ON THE BUSEMANN-PETTY PROBLEM ABOUT
CONVEX, CENTRALLY SYMMETRIC BODIES IN R”"

MICHAEL PAPADIMITRAKIS

§1. Introduction. Let A and B be two compact, convex sets in R", each
symmetric with respect to the origin 0. L is any (n —1)-dimensional subspace.
In 1956 H. Busemann and C. M. Petty (see [6]) raised the question: Does
vol (An L)<vol (Bn L) for every L imply vol (A) <vol (B)? The answer in
case n =2 is affirmative in a trivial way. Also in 1953 H. Busemann (see [4])
proved that if A is any ellipsoid the answer is affirmative. In fact, as he
observed in [5], the answer is still affirmative if A is an ellipsoid with 0 as
center of symmetry and B is any compact set containing 0.

The first breakthrough was in 1975 (see [8]) when D. G. Larman and
C. A. Rogers took B = B,, the unit ball in R" and proved that, if n > 12, there
exist A’s which are arbitrarily small perturbations of B and which give a
negative answer to the problem. Their proof is not constructive and uses
probabilistic reasoning.

In 1988, K. Ball (see [2]) proved that, if n = 10, B = B, and A an appropriate
dilation of [—1, 1]" give a negative answer. Also in 1990, A. Giannopoulos
(see [7]) proved that, if n=7,B=B, and A a cylinder of the form
{(x1,...,%,): x}+...+x2_<a? |x,| < b} (for a certain choice of a, b) provide
a negative answer.

In 1990, J. Bourgain (see [3]) proves non-constructively that, if n=7 and
B = B,, there are arbitrarily small perturbations A of B giving a negative
answer. He also proves that, if n =3 and B = B, then for every small perturba-
tion A of B the answer is affirmative.

Observe that the only constructions giving a negative answer are those of
K. Ball and A. Giannopoulos with B = B, but in both cases A is not a small
perturbation of B.

In this paper I will construct B (not B,) and small perturbations A of B
which give negative answer for n=35,6. Thus the problem is still open for
n=3,4,

§2. Constructions. 1 will consider the following type of solids. Let a curve
be given in polar coordinates (6, r(8)),0< 8 < m/2 such that r(0) is a con-
tinuous function of 8 and r(8) sin 8 is a decreasing and concave function of
r(6) cos 6. Consider the set:

A={(xy,...,%): x| <e(Vxi+...+xI_)},
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X, 4

>

(X1, .05 Xn—1)

where s = ¢(t) is defined by
t=1r(6) cos 6, s=r(8)sin 6.

Then A is a compact convex set with 0 as center of symmetry.
Obviously

w/2

vol (A)=2V,_, J r"71(8) cos™ ! 8d(r(8) sin 8),
0

where V,_, is the (n—1)-dimensional volume of B,_,. After integration by

parts:
w/2

-1
vol (A)=2V,_, n_n__ j r"(0) cos™ " 6do.
0

Now, if Lis any (n —1)-dimensional subspace of R", vol (A ~ L) is uniquely
determined by 6, the angle of L and the x, = 0 subspace.

If =0 then vol (AN L)=V,_,r(0)"".

If >0 then the intersection of An L with any x,=a hyperplane
is nonempty only if |a|<r(8)sin® and then this intersection is an
(n—2)-dimensional ball of radius

r(pWeos’ o —sin* @ cot’ 8 where  a=r(¢)sing, |p|<6.
Therefore, if 6>0

]

vol(AnL)=2V,_, J r"*(¢)(cos? ¢ —sin’ ¢ cot’ 0)("'2)/2d(

0

r(¢) sin ¢>

sin

which after integration by parts becomes

]

j () cos" 2 ¢(1—tan’ ¢ cot® 6)" " %dg.

0

N

n-— 1

vol(AnL)=2V,_, .=
n—1 sin 6
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1 will use the notation R(8) for the integral in the last formula of vol (A L).
Therefore the question of Busemann, Petty for this type of solid becomes.
Do there exist two functions r;(0),j=1, 2, of 6 €[0, 7w/2] such that:
(i) #(8) is continuous and r;(#) sin 6 is a decreasing and concave function
of r;(9) cos 0;
(ii) r,(0)=<r,(0) and, for every 0< 0 < w/2, R,(6)< R,(9); but
(iii) J77% r7(6) cos" % 0d0 > [7/* r3(8) cos"* 0d6?

Case n=6. The idea is to invert the transform
2]

R(8)= j r’(¢) cos® @(1—tan? ¢ cot® 8)de,
0

and then to choose R(#) in a way that when we perform some negative
variation 6R(6) the resulting variation in the volume integral L’)’ /2 ¢%(8) cos* 0d
is positive.

