) Then the following proposition suggests another way to look
at linear limits of 7T'.

Proposition 3.13. Assume that N/Z(T') is an abelian and symplectic G /N -group. Assume further
that T" = (G',N',%)) is a linear limit of T. Then G = G'N and G' NN = N'. Thus inclusion
G' — @G induces an isomorphism of G'/N' onto G/N. This isomorphism turns N'/Z(T") into a
symplectic G/N-group. In addition, N'/Z(T") is naturally isomorphic, as a symplectic G/N -group,
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to the factor group L*/L, where L is maximal among the G /N -invariant isotropic subgroups of
N/Z(T), and L* is the perpendicular subgroup to L with respect to the bilinear form c. Furthermore,
L= Z(T"/Z(T) while L+ = N'/Z(T).

Proof. This is Proposition 5.23 in [4], combined with the earlier results of Propositions 5.18 and
5.22 in [4]. O

Proposition 3.14. Assume that T' = (G', N',¢') is a multilinear reduction of T = (G, N,v). If
Z' = Z(T") is the center of T' and ' the central character of T', then G' = G(¢') and ¢ is the
unique irreducible character of N' = N((') lying above (' and inducing 1. If in addition T" is a
linear limit of T and N'/Z(T") is nilpotent then v’ is the only character in Irr(N'|(").

Proof. Let T(\) = T1 = (G1, N1,%1) be a linear reduction of 7', where A is a linear character of
a normal subgroup L of G contained in N. Then L is contained in the center Z(77) of T1, see
Proposition 2.3 in [4]. Hence L < Z(T7) < N. Furthermore, the same proposition in [4] implies
that \ is a restriction of the Gy-invariant linear character (') of Z(T}). Since L < G we have

G <60 =G =Gi(¢") < 6™,

Therefore, G; = G(¢™)) which in turn implies that N; = N(¢(™)). Furthermore, since v; is the
M-Clifford correspondent of ¢, while ¢ (T1) is a Gy-invariant irreducible character of Z (Ty) < Ny
lying above A and under 17, we conclude that ¢y is the unique irreducible character of Ny that
lies above ¢(M) and induces 1. Hence the first part of the proposition holds for a linear reduction.
A linear limit 7" of T is a series of linear reductions with starting triple T'= Ty and ending triple
T'. Furthermore, Z(T) = Z(Ty) < Z(Th) < --- < Z(T,,) = Z(T'). Hence the first part of the
proposition follows.

Assume now that 7" is a linear limit of 7" while N'/Z(T") is a nilpotent group. Then Proposition
3.12 implies that ¢’ is fully ramified with respect to N'/Z(T"). Hence, see Lemma 2.6 in [11],
the unique irreducible character of N’ lying above ¢ (T") is 4/. This completes the proof of the
proposition. ]

We conclude this section by proving that linear limits preserve monomial characters (see Propo-
sition 3.17 below). Its proof is based on the following lemma, that is actually the exercise (6.11) in

[7].
Lemma 3.15. Let B be a normal subgroup of a finite group G and v be a linear character of B.
Assume further that x € Irr(G|y) is an irreducible character of G lying above . If x~ € Irr(G(7))

is the y-Clifford correspondent of x in the stabilizer G(v) of v in G, then x is monomial if and
only if x~ s monomial.

Proof. 1t is clear that if x, is monomial then x is monomial, as x, induces x in G.

So we assume that x is a monomial character, and we will show that x- is also monomial. Let
K = Ker(x). Of course K < G. It is clear that x, is monomial if and only if the irreducible
character x./K of the factor group G(v)/K that inflates to x, is monomial. Hence it suffices to
prove the lemma in the case of a faithful irreducible character y, as we can pass to the quotient
groups G/K and (BK)/K. So in the rest of the proof we assume that K = 1.
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Clifford’s Theorem implies that the restriction x|p of x to B is a sum of G-conjugates of . Thus
1 =Ker(x|B) = Nsec/a(y) (Ker(y*)). But the derived group [B, B] of B is contained in the kernel
of v* for every s € G, as v is linear. Thus [B, B] < Ker(x|g) = 1. So B is abelian.

We can now follow the hint of problem 6.11 in [7]. As x is monomial, there exists H < G and
A € Lin(H) with x = A9. Thus the irreducible character A2 of HB lies above a G-conjugate

of v, where s € G. As the G-conjugate X e Lin(HS_l) of A also induces y, we can replace H by
;—1 _
H* " and A by A* . This way A8 is replaced by (A* ' )H* B = (\HB)s™" which lies above .

According to Mackey’s Theorem
(3.16) A8 g = (Almnp)®

As B is abelian, the right hand side of (3.16) equals the sum of |B : H N B| distinct character
extensions of A\|gnp to B, each one appearing with multiplicity one. Thus every irreducible con-
stituent of AP |p appears with multiplicity one. This, along with Clifford’s Theorem, (as A5 lies

above ), implies that
Ve S T
ses seS

where S is a family of representatives for the cosets H(y)Bs of H(y)B = (HB)(y) in HB, and
e is a positive integer. Furthermore, Clifford’s Theorem implies the existence of an irreducible
character § € Irr((HB)(y)) lying above v and inducing A#Z. The fact that e = 1 implies that
0l =, ie., 0 €Irr((HB)(y)) is an extension of v € Irr(B) to (HB)(vy). Thus § € Lin((HB)(vy)|v)
induces A5, Hence 0¢ = y, as X induces x. Therefore, 05" is an irreducible character of G(vy)
lying above v and inducing x. As the -Clifford correspondent ., of x is unique, we conclude that
9¢() = X~- Hence Y, is induced from the linear character 6, and thus is monomial.

This completes the proof of the lemma in the case of an abelian B. So the lemma follows. [

The above lemma implies

Proposition 3.17. Assume that T' = (G',N',¢') is a linear limit of T. Assume further that
X' € Irr(G'|Y') is the T'-reduction of x € Irr(Gly). Then x is monomial if and only if X' is
monomial. In particular, if G is a monomial group, then every irreducible character of G' that lies
above 1)’ is monomial.

Proof. Since T is a linear limit of T', there exists some chain Ty =T > Ty > --- > T,, = T" of linear
subtriples of T', such that T; is a linear reduction of T;_1, for all i = 1,...,n. So T; = T;_1(\;),
where \; is a linear character of some normal subgroup L; of G;_; with Z(T;—1) < L; < N;_1. If x
is an irreducible character of G lying above v, and thus above ¢T, then there is also a finite chain
of irreducible characters x; € Irr(G;) starting with yg = x and ending with x,, = X/, such that x;
is the unique A; -Clifford correspondent of y;_1. Hence Lemma 3.15 implies that x; is monomial
if and only if x;_1 is monomial. We conclude that yo = x is monomial if and only if ¥/ = x,, is
monomial.

The rest of the proposition follows from Remark 3.5. (|



12 MARIA LOUKAKI

4. PROOF OF THEOREM C

We begin with a straightforward lemma

Lemma 4.1. Assume that N is a finite solvable group and let M be a nilpotent normal subgroup
of N whose quotient group N/M is also nilpotent. Assume further that every p-Sylow subgroup of
N centralizes the q-Sylow subgroup of M, for all primes p # q where p ‘ |IN| and q ‘ |M|. Then N
1s also nilpotent.

Proof. Let P,Q be a p- and a ¢-Sylow subgroup of N, for two distinct primes p and q. Let x € P
and y € @ be two elements of P and @ respectively. It is enough to show that [z,y] = 1. Because
N/M is nilpotent while (PM)/M and (QM)/M are a p-and a ¢g-Sylow subgroup, respectively, of
N/M, we have x-y = y-x-m, for some m € M. Hence y 1 -z-y = T -my-myy, where m = my, X myy
is the decomposition of m to its p-part m, and its p’-part m,. So z¥ - m}j,l = - mp. The right
hand side of the last equation is an element of P, and thus has order a power of p. On the other
hand ¥ is an element of some p-Sylow subgroup of N. So z¥ commutes with m, by hypothesis.
Therefore the order of z¥ - m, can be a power of p only if m, = 1. Similarly we have my = 1,
where m = mgy x my is the decomposition of m to its g-and ¢’-parts. We conclude that m = 1, and
the lemma follows. O

The following is the main tool for the proof of Theorem C

Lemma 4.2. Assume that G is a monomial finite group. Assume further that G has normal
subgroups M < N such that M is nilpotent with odd order and N/M is nilpotent. If ¢ is any
irreducible character of M, and T is the triple T = (G, M, ¢), then there exists a linear limit
T = (G',M',¢) of T so that the factor group (G' N N)/Ker(T") is nilpotent.

Proof. Let p1, ..., px be the distinct primes dividing |N|. Let {H;}%_; be a Sylow system of N. So
H; is a p}-Hall subgroup of N. Furthermore, N4 H; = Q; is a p;-Sylow subgroup of N. We also
write M; for the p;-Sylow subgroup of M (some could be trivial, and by hypothesis those that are not
have odd order). So M; is a normal subgroup of G, for alli = 1,..., k, and M = My X My x - - - X M.
Note that M < H; M, while the quotient group (H;M;)/M is the p}-Hall subgroup of N/M. Hence
(H;M;)/M is a characteristic subgroup of N/M and thus a normal subgroup of G/M. So H;M; is
a normal subgroup of G.

Clearly the irreducible character ¢ of M can be written as ¢ = ¢ X - -+ X ¢y, where ¢; € Irr(M;)
for all : = 1,...,k. For every arbritrary but fixed i = 1,...,k, we form the triple T; = (G, M;, ¢;).
Let T) = (G, M/, ¢}) be a linear limit of T;. We write K] = Ker(T}) for the kernel of T/, and
Z! = Z(T}) for the center of T]. If ¢/ € Lin(Z}) is the central character of T/, then according to
Proposition 3.14, we have G = G;((}).

For all j # i the p;-Sylow subgroup M; of M is a subgroup of G7, since it centralizes M; (see
Remark 3.4). Hence the group L; = M N G} is a normal nilpotent subgroup of G, whose p;-Sylow
subgroup is M and whose p;-Sylow subgroup, for any j # 4, equals M;. So

Lg:MlX'--XMi_lXMZ{XMi_;,_lX"'XMk.
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Let N/ be NNG, = N(¢!) and H/ be a p,-Hall subgroup of N/. Then (H]- M/)/L, is the p,-Hall
subgroup of the nilpotent factor group N//L!, and thus H] - M = H/ - L, is a normal subgroup of
G..

According to Proposition 3.7, the group Z!/K] is the center of the p;-group M//K]. If (//K]
is the unique character of the quotient group Z;/K/ that inflates to ¢/, then the same proposition
implies that for all i = 1, ..., k the groups M//K!, G/ K] and the character ¢;/K] satisfy Condition
X. In addition, the group H/K|/K! is a p,-Hall subgroup of N//K/ and its product with M//K is
a normal subgroup of G/K. According to Proposition 3.17 every irreducible character of G’ that
lies above ¢, is monomial. But ¢} is the only character of M/ lying above (], by Proposition 3.14.

So every irreducible character of G lying above (! is monomial.
Hence every irreducible character of G;/K] that lies above (]/K] is monomial.

The character ¢!/ K] is a G/ K]-invariant p;-special character of Z]/K!, (one could see [9] for the
basic definitions of m-special characters). Hence there exists an irreducible p;-special character of
G /K| that lies above (//K]. Therefore, that character is monomial and the p}-part of its degree is
1. We can now apply Corollary 2.5 to the groups G/ K], M]/K/ and (H/K])/K/, foralli =1,... k.
We conclude that (H/K])/K] centralizes M//K] for all such i. Hence the commutator subgroup
[H/K], M]] lies inside K. Therefore,

(4.3) [H,M]] < K], foralli=1,...,Fk,
where H] is any p/-Hall subgroup of N/.

