Hyperbolic modules and cyclic subgroups

Maria Loukaki

Dept. of Applied Mathematics, University of Crete, Knossos Av. GR-71409, Heraklion-Crete, Greece

E-mail: loukaki@tem.uoc.gr

Abstract

Let G be a finite group of odd order, \mathcal{F} a finite field of odd characteristic p and \mathcal{B} a finitedimensional symplectic $\mathcal{F}G$ -module. We show that \mathcal{B} is $\mathcal{F}G$ -hyperbolic, i.e., it contains a self-perpendicular $\mathcal{F}G$ -submodule, iff it is $\mathcal{F}N$ -hyperbolic for every cyclic subgroup N of G.

1 Introduction

Let \mathcal{F} be a finite field of odd characteristic p, G a finite group and \mathcal{B} a finite-dimensional $\mathcal{F}G$ -module. If \mathcal{B} carries a non-singular alternating bilinear form $\langle \cdot, \cdot \rangle$ (i.e., a symplectic form) that is invariant by G, then we call \mathcal{B} a symplectic $\mathcal{F}G$ -module. Following the notation in [3], for any $\mathcal{F}G$ -submodule \mathcal{S} of \mathcal{B} , we write \mathcal{S}^{\perp} for the *perpendicular* subspace of \mathcal{S} , i.e., $\mathcal{S}^{\perp} := \{t \in \mathcal{B} | \langle \mathcal{S}, t \rangle = 0\}$. We say that \mathcal{S} is *isotropic* if $\mathcal{S} \leq \mathcal{S}^{\perp}$, and \mathcal{B} is *anisotropic* if it contains no non-trivial isotropic $\mathcal{F}G$ -submodule \mathcal{S} , i.e., \mathcal{S} is an $\mathcal{F}G$ -submodule satisfying $\mathcal{S} = \mathcal{S}^{\perp}$.

Symplectic modules play an essential role in studying monomial characters. (An irreducible character χ of a finite group G is monomial if it is induced from a linear character of a subgroup of G.) One of the most representative links between symplectic modules and monomial characters can be found in [3]. (For other examples one could look at [2, 7, 8, 9, 10, 11, 12], and [13].) There E. C. Dade proved the following theorem (Theorem 3.2 in [3]):

Theorem 1.1 (Dade). Suppose that \mathcal{F} is a finite field of odd characteristic p, that G is a finite p-solvable group, that H is a subgroup of p-power index in G, and that \mathcal{B} is a symplectic $\mathcal{F}G$ -module whose restriction \mathcal{B}_H to a symplectic $\mathcal{F}H$ -module is hyperbolic. Then \mathcal{B} is hyperbolic.

Using the above theorem, E. C. Dade was able to prove (Theorem 0 in [3]) that, given a p-solvable odd group G, an irreducible monomial character χ of G, and a subnormal subgroup N of G, every irreducible constituent of the restricted character χ_N is monomial, provided that $\chi(1)$ is a power of p.

In this paper we prove

Theorem A. Suppose that \mathcal{F} is a finite field of odd characteristic p, that G is a finite group of odd order, and that \mathcal{B} is a symplectic $\mathcal{F}G$ -module whose restriction \mathcal{B}_N to a symplectic $\mathcal{F}N$ -module is hyperbolic for every cyclic subgroup N of G. Then \mathcal{B} is hyperbolic.

All groups considered here are of finite order, and all modules have finite dimension over \mathcal{F} . Acknowledgments I am indebted to Professor E. C. Dade for many helpful ideas and suggestions. Also, I would like to thank Professor M. Isaacs for useful conversations that helped me improve this paper.

2 Symplectic modules

We first give some elementary results about symplectic modules.

Assume that \mathcal{B} is a symplectic $\mathcal{F}G$ -module, while \mathcal{S} is an isotropic $\mathcal{F}G$ -submodule of \mathcal{B} . Then the factor $\mathcal{F}G$ -module $\overline{\mathcal{S}} = \mathcal{S}^{\perp}/\mathcal{S}$ is again a symplectic $\mathcal{F}G$ -module with the symplectic form defined as (see 1.4 in [3]),

$$\langle s_1 + \mathcal{S}, s_2 + \mathcal{S} \rangle = \langle s_1, s_2 \rangle$$
, for all $s_1, s_2 \in \mathcal{S}^{\perp}$. (1)

Furthermore, if S is an isotropic $\mathcal{F}G$ -submodule of \mathcal{B} , then its \mathcal{F} -dimension $\dim_{\mathcal{F}} S$ is at most $(1/2) \dim_{\mathcal{F}} \mathcal{B}$, (see 19.3 in [1]).

We say that an isotropic $\mathcal{F}G$ -submodule \mathcal{S} of \mathcal{B} is maximal isotropic if \mathcal{S} is not properly contained in any larger isotropic $\mathcal{F}G$ -submodule of \mathcal{B} . Clearly any self-perpendicular $\mathcal{F}G$ submodule \mathcal{S} of \mathcal{B} is maximal isotropic. The converse is also correct under the extra assumption that \mathcal{B} is G-hyperbolic (see Lemma 3.1 in [3]). Another way to get a self-perpendicular module from a maximal isotropic one is to control its dimension, as the following lemma shows.

Lemma 2.1. Assume that \mathcal{B} is a symplectic $\mathcal{F}G$ -module, and that \mathcal{S} is a maximal isotropic $\mathcal{F}G$ -submodule of \mathcal{B} . If $\dim_{\mathcal{F}} \mathcal{S} = (1/2) \dim_{\mathcal{F}} \mathcal{B}$ then \mathcal{S} is self-perpendicular and \mathcal{B} is G-hyperbolic.

Proof. Let \hat{S} denote the dual of S. Then $\mathcal{B}/S^{\perp} \cong \hat{S}$. But $\dim_{\mathcal{F}} \hat{S} = \dim_{\mathcal{F}} S = (1/2) \dim_{\mathcal{F}} \mathcal{B}$. Hence $\dim_{\mathcal{F}} S^{\perp} = (1/2) \dim_{\mathcal{F}} \mathcal{B}$. Since $S \leq S^{\perp}$ we conclude that $S = S^{\perp}$. Thus the lemma holds.

The following is Proposition 2.1 in [3].

Proposition 2.2. Let G be a finite group and \mathcal{B} be an anisotropic symplectic $\mathcal{F}G$ -module. Then \mathcal{B} is an orthogonal direct sum:

$$\mathcal{B} = \mathcal{U}_1 \,\dot{\perp} \, \mathcal{U}_2 \,\dot{\perp} \, \dots \,\dot{\perp} \, \mathcal{U}_k, \tag{2}$$

where $k \geq 0$ and each \mathcal{U}_i is a simple $\mathcal{F}G$ -submodule of \mathcal{B} that is also symplectic.

Remark 1. If G has odd order then according to Proposition (1.10) and Corollary 2.10 in [3] all the \mathcal{U}_i that appear in (2) are distinct.

Lemma 2.3. Let \mathcal{U} be an $\mathcal{F}G$ -module that affords a symplectic G-invariant form $\langle \cdot, \cdot \rangle$. Then \mathcal{U} is self-dual.

Proof. We write $\hat{\mathcal{U}}$ for the dual $\mathcal{F}G$ -module of \mathcal{U} . For every $x \in \mathcal{U}$ the map $\alpha_x : \mathcal{U} \to \mathcal{F}$ defined as:

$$\alpha_x(u) = \langle u, x \rangle$$
 for all $u \in \mathcal{U}$

is an element of $\operatorname{Hom}_{\mathcal{F}}(\mathcal{U}, \mathcal{F}) \cong \widehat{\mathcal{U}}$. Since $\langle \cdot, \cdot \rangle$ is *G*-invariant the map $\alpha : x \to \alpha_x$ is an $\mathcal{F}G$ -homomorphism from \mathcal{U} to $\widehat{\mathcal{U}}$. Furthermore the kernel of α is trivial, as \mathcal{U} is symplectic. Hence $\mathcal{U} \cong \widehat{\mathcal{U}}$.

Corollary 2.4. Let \mathcal{B} be an anisotropic symplectic $\mathcal{F}G$ -module. Then each of the simple $\mathcal{F}G$ -modules \mathcal{U}_i that appears in (2) is self-dual.

Proof. It follows easily from Proposition 2.2 and Lemma 2.3.

