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Preface

If X is a space of analytic functions f in D, the open unit disk, then the in-

tegral Sg and the composition Cϕ operators on X are defined as Sg f (z) =∫ z
0 f ′(w)g(w)dw and Cϕ( f ) = f ◦ ϕ respectively. This thesis is about find-

ing necessary and sufficient conditions for Sg and Cϕ to have closed range or

equivalently to be bounded below on some spaces of analytic functions.

Four conditions for the integral operator Sg to have closed range on Hardy

Hp(1 ≤ p < ∞), BMOA, Qp(0 < p < ∞), and Besov Bp(1 < p < ∞) spaces,

respectively, are proved. All these conditions are based upon the behaviour

of function g in the disk D.

We also prove that, two already known conditions for Cϕ to have closed

range on Hardy space H2, can be extended to all Hardy spaces Hp, 0 < p <

∞. The first condition concerns the behaviour of ϕ at the boundary of the

disk D. The second one is based upon the behaviour of ϕ in the disk D and

we prove this by using Hardy-Stein identities for one of the directions, and

reverse Carleson measures and pull-back measures for the converse.

Moreover, two necessary conditions and one sufficient condition, for Cϕ

to have the property of being bounded below on BMOA space, are presented.
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Chapter 1

Introduction

Let D denote the open unit disk in the complex plane and g : D → C be an

analytic function. If X is a space of analytic functions f in D then, the integral

operator Sg : X → X, induced by g, is defined as

Sg f (z) =
∫ z

0
f ′(w)g(w)dw, z ∈ D,

for every f ∈ X. Sg is companion to the operator Tg : X → X which is

defined as

Tg f (z) =
∫ z

0
f (w)g′(w)dw, z ∈ D,

for every f ∈ X. If g(z) = z or g(z) = log 1
(1−z) , then Tg is the integra-

tion operator and the Cesáro operator respectively. Interest in Tg arose orig-

inally from studying semigroups of analytic composition operators because,

for certain g, Tg are related to the resolvents of such semigroups (see [46]). Re-

sults, concerning the boundedness and compactness of Tg on certain spaces

of analytic functions, can be found in [5, 6, 17, 47]. It can be easily seen (using

integration by parts) that Tg and its companion operator Sg are related to the

multiplication operator

Mg f (z) = g(z) f (z)

by

Mg f (z) = f (0)g(0) + Tg f + Sg f .
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If any two of Mg, Sg and Tg are bounded, then so is the third, but in some

situations one operator is bounded while the other two are unbounded.

Moreover, if ϕ : D → D is a non-constant analytic function then, the

composition operator Cϕ : X → X induced by ϕ, is defined as

Cϕ( f ) = f ◦ ϕ,

for every f ∈ X.

In this thesis, we studied the problem of finding conditions, depending

only on g in case of the operator Sg and depending only on ϕ in case of the

operator Cϕ, so that the operators Sg and Cϕ to have closed ranges in space

X, which means, the set Sg(X) or Cϕ(X) to be a closed subset of X.

In general, if X and Y are normed spaces then the operator T : X → Y is

bounded below if there exists C > 0 such that

‖Tx‖Y ≥ C‖x‖X

for all x ∈ X.

From the basic operator theory (see [1], theorem 2.5) we know the follow-

ing result.

Theorem 1.0.1. Let X and Y be Banach spaces and T : X → Y bounded operator.

Then, T is bounded below if and only if T is 1-1 and has closed range.

It’s easy to see that Sg f (z) ≡ 0 on D if and only if f (z) ≡ C on D (for

some constant C ∈ C) or g(z) ≡ 0 on D and, clearly, Sg cannot be 1-1. In case

where g(z) ≡ 0 on D, we have that Sg(X) = {0} (where by 0 we denote the

function which is identically equal to zero on D) and it’s obvious that Sg has

closed range since {0} is a closed subset of X.

Moreover, in case where g(z) 6≡ 0 on D, if we restrict the study of Sg to

space X0 of analytic functions modulo the constants (the quotient space X0 :=
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X/C) or, equivalently, the space of analytic functions f such that f (0) =

0, then Sg, obviously, is 1-1. This restriction can be made without loss of

generality since it’s easy to check that the following equivalence holds: Sg :

X → X has closed range if and only if Sg : X0 → X0 has closed range.

According to theorem 1.0.1, for the operators Sg : X0 → X0 and Cϕ : X →

X to have closed range is equivalent to be bounded below, i.e. there is C1 > 0

such that ‖Sg f ‖X0 > C1‖ f ‖X0 for all f ∈ X0 and, respectively, there is C2 > 0

such that ‖Cϕ f ‖X > C2‖ f ‖X for all f ∈ X.

This thesis is organized in three parts. In part I, all the appropriate pre-

liminaries and background results are presented, as well as, a short history

of the research and the already published results, concerning conditions for

the integral and composition operators to have closed range. In parts II and

III, all the new results which came up in this thesis are presented.

In part II, four conditions for the integral operator to have closed range

on Hardy, BMOA, Qp and Besov spaces, respectively, are presented. More

specifically, in chapters 4, 5, 6, 7, results (theorems 4.1.2, 5.2.1, 6.2.1 and 7.2.1)

concerning necessary and sufficient conditions for the integral operator Sg to

have closed range on Hardy (Hp, 1 ≤ p < ∞), BMOA, Qp, (0 < p < ∞) and

Besov (Bp, 1 < p < ∞) spaces, respectively, are proved.

Part III is dedicated to the study of property of having closed range for

composition operators. In chapter 9 we prove that two already known con-

ditions for Cϕ to have closed range on the Hardy space H2, can be extended

to all Hardy spaces Hp, 0 < p < ∞. The first condition (theorem 9.1.2 (part

(ii)) concerns the behaviour of ϕ at the boundary of the disk D, while the

second one (theorem 9.1.2 (part (iii)) is based upon the behaviour of ϕ in the

disk D.

In chapter 10 two necessary conditions (theorems 10.1.2 and 10.1.3) and

one sufficient (theorem 10.2.2) are proved for Cϕ to have closed range on the

space BMOA.
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The chapter 11 doesn’t contain any new result. We just show that an

already known proof of Akeroyd and Fulmer (2008) for Cϕ to have closed

range on Bergman space A2 works, with few modifications, for the weighted

Bergman spaces Ap (1 ≤ p < ∞, γ > −1).
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Part I

Background and Preliminaries
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Chapter 2

Background

The basic notation, some definitions, as well as many background results

which will widely be used throughout this thesis, are included in this chapter.

Let T denote the unit circle, A the normalized area Lebesgue measure in

the open unit disk D and m the normalized length Lebesgue measure in T.

Let ρ(z, w) denote the pseudohyberbolic distance between z, w ∈ D,

ρ(z, w) =
∣∣∣ z− w
1− zw

∣∣∣ (2.1)

and Dη(a) denote the pseudohyberbolic disk of center a ∈ D and radius

η < 1:

Dη(a) = {z ∈ D : ρ(a, z) < η}.

Also, in the following, C denotes a positive and finite constant which may

change from one occurrence to another.

2.1 Spaces of analytic functions

Next, we present the definitions and the norms of all analytic function spaces

which are mentioned in this work.
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2.1.1 The Hardy spaces

For 0 < p < ∞ the Hardy space Hp is defined as the set of all analytic

functions f in D for which

sup
0≤r<1

∫
T

| f (rζ)|pdm(ζ) < +∞

and the corresponding norm in Hp is defined by

‖ f ‖p
Hp = sup

0≤r<1

∫
T

| f (rζ)|pdm(ζ). (2.2)

When p = ∞, we define H∞ to be the space of bounded analytic functions f

in D and

‖ f ‖∞ = sup{| f (z)| : z ∈ D}.

Let ζ ∈ T. Every f ∈ Hp, 0 < p < ∞, can be extended to the boundary of

the unit disk D by taking the limit

f (ζ) = lim
r→1−

f (rζ), (2.3)

since it is well known that this limit exists for m− a.e. ζ ∈ T. In addition, we

have that ‖ f ‖Lp(T) = ‖ f ‖Hp holds.

Another norm in Hp, equivalent to the norm of relation (2.2), is

‖ f ‖p
Hp =

∫
T

| f (ζ)|pdm(ζ). (2.4)

In this work we will mainly make use of two other equivalent norms in Hp.

The first one is (see Calderon’s theorem in [40], page 213):

‖ f ‖p
Hp = | f (0)|p +

∫
T

( ∫∫
Γβ(ζ)

| f ′(z)|2dA(z)
) p

2
dm(ζ), (2.5)
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where Γβ(ζ) is the Stolz angle at ζ ∈ T, the conelike region with aperture

β ∈ (0, 1), which is defined as

Γβ(ζ) = {z ∈ D : |z| < β} ∪
⋃
|z|<β

[z, ζ)

and the second one (see Hardy-Stein identities in [40], pages 58-59) is:

‖ f ‖p
Hp = | f (0)|p +

∫∫
D

| f (z)|p−2| f ′(z)|2 log
1
|z|dA(z). (2.6)

In order to gain deeper knowledge about the Hardy spaces see [19], [24], [29]

and [43].

2.1.2 The Bergman spaces and the weighted Bergman spaces

For 1 ≤ p < ∞ the Bergman space Ap is defined as the set of all analytic

functions f in D for which

∫∫
D

| f (z)|pdA(z) < +∞ (2.7)

and the corresponding norm in Ap is defined by

‖ f ‖p
Ap =

∫∫
D

| f (z)|pdA(z).

In this work we will mainly use the following equivalent norm

‖ f ‖p
Ap = | f (0)|p +

∫∫
D

| f ′(z)|p(1− |z|2)pdA(z). (2.8)

The weighted Bergman space Ap
γ, γ > −1, is defined as the set of all analytic

functions f in D such that

∫∫
D

| f (z)|p(1− |z|2)γdA(z) < ∞.
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Observe that Bergman spaces as defined in (2.7) are the special case of weighted

Bergman spaces Ap
γ, when γ = 0.

The following theorem, regarding Ap
γ spaces, is proved in [51] (Theorem

4.28).

Theorem 2.1.1. Suppose p > 0, n ≥ 1, and f analytic function in D. Then,

f ∈ Ap
γ, γ > −1 if and only if the function

g(z) = (1− |z|2)n f (n)(z)

satisfies the condition

∫∫
D

|g(z)|p(1− |z|2)γdA(z) < ∞.

According to the proof of theorem 2.1.1, we can define in the weighted

Bergman spaces Ap
γ the following equivalent norm

‖ f ‖p
Ap

γ
= | f (0)|p +

∫∫
D

| f ′(z)|p(1− |z|2)p+γdA(z). (2.9)

For more information about the Bergman spaces and the weighted Bergman

spaces see [18] and [51].

2.1.3 The BMOA space

Let’s suppose that f ∈ L1(T), I is an interval contained in T and by |I| we

denote the length of I. Then, the mean of f over I is defined as

f I =
1
|I|

∫
I

f (ζ)dm(ζ)

and the function f is said to have bounded mean oscillation if

sup
I

1
|I|

∫
I
| f (ζ)− f I |dm(ζ) < ∞.
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The space of all functions f ∈ L1(T) that have bounded mean oscillation is

called BMO(T) and the corresponding norm is given by

‖ f ‖∗ = sup
I

1
|I|

∫
I
| f (ζ)− f I |dm(ζ). (2.10)

Let z ∈ D, ζ ∈ T. The Poisson kernel is defined as

Pz(ζ) =
1− |z|2
|1− zζ|2 (2.11)

and, if f ∈ L1(T), the Poisson integral of f ,

P[ f ](z) =
∫
T

f (ζ)Pz(ζ)dm(ζ). (2.12)

The BMOA space, the space of analytic functions of bounded mean oscil-

lation, is the set of all analytic functions f in D which are Poisson integrals

of functions that belongs to BMO. An equivalent definition is that BMOA is

the space of analytic functions f in D for which

sup
β∈D

∫∫
D

1− |β|2

|1− βz|2
| f ′(z)|2 log

1
|z|dA(z) < ∞

and we may consider the corresponding norm in BMOA given by

‖ f ‖2
∗ = | f (0)|2 + sup

β∈D

∫∫
D

1− |β|2

|1− βz|2
| f ′(z)|2 log

1
|z|dA(z),

which is equivalent to the norm in (2.10).

It’s true that BMOA ⊂ ⋂
p>0 Hp and, considering the extension of f ∈

BMOA to the boundary of the disk, we can also get the following equivalent

norms:

‖ f ‖2
∗ = sup

β∈D

∫
T

| f ◦ ψβ(ζ)− f (β)|2dm(ζ) (2.13)
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and

‖ f ‖2
∗ = sup

β∈D

∫
T

| f (ζ)− f (β)|2Pβ(ζ)dm(ζ), (2.14)

where

ψβ(ζ) =
β− ζ

1− βζ
, ζ ∈ T, β ∈ D.

For more details about the BMOA space see [24], [25], [43] and [51].

2.1.4 The Besov spaces and the Besov type spaces

For 1 < p < ∞ the Besov space Bp is defined as the set of all analytic func-

tions f in D for which

∫∫
D

| f ′(z)|p(1− |z|2)p−2dA(z) < +∞

and the corresponding norm in Bp is defined by

‖ f ‖p
Bp = | f (0)|p +

∫∫
D

| f ′(z)|p(1− |z|2)p−2dA(z).

If p > 1 and α > −1 the Besov type space Bp,α is defined as the set of all

analytic functions f in D for which

∫∫
D

| f ′(z)|p(1− |z|2)αdA(z) < +∞.

In fact, if p > 1 and α = p− 2 then, the Besov type space Bp,p−2 is just the

Besov space Bp. For more information about the Besov spaces see [30], [48],

[51] and [52].

2.1.5 The Dirichlet space

The Dirichlet space is, in fact, the special case of the Besov spaces when p = 2.

So, the Dirichlet space D is defined as the set of all analytic functions f in D
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for which ∫∫
D

| f ′(z)|2dA(z) < +∞

and the corresponding norm in D is defined by

‖ f ‖2
D = | f (0)|2 +

∫∫
D

| f ′(z)|2dA(z).

In order to gain deeper knowledge about the Dirichlet space see [9] and [20].

2.1.6 The Bloch space

The Bloch space B is defined as the set of all analytic functions f in D for

which

sup
|z|<1

(1− |z|2)| f ′(z)| < +∞

and the corresponding norm in B is defined by

‖ f ‖B = | f (0)|+ sup
|z|<1

(1− |z|2)| f ′(z)|.

For more information on Bloch space see [30], [48] and [51].

2.1.7 The Qp spaces

For 0 ≤ p < ∞ the Qp space is defined as the set of all analytic functions f in

D for which

sup
β∈D

∫∫
D

(1− |β|2)p

|1− βz|2p
| f ′(z)|2(1− |z|2)pdA(z) < ∞

and we may define the corresponding norm in Qp space by

‖ f ‖2
Qp

= | f (0)|2 + sup
β∈D

∫∫
D

(1− |β|2)p

|1− βz|2p
| f ′(z)|2(1− |z|2)pdA(z).
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It’s clear that Q0 = D, the Dirichlet space, and also, Q1 = BMOA. If p ∈

(1,+∞) then Qp = B, the Bloch space with an equivalent norm, see [50]

(Corollary 1.2.1). For more details and results about the Qp spaces see [50].

2.2 The Schwarz’s and the Pick-Schwarz’s lemmas

The Schwarz’s and Pick-Schwarz’s lemmas are included in every classical

book of Complex Analysis and, in addition, are two powerful and very useful

tools in the study of many subjects in Analysis and, in particular, in the study

of composition operators.

Lemma 2.2.1 (Schwarz). Let ϕ analytic on D, ϕ(0) = 0 and |ϕ(z)| ≤ 1 for all

z ∈ D. Then we have that

• |ϕ(z)| ≤ |z|, for all z ∈ D and

• |ϕ′(0)| ≤ 1.

The so-called Pick-Schwarz’s lemma is a generalization of Schwarz’s lemma.

Lemma 2.2.2 (Pick-Schwarz). Let ϕ : D → D analytic. Then for all α ∈ D and

for all z ∈ D we have that

•
∣∣∣ ϕ(z)−ϕ(α)

1−ϕ(α)ϕ(z)

∣∣∣ ≤ ∣∣∣ z−α
1−αz

∣∣∣ and

• |ϕ′(α)| ≤ 1−|ϕ(α)|2
1−|α|2 .

2.3 Inner functions

Definition 2.3.1. Inner function is called an analytic function g ∈ H∞ with

‖g‖∞ = 1 and |g(z)| = 1 m− a.e. z ∈ T.

In this definition, we have considered that g is extended to the boundary

of the unit disk according to the relation (2.3).
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Special cases of inner functions are the Blaschke products. The Möbius

transformations, a special category of Blaschke products, are the conformal

mappings of the open unit disk to itself and have the form

ψα(z) = λ
α− z

1− αz
, (2.15)

where |λ| = 1 and α ∈ D. Some basic properties of Möbius transforma-

tions, which can easily be proved, are ψα(0) = α, ψα(α) = 0 and ψ−1
α = ψα.

Moreover, we have ψα(D) = D, ψα(T) = T and the following very useful

identity.

1− |ψα(z)|2 =
(1− |z|2)(1− |α|2)

|1− αz|2 . (2.16)

Also ψα is an isometry with respect to pseudohyperbolic metric ρ (defined in

(2.1))

ρ(ψα(z), ψα(w)) = ρ(z, w).

A Blaschke product is defined as the infinite product

B(z) = zm
∞

∏
n=1

an

|an|
an − z

1− anz
, (2.17)

where m ≥ 0 and {an} is a non-vanishing sequence satisfying

∞

∑
n=1

(1− |an|) < ∞.