Let G' = GING5N---NGY. Then G’ = G((], ..., (). Wealso define N' = NNG' = N((1,..., ()
and M' = M NG = M((,...,¢,). Of course M" = Mj x --- x Mj. Also M’ I N QG
Furthermore, the group Z' = Z| x --- x Z] is a normal subgroup of G’ contained in M’. The
character ¢ = ¢} x -+ x ¢ is an irreducible character of M’ that lies above the G’-invariant
linear character ¢/ = (] x --- x ¢}, of Z'. In view of Remark 3.8 the quintuple 7" = (G’, M’, ¢')
is a linear limit of T = (G, M, ¢), while Z’ = Z(T"), ¢’ is the central character ¢((T") of T’, and
K' = K} x --- x K}, is the kernel Ker(T") = Ker((¢/)%") of T".

In order to complete the proof of the lemma, it suffices to show that N’/K’ is a nilpotent group.
According to Lemma 4.1, it is enough to prove that every p-Sylow subgroup of N'/K’ centralizes
every ¢g-Sylow subgroup of M’/K’, whenever ¢ is a prime divisor of |M'/K’| and p # ¢ is a prime
divisor of [N'/K'|. We fix a prime p = p, that divides |[N'/K’|, for some r = 1,...,k. Let S’ be
a p-Sylow subgroup of N’. Clearly N’ < N/ for all i = 1,..., k. Hence for all i # r, there exists a
pi-Hall subgroup H/ of N/ so that S’ < H]. Therefore (4.3) implies

[ M]] < K], foralli#r,i=1,... k.
So [(’K")/K',(M!K")/K")] = 1 for all i # r. Hence N'/K’ is nilpotent. This proves Lemma 4.2.

0

Now we can prove Theorem C that we restate here.

Theorem C. Assume that G is a finite monomial group. Assume further that G has normal
subgroups M < N such that M is nilpotent with odd order and N/M is nilpotent. Let ¢ be
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an irreducible character of N. Then there exists a linear limit T' = (G',N',¢') of the triple
T = (G, N,) so that the factor group N'/Ker(S’) is nilpotent. Hence N is a monomial group.

Proof. We fix the character ¢ € Irr(N) and an irreducible character ¢ of M lying under v. This way
we can form two triples S = (G, M, ¢) and T' = (G, N, ). According to Lemma 4.2, there exists a
linear limit S” = (G", M",¢") of S = (G, M, ¢) so that the factor group N”/Ker(S") is nilpotent,
where N = G" N N. If ¢" € Irr(N”) is the S”-reduction of ¢, then the triple 7”7 = (G", N" ¢")
is a multilinear reduction of T'= (G, N, ), see Remark 3.6. Because M"” < N” while ¢" lies above
¢" the same remark implies that

Z(S") < Z(T") and Ker(S") < Ker(T").

Of course, the linear reduction 7" of T does not need to be a linear limit of the latter, but
certainly any linear limit of 7" is also a linear limit of 7. Let 7" = (G’,N’,4’) be a linear
limit of 7" and T. Then Remark 3.2 implies that Ker(T"”) < Ker(T"), while N’ < N”. Hence
Ker(S”) < Ker(T") < N’ < N”. This, along with the fact that N”/Ker(S"”) is nilpotent, implies
that N’/ Ker(7") is also a nilpotent group. Therefore the first part of Theorem C is proved.

For the rest of the theorem, observe that ¢ is a monomial character of N’, because N’/ Ker(1")
is nilpotent and Ker(7") < Ker . Because ¢/’ induces 1) in N, Theorem C follows. O

5. PROOF OF THEOREM D

The proof of Theorem D is heavily based on

Theorem 5.1. Let QQ be a q-group acting on a p-group P, with p # q odd primes. We identify both
P and Q with their images in the semidirect product QP = Q x P. Let T be a finite-dimensional
right ZqQP-module such that the action of P on T is faithful. Then there exists an element T € T
such that its stabilizer (QP)(7) in Q X P equals Q.

Proof of Theorem 5.1. We will prove a series of claims under the

Inductive Assumption. Q, P, 7 are chosen among all the triplets satisfying the hypothesis, but
not the conclusion, of Theorem 5.1, so as to minimize first the order |QP| of the semidirect product
Q x P, and then the Z,-dimension dimz, T of T.

These claims will lead to a contradiction, thus proving the theorem. First note that 7 # 0.

Claim 1. 7 is an indecomposable Z,QP-module.

Proof. Suppose not. Let 7 = 7; + T3 be a direct decomposition of 7, where 77, 73 are nontrivial
ZqQP-submodules of 7. For i = 1,2 let K; be the kernel of the action of P on 7;. Hence 7;
is a Z4Q x (P/K;)-module such that P/K; acts faithfully on it. As dimgz, 7; is strictly smaller
than dimgz, 7, the minimality in Inductive Assumption provides an element 7; € 7; such that
(Q x (P/K;))(1i) = Q. (Here we have identifying () with its image in the semidirect product
Q x (P/K;).) If we take as 7 the sum, 7 = 71 + 79, then 7 is an element of 7 fixed by @, as @ fixes
each one of the 7; for ¢ = 1, 2. Furthermore for the stabilizer of 7 in P we have

P(r) = mzz:lP(Ti) = mzzlei~
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Since P acts faithfully on 7" the last intersection is trivial. Therefore (QP)(7) = @, which contra-
dicts the Inductive Assumption. Hence 7 is an indecomposable Z,() P-module. O

Claim 2. The restriction Tp of T to P is a multiple of an irreducible Q-invariant Z,P-module.

Proof. Because g does not divide |P| we can write 7p as a direct sum of its Z,P-homogeneous
components, i.e.,

Tp=U +Us +-- -+ U,.

Sor > 1 and there exist distinct simple Z,P-modules By, Ba, ..., B, and positive integers m1, ma, ..., m,
such that U; = m;B; as ZsP-modules, for all ¢ = 1,...,7. Observe that right multiplication by
any element in QP permutes among themselves the U;. So each QP-orbit () of the U; leads to a
Z4QP-direct summand Zui caUi of Tp. According to Claim 1, the group QP acts transitively on
the U;. Hence m; = mg = -+ = m, = m. Furthermore, if B; = B and (QP)(B) is the stabilizer
of the isomorphism class of B in QP, then V; = B% were 1 = 01,...,0, are representatives for the
cosets in @ - P of (QP)(B). Thus, U :=U; = mB = mB° Uy = mB°2,... .U, = mB°". We may
pick o1, ...,0, to be representatives of the cosets in @ of the stabilizer, Q(B), of the isomorphism
class of B in ). Note that Q(B) = Q(U) as U = mB, where Q(U) is the stabilizer in @ of U under
multiplication in 7. If 7p is not homogeneous, then r > 1 and Q(U) = Q(B) < Q. Fori=1,...,r
let K; be the kernel of the action of P on U;. Then for every i = 1,...,r the stabilizer Q(U;) of U;
in @ equals the o;-conjugate, Q(U)% , of Q(U) = Q(B). For the corresponding kernels we similarly
have K; = K7'.

As U is a faithful Z,P/K;-module and Q(U) < @, the minimality of |QP| in the Inductive
Assumption implies that there exists an element u € U such that

(QU) x (P/K1))(1) = Q).

For every ¢ = 1,...,r we can define an element p; = po; of U;. Then Q(U;) = Q(U;)7" fixes p; as
Q(U) fixes pu. Furthermore if x is any element of P fixing j; then 2% " is an element of P fixing u.
Therefore 2% € K 1, which implies that x € K;. Thus

(QU:) x (P/K;)) (i) = Q(Us)
foreveryi=1,...,r.

Let 7 be the sum of the u; for ¢ = 1,...,r. Then 7 is an element of 7 fixed by @, since
multiplication by any element in () permutes the U/; and the p; among themselves. The stabilizer
P(7) of 7 in P equals the intersection of the stabilizers of p; in P for ¢ = 1,...,7. Since (Q(U;) X
(P/K;))(ui) = Q(U;) for every such i, the latter equals the intersection of K; for i = 1,...,r. The
faithful action of P on 7 implies that

Hence 7 has an element 7 with (QP)(7) = @, contradicting the Inductive Assumption. This
contradiction proves Claim 2. (|
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Claim 3. There are no Q-invariant subgroup, H < P, and Z,QH -submodule, S, of Ton such that
T is the ZqQP-module SQP induced from S, i.e.,

T = Z So;,

1<i<n

where the o; are representatives for the cosets Ho; of H in P.

Proof. Suppose Claim 3 is false. We choose H to have maximal order among all @-invariant
subgroups of P that contradict Claim 3. Hence 7o g has a Z,(Q) H-submodule, S, such that S QP — T,
If H is not normal in P then its normalizer, Np(H), in P satisfies H < Np(H) < P. Since H is
Q-invariant, Np(H) is also Q-invariant. Hence SONP(1) is a Z,QNp(H)-submodule of ToNp(H)-
Furthermore S@NVP(H) induces 7. Thus Np(H) is among the Q-invariant subgroups of P that
contradict Claim 3, while |Np(H)| > |H|. So the maximality of |H| implies that H is normal in P.

Let 1 = oy, ..., 01 be coset representatives of H in P, and let &,,, denote the image of o, in P/H
form=1,...,k. Then 1 = &1,03,...,0} are the distinct elements of P/H. As Q acts on P/H, it
has to divide the &,,, for m =1, ..., k, into orbits, R1, R, ..., R;, for some [ € {1,...,k}. We may
choose R; to be equal to {51} = {1}. For every i = 1,...,l, we pick some element 5;; € R;. Then
R; = {6Zj1 }ﬁz’fz where k; = |R;| and ¢; runs over a set ); of coset representatives of the stabilizer,
Cg(6i1),in Q. For every i = 1,...,1 the stabilizer Cg(a;,1) acts by conjugation on H and on o; 1 H,
where 0;; € P has image 7;1 € P/H. Furthermore, H acts transitively by right multiplication
on ;1 H and (zh)¢ = z¢h¢ for all x € 0;1H,h € H,c € Cg(d;1). Hence Glauberman’s Lemma
(13.8 in [7]) provides an element ¢;1 € o;1H that is fixed by Cg(6;1). So Cq(ti1) > Cq(diq).
Furthermore, the opposite inclusion, Cq(t;1) < Cg(di1), also holds as &;1 = t;1H. Hence,

Cqltin) = Co(ain)-
In this way we can pick a t;1 € 0;1H, for every i = 1,...,1, such that Cg(t;1) = Cg(ds,1). We can
even assume that ¢1 1 = 1. Let ¢; ; denote the g;-conjugate, tgjl, of t;1 for every j = 1,...,k;. Hence
the set of all ¢;;, for ¢ = 1,...01 and for j = 1,...,k;, is a7complete set of coset representatives

of H in P. Furthermore the Q-orbit R; corresponds to a Q-orbit R; = {t;1,... ytiy. ), for every
i=1,...,1L

Let Ks be the kernel of the action of H on S. As |H/Kgs| < |P|, the minimality of |QP| in
the Inductive Assumption implies that there exists p € S such that its stabilizer, (Q x H/Kgs)(u),
in @ x H/Ks equals @, or equivalently (QH)(1) = QKs. We note here that Ks < H. Indeed,
if H acts trivially on S, then 7 is induced from a trivial module and thus contains both trivial
and non-trivial irreducible Z,P-submodules, contradicting Claim 1. We also have that p # 0 since
Q=(QxH/Ks)(np) < QH/Ks. We denote by ut; ; the t; j-translation of p, for every i =1,...,1
and for every j =1,...,k;. Then ut; ; is an element of St; ; such that

(Qtz,y H) (Nti,j) — th K'S,J.
Since S?P = T we get that

(5.2a) T =89 = Z Z Stij =8+ Z Z Stij.