Proposition 2.5. Assume that \mathcal{U} is a simple symplectic $\mathcal{F}G$ -module. Let N be a normal subgroup of G such that |G:N| is odd. Then any simple $\mathcal{F}N$ -submodule of \mathcal{U}_N is self-dual. Hence any $\mathcal{F}N$ -submodule of \mathcal{U}_N is self-dual. *Proof.* As N is a normal subgroup of G, Clifford's theorem implies that

$$\mathcal{U}_N \cong e(\mathcal{V}_1 \oplus \ldots \oplus \mathcal{V}_n) \tag{3}$$

where $\mathcal{V} = \mathcal{V}_1$ is a simple $\mathcal{F}N$ -submodule of \mathcal{U} and $\mathcal{V}_1, \ldots, \mathcal{V}_n$ are the distinct *G*-conjugates of \mathcal{V} . So n||G:N| and therefore *n* is odd.

According to Lemma 2.3 the module \mathcal{U} is self-dual. Hence the dual, $\widehat{\mathcal{V}}_i$ of any \mathcal{V}_i should appear in (3). Therefore we can form pairs among the \mathcal{V}_i , consisting of a simple $\mathcal{F}N$ -module \mathcal{V}_k and its dual for $k \in \{1, \ldots, n\}$, where we take as the second part of the pair the module itself if it is self-dual. Since G acts transitively on the \mathcal{V}_i for $i = 1, \ldots, n$, either all the \mathcal{V}_i are self-dual or none of them is. In the latter case we get that any of the above pairs consists of two distinct modules. This implies that 2|n. As n is odd, this case can never occur. Hence any one of the \mathcal{V}_i is self-dual and the proposition is proved.

Proposition 2.6. Assume that the symplectic $\mathcal{F}G$ -module \mathcal{B} is hyperbolic. Assume further that \mathcal{B} is a semi-simple $\mathcal{F}G$ -module. Then every self-dual simple $\mathcal{F}G$ -submodule of \mathcal{B} appears with even multiplicity in any decomposition of \mathcal{B} as a direct sum of simple $\mathcal{F}G$ -submodules.

Proof. Because \mathcal{B} is hyperbolic it contains a self-perpendicular $\mathcal{F}G$ -submodule \mathcal{S} . For every $\mathcal{F}G$ -submodule \mathcal{V} of \mathcal{B} we have $\mathcal{B}/\mathcal{V}^{\perp} \cong \widehat{\mathcal{V}}$. So

$$\mathcal{B}/\mathcal{S} \cong \widehat{\mathcal{S}} \tag{4}$$

Now the proposition follows from (4) and the fact that \mathcal{B} is semi-simple.

Corollary 2.7. Let \mathcal{B} be an anisotropic symplectic $\mathcal{F}G$ -module. Let N be a normal subgroup of G such that |G:N| is odd. Assume further that \mathcal{B}_N is a hyperbolic $\mathcal{F}N$ -module. Then any simple $\mathcal{F}N$ -submodule of \mathcal{B}_N appears with even multiplicity in any decomposition of \mathcal{B}_N as a direct sum of simple $\mathcal{F}N$ -submodules.

Proof. This is a straightforward application of Propositions 2.2, 2.5 and 2.6. \Box

We close this section with a well known fact that we prove here for completeness.

Lemma 2.8. Assume that \mathcal{U} is a self-dual absolutely irreducible $\mathcal{F}G$ -module, where G has odd order and \mathcal{F} is a finite field whose characteristic does not divide |G|. Then \mathcal{U} is trivial.

Proof. Let χ denote the \mathcal{F} -absolutely irreducible character that \mathcal{U} affords, while ϕ denotes a Brauer character that \mathcal{U} affords. Then ϕ is defined for every element of G, since the characteristic of \mathcal{F} is coprime to |G|. Because \mathcal{U} is self-dual, the character ϕ is real valued. Let $\nu_2(\phi) = |G|^{-1} \sum_{g \in G} \phi(g^2)$ be the Frobenius–Schur indicator (see Chapter 4 in [6]) of ϕ . Then Theorem 4.5 in [6] implies that $\nu_2(\phi) \neq 0$, since ϕ is real valued. But

$$\nu_2(\phi) = |G|^{-1} \sum_{g \in G} \phi(g^2) = |G|^{-1} \sum_{g \in G} \phi(g),$$

because G has odd order. Hence $\nu_2(\phi)$ is the inner product $\nu_2(\phi) = [\phi, 1_G]$, where 1_G is the trivial character of G. We conclude that $[\phi, 1_G] \neq 0$. Hence $\phi = 1_G$. Therefore $\chi = 1_G$, and the lemma follows.

3 Proof of Theorem A

We can now prove our main result. The proof will follow from a series of lemmas, based on the hypothesis that $\mathcal{F}, \mathcal{B}, G$ form a minimal counter–example. All the groups considered in this section have odd order. We also fix the odd prime p that is the characteristic of \mathcal{F} , and we assume that

Inductive Hypothesis. $\mathcal{F}, \mathcal{B}, G$ have been chosen among all triplets satisfying the hypothesis but not the conclusion of Theorem A so as to minimize first the order |G| of G and then the \mathcal{F} -dimension dim $_{\mathcal{F}} \mathcal{B}$ of \mathcal{B} .

Remark 2. For any proper subgroup H of G the minimality of |G| easily implies that the restriction \mathcal{B}_H is a hyperbolic $\mathcal{F}H$ -module.

Lemma 3.1. \mathcal{B} is non-zero and anisotropic.

Proof. If \mathcal{B} were zero it would be hyperbolic contradicting the Inductive Hypothesis. So \mathcal{B} is non-zero. If \mathcal{B} is not anisotropic then it contains a non-zero isotropic $\mathcal{F}G$ -module \mathcal{U} . Let N be an arbitrary cyclic subgroup of G. Then the isotropic $\mathcal{F}N$ -submodule \mathcal{U}_N of \mathcal{B}_N is contained in some maximal isotropic $\mathcal{F}N$ -submodule \mathcal{V} of \mathcal{B}_N . Since \mathcal{B}_N is hyperbolic this maximal isotropic submodule is self-perpendicular, i.e., $\mathcal{V} = \mathcal{V}^{\perp}$. Hence

$$\mathcal{U} \subseteq \mathcal{V} = \mathcal{V}^{\perp} \subseteq \mathcal{U}^{\perp}.$$

Therefore the factor module $\overline{\mathcal{V}} = \mathcal{V}/\mathcal{U}$ is a self-perpendicular $\mathcal{F}N$ -submodule of the symplectic $\mathcal{F}G$ -module $\overline{\mathcal{U}} = \mathcal{U}^{\perp}/\mathcal{U}$. Hence $\mathcal{F}, G, \overline{\mathcal{U}}$ satisfy the hypothesis of the Main Theorem. As $\dim(\overline{\mathcal{U}}) < \dim(\mathcal{B})$, the minimality of $\dim(\mathcal{B})$ implies that $\overline{\mathcal{U}}$ is a hyperbolic $\mathcal{F}G$ -module. So there is a self-perpendicular $\mathcal{F}G$ -submodule $\overline{\mathcal{J}}$ in $\overline{\mathcal{U}}$. From the definition of the symplectic form on $\overline{\mathcal{U}}$ (see (1)) it follows that the inverse image \mathcal{J} of $\overline{\mathcal{J}}$ in \mathcal{U}^{\perp} is a self-perpendicular $\mathcal{F}G$ -submodule of \mathcal{B} containing \mathcal{U} . Therefore \mathcal{B} is hyperbolic, contradicting the Inductive Hypothesis. So the lemma holds.

Lemma 3.2. p doesn't divide the order |G| of G.

Proof. Suppose that p divides |G|. Because G is solvable, it contains a Hall p'-subgroup H. If G is a p-group we take H = 1. Since p divides |G|, the subgroup H is strictly smaller than G. Then according to Remark 2, the $\mathcal{F}H$ -module \mathcal{B}_H is hyperbolic. It follows (see Theorem 3.2 of [3]) that \mathcal{B} is a hyperbolic $\mathcal{F}G$ -module, contradicting the Inductive Hypothesis. Hence (p, |G|) = 1.

