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1. Introduction. Since a finite group G is abelian if all of its irreducible characters have
degree 1, it is reasonable to suppose that if the average of the degrees of the irreducible
characters of G is small, then in some sense, G should be “almost” abelian. To make this
precise, we write

acd(G) =
1

|Irr(G)|
∑

χ∈Irr(G)

χ(1) ,

so that acd(G) is the average (irreducible) character degree of G. Our principal results are
the following:

THEOREM A. If acd(G) ≤ 3, then G is solvable.

THEOREM B. If acd(G) < 3/2, then G is supersolvable.

THEOREM C. If acd(G) < 4/3, then G is nilpotent.

K. Magaard and H. Tong-Viet proved in Theorem 1.4 of [7] that if acd(G) ≤ 2,
then G is solvable, and they conjectured that our Theorem A might be true. In fact,
it seems reasonable to conjecture something even stronger: that G is solvable whenever
acd(G) < 16/5. (Note that acd(A5) = 16/5.) On the other hand, the inequalities in
Theorems B and C cannot be improved. To see this, observe that acd(A4) = 3/2 and
acd(S3) = 4/3, and these groups are respectively not supersolvable and not nilpotent.
Nevertheless, for groups of odd order, it is possible to prove stronger results.

THEOREM D. Suppose that |G| is odd.

(a) If acd(G) < 27/11, then G is supersolvable.

(b) If acd(G) < 3p/(p+2), where p is the smallest prime divisor of |G|, then G is nilpotent.

Going in the other direction, one might ask how large acd(G) can be if G is solvable.
The answer is that there is no upper bound, and in fact, even for p-groups, acd(G) is
unbounded. Consider, for example, the group G = Cp o Cp of order pp+1, where Cp is the
cyclic group of order p. Then |G : G′| = p2 and G has an abelian subgroup of index p. It
follows that G has exactly p2 linear characters, and all other irreducible characters have
degree p. If the number of these is n, then pp+1 = |G| = p2 + np2, and thus n = pp−1 − 1.
It follows that acd(G) = (p2 + np)/(p2 + n), and it is easy to check that acd(G) > p − 1
if p > 3. It follows therefore, that if we let p vary, then as claimed, there is no universal
upper bound for acd(G) as G runs over p-groups. In fact, we shall see that more is true:
for a fixed prime p, there is no upper bound for acd(G) as G runs over p-groups.

Next, we recall that there is often an analogy between theorems about character
degrees and theorems about class sizes. In particular, writing acs(G) to denote the average
class size of a group G, it is known that if acs(G) < 12, then G is solvable. (This result
appears as part of Theorem 11 in the paper [3] of R. Guralnick and G. Robinson.) Although
our proof of Theorem A relies on the classification of simple groups, this fact about class
sizes is more elementary; it can be proved without an appeal to the classification. (It seems
that this result was first proved by P. Lescot. See [4] for further bibliographic information.)
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Finally, we mention an elementary connection between the quantities acd(G) and
acs(G). Writing k to denote the number of conjugacy classes of G, we have

acs(G) =
|G|
k

=

∑
χ(1)2

k
≥

(1/k)
(∑

χ(1)
)2

k
= (acd(G))2 ,

where the inequality holds by Cauchy-Schwarz. Thus if acs(G) ≤ 9, we have acd(G) ≤ 3,
and so G is solvable by Theorem A. Since Theorem A depends on the classification, this
is a hard way to prove a weak version of the result of Lescot to which we referred.

We close this introduction with thanks to Avinoam Mann, who provided helpful com-
ments on an earlier version of this paper.

2. Proof of Theorem A. As we mentioned, our proof of Theorem A relies on the
classification of simple groups. The specific consequence of the classification that we need
is the following, which appears as Theorem 1.1 of [7].

(2.1) LEMMA. Let N be a nonabelian minimal normal subgroup of a finite group G.
Then there exists θ ∈ Irr(N) such that θ(1) ≥ 5 and θ is extendible to G.

Almost all of the work involved in proving Theorem A goes into our next theorem,
from which Theorem A follows easily. To state our result, we introduce the following
notation. Given a positive integer n and a finite group G, we write an(G) to denote the
number of irreducible characters of G that have degree n, and we write bn(G) for the
number of irreducible characters of G with degree exceeding n. Also, if λ is an irreducible
character of some subgroup of G, we will write an(G|λ) and bn(G|λ) to denote the numbers
of members of Irr(G|λ) that have degrees respectively equal to or exceeding n.