Some worth mentioning properties of Blaschke products are:

• B(z) ∈ H∞

• If m = 0 then, the zeros of B(z), are exactly the terms of sequence {an},

while if m > 0, the zeros of B(z) are the elements of the set {0} ∪ {an}.

• ‖B‖∞ = 1 and |B(ζ)| = 1 m− a.e. ζ ∈ T.
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2.4 The Nevanlinna counting function

A powerful tool in the study of composition operators is the Nevanlinna

counting function. If ϕ : D → D is a non-constant analytic function, then,

the Nevanlinna counting function Nϕ is defined as

Nϕ(w) =


∑

ϕ(z)=w
log 1

|z| , if w ∈ ϕ(D) \ {ϕ(0)}

0, otherwise.

(2.18)

Very useful are the estimates for Nϕ listed in the following lemma, which is

proved in [44] (page 188).

Lemma 2.4.1. Let ϕ : D→ D analytic. Then

• Nϕ(w) = O
(

log 1
|w|

)
, when |w| → 1.

• If ϕ(0) = 0 then Nϕ(w) ≤ log 1
|w| for all w ∈ D.

Another counting function, associated to ϕ, is nϕ, which is defined as

nϕ(w) = card{z ∈ D : ϕ(z) = w}.

Actually, the value of nϕ(w) is exactly the number of pre-images {ϕ−1(w)}

of w.

2.5 Change of variable

We mention below two change of variable formulas w = ϕ(z) in integrals’

calculation, when ϕ is not 1-1 (non-univalent change of variable). A proof for

the first proposition can be found in [51] (page 307).
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Proposition 2.5.1. Let ϕ : D→ D analytic. If g is a measurable positive function

on D then:

∫∫
D

g(ϕ(z))|ϕ′(z)|2 log
1
|z|dA(z) =

∫∫
D

g(w)Nϕ(w)dA(w).

The second proposition, which is proved in [16] (page 36), is a generaliza-

tion of the previous one.

Proposition 2.5.2. Let ϕ : D → D analytic. If g and W are measurable non-

negative functions on D then:

∫∫
D

g(ϕ(z))|ϕ′(z)|2W(z)dA(z) =
∫∫

ϕ(D)

g(w)
(

∑
z:ϕ(z)=w

W(z)
)

dA(w).

2.6 Comparable quantities

By writing K(z) � L(z) for the non-negative quantities K(z) and L(z) we

mean that K(z) is comparable to L(z) if z belongs to a specific set: there are

positive constants C1 and C2 independent of z such that

C1K(z) ≤ L(z) ≤ C2K(z).

Next, we list some relations concerning comparable quantities, which will be

widely used in the rest of this work.

Let α ∈ D and η ∈ (0, 1). If z ∈ Dη(α) then, the relations

1− |z|2 � 1− |α|2 � |1− αz|, (2.19)

and

A(Dη(α)) � (1− |α|2)2, (2.20)

hold and all the underlying constants depend only on η. For a proof of (2.19)

and (2.20), see [51] (proposition 4.5).
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Another widely used relation is the following. It holds that

log
1
|z| � 1− |z|2, (2.21)

when 0 < δ ≤ |z| < 1, where δ is fixed but arbitrary.

Let E(z0; r) denote the euclidean disk of center z0 ∈ D and radius r <

1− |z0|:

E(z0; r) = {z ∈ D : |z− z0| < r}. (2.22)

Using (2.21) we can prove the following proposition.

Proposition 2.6.1. For every analytic function f on D,

∫∫
D

| f (z)| log
1
|z|dA(z) �

∫∫
D

| f (z)|(1− |z|2)dA(z). (2.23)

Proof. It is well known that,

1− |z|2 ≤ log
1
|z| ,

for z ∈ D \ {0}. So, clearly, we have

∫∫
D

| f (z)|(1− |z|2)dA(z) ≤
∫∫
D

| f (z)| log
1
|z|dA(z). (2.24)

Suppose |z| ≤ 1
4 . Using (2.21) with fixed δ = 1

4 and, because of the subhar-

monicity of | f | and the fact that 1− |w|2 ≥ 1
2 when w ∈ E(z; 1

4), we get

| f (z)| ≤ 2
A(E(z; 1

4))

∫∫
E(z; 1

4 )

| f (w)|(1− |w|2)dA(w)

= C
∫∫

E(z; 1
4 )

| f (w)|(1− |w|2)dA(w)

≤ C
∫∫
D

| f (w)|(1− |w|2)dA(w).
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Hence, for z ∈ E(0; 1
4), we have

| f (z)| log
1
|z| ≤ C log

1
|z|

∫∫
D

| f (w)|(1− |w|2)dA(w)

and

∫∫
E(0; 1

4 )

| f (z)| log
1
|z|dA(z) ≤ C

∫∫
E(0; 1

4 )

log
1
|z|

∫∫
D

| f (w)|(1− |w|2)dA(w)dA(z).

(2.25)

Using polar coordinates we can easily see that

∫∫
E(0; 1

4 )

log
1
|z|dA(z) = C < ∞,

so, from (2.25), we get

∫∫
E(0; 1

4 )

| f (z)| log
1
|z|dA(z) ≤ C

∫∫
D

| f (w)|(1− |w|2)dA(w). (2.26)

From (2.21) we have that there exists C0 > 0 such that

log
1
|w| ≤ C0(1− |w|2) (2.27)

when w ∈ D \ E(0; 1
4). Therefore

∫∫
D\E(0; 1

4 )

| f (z)| log
1
|z|dA(z) ≤ C

∫∫
D

| f (w)|(1− |w|2)dA(w). (2.28)

From (2.26) and (2.28) we get

∫∫
D

| f (z)| log
1
|z|dA(z) ≤ C

∫∫
D

| f (w)|(1− |w|2)dA(w). (2.29)

Finally, from (2.24) and (2.29), we have the desired result.
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Let β ∈ D and f analytic on D. Using (2.23), with the analytic on D

function hβ(z) =
1−|β|2
(1−βz)2 f ′(z)2, we have the following:

Proposition 2.6.2. For β ∈ D and for every analytic function f on D,

∫∫
D

1− |β|2

|1− βz|2
| f ′(z)|2 log

1
|z|dA(z) �

∫∫
D

1− |β|2

|1− βz|2
| f ′(z)|2(1− |z|2)dA(z).

2.7 The Alexandrov - Clark measures

Alexandrov - Clark measures provide us important information regarding

the behaviour of an analytic function ϕ : D → D on the boundary of the

unit disk and they proved to be useful tools for the study of composition

operators. More results and details for Alexandrov - Clark measures can be

found in [14] (chapter 9). The definition of Alexandrov - Clark measures is

based on a well-known theorem of Herglotz (see [19], pages 3-4).

Theorem 2.7.1 (Herglotz). If u is a non-negative harmonic function on D, then

there exists a unique positive Borel measure µ such that

u(z) =
∫
T

1− |z|2
|ζ − z|2 dµ(ζ).

The integral in the last relation is called Poisson integral of measure µ.

Now, if ϕ : D→ D is an analytic function and α ∈ T, then the function

<
(α + ϕ(z)

α− ϕ(z)

)
=

1− |ϕ(z)|2
|α− ϕ(z)|2

is positive and harmonic in D and from Herglotz’s theorem we have

1− |ϕ(z)|2
|α− ϕ(z)|2 =

∫
T

1− |z|2
|ζ − z|2 dµα(ζ)
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for a unique Borel measure µα in T. The measures µα, α ∈ T, are called

Alexandrov-Clark measures. Now we have the Lebesgue decomposition

dµα = hαdm + dµs
α, hα ∈ L1(T), µs

α ⊥ m.

It is well known (see [14], pages 204-208) that the total variation of µα is given

by

‖µα‖ =
1− |ϕ(0)|2
|α− ϕ(0)|2 , (2.30)

that the absolutely continuous part hαdm is carried by the set {ζ ∈ T :

|ϕ(ζ)| < 1},

hα(ζ) =
1− |ϕ(ζ)|2
|α− ϕ(ζ)|2 (2.31)

and that the singular part dµs
α is carried by the set {ζ ∈ T : ϕ(ζ) = α}. From

(2.30) and (2.31), we see that

‖µs
α‖ = ‖µα‖ −

∫
T

hα(ζ)dm(ζ)

=
1− |ϕ(0)|2
|α− ϕ(0)|2 −

∫
T

1− |ϕ(ζ)|2
|α− ϕ(ζ)|2 dm(ζ). (2.32)

A useful result for the study of closed rangeness of composition operators is

that of proposition 2.7.2 which is proved in [13].

Proposition 2.7.2. Let ϕ : D→ D analytic and α ∈ T. Then

‖µs
α‖ = lim

r→1−
‖CϕKrα‖2

H2

where {Kλ}λ∈D are the functions of reproducing kernel in H2 defined in (3.6).

The result which connects the Alexandrov-Clark measures with Cϕ hav-

ing closed range is a proposition due to K. Luery in [35] (page 56). If we

extend ϕ on T as ϕ(ζ) = lim
r→1

ϕ(rζ) (this limit exists for m− a.e. ζ ∈ T) and
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define the measure νϕ on Borel E ⊂ T as

νϕ(E) = m(ϕ−1(E)), (2.33)

then, for the Radon-Nikodym derivative dνϕ

dm of measure νϕ with respect to

Lebesgue measure m, we have the following result.

Proposition 2.7.3 (Luery). For m-a.e α ∈ T,

dνϕ

dm
(α) = ‖µs

α‖. (2.34)

More information regarding Alexandrov-Clark measures, as well as their

applications to the study of composition operators, can be found in [13], [14],

[36], [37], [41] and [45].

2.8 Boundedness criteria for integral operators

In [7] (theorem 2.2), a result concerning the boundedness of the integral op-

erator Sg is proved. We restate it here with its proof.

Theorem 2.8.1. Let g be analytic, X, Y be Banach spaces of analytic functions and

let Λz0 be the linear functional on X and Y defined by Λz0 f = f ′(z0) (point eval-

uation of the derivative functional). Let’s suppose that Λz0 is bounded. Then, if Sg

maps X boundedly into Y then

|g(z)| ≤ ‖Sg‖
‖Λz0‖Y

‖Λz0‖X
(2.35)

Proof. For f ∈ X and z0 ∈ D we have

| f ′(z0)||g(z0)| = |Λz0Sg( f )| ≤ ‖Λz0‖Y‖Sg‖‖ f ‖X. (2.36)
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Since sup
‖ f ‖X=1

| f ′(z0)| = ‖Λz0‖X, taking the supremum over ‖ f ‖X = 1 of both

sides of (2.36) gives us

‖Λz0‖X|g(z0)| ≤ ‖Sg‖‖Λz0‖Y,

which is what we had to prove.

A consequence of theorem 2.8.1 is the following corollary (see [7] (corol-

lary 2.3)).

Corollary 2.8.2. If X is a Banach space of analytic functions on which point evalu-

ation of the derivative Λz0 is a bounded linear functional, and Sg is bounded on X,

then g is bounded.
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Chapter 3

Brief history of the research

In this chapter, we mention most of the already published results, concerning

conditions for the integral operators Sg and the composition operators Cϕ,

respectively, to have closed range on some spaces of analytic functions.

3.1 History of the research for integral operators Sg

Anderson, in [7] (Corollary 3.6), formulated the following result, providing

a condition for the operator Sg to have closed range on the quotient space

H2/C (H2 modulo the constants).

Corollary 3.1.1 (Anderson). Let g ∈ H∞ and Gc = {z ∈ D : |g(z)| > c}. Sg

has closed range on H2/C if and only if there exist c > 0, δ > 0 and η ∈ (0, 1)

such that

A(Gc ∩ Dη(α)) ≥ δA(Dη(α)) (3.1)

for all α ∈ D.

If h ∈ [0, 1] and θ0 ∈ [0, 2π] then, we denote Sh,θ0 the so-called Carleson

square, defined as

Sh,θ0 = {reiθ ∈ D : 1− h ≤ r < 1, |θ − θ0| ≤ h}. (3.2)
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Actually, Anderson formulated corollary 3.1.1 using, in (3.1), Carleson squares

Sh,θ instead of pseudohyperbolic disks. It is well known that both these con-

ditions are equivalent.

Let g an analytic function on D. The multiplication operator, induced by

g, is defined as Mg f (z) = f (z)g(z). Apart from corollary 3.1.1, Anderson

proved a more general result (see [7] (theorem 3.9)).

Theorem 3.1.2 (Anderson). The following are equivalent for g ∈ H∞:

(i) g = BF for a finite product B of interpolating Blaschke products and F such

that F, 1
F ∈ H∞.

(ii) Sg is bounded below on B/C (the Bloch space B modulo the constants).

(iii) There exist r < 1 and η > 0 such that for all α ∈ D,

sup
z∈Dr(α)

|g(z)| > η.

(iv) Sg is bounded below on H2/C.

(v) Mg is bounded below on Ap
γ for γ > −1.

(vi) Sg is bounded below on Ap
γ/C for γ > −1 (the weighted Bergman space Ap

γ

modulo the constants).

Earlier, in 1987, the equivalence, between (3.1) and part (i) of theorem

3.1.2, had been proved by Bourdon in [11] (theorem 2.3, corollary 2.5).

3.2 History of the research for composition operators Cϕ

3.2.1 On Hardy spaces

Cima, Thomson and Wogen in [15](1974), characterized the closed rangeness

of composition operator on H2 by a contidion which depends only on the
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behaviour of ϕ in the boundary of the unit disk. They extended the definition

of ϕ in the boundary by

ϕ(ζ) = lim
r→1−

ϕ(rζ), ζ ∈ T.

It is well known that the above limit exists for m − a.e. ζ ∈ T. Then they

defined the measure

ν(E) = A(ϕ−1(E)), E ⊂ T,

where E is a Borel subset of T. The measure ν is absolutely continuous with

respect to the Lebesgue measure A and let dν
dA be the Radon-Nikodym deriva-

tive of ν with respect to A. The result was the following.

Theorem 3.2.1 (Cima, Thomson, Wogen). Cϕ : H2 → H2 has closed range if and

only if the Radon-Nikodym derivative dν
dA of measure ν with respect to A is bounded

below from a positive constant.

Cima, Thomson and Wogen posed the question if a condition for Cϕ to

have closed range could be found depending only on range of ϕ on D rather

than on T. This question was answered by Zorboska in 1994 (for details see

[53]).

She defined the function

τϕ(w) =
Nϕ(w)

log 1
|w|

, w ∈ D, (3.3)

for ε > 0 the set

Gε =
{

w ∈ D : τϕ(w) > ε
}

, (3.4)

and formulated the following result:
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Theorem 3.2.2 (Zorboska). Cϕ : H2 → H2 has closed range if and only if there

are ε > 0, δ > 0 and η ∈ (0, 1) such that, the set Gε to satisfy the condition

A(Gε ∩ Dη(α)) > δA(Dη(α))

for all α ∈ D.

In 2010, Lefèvre, Li, Queffélec and Rondriguez-Piazza (see [31]), proved

another condition (theorem 3.2.3) for the operator Cϕ : Hp → Hp, 1 ≤ p < ∞

to have closed range, using the averages of the Nevanlinna counting function

Nϕ on sets of the form S(ξ, h) = {z ∈ D : |z− ξ| ≤ h}, where h ∈ (0, 1) and

ξ ∈ T.

Theorem 3.2.3 (Lefèvre, Li, Queffélec, Rondriguez-Piazza). Let ϕ : D → D

analytic, non-constant function and 1 ≤ p < ∞. The operator Cϕ : Hp → Hp has

closed range if and only if there is C > 0 such that for h ∈ (0, 1) to have

1
A(S(ξ, h))

∫∫
S(ξ,h)

Nϕ(w)dA(w) ≥ ch

for all ξ ∈ T.

If λ, z ∈ D then, the reproducing kernel in H2 consists of the functions

kλ(z) =
1

1− λz
, (3.5)

where

Kλ =
kλ

‖kλ‖H2
(3.6)

is their normalized companion. These functions are also called Szegő kernel

functions.

In [35](2013), K. Luery, using the functions of reproducing kernel in H2

and Alexandrov-Clark measures (see section 2.7) proved the following theo-

rem, which is a result of Reproducing Kernel Thesis type.
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Theorem 3.2.4 (Luery). Let ϕ : D → D analytic. The operator Cϕ : H2 → H2

has closed range if and only if Cϕ has closed range on the set of normalized Szegő

kernels {Kλ}λ∈D, i.e. there exists C > 0 such that

‖CϕKλ‖H2 ≥ C‖Kλ‖H2 = C,

since ‖Kλ‖H2 � 1. In fact, this result asserts that the property of having

closed range for Cϕ on H2 can be tested just by studying the action of Cϕ on

the functions {Kλ}λ∈D of reproducing kernel in H2.

3.2.2 On Bergman spaces and on weighted Bergman spaces

For ε > 0, we consider the sets

Ωε = {z ∈ D :
(1− |z|2)

1− |ϕ(z)|2 > ε}

and

Gε = ϕ(Ωε). (3.7)

In 2008, Akeroyd and Ghatage proved in [2] the following theorem for Cϕ to

have closed range on A2.

Theorem 3.2.5 (Akeroyd, Ghatage). The operator Cϕ : A2 → A2 has closed

range if and only if there are ε > 0, δ > 0 and η ∈ (0, 1) such that the set Gε to

satisfy the condition

A(Gε ∩ Dη(z)) > δA(Dη(z))

for all z ∈ D.

In 2012, Akeroyd and Fulmer proved in [3] the following theorem regard-

ing the weighted Bergman spaces Ap
α.