Lemma 3.3. \mathcal{B} is an orthogonal direct sum

$$\mathcal{B} = \mathcal{U}_1 \dot{\perp} \dots \dot{\perp} \mathcal{U}_k \tag{5}$$

where $k \geq 1$ and $\{\mathcal{U}_i\}_{i=1,...,k}$ are distinct, simple $\mathcal{F}G$ -submodules of \mathcal{B} , that are also symplectic. Furthermore each \mathcal{U}_i is quasi-primitive (i.e., its restriction to every normal subgroup of G is homogeneous).

Proof. The first statement follows from Lemma 3.1, Proposition 2.2 and Remark 1. For the rest of the proof we fix $\mathcal{U} = \mathcal{U}_i$ for some i = 1, ..., k. We also fix a normal subgroup K of G. If the restriction of \mathcal{U} to K is not homogeneous then Clifford's Theorem implies that

$$\mathcal{U}_K \cong e(\mathcal{V}^{\sigma_1} \oplus \ldots \oplus \mathcal{V}^{\sigma_r})$$

where e is some positive integer, $\mathcal{V} = \mathcal{V}^{\sigma_1}$ is a simple $\mathcal{F}K$ -submodule of \mathcal{U} and $\mathcal{V}^{\sigma_1}, \ldots, \mathcal{V}^{\sigma_r}$ are the distinct conjugates of \mathcal{V} in G, with $\sigma_1, \ldots, \sigma_r$ coset representatives of the stabilizer, $G_{\mathcal{V}}$, of \mathcal{V} in G.

Let $\mathcal{W} = \mathcal{U}(\mathcal{V})$ be the \mathcal{V} -primary component of \mathcal{U}_K . Then Clifford's Theorem implies that \mathcal{W} is the unique simple $\mathcal{F}G_{\mathcal{V}}$ -submodule of \mathcal{U} that lies above \mathcal{V} and induces \mathcal{U} , i.e., that satisfies $\mathcal{W}^G \cong \mathcal{U}$ and $\mathcal{W}_K \cong e\mathcal{V}$. Furthermore the dual $\widehat{\mathcal{W}}$ of \mathcal{W} induces in G the dual $\widehat{\mathcal{U}}$ of \mathcal{U} since $\widehat{\mathcal{W}^G} \cong \widehat{\mathcal{W}^G}$. Hence $\widehat{\mathcal{W}^G} \cong \mathcal{U}$, because \mathcal{U} is self-dual (see Lemma 2.3). On the other hand, the restriction of $\widehat{\mathcal{W}}$ to K is isomorphic to $e\mathcal{V}$ since \mathcal{V} is self-dual by Proposition 2.5. Hence the unicity of \mathcal{W} implies that \mathcal{W} is self-dual.

According to Proposition 2.6 the self-dual $\mathcal{F}G_{\mathcal{V}}$ -module \mathcal{W} appears with even multiplicity as a direct summand of $\mathcal{B}_{G_{\mathcal{V}}}$, because $\mathcal{B}_{G_{\mathcal{V}}}$ is hyperbolic $(G_{\mathcal{V}} < G)$. This, along with the fact that \mathcal{W} appears with multiplicity one in $\mathcal{U}_{G_{\mathcal{V}}}$, implies that there is some $j \in \{1, \ldots, k\}$ with $j \neq i$ such that the \mathcal{V} -primary component $\mathcal{U}_{j}(\mathcal{V})$ of \mathcal{U}_{j} is isomorphic to \mathcal{W} . So

$$\mathcal{W} = \mathcal{U}(\mathcal{V}) \cong \mathcal{U}_j(\mathcal{V}).$$

We conclude that

$$\mathcal{U}_i = \mathcal{U} \cong \mathcal{W}^G \cong \mathcal{U}_j(\mathcal{V})^G \cong \mathcal{U}_j,$$

as $\mathcal{F}G$ -modules. This contradicts the fact that $\{\mathcal{U}_i\}_{i=1}^k$ are all distinct, by the first statement of the lemma. Hence the lemma is proved.

From now on and until the end of the paper, we write \mathcal{E} for a finite algebraic field extension of \mathcal{F} , that is a splitting field of G and all its subgroups.

Lemma 3.4. Assume that \mathcal{U}_i , for i = 1, ..., k, is a direct summand of \mathcal{B} appearing in (5). Let $N \leq G$. Then $\mathcal{U}_i|_N \cong e_i \mathcal{V}_i$, where \mathcal{V}_i is an irreducible $\mathcal{F}N$ -submodule of \mathcal{U}_i and e_i is an integer. If \mathcal{V}_i is non-trivial then e_i is odd.

Proof. We fix $\mathcal{U} = \mathcal{U}_i$, for some $i = 1, \ldots, k$. We also fix a normal subgroup N of G. According to Lemma 3.3, the $\mathcal{F}G$ -module \mathcal{U} is quasi-primitive. Hence there exists an irreducible $\mathcal{F}N$ -submodule \mathcal{V} of \mathcal{U} , and an integer e such that $\mathcal{U}_N \cong e\mathcal{V}$. Thus, it remains to show that e is odd in the case that \mathcal{V} is non-trivial. So we assume that \mathcal{V} , and thus \mathcal{U} , is non-trivial.

We observe that if \mathcal{U} and \mathcal{V} were absolutely irreducible modules then it would be immediate that e is odd (even if \mathcal{V} was trivial), because for absolutely irreducible modules the integer edivides the order of G (see Corollary 11.29 in [6]). So we assume that \mathcal{F} is not a splitting field of G, and we work with the algebraic field extension \mathcal{E} of \mathcal{F} . We define $\mathcal{U}^{\mathcal{E}}$ to be the extended $\mathcal{E}G$ -module

$$\mathcal{U}^{\mathcal{E}} = \mathcal{U} \otimes_{\mathcal{F}} \mathcal{E}.$$

According to Theorem 9.21 in [6], there exist absolutely irreducible $\mathcal{E}G$ -modules \mathcal{U}^i , for $i = 1, \ldots, n$, such that

$$\mathcal{U}^{\mathcal{E}} \cong \bigoplus_{i=1}^{n} \mathcal{U}^{i}.$$

Furthermore the \mathcal{U}^i , for all $i = 1, \ldots, n$, constitute a Galois conjugacy class over \mathcal{F} , and thus they are all distinct. In particular, if $\mathcal{E}_{\mathcal{U}}$ is the subfield of \mathcal{E} that is generated by all the values of the irreducible \mathcal{E} -character afforded by \mathcal{U}^i (the same field for all $i = 1, \ldots, n$), then $n = [\mathcal{E}_{\mathcal{U}} : \mathcal{F}] = \dim_{\mathcal{F}}(\mathcal{E}_{\mathcal{U}})$. (Note that $\mathcal{E}_{\mathcal{U}}$ is the unique subfield of \mathcal{E} isomorphic to the center of the endomorphism algebra $\operatorname{End}_{\mathcal{F}G}(\mathcal{U})$.) Clearly $n \cdot \dim_{\mathcal{E}} \mathcal{U}^1 = \dim_{\mathcal{F}} \mathcal{U}$. Hence n is even, because $\dim_{\mathcal{F}} \mathcal{U}$ is even (as \mathcal{U} is symplectic) and $\dim_{\mathcal{E}} \mathcal{U}^1$ is odd (as G is odd and \mathcal{U}^1 is an absolutely irreducible $\mathcal{E}G$ -module). In addition, each $\mathcal{E}G$ -module \mathcal{U}^i , for $i = 1, \ldots, n$, when consider as an $\mathcal{F}G$ -module, is isomorphic to a direct sum of $[\mathcal{E}:\mathcal{E}_{\mathcal{U}}]$ copies of \mathcal{U} (see Theorem 1.16 in Chapter 1 of [5]). Hence if we denote by $\mathcal{U}^i_{\mathcal{F}}$ the $\mathcal{E}G$ -module \mathcal{U}^i regarded as an $\mathcal{F}G$ -module, we get

$$\mathcal{U}_{\mathcal{F}}^{i} \cong [\mathcal{E} : \mathcal{E}_{\mathcal{U}}]\mathcal{U}^{i},\tag{6}$$

for all $i = 1, \ldots, n$.

