▶ $0 \to \mathbb{Z} \stackrel{\cdot n}{\to} \mathbb{Z} \to \mathbb{Z}_n$
Algebra
(1) Garefalakis, Theodoulos, (2) Kouvidakis, Alexandros, (3) Loukaki, Maria,
(4) Tzanaki, Eleni
▶ $\int_E f_n \to \int_E f$
Analysis
(1) Brazitikos, Silouanos, (2) Costakis, Georgios, (3) Filippas, Stathis,
(4) Frantzikinakis, Nikos, (5) Kolountzakis, Mihalis, (6) Mitsis,Themistokles,
(7) Papadimitrakis, Mihalis, (8) Tertikas, Achilles
▶ ${n \choose k} = {n \choose n-k}$
Combinatorics
(1) Frantzikinakis, Nikos, (2) Garefalakis, Theodoulos, (3) Kolountzakis, Mihalis,
(4) Tzanaki, Eleni
▶ $\nabla^2 f = 0$
Differential Equations
(1) Filippas, Stathis, (2) Fournodavlos, Grigorios, (3) Kamvissis, Spyridon,
(4) Kossioris, Georgios, (5) Tersenov, Alkis, (6) Tertikas, Achilles
▶ $x, T x, T^2 x, T^3 x, \ldots$
Dynamical Systems
▶ $\RR^n\setminus\Set{0} \sim S^{n-1}$
Geometry / Topology
(1) Athanassopoulos, Konstantin, (2) Brazitikos, Silouanos, (3) Kouvidakis, Alexandros,
(4) Lydakis, Manos
▶ $i\frac{\partial\psi}{\partial t} = H \psi$
Mathematical Physics
(1) Efremidis, Nikolaos, (2) Fournodavlos, Grigorios, (3) Kamvissis, Spyridon,
(4) Komineas, Stavros, (5) Rosakis, Phoebus
▶ $\int _{a}^{b}f(x)\,dx\approx {\frac {b-a}{6}}\left[f(a)+4f\left({\frac {a+b}{2}}\right)+f(b)\right].$
Numerical Analysis
(1) Chatzipantelidis, Panagiotis, (2) Katsaounis, Theodoros, (3) Plexousakis, Michael,
(4) Zouraris, Georgios
▶ $ \Mean{X} = \sum _{i=1}^{\infty }x_{i}\,p_{i}$
Probability
▶ $dS=\mu S\,dt+\sigma S\,dW$
Scientific Computation and Modeling
(1) Chatzipantelidis, Panagiotis, (2) Efremidis, Nikolaos, (3) Harmandaris, Vagelis,
(4) Katsaounis, Theodoros, (5) Makrakis, George, (6) Manoussaki, Daphne,
(7) Plexousakis, Michael, (8) Rosakis, Phoebus, (9) Zouraris, Georgios
▶ $\frac {1}{n-1} \sum _{i=1}^{n} \left(Y_{i}-{\overline {Y}}\right)^{2}$
Statistics and Machine Learning
(1) Arampatzis, George, (2) Triantafyllou, Sofia
▶ $1+1=2$
Teaching of Mathematics
(1) Mali, Angeliki