Theorem 3.2.6 (Akeroyd, Fulmer). Let α > −1 and 1 ≤ p < ∞. The following

are equivalent:
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• Cϕ : Ap
α → Ap

α has closed range

• There exist ε > 0, δ > 0 and η ∈ (0, 1) such that the set Gε to satisfy the

condition:

A(Gε ∩ Dη(z)) > δA(Dη(z))

for all z ∈ D.

• There are ε > 0, M > 1 and a set U ⊆ Ωε such that

1. ϕ(U) contains an external annulus, which means that there exists r ∈

(0, 1) such that {w ∈ D : r < |w| < 1} ⊆ ϕ(U) and

2. 1
M ≤ |ϕ′(z)| < M, for all z ∈ U.

3.2.3 On BMOA space

In [21], Erdem and Tjani proved a necessary condition and a sufficient condi-

tion for Cϕ : BMOA→ BMOA to have closed range (Theorem 3.2.7) and also

they formulated a characterization for Cϕ to have closed range on Möbius

transformations in BMOA (Theorem 3.2.8). They defined H ⊆ D to be a

sampling set for BMOA if for all f ∈ BMOA

sup
α∈D

∫∫
H

| f ′(z)|2(1− |ψα(z)|2)dA(z) � ‖ f ‖2
∗.

If

Nα,ϕ(w) = ∑
z:ϕ(z)=w

(1− |ψα(w)|2)

then, for ε > 0 and α, α′ ∈ D, they also defined the sets Gε,α as

Gε,α = {w ∈ D : Nα,ϕ(w) > ε(1− |ψα(w)|2)}
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and

Gε,α′,α = {w ∈ D : Nα′,ϕ(w) > ε(1− |ψα(w)|2)}.

Theorem 3.2.7 (Erdem, Tjani). Let ϕ be a non-constant analytic self map of D.

If Cϕ is closed range on BMOA then there exists ε > 0 such that ∪α∈DGε,α is a

sampling set for BMOA. Moreover, if ∩α∈DGε,α is a sampling set for BMOA, then

Cϕ is closed range on BMOA.

Having in mind the simple result that ‖ψα‖∗ � 1, we may proceed to the

following theorem proved in the same paper.

Theorem 3.2.8 (Erdem, Tjani). For each ϕ analytic self map of D, the following

conditions are equivalent.

• There exists k ∈ (0, 1] such that for every α ∈ D, ‖ψα ◦ ϕ‖∗ ≥ k.

• There exists k ∈ (0, 1] such that for every α ∈ D there exists α′ ∈ D and

lim
n→∞
‖ψϕ(αn) ◦ ϕ ◦ ψαn‖H2 ≥ k.

Moreover, in [21], Erdem and Tjani proved a necessary and sufficient con-

dition for Cϕ : B → BMOA to have closed range, where B is the Bloch space

(see 2.1.6).

Theorem 3.2.9 (Erdem, Tjani). Let ϕ be an analytic self-map of D such that Cϕ :

B → BMOA is a bounded operator. Then the composition operator Cϕ : B →

BMOA is closed range if and only if there exists an ε > 0 and r ∈ (0, 1) such that

for all α ∈ D, there exists α′ ∈ D such that

A(Gε,α′,α ∩ Dr(α))

A(Dr(α))
� 1.

3.2.4 On weighted composition operators on Hardy and Bergman spaces

In general, if X is a space of analytic on D functions and h ∈ X then, the

weighted composition operator on X is defined as Wh,ψ f = h(z) f (ψ(z)), z ∈
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D. We observe that if h(z) = 1 for all z ∈ D then, clearly, Wh,ψ coincides with

Cϕ. Next, we formulate two results proved by Chalendar and Partington in

[12], which assert, in the spirit of theorem 3.2.4, that checking the property of

being bounded below (having closed range) for weighted composition oper-

ators on Hardy and Bergman spaces can be tested by their action on a set of

simple test functions, including reproducing kernels.

In [12], if h ∈ Hp (1 ≤ p < ∞) and ψ : D → D analytic, the weighted

composition operator on Hardy spaces is defined as Wh,ψ f = h(z) f (ψ(z)), z ∈

D, and also, the normalized reproducing kernel functions are defined by

l̃w(z) = (1− |w|2)
1
p /(1− wz)

2
p so that ‖l̃w‖Hp � 1 for all w ∈ D. In [12],

Chalendar and Partington proved the following result.

Theorem 3.2.10 (Chalendar, Partington). Let 1 ≤ p < ∞, h ∈ Hp and ψ : D→

D analytic such that the weighted composition operator Wh,ψ is bounded. Then Wh,ψ

is bounded below if and only if there is a constant C > 0 such that ‖Wh,ψ l̃w‖Hp ≥ C

for all w ∈ D.

In the same spirit as in Hardy spaces, if h ∈ Ap (1 ≤ p < ∞) and ψ : D→

D analytic, the weighted composition operator on Bergman spaces is defined

as Wh,ψ f = h(z) f (ψ(z)), z ∈ D, and also, the normalized reproducing kernel

functions are defined by l̃w(z) = (1− |w|2)
2
p /(1− wz)

4
p so that ‖l̃w‖Ap � 1

for all w ∈ D. The result concerning Bergman spaces is the following.

Theorem 3.2.11 (Chalendar, Partington). Let 1 ≤ p < ∞, h ∈ Ap and ψ :

D → D analytic such that the weighted composition operator Wh,ψ : Ap → Ap is

bounded. Then Wh,ψ is bounded below on Ap if and only if there is a constant C > 0

such that ‖Wh,ψ l̃w‖Ap ≥ C for all w ∈ D.

3.2.5 On Dirichlet space

In [28] (1997), Jovovic and MacCluer studied the problem of finding condi-

tions for the operator Cϕ : D → D to have closed range on Dirichlet space
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D. Considering the sets S(ζ, h) =
{

z ∈ D : |z − ζ| < h
}

, where ζ ∈ T

and 0 < h < 1, they formulated a necessary and sufficient condition in case

where there is M > 0 such that nϕ(w) < M for all w ∈ D, which means that

ϕ is of bounded valence.

Theorem 3.2.12 (Jovovic, MacCluer). Let ϕ : D → D analytic, Cϕ : D → D

bounded and suppose that there exists M > 0 such that nϕ(w) < M, for all w ∈ D.

Then Cϕ has closed range if and only if

A(ϕ(D) ∩ S(ζ, h)) ≥ εh2

for all ζ ∈ D, 0 < h < 1.

Moreover, in the same paper, the following neseccary condition is proved.

Theorem 3.2.13 (Jovovic, MacCluer). Let ϕ : D→ D analytic and Cϕ : D → D

bounded. If Cϕ has closed range, then there is ε > 0 such that

∫∫
S(ζ,h)

nϕ(w)dA(w) ≤ Ch2

for all ζ ∈ D, 0 < h < 1.

In [34], D. Luecking proved that condition of theorem 3.2.13 cannot be

sufficient.

3.2.6 On Besov spaces and on Besov type spaces

Main results of this section are due to M. Tjani. Let

Gε,p,α =
{

w ∈ D :
Np,α(w, ϕ)

(1− |w|2)α
> ε
}

and

Ωε,p,α = ϕ−1(Gε,p,α)
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and

Np,α(w, ϕ) = ∑
w=ϕ(z)

|ϕ′(z)|p−2(1− |z|2)α.

M. Tjani, in 2014, (see [49]), proved the following result, which holds under

the assumption that ϕ is of bounded valence, i.e. there is M > 0 such that

nϕ(w) < M for all w ∈ D.

Theorem 3.2.14 (Tjani). Let’s suppose that there exists M > 0 such that nϕ(w) <

M for all w ∈ D and p > 2. Then Cϕ : Bp → Bp has closed range if and only if

there are ε > 0, C > 0 and η ∈ (0, 1) such that

A(Dη(z) ∩ Gε,p,p−2) > CA(Dη(z))

for all z ∈ D.

Moreover, in the same paper, the following result, regarding Besov type

spaces, is proved.

Theorem 3.2.15 (Tjani). Let p > 2 and α > p− 1. The operator Cϕ : Bp,α → Bp,α

has closed range if and only if there are ε > 0, C > 0 and η ∈ (0, 1) such that

A(Dη(z) ∩ Gε,p,α) > CA(Dη(z))

for all z ∈ D.

3.2.7 On Bloch space

In 2005, Akeroyd, Ghatage and Tjani proved in [4] three equivalent condi-

tions for the operator Cϕ : B → B to have closed range. Define

τϕ(z) =
(1− |z|2)ϕ′(z)

1− |ϕ(z)|2 ,

Λε = {z ∈ D : |τϕ(z)| > ε}
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and

Fε = ϕ(Ωε). (3.8)

The following theorem is the result they proved.

Theorem 3.2.16 (Akeroyd, Ghatage, Tjani). The following are equivalent:

• Cϕ : B → B has closed range.

• There exist ε > 0, δ > 0 and η ∈ (0, 1) such that the set Fε to satisfy the

condition:

A(Fε ∩ Dη(z)) > δA(Dη(z))

for all z ∈ D.

• There are ε > 0 and η ∈ (0, 1) such that

Fε ∩ Dη(z) 6= ∅

for all z ∈ D.

• There are C, r, s ∈ (0, 1) such that for every w ∈ D, there exists zw ∈ D

with the property: the function ϕ is 1-1 on the disk Ds(zw) and ϕ(Ds(zw)) ⊆

Dr(w) and A(ϕ(Ds(zw))) ≥ C(1− |w|2)2.
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Part II

Closed Range Integral Operators
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Chapter 4

Closed range integral operators on

Hardy spaces

Hardy spaces Hp and some equivalent norms in these spaces were defined

in section 2.1.1. Let denote Hp/C as Hp
0 .

We recall that the integral operator Sg : Hp
0 → Hp

0 , induced by the analytic

function g : D→ C, is defined as

Sg f (z) =
∫ z

0
f ′(w)g(w)dw, z ∈ D,

for every f ∈ Hp
0 .

In this chapter, we prove a necessary and sufficient condition (theorem

4.1.2) for the integral operator Sg to have closed range on Hardy spaces

Hp
0 , 1 ≤ p < ∞.

4.1 The main result

Let g : D → C be an analytic function and, for c > 0, let Gc = {z ∈ D :

|g(z)| > c}. It is well known (see [7], theorem 2.2, corollary 2.3 and the notes

after corollary 2.3) that the integral operator Sg : Hp → Hp (1 ≤ p < ∞) is

bounded if and only if g ∈ H∞.

We say that Sg, on Hp, is bounded below, if there is C > 0 such that

‖Sg f ‖Hp > C‖ f ‖Hp for every f ∈ Hp. As already mentioned (see chapter 1),
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in order Sg operator to be 1-1, we are obliged to consider it on the quotient

space Hp/C, the space Hp modulo the constants or, equivalently, the space

of analytic functions f ∈ Hp such that f (0) = 0. Theorem 3.2 in [7] states that

Sg is bounded below on Hp/C if and only if it has closed range on Hp/C.

Corollary 3.6 in [7] states that Sg : H2
0 → H2

0 has closed range if and only

if there exist c > 0, δ > 0 and η ∈ (0, 1) such that

A(Gc ∩ Dη(a)) ≥ δA(Dη(a))

for all a ∈ D.

In the end of [7] A. Anderson posed the question, if the above condition

for H2
0 holds also for all Hp

0 . In this paper, theorem 4.1.2 gives an affirmative

answer to this question, for the case 1 ≤ p < ∞. Although the answer in

case p = 2 is an immediate consequence of D. Luecking’s theorem (see [7],

Proposition 3.5), the answer in case 1 ≤ p < ∞ requires much more effort.

In the following by ∆η(α) is denoted the euclidean disk of center α ∈ D

and radius η(1− |α|), η < 1:

∆η(α) = {z ∈ D : |z− α| < η(1− |α|)}.

For λ ∈ (0, 1) and f ∈ Hp we set

Eλ(α) = {z ∈ ∆η(α) : | f ′(z)|2 > λ| f ′(α)|2}

and

Bλ f (α) =
1

A(Eλ(α))

∫∫
Eλ(α)

| f ′(z)|2dA(z).

Lemma 4.1.1 is due to D. Luecking (see [32], lemma 1).



4.1. The main result 41

Lemma 4.1.1. Let f analytic in D, a ∈ D and λ ∈ (0, 1). Then

A(Eλ(α))

A(∆η(α))
≥

log 1
λ

log Bλ f (α)
| f ′(α)|2 + log 1

λ

.

Moreover in [32], the following sentence is proved: If α ∈ D and 2η
1+η2 ≤

r < 1 then

∆η(α) ⊆ Dr(α). (4.1)

We proceed with the main result of this section, which appears in [39]

(Theorem 2.2).

Theorem 4.1.2. Let 1 ≤ p < ∞, g ∈ H∞ and g not be identically equal to zero.

Then the following are equivalent:

(i) Sg : Hp
0 → Hp

0 has closed range

(ii) There exist c > 0, δ > 0 and η ∈ (0, 1) such that

A(Gc ∩ Dη(a)) ≥ δA(Dη(a)) (4.2)

for all a ∈ D.

(iii) There exist c > 0, δ > 0 and η ∈ (0, 1) such that

A(Gc ∩ ∆η(a)) ≥ δA(∆η(a)) (4.3)

for all a ∈ D.

We first prove two lemmas which will play an important role in the proof

of theorem 4.1.2.

For ζ ∈ T and 0 < β < β′ < 1 we consider the Stolz angles Γβ(ζ) and

Γβ′(ζ), where β′ has been chosen so that ∆η(α) ⊂ Γβ′(ζ) for every α ∈ Γβ(ζ).
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Lemma 4.1.3. Let ε > 0, f analytic in D and

A =
{

α ∈ D : | f ′(α)|2 <
ε

A(∆η(α))

∫∫
∆η(α)

| f ′(z)|2dA(z)
}

.

There is C > 0 depending only on η such that

∫∫
A∩Γβ(ζ)

| f ′(z)|2dA(z) ≤ εC
∫∫

Γβ′ (ζ)

| f ′(z)|2dA(z)

Proof. Integrating

| f ′(α)|2 <
ε

A(∆η(α))

∫∫
∆η(α)

| f ′(z)|2dA(z)

over α ∈ A ∩ Γβ(ζ) and using Fubini’s theorem on the right side, we get

∫∫
A∩Γβ(ζ)

| f ′(α)|2dA(α) < ε
∫∫

Γβ′ (ζ)

| f ′(z)|2
[ ∫∫
A∩Γβ(ζ)

χ∆η(α)(z)

A(∆η(α))
dA(α)

]
dA(z)

Using (4.1) with r = 2η
1+η2 , we have χ∆η(α)(z) ≤ χDr(α)(z) = χDr(z)(α). From

(2.19) and (2.20) we have that A(Dr(z)) � (1− |z|)2 and, for α ∈ Dη(z), we

have (1− |z|) � (1− |α|), where the underlying constants in these relations

depend only on η. In addition, A(∆η(α)) = η2(1− |α|)2. So,

∫∫
A∩Γβ(ζ)

χ∆η(α)(z)

A(∆η(α))
dA(α) ≤

∫∫
A∩Γβ(ζ)

χDr(z)(α)

η2(1− |α|)2 dA(α)

≤ C
∫∫

Dr(z)

1
η2(1− |z|)2 dA(α) = C

A(Dr(z))
η2(1− |z|)2 ≤ C,

(4.4)

where C > 0 depends only on η.
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Lemma 4.1.4. Let 0 < ε < 1, f analytic in D, 0 < λ < 1
2 and

B =
{

α ∈ D : | f ′(α)|2 < ε3Bλ f (α)
}

.

There is C > 0 depending only on η such that

∫∫
B∩Γβ(ζ)

| f ′(z)|2dA(z) ≤ εC
∫∫

Γβ′ (ζ)

| f ′(z)|2dA(z)

Proof. We write

∫∫
B∩Γβ(ζ)

| f ′(α)|2dA(α) =
∫∫

B∩Γβ(ζ)∩A

| f ′(α)|2dA(α) +
∫∫

(B∩Γβ(ζ))\A

| f ′(α)|2dA(α),

where A is as in lemma 4.1.3. The first integral is estimated by lemma 4.1.3,

so it remains to show the desired result for the second integral. Integrating

the relation

| f ′(α)|2 < ε3Bλ f (α) = ε3 1
A(Eλ(α))

∫∫
Eλ(α)

| f ′(z)|2dA(z)

over the set (B ∩ Γβ(ζ)) \ A and using Fubini’s theorem on the right side, we

get

∫∫
(B∩Γβ(ζ))\A

| f ′(α)|2dA(α) ≤ ε3
∫∫

Γβ′ (ζ)

| f ′(z)|2
[ ∫∫
(B∩Γβ(ζ))\A

1
A(Eλ(α))

χEλ(α)
(z)dA(α)

]
dA(z)

≤ ε3
∫∫

Γβ′ (ζ)

| f ′(z)|2
[ ∫∫
(B∩Γβ(ζ))\A

1
A(Eλ(α))

χ∆η(α)(z)dA(α)
]
dA(z)

(4.5)

where the last inequality is justified by Eλ(α) ⊆ ∆η(α). Let α 6∈ A, i.e.

| f ′(α)|2 ≥ ε

A(∆η(α))

∫∫
∆η(α)

| f ′(z)|2dA(z). (4.6)
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Set r = η(1− |α|) and suppose λ < 1
2 and |z− α| < r

4 . We have that

| f ′(z)2 − f ′(α)2| = 1
2π

∣∣∣∣∣
∫

|w−α|= r
2

f ′(w)2

(
1

w− z
− 1

w− α

)
dw

∣∣∣∣∣
=

1
2π

∣∣∣∣∣
∫

|w−α|= r
2

f ′(w)2 z− α

(w− z)(w− α)
dw

∣∣∣∣∣. (4.7)

For |w− α| = r
2 , by the subharmonicity of | f ′|2 we have

| f ′(w)|2 <
1
r2

4

∫∫
|u−w|≤ r

2

| f ′(u)|2dA(u) ≤ C
A(∆η(α))

∫∫
∆η(α)

| f ′(u)|2dA(u).