We also write $\mathcal{V}^{\mathcal{E}}$ for the extended $\mathcal{E}N$ -module $\mathcal{V}^{\mathcal{E}} = \mathcal{V} \otimes_{\mathcal{F}} \mathcal{E}$. Then according to Theorem 9.21 in [6] there exist absolutely irreducible $\mathcal{E}N$ -modules \mathcal{V}^j for $j = 1, \ldots, d$, such that

$$\mathcal{V}^{\mathcal{E}} \cong \bigoplus_{j=1}^{d} \mathcal{V}^{j}.$$
(7)

In addition, the absolutely irreducible modules \mathcal{V}^{j} , for all $j = 1, \ldots, d$, form a Galois conjugacy class, and thus they are all distinct. Furthermore, $d = [\mathcal{E}_{\mathcal{V}} : \mathcal{F}] = \dim_{\mathcal{F}} \mathcal{E}_{\mathcal{V}}$, where $\mathcal{E}_{\mathcal{V}}$ is the subfield of \mathcal{E} generated by all the values of the irreducible \mathcal{E} -character afforded by \mathcal{V}^{j} (the same field for all $j = 1, \ldots, d$). The field $\mathcal{E}_{\mathcal{V}}$ is the unique subfield of \mathcal{E} isomorphic to the center of the endomorphism algebra $\operatorname{End}_{\mathcal{F}N}(\mathcal{V})$. Note that, according to Proposition 2.5, the $\mathcal{F}N$ -submodule \mathcal{V} of \mathcal{U} is self-dual. Hence $\mathcal{V}^{\mathcal{E}}$ is also a self-dual $\mathcal{E}N$ -module. Because \mathcal{V} is non-trivial, \mathcal{V}^{j} is also non-trivial, for all $j = 1, \ldots, d$. Therefore the absolutely irreducible $\mathcal{E}N$ -module \mathcal{V}^{j} can't be self-dual, because N has odd order and \mathcal{V}^{j} is non-trivial (see Lemma 2.8), for all such j. The fact that none of the \mathcal{V}^{j} is self-dual, for all $j = 1, \ldots, d$, while they all appear in (7) in dual pairs, implies that d is even. Even more, if $\mathcal{V}^{j}_{\mathcal{F}}$ denotes the module \mathcal{V}^{j} regarded as an $\mathcal{F}N$ -module, then Theorem 1.16 of Chapter 1 in [5] implies that

$$\mathcal{V}_{\mathcal{F}}^{j} \cong [\mathcal{E} : \mathcal{E}_{\mathcal{V}}] \mathcal{V}^{j}, \tag{8}$$

for all $j = 1, \ldots, d$.

Without loss we may assume that $\mathcal{V}^1, \ldots, \mathcal{V}^c$ are exactly those among the \mathcal{V}^j , for $j = 1, \ldots, d$, that lie under \mathcal{U}^1 , for some $c = 1, \ldots, d$. Thus Clifford's theorem implies that

$$\mathcal{U}_N^1 \cong e'(\mathcal{V}^1 \oplus \dots \oplus \mathcal{V}^c),\tag{9}$$

where $\mathcal{V}^1, \ldots, \mathcal{V}^c$ are the distinct *G*-conjugates of \mathcal{V}^1 , and e', c are integers that divide |G| and thus are odd. (Note that here we are dealing with absolutely irreducible modules so e' does divide |G|.) If we regard the modules of (9) as modules over the field \mathcal{F} then we clearly have $\mathcal{U}^1_{\mathcal{F}}|_N \cong e'(\mathcal{V}^1_{\mathcal{F}} \oplus \cdots \oplus \mathcal{V}^c_{\mathcal{F}})$. This, along with (6) and (8), implies

$$[\mathcal{E}:\mathcal{E}_{\mathcal{U}}]\mathcal{U}_N \cong e'c[\mathcal{E}:\mathcal{E}_{\mathcal{V}}]\mathcal{V}.$$

Since $\mathcal{U}_N \cong e\mathcal{V}$, we have

$$[\mathcal{E}:\mathcal{E}_{\mathcal{U}}]e = e'c[\mathcal{E}:\mathcal{E}_{\mathcal{V}}].$$
(10)

If \mathcal{D} is the subfield of \mathcal{E} generated by $\mathcal{E}_{\mathcal{V}}$ and $\mathcal{E}_{\mathcal{U}}$, then dividing both sides of (10) by $[\mathcal{E} : \mathcal{D}]$ we obtain

$$e[\mathcal{D}:\mathcal{E}_{\mathcal{U}}] = e'c[\mathcal{D}:\mathcal{E}_{\mathcal{V}}]. \tag{11}$$

Assume that e is even. Then (11) implies that $[\mathcal{D}: \mathcal{E}_{\mathcal{V}}]$ is even, as e' and c are known to be odd. Let Γ be the Galois group $\Gamma = \operatorname{Gal}(\mathcal{D}/\mathcal{F})$ of \mathcal{D} over \mathcal{F} . Because Γ is cyclic, it contains a unique involution ι . Let $\mathcal{E}_{\mathcal{V}}^*$ and $\mathcal{E}_{\mathcal{U}}^*$ be the subgroups of Γ consisting of those elements of Γ that

fix pointwise $\mathcal{E}_{\mathcal{V}}$ and $\mathcal{E}_{\mathcal{U}}$, respectively. Then Galois theory implies that $\mathcal{E}_{\mathcal{V}}^* = [\mathcal{E}_{\mathcal{V}}^*: 1] = [\mathcal{D}: \mathcal{E}_{\mathcal{V}}]$ is even. We conclude that the unique involution ι of Γ is an element of $\mathcal{E}_{\mathcal{V}}^*$. Therefore, ι fixes the field $\mathcal{E}_{\mathcal{V}}$ pointwise. So ι fixes, to within isomorphisms, each of the $\mathcal{E}N$ -modules \mathcal{V}^j . Because ι acts non-trivially on \mathcal{D} and fixes $\mathcal{E}_{\mathcal{V}}$, it must act non-trivially on $\mathcal{E}_{\mathcal{U}}$. We conclude that ι viewed as an \mathcal{F} -automorphism of $\mathcal{E}_{\mathcal{U}}$ must coincide with the unique involution in the Galois group $\operatorname{Gal}(\mathcal{E}_{\mathcal{U}}/\mathcal{F})$ of $\mathcal{E}_{\mathcal{U}}$ above \mathcal{F} . Furthermore, this unique involution must send \mathcal{U}^i to its dual $\widehat{\mathcal{U}^i}$, for every $i = 1, \ldots, n$. (Of course \mathcal{U}^i is not self-dual, because it is a non-trivial absolutely irreducible module of the odd order group G (see Lemma 2.8).) Hence, applying ι to both sides of (9) we get

$$\widehat{\mathcal{U}}^1{}_N \cong e'(\widehat{\mathcal{V}}^1 \oplus \cdots \oplus \widehat{\mathcal{V}}^c) \cong e'(\mathcal{V}^1 \oplus \cdots \oplus \mathcal{V}^c).$$

Hence the dual $\widehat{\mathcal{V}^1}$ of \mathcal{V}^1 should be among the *G*-conjugates $\mathcal{V}^1, \ldots, \mathcal{V}^c$ of \mathcal{V}^1 . Because \mathcal{V}^1 is not self-dual the *G*-conjugates of \mathcal{V}^1 should appear in dual pairs. Hence *c* is even. But *c* is also odd as a divisor of |G|. This contradiction implies that *e* is odd. So the lemma holds.

Lemma 3.5. The group G is not abelian.