(2.2) THEOREM. Let G be a finite group, and suppose that

b4(G) ≤ a1(G) +
a2(G)

2
.

Then either G is solvable, or else equality holds and a4(G) > 0.

Proof. Supposing that G is nonsolvable, we proceed by induction on |G|. Let M / G be
minimal such that M is nonsolvable, and note that M = M ′. Let S be the solvable radical
of M , and observe that by the choice of M , every normal subgroup of G properly contained
in M is contained in S. (Of course, we may have S = 1.) Finally, let N ⊆M , where N is
minimal normal in G, and if S is not central in M , choose N so that N ⊆ [M,S].

Suppose first that N is nonabelian. By Lemma 2.1, there exists θ ∈ Irr(N) such that
θ(1) ≥ 5 and θ has an extension χ ∈ Irr(G). By Gallagher’s theorem (Corollary 6.17 of
[6]) the map β 7→ βχ is an injection from Irr(G/N) into the set of irreducible characters
of G with degree exceeding 4. In particular, we have |Irr(G/N)| ≤ b4(G), and if equality
holds here, then every irreducible character of G with degree exceeding 4 lies in Irr(G|θ).

Since N is minimal normal in G and we are assuming that N is nonabelian, we have
N = N ′ ⊆ G′. Then N is contained in the kernel of every linear character of G, and we
claim that N is also contained in the kernel of every degree 2 irreducible character of G.
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To see this, observe that N is a direct product of simple groups, and thus no irreducible
character of N has degree 2. Thus if µ ∈ Irr(G) has degree 2, then µN is reducible, and
hence it is a sum of linear characters. The principal character is the only linear character
of N , however, and thus N ⊆ ker(µ), as wanted. We now have

b4(G) ≥ |Irr(G/N)| ≥ a1(G/N) + a2(G/N) = a1(G) + a2(G)

≥ a1(G) +
a2(G)

2
≥ b4(G) ,

where the last inequality holds by hypothesis. Equality thus holds throughout, and to
complete the proof in this case, it suffices to show that a4(G) > 0.

Since equality holds above, we have |Irr(G/N))| = b4(G), and as we have seen, this
implies that the restriction to N of every irreducible character of G with degree exceeding
4 is a multiple of θ. Thus if ϕ ∈ Irr(N) with ϕ 6= θ, then no member of Irr(G|ϕ) has
degree exceeding 4, and if some character in this set has degree 4 exactly, we are done.
We can thus assume that if ϕ 6= θ, then all members of Irr(G|ϕ) have degree at most
3, and hence ϕ(1) ≤ 3. Since N has no irreducible character of degree 2, we see that
cd(N) ⊆ {1, 3, θ(1)}, and in particular, |cd(N)| ≤ 3. By Theorem 12.15 of [6], therefore,
N is solvable, and this is a contradiction since N is minimal normal in G, and N was
assumed to be nonabelian.

We can now assume that N is abelian. Then G/N is nonsolvable, and the inductive
hypothesis applied to G/N yields

b4(G/N) ≥ a1(G/N) +
a2(G/N)

2
.

Since N ⊆M = M ′ ⊆ G′, we have a1(G) = a1(G/N), and thus

a1(G) +
a2(G)

2
≥ b4(G) ≥ b4(G/N) ≥ a1(G/N) +

a2(G/N)

2
= a1(G) +

a2(G/N)

2
.

If a2(G) = a2(G/N), then equality holds above, and thus b4(G) = a1(G) + a2(G)/2, as
required. Also, b4(G/N) = a1(G/N) + a2(G/N)/2, and since G/N is not solvable, the
inductive hypothesis guarantees that a4(G/N) > 0. Then a4(G) > 0, and there is nothing
further to prove. We can assume, therefore, that a2(G) > a2(G/N), and hence there exists
a character µ ∈ Irr(G) such that µ(1) = 2 and N 6⊆ ker(µ).