1<i<l1<j<k; 2<i<i 1< <k;
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Let 7 be the element of 7 defined by

Ik l
(5.2b) T=—pA > Y ptig=—p+ >, Y ptig

=2 j=1 =2 ti,]'GRi

We claim that 7 satisfies the condition in Theorem 5.1, i.e., that (QP)(7) = Q. This will contradict
the Inductive Assumption, and thus prove Claim 3. Indeed, R; = {t;1,...,tik, } is a Q-orbit for
every i = 2,...,0. Also p and —p are Q-invariant as (QH)(—u) = (QH)(n) = QKs. Hence
Ztm er, Mtij is Q-invariant. Thus 7 is a Q-invariant element of 7, which implies that (QP)(7) =

Q- P(7).

If z € H(r) then, since H < P, we get that (ut; j)x = Mx(ti,j)_ltm is an element of St; ;, for all
i=2,...,land j =1,...,k;, while (—u)x is an element of S. Since 72 = 7, it follows from (5.2)
that (—p)x = —p and (ut; j)z = pt; j for every i = 2,...,1 and for every j =1,...,k;. Hence z is
an element of:

1k Ik

1k
) 0 () ) (Plutig) VE) = () () Hlutig) = () ) K&

=2 j=1 i=1j=1 i=1j=1
As H acts faithfully on 7, we get that ﬂé:l ﬂfl:l KZ;” = 1. Hence H(1) = 1.

Now let z € P~ H. We claim that 7 # 7. Indeed any z € P permutes the St; ; among
themselves. If x fixes 7, then it also permutes among themselves the summands —u and put; ;, for
i # 1, of 7. Since Sz # S we have (—p)r = pt; ; for some ¢ = 2,...,1 and some j = 1,...,k;.
But as € P~ H we have that x = ht for some coset representative ¢t = t;, j, of H in P with
iop = 2,...,l and some element h € H. Hence ut;; = (—p)r = (—p)ht € St, which implies that
tij =t and (—p)h = p. This last equation leads to a contradiction as h has odd order (|P] is odd)
and p # —p (as S < 7 has odd order, while p # 0). Therefore 7 # 7 whenever € P~ H. Hence
P(r) = H(r) =1 and (QP)(7r) = @, contradicting the Inductive Assumption. This contradiction
proves Claim 3. O

Claim 4. The restriction T4 of T to any normal subgroup A < P of QP is a multiple eBB of a single
faithful QP-invariant Z,A-module B. Hence every normal abelian subgroup A of QP contained in
P is cyclic.

Proof. Let A be a normal subgroup of QP contained in P, and let 74 be the restriction of 7
to A. According to Claim 2, and Clifford’s Theorem, 74 can be written as a direct sum of its
Zq4A-homogeneous components, i.e.,

Ta=Wi+Wa+---+Ws.

Furthermore, P acts transitively on the W; for all ¢ = 1,...,s, while @ permutes the WW; among
themselves (as 7 is a ZqQP-module). Hence Glauberman’s lemma implies that @) fixes some Z,A-
homogeneous component, W, of 74. Note that Clifford’s theorem implies that the homogeneous
component W of Ty is a ZqQP(W)-submodule of 7, where P(W) is the stabilizer of W under
multiplication of elements of 7 by elements of P. Furthermore, the Z,QP(W)-submodule W
induces the Z,QP-module T = WEOP  In view of Claim 3, we must have W = 7. Hence T4 = eB3
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where B is an irreducible Q) P-invariant Z,A-submodule of 7. As P acts faithfully on 7, the Z,A-
module B is also faithful. If A is abelian, the existence of a faithful irreducible Z,;A-module implies
that A is cyclic. Therefore, the claim is proved. U

The g-group @ acts on the non—trivial g-group 7, fixing the trivial element 0 of 7. Hence the
group @ fixes at least g elements of 7. So @ fixes some 7 with

(5.3) 7 €T and 7 # 0.

Hence, to complete the proof of Theorem 5.1, by contradicting the Inductive Assumption, it is
enough to show that P(7) =1

By Claim 4 every characteristic abelian subgroup of P is cyclic. Since p is odd, Theorem 4.9 of
[6] implies that either P is cyclic or P is the central product E ® C, of the extra—special p-group
E = Q4 (P) of exponent p, and the cyclic group C' = Z(P).

According to Claim 4, the Z,Z(P)-module T;p) is a multiple of a faithful irreducible QP-
invariant Z,Z(P)-module B, i.e., Tz py = mB. Hence Z(P) acts fix point freely on 7', as it acts fix
point freely on B (or else B wouldn’t be simple and faithful).

If P is cyclic, then P = Z(P). Thus P acts fix point freely on 7. Hence no element of Z(P)—{1}
could fix 7. Hence P(7) = 1. So (QP)(7) = @, contradicting the Inductive Assumption. Therefore,
P can’t be cyclic.

Hence,
(5.4) P=E&oC=(P)o Z(P),

where E = 1 (P) is an extra special p-group of exponent p and C = Z(P) is cyclic. Therefore the
quotient group P = P/Z(P) is an elementary abelian p-group. Furthermore P affords a bilinear
form ¢ : P x P — Z(E) defined, for every z,y € P, as ¢(Z,y) = [,y], where z,y are elements
of P whose images in P are Z and § respectively. With respect to that form P is a symplectic
Zp(Q)-module.

Claim 5. The symplectic Z,(Q)-module P is anisotropic.

Proof. Assume not. Then there is an isotropic non-zero Z,(Q)-submodule A of P. Hence c(a, b) = 0
for every a,b € A, because A C A+. Therefore, the definition of the symplectic form ¢ implies that
the inverse image A of A in P is an abelian subgroup of P containing Z(P). Since A is a Z,(Q)-
submodule of P, the abelian group A is a normal subgroup of QP contained in P. Hence by Claim
4 , A is cyclic and properly contains Z(P). Therefore there exists an element a € A \ Z(P) such
that a? is a generator of Z(P). On the other hand, equation (5.4) implies that a = w - ¢ where
w € Q(P) and ¢ € C = Z(P). Hence a? = wP - P = P. Since aP is a generator of the cyclic
non-trivial p-group Z(P) and ¢ € Z(P), this last equation leads to a contradiction. This proves
the claim. O

Now we can complete the proof of Theorem 5.1. If (QP)(7) # @ then there exists a Q-invariant
subgroup D = P(7) # 1 of P such that (QP)(7) = QD. Hence the center Z(D) of D is a non—

trivial Q-invariant abelian subgroup of P. Therefore its image Z(D) = Z(D)Z(P)/Z(P) in P is
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an isotropic Z,(Q)-submodule of P. Since P is anisotropic, Z(D) = 1, i.e., Z(D) is contained in
Z(P).

As we saw, Z(P) acts fix point freely on 7. This implies that no element of Z(P) — {1} could
fix 7. Hence Z(D) = 1, contradicting the fact that Z(D) # 1. So (QP)(7) = @, contradicting the
Inductive Assumption. This final contradiction completes the proof of Theorem 5.1. O

In terms of characters, Theorem 5.1 implies

Corollary 5.5. Let Q be a q-group acting on a p-group P with p # q odd primes. Suppose that
the semi—direct product Q X P acts on a q-group S such that the action of P on S is faithful. Then
there exists a linear character A of S whose kernel Ker(\) contains the Frattini subgroup ®(S) and
whose stabilizer (QP)(X) in Q x P is Q.

Proof. Let T be the quotient group 7 := S/®(S). Then 7 is a Z,QP-module. We write 7*
for its dual Z,QP-module, i.e., 7* = Homg (7,Z,). Then P acts faithfully on both 7" and 7*.
Furthermore, according to Theorem 5.1 there is an element 7 € 7* whose stabilizer in QP equals
Q. Since the linear characters of 7 can be considered as the elements of 7* composed with some
faithful linear character of Z,, we conclude that there is a linear character \* € Lin(7) whose
stabilizer in QP is Q). Let X be the linear character of S to which \* inflates. Then ®(5) < Ker(A).
Furthermore, (QP)(A) = (QP)(X\*) = @, and the corollary follows. O

The following is a straightforward lemma.

Lemma 5.6. Let P be a p-subgroup of a finite group G and let Q1 < Q be q-subgroups of G, for
some distinct odd primes p and q. If P normalizes Q1, and Q normalizes their product Q1 P, then
QP is also a subgroup of G with Q € Syl (QP), P € Syl,(QP), while Q1P QQP and Q1 I QP.
Furthermore, Q is the product Q = [Q1, PINg(P), where [Q1,P] < QP and [Q1,P] N Ngo(P) =
Cig,.p(P) < ©([Q1, P)).

Proof. Since P normalizes ()1, the latter is a characteristic subgroup of Q1 P. Therefore, the fact
that @ normalizes (1 P implies that ) normalizes Q1. So Q1 < Q.

The product, QP = Q(Q1P), is a subgroup of G, since ) normalizes the semidirect product
Q@1 x P. That same product 1P is a normal subgroup of QP = Q(Q1P). We obviously have that
Q € Syl (QP) and P € Syl,(QP).

By Frattini’s argument for the Sylow p-subgroup P of Q1P I QP we get
(5.7a) QP = Qi PNop(P).
The normalizer, Nop(P), of P in QP contains P. So it is equal to PNg(P). Hence (5.7a) can be
written as QP = Q1 Ng(P)P. Since Q1 Ng(P) < Q and Q N P =1, we conclude that
(5.7b) Q = Q1Ng(P).
Because (|Q1],|P|) = 1, and P acts on @1, we can write @ as the product Q1 = [Q1, P|Ng, (P).

The commutator subgroup [@Q1, P| is a characteristic subgroup of Q1P and thus is also a normal
subgroup of @, as @ normalizes @1 P. Therefore, (5.7b) implies

Q = [Q1, PINq(P).
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That [Q1, P] N No(P) = Cjg, p|(P) is obvious as (|@Q1],|P|) = 1. Also the quotient group K :=
(@1, P]/®([Q1, P]) is abelian and thus K = [K, P] x Cg(P). As [Q1, P, P] = [@Q1, P] (by Theorem
3.6 in [6]), we get that K = [K, P] and Ck(P) = 1. This implies that C|g, p(P) < ®([Q1, P]). O

As an easy consequence of Corollary 5.5 and Lemma 5.6 we have:

Proposition 5.8. Let Q) be a q-group acting on a p-group P with p # q odd primes. Suppose that
the semi—direct product Q X P acts on a q-group S such that the action of P on S is faithful. Then
there exists a linear character A of S such that Cs(P) < Ker(\) and (QP)(\) = Q.

Proof. As P acts on S we can write S as the product S = [S, P] - Cg(P). It is clear that the
product QCs(P) forms a group. Furthermore, QCg(P) normalizes P and the semidirect product
(RQCs(P)) x P acts on [S,P], while the action of P on [S, P] is faithful. Then according to
Corollary 5.5 there exists a linear character A; of [S, P] such that (QCs(P)P)(A\1) = QCs(P),
while ®([S, P]) < Ker(A1).

As we have seen in Lemma 5.6
[S, P]| N Cs(P) = Cis,p(P) < ©([S, P)).

Since A; is a linear character of [S, P] that is trivial on ®([S, P]) and Cg(P)-invariant, the above
inclusion implies that A; has a unique extension to a linear character A of S trivial on Cg(P).
Furthermore, (QP)(A) = (QP)(A1) = @, and the proposition follows. O

We can now prove a special case of Theorem D where P([3) is trivial. In this special case the
new character we get is linear. In particular we have

Lemma 5.9. Let P be a p-subgroup of a finite group G, where p is an odd prime. Let Q1,Q
be g-subgroups of G for some odd prime q # p, with Q1 < Q. Assume that P normalizes (1
while Q) normalizes the product Q1 P. Assume further that G is an irreducible character of Q1 such
that P(3) = 1. Then there exists a linear character A of Q1 such that 1 = P(8) = P(\), while

Q(B) < Q) =Q and X\ extends to Q.