Since |w− z| > r
4 when |w− α| = r

2 , from (4.7) we get

| f ′(z)2 − f ′(α)2| ≤ C|z− α|
r

1
A(∆η(α))

∫∫
∆η(α)

| f ′(u)|2dA(u).

Since we may assume that C > 2, taking |z− α| < εr
2C , then we have |z− α| <

r
4 and we get

| f ′(z)2 − f ′(α)2| ≤ ε

2A(∆η(α))

∫∫
∆η(α)

| f ′(u)|2dA(u). (4.8)

Combining (4.6) and (4.8), we get

| f ′(z)|2 >
1
2
| f ′(α)|2 > λ| f ′(α)|2.

This means that if ∆′ = {z ∈ D : |z− α| < εr
2C} then ∆′ ⊂ Eλ(α) and

A(Eλ(α)) ≥ A(∆′) =
ε2

4C2 r2 =
ε2

4C2 A(∆η(α)).

We finally use this last inequality in (4.5) and we complete the proof.

Proof of theorem 4.1.2. (ii)⇔ (iii) This is easy and it is proved in [32].

(iii) ⇒ (i) Let α ∈ D \ B, where B is as in lemma 4.1.4, where 0 < ε < 1,
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0 < λ < 1
2 . Then Bλ f (α)

| f ′(α)|2 ≤
1
ε3 and, if we choose λ < ε

6
δ , then, from lemma

4.1.1, we get that

A(Eλ(α))

A(∆η(α))
>

2
δ log 1

ε3

log 1
ε3 +

2
δ log 1

ε3

> 1− δ

2
. (4.9)

Combining (4.3) and (4.9), we get

A(Gc ∩ Eλ(α)) = A(Gc ∩ ∆η(α))− A(Gc ∩ (∆η(α) \ Eλ(α)))

≥ δA(∆η(α))− A(∆η(α) \ Eλ(α))

= δA(∆η(α))− A(∆η(α)) + A(Eλ(α))

≥ δA(∆η(α))− A(∆η(α)) + A(∆η(α))−
δ

2
A(∆η(α))

=
δ

2
A(∆η(α))

Now let f ∈ Hp
0 , ζ ∈ T and α ∈ Γβ(ζ) \ B. Then, using the last relation and

Eλ(α) ⊂ ∆η(α) ⊂ Γβ′(ζ), we get

1
A(∆η(α))

∫∫
Gc∩Γβ′ (ζ)

χ∆η(α)(z)| f
′(z)|2dA(z)

≥ δ

2A(Gc ∩ Eλ(α))

∫∫
Gc∩Eλ(α)

χ∆η(α)(z)| f
′(z)|2dA(z)

=
δ

2A(Gc ∩ Eλ(α))

∫∫
Gc∩Eλ(α)

| f ′(z)|2dA(z) ≥ δλ

2
| f ′(α)|2.

Integrating the last relation over the set Γβ(ζ) \ B and using Fubini’s theorem

on the left side, we have

∫∫
Gc∩Γβ′ (ζ)

| f ′(z)|2
[ ∫∫

Γβ(ζ)\B

χ∆η(α)(z)

A(∆η(α))
dA(α)

]
dA(z) ≥ δλ

2

∫∫
Γβ(ζ)\B

| f ′(α)|2dA(α).

With similar arguments as in relation (4.4), we can show that the integral in

the brackets is bounded above from a constant C > 0 depending only on η.
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So, we have that

∫∫
Gc∩Γβ′ (ζ)

| f ′(z)|2dA(z) ≥ Cδλ

2

∫∫
Γβ(ζ)\B

| f ′(α)|2dA(α)

=
Cδλ

2

∫∫
Γβ(ζ)

| f ′(α)|2dA(α)− Cδλ

2

∫∫
Γβ(ζ)∩B

| f ′(α)|2dA(α).

Because of lemma 4.1.4 we have that

∫∫
Gc∩Γβ′ (ζ)

| f ′(z)|2dA(z) ≥ Cδλ

2

∫∫
Γβ(ζ)

| f ′(α)|2dA(α)− ε
C′δλ

2

∫∫
Γβ′ (ζ)

| f ′(α)|2dA(α)

and so

∫∫
Gc∩Γβ′ (ζ)

| f ′(z)|2dA(z) + ε
C′δλ

2

∫∫
Γβ′ (ζ)

| f ′(α)|2dA(α) ≥ Cδλ

2

∫∫
Γβ(ζ)

| f ′(α)|2dA(α).

Hence,

( ∫∫
Gc∩Γβ′ (ζ)

| f ′(z)|2dA(z)
) 1

2
+
(C′εδλ

2

) 1
2
( ∫∫
Γβ′ (ζ)

| f ′(α)|2dA(α)
) 1

2

≥
(Cδλ

2

) 1
2
( ∫∫
Γβ(ζ)

| f ′(α)|2dA(α)
) 1

2
.

Then, we raise the last relation to the p power, so

[( ∫∫
Gc∩Γβ′ (ζ)

| f ′(z)|2dA(z)
) 1

2
+
(C′εδλ

2

∫∫
Γβ′ (ζ)

| f ′(α)|2dA(α)
) 1

2
]p

≥
(Cδλ

2

) p
2
( ∫∫
Γβ(ζ)

| f ′(α)|2dA(α)
) p

2
.
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Integrating both sides of the last relation over T, we obtain

∫
T

[( ∫∫
Gc∩Γβ′ (ζ)

| f ′(z)|2dA(z)
) 1

2
+
(C′εδλ

2

∫∫
Γβ′ (ζ)

| f ′(α)|2dA(α)
) 1

2
]p

dm(ζ)

≥
∫
T

[(Cδλ

2

) 1
2
( ∫∫
Γβ(ζ)

| f ′(α)|2dA(α)
) 1

2
]p

dm(ζ).

Raising last relation to 1
p power and then applying Minkowski’s inequality,

we get

[ ∫
T

( ∫∫
Gc∩Γβ′ (ζ)

| f ′(z)|2dA(z)
) p

2
dm(ζ)

] 1
p
+
(C′εδλ

2

) 1
2
[ ∫

T

( ∫∫
Γβ′ (ζ)

| f ′(α)|2dA(α)
) p

2
dm(ζ)

] 1
p

≥
(Cδλ

2

) 1
2
[ ∫

T

( ∫∫
Γβ(ζ)

| f ′(α)|2dA(α)
) p

2
dm(ζ)

] 1
p

and so

[ ∫
T

( ∫∫
Gc∩Γβ′ (ζ)

| f ′(z)|2dA(z)
) p

2
dm(ζ)

] 1
p ≥

(Cδλ

2

) 1
2
[ ∫

T

( ∫∫
Γβ(ζ)

| f ′(α)|2dA(α)
) p

2
dm(ζ)

] 1
p

−
(C′εδλ

2

) 1
2
[ ∫

T

( ∫∫
Γβ′ (ζ)

| f ′(α)|2dA(α)
) p

2
dm(ζ)

] 1
p
.

(4.10)

According to (2.5), both integrals at the right side of (4.10), represent equiva-

lent norms in Hp
0 . Due to the relation between β and β′ there is C′′ > 0 which

depends only on η, such that

[ ∫
T

( ∫∫
Γβ′ (ζ)

| f ′(α)|2dA(α)
) p

2
dm(ζ)

] 1
p ≤ C′′

[ ∫
T

( ∫∫
Γβ(ζ)

| f ′(α)|2dA(α)
) p

2
dm(ζ)

] 1
p
.

(4.11)
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Combining relations (4.10) and (4.11), we get

[ ∫
T

[( ∫∫
Gc∩Γβ′ (ζ)

| f ′(z)|2dA(z)
) p

2
dm(ζ)

] 1
p ≥

(Cδλ

2

) 1
2
[ ∫

T

( ∫∫
Γβ(ζ)

| f ′(α)|2dA(α)
) p

2
dm(ζ)

] 1
p

−
(C′εδλ

2

) 1
2
C′′
[ ∫

T

( ∫∫
Γβ(ζ)

| f ′(α)|2dA(α)
) p

2
dm(ζ)

] 1
p

=
(δλ

2

) 1
2
[C

1
2 − ε

1
2 C′

1
2 C′′]‖ f ‖Hp

0
.

Choosing ε small enough so that C− ε
1
2 C′

1
2 C′′ > 0, we have that

[ ∫
T

( ∫∫
Gc∩Γβ′ (ζ)

| f ′(z)|2dA(z)
) p

2
dm(ζ)

] 1
p ≥ C‖ f ‖Hp

0
,

and since Gc = {z ∈ D : |g(z)| > c}, we have

‖Sg f ‖Hp
0
�
[ ∫

T

( ∫∫
Γβ′ (ζ)

|(Sg f (z))′|2dA(z)
) p

2
dm(ζ)

] 1
p

=
[ ∫

T

( ∫∫
Γβ′ (ζ)

| f ′(z)|2|g(z)|2dA(z)
) p

2
dm(ζ)

] 1
p

≥ c
[ ∫

T

( ∫∫
Gc∩Γβ′ (ζ)

| f ′(z)|2dA(z)
) p

2
dm(ζ)

] 1
p ≥ C‖ f ‖Hp

0
.

So the integral operator Sg has closed range.

(i) ⇒ (ii) Let α ∈ D, ζ ∈ T, η ∈ (0, 1) and the arc Iα = {ζ ∈ T : Γ 1
2
(ζ) ∩

Dη(α) 6= ∅}. It’s easy to see that ζ ∈ Iα is equivalent to α ∈ Γη′(ζ), where

η′ depends only on η. In fact, an elementary geometric argument shows that

1− η′ � 1− η, where the underlying constants are absolute.

Set R0 = 1+η′

2 . We continue with the proof by considering two cases for α:

(a) R0 ≤ |α| < 1 and (b) 0 ≤ |α| ≤ R0.
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Case (a) R0 ≤ |α| ≤ 1: At first, we consider the case p > 1. Another

simple geometric argument gives m(Iα) � 1−|α|
(1−η′)

1
2

and hence:

m(Iα) �
1− |α|
(1− η)

1
2

. (4.12)

More specifically, as we can see in figure 4.1, let’s take ζ ∈ T such that

FIGURE 4.1: Geometry for the estimation of arc Iα’s length.

Arg(ζ) = Arg(α) and consider the line tangent to the unit circle at the point,

let E, corresponding to ζ. Then, of course, E is the middle point of arc Iα

and, having in mind that ζ ∈ Iα exactly when α ∈ Γη′(ζ), we can determine

the end point of Iα, let D (corresponding to ζ0 ∈ T), just by requiring that

the boundary segment AD of Γη′(ζ0) (the cone with the dashed boundary

segments) to contain the point B which corresponds to α. Since CE⊥OE and

CA⊥AO we have that ∠AOE = ∠ACE = φ and obviously cos φ = (OA)
(OB) =

η′

|α| , where by (OA) we denote the length of the line segment with end points
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O and A. Since R0 ≤ |α| < 1, we have that

cos φ =
η′

|α| ≥ η′

and

cos φ =
η′

|α| ≤
η′

R0
=

2η′

1 + η′
≤ 2η′.

Hence, cos φ � η′. In addition, we have

sin φ =
(

1− cos2 φ
) 1

2
=
(

1− η′2

|α|2
) 1

2 ≤
(

1− η′
2
) 1

2

and

sin φ =
(

1− cos2 φ
) 1

2
=
(

1− η′2

|α|2
) 1

2 ≥
(

1− η′2

R2
0

) 1
2

=
(R2

0 − η′2

R2
0

) 1
2 ≥

(
R0 − η′

) 1
2
=
(1− η′

2

) 1
2 ≥ 1

2

(
1− η′

2
) 1

2
.

Hence, sin φ �
(

1− η′2
) 1

2
and we have

tan φ � (1− η′2)
1
2

η′
.

But 1
2 ≤ η′ < 1 so, we get

tan φ � (1− η′
2
)

1
2 .

Moreover, in the right triangle 4BEC, we have tan φ = 1−|α|
(EC) . But (EC) �

m(Iα) so, we finally have m(Iα) � 1−|α|
(1−η′2)

1
2

and (4.12) is implied.

If Sg has closed range on Hp
0 then there exists C > 0 such that for every

f ∈ Hp
0 we have

C‖Sg f ‖p
Hp

0
≥ ‖ f ‖p

Hp
0
. (4.13)
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Let

ψα(z) =
α− z

1− αz
.

From lemma A.0.1 in Appendix A we have that ‖ψα − α‖p
Hp � (1− |α|).

Setting f = ψα − α in (4.13) and using (x + y)p ≤ 2p−1(xp + yp), we get

1− |α| ≤ C‖Sg(ψα − α)‖p
Hp

0
= C

∫
T

( ∫∫
Γ 1

2
(ζ)

|ψ′α(z)|2|g(z)|2dA(z)
) p

2
dm(ζ)

≤ C
∫
Iα

( ∫∫
Γ 1

2
(ζ)∩Gc∩Dη(α)

|ψ′α(z)|2|g(z)|2dA(z)
) p

2
dm(ζ)

+ C
∫
Iα

( ∫∫
Γ 1

2
(ζ)∩(Dη(α)\Gc)

|ψ′α(z)|2|g(z)|2dA(z)
) p

2
dm(ζ)

+ C
∫
Iα

( ∫∫
Γ 1

2
(ζ)\Dη(α)

|ψ′α(z)|2|g(z)|2dA(z)
) p

2
dm(ζ)

+ C
∫

T\Iα

( ∫∫
Γ 1

2
(ζ)

|ψ′α(z)|2|g(z)|2dA(z)
) p

2
dm(ζ)

= C(I1 + I2 + I3 + I4). (4.14)

Using A(Dη(α)) =
(1−|α|2)2

(1−η2|α|2)2 η2 ≤ (1−|α|2)2

(1−η2)2 , we get

I1 ≤ ‖g‖
p
∞

∫
Iα

( ∫∫
Gc∩Dη(α)

(1− |α|2)2

|1− αz|4 dA(z)
) p

2
dm(ζ)

≤ ‖g‖p
∞m(Iα)

(A(Gc ∩ Dη(α))

(1− |α|2)2

) p
2

≤ ‖g‖p
∞m(Iα)

1
(1− η2)p

(A(Gc ∩ Dη(α))

A(Dη(α))

) p
2
.

Using |g(z)| ≤ c in D \ Gc and making the change of variables w = ψα(z),

we get

I2 ≤ cp
∫
Iα

( ∫∫
D

|ψ′α(z)|2dA(z)
) p

2
dm(ζ) = cp

∫
Iα

( ∫∫
D

dA(w)
) p

2
dm(ζ) = cpm(Iα).
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We increase I3 by extending it over D \ Dη(α) and then we make the change

of variables w = ψα(z) to get

I3 ≤ ‖g‖
p
∞

∫
Iα

( ∫∫
D\Dη(0)

dA(w)
) p

2
dm(ζ) = ‖g‖p

∞m(Iα)(1− η2)
p
2 .

FIGURE 4.2: Geometry for the estimation of integral I4.

For the estimation of I4 we have first to estimate
∫∫

Γ 1
2
(ζ)

|ψ′α(z)|2dA(z), when

ζ ∈ T \ Iα. In order the process of estimation to be more clearly understood

and to have a better geometrical notion for the distances involved, we have

to see figure 4.2. Without loss of generality we may assume that α ∈ [R0, 1).

For j ∈ N, j ≥ 2, we define rj = 1− 1
2j and consider the sets Ω1 = E(0; 1

2)

and Ωj = (E(0; rj) \ E(0; rj−1)) ∩ Γ 1
2
(ζ) (disks of the form E(0; r) defined in

(2.22)). Then we have that Γ 1
2
(ζ) =

+∞⋃
j=1

Ωj and A(Ωj) � 1
4j , when j ≥ 1. We

fix zj ∈ Ωj such that Arg(zj) = Arg(ζ). Then, if z ∈ Ωj, we have |1− αz| �
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| 1α − z| � | 1α − zj|. In figure 4.2, we can consider as Ωj the region defined by

the points HJGK and it’s clear that | 1α − zj| = (NM). In addition, we have

(LP) � |1− 1
α | � 1− |α|, (PM) � 1− |zj| � 1

2j and (LN) � |Arg(ζ)|. The

application of the Pythagorean theorem to the right triangle4MLN gives us

(MN)2 = (LN)2 + [(LP) + (PM)]2 and, because of the identity x2 + y2 �

(x + y)2, we finally get (MN) � (LN) + (LP) + (PM), which means that

| 1α − zj| �
∣∣ 1

2j + 1 − |α| + |Arg(ζ)|
∣∣. In all these relations, the underlying

constants are absolute. If ζ ∈ T \ Iα, then a 6∈ Γ 1
2
(ζ) which means that 1−

|α| < |Arg(ζ)|, so we have that | 1α − zj| �
∣∣ 1

2j + |Arg(ζ)|
∣∣. There is some j0 so

that 1
2j0
≤ |Arg(ζ)| ≤ 1

2j0−1 . For j < j0 we have |Arg(ζ)| < 1
2j which implies

that | 1α − zj| � 1
2j and for j > j0 we have |Arg(ζ)| > 1

2j which implies that

| 1α − zj| � |Arg(ζ)|. Therefore

∫∫
Γ 1

2
(ζ)

|ψ′α(z)|2dA(z) =
∫∫
Ω1

(1− |α|2)2

|1− αz|4 dA(z) +
+∞

∑
j=2

∫∫
Ωj

(1− |α|2)2

|1− αz|4 dA(z)

� (1− |α|2)2 +
j0

∑
j=2

∫∫
Ωj

(1− |α|2)2

| 1α − zj|4
dA(z) +

+∞

∑
j=j0

∫∫
Ωj

(1− |α|2)2

| 1α − zj|4
dA(z)

� (1− |α|2)2 +
j0

∑
j=2

A(Ωj)(1− |α|2)2(2j)4 +
+∞

∑
j=j0

A(Ωj)
(1− |α|2)2

|Arg(ζ)|4

� (1− |α|2)2 + (1− |α|2)2
j0

∑
j=2

1
4j 16j +

(1− |α|2)2

|Arg(ζ)|4
+∞

∑
j=j0

1
4j .