Let L = ker(µ). Then N 6⊆ L, and in particular M 6⊆ L, and thus ML/L is a nontrivial
subgroup of G/L. Also, since M is perfect, we see that ML/L is nonsolvable, and hence
G/L is nonsolvable. Now G/L is an in irreducible linear group of degree 2. In fact, G/L
is a primitive linear group since it does not have an abelian subgroup of index 2 because
it is nonsolvable. By Theorem 14.23 of [6], it follows that |G : C| ∈ {12, 24, 60}, where
C/L = Z(G/L). Since G/L is nonsolvable, we deduce that G/C ∼= A5, and in particular,
G/C is simple. Also, since C/L is abelian and ML/L is nonsolvable, we see that M 6⊆ C,
and thus MC = G.
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Since M ∩ C < M and M ∩ C / G, we have M ∩ C ⊆ S, the solvable radical of
M . Also, M/(M ∩ C) ∼= G/C is simple, and thus M ∩ C = S. Then S ⊆ C, and since
C/L = Z(G/L), we have [M,S] ⊆ L. Recall, however, that N 6⊆ L, and thus N 6⊆ [M,S].
By the choice of N , therefore, we have S ⊆ Z(M), and in fact, we must have S = Z(M).

Now M = M ′, and thus S is isomorphic to a subgroup of the Schur multiplier of
M/S ∼= A5. Then |S| ≤ 2, and since N is abelian and N ⊆ M , we have 1 < N ⊆ S, and
thus N = S = C ∩MZ(M) has order 2. In particular, M is a full Schur covering group of
A5, and hence M ∼= SL(2, 5).

We have [C,M ] ⊆ C ∩M = Z(M), so [C,M,M ] = 1. Also, [M,C,M ] = [C,M,M ] =
1, and thus [M,M,C] = 1 by the three-subgroups lemma. Since M = M ′, we deduce that
[M,C] = 1, and thus G = MC is a central product.

Let λ be the unique nonprincipal linear character of N = M ∩C. Since G = MC is a
central product, there is a bijection Irr(M |λ)× Irr(C|λ)→ Irr(G|λ), where if (α, β) 7→ χ,
we have χ(1) = α(1)β(1). Also, since M ∼= SL(2, 5), we know that the only possibilities
for α(1) are 2, 4 and 6.

Since N 6⊆ ker(µ), we see that µ ∈ Irr(G|λ), and thus if (α, β) 7→ µ, we must have
α(1) = 2 and β(1) = 1, and hence λ extends to C. By Gallagher’s theorem, therefore,
there exists a degree-preserving bijection Irr(C/N)→ Irr(C|λ), and in particular, we have

a1(C|λ) = a1(C/N) = a1(G/M) = a1(G) ,

where the second equality holds because G/M ∼= C/N , and the third follows because
M = M ′ ⊆ G′.

Now a2(M |λ) = 2 and a1(M |λ) = 0, and thus

a2(G|λ) = a2(M |λ)a1(C|λ) = 2a1(C|λ) = 2a1(G) .

Also, since G/N = (M/N) × (C/N) and M/N ∼= A5, we have a1(M/N) = 1 and
a2(M/N) = 0, and thus

a2(G/N) = a1(M/N)a2(C/N) = a2(C/N) .

We deduce that

a2(G) = a2(G/N) + a2(G|λ) = a2(C/N) + 2a1(G) ,

and thus a2(C/N) = a2(G)− 2a1(G).
Next, we consider characters of larger degree. We have

a5(G) ≥ a5(G/N) ≥ a5(M/N)a1(C/N) = a1(C/N) = a1(G) ,

and
a6(G) = a6(G|λ) + a6(G/N) ≥ a6(M |λ)a1(C|λ) + a3(M/N)a2(C/N)

= a1(C|λ) + 2a2(C/N)

= a1(G) + 2a2(C/N) .
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This yields
b4(G) ≥ a5(G) + a6(G) ≥ a1(G) + (a1(G) + 2a2(C/N))

≥ 2a1(G) +
a2(C/N)

2

= 2a1(G) +
a2(G)− 2a1(G)

2

= a1(G) +
a2(G)

2

≥ b4(G) ,

where the final inequality holds by hypothesis. Equality thus holds throughout, and it
suffices to show that a4(G) > 0. But a4(G) ≥ a4(G/C) = 1, since G/C ∼= A5.

Proof of Theorem A. Given that acd(G) ≤ 3, we want to show that G is solvable, and
so by Theorem 2.2, it suffices to show that b4(G) ≤ a1(G) + a2(G)/2, and that if equality
holds, then a4(G) = 0. We have

a1(G) + 2a2(G) + 3a3(G) + 4a4(G) + 5b4(G) ≤
∑

χ∈Irr(G)

χ(1)

and
a1(G) + a2(G) + a3(G) + a4(G) + b4(G) = |Irr(G)| .

