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§1. Introduction. Let A and B be two compact, convex sets in W, each
symmetric with respect to the origin 0. L is any (n - l)-dimensional subspace.
In 1956 H. Busemann and C. M. Petty (see [6]) raised the question: Does
vol (AnL)<\o\ (BnL) for every L imply vol (A)<vol(B)? The answer in
case n = 2 is affirmative in a trivial way. Also in 1953 H. Busemann (see [4])
proved that if A is any ellipsoid the answer is affirmative. In fact, as he
observed in [5], the answer is still affirmative if A is an ellipsoid with 0 as
center of symmetry and B is any compact set containing 0.

The first breakthrough was in 1975 (see [8]) when D. G. Larman and
C. A. Rogers took B = Bn, the unit ball in R" and proved that, if n s= 12, there
exist A's which are arbitrarily small perturbations of B and which give a
negative answer to the problem. Their proof is not constructive and uses
probabilistic reasoning.

In 1988, K. Ball (see [2]) proved that, if n > 10, B = Bn and A an appropriate
dilation of [-1,1]" give a negative answer. Also in 1990, A. Giannopoulos
(see [7]) proved that, if «s=7, J3 = Bn and A a cylinder of the form
{(*!, . . . , xn): x

2 + .. . + x2
n-xma2, \xn\^ b} (for a certain choice of a, b) provide

a negative answer.
In 1990, J. Bourgain (see [3]) proves non-constructively that, if n s= 7 and

B = Bn, there are arbitrarily small perturbations A of B giving a negative
answer. He also proves that, if n = 3 and B = B3 then for every small perturba-
tion A of B the answer is affirmative.

Observe that the only constructions giving a negative answer are those of
K. Ball and A. Giannopoulos with B = Bn but in both cases A is not a small
perturbation of B.

In this paper I will construct B (not Bn) and small perturbations A of B
which give negative answer for n = 5,6. Thus the problem is still open for
n = 3,4.

§2. Constructions. I will consider the following type of solids. Let a curve
be given in polar coordinates (0, r(0)), 0=£ 0 ^ TT/2 such that r(0) is a con-
tinuous function of 0 and r{0) sin 0 is a decreasing and concave function of
r(0) cos 0. Consider the set:

A =
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where s = <p(t) is defined by

r = r(0)cos0, = r(6) sind.

Then A is a compact convex set with 0 as center of symmetry.
Obviously

vol (A)

TT/2

= 2V,_, J r - 1
(6) cos""1 6d(r(e) sin 6),

where Vn_i is the (n-l)-dimensional volume of Bn_j. After integration by
parts:

TT/2

n J
{B) cos"'2 Odd.

Now, if L is any (n -1)-dimensional subspace of R", vol (A n L) is uniquely
determined by 0, the angle of L and the xn = 0 subspace.

If B = 0 then vol (AnL)= V^rCO)""1.
If e > 0 then the intersection of A n L with any xn = a hyperplane

is nonempty only if |a|=s r(0) sin 0 and then this intersection is an
(n -2)-dimensional ball of radius

r((p)\cos2 <p-sin2 <p cot2 8 where a = r(<p) sin <p, \<p\^e.

Therefore, if $ > 0
e

vol (AnL) = 2 Vn_2 [ r"-2(y)(coS
2 y -s in 2 <p cot2 e)(n~2)l2d (r(<p) S*° *)

J \ sin a I
o

which after integration by parts becomes
e

vol(AnL) = 2Vn_2 — - ^ - | rn~\<p) cos"'3 (p(l-tan2 <p cot2 e)("-4)/2d<p.
n — 1 sin 0 J
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I will use the notation R( 0) for the integral in the last formula of vol (A n L).
Therefore the question of Busemann, Petty for this type of solid becomes.

Do there exist two functions /}(0), j = 1,2, of 0 e [0, TT/2] such that:
(i) Tj{ 0) is continuous and /}•(0) sin 6 is a decreasing and concave function

of rj(0)cos0;
(ii) r,(0)«r2(0) and, for every 0< 0=s n/2, /?i(0)=s R2(0); but
(iii) j ; / 2 rf(fl) cos""2 6dd>^/2 rn

2{6) cos""2 0d0?

n = 6. The idea is to invert the transform

J= I rs{<p) cos3 <p(l—tan2 <p cot2

o

and then to choose R(0) in a way that when we perform some negative
variation 8R(0) the resulting variation in the volume integral \^12 r6(0) cos4 0d0
is positive.

The following change of notation is convenient

x = tan0, y = tan<p, <p(x) = r(0) cos 0, f(x) = <p\x), F(x) = R(d).

Then

and, by taking g(x) = 10

and finally

The necessary conditions of continuity and concavity become
(a) <p(x) and x<p(x) continuous in [0, +00], and
(b) x<p(x) is a decreasing and concave function of <p(x). Or, equivalently:

2

Suppose we perform a small negative variation SF to F. Then by (1) the
resulting variation in / is

and the variation in the volume integral V = \ln r6(0) cos4 0d0 = J"/*/5(x)dx
is

00

f1/s(x)8f(x)dx+ J
0 0
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I require that 8F and hence also 5/ be =0 outside some interval
(a, b)0<a<b<oo.