Proof. Because @ normalizes the product Q1 x P, it normalizes its characteristic subgroup 1. Let
C = Ng(P) be the normalizer of P in (). Frattini’s argument implies that

Q= Nqo(P)Q1 = CQr.
In addition, C' normalizes P and the semidirect product C'P acts on (1. The fact that P(3) =1
implies that P acts faithfully on @);. Therefore we can apply Proposition 5.8 to the groups C, P

and @ here in the place of @, P and S there respectively. We conclude that there exists a linear
character A € Lin(Q1) such that Cg, (P) < Ker(\) and (CP)(\) = C.

This last equation implies that P(A) = P(8) = 1. Since Q@ = CQ; and C fixes A we conclude
that @ also fixes A. Furthermore we have

CNnQ@ = NQ(P) NQ1= CQl(P) < Ker()\).
Therefore A can be extended to Q.
As Q(B) < Q = Q(N), the proof of Lemma 5.9 is complete. O
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Finally we can now prove Theorem D, that we restate here.

Theorem D. Let P be a p-subgroup, for some odd prime p, of a finite group G. Let QQ1,Q be
q-subgroups of G, for some odd prime q # p, with Q1 < Q. Assume that P normalizes QQ1, while
Q normalizes the product Q1 X P. Assume further that B is an irreducible character of Q1. Then
there exists an irreducible character 5% of Q1 such that

P(B) = P(B"),
Q(B) < Q(B”) and No(P(B)) < Q(5”),
BY extends to Q(5).

Proof of Theorem D. Let P(f3) be the stabilizer of 5 in P and P; be the normalizer of P(3) in P.
Let P; denote the quotient group Py/P(3). We write C; for the centralizer, C; = C(P(f3) in Q1),
of P(B3) in Q1. Then it is clear that P; acts on Cj.

The Glauberman correspondence (Theorem 13.1 in [7]), applied to the groups P(3) and Q1,
provides an irreducible character §* of C; corresponding to the irreducible character G of ;.
Because P; normalizes both P(() and Q1 we get that P1(8*) = Pi(8) = P(8). If Pi(6*) < P(8*)
then P (8*) < N(P1(8*) in P(B*)) = N(P(p) in P(8*)) = P1(8*), which is impossible. Therefore

P(f") = Pu(B7) = P(8) = P1(B).

We remark here that because P(3) centralizes C1 = C(P(8) in Q1), we have P(8) < C(C) in Py) <
Py (5*) = P(). Hence C(Cy in P1) = P(B) and P; acts faithfully on Cj.

Let C' := N(P(f) in Q) be the normalizer of P(3) in Q. Then C; is a normal subgroup of C
as @1 < Q. Furthermore, C' normalizes N(P(f) in PQ1) because () normalizes the product PQ);.
As PIC; = N(P(f) in PQ1) we conclude that C' normalizes the product P;C;. Hence Frattini’s
argument implies that

C = N(Pl in C)Cl

Now we can apply Lemma 5.9 to the groups C, C; and P; and the character 8* € Irr(C}), in the
place of @, @1, P and [ respectively. We conclude that there exists a linear character A € Lin(C})
such that

(5.10a) P(B7) =1=P(N),
(5.10Db) C(B*) < C(\) =N¢c(Ch)=C
(5.10c) A extends to C(\) = C.

Equation (5.10a) above implies that P;(A) = P(8). Thus P(8) = Pi(\) < P()\). We actually
have that P(A\) = P(#). Indeed, if P(8) < P(A), then P(3) would be a proper subgroup of
N(P(B) in P(X)). Thus P(8) < N(P(B) in P(\)) = N(P(f) in P)(\) = Pi(A) = P(f). So

Pi(A) = P(B) = P(A).

Let g¥ € Irr(Q1) be the Glauberman P([3)-correspondent to A\. Because C'P; normalizes both
P(f) and Q1 we get (CPy)(87) = (CP1)(A) = CP(B). Hence P(5”) > P1(57) = P1(A) = P(B). If
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P(8") > P(B) then P(3) < N(P(3) in P(3")) = P1(3") = P(B). Thus
P(p") = P(A) = P(B)

and (C'(PQ1))(8”) = CP(5)Q;. Since C fixes ¥ and normalizes P(3) we have C < N(P(f) in Q(5")) <
N(P(B) in Q) = C. Hence

N(P(B) in Q) = C = N(P(B) in Q(f")) < Q(5").

In order to show that (" extends to Q(BY), we first observe that Q1 P(8) = (Q1P)(5”) =
(Q1P1)(BY) as P(BY) = P(B) = Pi1(B”). So the group Q1P (5) = (Q1P)(5”) is a normal subgroup
of Q(BY)P() as @ normalizes the product ()1 P. Because X extends to C' while P(f) fixes A and
has coprime order to that of C', we conclude that A can be extended to CP(f3), (see Theorem 6.26
in [7]). So we can apply the Main Theorem in [12] to the groups P(8)Q(38"), P(8)Q1 and Q1. We
conclude that 8" extends to P(8)Q(8Y) as its P(f)-Glauberman correspondent A\ can be extended
to P(B)C = P(B)N(P(pB) in Q(B8")). We write 3¢ for an extension of 3" to Q(5").

To complete the proof of the theorem it remains to show that Q(8) < Q(5”). The group
(Q1P)(B) = Q1 P(P) is a normal subgroup of Q(B)P(f3), as  normalizes @1 P. Hence Frattini’s
argument implies that

Q(B) = QN (P(B) in Q(3)).
Therefore Q(3) < Q1 N(P(8) in Q) = Q1C. But we have already seen that Q1 P((3) is a normal
subgroup of Q(5”)P(3). Hence the Frattini argument implies that
Q(BY) = Q1N (P(B) in Q(B”)) = @1C.
Thus Q(8) < Q(#”) and the theorem follows. O

6. PROOF OF THEOREM E

We first need some lemmas.

Lemma 6.1. Assume that G is a finite group and that S < H are subgroups of G with S normal
in G. Assume further that 0 € Irr(H) lies above A € Irr(S). Let 0y € Irr(H (X)) denote the unique
A-Clifford correspondent of 0. If 0 extends to its stabilizer G(0) in G, then 0y also extends to
G0, )N).

Proof. A straight forward application of Clifford Theory implies that G(6,\) < G(6,). Further-
more, as G(0) fixes 0 it permutes among themselves the members of the H-conjugacy class of
characters in Irr(S) lying under 6. Since A € Irr(S) lies under 6 we get

(6.2a) G0)=H- -GO,\) < H-G(0)).
In addition,
(6.2Db) GO,\)NH =H(M\).

Let 0¢ € Trr(G(6)) be an extension of € to G(#). Then 6° lies above A\. Let ¥ € Irr(G(6,\))
denote the unique A-Clifford correspondent of 6¢ € Irr(G(#)). So W lies above A and induces #°.
Therefore,

(TEO) | = 6%y = .
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Mackey’s Theorem, along with (6.2), implies that
(TN = (@)™

Hence (¥]g(y)) = 6 is an irreducible character of H. So the restriction W]y is an irreducible
character of H(A) that induces ¢ and lies above A (as ¥ lies above A\). We conclude that W[z y)
is the A\-Clifford correspondent of 6. Hence W|p(y) = ). Thus V¥ is an extension of 0y to G(0, ),
and the lemma follows. O

Applying this lemma to linear reductions we can prove

Lemma 6.3. Let T = (G, N,v) be a triple, and T' = (G', N',¢") be a multilinear reduction of T.
Let H be any subgroup of G with N < H. If (' is the central character of T', then H = HNG' =
H(¢"). Also if ¢ extends to H(v) then o' extends to H'(¢p) = H'(¢).

Proof. Assume first that 7" is a linear reduction of T. So T" = T'(\) where X is a linear character
of a normal subgroup L of G with Z(T') < L < N. Furthermore, X lies above the central character
¢ elr(Z(T)) of T. In addition, if Z(T") is the center of 7", and ¢’ € Lin(Z(T") its central character,
then Z(T) < L < Z(T') < N while ¢’ lies above .

According to Proposition 3.14, we have G(\) = G' = G({). Hence if H' = HN G’ then H(\) =
H' = H({'). This, along with Lemma 6.1, implies that ' extends to H (¢, \) = H' (1) whenever 1
extends to H(v). But H(y,\) = H(y',\) = H'(¢)), since ¢’ is the A-Clifford correspondent of ).
This implies the lemma in the case that 7" is a linear reduction. If 7" is a multilinear reduction,
then repeated applications of the above argument completes the proof of the lemma. ]

Lemma 6.4. Let Q) be a normal g-subgroup of a finite group G, for some prime q. Assume further
that E <G with E < Q, while A € Irr(E) and x € Irr(Q|N\). If A is a ¢'-subgroup of G then there
exists a Q-conjugate A1 € Irr(E) of X that is A(x)-invariant and lies under x.

Proof. Clifford’s Theorem implies that x lies above the Q-conjugacy class of A. The m-group A(x)
fixes x, and normalizes F, as the latter is normal in G. Hence A(x) permutes among themselves
the @-conjugates of X\. As (JA(x)|,|@Q|) = 1, Glauberman’s Lemma (Lemma 13.8 in [7]) implies
that A(x) fixes at least one character A\; of the Q-conjugates of \. U

The above lemma implies

Proposition 6.5. Let QQ be a normal g-subgroup of G, while A is any ¢'-subgroup of G. If x € Irr(Q)
we write T' for the triple T = (G, Q, x). Then there exists a chain of linear subtriples Ty, T, ..., Ty
of T starting with Ty = T and ending with a linear limit T,, = T" of T, so that for alli =0,1,...,n,
the central character (75 of T; is A(x)-invariant. We call such a T', an A(x)-invariant linear limit
of T.

Proof. Let Th = (G1,Q1, x1) be a linear reduction of T' = (G, Q, x). Then Th = T(\1), where \;
is a linear character of a normal subgroup F; with F; < @. According to Lemma 6.4 there is
a @-conjugate of A\; that is A(x)-invariant. Thus, without loss, we may assume that \; is A(x)-
invariant. So A(x) < G1 = G(A1). Because A(x) fixes A;, while x1 € Irr(Q1) is the A\;-Clifford
correspondent of x in Q1 = Q(A\1), we get A(x)(x1) = A(x). Let Z; be the central subgroup of
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Ty, s0 By < 71 < Q1. If (4 € Lin(Z,) is the central character of 77, then (; lies above A\; while
Xilz(m) = x1(1) - G Hence A(x) = A(x, x1) also fixes (;.

Let T = (G2,Q2,x2) be a linear reduction of Tj. So Ty = Ti()\2), for some linear character
A2 € Irr(E3), where E < Gy. Since A(x) = A(x, x1), Lemma 6.4 implies that we can pick A2 to
be A(x)-invariant. Hence the A9-Clifford correspondent xo of x7 is also A(y)-invariant. Therefore,

the central character (o of T, is also A(y)-invariant, while A(x) = A(x, x2). We proceed similarly
at every linear reduction until we reach 7". O

Proposition 6.6. Let G be finite group of odd order such that G = NK, where N is a normal
subgroup of G and (|G/N|,|N|) = 1. Let H = NN K and let 0 be any irreducible K-invariant
character of H that induces an irreducible character 6~ of N. Then 6 has a unique canonical
extension, 0°, to K such that (|[K/H|,0(0°)) = 1 (where o(0°) is the determinantal order of 6°, see p.
88 in [7]). Also OV has a unique canonical extension, (V)¢, to G such that (|G/N|,o((6V)¢)) = 1.
Furthermore, 6° induces

(96)6‘ — (QN)e'

Proof. Let 7 be the set of primes that divide |[N|. Then |K/H| = |G/N]| is a #’-number, and thus
is coprime to |H|. Because 6 € Irr(H) is K-invariant, there exists a unique extension 6¢ to K such
that

(6.7) o(0) = o(6°),
by Corollary 6.28 in [7].