Since
3|Irr(G)| ≥ acd(G)|Irr(G)| =

∑
χ(1) ,

we deduce that
2a1(G) + a2(G)− a4(G)− 2b4(G) ≥ 0 ,

and thus

a1(G) +
a2(G)

2
≥ b4(G) +

a4(G)

2
≥ b4(G) .

Also, we see that if equality holds above, then a4(G) = 0, as required.

3. Supersolvable and nilpotent groups. We begin by recalling the following fact, first
proved by J. Ernest [1] using characters, with a later character-free proof by P. X. Gallagher
[2]. We present here a somewhat simplified version of Ernest’s short proof.

(3.1) LEMMA. Let H ⊆ G and write k(H) and k(G) to denote the numbers of conjugacy
classes of H and G, respectively. Then k(G) ≤ |G : H|k(H).

Proof. Given a character ψ ∈ Irr(H), Frobenius reciprocity guarantees that each ir-
reducible constituent of ψG has degree at least ψ(1). Since ψG(1) = |G : H|ψ(1), we
conclude that the number of distinct irreducible constituents of ψG is at most |G : H|,
and thus as ψ runs over the k(H) characters in Irr(H), there are at most |G : H|k(H)
different irreducible characters of G that appear as constituents of the induced characters
ψG. Since every one of the k(G) irreducible characters of G appears as a constituent of
some ψG, we deduce that k(G) ≤ |G : H|k(H), as required.
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(3.2) THEOREM. Let A / G, where A is abelian and G splits over A, and let r be the
number of orbits in the action of G on the set of nonprincipal linear characters of A. Then
the size t of one of these orbits satisfies t(r + 1)/(t+ r) ≤ acd(G).

Proof. Let {λ0, λ1, . . . , λr} be a set of representatives for the G-orbits on Irr(A), where
λ0 is the principal character, and let Ti be the stabilizer of λi in G. Write

ti = |G : Ti| , ki = |Irr(Ti/A)| , si =
∑

ϕ∈Irr(Ti/A)

ϕ(1) ,

for 0 ≤ i ≤ r, and note that si ≥ ki. Since λi is linear and Ti splits over A, it follows that
λi extends to Ti. By Gallagher’s theorem and the Clifford correspondence, there exists a
bijection Irr(Ti/A) → Irr(G|λi), and if ϕ 7→ χ under this map, then χ(1) = tiϕ(1). Since
Irr(G) is the disjoint union of the sets Irr(G|λi) for 0 ≤ i ≤ r, we deduce that

|Irr(G)| =
r∑
i=0

ki

and ∑
χ∈Irr(G)

χ(1) =

r∑
i=0

tisi ≥
r∑
i=0

tiki .

Writing a = acd(G), we have

r∑
i=0

tiki ≤
∑

χ∈Irr(G)

χ(1) = a|Irr(G)| = a

r∑
i=0

ki .

This yields
r∑
i=1

(ti − a)ki ≤ (a− t0)k0 = (a− 1)k(G/A) .

By Lemma 3.1 applied in the group G/A with respect to the subgroup Ti/A, we have
k(G/A) ≤ tiki for all i, and since a− 1 ≥ 0, we obtain

r∑
i=1

(ti − a)ki ≤
a− 1

r

r∑
i=1

k(G/A) ≤ a− 1

r

r∑
i=1

tiki .

It follows that for some subscript i, we have (ti − a)ki ≤ (a − 1)tiki/r, and thus writing
t = ti, we have t− a ≤ (a− 1)t/r. Then rt− ra ≤ at− t, and so t(r + 1) ≤ a(r + t), and
the desired inequality follows.

We mention that by computing partial derivatives, it is easy to see that for r ≥ 1 and
t ≥ 1, the function f(r, t) = t(r + 1)/(t + r) is monotonically increasing in each of the
variables. It follows that if r ≥ r0 ≥ 1 and t ≥ t0 ≥ 1, then f(r0, t0) ≤ f(r, t).
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Proof of Theorem B. We are assuming that acd(G) < 3/2, and we use induction on
|G| to show that G is supersolvable. There is nothing to prove if G is abelian, so we can
assume that G′ > 1, and we choose a minimal normal subgroup A of G with A ⊆ G′. Since
acd(G) < 3/2 < 3, Theorem A guarantees that G is solvable, and thus A is abelian.