Proof. Assume that G is abelian. Then any cyclic subgroup $N = \langle \sigma \rangle$ of G is normal, for every $\sigma \in G$. Because \mathcal{B}_N is hyperbolic, Lemmas 3.1 and 3.3 along with Corollary 2.7 imply that

$$\mathcal{B}_N \cong 2 \cdot \Delta_{(N)}$$

where $\Delta_{(N)}$ is a semi-simple $\mathcal{F}N$ -submodule of \mathcal{B} . Using the splitting field \mathcal{E} of G, we write $\mathcal{B}^{\mathcal{E}}$ for the extended $\mathcal{E}G$ -module $\mathcal{B}^{\mathcal{E}} = \mathcal{B} \otimes_{\mathcal{F}} \mathcal{E}$. Then

$$\mathcal{B}_{N}^{\mathcal{E}} \cong 2 \cdot \Delta_{(N)}^{\mathcal{E}},\tag{12}$$

where $\Delta_{(N)}^{\mathcal{E}}$ is the extended $\mathcal{E}N$ -module $\Delta_{(N)} \otimes_{\mathcal{F}} \mathcal{E}$. Let ϕ be a Brauer character that the $\mathcal{E}G$ -module $\mathcal{B}^{\mathcal{E}}$ affords. Because (p, |G|) = 1, ϕ is defined for every element of G. So ϕ coincides with a complex character of G. In view of (12), for every cyclic subgroup $N = \langle \sigma \rangle$ of G, the restriction ϕ_N of ϕ to N equals $2 \cdot \delta_{(N)}$, where $\delta_{(N)}$ is a complex character of N. Hence, for every element $\sigma \in G$, the integer 2 divides $\phi(\sigma)$ in the ring $\mathbb{Z}[\omega]$, where ω is a |G|-primitive root of unity. We conclude that 2 also divides $\sum_{\sigma \in G} \phi(\sigma) \cdot \lambda(\sigma^{-1})$, for any irreducible (linear) complex character λ of G. That is, 2 divides $|G| \cdot \langle \phi, \lambda \rangle$, for any $\lambda \in \operatorname{Irr}(G)$. The fact that G has odd order, implies that 2 divides $\langle \phi, \lambda \rangle$ in $\mathbb{Z}[\omega]$, for any $\lambda \in \operatorname{Irr}(G)$. Because $\phi = \sum_{\lambda \in \operatorname{Irr}(G)} \langle \phi, \lambda \rangle \cdot \lambda$, we get

$$\phi = 2 \cdot \chi,\tag{13}$$

where χ is a complex character of G.

On the other hand, Lemma 3.3 implies that $\mathcal{B} = \mathcal{U}_1 \oplus \cdots \oplus \mathcal{U}_k$, where the \mathcal{U}_i are distinct simple $\mathcal{F}G$ -modules, for all $i = 1, \ldots, k$. Hence the extended $\mathcal{E}G$ -module $\mathcal{B}^{\mathcal{E}}$ will also equal the direct sum of the distinct $\mathcal{E}G$ -modules $\mathcal{U}_1^{\mathcal{E}}, \ldots, \mathcal{U}_k^{\mathcal{E}}$. By Theorem 9.21 in [6], for each $i = 1, \ldots, k$, there exist absolutely irreducible $\mathcal{E}G$ -modules $\mathcal{U}_i^{\mathcal{I}}$, for $j = 1, \ldots, n_i$ such that

$$\mathcal{U}_i^{\mathcal{E}} \cong \bigoplus_{j=1}^{n_i} \mathcal{U}_i^{j}.$$

Furthermore, the \mathcal{U}_i^j , for $j = 1, \ldots, n_i$, constitute a Galois conjugacy class over \mathcal{F} , and thus they are all distinct. In addition, the above absolutely irreducible $\mathcal{E}G$ -modules \mathcal{U}_i^j , for all $i = 1, \ldots, k$

and all $j = 1, ..., n_i$, are distinct. Indeed, for all i = 1, ..., k, the corresponding simple $\mathcal{F}G$ -modules \mathcal{U}_i are distinct. We conclude that

$$\mathcal{B}^{\mathcal{E}} \cong \bigoplus_{i=1}^{k} \bigoplus_{j=1}^{n_i} \mathcal{U}_i^{j},$$

where \mathcal{U}_i^j are all distinct absolutely irreducible $\mathcal{E}G$ -modules. So the character ϕ that $\mathcal{B}^{\mathcal{E}}$ affords equals

$$\phi = \sum_{i=1}^k \sum_{j=1}^{n_i} \chi_i^j,$$

where, for all i = 1, ..., k and all $j = 1, ..., n_i$, the character χ_i^j is a Brauer character that \mathcal{U}_i^j affords. So all these characters are distinct. This contradicts (13). Hence the group G is not abelian, and the lemma is proved.

Lemma 3.6. G acts faithfully on \mathcal{B} .

Proof. Suppose not. Let K denote the kernel of the action of G on \mathcal{B} and $\overline{G} = G/K$. Thus $|\overline{G}| \leq |G|$ (as $K \neq 1$).

If \bar{G} is not itself cyclic, then any cyclic subgroup \bar{N} of \bar{G} is the image $\bar{N} = N/G$ of some proper subgroup N of G. Since \mathcal{B} is $\mathcal{F}N$ -hyperbolic, it is clearly $\mathcal{F}\bar{N}$ -hyperbolic. Hence the triplet $\mathcal{F}, \mathcal{B}, \bar{G}$ satisfies the hypothesis of the Main Theorem. The minimality of |G| implies that \mathcal{B} is a hyperbolic $\mathcal{F}\bar{G}$ -module, and therefore a hyperbolic $\mathcal{F}G$ -module, because any $\mathcal{F}\bar{G}$ -submodule of \mathcal{B} is also an $\mathcal{F}G$ -submodule of \mathcal{B} . This contradicts the Inductive Hypothesis.

If \overline{G} is cyclic, then $\overline{G} = \langle \overline{\sigma} \rangle$, where $\overline{\sigma}$ is the image in \overline{G} of some $\sigma \in G$. Let $M = \langle \sigma \rangle$. Then M is a proper subgroup of G, because G is not cyclic. In addition, the image of M in \overline{G} is \overline{G} . So G = MK with $M \leq G$. Then Remark 2 implies that \mathcal{B} is $\mathcal{F}M$ -hyperbolic and thus $\mathcal{F}G$ -hyperbolic. This last contradiction implies the lemma.

Lemma 3.7. Suppose M is a minimal normal subgroup of G. Then M is cyclic and central.

Proof. According to Lemmas 3.3 and 3.4 for each $i = 1, \ldots, k$ there is a simple $\mathcal{F}M$ -submodule \mathcal{V}_i of \mathcal{U}_i and an odd integer e_i , such that $\mathcal{U}_i|_M \cong e_i \mathcal{V}_i$. As G acts faithfully on \mathcal{B} , there is some $i \in \{1, \ldots, k\}$ such that $\mathcal{V}_i \neq 1$ is non-trivial. Let $K_M(\mathcal{V}_i)$ be the kernel of the action of M on \mathcal{V}_i . The fact that \mathcal{V}_i is G-invariant implies that $K_M(\mathcal{V}_i)$ is a normal subgroup of G contained in M. Hence $K_M(\mathcal{V}_i) = 1$. Therefore M admits a faithful simple representation. In addition, M is a q-elementary abelian group, for some prime q that divides |G|, because G is solvable. We conclude that $M \cong \mathbb{Z}_q$ is a cyclic group of order q.

It remains to show that M is central. If \mathcal{F} is a splitting field of M (that is, it contains a primitive q-root of 1), then the fact that there exists a faithful, simple and thus one-dimensional, G-invariant $\mathcal{F}M$ -module \mathcal{V}_i implies that M is central in G. If F is not a splitting field of M, we work with the extension field \mathcal{E} of \mathcal{F} . The extended module $\mathcal{B}^{\mathcal{E}} = \mathcal{B} \otimes_{\mathcal{F}} \mathcal{E}$ equals the direct sum of the extended $\mathcal{E}G$ -modules $\mathcal{U}_1^{\mathcal{E}}, \ldots, \mathcal{U}_k^{\mathcal{E}}$, because \mathcal{B} is the direct sum of $\mathcal{U}_1, \ldots, \mathcal{U}_k$. As we have already seen, for each $i = 1, \ldots, k$, there exist absolutely irreducible $\mathcal{E}G$ -modules \mathcal{U}_i^j , for $j = 1, \ldots, n_i$, that constitute a Galois conjugacy class over \mathcal{F} and satisfy

$$\mathcal{U}_i^{\mathcal{E}} \cong \bigoplus_{j=1}^{n_i} \mathcal{U}_i^{j}.$$
 (14)

Since $\mathcal{U}_i|_M \cong e_i \mathcal{V}_i$ we have $\mathcal{U}_i^{\mathcal{E}}|_M \cong e_i \mathcal{V}_i^{\mathcal{E}}$. In addition,

$$\mathcal{V}_i^{\mathcal{E}} \cong \bigoplus_{r=1}^{s_i} \mathcal{V}_i^r,$$

where the \mathcal{V}_i^r , for $r = 1, \ldots, s_i$, are absolutely irreducible $\mathcal{E}M$ -modules, and thus of dimension one, that form a Galois conjugacy class over \mathcal{F} . Therefore,

$$\mathcal{U}_{i}^{\mathcal{E}}|_{M} \cong \bigoplus_{j=1}^{n_{i}} \mathcal{U}_{i}^{j}|_{M} \cong e_{i} \bigoplus_{r=1}^{s_{i}} \mathcal{V}_{i}^{r},$$
(15)

for all $i = 1, \ldots, k$.