The following change of notation is convenient

x=tan 0, y=tang, ¢(x)=r(0)cosb, f(x)=¢(x), F(x)=R(8).
Then

x

F(x)= If(y)(l—%) dy= If(y)dy—iz If(y)yzdy,

X
0

and, by taking g(x) =13 f(y)dy,

F(x)=% J yg(y)dy,

and finally

1= (L (JFw) ). M

The necessary conditions of continuity and concavity become
(a) ¢(x) and x¢(x) continuous in [0, +0], and
(b) xe(x) is a decreasing and concave function of ¢(x). Or, equivalently:
o+xp'=0,2(0") = @p".
Suppose we perform a small negative variation 8F to F. Then by (1) the

resulting variation in f is
1 1 AN
8f=|=|=x*F ) ) 2
r=(2 (3 @)

and the variation in the volume integral V =[7"? r*(0) cos® 6d0 = [ f*/*(x)dx
is

V=% jiof‘/s(x)Sf(x)dx+ ffG/s(x)O((-‘g-Y) dx.
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I require that 6F and hence also §f be =0 outside some interval
(a,b)0<a<b<co,

8V =% J ¢+ 8fdx + O((8f)?)

and I need only [; ¢- 8fdx > 0.
Using (2) and integration by parts

J @-ofdx =3 J x*8F- (%) dx.
0 0

I will construct ¢ so that it satisfies the necessary continuity and concavity
conditions (a), (b) above. Also the (b) inequalities will be strict in an interval
(a,1),0<a<1. Furthermore, (¢'/x) <0 in (q, 1).

This will enable me to take sufficiently small §F <0 with 8F <0 in a
subinterval of (g, 1) and 8F =0 outside (a, 1) and prove my claim.

Such a ¢ is given by

3(3-a), 0<x<a,
e(x)={3(3-a)-Hx—a)’/(1-a), a<x<],
1/x, 1< x<+00.

Remark. (a) The graph of x¢ = r(0) sin 8 versus ¢ = r(8) cos 8 looks as
in the picture. The corresponding solid is close to a cylinder, the type of solid
used in [7].

(b) The sphere does not work since ¢(x) = cos 0 and an elementary calcula-
tion shows (¢'/x)' =3 cos* 8 sin 6> 0.

Case n=5. Now R(8) =[S r*(¢) cos® ¢v1—tan’ ¢ cot’ 6de.

The idea is the same as in case n = 6 but the details are more complicated.

x=tan 0, ¢(x)=r(0)cosb, f(x)=¢*(x), F(x)=R(0).

xp A
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Then

x
2

- _¥
F(x)= J ff1 xde-
Using s =x°, t=y7, G(s) =2xF(x), g(t) = 1/xf(x) we find

s

2G/(s) = f 8 =,

0

s

d
2G'<s>—7rf(0)=f (g(r) %Ot—)) —

0
By the well-known Abel’s inversion formula (see [9])
fO_2 J ’
g(s Ng G"(s) =—= J——
V]

which finally gives
2 1 N ady
s-10=2x [ (Lorr) 2=,
T y X =y

0

Suppose that we perform a small non-positive variation §F to F(x), which
is =0 outside an interval (a, b) with 0<a<b<oco. Then, by also taking

8f(0) =0,

2 1 "d
s =2x [ (Lory) 2 )
T y x -y
]
The corresponding variation in the volume integral

/2 -5}

V= J r°(8) cos’ 6d0 = Jf”“(x)dx
0 0
is

o [S o}

8V =4 J V(%) 8f (x)dx + J' f5/“(x)0((8f—f)2> dx. (4)

(V] 0
Now we must guarantee that §f/f is uniformly small in [0, +c0]. Since
8F =0 in [0, a] (3) gives that §f=0 in [0, a]. Now as x> +0o0
b
2 1 " d
8f(x)=—x I (— ()’SF)') -'72—2,
T y x‘—y

a
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b

2 (Lsry) [141 22032 0(2
8f(x)—wj(y(y8F)> [1+2 T+ 4+0(x6)]dy,

a

6 1
of(x)=—> | »* e
f(x) == J yor()ay+0(%), (5)
0
where O is small if 8F is small. But x¢(x)=r(8) sin 6 is bounded from below
as x>+, Therefore, 8f/f=6f/¢* is bounded as x> and so uniformly
bounded in [0, ). It is also uniformly small if 8F is small.
From (4) we need j;o ©(x)8f(x)>0 in order to have a positive variation
in V.
Using (3) and integration by parts the last integral becomes

2 e\ dx
—J 8F(y)y’ J (—) —=dy. (6)
T X X =y
0 y
In order not to interrupt the line of thought I will prove this in the

supplement.