According to Corollary 4.3 in [8], induction defines a bijection Irr(K0) — Irr(G|6"). Therefore,
(6.8) x = (69 € Irr(G|oV).
But 6V is G-invariant since 6 is K-invariant and G = NK. This, and the fact that (|N|, |G/N|) = 1,
implies that #V extends to G. Let ¥ = (#V)¢ € Irr(G) be the unique extension of # such that
o(¥) = 0(6") is a m-number. Since x lies above #V, Gallagher’s theorem (see Corollary 6.17 in [7])
implies that

Xx=p-Y,
for some p € Irr(G/N). We compute the degree deg(x) in two ways. First
deg(x) = deg(u) - deg(W) = deg(u) - deg(0™) = deg(u) - [N : H| - deg(0).
As x = (%)Y we also have that
deg(x) = |G : K| -deg(6°) = |G : K|-deg(d) = |N : H| - deg(0).

We conclude that deg(p) = 1. Thus p € Lin(G/N). Therefore
(6.9) det(y) = p¥® det (D).

We can now compute o(x) in two ways. First, o(¥) = o(6") and ¥(1) = V(1) are m-numbers.

Since p € Irr(G/N), we get that o(p) is a 7’-number. Therefore, (6.9) implies that the 7’-number
o(p) divides o(x).

On the other hand, (6.8) and Lemma 2.2 in [9] imply that
o(x) = o((6°)Y) divides 2 - 0(6°).
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As G has odd order, we get that o(x) divides 0(6¢). In view of (6.7), we have o(6°) = o(), while
o(6) | |H|. We conclude that o(x) is a 7-number.

Hence the only way the 7’-number o(u) can divide o(x), is if o(u) = 1. So pu = 1, and
(9€)G =x= h- (QN)e’
as desired. O

Lemma 6.10. Let E < Q be subgroups of a finite group G, and C, 3 be irreducible characters of E
and @, respectively, with B lying above (. Let T be any subgroup of G that normalizes both E and
Q. IfQ<T <GP thenT =T(C)-Q. If in addition T is a Sylow subgroup of G(3) then T(() is
a Sylow subgroup of G(3,().

Proof. Since T fixes 3, it permutes among themselves the @-conjugacy class of characters in Irr(E)
lying under 8. So T' < T'({) - Q. The other inclusion is trivial.

Now assume that 7" is a g-Sylow subgroup of G(f3), for some prime ¢. Since G(5) = G(3,()Q
with G(5,() N Q = Q(¢), the index [G(B) : G(B,()] equals the index [@Q : Q(¢)]. Similarly,
@ : Q)] = [T :T(¢)]. Hence the index of T(¢) = G(5,¢) NT in G(3,() is a ¢'-number, which
implies that 7'(¢) is a Sylow g-subgroup of G(3, (). O

The following is a well known result that we will use repeatedly below.

Lemma 6.11. Let M = A x B be a finite solvable group where (|A],|B|) = 1. Let § € Irr(B)
be M -invariant. Then there is a unique canonical extension B¢ of B to M. Furthermore, for any
irreducible character x of M lying above [ there exists a unique irreducible character o of A such
that x = « - 3¢, where

x(z-y) = a(z) - f(zy),

forall x € A and y € B. We will write x = o X (3, to denote the above product.

Proof. The existence of a unique canonical extension 3¢ of 3 follows from Corollary 6.28 in [7]. The
rest of the lemma follows from Corollary 6.17 in [7]. O

Definition 6.12. If M = A x B where (|A],|B|) = 1, and a € Irr(A) while 1 is the trivial
character of B, we write a X 1p (or simply « x 1 if B is clear), for the unique irreducible character
of M defined as a x 1(z -y) = a(z) , for all x € A and y € B. Notice that if M < G then
G(a) < G(ax 1), while G(a) = G(a x 1) if G normalizes A.Furthermore, if M <G then Frattini’s
Argument implies that G(a x 1) = G(«) - B.

In view of the above definition we slightly generalize Proposition 6.5 to

Proposition 6.13. Let M = P x B be a normal subgroup of G, where P is a p-group and B is
a normal p'-subgroup of G. Let x € Irt(M) where x = a X 1 and « € Irr(P). Let T be the triple
T = (G,M,x). If A is any p'-subgroup of G then there exists an A(x)-invariant linear limit T’
of T, i.e., there exists a chain of linear subtriples T; = (G, M, xi), for i = 0,...,n starting with
T = Ty and ending with the linear limit T,, = T" of T so that for all t = 0,1,...,n, the central
character (; of T; is A(x)-invariant. Furthermore, T; = T;—1(N\;) for alli =1,...,n where \; is an
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A(x)-invariant linear character of L; lying under x;—1 and above (;—1, and L; is a normal subgroup
of Gi—1 with B < Z(Tj—1) < Ly < M;_4.

Proof. Let T be the triple T' = (G, M, ), where G = G/B, M = M/B = P and x € Irr(M) is the
unique irreducible character of M that inflates to y € Irr(M). We also write A for the quotient
group A = (A(x)B)/B. Clearly A fixes Y, and its order is coprime to that of M. Hence Proposition
6.5 implies that there exists a chain of A-invariant linear subtriples {Ti}?zo, so that Ty = T, T; is
a linear reduction of Tj_1, while T}, is a linear limit of T and the central character ¢; of each Tj is
A-invariant.

Let T; = (G, M;, X;), for i = 0,1,...,n. Then G; = G;/B , M; = M;/B, where G; and M; are
subgroups of G with M; < M. In addition, Y; inflates to a unique irreducible character y; of M;.
So T; = (G;, M;, x;) is a subtriple of T for all such i. Furthermore, it is easy to see (with the use
of Proposition 3.1) that if Z(T;) is the center of T; then Z(T;) = Z;/B where Z; is the center of
T;. In addition, the central character ¢("*) € Irr(Z(T}) of T; is inflated from the central character
G € Trr(Z;) of T;. Hence the fact that (; is A-invariant implies that ¢; is A(x)-invariant, for all
1=1,...,n.

Even more, T} is a linear reduction of T;_q, for all i = 1,...,n. Indeed, the fact that T} is a
linear reduction of T;_; implies that T; = Ti,l(jxi), where )\; is a linear character of the normal
subgroup L; of G;_1 that satisfies Z(T;_1) < L; < M;_1, while \; lies under x;_1. Hence L; = L;/B,
where L; is a normal subgroup of G;_1 with Z;_; < L; < M;_; and ); inflates to a unique linear
character \; of L; that lies under x;_1. Now it is easily to see that G; = G;_1(\;) = Gi_1(\)/B.
So G; = G;_1(A\) and similarly, M; = M;_1(\). Because y; € Irr(M;) induces y;_1 to M;_1, we
have that x; € Irr(M;) induces x;—1 to M;_1. Also x; lies above \; and thus x; is the A;-Clifford
correspondent of x;_1, for all i = 1,...,n. We conclude that T; = T;_1()\;), for alli =1,...,n. In
addition, \; is A(x)-invariant since ); is A invariant for all such i.

To see that T, is a linear limit of 7" observe that the procedure described above works both ways.
So any linear reduction of T}, determines a linear reduction of T;,. As the latter triple is irreducible,
we have that T, is a linear limit of T. O

We first prove:

Theorem 6.14. Assume that G is a finite group. Let L < M < N be normal subgroups of G,
so that N/M,M/L and L are nilpotent group while N has order p2q® for distinct odd primes p,q.
So L = L, x Q where Q 1is the q-Sylow and L, the p-Sylow group subgroup of L. Let M, be a
p-Sylow subgroup of M and let H = M, L. Assume that ¢ € Irr(L) and 6 € Irr(H) lies above ¢.
Let 04 € Irr(H(¢)) be the ¢-Clifford correspondent of 0. Write ¢ = ¢, x 3, for ¢, € Irr(L,) and
B € Irr(Q). Assume further that all irreducible characters of G lying above 3 are monomial, while
B extends to G(04). Then there exists a linear limit (G', H',0") of (G, H,0) so that

[N, H)] < K',

where K' is the kernel of the triple (G', H',¢'), while H), is a p-Sylow subgroup of H' and N is a
q-Sylow subgroup of N' = G' N N.
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Proof. First note that H = M, L is a normal subgroup of G, because H/L is the p-Sylow subgroup
of the nilpotent group M /L. We fix 6 € Irr(H) and ¢ = ¢, x § € Irr(L) satisfying the hypothesis
of the theorem. We also pick a p-Sylow subgroup A of G so that A(3) is a p-Sylow subgroup of

G(B)-

Because H/Q is a p-group, H is the semidirect product H = (AN H) X @, where AN H is a
p-Sylow subgroup of H. Let P = (AN H)(¢). Then H(¢) = P x ). Furthermore, 3 extends to
H(¢) < H(B), since (|H/Q|,|Q|) = 1. Hence, if 64 € Irr(H(¢)) is the ¢-Clifford correspondent of
6, then (see Lemma 6.11) there exists a unique irreducible character a € Irr(P) such that

9¢:Oé[><ﬁ,

Because H < G, Frattini’s argument implies that G(64) = G(a, 3)Q. Note also that « lies above
¢p € Irr(Ly) as 6, lies above ¢. Hence G(a) < G(¢p) < G.

At this point we pick a g-Sylow subgroup B of G so that B(«) is a ¢-Sylow subgroup of G(«)
while B(a, ) is a g-Sylow subgroup of G(a, 3).

Let S = (G, Q, 3). Because A(f3) has coprime order to that of @), Proposition 6.5 implies that we
can get an A(f)-invariant linear limit S1 = (G1,Q1,31) of S. Hence the central character (; of S;
is A(fB)-invariant. Furthermore, G; = G({;) while (31 is the unique character of @1 = Q((1) lying
above (1, by Proposition 3.14. We write L1 = LNG1, Hy = Gi1NH = H((1), My = MNGy = M (()
and N = G1 NN = N((1). Observe that L; = L, x @1, while N;/M; is a nilpotent group and
M /H, is a g-group. Let 01 € Irr(H;p) be the Si-reduction of . So 6 lies above ¢; the Si-reduction
of ¢. Note that ¢1 = ¢, x $1. So 0 lies above (31 and thus above (1, and induces 6. Clearly all the
irreducible characters of G that lie above (31 ( and equivalently above (j) are still monomial (see
Proposition 3.17).

Since G1 = G((1) we have A(B) < G;. Also G; = G(¢1) = G((1, 1) by Proposition 3.12. Thus
G1 < G(p), since B induces 5. Also H; < H(B). The group A(f) is a p-Sylow subgroup of G(3)
contained in G1. Hence A(f3) is a p-Sylow subgroup of G;. Furthermore, the p-Sylow subgroup P of
H([3) is contained in Hy, and thus P is also a p-Sylow subgroup of Hy. So H; = P x Q1. Because 3
extends to G(65) = QG(a, ), Lemma 6.1 implies that (5 extends to (QG(a, 3))(C1, 1). Hence By
extends to Q1G1(«) (note that G1(8) = G1(f81) = G1). Let Bf be the unique canonical extension
of 31 to Hy. Then there exists a unique irreducible character o of P so that 6 = ax £ = o/ - 5.
It is not hard to see that 0{{(@ =o' - (85)1P) (see Exercise 5.3 in [7]). Since £ induces § € Irr(Q),
Lemma 6.6 implies that (57)#(%) = g¢. So Q{J(ﬁ) =a - f° But 0{{(5) lies above 8 and induces

0 € Irr(H) (because #; does). Hence Gfl(ﬁ) = 63, and thus o = a. Therefore,
(6.15) 01 = ax [,
which implies that G1 (91) = Gl (a, ﬁl)Ql = G1 (Ck)Ql.