As we have already seen, there exists $i \in \{1, \ldots, k\}$ such that \mathcal{V}_i is a faithful $\mathcal{F}M$ -module. Without loss, we may assume that i = 1. Then it is clear that the \mathcal{V}_1^r are faithful $\mathcal{E}M$ -modules, for all $r \in \{1, \ldots, s_1\}$. If \mathcal{V}_1^r is *G*-invariant, for some $r \in \{1, \ldots, s_1\}$ (and thus for all such r) we are done.

Thus we may assume that the stabilizer $G_{\mathcal{V}}$ of $\mathcal{V} = \mathcal{V}_1^1$ in G is strictly smaller than G. Then $G_{\mathcal{V}} = C_G(M)$, because \mathcal{V} is $\mathcal{E}M$ -faithful. Let $C := G_{\mathcal{V}} = C_G(M)$. Note that C is a normal subgroup of G, since $M \trianglelefteq G$. Furthermore, C is also the stabilizer of \mathcal{V}_1^r , for all $r = 1, \ldots, s_1$. According to Lemma 3.4, for all $i = 1, \ldots, k$, we have $\mathcal{U}_i|_C = m_i \cdot \mathcal{Y}_i$, where \mathcal{Y}_i is a simple $\mathcal{F}C$ -module, and m_i some positive integer. For the extended $\mathcal{E}C$ -modules $\mathcal{Y}_i^{\mathcal{E}}$ we have

$$\mathcal{U}_i^{\mathcal{E}}|_C \cong m_i \mathcal{Y}_i^{\mathcal{E}} \cong m_i \bigoplus_{l=1}^{t_i} \mathcal{Y}_i^l,$$

where the \mathcal{Y}_i^l , for $l = 1, 2, ..., t_i$, are absolutely irreducible $\mathcal{E}C$ -modules that constitute a Galois conjugacy class over \mathcal{F} . Hence

$$\mathcal{U}_{i}^{\mathcal{E}}|_{C} \cong \bigoplus_{j=1}^{n_{i}} \mathcal{U}_{i}^{j}|_{C} \cong m_{i} \bigoplus_{l=1}^{t_{i}} \mathcal{Y}_{i}^{l}, \tag{16}$$

for all i = 1, ..., k. We remark here that, because \mathcal{U}_i is quasi-primitive, all the group conjugates of \mathcal{Y}_i^1 are among its Galois conjugates, for every i = 1, ..., k.

In the case i = 1, equations (15) and (16) imply

$$\mathcal{U}_1^{\mathcal{E}}|_M \cong m_1 \bigoplus_{l=1}^{t_1} \mathcal{Y}_1^l|_M \cong e_1 \bigoplus_{r=1}^{s_1} \mathcal{V}_1^r.$$
(17)

Without loss we may assume that \mathcal{U}_1^1 lies above \mathcal{Y}_1^1 , and that \mathcal{Y}_1^1 lies above $\mathcal{V}_1^1 = \mathcal{V}$. Clearly \mathcal{Y}_1^1 is non-trivial as it restricts to a multiple of the non-trivial $\mathcal{F}M$ -module \mathcal{V}_1 . Hence Lemma 3.4 implies that m_1 is an odd integer. Because C is the stabilizer of \mathcal{V} in G, Clifford's theory implies that \mathcal{Y}_1^1 is the unique simple $\mathcal{E}C$ -module that lies above \mathcal{V}_1^1 and induces irreducibly to \mathcal{U}_1^1 in G. Note that \mathcal{Y}_1^1 appears with odd multiplicity m_1 as a summand of $\mathcal{U}_1^{\mathcal{E}}|_C$, because the $\mathcal{E}C$ -modules \mathcal{Y}_1^l are distinct for distinct values of l, as they form a Galois conjugacy class over \mathcal{F} . Furthermore, if \mathcal{Y}_1^1 lies under some \mathcal{U}_i^j , for $i \neq 1$, then it induces \mathcal{U}_i^j . So $\mathcal{U}_i^j \cong \mathcal{U}_1^1$. Hence the sum of the Galois conjugates of \mathcal{U}_i^1 is isomorphic to the sum of the Galois conjugates of \mathcal{U}_i^1 .

$$\mathcal{U}_i^{\mathcal{E}} \cong \bigoplus_{j=1}^{n_i} \mathcal{U}_i^j \cong \bigoplus_{j=1}^{n_1} \mathcal{U}_1^j \cong \mathcal{U}_1^{\mathcal{E}}.$$

The above contradicts the fact that \mathcal{U}_1 and \mathcal{U}_i are non-isomorphic simple $\mathcal{F}G$ -modules (see Lemma 3.3). We conclude that \mathcal{Y}_1^1 appears with odd multiplicity m_1 in the decomposition of

$$\mathcal{B}^{\mathcal{E}}|_{C} \cong \bigoplus_{i=1}^{k} \mathcal{U}_{i}^{\mathcal{E}}|_{C} \cong \bigoplus_{i=1}^{k} m_{i} \bigoplus_{l=1}^{t_{i}} \mathcal{Y}_{i}^{l}.$$

On the other hand, in view of Corollary 2.7 every simple $\mathcal{F}C$ -submodule of \mathcal{B} appears with even multiplicity in any decomposition of \mathcal{B}_C , as C is a normal subgroup of G and \mathcal{B}_C is hyperbolic as an $\mathcal{F}C$ -module, by Remark 2. Hence every absolutely irreducible $\mathcal{E}C$ -submodule of $\mathcal{B}^{\mathcal{E}}$ should also appear with even multiplicity in any decomposition of $\mathcal{B}^{\mathcal{E}}|_C$. This contradicts the conclusion of the preceding paragraph. So we must have $G_{\mathcal{V}} = C = G$. Hence the lemma is proved.

Clearly Lemma 3.7 implies

Corollary 3.8. Suppose that M is a minimal normal subgroup of G and \mathcal{E} a splitting field of G and all its subgroups. Then every $\mathcal{E}M$ -module is G-invariant.

We can now show

Lemma 3.9. Suppose that M is a minimal normal subgroup of G. Then the restriction \mathcal{B}_M is homogeneous. Furthermore $\mathcal{B}_M \cong e\mathcal{V}$, where \mathcal{V} is a simple faithful G-invariant $\mathcal{F}M$ -submodule of \mathcal{B}_M and e is a positive integer.

Proof. As in the previous lemma we write $\mathcal{U}_i|_M = e_i \mathcal{V}_i$, where $i = 1, \ldots, k$, and \mathcal{V}_i is a simple G-invariant $\mathcal{F}M$ -submodule of \mathcal{U}_i . If $\mathcal{F}M$ is not homogeneous, then there are at least two nonisomorphic simple $\mathcal{F}M$ -submodules of \mathcal{B}_M , say \mathcal{V} and \mathcal{W} . We may suppose that \mathcal{V} is non-trivial. Assume that $\mathcal{V}_i \cong \mathcal{V}$ as $\mathcal{F}M$ -modules, for all $i = 1, \ldots, l$ and some l such that $1 \leq l \leq k$, while $\mathcal{V}_i \ncong \mathcal{V}$ for $i = l + 1, \ldots, k$. Let \mathcal{U} be the orthogonal direct sum

$$\mathcal{U} = \mathcal{U}_1 \perp \ldots \perp \mathcal{U}_l.$$

of the corresponding $\mathcal{F}G$ -submodules of \mathcal{B} . We also write

$$\mathcal{R} = \mathcal{U}_{l+1} \bot \ldots \bot \mathcal{U}_k$$

for the orthogonal direct sum of the remaining simple $\mathcal{F}G$ -submodules of \mathcal{B} . Clearly

$$\mathcal{B} = \mathcal{U} \perp \mathcal{R}.$$

while \mathcal{U}_M and \mathcal{R}_M have no simple $\mathcal{F}M$ -submodules in common. We will show

Claim 1. \mathcal{U} is $\mathcal{F}N$ -hyperbolic for every cyclic subgroup N of G.