But ∑
j0
j=2 4j � 4j0 � 1

|Arg(ζ)|2 and ∑+∞
j=j0

1
4j � 1

4j0
� |Arg(ζ)|2. Therefore

∫∫
Γ 1

2
(ζ)

|ψ′α(z)|2dA(z) � (1− |α|2)2 +
(1− |α|2)2

|Arg(ζ)|2 . (4.15)

Since α is positive, there is φ0 such that T \ Iα = [φ0, 2π − φ0] (see figure 4.2)

and φ0 � m(Iα). Therefore

I4 ≤ C‖g‖p
∞

∫ π

φ0

(1− |α|2)pdφ + C‖g‖p
∞

∫ π

φ0

(1− |α|2)p

φp dφ
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≤ C‖g‖p
∞(1− |α|2)p + C‖g‖p

∞
(1− |α|2)p

φ
p−1
0

≤ C‖g‖p
∞(1− |α|2)p + C‖g‖p

∞
(1− |α|2)p

m(Iα)p−1 .

Substituting the estimates for I1, I2, I3, I4 in (4.14), we get

1− |α| ≤ C
[
‖g‖p

∞m(Iα)
1

(1− η2)p

(A(Gc ∩ Dη(α))

A(Dη(α))

) p
2
+ cpm(Iα)

+ ‖g‖p
∞m(Iα)(1− η2)

p
2 + ‖g‖p

∞(1− |α|2)p + ‖g‖p
∞
(1− |α|2)p

m(Iα)p−1

]
.

Using (4.12) we get

1− |α| ≤ C
[
‖g‖p

∞
1− |α|
(1− η)

1
2

1
(1− η2)p

(A(Gc ∩ Dη(α))

A(Dη(α))

) p
2

+ cp 1− |α|
(1− η)

1
2
+ ‖g‖p

∞
1− |α|
(1− η)

1
2
(1− η2)

p
2

+ ‖g‖p
∞(1− |α|2)(1− η2)p−1 + ‖g‖p

∞(1− |α|2)(1− η)
p−1

2

]
.

Thus

C ≤ ‖g‖p
∞

1

(1− η)
2p+1

2

(A(Gc ∩ Dη(α))

A(Dη(α))

) p
2
+

cp

(1− η)
1
2

+ ‖g‖p
∞(1− η)

p−1
2 + ‖g‖p

∞(1− η)p−1 + ‖g‖p
∞(1− η)

p−1
2 .

Choose η close enough to 1 so that ‖g‖p
∞(1− η)

p−1
2 + ‖g‖p

∞(1− η)p−1 + ‖g‖p
∞(1−

η)
p−1

2 < C
4 and then set Cη = (1− η)

1
2 . We have that

3C
4
≤ ‖g‖

p
∞

C2p+1
η

(A(Gc ∩ Dη(α))

A(Dη(α))

) p
2
+

cp

Cη
.

Choose c small enough so that cp

Cη
< C

4 . Then

C
2
≤ ‖g‖

p
∞

C2p+1
η

(A(Gc ∩ Dη(α))

A(Dη(α))

) p
2
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and finally

(CC2p+1
η

2‖g‖p
∞

) 2
p ≤

A(Gc ∩ Dη(α))

A(Dη(α))

or

A(Gc ∩ Dη(α)) ≥ δA(Dη(α)),

for every α with R0 ≤ |α| < 1.

Now, we consider the case p = 1. Let α ∈ D and the functions

fα(z) =
(1− |α|2)2

3α(1− αz)3 −
(1− |α|2)2

3α
.

Obviously fα ∈ H1
0 . We define the sets Jα = {ζ ∈ T : α ∈ Γ 1

2
(ζ)} and it’s

clear that m(Jα) � 1− |α|. Then we consider the integral

I =
∫

T\Jα

( ∫∫
Γ 1

2
(ζ)

| f ′α(z)|2dA(z)
) 1

2
dm(ζ).

If ζ ∈ T \ Jα then α 6∈ Γ 1
2
(ζ). Using similar arguments as in the proof of (4.15),

we get

∫∫
Γ 1

2
(ζ)

| f ′α(z)|2dA(z) =
∫∫

Γ 1
2
(ζ)

(1− |α|2)4

|1− αz|8 dA(z) � (1− |α|2)4 +
(1− |α|2)4

|Arg(ζ)|6 ,

hence

I �
∫ π

1−|α|

(1− |α|2)2

φ3 dφ � 1. (4.16)

If F ∈ H1
0 , from lemma B.0.1 in appendix B it follows that there exists C′′ > 0

such that

‖F‖H1
0
≤ C′′

∫∫
D

|F′(z)|dA(z). (4.17)
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Sg has been supposed to have closed range, so there exists C′ > 0 such that

‖ fα‖H1
0
≤ C′‖Sg fα‖H1

0
and using (4.16) and (4.17) (with F = Sg fα), we get

0 < C0 ≤ I ≤ ‖ fα‖H1
0
≤ C′‖Sg fα‖H1

0
≤ C′C′′

∫∫
D

|(Sg fα)
′(z)|dA(z).

Hence, observing that | f ′α(z)| = |ψ′α(z)|2, we have

C1 ≤
∫∫
D

|(Sg fα)
′(z)|dA(z) =

∫∫
D

|ψ′α(z)|2|g(z)|dA(z) (4.18)

≤ ‖g‖∞

∫∫
Gc∩Dη(α)

(1− |α|2)2

|1− αz|4 dA(z) + c
∫∫

Dη(α)\Gc

|ψ′α(z)|2dA(z)

+ ‖g‖∞

∫∫
D\Dη(α)

|ψ′α(z)|2dA(z)

≤ ‖g‖∞

∫∫
Gc∩Dη(α)

1
(1− |α|2)2 dA(z) + c

∫∫
D

|ψ′α(z)|2dA(z) + ‖g‖∞

∫∫
D\Dη(0)

dA(w)

≤ ‖g‖∞

(1− η2)2

A(Gc ∩ Dη(α))

A(Dη(α))
+ c

∫∫
D

dA(w) + ‖g‖∞ A(D \ Dη(0))

≤ C2

[ ‖g‖∞

(1− η2)2

A(Gc ∩ Dη(α))

A(Dη(α))
+ c + ‖g‖∞(1− η)

]
.

Choosing c close enough to 0 and η close enough to 1 we get

A(Gc ∩ Dη(α)) ≥
C
‖g‖∞

A(Dη(α)) = δA(Dη(α)).

Case (b) 0 ≤ |α| ≤ R0: There exists η1, depending only on η, such that

Dη(R0) ⊆ Dη1(0). Take α′ so that |α′| = R0 and Arg(α′) = Arg(α). Then

Dη(α′) ⊆ Dη1(α). Set η2 = max{η, η1}. Then from case (a) for α′ we have

A(Gc ∩ Dη2(α)) ≥ A(Gc ∩ Dη1(α)) ≥ A(Gc ∩ Dη(α
′))

≥ δA(Dη(α
′)) ≥ CδA(Dη1(α)) ≥ CδA(Dη2(α)), (4.19)

where the constants C > 0 depend only on η.
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Moreover, when R0 ≤ |α| < 1, we have

A(Gc ∩ Dη2(α)) ≥ A(Gc ∩ Dη(α)) ≥ δA(Dη(α)) ≥ CδA(Dη2(α)),

where the constant C > 0 depends only on η. So, we have proved that there

are η2 ∈ (0, 1), c > 0 and C > 0 such that

A(Gc ∩ Dη2(α)) ≥ CA(Dη2(α)),

for every α ∈ D, which is what we had to prove.
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Chapter 5

Closed range integral operators on

BMOA space

BMOA space and the corresponding equivalent norms in this space were de-

fined in section 2.1.3. Let denote as BMOA0 the space BMOA/C, the space

BMOA modulo the constants. In this chapter, a necessary and sufficient con-

dition (theorem 5.2.1) for the integral operator Sg to have closed range on

BMOA0 space is proved.

5.1 On the boundedness of the integral operator on BMOA

As far as the boundedness of Sg on BMOA0 is concerned, we will prove

proposition 5.1.2 by making use of the following result which is proved in

[51] (proposition 4.13).

Proposition 5.1.1. Suppose p > 0, γ is real and r > 0. Then there exists a positive

constant C such that

| f (z)|p ≤ C
(1− |z|2)2+γ

∫∫
Dr(z)

| f (w)|p(1− |w|2)γdA(w), (5.1)

for all analytic functions f in D and for all z ∈ D.

Proposition 5.1.2. The operator Sg : BMOA0 → BMOA0 is bounded if and only

if g ∈ H∞.
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Proof. Let z0 ∈ D, f ∈ BMOA and suppose that Sg is bounded. The point

evaluation functional of the derivative, on BMOA, induced by z0, is defined

as Λz0 f = f ′(z0), f ∈ BMOA. It is easy to check that Λz0 is bounded on

BMOA.

If z ∈ D 1
2
(z0) then, from (2.19), we have

(1− |z0|2)(1− |z|2)
|1− z0z|2 � 1,

so applying (5.1), for p = 2, γ = 0 and r = 1/2, and using proposition 2.6.2,

we get

|Λz0 f |2 = | f ′(z0)|2 ≤
C

(1− |z0|2)2

∫∫
D 1

2
(z0)

| f ′(z)|2dA(z)

≤ C
(1− |z0|2)2

∫∫
D 1

2
(z0)

(1− |z0|2)(1− |z|2)
|1− z0z|2 | f ′(z)|2dA(z)

≤ C
(1− |z0|2)2

∫∫
D 1

2
(z0)

1− |z0|2
|1− z0z|2 | f

′(z)|2 log
1
|z|dA(z)

≤ C
(1− |z0|2)2

∫∫
D

1− |z0|2
|1− z0z|2 | f

′(z)|2 log
1
|z|dA(z) ≤ C‖ f ‖2

∗,

where the constant C depends only on z0 which is fixed. We proved that

Λz0 is bounded and, in addition, we have supposed that Sg is bounded so,

corollary 2.8.2 implies that g is a bounded function.

For the converse, let’s suppose that g is a bounded function. Then we

have

‖Sg f ‖2
∗ =

∥∥∥ ∫ z

0
f ′(w)g(w)dw

∥∥∥2

∗

= sup
β∈D

∫∫
D

1− |β|2

|1− βz|2
| f ′(z)|2|g(z)|2 log

1
|z|dA(z)

≤ ‖g‖2
∞ sup

β∈D

∫∫
D

1− |β|2

|1− βz|2
| f ′(z)|2 log

1
|z|dA(z)
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≤ ‖g‖2
∞‖ f ‖2

∗.

So Sg is bounded and ‖Sg‖ ≤ ‖g‖∞.

5.2 The main result

In [7], A. Anderson posed the question of finding a necessary and sufficient

condition for the operator Sg to have closed range on BMOA0. Next, we

answer this question, proving that conditions (ii) and (iii) of theorem 4.1.2,

for Hp
0 , are also necessary and sufficient for the integral operator Sg to have

closed range on BMOA0. We consider g ∈ H∞ and set again Gc = {z ∈ D :

|g(z)| > c}.

The following theorem is the main result of this section, which appears in

[39] (Theorem 3.1).

Theorem 5.2.1. Let g ∈ H∞ and g not be identically equal to zero. Then the

following are equivalent:

(i) The operator Sg : BMOA0 → BMOA0 has closed range

(ii) There exist c > 0, δ > 0 and η ∈ (0, 1) such that

A(Gc ∩ Dη(a)) ≥ δA(Dη(a)) (5.2)

for all a ∈ D.

In the proof of theorem 5.2.1, we will make use of a theorem (see [32]) due

to D. Luecking.

Theorem 5.2.2 (Luecking). Let G be a measurable subset of D, 0 < p < +∞ and

γ > −1. The following are equivalent:
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• There exists C > 0 such that

∫∫
G

| f (w)|p(1− |w|2)γdA(w) ≥ C
∫∫
D

| f (w)|p(1− |w|2)γdA(w) (5.3)

for all f ∈ Ap
γ.

• There are δ > 0 and η ∈ (0, 1), such that

A(G ∩ Dη(α)) ≥ δA(Dη(α)) (5.4)

for all α ∈ D.

Proof of theorem 5.2.1. (ii) ⇒ (i) If (5.2) holds then, because of theorem 5.2.2,

(5.3) also holds for G = Gc. For β ∈ D, z ∈ D and f ∈ BMOA0, we consider

the function hβ(z) = (1−|β|2)
1
2

1−βz
f ′(z). Using proposition 2.6.2 it’s easy to see

that if f ∈ BMOA0 then hβ ∈ A2
1. Indeed

‖hβ‖2
A2

1
=
∫∫
D

1− |β|2

|1− βz|2
| f ′(z)|2(1− |z|2)dA(z)

≤ C
∫∫
D

1− |β|2

|1− βz|2
| f ′(z)|2 log

1
|z|dA(z) ≤ ‖ f ‖2

BMOA0
< ∞.

Let β ∈ D. We have that

‖Sg f ‖2
BMOA0

= sup
z0∈D

∫∫
D

1− |z0|2
|1− z0z|2 |(Sg f (z))′|2 log

1
|z|dA(z)

= sup
z0∈D

∫∫
D

1− |z0|2
|1− z0z|2 | f

′(z)|2|g(z)|2 log
1
|z|dA(z)

≥
∫∫
D

1− |β|2

|1− βz|2
| f ′(z)|2|g(z)|2 log

1
|z|dA(z)

≥ c2
∫∫
Gc

1− |β|2

|1− βz|2
| f ′(z)|2 log

1
|z|dA(z)

= c2
∫∫
Gc

|hβ(z)|2 log
1
|z|dA(z)
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≥ C
∫∫
Gc

|hβ(z)|2(1− |z|2)dA(z)

≥ C
∫∫
D

|hβ(z)|2(1− |z|2)dA(z),

where the last inequality is justified by theorem 5.2.2. So

‖Sg f ‖2
BMOA0

≥ C
∫∫
D

1− |β|2

|1− βz|2
| f ′(z)|2 log

1
|z|dA(z).

Taking the supremum over β ∈ D in the last relation we get

‖Sg f ‖2
BMOA0

≥ C‖ f ‖2
BMOA0

.

(i)⇒ (ii) If Sg has closed range then there exist C1 > 0 such that for every

f ∈ BMOA0 we have

‖Sg f ‖2
BMOA0

≥ C1‖ f ‖2
BMOA0

.

For α ∈ D, if we set f = ψα − α in the last inequality, just as in the case of

Hardy spaces then, lemma A.0.2 in Appendix A implies that ‖ψα− α‖BMOA �

1. In addition (1−|β|2)(1−|z|2)
|1−βz|2 < 1, for all z, β ∈ D. So we have

C1 ≤ ‖Sg(ψα − α)‖2
BMOA0

= sup
β∈D

∫∫
D

1− |β|2

|1− βz|2
|(Sg(ψα − α)(z))′|2 log

1
|z|dA(z)

≤ C sup
β∈D

∫∫
D

1− |β|2

|1− βz|2
|ψ′α(z)|2|g(z)|2(1− |z|2)dA(z)

≤ C
∫∫
D

|ψ′α(z)|2|g(z)|2dA(z) (5.5)

≤ C
[
‖g‖2

∞

∫∫
Gc∩Dη(α)

(1− |α|2)2

|1− αz|4 dA(z) + c2
∫∫

Dη(α)\Gc

|ψ′α(z)|2dA(z)
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+ ‖g‖2
∞

∫∫
D\Dη(α)

|ψ′α(z)|2dA(z)
]

≤ C
[
‖g‖2

∞

∫∫
Gc∩Dη(α)

1
(1− |α|2)2 dA(z) + c2

∫∫
D

|ψ′α(z)|2dA(z)

+ ‖g‖2
∞

∫∫
D\Dη(α)

|ψ′α(z)|2dA(z)
]

= C
[
‖g‖2

∞
A(Gc ∩ Dη(α))

(1− |α|2)2 + c2
∫∫
D

dA(w) + ‖g‖2
∞

∫∫
D\Dη(0)

dA(w)
]

≤ C
[
C′‖g‖2

∞
A(Gc ∩ Dη(α))

A(Dη(α))
+ c2 + ‖g‖2

∞(1− η2)
]
,

where C′ depends only on η and C is absolute. Therefore

C1 ≤ C′‖g‖2
∞

A(Gc ∩ Dη(α))

A(Dη(α))
+ c2 + ‖g‖2

∞(1− η2).