8V = i. •8fdx+O{{8ff)

and I need only Ĵ ° <p • 8fdx > 0.
Using (2) and integration by parts

oo oo

(p-8fdx=\ x28F-(— J dx.

I will construct <p so that it satisfies the necessary continuity and concavity
conditions (a), (b) above. Also the (b) inequalities will be strict in an interval
(a, l ) , 0 < a < l . Furthermore, (<p'/x)'<0 in (a, I).

This will enable me to take sufficiently small SF=sO with 8F<0 in a
subinterval of (a, 1) and 8F=0 outside (a, 1) and prove my claim.

Such a (p is given by

\0-a)-\{x-a)2/{\-a),<?(*) =

Remark, (a) The graph of x<p = r(6) sin 6 versus <p = r{6) cos 6 looks as
in the picture. The corresponding solid is close to a cylinder, the type of solid
used in [7].

(b) The sphere does not work since <p{x) = cos 0 and an elementary calcula-
tion shows {(p'/x)' = 3 cos4 6 sin 0 > 0.

Case n = 5. Now R{0) = \e
0 r\<p) cos2 cpVl-tan2 <p cot2 0d<p.

The idea is the same as in case n = 6 but the details are more complicated.

x = tan0, <p(x) = r(0) cos 6, f(x) = <p4(x), F(x) = R(0).
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Then
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Using s = x\t = y2, G(s) = 2xF(x), g(t) = l/xf(x) we find

By the well-known Abel's inversion formula (see [9])

which finally gives

f(x)-f(O)=-x -
v J \y

o

,Y *y
>x2-y2

Suppose that we perform a small non-positive variation SF to F(x), which
is =0 outside an interval (a, b) with 0<a<fe<oo. Then, by also taking
5/(0) = 0,

Sf(x) = -x \(-(ySF))'-
dy

v J \y
o

<x2-y2 (3)

The corresponding variation in the volume integral
7T-/2

V= J r$(6) cos3 6dd= | f'\x)dx

is
CO

(4)

0 0

Now we must guarantee that Sf/f is uniformly small in [0, +oo]. Since
8F = 0 in [0, a] (3) gives that 8f= 0 in [0, a]. Now as x -» +oo

b

dy
Sf(x) = -x \(-(y8F))'

IT J \y I •
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(5)

where O is small if 8F is small. But x<p(x) = r{6) sin 6 is bounded from below
as x-»+oo. Therefore, 8f/f=8f/<p4 is bounded as x^oo and so uniformly
bounded in [0, oo). It is also uniformly small if 8F is small.

From (4) we need j ^ <p(x)8f(x)>0 in order to have a positive variation
in V.

Using (3) and integration by parts the last integral becomes

(6)
IT J J \ x / v x — y

0 y

In order not to interrupt the line of thought I will prove this in the
supplement.

To produce a counterexample to the Busemann-Petty problem we need a
<p such that:

(a) <p and xtp are continuous on [0, +°o];
(b) X(p'+<p^0 and 2(<p')2^<p<p"; and

(c)

in some interval (a, b),0<a<b< +oo.
Because then we take 8F = 0 outside some subinterval of (a, b) and 8F < 0

and small otherwise. We have to make sure though that <p + 8<p satisfies (b).
We achieve this as follows. LetO<a< 1 and K c < 2 . Let d = | ( 2 - c ) / ( l - a ) .

l + d(l-a)\

Then ?(1) = 1, <p'(l) = c-2<0 and
in (1, +oo),

2(<p')2> <p<p" in (a, 1). Also,

From (5) we get
1/4

-
x

(7)
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11/4

—~4 y28Fdy\ ,

fc=-
vc

oo f oo

J y28Fdy 1 +^-4 J /
-3 /4

Since SF=sO, we get p>0,k<0. Also, p, k and the O in (7) are small if SF
is small.

We can also prove that T'(x) = O(l/x3), T"(x) = O(l/x4). Using all this
information we have from (7)

2 and,

as

Hence, if SF is small, <p + 8<p satisfies (b).
Next I will prove that

dx

Ix2-a2 <0

which will give (c) for an interval around a.

J \x) Jx1^? J ;
lad

x2slx2-a2 •• dx+bounded term

Id f dt , _ . , . ,
= — T = + b o u n d e d term.

a J Nt2-\
If a -» 0+ then the last expression -» -oo.

Exactly the same remarks apply as in case n = 6.

§3. Supplement
OO

<p(x)8f(x)dx

X dy
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Ix2-y2 2 x:

b o
b x

0 0
b oo

J ( ; W F C ) ' J ,
0 b

0 y

b oo

I71 V f
I - (ySF)' I <p

J Vj / J

Ix —y

Jx2-y2 2 x

<p(x)-f== dxdy
ix2-y2

0 (.

+J ("O^F)')' J «p(x)(Vx2-/)'dxd>;
0 >>

>dy

b

b

<p{b)Jb2-y2-\(p'(x)Jx2-y2dx\dy

y
X)

- f (-( SF)'\ f '(x)fvx2^^-x + - :

o fc
b b

y / J
O y

b oo

' [ <p'ix)(-—^+y\dxdy
J \ VX - V X/

0 b

b b

- \ -

J V
(ySF)' <p'(x) r-f—2dxdy

y/x -y
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b oo

= - J (ySF)' J ^ ^ ' c x - V x ^

j GtfF)' J (^pj'jx2-
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