Since A ⊆ G′, the irreducible characters of G with kernels not containing A are all
nonlinear, and so they all have above-average degree. It follows that the average of the
degrees of the remaining irreducible characters of G is less than acd(G), and so we have
acd(G/A) < 3/2. By the inductive hypothesis, therefore, G/A is supersolvable. If A is
cyclic, therefore, then G is supersolvable and we are done. We can assume, therefore, that
the minimal normal subgroup A is not cyclic, and in particular, A 6⊆ Z(G).

If A ⊆ Φ(G), then since G/A is supersolvable, it follows that G is supersolvable,
and we are done. (See Satz VI.8.6(a) of [5], for example.) We can therefore assume that
A 6⊆ Φ(G), and hence there exists a maximal subgroup M of G such that A 6⊆M . We have
AM = G and A∩M < A, and since A is abelian and AM = G, it follows that A∩M / G,
and thus A ∩M = 1, and we see that G splits over A.

Since A is noncentral, we have 1 < [A,G] ⊆ A, and so by the minimality of A, we
deduce that [A,G] = A, and thus no nonprincipal linear character of A is G-invariant. Let
r be the number of G-orbits of linear characters of A. By Theorem 3.2, therefore, we have

t(r + 1)

t+ r
≤ acd(G) <

3

2
,

where t is the size of some G-orbit on the set of nonprincipal linear characters of A, and
in particular, t ≥ 2. Since r ≥ 1 it follows that if t ≥ 3, then

t(r + 1)

t+ r
≥ 3(1 + 1)

(3 + 1)
=

3

2
,

which is not the case. We deduce that t = 2, and thus there exists a character λ ∈ Irr(A)
in a G-orbit of size 2. If T is the stabilizer of λ in G, then |G : T | = 2, and thus T / G.
Then [A, T ] < A and [A, T ]/ G, and thus [A, T ] = 1. The group G/T of order 2, therefore,
acts irreducibly and without fixed points on Irr(A), and we deduce that |A| = |Irr(A)| is
prime, and thus A is cyclic.

The proof of Theorem C is very similar, and so we go through the argument giving
somewhat less detail.

Proof of Theorem C. We have acd(G) < 4/3, and we want to show that G is nilpotent.
We can assume that G is nonabelian, and we choose a minimal normal subgroup A of
G with A ⊆ G′, and we observe that A is abelian since G is solvable by Theorem A.
All irreducible characters of G with kernel not containing A have above-average degree,
and thus acd(G/A) ≤ acd(G) < 4/3. Working by induction on |G|, we see that G/A is
nilpotent, and so if A ⊆ Z(G), then G is nilpotent, and we are done. We can thus assume
that [A,G] > 1, so [A,G] = A, and hence all nonprincipal linear characters of A are in
G-orbits of size at least 2. Also, if A ⊆ Φ(G), then G is nilpotent, so we can assume that
A 6⊆M for some maximal subgroup M of G, and it follows that G splits over A.
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In the notation of Theorem 3.2, we have t(r + 1)/(t + r) ≤ acd(G) < 4/3, and since
r ≥ 1 and t ≥ 2, we have t(r + 1)/(t + r) ≥ 2(1 + 1)/(2 + 1) = 4/3. This contradiction
proves the result.

Proof of Theorem D(a). We are assuming that |G| is odd and that acd(G) < 27/11.
Our goal is to show that G is supersolvable, so we can assume that G is nonabelian. Choose
a minimal normal subgroup A ⊆ G′, and observe that A is abelian because G must be
solvable. The irreducible characters of G with kernel not containing A are nonlinear, and
since |G| is odd, these characters have degrees at least 3, and so their degrees are above
average. It follows that acd(G/A) ≤ acd(G) < 27/11, so working by induction on |G|,
we deduce that G/A is supersolvable. If A is cyclic, then G is supersolvable, and thus we
can assume that |A| is a non-prime prime-power, and in particular, A 6⊆ Z(G). Also, if
A ⊆ Φ(G), then G is supersolvable, so we can assume that A 6⊆ Φ(G), and it follows that
G splits over A. By Theorem 3.2, we have

t(r + 1)

(r + t)
≤ acd(G) <

27

11
,

where t and r are as usual. Also, t > 1 since [A,G] = A, and since t is odd, we have t ≥ 3.
Complex conjugation permutes the G-orbits on Irr(A), and we argue that no orbit of

nonprincipal linear characters can be fixed by conjugation. To see this, observe that since
|A| is odd, a nonprincipal linear character cannot be self-conjugate, and thus an orbit fixed
by conjugation would necessarily have even size. The orbits all have odd size, however, and
thus conjugation defines a pairing on the set of G-orbits on nonprincipal linear characters
of A. In particular, r is even and there are at least two orbits of size t.