First, we choose η close enough to 1 so that ‖g‖2
∞(1− η2) < C1

4 and c small

enough so that c < C1
4 . So

A(Gc ∩ Dη(α)) ≥
C

2‖g‖2
∞

A(Dη(α)) = δA(Dη(α)),

where C depends only on η.
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Chapter 6

Closed range integral operators on

Qp spaces

Qp spaces and the corresponding norm in these spaces were defined in sec-

tion 2.1.7. Let denote as Qp,0 the space Qp/C, the space Qp modulo the con-

stants. In this chapter, a necessary and sufficient condition (theorem 6.2.1),

for the integral operator Sg to have closed range on Qp,0, 0 < p < ∞ spaces,

is proved.

The results of this chapter, concerning Qp,0 (0 < p < ∞) can come up, by

few modifications, from the corresponding results for BMOA proved in the

previous chapter.

6.1 On the boundedness of the integral operator on Qp spaces

The following proposition characterizes the analytic functions g for which

Sg : Qp,0 → Qp,0 is bounded.

Proposition 6.1.1. The operator Sg : Qp,0 → Qp,0 is bounded if and only if g ∈

H∞.

Proof. Let z0 ∈ D, f ∈ Qp and suppose that Sg is bounded. The point

evaluation functional of the derivative, on Qp, induced by z0, is defined as

Λz0 f = f ′(z0), f ∈ Qp. It is easy to check that Λz0 is bounded on Qp.



66 Chapter 6. Closed range integral operators on Qp spaces

If z ∈ D 1
2
(z0) then, from (2.19), we have

(1− |z0|2)p(1− |z|2)p

|1− z0z|2p � 1. (6.1)

Applying (5.1), for p = 2, γ = 0 and r = 1/2, we get

|Λz0 f |2 = | f ′(z0)|2 ≤
C

(1− |z0|2)2

∫∫
D 1

2
(z0)

| f ′(z)|2dA(z). (6.2)

Combining (6.1) and (6.2), we get

‖Λz0 f ‖2 ≤ C
(1− |z0|2)2

∫∫
D 1

2
(z0)

| f ′(z)|2dA(z)

≤ C
(1− |z0|2)2

∫∫
D 1

2
(z0)

(1− |z0|2)p

|1− z0z|2p | f
′(z)|2(1− |z|2)pdA(z) ≤ C‖ f ‖2

Qp
,

where the constant C depends only on z0 which is fixed. We proved that

Λz0 is bounded and, in addition, we have supposed that Sg is bounded so,

corollary 2.8.2 implies that g is a bounded function.

For the converse, let’s suppose that g is a bounded function. Then we

have

‖Sg f ‖2
Qp

=
∥∥∥ ∫ z

0
f ′(w)g(w)dw

∥∥∥2

Qp

= sup
β∈D

∫∫
D

(1− |β|2)p

|1− βz|2p
| f ′(z)|2|g(z)|2(1− |z|2)pdA(z)

≤ ‖g‖2
∞ sup

β∈D

∫∫
D

(1− |β|2)p

|1− βz|2p
| f ′(z)|2(1− |z|2)pdA(z)

≤ ‖g‖2
∞‖ f ‖2

Qp
.

So Sg is bounded and ‖Sg‖ ≤ ‖g‖∞.
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6.2 The main result

We require Sg : Qp,0 → Qp,0 to be bounded, so consider g ∈ H∞ and set again

Gc = {z ∈ D : |g(z)| > c}.

The following theorem is the main result of this section, which appears in

[39] (Remark 3.1).

Theorem 6.2.1. Let g ∈ H∞ and g not be identically equal to zero. Then the

following are equivalent:

(i) The operator Sg : Qp,0 → Qp,0 has closed range

(ii) There exist c > 0, δ > 0 and η ∈ (0, 1) such that

A(Gc ∩ Dη(a)) ≥ δA(Dη(a)) (6.3)

for all a ∈ D.

In the proof of theorem 6.2.1, we will make use of theorem 5.2.2.

Proof of theorem 5.2.1. (ii) ⇒ (i) If (6.3) holds then, because of theorem 5.2.2,

(5.3) also holds for G = Gc. For β ∈ D, z ∈ D and f ∈ Qp,0, we consider the

function hβ(z) =
(1−|β|2)

p
2

(1−βz)p f ′(z). It’s easy to see that if f ∈ Qp,0 then hβ ∈ A2
p.

Indeed

‖hβ‖2
A2

p
=
∫∫
D

1− |β|2

|1− βz|2
| f ′(z)|2(1− |z|2)pdA(z) ≤ ‖ f ‖2

Qp,0
< ∞.

Let β ∈ D. We have that

‖Sg f ‖2
Qp,0

= sup
z0∈D

∫∫
D

(1− |z0|2)p

|1− z0z|2p |(Sg f (z))′|2(1− |z|2)pdA(z)

= sup
z0∈D

∫∫
D

(1− |z0|2)p

|1− z0z|2p | f
′(z)|2|g(z)|2(1− |z|2)pdA(z)

≥
∫∫
D

(1− |β|2)p

|1− βz|2p
| f ′(z)|2|g(z)|2(1− |z|2)pdA(z)
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≥ c2
∫∫
Gc

(1− |β|2)p

|1− βz|2p
| f ′(z)|2(1− |z|2)pdA(z)

= c2
∫∫
Gc

|hβ(z)|2(1− |z|2)pdA(z)

≥ C
∫∫
D

|hβ(z)|2(1− |z|2)pdA(z),

where the last inequality is justified by theorem 5.2.2. So

‖Sg f ‖2
Qp,0
≥ C

∫∫
D

|hβ(z)|2(1− |z|2)pdA(z).

Taking the supremum over β ∈ D in the last relation we get

‖Sg f ‖2
Qp,0
≥ C‖ f ‖2

Qp,0
.

(i)⇒ (ii) If Sg has closed range then there exist C1 > 0 such that for every

f ∈ Qp,0 we have

‖Sg f ‖2
Qp,0
≥ C1‖ f ‖2

Qp,0
.

For α ∈ D, if we set f = ψα − α in the last inequality, just as in the case of

BMOA space then, lemma A.0.3 in Appendix A implies that ‖ψα− α‖Qp � 1.

In addition (1−|β|2)p(1−|z|2)p

|1−βz|2p < 1, for all z, β ∈ D and for all p ∈ (0, ∞). So we

have

C1 ≤ ‖Sg(ψα − α)‖2
Qp,0

= sup
β∈D

∫∫
D

(1− |β|2)p

|1− βz|2p
|(Sg(ψα − α)(z))′|2(1− |z|2)pdA(z)

= sup
β∈D

∫∫
D

(1− |β|2)p

|1− βz|2p
|ψ′α(z)|2|g(z)|2(1− |z|2)pdA(z)

≤
∫∫
D

|ψ′α(z)|2|g(z)|2dA(z).
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So we have

C1 ≤
∫∫
D

|ψ′α(z)|2|g(z)|2dA(z). (6.4)

But, (6.4) is the same as (5.5). So, following exactly the same steps as these

after (5.5), we get the desired result.
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Chapter 7

Closed range integral operators on

Besov spaces

Besov spaces Bp and the corresponding norm in these spaces were defined
in section 2.1.4. Let denote as Bp

0 the space Bp/C. In this chapter a necessary
and sufficient condition (theorem 7.2.1) for the integral operator Sg to have
closed range on Bp

0 , 1 < p < ∞ spaces, is proved.

7.1 On the boundedness of the integral operator on Besov
spaces

Let consider the operator Sg : Bp
0 → Bp

0 . As far as the boundedness of Sg

on Bp
0 is concerned, we prove the following:

Proposition 7.1.1. The operator Sg : Bp
0 → Bp

0 is bounded if and only if g ∈ H∞.

Proof. Let z0 ∈ D, f ∈ Bp
0 and suppose that Sg is bounded. The point

evaluation functional of the derivative, on Bp
0 , induced by z0, is defined as

Λz0 f = f ′(z0), f ∈ Bp
0 . It is easy to check that Λz0 is bounded on Bp

0 . Apply-

ing (5.1), for γ = p− 2 and r = 1/2, we get

|Λz0 f |p = | f ′(z0)|p ≤
C

(1− |z0|2)p

∫∫
D 1

2
(z0)

| f ′(z)|p(1− |z|2)p−2dA(z)

≤ C
(1− |z0|2)p

∫∫
D

| f ′(z)|p(1− |z|2)p−2dA(z) ≤ C‖ f ‖p
Bp

0
,
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where the constant C depends only on z0 which is fixed. We proved that

Λz0 is bounded and, in addition, we have supposed that Sg is bounded so,

corollary 2.8.2 implies that g is a bounded function.

For the converse, let’s suppose that g is a bounded function. Then we

have

‖Sg f ‖p
Bp

0
=
∥∥∥ ∫ z

0
f ′(w)g(w)dw

∥∥∥p

Bp
0

=
∫∫
D

| f ′(z)|p|g(z)|p(1− |z|2)p−2dA(z)

≤ ‖g‖p
∞

∫∫
D

| f ′(z)|p(1− |z|2)p−2dA(z)

≤ ‖g‖p
∞‖ f ‖p

Bp
0
.

So Sg is bounded and ‖Sg‖ ≤ ‖g‖∞.

7.2 The main result

We consider g ∈ H∞, Gc = {z ∈ D : |g(z)| > c} and proceed with the

proof of the main result of this section (theorem 7.2.1) which appears in [39]

(Section 4) and states that condition (5.2) is also necessary and sufficient for

the operator Sg to have closed range on Bp
0 .

Theorem 7.2.1. Let g ∈ H∞ and g not be identically equal to zero. Then the

following are equivalent:

(i) The operator Sg : Bp
0 → Bp

0 (1 < p < ∞) has closed range

(ii) There exist c > 0, δ > 0 and η ∈ (0, 1) such that

A(Gc ∩ Dη(a)) ≥ δA(Dη(a)) (7.1)

for all a ∈ D.
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Proof. (ii) ⇒ (i) For the sufficiency, we observe that, if f ∈ Bp then f ′ ∈

Ap
p−2, the weighted Bergman space, so we can use theorem 5.2.2. We have

‖Sg f ‖p
Bp

0
=
∫∫
D

|(Sg f (z))′|p(1− |z|2)p−2dA(z)

≥
∫∫
Gc

| f ′(z)|p|g(z)|p(1− |z|2)p−2dA(z)

≥ cp
∫∫
Gc

| f ′(z)|p(1− |z|2)p−2dA(z)

≥ C
∫∫
D

| f ′(z)|p(1− |z|2)p−2dA(z)

= C‖ f ‖p
Bp

0
,

where the last inequality is justified by theorem 5.2.2. So Sg has closed range

on Bp
0 .

(i) ⇒ (ii) If Sg has closed range on Bp
0 then there exist C1 > 0 such that

for every f ∈ Bp
0 we have

‖Sg f ‖p
Bp

0
≥ C1‖ f ‖p

Bp
0
.

For α ∈ D, if we set f = fα = (1−|α|2)
2
p

2α
p (1−αz)

2
p
− (1−|α|2)

2
p

2α
p

in the last inequality, just

as in the case of BMOA. Lemma A.0.4 in Appendix A implies that ‖ fα‖Bp
0
�

1. Moreover, | f ′α(z)| =
(1−|α|2)

2
p

|1−αz|
2
p +1

, so we have

C1 ≤ ‖Sg fα‖p
Bp

0
=
∫∫
D

| f ′α(z)|p|g(z)|p(1− |z|)p−2dA(z)

≤ ‖g‖p
∞

∫∫
Gc∩Dη(α)

(1− |α|2)2

|1− αz|2+p (1− |z|)
p−2dA(z) + cp

∫∫
Dη(α)\Gc

| f ′α(z)|p(1− |z|)p−2dA(z)

+ ‖g‖p
∞

∫∫
D\Dη(α)

(1− |α|2)2

|1− αz|2+p (1− |z|)
p−2dA(z)

≤ ‖g‖p
∞

∫∫
Gc∩Dη(α)

1
(1− |α|2)2 dA(z) + cp

∫∫
D

| f ′α(z)|p(1− |z|)p−2dA(z)
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+ ‖g‖p
∞

∫∫
D\Dη(0)

(1− |α|2)2

|1− αψα(w)|2+p (1− |ψα(w)|)p−2|ψ′α(w)|2dA(w)

= ‖g‖p
∞

∫∫
Gc∩Dη(α)

1
(1− |α|2)2 dA(z) + cp‖ fα‖p

Bp
0
+ ‖g‖p

∞

∫∫
D\Dη(0)

(1− |w|2)p−2

|1− αw|p−2 dA(w)

≤ ‖g‖p
∞

A(Gc ∩ Dη(α))

(1− |α|2)2 + cp‖ fα‖p
Bp

0
+ ‖g‖p

∞

∫∫
D\Dη(0)

dA(w)

≤ C′‖g‖p
∞

A(Gc ∩ Dη(α))

A(Dη(α))
+ Ccp + ‖g‖p

∞(1− η2),

where C′ depends only on η and C is absolute. So we have

C1 ≤ C′‖g‖p
∞

A(Gc ∩ Dη(α))

A(Dη(α))
+ Ccp + ‖g‖p

∞(1− η2).

Choosing η close enough to 1 so that ‖g‖p
∞(1− η2) < C1

4 , and c small enough

so that Ccp < C1
4 , we get

A(Gc ∩ Dη(α)) ≥
C1

2C′‖g‖p
∞

A(Dη(α)) = δA(Dη(α)).
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Part III

Closed Range Composition

Operators
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Chapter 8

Three auxiliary lemmas

We recall that if ϕ : D → D is a non-constant analytic function then, the

composition operator Cϕ : X → X induced by ϕ, is defined as

Cϕ( f ) = f ◦ ϕ,

for every f ∈ X.

Let ϕ : D → D analytic and ψα, α ∈ D, the Möbius transformations

as defined in (2.15). Next we will prove three very useful lemmas which

allow us, many times, to simplify the computations in study of composition

operator. If X is one of the spaces Hardy, Bergman and BMOA then, in the

study of operator Cϕ : X → X, these lemmas allow us to suppose, without

loss of generality, that ϕ(0) = 0 and also to restrict our study in the subspace

X0 = { f ∈ X : f (0) = 0} of X, which means, to consider f (0) = 0. The three

next lemmas have been formulated for the case of A2 in [2], without being

proved. Here, we have included them with their proofs.

Lemma 8.0.1. If one of the operators Cϕ, Cϕ◦ψα and Cψα◦ϕ has closed range on X

then the same holds for the other ones.

Proof. Let’s suppose that Cϕ has closed range. For α ∈ D, the operator Cψα :

X → X is 1-1 and onto, so it has closed range, too. So, there are C1 > 0 and

C2 > 0 such that ‖Cψα f ‖X ≥ C1‖ f ‖X and ‖Cϕ f ‖X ≥ C2‖ f ‖X.
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If f ∈ X, we have

‖Cϕ◦ψα( f )‖X = ‖Cψα Cϕ( f )‖X ≥ C1‖Cϕ( f )‖X ≥ C1C2‖ f ‖X

and

‖Cψα◦ϕ( f )‖X = ‖CϕCψα( f )‖X ≥ C2‖Cϕ( f )‖X ≥ C1C2‖ f ‖X.

So both, Cϕ◦ψα and Cψα◦ϕ, have closed range.

The other cases are proved by similar arguments.

In the proof of lemma 8.0.3, we will make use of the following well known

result (a proof of it can be found in [51] (lemma 4.11)).

Lemma 8.0.2. Suppose p > 0 and 0 < r < 1. Then

| f (0)|p ≤ 1
2π

∫ 2π

0
| f (reiθ)|pdθ,

for all analytic functions f in D.

We will prove lemma 8.0.3 just for the case of Hardy Hp spaces since, it

can be proved for the other spaces by similar arguments.

Lemma 8.0.3. Let denote Hp
0 = { f ∈ Hp : f (0) = 0}. Then Cϕ has closed range

on Hp if and only if Cϕ has closed range on Hp
0

Proof. We will use the norm defined in (2.4)

‖ f ‖p
Hp =

∫
T

| f (ζ)|pdm(ζ)

where f ∈ Hp.

Let’s suppose that Cϕ has closed range on Hp
0 and f ∈ Hp. Lemma 8.0.1

allows us to consider ϕ(0) = 0 and, for z ∈ D, to define the function g(z) =

f (z)− f (0). It’s clear that g ∈ Hp
0 . Since Cϕ has closed range on Hp

0 we have
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that there exists C0 > 0 such that

‖g ◦ ϕ‖Hp
0
> C0‖g‖Hp

0

so

‖ f (ϕ(z))− f (0)‖Hp > C0‖ f (z)− f (0)‖Hp . (8.1)

The left side of (8.1) gives

‖ f (ϕ(z))− f (0)‖Hp =
[ ∫

T

| f (ϕ(ζ))− f (0)|pdm(ζ)
] 1

p

≤
[ ∫

T

| f (ϕ(ζ))|pdm(ζ)
] 1

p
+ | f (0)|. (8.2)

From the right side of (8.1), we have

C0‖ f (z)− f (0)‖Hp = C0

[ ∫
T

| f (ζ)− f (0)|pdm(ζ)
] 1

p

≥ C0

[ ∫
T

| f (ζ)|pdm(ζ)
] 1

p − C0| f (0)|. (8.3)

Because of (8.2) and (8.3), the relation (8.1) implies

[ ∫
T

| f (ϕ(ζ))|pdm(ζ)
] 1

p
+ | f (0)| ≥ C0

[ ∫
T

| f (ζ)|pdm(ζ)
] 1

p − C0| f (0)|.