To produce a counterexample to the Busemann-Petty problem we need a
¢ such that:

(a) ¢ and xp are continuous on [0, +o0];

(b) x¢'+¢=0and 2((p/)22 e¢”; and

o«

n?
@ dx
(c) J (—) <0
x/ Jx*— 32
y
in some interval (a, b),0<a <b <+o0.
Because then we take 8F = 0 outside some subinterval of (a, b) and §F <0
and small otherwise. We have to make sure though that ¢ + 8¢ satisfies (b).
We achieve this as follows. Let0<a<land1<c<2. Letd =32-c)/(1—a).

1+d(1-a)’, O0=<x=aq,
o(x)={1+d(1—-a)*-d(x—a)’>, asx<l,
(e/x)—(c=1)/x%, 1=<x<+o00,

Then ¢(1)=1,¢'(1)=c—2<0 and x¢’'+¢ >0, 2(¢')*> ¢¢" in (a, 1). Also,
in (1, +00),

"

, c—1 , . 2(c=1)?
Xp'te=—3, 2 )~ pp ==

From (5) we get
. 1/4
6 1
=(f+8f)/*= “+——J 28Fd +O(—) s
p+8p=(f+8f) ¢t | yokdy I

0

(7)

dp k (1) k
X =+ 0|5 ) =—p+—+T(x),
e x © x? P75 (x)
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where
© 1/4
6 2
p=1-41+— | y*6Fdy; |,
mwc
0
© © -3/4
6(c-1)J’ 6 J
k= 2§Fdy{1+— 28F
e y“8Fdy e y°6F(y)dy
0

[

Since 8F =<0, we get p>0,k<0. Also, p, k and the O in (7) are small if §F
is small.

We can also prove that T'(x)= O(1/x%), T"(x) = O(1/x*). Using all this
information we have from (7)

2((¢ +8¢))’ —(¢+8¢)(@+8p)">0  and,
x(p+0p)Y+(o+6p)>0 as x - 00,

Hence, if 8F is small, ¢ + 8¢ satisfies (b).
Next I will prove that
! ! d
J' (¢ (x)) &g
x x‘—a

which will give (¢) for an interval around a.

o 1
(p/ ! dx J 2ad
hdl =— dx +bounded term
J.<x) x2—a? xWNx*—a?
1/a
2d J’ dt
= ———=—==+Dbounded term.
a V-1

1

If a - 0+ then the last expression »—co,
Exactly the same remarks apply as in case n =6.

§3. Supplement

©

%TJ 0 (x)8f (x)dx

= I xp(x) J'

1 )' dy
2 (yoF) ) 2 dx
(y‘y ") o
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e [ (o0m (mr-22) o

+ f o(x) f ( (yaF)) sz%zdydx

e ’ x__ __l_y_2) g
(o) ] ool msrr-2 D)o
0 b

b b

1 Y x

+J (; (.VSF)) J ‘P(x)\/ryzdxdy
1

+I (y (y8F) ) I @ (x)(Vx* —y*) dxdy

I(

<

1 o 1%\
(;(yaF)’) J(p(x)<~/x -y —x+5—) dxdy
b

o=

(yaF)') {—¢(b)(~/b2—y2—b+% %)

o0 , 1y2
J¢(x)( —x+5—x>dx dy
b

b
b
+ . (l(yﬁF)) [<P(b)~/b2 j‘P (xWx*— dx}dy

=—. ( (y8F)) j:o '(x)( x*— —x+%y—2)dxdy

b
- (;(yaF)') J o (W~ ydxdy

0

= Liysry [ o) (-—2 z)dd
Jy(ysF) J¢(x)( m'*’x xay

b b
1 y
-1 - 8F’j (x) dxd
Jy(y ) ®'( \/;:‘;_—yz Y
o y
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b [c )

_ e,  x )
'J W’I . (‘ o) &Y

0 b

b b
P'(x)  x
- | OoF 'J‘ « ———dxd
J yoF) . iy y
0 y

=f(y6F)' ——l(—)(b \/b—z—_?)—f(ﬂff—))l(x—m)dx dy
[ o[£ - [ () ada

=—: (ySFY J( A )(x—Jx_t_)dxdy
+ ﬁf (y6F)' f (i’;ix—)) VX ydxdy

oo ] (£29) i
0 ¥y * m
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