If r = 2, then each of the two orbits of nonprincipal linear characters of A has size t,
and thus |A| = 2t+ 1. We know that |A| is a non-prime prime-power, and since t is odd,
the smallest possibility for t is t = 13, corresponding to |A| = 27. Thus t ≥ 13, and so

t(r + 1)

(r + t)
≥ 13(2 + 1)

(2 + 13)
=

13

5
>

27

11
.

This is a contradiction, and we deduce that r ≥ 4.
If t = 3, then the stabilizer T of some linear character of A has index 3 in G, and in

this case, 3 is the smallest prime divisor of |G|, and hence T / G. It follows that [A, T ]/ G,
and since [A, T ] < A, we have [A, T ] = 1, and thus T is the stabilizer of every nonprincipal
linear character of A. All G-orbits of nonprincipal linear characters of A, therefore, have
size 3, and we have |A| = 3r+ 1. Since |A| is an odd non-prime prime-power, the smallest
possibility is r = 8, corresponding to |A| = 25. Thus r ≥ 8, and we have

t(r + 1)

(r + t)
≥ 3(8 + 1)

(8 + 3)
=

27

11
,

and this is a contradiction. We now have r ≥ 4 and t ≥ 5, and thus

t(r + 1)

(r + t)
≥ 5(4 + 1)

(4 + 5)
=

25

9
>

27

11

and this is our final contradiction.
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Proof of Theorem D(b). We assume now that |G| is odd and that acd(G) < 3p/(p+2),
where p is the smallest prime divisor of |G|. We want to show that G is nilpotent, and by
the usual arguments, we can assume that there exists an abelian subgroup A / G, where
A is noncentral and G splits over A. Also, we have

t(r + 1)

(r + t)
≤ acd(G) <

3p

(p+ 2)
,

where r and t have their customary meanings, and t > 1. Then t ≥ p, and as we saw in
the previous proof, r is even, so r ≥ 2. Then

t(r + 1)

(r + t)
≥ p(2 + 1)

(p+ 2)
,

and this contradiction completes the proof.

4. An example As we mentioned in the introduction, acd(G) is unboundedly large as
G runs over p-groups, where p is an arbitrary fixed prime. To see this, let F be the field
of order pe where e > 1 is odd, and let G be the set of matrices of the form 1 x y

0 1 xp

0 0 1

 ,
where x and y run over F . It is easy to check that G is a group, and clearly, |G| = p2e. For
notational simplicity, we write M(x, y) to denote the above matrix, and we observe that
M(x, y)M(u, v) = M(x+ u, y+ v+ xup). It follows that M(x, y) and M(u, v) commute if
and only if xup = uxp. This commuting condition is always satisfied if x = 0, so if we write
Z to denote the set of matrices M(0, y) for y ∈ F , we see that Z ⊆ Z(G) and |Z| = pe.

Now fix M(x, y), where x 6= 0. We can compute the centralizer of M(x, y) in G by
rewriting the commuting condition xup = uxp as (u/x)p = (u/x). It follows that M(u, v)
commutes with M(x, y) precisely when u/x is in the prime subfield of F , and thus there
are p possibilities for u and pe possibilities for v. This shows that if g ∈ G and g 6∈ Z,
then |CG(g)| = pe+1, and it follows that Z = Z(G) and all noncentral classes of G have
size pe−1. The total number of conjugacy classes in G, therefore, is

k = pe +
p2e − pe

pe−1
= pe + pe+1 − p .

The map M(x, y) 7→ x is a homomorphism from G onto the additive group of F , and
hence G/Z is abelian group of order pe. Then G has exactly pe linear characters with
kernel containing Z and exactly k − pe = pe+1 − p other irreducible characters. Since
Z = Z(G) has index pe and e is odd, it follows that all irreducible characters of G have
degree at most d = p(e−1)/2, and thus

p2e = |G| ≤ pe + (pe+1 − p)d2 = pe + (pe+1 − p)pe−1 = p2e ,

and thus equality holds, and we see that in addition to the pe linear characters, G has
exactly pe+1 − p irreducible characters of degree d, and this accounts for all of Irr(G).
Since there are more characters of degree d than there are of degree 1, the average degree
exceeds (d+ 1)/2 > p(e−1)/2/2, and this is unbounded for large e.
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