Hence

[ ∫
T

| f (ϕ(ζ))|pdm(ζ)
] 1

p
+ (1 + C0)| f (0)| ≥ C0

[ ∫
T

| f (ζ)|pdm(ζ)
] 1

p
. (8.4)

Let r ∈ (0, 1). Using lemma 8.0.2 and the assumption ϕ(0) = 0, we obtain

| f (0)|p = | f (ϕ(0))|p ≤
∫
T

| f (ϕ(rζ))|pdm(ζ) ≤ ‖ f ◦ ϕ‖p
Hp .
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Hence, from (8.4),

[ ∫
T

| f (ϕ(ζ))|pdm(ζ)
] 1

p
+ (1 + C0)

(
| f (ϕ(0))|p

) 1
p ≥ C0

[ ∫
T

| f (ζ)|pdm(ζ)
] 1

p

and

(2 + C0)‖ f ◦ ϕ‖Hp ≥ C0‖ f ‖Hp .

So, finally, we have

‖Cϕ( f )‖Hp > C‖ f ‖Hp

which implies that Cϕ : Hp → Hp has closed range.

The inverse is obvious. If Cϕ has closed range on Hp then it has closed

range on the subspace Hp
0 .

Lemma 8.0.4 will be proved for the case of Hardy spaces, in particular,

for the corresponding set Gε defined in (3.4). All sets of this kind (e.g. sets

defined in (3.8) and (3.7)) are associated to function ϕ and, just for the pur-

poses of the proof of lemma 8.0.4, we will change the notation from Gε to

Gε(ϕ). The proofs for the sets corresponding to other spaces can be done by

similar arguments as that of lemma 8.0.4. So, in the same manner, we con-

sider the functions ψα ◦ ϕ, ϕ ◦ ψα and the corresponding sets Gε(ψα ◦ ϕ) and

Gε(ϕ ◦ ψα). Lemma 8.0.4 guarantees that the assumption ϕ(0) = 0, which

is achieved by composing ϕ with the appropriate Möbius transformation ψα

(see lemma 8.0.1), does not, in fact, affect the validity of the following condi-

tion:

There are C > 0 and η ∈ (0, 1) such that

A(Gε ∩ Dη(w) > CA(Dη(w)) (8.5)

for all w ∈ D.
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Lemma 8.0.4. If there is ε > 0 such that one of the sets Gε(ϕ), Gε(ϕ ◦ ψα) and

Gε(ψα ◦ ϕ) satisfy condition (8.5), then there is ε′ > 0 such that the other two sets

satisfy (8.5).

Proof. Let α ∈ D be arbitrary but fixed and let’s suppose that Gε(ϕ), as

defined in (3.4), satisfy condition (8.5). We will prove that Gε(ϕ ◦ ψα) and

Gε(ψα ◦ ϕ) also satisfy (8.5). Because of (2.21), we may consider Gε(ϕ) ={
w ∈ D :

∑
ϕ(z)=w

1−|z|2

1−|w|2 > ε
}

and then we have

Gε(ϕ) =
{

w ∈ D :

∑
z:ϕ(z)=w

(1− |z|2)

1− |w|2 > ε
}

=
{

w ∈ D :

∑
z:ϕ(z)=w

(1− |z|2) (1−|α|
2)

|1−αz|2
|1−αz|2
(1−|α|2)

1− |w|2 > ε
}

=
{

w ∈ D :

∑
z:ϕ(z)=w

(1− |ψα(z)|2) |1−αz|2
(1−|α|2)

1− |w|2 > ε
}

⊆
{

w ∈ D :

∑
z:ϕ(z)=w

(1− |ψα(z)|2)

1− |w|2 > ε
1− |α|2

4
= ε′

}

=
{

w ∈ D :

∑
z:ϕ◦ψα(u)=w

(1− |u|2)

1− |w|2 > ε′
}

= Gε′(ϕ ◦ ψα),

and from (8.5) we have that

A(Gε′(ϕ ◦ ψα) ∩ Dη(w)) ≥ A(Gε(ϕ) ∩ Dη(w)) > CA(Dη(w))

for all w ∈ D. So Gε′(ϕ ◦ ψα) satisfies (8.5).
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Now, we will show that, if Gε(ϕ) satisfies (8.5) then Gε(ψα ◦ ϕ) satisfies

(8.5), too. Using (2.16), we have

Gε(ϕ) =
{

w ∈ D :

∑
z:ϕ(z)=w

(1− |z|2)

1− |w|2 > ε
}

= ψα

({
u ∈ D :

∑
z:ϕ(z)=ψα(u)

(1− |z|2)

1− |ψα(u)|2
> ε
})

= ψα

({
u ∈ D :

∑
z:ϕ(z)=ψα(u)

(1− |z|2)|1− αu|2

(1− |α|2)(1− |u|2) > ε
})

⊆ ψα

({
u ∈ D :

∑
z:ψα◦ϕ(z)=u

(1− |z|2)

1− |u|2 > ε
1− |α|2

4
= ε′

})
= ψα(Gε′(ψα ◦ ϕ)).

Hence

Gε(ϕ) ⊆ ψα(Gε′(ψα ◦ ϕ))

and, obviously,

ψα(Gε(ϕ)) ⊆ Gε′(ψα ◦ ϕ).

Thus,

A(Gε′(ψα ◦ ϕ) ∩ Dη(w)) ≥ A(ψα(Gε(ϕ)) ∩ Dη(w))

= A(ψα(Gε(ϕ) ∩ ψα(Dη(w))))

= A(ψα(Gε(ϕ) ∩ Dη(ψα(w))))

≥ Cα A(Gε(ϕ) ∩ Dη(ψα(w)))

≥ Cα A(Dη(ψα(w)))

= Cα A(ψα(Dη(w)))

≥ C2
α A(Dη(w)),
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where Cα is a positive constant depending only on α. So, the set Gε′(ψα ◦ ϕ)

satisfies (8.5).
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Chapter 9

Closed range composition

operators on Hardy spaces

Hardy spaces Hp and some equivalent norms in these spaces were defined

in section 2.1.1. In this chapter we prove that, two already known conditions

for Cϕ operator to have closed range on Hardy space H2, can be extended to

all Hardy spaces Hp, 0 < p < ∞. The first condition (theorem 9.1.2 (part (ii))

concerns the behaviour of ϕ at the boundary of the disk D, while the second

one (theorem 9.1.2 (part (iii)) is based upon the behaviour of ϕ in the disk D.

9.1 The main result

Cϕ : Hp → Hp is always bounded, for all analytic ϕ : D→ D. It is implied as

an immediate consequence of a theorem due to Littlewood (see [51], theorem

11.12).

Theorem 9.1.1 (Littlewood’s subordination theorem). Suppose ϕ : D → D

and p > 0. Then

∫ 2π

0
| f (ϕ(eiθ))|pdm(θ) ≤ 1 + |ϕ(0)|

1− |ϕ(0)|

∫ 2π

0
| f (eiθ)|pdm(θ),

for all f ∈ Hp.
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In [15] and [53] the case of closed range composition operators in Hardy

space H2 is studied. In [15], Cima, Thomson, and Wogen gave an equivalent

condition (see theorem 3.2.1) for Cϕ : H2 → H2 to have closed range that de-

pends only on the behaviour of the function ϕ on the boundary T of the open

unit disk D. In [53], Zorboska proved a criterion (see theorem 3.2.2) for Cϕ

to have closed range on H2 based upon properties of ϕ on pseudohyberbolic

disks. We are going to prove that the results of theorems 3.2.1 and 3.2.2 hold,

not only for H2, but for every Hp, 0 < p < ∞.

First of all, we define the function

τϕ(w) =
Nϕ(w)

log 1
|w|

, w ∈ D, (9.1)

and, for ε > 0, the set

Gε =
{

w ∈ D : τϕ(w) > ε
}

, (9.2)

just as in (3.3) and (3.4). Here is the main result, which appears in [23].

Theorem 9.1.2. Let 0 < p < ∞. Then the following are equivalent:

(i) Cϕ : Hp → Hp has closed range.

(ii) The Radon-Nikodym derivative dνϕ

dm is essentially bounded away from zero.

(iii) There exist c > 0, δ > 0 and η ∈ (0, 1) such that the set Gc satisfies

A(Gc ∩ Dη(a)) ≥ δA(Dη(a))

for all a ∈ D.

Before proving the theorem 9.1.2, we provide some definitions and back-

ground results.
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As in [15] (see section 3.2.1), we extend the definition of ϕ in the boundary

by

ϕ(ζ) = lim
r→1−

ϕ(rζ), ζ ∈ T.

It is well known that the above limit exists for m − a.e. ζ ∈ T. Then they

defined the measure

νϕ(E) = m(ϕ−1(E) ∩T), E ⊂ T, (9.3)

where E is a Borel subset of T. The measure νϕ is absolutely continuous

with respect to the Lebesgue measure m and let dνϕ

dm be the Radon-Nikodym

derivative of νϕ with respect to m.

The equivalence (i)⇔ (ii) is actually theorem 3.2.1. Our proof is the same

and we include it for the sake of completeness. The equivalence (i) ⇔ (iii)

is theorem 3.2.2. As it is not clear whether Zorboska’s proof for p = 2 works

for every p > 0, we prove this equivalence following a different approach.

Namely, we use Hardy-Stein identities (see [40], pages 58-59) for one of the

directions, and reverse Carleson measures (see [26]) and pull-back measures

(see [22]) for the converse.

We will make use of the following lemma 9.1.3 and theorem 9.1.4, proved

in [22], as well as theorem 9.1.5. The case p > 1 of theorem 9.1.5 is proved in

[26].

Let ∆ = 4∂2

∂z∂z be the usual Laplacian and, for ζ ∈ T and 0 < h < 1, let

W(ζ, h) be the usual Carleson square

W(ζ, h) = {z ∈ D : 1− h < |z| ≤ 1, | arg(zζ)| ≤ πh}.

We will also make use of the measure mϕ defined on Borel sets E ⊂ D by

mϕ(E) = m(ϕ−1(E) ∩T). (9.4)
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Actually, νϕ defined in (9.3) is the restriction of mϕ on T.

Lemma 9.1.3. For every g ∈ C2(C) we have

∫∫
D

g(z)dmϕ(z) = g(ϕ(0)) +
1
2

∫∫
D

∆g(w)Nϕ(w)dA(w).

Theorem 9.1.4. For 0 < c < 1
8 , ζ ∈ T and 0 < h < (1− |ϕ(0)|)/8, we have

sup
z∈W(ζ,h)∩D

Nϕ(z) ≤
100
c2 mϕ(W(ζ, (1 + c)h)).

Theorem 9.1.5. Let 0 < p < ∞ and let µ be a positive measure in D. Then the

following assertions are equivalent.

(i) There exists C > 0 such that for every f ∈ Hp ∩ C(D),

∫∫
D

| f (z)|pdµ(z) ≥ C‖ f ‖p
Hp .

(ii) There exists C > 0 such that for every λ ∈ D

∫∫
D

|Kλ(z)|pdµ(z) ≥ C.

where, for p > 1, kλ(z) = 1
1−λz

is the reproducing kernel in Hp and Kλ =

kλ
‖kλ‖Hp

is its normalised version, and, for 0 < p ≤ 1, we have Kλ(z) =

1−|λ|2
(1−λz)(p+1)/p .

(iii) There exists C > 0 such that for 0 < h < 1 and ζ ∈ T we have

µ(W(ζ, h)) ≥ Ch.

(iv) There exists C > 0 such that the Radon-Nikodym derivative of µ|T (the re-

striction of µ on T) with respect to m is bounded below from C.
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Remark 1. As we have already mentioned, the case p > 1 of theorem 9.1.5 is

proved in [26]. For the case 0 < p ≤ 1, we have just to observe that, with

the choice of Kλ(z) =
1−|λ|2

(1−λz)(p+1)/p in assertion (ii) of theorem 9.1.5, then the

proof of all assertions of the theorem, as described in [26], works also for the

case 0 < p ≤ 1.

In addition, one more theorem from theory of Hardy spaces is going to be

used. Next, we formulate this result which characterizes the functions of Hp

spaces in terms of their boundary values. For a proof, see [24] (theorem 4.4,

page 66). We will use this theorem in the study of composition operators Cϕ

in Hp and in BMOA.

Theorem 9.1.6. Let 0 < p < ∞ and h(t) a non-negative function in Lp(T). Then,

there exists f (z) ∈ Hp such that | f (t)| = h(t), for m− a.e. eit ∈ T, if and only if

∫ 2π

0
log h(t)dt > −∞ (9.5)

Remark 2. From the proof of theorem 9.1.6 it is implied that if (9.5) holds then

the corresponding function f (z) ∈ Hp has the form

f (z) = eu(z)+iv(z), (9.6)

where u(z) is the Poisson integral (defined in (2.12)) of log h(t). More specif-

ically

u(z) =
∫ 2π

0
Pz(t) log h(t)dt,

and Pz(t) is the Poisson kernel defined in (2.11). In (9.6), v(z) is a harmonic

conjugate of u(z). We have to remind here that the harmonic conjugates of

u(z) differ by a positive constant.

Proof of theorem 9.1.2. Lemmas 8.0.1 and 8.0.4 allow us, without loss of gener-

ality, to assume that ϕ(0) = 0.

(i) ⇒ (iii) If Cϕ has closed range then there exist C > 0 (we may suppose
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C < 2) such that for every f ∈ Hp we have

‖Cϕ f ‖p
Hp ≥ C‖ f ‖p

Hp

i.e.

| f (0)|p +
∫∫
D

| f (ϕ(z))|p−2| f ′(ϕ(z))|2|ϕ′(z)|2 log
1
|z|dA(z)

≥ C
∫∫
D

| f (z)|p−2| f ′(z)|2 log
1
|z|dA(z).

By making change of variables as in proposition 2.5.1 we have

| f (0)|p +
∫∫
D

| f (w)|p−2| f ′(w)|2Nϕ(w)dA(w)

≥ C
∫∫
D

| f (z)|p−2| f ′(z)|2 log
1
|z|dA(z)

i.e.

| f (0)|p +
∫∫
D

| f (w)|p−2| f ′(w)|2τϕ(w) log
1
|w|dA(w)

≥ C
∫∫
D

| f (z)|p−2| f ′(z)|2 log
1
|z|dA(z).

(9.7)

Let f ∈ Hp with f (z) 6= 0 for every z ∈ D. We define the analytic function

g(z) = f (z)p/2.

Obviously, g ∈ H2 and g(z) 6= 0 for every z ∈ D. Then from 9.7 we have

|g(0)|2 +
∫∫
D

|g′(w)|2τϕ(w) log
1
|w|dA(w) ≥ C

∫∫
D

|g′(z)|2 log
1
|z|dA(z).

(9.8)
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Because τϕ is a bounded function (see lemma 2.4.1), there exists c > 0 (used

for set Gc) such that (9.8) implies

|g(0)|2 +
∫∫
Gc

|g′(w)|2 log
1
|w|dA(w) ≥ C

∫∫
D

|g′(z)|2 log
1
|z|dA(z)

or, equivalently,

|g(0)|2 +
∫∫
Gc

|g′(w)|2(1− |w|2)dA(w) ≥ C
∫∫
D

|g′(z)|2(1− |z|2)dA(z). (9.9)

for every g ∈ H2 with g(z) 6= 0 for every z ∈ D.

Let a ∈ D. We choose g ∈ H2 such that |g′(z)|2 = (1−|a|2)3

|1−az|6 and g(0) =

(1− |α|2) 3
2 . It’s clear that Gc ⊆ (Gc ∩ Dη(a)) ∪ (D \ Dη(a)), so we have

∫∫
Gc∩Dη(a)

|g′(z)|2(1− |z|2)dA(z)+
∫∫

D\Dη(a)

|g′(z)|2(1− |z|2)dA(z)

≥
∫∫
Gc

|g′(z)|2(1− |z|2)dA(z)

and

∫∫
Gc∩Dη(a)

(1− |a|2)3

|1− az|6 (1− |z|2)dA(z) ≥
∫∫
Gc

(1− |a|2)3

|1− az|6 (1− |z|2)dA(z)

−
∫∫

D\Dη(a)

(1− |a|2)3

|1− az|6 (1− |z|2)dA(z).

(9.10)

From 9.9 we get

∫∫
Gc

(1− |a|2)3

|1− az|6 (1− |z|2)dA(z) ≥ C
∫∫
D

(1− |a|2)3

|1− az|6 (1− |z|2)dA(z)− (1− |α|3)2

= C− (1− |α|2)3. (9.11)
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In addition, by making the change of variable z = ψα(w), we get

∫∫
D\Dη(a)

(1− |a|2)3

|1− az|6 (1− |z|2)dA(z)

=
∫∫

D\Dη(0)

(1− |a|2)3

|1− aψα(w)|6 (1− |ψα(w)|2)|ψ′α(w)|2dA(z) ≤ 1− η2. (9.12)

Combining (9.10), (9.11) and (9.12), we get

∫∫
Gc∩Dη(a)

(1− |a|2)3

|1− az|6 (1− |z|2)dA(z) ≥ C− (1− |α|2)3 − (1− η2).

Choosing η close enough to 1 and, also, |α| close enough to 1 (let |α| ≥ R0 for

some R0) so that

C− (1− |α|2)3 − (1− η2) >
C
2

we get ∫∫
Gc∩Dη(a)

(1− |a|2)3

|1− az|6 (1− |z|2)dA(z) ≥ C
2

Using (2.19) and the simple relation |1− az| ≥ 1− |a|2 we get

∫∫
Gc∩Dη(a)

1
(1− |α|2)2 dA(z) ≥ C

2
,

thus
C′A(Gc ∩ Dη(a))

(1− |a|2)2 ≥ C
2

and, finally,

A(Gc ∩ Dη(a)) ≥ δA(Dη(a)).

The case 0 ≤ |α| ≤ R0 can be handled with similar arguments as in the proof

of (4.19).