Let K1 = Ker((l) and él = Gl/Kl, Fl = Hl/Kl and @1 = QI/KI- Then @1 < Fl < Nl are
normal subgroups of G. Furthermore, the irreducible characters 1,6; of Q1 and H; are inflated
from unique irreducible characters 5; and 61 of @, and Hy, all respectively. If Z; is the center
of the triple S; = (G1,Q1,31) then we write Z; for the quotient group Z;/K;. We also write
¢, for the unique irreducible character of Z; that inflates to the central character ¢; € Irr(Z;)
of S;. According to Proposition 3.7, the cyclic group Z; is the center of @, affords the faithful
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G1-invariant linear character ¢;, and it is maximal among the abelian normal subgroups of G
contained in ;. So Q1 satisfies Condition X. Since every irreducible character of G lying above (3
is monomial, we get that every irreducible character of G lying above (;, and equivalently above
B3y, is also monomial. Because the g-special character ; is Gi-invariant, there exists a g-special
character x; of G1 lying above (;. So X; is monomial. Let P = (PKl)/Kl Then P = P while
P-Q, = H; <G;. Hence we can apply Theorem B to the groups @, P and G in the place of
P, S and G respectively. We conclude that P centralizes Q;, and thus Hj is a nilpotent group.

Furthermore, if & is the unique irreducible character of P that inflates to a x 1 € Irr(PK7), then

FlZanl andglzdxﬁl.

So both P and @, are normal subgroups of G1. Also, it is easy to see that Gi(a)/K; = G1(a),
because G normalizes P and thus G(a) < Gi(a x 1)/K; < G1(a)/K; (the other inclusion holds
trivially). Because (1 extends to Q1G1(«), we get that B, extends to (Q1G1(a))/K1. So 3; extends
to G1(a) (note that Q; centralizes P and thus it is a subgroup of Gi(&)).

Take E; to be the triple E1 = (G1, P,a). If By = BN Gy = B(¢1), then By = B1/K is a ¢-
subgroup of G1. Thus we can form a Bl( )-invariant linear limit Es of E1. So Es = (G2, P2, as),
where P; < P and @ induces @ to P. Hence Py = P,/K, with P» < P, while @y inflates to a
unique irreducible character as of P» that induces o to P. In addition, Gy = Ga /K1 where Go
is a subgroup of Gi. The central character (, of Ey is Bi(a)-invariant. Also G2 = G1((,) and
Py = P(ZQ). The center Zy of Fo clearly contains K7, even more the kernel Ko = Ker(@) of ZQ
contains Ki. According to Propositions 3.12 and 3.14 the character @y is Go-invariant and it is the
only character of P5 that lies above (5 € Irr(Z53). So

(6.16) Gy = Ga(@) = Ga(a) < G1(a),

where the last equality follows from the fact that @ is the only irreducible character of P, that
lies above (, and induces & to P.

We next observe that the Es-reductions leave () unchanged, i.e., QI(ZQ) Q,, because @
centralizes P. Hence Q; < Bi(a) < G2. Furthermore, the Eo- reductlon of Hi = P x @ equals
Hy = Py x Q. In addition, the F5 reduction of §; € Irr(H1) equals 6 = @3 x 3,. Note that since 3,
extends to G (@), equation 6.16 implies that 3, extends to Ga. Because every irreducible character
of G1 lying above (3 is monomial, Proposition 3.17 implies that every irreducible character of G5
lying above 65 is still monomial.

We look at the quotient group Ga/Ks. Its subgroup Hs /K> is a nilpotent normal subgroup, and
splits as Hy/Ky = Py/Ka x (Q1K2)/K2, where (Q,K2)/K>, is naturally isomorphic to Q. We
identify these two isomorphic groups and we consider 3; as an irreducible character of (Q;Ks2)/Ks.
As we have seen 31 extends to Go, hence 3; (considered as a character of (Q,K3)/K2 extends to
Go/Ks. Let 61 € Irr(G2/K3) be such an extension. Then ﬁl is a g-special character of Go/Ks.
The irreducible character @, of Ps is inflated from a unique irreducible character oo of the p-
group Py /Fg Because @z is Go- invariant, o’y is a Go /?2 invariant p-special character of Py /?2.
Therefore there exists a p-special irreducible character @y of Gy / Ko lymg above a/9. Then the
product x = & - ﬂl is an irreducible character of G5/K» that lies above o/ x 31 € Irr(Ho/K3).
In addition x4 = ﬂl( ). Observe also that x is monomial, because every irreducible character of
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G+ lying above 03 is monomial, while o’y x 31 inflates to 8 € Irr(Hs). Furthermore, Proposition
3.7 implies that Z5 /K> is the center of Py/K, it is maximal among the abelian normal subgroups
of G3/K contained in Py/Ko and it affords a faithful Go/Ka-invariant irreducible character that
inflates to (5 € Irr(Z3). We conclude that all the hypothesis of Theorem B are satisfied for the
groups Go/Ko, Po/Ks and (Q,K2)/K2 in the place of G, P and S, respectively. Hence any p'-
subgroup Q of G2/K> centralizes Py/K5 provided that Q- Py/Ks is a normal subgroup of G2 /Kos.

Let Ny be the Eg-reduction of N1 (that is No = N1((y) ), and My the E3 reduction of M.
Then No/Mj is still a nilpotent group, while My/Hs is a g-group. Let U be a ¢g-Sylow subgroup of
Ns, then UMy = UH3 is a normal subgroup of G, because (U Mz) /MQ is the ¢g-Sylow subgroup of
No/Ms. So (UH3)/Ko <Gs. Furthermore (UH3)/Ko = (UK3)/Ky x Py/Ks. Hence the g-group
(UK3)/K; centralizes Po/Ka, i.e, [U, Ps] < Ko. So

U, P} < K1K».

It is easy to see that the triple (Ga, P» X Q1, a2 X 1) is a multilinear reduction of (G, P x Q,0y).
This completes the proof of the theorem. O

For later use we observe that what we actually proved in Theorem 6.14 is

Remark 6.17. Assume the hypothesis and the notation of Theorem 6.14. Then any A(/3)-invariant
limit S} = (G1,B1,01) of S = (G, B,3) makes (G N H)/K; nilpotent, where A is a p-Sylow
subgroup of G and A(f) is a p-Sylow subgroup of G(3) and K is the kernel of S;. Furthermore,
Hi = Px Q1, where P is a p-Sylow subgroup of H(¢). Let E; be the factor triple E; = (G, P, &),
where G = G1/K; and P = (PK;)/K; = P. If B is a p/-Hall subgroup of G so that B(a) is a
p’-Hall subgroup of G(a) and B(«, ) is a p/-Hall subgroup of G(a, 3), let By = (BNG1)/K1. Then
any Bj(@)-invariant linear limit By = (G2, P2, @2) of Ej satisfies [(N1 N Ga)g, Pa] < Ko, where Ko
is the kernel of Eo while Ny = (N NG4)/K; and Hy = H /K.

Corollary 6.18. Assume the hypothesis of Theorem 6.14. Let B be a q-Sylow subgroup of G so
that B(a) is a q-Sylow subgroup of G(«) while B(a, 3) is a q-Sylow subgroup of G(«, 3). Assume
further that A is a p-Sylow subgroup of G with A(B) being a p-Sylow subgroup of G(f3), while P =
(ANH)(B). Let ¢1 be the central character of the A((3)-invariant linear reduction S1 = (G1,Q1, 1)
of S = (G,Q,B). Then G(B) = G(B,¢1)-Q. Ifin addition C = Cg(P) then G(«, ) = G(o, 8,¢1)-C.
Thus B(a, 3,¢1) - K1 = Bi(a) K is a p'-Hall subgroup of G1(«a) - K.

Proof. Since S is an A(f)-invariant linear limit of S, there exists a chain of linear subtriples
D;i = (Gi,Qi, 3;) of S, for i = 0,1,...,n, such that S = Dy > Dy > --- > D,, = Sy, with D; being a
linear reduction of D;_1, for all i = 1,...,n. Hence D; = D;_1(\;) where J; is a linear character of
a normal subgroup L; of G;_1, that lies under @'71- In addition, G = éi,l()\i) and Qz = Qi,l()\i)
while Bz € Irr(Qi) is the \;-Clifford correspondent of Bi_l € Irr(@i_l). Thus

Z(Di 1) < Li < Z(Dy) < Qi < Qi_1,

while ¢ (Df) is an extension of both A; and ¢(Pi-1) and lies under ;. According to Proposition 3.14,
we have G; = G(¢(PY)) and Q; = Q(¢(P¥). The fact that the linear limit S; = D,, is A(3)-invariant,
implies that ¢(P?) is A(pB)-invariant for all i =0,1,...,n.
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According to Lemma 6.10, applied to the groups L; 1 <Q; <G, we have G(Bl) = G(Bi, Ait1)- Qi
for all i = 0,1,...,n — 1. Since G(¢P)) = G; < G(N;), while (P extends );, we also have
G(Bi, Mit1) = G(B;,¢Pi+1)). In addition, the latter group normalizes Qz’+1 = Q(¢Pi+1)) and fixes
its irreducible character ﬂz+1~ Hence G(Bi,g‘ (Di+1)) < G(ﬁHl ¢Pitr ) The other inclusion also
holds, because (i1 induces 3; and Q; = Q(¢P). So for all i =0,1,...,n — 1 we get

G(B3) = G(Biz1, P+ - Q;
Therefore,

G(B) = G(B)(CPY)-Q = G(B)(¢PD (P .Q1-Q = - = G(Bo) (P, ... ,¢PV).Qpy - Q.

But ¢ (Dn) extends all the previous central characters, while Ql is a subgroup of @, for all 1 =
1,...,n—1. Thus G(8) = G(Bn,(P™))-Q. As B, induces 3 we get G(Bn, (P))-Q < G(B,¢P))-
Q < G(B). So G(B) = G(B,¢1) - Q, since ¢; = ¢(Pr). This completes the proof of the first part of
the corollary.

Because P < A(ﬂ) the characters ((P%) are P-invariant. As P also fixes 3 we conclude that P fixes
B;, for alli =1,...,n. Let Br € Irr(CQ (P)) be the P-Glauberman correspondent of B; € Irr(QZ),
foralli=1,...,n. Slmﬂarly we define ¢ € Irr(Cy(p, )( )) to be the P-Glauberman correspondent
of ¢(P9) for all such i. Then ¢;pq lies under ff, as ¢(Pi+1) lies under 3;. The group G(a, B, ¢P)
fixes ¢(Po) ¢(P1)  ¢(Pi-1) gince ¢(P) is an extension of all these characters. Because Bz is the
only character of Q; lying above ¢(Pi) (by Proposition 3.14), we conclude that G(a, 8, ¢(P)) fixes

the Glauberman correspondents f;, for all ¢ = 0,1,...,n. In addition, the group G(«, 3, Q(Di))
normalizes both Cz(p,)(P) and C (P). Therefore Lemma 6.10 implies

(619) G(aa ﬂ? C(DZ)) = G(a> ﬁa C(Di)’ C;—&-l) ! CQ(C(Di))(P)v

foralli=0,1,...,n— 1. (For ¢ = 0 the above equation becomes G(«a, 3) = G(«, 3,(7) - C.) The
group Liy1 was picked to be a normal subgroup of G; = G(¢(P?). Hence G(a, 3,¢P?)) normalizes
Liy1, as well as P. Thus G(a«, f, C(Di),g‘ﬂ) = G(a, f, §(Di),C(Di+1)). But ¢(P*1) ig an extension
of ¢(P?) and therefore G(a, 3,¢P9), ¢(Pit)y = G(a, B, ¢Pi+1)) for all i = 1,...,n — 1. So (6.19)
implies

G(a7ﬁ7C(Di ) (Oé ﬂ C Z+1 ) Q(Q(Dz‘))(P)v
forall i =1,...,n — 1, while for i = 0 we have G(«, ) = G(«, 3, C(Dl)) - C Therefore,

G(ogﬁ) = G(a,ﬂ, C(Dn)) : OQ(C(DI))(P) : CQ(C(Dz))(P) """ CQ(<<Dn—1>)(P) O = G(a, ﬁy C‘(Dn)) -C

Since ¢(Pn) = ¢, the second part of the corollary follows.