We first prove Claim 1 in the case that the product NM is a proper subgroup of G. In this case Remark 2 implies that \mathcal{B}_{NM} is hyperbolic. Hence there exists a self-perpendicular $\mathcal{F}NM$ -submodule $\mathcal{S} > 0$ of \mathcal{B} . Then \mathcal{S} is a maximal isotropic $\mathcal{F}NM$ -submodule of \mathcal{B}_{NM} . Furthermore, $\mathcal{B}_{NM} = \mathcal{U}_{NM} \perp \mathcal{R}_{NM}$, where \mathcal{U}_{NM} and \mathcal{R}_{NM} have no simple $\mathcal{F}NM$ -submodule in common (otherwise \mathcal{U}_M and \mathcal{R}_M would have some common simple $\mathcal{F}M$ -submodule). Hence

$$\mathcal{S} = (\mathcal{S} \cap \mathcal{U}_{NM}) \bot (\mathcal{S} \cap \mathcal{R}_{NM}).$$

Because S is isotropic, both $S \cap U_{NM}$ and $S \cap \mathcal{R}_{NM}$ are also isotropic. Hence their \mathcal{F} -dimensions are at most 1/2 the dimensions of U_{NM} and \mathcal{R}_{NM} , respectively. But S is self-perpendicular and

thus its \mathcal{F} -dimension is exactly $(1/2) \dim(\mathcal{B}_{NM})$. We conclude that the \mathcal{F} -dimensions of $\mathcal{S} \cap \mathcal{U}_{NM}$ and $\mathcal{S} \cap \mathcal{R}_{NM}$ are exactly 1/2 the dimensions of \mathcal{U}_{NM} and \mathcal{R}_{NM} , respectively. Therefore $\mathcal{S} \cap \mathcal{U}_{NM}$ is a maximal isotropic $\mathcal{F}NM$ -submodule of \mathcal{U}_{NM} of dimension 1/2 the dimension of \mathcal{U}_{NM} . So $\mathcal{S} \cap \mathcal{U}_{NM}$ is self-perpendicular, by Lemma 2.1. Thus \mathcal{U}_{NM} is hyperbolic as an $\mathcal{F}NM$ -module. Hence it is also hyperbolic as an $\mathcal{F}N$ -module. So Claim 1 holds when NM < G.

Assume now that N is a cyclic subgroup of G such that NM = G. Because M is minimal, Lemma 3.7 implies that $M \cong \mathbb{Z}_q$ is central. Hence G = MN is an abelian group. This contradicts Lemma 3.5. Therefore NM < G, for every cyclic subgroup N of G. Thus Claim 1 holds.

Since $\mathcal{U} < \mathcal{B}$, the Inductive Hypothesis, along with Claim 1, implies that \mathcal{U} is $\mathcal{F}G$ -hyperbolic. Hence \mathcal{U} contains a self-perpendicular $\mathcal{F}G$ -submodule \mathcal{T} . Let \mathcal{T}^{\perp} be the submodule of \mathcal{B} that is perpendicular to \mathcal{T} . Then \mathcal{R} as well as \mathcal{T} are subsets of \mathcal{T}^{\perp} . We conclude that \mathcal{T} is an isotropic $\mathcal{F}G$ -submodule of \mathcal{B} . Hence \mathcal{B} is not anisotropic. This last contradiction implies that $\mathcal{U} = \mathcal{B}$, and completes the proof of Lemma 3.9.

Lemma 3.10. Every abelian normal subgroup of G is cyclic.

Proof. Let A be an abelian normal subgroup of G. By Lemma 3.4 there is a simple $\mathcal{F}A$ -submodule \mathcal{R}_1 of \mathcal{U}_1 and an integer e_1 such that

$$\mathcal{U}_1|_A \cong e_1 \mathcal{R}_1.$$

It follows from Lemma 3.9 that \mathcal{R}_1 is non-trivial, since its restriction to any minimal normal subgroup of G is non-trivial. Let K_1 denote the corresponding centralizer of \mathcal{R}_1 in A. Then K_1 equals the centralizer $C_A(\mathcal{U}_1)$ of \mathcal{U}_1 in A, and therefore is a normal subgroup of G. If K_1 is not trivial then it contains a minimal normal subgroup M of G. In view of Lemma 3.9 the restriction $\mathcal{U}_1|_M$, cannot be trivial, contradicting the definition of K_1 . Hence K_1 is trivial. Thus A is cyclic and the lemma is proved.

Let F = F(G) be the Fitting subgroup of G. Assume further that $\{q_i\}_{i=1}^r$ are the distinct primes dividing |F|, and that T_i is the q_i -Sylow subgroup of F, for each $i = 1, \ldots, r$. Then $F = T_1 \times T_2 \times \cdots \times T_r$. Every characteristic abelian subgroup of F is cyclic, according to Lemma 3.10. Hence (see Theorem 4.9 in [4]) either T_i is cyclic or T_i is the central product $T_i = E_i \odot Z(T_i)$ of the extra special q_i -group $E_i = \Omega(T_i)$ of exponent q_i and the cyclic group $Z(T_i)$. We complete the proof of Theorem A exploring the two possible types of T_i .

Assume first that T_i is a cyclic group, for all i = 1, ..., r. In this case $F = T_1 \times \cdots \times T_r$ is also a cyclic group. Let C/F be a chief factor of G. So $\overline{C} = C/F$ is an elementary abelian q-group, for some prime q, because G is solvable. Then \overline{C} acts coprimely on T_i for all i such that q does not divide $|T_i|$. But T_i is cyclic, and the minimal subgroup of T_i is central in G. Hence $C_{T_i}(\overline{C}) \neq 1$. We conclude that $T_i = [T_i, \overline{C}] \times C_{T_i}(\overline{C}) = C_{T_i}(\overline{C})$. So any q-Sylow subgroup C_q of C centralizes the q'-Hall subgroup R of F that is also a q'-Hall subgroup of C. We conclude that $C = C_q \times R$. But R is nilpotent as a subgroup of F. So C is a nilpotent normal subgroup of Gbigger than the Fitting subgroup F of G. Therefore G = F is a cyclic group, contradicting the Inductive Hypothesis. Hence there exists a Sylow subgroup T_i of F = F(G) that is not cyclic.

Let $T = T_i$ be a non-cyclic q-Sylow subgroup of F, where $q = q_i$ for some i = 1, ..., r. Then $T = E \odot Z(T)$, where $E = \Omega(T)$ is an extra special q-group of exponent q and Z(T) is the center of T. Of course E is a normal subgroup of G, since it is a characteristic subgroup of F. Furthermore, Z(E) is a central subgroup of G because it is a minimal (it has order q) normal subgroup of G. According to Lemma 3.9, there exists a faithful G-invariant $\mathcal{F}Z(E)$ -module \mathcal{V} so that the restriction $\mathcal{B}_{Z(E)}$ of \mathcal{B} to Z(E) is a multiple of \mathcal{V} .

Using the extension field \mathcal{E} of \mathcal{F} , we write $\mathcal{V}^{\mathcal{E}}$ for the extended $\mathcal{E}Z(E)$ -module $\mathcal{V} \otimes_{\mathcal{F}} \mathcal{E}$. Then

$$\mathcal{V}^{\mathcal{E}} \cong \bigoplus_{j=1}^{s} \mathcal{V}^{j}$$

where \mathcal{V}^j is an absolutely irreducible $\mathcal{E}Z(E)$ -module, for all j with $j = 1, \ldots, s$. Furthermore, the \mathcal{V}^j constitute a Galois conjugacy class over \mathcal{F} , and thus they are all distinct. As we have already seen (see Corollary 3.8 and Lemma 3.9), the module \mathcal{V}^j is a non-trivial G-invariant $\mathcal{E}Z(E)$ -module. Because E is extra special, there exists a unique, up to isomorphism, absolutely irreducible $\mathcal{E}E$ -module \mathcal{W}^j lying above \mathcal{V}^j , for every $j = 1, \ldots, s$. Note that for all such j the $\mathcal{E}E$ -module \mathcal{W}^j is G-invariant because \mathcal{V}^j is G-invariant. According to Theorem 9.1 in [7] (used for modules) there exists a canonical conjugacy class of subgroups $H \leq G$ such that HE = G and $H \cap E = Z(E)$. Furthermore, for this conjugacy class there exists a one-to-one correspondence between the isomorphism classes of absolutely irreducible $\mathcal{E}G$ -modules lying above \mathcal{W}^j and those classes of absolutely irreducible $\mathcal{E}H$ -modules lying above \mathcal{V}^j . In addition, the fact that G has odd order implies that if Ξ and Ψ are representatives of the above two isomorphism classes, then they correspond iff $\Xi_H \cong \Psi \oplus 2 \cdot \Delta$, where Δ is a completely reducible $\mathcal{E}H$ -submodule of Ξ_H .