The group B of Theorem 6.14 was picked so that B(a, 3) is a p’-Hall subgroup of G(a, 3). Since
the latter group equals G(«, 3,(1) - C we conclude (by looking at the indexes) that B(a, [, (1)
is a p/-Hall subgroup of G(«, 3,(1). Of course B(a,3,¢(1) = Bi(a) and G(«, 3,(1) = Gi(«), as
G1 = G(¢1) and it is a subgroup of G(3). Because Bj(«) is a p/-Hall subgroup of G;(a) and K; is
a p’-subgroup of B; we get that B;(«) - K; is a p’-Hall subgroup of G1(«) - K7. This completes the
proof of the corollary. O
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We can remove the additional hypothesis on part b) of Theorem 6.14 that wants 3 extendible to
QG(a, B), without loosing any of its conclusions, provided firstly that the group G has order p®q®,
for some odd primes p and ¢, and secondly that we have plenty of monomial characters in Irr(G).
Thus we can prove the following result.

Theorem 6.20. Assume that G is a monomial group of order p*q®, where p,q are two odd primes.
Let L < M < N be normal subgroups of G, so that N/M,M/L and L are nilpotent groups.
So L = L, x Q where Q is the q-Sylow subgroup of L and L, its p-Sylow subgroup. Let M,
be a p-Sylow subgroup of M and let H = M,L. Assume that ¢ € Irr(L) and 0 € Irr(H) lies
above ¢ and let 0y € Irr(H(¢)) be the ¢-Clifford correspondent of 6. Write ¢ = ¢, x 3, for
¢p € Irr(Ly) and B € Trr(Q). Let A be a p-Sylow subgroup of G so that A(f) is a p-Sylow
subgroup of G(8). If S1 = (G1,Q1, p1) is an A(S)-invariant linear limit of S = (G,Q,[3), then
(GiNH)/Ky = H; = P x Q,, where K1 is the kernel of S1, Q, = Q1/K; and P = (PK1)/K;
where P = (AN H)(¢) is a p-Sylow subgroup of H(¢). Furthermore, there exists a multilinear

reduction E*1 = (G*1, P*,&*) of E1 = (G1, P,a) so that [(G*1 N N1)g, (G*1 N Hy),) < Ker(E*p).

Proof. The group H = M, L is a normal subgroup of G. We fix § € Irr(H) and ¢ = ¢, x 8 € Irr(L)
satisfying the hypothesis of the theorem. We also pick a p-Sylow subgroup A of G so that A(f) is
a p-Sylow subgroup of G(f3).

Because H/Q is a p-group, H is the semidirect product H = (AN H) X @, where AN H is a
p-Sylow subgroup of H. Let P = (AN H)(¢). Then H(¢) = P x Q. Furthermore, 5 extends to
H(¢) < H(B), since (|H/Q|,|Q|) = 1. Hence, if 64 € Irr(H(¢)) is the ¢-Clifford correspondent of
6, then (see Lemma 6.11) there exists a unique irreducible character o € Irr(P) such that

9¢:Od[><ﬁ,

Because H < G, Frattini’s argument implies that G(64) = G(a, 3)Q. Note also that o lies above
¢p € Irr(Ly) as 0y lies above ¢. Hence G(a) < G(¢p) < G.

We pick a ¢-Sylow subgroup B of G so that B(«) is a ¢-Sylow subgroup of G(«) while B(a, )
is a g-Sylow subgroup of G(«, f3).

According to Theorem 6.14 and Remark 6.17 there exists an A(f)-invariant linear limit S; =
(G1,Q1,01) of S = (G, Q, ) so that the quotient group H;/Kj is nilpotent, where H; = Gy N H
and K is the kernel of S7. Furthermore, H; = P x ()1 while the Sj-reduction #; of 6 equals
61 = ax B1. Let By = BN Gy, and N = NN Gy. We also write Gy, N1,Q;, B1 and P for
the quotient groups G1/K1, N1/K1,Q1/K1,B1/K; and (PK,)/Kj, respectively. If ¢ is the natural
epimorphism of G onto G1, then ¢ sends P isomorphically onto P and « € Irr(P) to some character
a € Irr(P). Let F = Ng(P) and Fy = Ng,(P) = F N Gy, then Frattini’s argument implies that
G1 = F1 K. Furthermore, C(Ql)(P) = F1 N Q1 covers Q;. Hence ¢ sends Fy onto G with kernel
OKl(P) = Ki{NF.

Let R be the triple R = (F, P,«), where F' = Ng(P). We take a B(«)-invariant linear limit
R* = (F",P*,a”) of R. Then Proposition 3.14 implies that F'* = F(a*) = Ng+)(P) < G(a).
Because B(«a) is a g-Sylow subgroup of G(«) that fixes o, it is also a g-Sylow subgroup of F™*. We
write ¢* for the central character of R*. We also write Z* = Z(R*) and K* = Ker(R").
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Let E1 = (G1,P,a). Then any linear reduction R = (F’, P’,a/) of R determines a linear
reduction E’; of E; in the following way. Assume that L <I P is a normal subgroup F contained
in P, while A € Lin(L) lies under « so that P’ = P()\) and « is the A-Clifford correspondent of
a. Then LK; 4 PK, is a normal subgroup of G; < FK;, while the character A x 1, lies under
a X lg,. Clearly o x 1k, is the A x 1, -Clifford correspondent of @ x 1g,. Hence L = (LK7)/K;
is a normal subgroup of G contained in P, while the unique irreducible character A € Irr(L) that
inflates to A x 1x, lies under & € Irr(P). So the triple E'y = (G'1, P', /) is a linear reduction of
E1, where G'1 = G1(\) = G1(\)/K; < (F'K;)/K;. Assume in addition that R’ is B(«a)-invariant,
that is A is a B(«a)-invariant character. Then the character A x 1g, is Bj(a x 1, )-invariant, since
Bi(a x 1) = Bi(a)K; < B(a)K;. Thus the character \ is also Bj(a)-invariant. Hence R*
determines the multilinear reduction E*; = (G*1, P*,a*) of E1, which is Bi(a)-invariant. Also
G*1 = G} /K1 where G} < (F*K;) N G1. Furthermore, P* is isomorphic to P*, while o* € Irr(P*)
is mapped under that isomorphism to a* € Irr(P*). According to Corollary 6.18 Bj(a) - K is
a g-Sylow subgroup of Gi(a) - K;. Hence B1(a) is a ¢-Sylow subgroup of G(&). Because E*
is Bj(a)-invariant the latter group is also a subgroup of G*;. But G*; < Gi(a), since G} <
(F*K1) NGy < Gi(a)K;. We conclude that

(6.21) Bi(a) € Syl (G*1).
Note also that
(6.22) Z(ﬁl) > (Z* - K;)/K; and Ker(ﬁl) > (K" Ky)/K;.

We apply Theorem D to the g-groups @ < B, the p-group AN H, and the character § € Irr(Q).
(Clearly B normalizes (AN H) - Q = H). This way we get an irreducible character 8 of @ that
extends to B(3") and satisfies P = (AN H)(B) = (AN H)(B"), and B(B) < B(FY). In addition,
we get that Np(P) < B(8"”). Hence B(a) < B(”). Note also that B(o, 8")Q = B(a x 1g,8Y).
Because B(a) is a ¢-Sylow subgroup of G(a), we conclude that B(«, ") = B(a) is a ¢-Sylow
subgroup of G(a, 4"). So

(6.23) B(a, 8) < B(a) = B(a, 8”) € Syl (G(a, 5)).

Note that 3” extends not only to B(5") but to QG(«, £¥). Indeed, " extends to any R, where R/Q
is an r-Sylow subgroup of (QG(«, 37))/Q, for any r # ¢ by Corollary 8.16 in [7]. It also extends to
QB(a, p¥) where (QB(a, 8"))/Q is a g-Sylow subgroup of (QG(«, 3”))/Q. Hence Corollary 11.31
in [7] implies that 8 extends to QG(a, ).

What is important about this new character is that H(8) = H(#”) = P x @, (that is, the
p-group P remains the same for the two characters # and (3”). Furthermore, the product o x 3
is an irreducible character of H(3") lying above 3. Hence Clifford’s Theorem implies that « x ¥
induces an irreducible character 6" of H. Also, G(0}3.,) = QG(a, 3”). So the groups Q@ < H < G
and the characters ¥ € Irr(Q) and 6” € Irr(H) satisfy all the hypothesis of Theorem 6.14. Then
there exists a linear limit SY = (GY,QY,57) of S¥ = (G,Q, ") such that HY = P x QY while
HY/KY is a nilpotent group, where K7 is the kernel of SY. Let BY = BN GY. Then

(6.24) BY = Bi(61) = Bi(8"),

by Proposition 3.12. We also write G*1, NV1, Q¥,, B1 and P for the quotient groups G¥/KY, N¥ /KY,
QY/KY,BY/KY and (PKY)/KY, respectively.
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Let EV1 = (G¥1, P, &) Because PKY<IGY, Frattini’s argument also implies that G¥ = Ney(P)KY <
FKY. So, as with the triple £ and its reduction E*;, the linear limit R* = (F™*, P*, a*) deter-
mines a multilinear reduction E¥*y = (G¥"1, P*, a*) of E¥1, which is B¥;(a@)-invariant. Note that
P* = (P*K1)/K; = P*. Also if GV = G’l’/Kl” for some subgroup Gll’* of GY, then Gvy < F*KY
and in addition

(6.25) BY1(a) € Syl,(G""1).
Furthermore, similarly to (6.22) we get

(6.26) Z(EV")) > (Z* - KY)/KY and Ker(EV"1) > (K" - K¥)/KY.

Now let EVy = (G¥3, PY5,a%5) be a BY1(a)-invariant linear limit of EV*,. Then EV, is also a
BV (@)-invariant linear limit of E¥;. Hence Remark 6.17 implies that [(N¥; N G¥3),, PY2] < K¥9
is nilpotent, where K5 is the kernel of E¥5. (Note that we have used the fact that the group B is
a ¢-Sylow subgroup of G so that B(«) is a ¢-Sylow subgroup of G(«) while B(«, 5¥) is a ¢-Sylow
subgroup of G(a, 8%).) By (6.25) the group B¥1(a) is a ¢-Sylow subgroup of G¥*1. Because EV5 is
a B"j(a)-invariant linear limit of E¥"1, we get that B”;(a) is contained in G¥5 < G¥*4, and thus
it is a ¢-Sylow subgroup of G¥5. Hence

(627) [?1 (d) N Nl,ﬁﬂ < WQ,

where K"5 is the kernel of EV5. In addition, (6.26) along with Remark 3.2 implies

(6.28a) Z* = (Z*KY)/K{ < Z(E""1) < Z(EV3) < PVy < P* = P*
and
(6.28b) (K*KY)/KY < Ker(E"") < KV5.

We identify Z* with its isomorphic image Z* = (Z*KY)/KY inside Z(Ev";). Under this isomor-
phism the central character ¢* € Lin(Z*) of R* is mapped to a linear character of Z* that lies
under the cental character ¢V € Lin(Z(E""1)) of E¥";.

Let V := P*/Z* = P*/Z(R*). Then V is an anisotropic F*/P*-group, by Proposition 3.11.
(The F*/P*-invariant bilinear form ¢ : V x V' — C* is defined (see (3.9) ) as ¢(z,y) = *([z,y]),
for all Z,y € V). Thus V written additively, is the direct sum

V:VI_F‘/Q?

of the perpendicular F*/P*-groups Vi = Cy(N*) and Vo = [V, N*|, where N* = N N F*. Because
B(a) is a ¢-Sylow subgroup of F™*, the group Q@* = B(a) N N* = B(a) N N is a g-Sylow subgroup
of N*. So

N*=Q" x P*.
Therefore the direct summands Vi, Vo of V' are
(6.29) Vi =Cy(QF) and V5 = [V, Q7].