Let $\mathcal{U} = \mathcal{U}_1$ be one of the simple $\mathcal{F}G$ -submodules of \mathcal{B} appearing in (5). Then $\mathcal{U}^{\mathcal{E}} \cong \bigoplus_{j=1}^{n_1} \mathcal{U}^j$, where the \mathcal{U}^j are absolutely irreducible $\mathcal{E}G$ -modules that form a Galois conjugacy class. As earlier, we write $\mathcal{E}_{\mathcal{U}}$ for the extension field of \mathcal{F} generated by all the values of the absolutely irreducible character that \mathcal{U}^1 affords. Let $\Gamma = \operatorname{Gal}(\mathcal{E}_{\mathcal{U}}/\mathcal{F})$ be the Galois group of that extension. Then (see Theorem 9.21 in [6]),

$$\mathcal{U}^{\mathcal{E}} \cong \bigoplus_{j=1}^{n_1} \mathcal{U}^j \cong \bigoplus_{\tau \in \Gamma} (\mathcal{U}^1)^{\tau}, \tag{18}$$

Clearly \mathcal{U}^1 lies above \mathcal{W}^j , for some $j = 1, \ldots, s$, since $\mathcal{U} = \mathcal{U}_1$ lies above \mathcal{V} . Let Ψ be a representative of the isomorphism class of absolutely irreducible $\mathcal{E}H$ -modules that corresponds to \mathcal{U}^1 and lies above \mathcal{V}^j . Then

$$\mathcal{U}_{H}^{1} \cong \Psi \oplus 2 \cdot \Delta, \tag{19}$$

for some completely reducible $\mathcal{E}H$ -module Δ . Let \mathcal{E}_{Ψ} be the subfield of \mathcal{E} generated by \mathcal{F} and all the values of the absolutely irreducible character that Ψ affords. Then \mathcal{E}_{Ψ} is a Galois extension of \mathcal{F} . Furthermore,

$$\mathcal{E}_{\Psi} = \mathcal{E}_{\mathcal{U}}.\tag{20}$$

Indeed, for any element σ in the Galois group $\operatorname{Gal}(\mathcal{E}/\mathcal{F})$ of \mathcal{E} above \mathcal{F} we get

$$(\mathcal{U}^1)^{\sigma}_H \cong \Psi^{\sigma} \oplus 2 \cdot \Delta^{\sigma}.$$

Hence $(\mathcal{U}^1)^{\sigma}$ corresponds to Ψ^{σ} , as Ψ^{σ} is the only absolutely irreducible $\mathcal{E}H$ -module that appears with odd multiplicity in $(\mathcal{U}^1)_H^{\sigma}$. Therefore, $(\mathcal{U}^1)^{\sigma} \ncong \mathcal{U}^1$ iff $\Psi^{\sigma} \ncong \Psi$. This is enough to guarantee that (20) holds. We conclude that the sum $\oplus_{\tau \in \Gamma} \Psi^{\tau}$ is the extension to \mathcal{E} of an irreducible $\mathcal{F}H$ -module, i.e., there exists an irreducible $\mathcal{F}H$ -module Π such that

$$\Pi^{\mathcal{E}} \cong \bigoplus_{\tau \in \Gamma} \Psi^{\tau},$$

where $\Pi^{\mathcal{E}}$ is the extended $\mathcal{E}H$ -module $\Pi \otimes_{\mathcal{F}} \mathcal{E}$. Furthermore, (18) and (19) imply that Π appears with odd multiplicity as a summand of $\mathcal{U}_H = \mathcal{U}_1|_H$.

Next we observe that if Π appears as a summand of $\mathcal{U}_i|_H$, for some $i = 2, \ldots, k$, then it appears with even multiplicity. The reason is that $\mathcal{U}_1 \ncong \mathcal{U}_i$ for all such *i*. As in (14) we choose a Galois conjugacy class $\{\mathcal{U}_i^j\}_{j=1}^{n_i}$ of absolutely irreducible $\mathcal{E}G$ -modules such that $\mathcal{U}_i^{\mathcal{E}} \cong \bigoplus_{j=1}^{n_i} \mathcal{U}_i^j$. Then $\mathcal{U}_i \ncong \mathcal{U} = \mathcal{U}_1$ implies that $\mathcal{U}_i^j \ncong \mathcal{U}^1$, for all $i = 2, \ldots, k$ and all $j = 1, \ldots, n_i$. So the $\mathcal{E}H$ module Ψ can't correspond to \mathcal{U}_i^j , for any such i, j. Therefore if Ψ appears as a summand of the restriction $\mathcal{U}_i^j|_H$ of \mathcal{U}_i^j to H, then it appears only with even multiplicity. Hence the same holds for Π , i.e., Π appears only with even multiplicity as a summand of $\mathcal{U}_i|_H$, whenever $i = 2, \ldots, k$. We conclude that Π appears with odd multiplicity as a summand of $\mathcal{B}_H = \mathcal{U}_1|_H \oplus \cdots \oplus \mathcal{U}_k|_H$.

We complete the proof of Theorem A with one more contradiction, that follows the fact that Π is a self-dual $\mathcal{F}H$ -module. That we get a contradiction if Π is self-dual is easy to see, because according to Proposition 2.6, Π should appear with even multiplicity as a summand of the hyperbolic $\mathcal{F}H$ -module \mathcal{B}_H . Thus it suffices to show that Π is self-dual.

The fact that $\mathcal{U} = \mathcal{U}_1$ is self-dual implies that $\mathcal{U}^{\mathcal{E}}$ is also self-dual. Hence the dual $\widehat{\mathcal{U}^1}$ of \mathcal{U}^1 is a Galois conjugate $(\mathcal{U}^1)^{\tau}$ to \mathcal{U}^1 , for some $\tau \in \Gamma$. Furthermore, (19) implies that

$$\widehat{\mathcal{U}}_{H}^{1} \cong \widehat{\Psi} \oplus 2 \cdot \widehat{\Delta}.$$

Thus the dual $\widehat{\mathcal{U}}^1$ corresponds to the dual $\widehat{\Psi}$ of Ψ . Therefore the dual $\widehat{\Psi}$ of Ψ is a Galois conjugate of Ψ . Hence $\Pi^{\mathcal{E}} \cong \bigoplus_{\tau \in \Gamma} \Psi^{\tau}$ is a self-dual $\mathcal{E}H$ -module. So Π is also self-dual.

This completes the proof of Theorem A.

References

- [1] M. Aschbacher, "Finite Group Theory," Cambridge Studies in Advanced Mathematics, 10.
- [2] T. R. Berger, Representation Theory and Solvable Groups: Length Type Problems, The Santa Cruz Conference on Finite Groups, Proc. Sympos. Pure Math. 37 (1980), 431–441.
- [3] E. C. Dade, Monomial Characters and Normal Subgroups, Math.Z. 178, 401–420 (1981).
- [4] D. Gorenstein, "Finite Groups," New York: Harper and Row 1968.
- [5] B. Huppert, N. Blackburn, "Finite Groups II," Berlin–Heidelberg–New York : Springer 1982.
- [6] I. M. Isaacs, "Character Theory of Finite Groups," Academic Press, New York, 1976.
- [7] I. M. Isaacs, Characters of Solvable and Symplectic Groups, Amer. J. Math. 95 (1973), 594–635.
- [8] I. M. Isaacs, Abelian Normal Subgroups of *M*-Groups, *Math. Z.* **182** (1983), 205–221.
- [9] I. M. Isaacs, Primitive Characters, Normal Subgroups and M-Groups, Math. Z. 177 (1981), 267–284.
- [10] M. L. Lewis, Characters of Maximal Subgroups of M-Groups, J. Algebra 183 (1996) 864– 897.
- [11] A. E. Parks, Nilpotent by Supersolvable M-Groups, Canad. J. Math. 37 (1985), 934–962.
- [12] R. W. van der Waall, On Clifford's Theorem and Ramification Indices for Symplectic Modules over a Finite Field, Proc. Edinburgh Math. Soc. 30 (1987), 153–167.
- [13] R. W. van der Waall and N.S. Hekster, Irreducible Constituents of Induced Monomial Characters, J. Algebra 105 (1987), 255-267.