Both V; and V5 are anisotropic F*/P*-groups.
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Now let U = P¥5/Z(E¥3). Then U is isomorphic to a section of V, by (6.28). Furthermore, U
is isomorphic to the orthogonal direct sum U = Uy + Us, where in view of (6.29) we get

Ul - CU(Q*) and U2 = [Uv Q*]7

According to Corollary 6.18 (applied to the v-groups), we have GY(«, 3V)Cq(P) = G(a, 5”). This,
along with (6.24) and (6.23) implies

(6.30) By (@) - Co(P) = By (a, 8") - Co(P) = B(e, f”) = B(a).
Hence the image of B(a) N N in the automorphism group of P equals that of BY(a) N N. So

Uz = [U, BY(a) N N]. In view of (6.27) and (6.28b), this latter group is trivial. Hence Uy = 0 and
Uy =Cp(Q) = CU(Bly(Oz,,BV) NN).

Because V = P*/Z* is an abelian anisotropic F*/P*-group, the group P*/Z(EV") is also an
abelian group. It also affords a bilinear G¥*1/P*-invariant form (see (3.9))) defined as é(@,7) =
¢V ([u, ), for all @,v € P*/Z(E¥"1). Identifying P* with P* and Z* with Z* we see that [P*, P*] <
Z* < Z(Ev"1). Hence é(u,v) = ¢*([u,v]), for all 4,9 € P*/Z(E¥"1). In addition, since G}~ < F*KY
the factor group G¥*1/P* is isomorphic to a subgroup of F*/P*. Hence P*/Z(EV"}) is an abelian
symplectic G¥*1/P*. Thus we can apply Proposition 3.13 to the linear limit E”5 of E¥"y. So U
is isomorphic to Lt /L, where L is maximal among the Gy /P*-invariant isotropic subgroups of
P*/Z(Ev*1). Furthermore, L = Z(EV5)/Z(EY"1) and L+ = PVy/Z(EY"y). If L = L1 + Ly, with
L1 = Cr(Q*) and Ly = [L,Q*] then the facts that L+/L = U while Uy = 0 implies that Ly = L.
Hence Lo is a self perpendicular G¥*1 /P*-invariant subgroup of P*/Z(EV1).

Since P*/Z(EV" 1) = %, we get that Lo is isomorphic to a self perpendicular subgroup
1

Wy of V. Hence Wy < Vo = [V,Q*], as Ly = [L,Q*]. Because Ly is Wl/.ﬁ*—invariant? it
is BV (@)-invariant, by (6.25)). According to (6.30) the image of BY(a) in Aut(P) equals that of
B(a). Therefore Wj is a self perpendicular B(«)-invariant subgroup of V. Hence V4 is a hyperbolic
B(a)-group. But B(a) is a g-Sylow subgroup of F*. Hence Theorem 3.2 in [2] implies that V3 is a
hyperbolic F*-group. Because it is also an anisotropic F*/P*-group, we conclude that V5 is 0. Hence
Q* centralizes V = P*/Z*. In addition, Z*/K* is a cyclic central p-section of F*. So the g-subgroup
Q* of F* centralizes both p-groups V- = P*/Z* and Z* /K*. We conclude that Q* centralizes P*/K™*.
Since Q* = B(a) N N we get [P*,B(a) N N] < K*. Thus [(P*K;)/K1,(B(a)K; N N)/K;] <
(K*K;)/K;. This and (6.22) implies that

[P*,El(@) ﬂNl] < Ker(ﬁl).

But Bi(a) € Syl,(G*1), by (6.21). We conclude that a g-Sylow subgroup of N*; centralizes P*
module Ker(E*1). Hence the theorem follows. O

Note that we pick the linear limit £*; in the statement of Theorem 6.20 in the following way

Corollary 6.31. Assume the hypothesis and notation of Theorem 6.20. Let B be a q-Sylow subgroup
of G so that B(«) and B(a, ) are q-Sylow subgroups of G(a) and G(«, 3), respectively. Let
F = Ng(P). Then any B(a)-invariant linear limit (F*, P*,a*) of (F, P,«a) determines naturally a
multilinear reduction E*1 = (G*1, P*,a*) of E1 = (G1, P, @) so that [(G*1 N N1)4, P*] < Ker(E*y),
while P* is a p-Sylow subgroup of H*;.
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We can now prove Theorem E that we restate here.

Theorem E. Assume that G is a finite odd monomial p, g-group, while N is a normal subgroup
of G of nilpotent length 3. So there exists L < M mnormal subgroups of G contained in N so that
L,M/L as well as N/M are nilpotent groups. Let x be any irreducible character of M. Then there
exists a linear limit T' = (G', M',X') of the triple T = (G, M, x) with N'/Ker(T") being nilpotent,
where N' = N NG, and Ker(T") is the kernel of the triple T'. Therefore N is a monomial group.

Proof. Let ¢ € Irr(L) lying under x € Irr(M). Because L = L, x L, is nilpotent, ¢ splits as
¢ = n x B, where n € Irr(Lp) and 8 € Irr(L,). The groups H = M, x L, and J = M, x L, are
normal subgroups of G. Furthermore, H(¢) = P x L, where P = My,(¢) is a p-Sylow subgroup of
H(¢), and J(¢) = O x L, where O = M,(¢) is a ¢g-Sylow subgroup of J(¢). Clearly P > L, and
0> L,

Let 6 € Irr(H) be any irreducible character of H lying above ¢ and under y. Then the ¢-Clifford
correspondent 6 of 6 equals

9¢ =aKX ﬁ >

where o € Irr(P) is uniquely determined by 6 and lies above 7 € Irr(L,). Furthermore, o restricted

to L, is a multiple of n. Similarly we pick an irreducible character ¢ € Irr(J) lying above ¢ and
under y. Its ¢-Clifford correspondent satisfies

Yy =y X1,

where 7 € Irr(O) is uniquely determined by 1 and lies above 3 € Irr(L,). In addition, ~ restricted
to L, is a multiple of 7). It is easy to see that

(6.32a) G(a,B) < G(a) < G(n)
and
(6.32D) G(n,7) < G(y) < G(B).

Now we pick a p-Sylow subgroup A and a ¢-Sylow subgroup B of GG so that A intersected with
every group in (6.32b) is a p-Sylow subgroup of that group, and B intersected with any group in
(6.32a) is a ¢g-Sylow subgroup of that group.

Note that AN H is a p-Sylow subgroup of H and thus H(n, 5) = H(¢) = (ANH)(¢) x L,. Hence
there exists o € L, so that (AN H)(¢) = P?. Because o fixes 1, 3,7 we may assume (replacing
A with A% ') that P = (AN H)(¢). Similarly, we may assume that B is picked as to satisfy
(BN J)(¢) = 0.

Let (G, Ly, ) be an A(B)-invariant linear limit of (G, Ly, ) and let K’ be the kernel of
(G', Ly, #'). If H' = H NG then Theorem 6.20 implies that H'/K' = [PK']/K' x L} /K', where
P = (AN H)(¢) is a p-Sylow subgroup of H' and thus of M’. Similarly we take (G”, Ly,n")

to be a B(n)-invariant linear limit of (G, Ly, n), with kernel K”. Theorem 6.20 also implies that
J"/K" = [OK"]/K" x L /K", where O = (BN J)(¢) is a ¢-Sylow subgroup of J” and thus of M".

If Gy =G'NG", Ly = Ly x Ly and ¢1 = 0" x B’ then (G1, L1, ¢1) is a linear limit of (G, L, ¢), by
Remark 3.8. In addition, (see Lemma 4.2) the factor group M; /K is a nilpotent group where K is
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the kernel of (G, L1, ¢1), and M7 = M NG1. Note that K1 = K” x K'. Let x1 € Irr(M;) be the G-
limit of x € Irr(M). Observe that My /K, = (P1K1)/K1 x(01K1)/K1, where P, = PNG; = PNG”
and O = ONG; =0NEGE. So P is the G"-reduction of P while Oy is the G’-reduction of O.
Let oy € Irr(Py) and 1 € Irr(O1) be the Gi-reductions of a € Irr(P) and 7 € Irr(O), respectively.
So ay is actually the (G”, Ly, n")-reduction of a while 1 is the (G', L, 3')-reduction of v. Note
also that (PlKl)/Kl = (PlK/)/Kl = Pl/K” while (OlKl)/Kl == (OlK”)/Kl = Ol/K,. Let a1 €
Irr((P1 K1)/ K1) be the unique irreducible character of (P;K7)/K; that inflates o x 1 € Trr(P K”).
Similarly we define 4, € Irr((O1 K1)/ K7).

Now let R = (F,P,a) and S = (1,0, 7), where F' = Ng(P) and I = Ng(O). Observe that the
B(n)-invariant linear limit (G”, L,,n") of (G, Ly,n) determines naturally a B(n)-invariant multi-
linear reduction R” = (FNG", P ﬁ G",a") of R, where o is the (G”, Ly, n")-reduction of . But
PNG" = P, and thus R = (F”,Pl,al), where F”/ = F N G". Note also that in view of (6.32a)
the group B(«) is a subgroup of B(n). Hence the linear reduction R” of R is B(«)-invariant.

Similarly, the A(f)-invariant linear limit (G’, Ly, 3') of (G, Ly, 3) determines naturally an A(3)-
invariant multilinear reduction S’ = (I’,01,71) of S, where I’ = G'NI. In addition, (6.32b) implies
that A(y) < A(B). Hence the linear reduction S’ of S is A(~)-invariant.

Let R* = (F*, P*,a*) be a B(«a)-linear limit of R” = (F", P, ;) and thus of R. Similarly we
pick S* = (I*, 0*,~v*) to be an A(~)-invariant linear limit of S" = (I, 01,71) and thus of S.

Now we can apply Corollary 6.31. Let G’ = G'/K’ then (PK’)/K' = P is isomorphic to P and
under this isomorphism a € Irr(P) gets mapped to a € Irr(P). If £ = (G, P,a), then Corollary
6.31 implies that R* determines naturally a multilinear reduction E* = (G*, P*,a*) of E so that

(6.33) [(G* N N%),, P*] < Ker(E"),

where P* is a p-Sylow subgroup of H* = G* N (H'/K'). Observe that because R* is a linear
limit of R”, the reductions done in E are actually reductions done inside (P K')/K’' < P. Fur-
thermore, P; = (PyK')/K'. This, along with the fact that Gy = G’ N G"” and K; = K' x K",
implies that the multilinear reduction E* of E determines a multilinear reduction U; of U
(Gl/Kl,(PlKl)/Kl,@l). Note that Gl/Kl is reduced to (G1 N G'*Kl)/Kl while (PlKl)/Kl
P1/K" is reduced to (P*K1)/K;.

.

Similarly we write G = G”/K” then (OK")/K" = O
isomorphism ~ € Irr(O) get mapped to 4 € Irr(0). If D = (
that S* determines naturally a multilinear reduction D* = (G*

D*

(6.34) [(G* N N*),, 0%] < Ker(

isomorphic to O and under this
'70,%), then Corollary 6.31 implies
,O*,4*) so that

);

where Q* is a ¢-Sylow subgroup of J* = G* N (J”/K"). Furthermore, similarly to U; and U
we get that the multilinear reduction D* of D determines a multilinear reduction V; of V =
(G1/K1,(01K1)/K1,791). The group G1 /K] is being reduced to (GlﬂG*Kl)/Kl while (O1K1)/K; =
01/K' is reduced to (O*K;)/ K.

The fact that M;/K; = (P1K1)/K1 x (O1K1)/K7 is a nilpotent group, along with Remark 3.8
provides a linear reduction T} of T = (G1/K1, M1/K1, a1 X 41) using the multilinear reductions U;
and V1. The kernel of T} contains the group (Ker(E*)K1)/K; x (Ker(D*)K1)/K1. So (6.33) and
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(6.34) imply that the Ti-reduction of the group Ni/K7 is a nilpotent group module the kernel of
1.

Because T} lifts to a reduction of the triple (G, My, x1) and thus of (G, M, ), the theorem
follows.

]
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