(iii) ⇒ (i) Lemma 8.0.3 allows us, without loss of generality, to assume that

f (0) = 0 for all f ∈ Hp. We consider the measure mϕ as defined in 9.4
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and we will show that (iii) of theorem 9.1.2 implies (iii) of theorem 9.1.5 with

µ = mϕ.

Now we consider ζ ∈ T and 0 < h < 1 and the corresponding Carleson

square W(ζ, h). Having in mind to apply theorem 9.1.4, we take c = 1
16 and

h′ = h
8 . Then there exists a ∈W(ζ, h′) so that

Dη(a) ⊂W(ζ, h′) ⊂W(ζ, (1 + c)h′) ⊂W(ζ, h), 1− |a|2 ≥ Ch,

where C depends upon η. We have A(Gc ∩ Dη(a)) > δA(Dη(a)) and hence

Gc∩Dη(a) 6= ∅. Let b ∈ Gc∩Dη(a). Then 1− |b|2 ≥ Ch and Nϕ(b) ≥ c log 1
|b|

(since b ∈ Gc). Applying theorem 9.1.4 (recalling that ϕ(0) = 0), we find

mϕ(W(ζ, h)) ≥ mϕ(W(ζ, (1 + c)h′)) ≥ C sup
z∈W(ζ,h)∩D

Nϕ(z) ≥ CNϕ(b)

≥ C log
1
|b| ≥ C(1− |b|2) ≥ Ch.

Therefore we get (iii) of theorem 9.1.5 which is equivalent to (i) of the same

theorem, with µ = mϕ. Now we take any f which is analytic in a disk larger

than D and so that f (0) = 0 and we use (i) of theorem 9.1.5 together with

lemma 9.1.3 to find

‖Cϕ f ‖p
Hp =

∫∫
D

| f (ϕ(z))|p−2| f ′(ϕ(z))|2|ϕ′(z)|2 log
1
|z|dA(z)

=
∫∫
D

| f (w)|p−2| f ′(w)|2Nϕ(w)dA(w)

=
1
p

∫∫
D

∆(| f |p)Nϕ(w)dA(w)

= C
∫∫
D

| f (w)|pdmϕ(w)

≥ C‖ f ‖p
Hp ,
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Now, if f is the general function in Hp with f (0) = 0, we apply the result to

the functions fr, 0 < r < 1, defined by fr(z) = f (rz), z ∈ D, and we take the

limit as r → 1−. Therefore Cϕ has closed range.

(i) ⇒ (ii) Let’s suppose that Cϕ has closed range on Hp and E ⊂ T. For

n ∈N, using theorem 9.1.6, we choose fn ∈ Hp such that

| fn(ζ)|p =


1, if ζ ∈ E

1
2n , if ζ ∈ T \ E

Then ‖Cϕ fn‖p
Hp ≥ C‖ fn‖p

Hp and hence

m(ϕ−1(E)) +
1
2n m(T \ ϕ−1(E)) ≥ Cm(E) + C

1
2n m(T \ E).

Taking limit as n→ +∞, we get m(ϕ−1(E)) ≥ Cm(E), i.e.

νϕ(E) ≥ Cm(E).

Thus the Radon-Nikodym derivative dνϕ

dm is bounded below from C.

(ii) ⇒ (i) Let’s suppose that the Radon-Nikodym derivative dνϕ

dm is bounded

below from C. For λ > 0 we consider the set

E f (λ) =
{

eiθ : | f (eiθ)| > λ
}

.

Then,

m
(
E f ◦ϕ(λ)

)
= νϕ

(
E f (λ)

)
≥ Cm

(
E f (λ)

)
for all λ > 0, and finally

‖Cϕ f ‖p
Hp =

∫ 2π

0
| f (ϕ(eiθ))|pdm(θ) =

∫ +∞

0
pλp−1m

(
E f ◦ϕ(λ)

)
dλ

≥ C
∫ +∞

0
pλp−1m

(
E f (λ)

)
dλ = C

∫ 2π

0
| f (eiθ)|pdm(θ) = C‖ f ‖p

Hp .
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Hence Cϕ has closed range.

9.2 Applications of the main theorem

9.2.1 Regarding inner functions

In this section, using theorem 9.1.2, we prove a result, in the next lemma, for

the operator Cϕ : Hp → Hp to have closed range when ϕ is an inner function.

Lemma 9.2.1. Let 0 < p < ∞. If ϕ : D → D is inner then Cϕ : Hp → Hp has

closed range.

We derive the result of lemma 9.2.1 by following two different approaches.

In the first case, we use a statement already known from [38] and conclude

easily the desired result. In the second case, we prove lemma 9.2.1 by follow-

ing a different, and actually, more complicated way, using Alexandrov-Clark

measures.

Proof of lemma 9.2.1. In [38], we have that, in case that ϕ is an inner function,

then the Radon-Nikodym derivative dνϕ

dm is given by

dνϕ

dm
(ζ) =

1− |ϕ(0)|
1 + |ϕ(0)| (9.13)

for all ζ ∈ T. So, we have that dνϕ

dm > 0 and lemma 9.2.1 is an immediate

consequence of part (ii) of theorem 9.1.2.

Using Alexandrov-Clark measures

Alternative proof of lemma 9.2.1. From proposition 2.7.3, relation (2.32) and the

fact that |ϕ(ζ)| = 1 for m− a.e. ζ ∈ T when ϕ is an inner function, we get

dνϕ

dm
(α) =

1− |ϕ(0)|2
|α− ϕ(0)|2 −

∫
T

1− |ϕ(ζ)|2
|α− ϕ(ζ)|2 dm(ζ)

=
1− |ϕ(0)|2
|α− ϕ(0)|2 ≥

1− |ϕ(0)|2
4

> 0 (9.14)



96 Chapter 9. Closed range composition operators on Hardy spaces

for m− a.e. ζ ∈ T. Part (ii) of theorem 9.1.2 implies that Cϕ has closed range.

9.2.2 An application to Besov type spaces

Now we are going to show that a result regarding Besov type spaces (for

definition see section 2.1.4), due to M. Tjani [49], can be extended by using

theorem 9.1.2. If ε > 0, the set Gε,p,α is defined as

Gε,p,α =
{

w ∈ D :
Np,α(w, ϕ)

(1− |w|2)α
> ε
}

where

Np,α(w, ϕ) = ∑
ϕ(z)=w

|ϕ′(z)|p−2(1− |z|2)α

In [49] the following results are proved.

Theorem 9.2.2. (Theorem 5.2 in [49]). For p > 2, the operator Cϕ : Bp,p−1 →

Bp,p−1 has closed range if and only if there exists an ε > 0 so that Gε,p,p−1 satisfies a

reverse Carleson condition, which means that there exist ε > 0, δ > 0 and η ∈ (0, 1)

such that A(Gε,p,p−1 ∩ Dη(z)) > δA(Dη(z)) for every z ∈ D.

Corollary 9.2.3. (Corollary 5.3 in [49]). Let p > 2. If Cϕ has closed range on

Bp,p−1 then Cϕ has closed range on H2.

By using theorem 9.1.2 we can extend corollary 9.2.3 and get the following

result.

Corollary 9.2.4. Let p > 2. If Cϕ has closed range on Bp,p−1 then Cϕ has closed

range on every Hq, 0 < q < ∞.

Proof. If Cϕ has closed range on Bp,p−1 then, by theorem 9.2.2, we have that

there exist ε > 0, δ > 0 and η ∈ (0, 1) such that A(Gε,p,p−1 ∩ Dη(z)) >

δA(Dη(z)) for every z ∈ D. Moreover, we have for the set Gε, as defined in
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(9.2), that Gε = Gε,2,1 and also Gε,p,p−1 ⊂ Gε,2,1. Finally we have that

A(Gε ∩ Dη(z)) > A(Gε,p,p−1 ∩ Dη(z)) > δA(Dη(z))

so, by theorem 9.1.2, Cϕ is closed range on every Hq, 0 < q < ∞.

9.2.3 Other examples: When Cϕ doesn’t have closed range

The following two examples and their proofs are in [53] regarding the H2

space. We include them here to show that these examples can be extended to

all Hp spaces, as an application of theorem 9.1.2.

• Example 1: Let Ω ⊂ D be the lens domain bounded by the upper semi-

circle and by a circular arc (in the lower semidisc) with endpoints -1

and 1 and making an angle α with the real interval [-1,1] (0 < α < π
2 ).

Let’s suppose ψ be analytic and 1-1 from D onto Ω, continuous on D,

ψ(−1) = −1 and ψ(1) = 1. Consider the function ϕ = ψ2. Then

ϕ(D) = D and also nϕ(w) ≤ 2 for all w ∈ D. In addition, ϕ is con-

tinuous on D, ϕ−1(1) = {−1, 1} and ϕ doesn’t possess a finite angu-

lar derivative either at -1 or at 1. As it is proved in [53], Cϕ doesn’t

have closed range on H2, and from theorem 9.1.2, the same holds for all

Hp, 0 < p < ∞ spaces.

• Example 2: If the range ϕ(D) of ϕ doesn’t intersects some Carleson

square Sh,θ (defined in (3.2)) or some euclidean disk E(β; r) (defined in

(2.22)) which is internally tangent to T, then Cϕ doesn’t have closed

range on Hp. This happens because condition (iii) of theorem 9.1.2 is

violated, since for α close enough to the boundary we can have Dη(α) ⊂

Sh,θ and Dη(α) ⊂ E(β; r). Moreover, if ϕ(D) misses a neighbourhood

Nξ of a point ξ ∈ T then, again, part (iii) of 9.1.2 is violated and Cϕ

doesn’t have closed range. This can be seen if we take some α ∈ D close

enough to ξ so that Dη(α) ⊂ Nξ .
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Chapter 10

Closed range composition

operators on BMOA space

BMOA space and the corresponding equivalent norms in this space were

defined in section 2.1.3. Cϕ : BMOA→ BMOA is bounded for every analytic

ϕ : D → D. This result is proved in [8] (theorem 12). In this chapter two

necessary conditions (theorems 10.1.2 and 10.1.3) and one sufficient (theorem

10.2.2) are proved for Cϕ to have closed range on BMOA. Next, using these

conditions, we prove a result for Cϕ to have closed range in BMOA in case

that ϕ is an inner function (proposition 10.3.3).

By defining the measure

dνz0(z) =
1− |z0|2
|1− z0z|2 log

1
|z|dA(z) (10.1)

then, the norm of f ∈ BMOA (see section 2.1.3) can be written as

‖ f ‖2
∗ = | f (0)|2 + sup

z0∈D

∫∫
D

| f ′(z)|2dνz0(z).

The corresponding norm of the composition operator Cϕ is

‖ f ◦ ϕ‖2
∗ = | f (ϕ(0))|2 + sup

z0∈D

∫∫
D

1− |z0|2
|1− z0z|2 | f

′(ϕ(z))|2||ϕ′(z)|2 log
1
|z|dA(z).
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By the change of variables w = ϕ(z) and use of Proposition 2.5.2 we have

‖ f ◦ ϕ‖2
∗ = | f (ϕ(0))|2 + sup

z0∈D

∫∫
D

| f ′(w)Nϕ,z0(w)dA(w)

= | f (ϕ(0))|2 + sup
z0∈D

∫∫
D

| f ′(w)|2dµz0(w),

where

dµz0(w) = ∑
w=ϕ(z)

{ 1− |z0|2
|1− z0z|2 log

1
|z|

}
dA(w) = Nϕ,z0(w)dA(w) (10.2)

and

Nϕ,z0(w) = ∑
w=ϕ(z)

{ 1− |z0|2
|1− z0z|2 log

1
|z|

}
.

As in the case of Hardy spaces (see chapter 9.1) and because of lemmas 8.0.1,

8.0.3 and 8.0.4, we can, without loss of generality, suppose that ϕ(0) = 0 and

f (0) = 0 for all functions f in BMOA.

10.1 Two necessary conditions

First, we prove an auxiliary result.

Proposition 10.1.1. Let r ∈ (0, 1) and the measures µz0 , z0 ∈ D, as they defined

in (10.2). We have that there is C > 0, depending only on r, such that

C(1− |α|2)2 ≥ µz0(Dr(α)), (10.3)

for all α ∈ D and for all z0 ∈ D.

Proof. Since Cϕ is always bounded on BMOA, there is C > 0 such that

C‖ f ‖∗ ≥ ‖Cϕ f ‖∗. Let z0 ∈ D arbitrary. Let α ∈ D and set f = ψα, so
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we have C‖ψα‖∗ ≥ ‖Cϕψα‖∗. But ‖ψα‖∗ � 1 so

C ≥ ‖Cϕψα‖2
∗ ≥ sup

β∈D

∫∫
D

(1− |α|2)2

|1− αz|4 dµβ(z)

≥
∫∫
D

(1− |α|2)2

|1− αz|4 dµz0(z)

≥
∫∫

Dr(α)

(1− |α|2)2

|1− αz|4 dµz0(z)

≥
∫∫

Dr(α)

1
(1− |α|2)2 dµz0(z),

where the last inequality is justified because of (2.19). Hence,

C ≥ µz0(Dr(α))

(1− |α|2)2

and the proof of the proposition is complete.

Next, we prove a necessary condition for Cϕ to have closed range on

BMOA.

Theorem 10.1.2. If Cϕ : BMOA → BMOA has closed range then, there exist

δ > 0 and η ∈ (0, 1) such that

sup
z0∈D

µz0(Dη(α)) ≥ δA(Dη(α))

for all α ∈ D.

Proof. Let Cϕ : BMOA→ BMOA has closed range.

If z0 ∈ D, we define the set

Eµz0
=
{

z ∈ D : there is α in support of µz0 such that ρ(z, α) < 1
2

}
.

If α ∈ supp(µz0), applying (5.1) for p = 2, γ = 0 and r = 1/2, we have
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| f ′(α)|2 ≤ C
(1− |α|2)2

∫∫
D 1

2
(α)

| f ′(z)|2dA(z)

≤ C
∫∫

D 1
2
(α)

| f ′(z)|2(1− |α|2)−2dA(z)

≤ C
∫∫

D 1
2
(α)

| f ′(z)|2(1− |z|2)−2dA(z),

where, in the last relation, we used (2.19). But D 1
2
(α) ⊂ Eµz0

so,

| f ′(α)|2 ≤ C
∫∫

Eµz0

χD 1
2
(α)(z)| f ′(z)|2(1− |z|2)−2dA(z).

Integrating with respect to measure µz0 we get

∫∫
D

| f ′(α)|2dµz0(α) ≤ C
∫∫
D

∫∫
Eµz0

χD 1
2
(α)(z)| f ′(z)|p(1− |z|2)−2dA(z)dµz0(α).

Observe that χD 1
2
(α)(z) = χD 1

2
(z)(α) and apply Fubini’s theorem to get

∫∫
D

| f ′(α)|2dµz0(α) ≤ C
∫∫

Eµz0

∫∫
D

χD 1
2
(z)(α)| f ′(z)|p(1− |z|2)−2dµz0(α)dA(z)

= C
∫∫

Eµz0

µz0(D 1
2
(z))| f ′(z)|p(1− |z|2)−2dA(z).

Proposition 10.1.1 implies

µz0(D 1
2
(z)) ≤ C(1− |z|2)2, (10.4)

hence

∫∫
D

| f ′(α)|2dµz0(α) ≤ C
∫∫

Eµz0

| f ′(z)|2(1− |z|2)2(1− |z|2)−2dA(z)
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≤ C0

∫∫
Eµz0

| f ′(z)|2dA(z).

So we have ∫∫
D

| f ′(z)|2dµz0(z) ≤ C0

∫∫
Eµz0

| f ′(z)|2dA(z). (10.5)

For a fixed α ∈ D and η close to 1, set γ =
η− 1

2
1− 1

2 η
and consider the measure

µ̃z0 = χD\Dη(α)µz0 . It’s obvious that µ̃z0 is dominated by µz0 , so (10.4) holds

also for µ̃z0 , hence we can derive (10.5) with µ̃z0 in position of µz0 . Hence

∫∫
D

| f ′(z)|2dµ̃z0(z) ≤ C0

∫∫
Eµ̃z0

| f ′(z)|2dA(z). (10.6)

It holds that Eµ̃z0
⊂ D \ Dγ(α), so using (10.6) we get

∫∫
D\Dη(α)

| f ′(z)|2dµz0(z) ≤ C0

∫∫
D\Dγ(α)

| f ′(z)|2dA(z).

Thus

sup
z0∈D

∫∫
D\Dη(α)

| f ′(z)|2dµz0(z) ≤ C0

∫∫
D\Dγ(α)

| f ′(z)|2dA(z). (10.7)

Because Cϕ has closed range, it is bounded below, so

‖Cϕ( f )‖∗ > C‖ f ‖∗

which means that, for all α ∈ D, we have

sup
z1∈D

∫∫
D

| f ′(z)|2dµz1(z) ≥ C sup
z2∈D

∫∫
D

1− |z2|2
|1− z2z|2 | f

′(z)|2 log
1
|z|dA(z)

≥ C
∫∫
D

1− |α|2
|1− αz|2 | f

′(z)|2 log
1
|z|dA(z).
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Consequently

sup
z1∈D

∫∫
D

| f ′(z)|2dµz1(z) ≥ C
∫∫
D

1− |α|2
|1− αz|2 | f

′(z)|2 log
1
|z|dA(z)

and we have

sup
z1∈D

∫∫
Dη(α)

| f ′(z)|2dµz1(z) + sup
z1∈D

∫∫
D\Dη(α)

| f ′(z)|2dµz1(z)

≥ C
∫∫
D

1− |α|2
|1− αz|2 | f

′(z)|2 log
1
|z|dA(z).

From (10.7) we get

sup
z1∈D

∫∫
Dη(α)

| f ′(z)|2dµz1(z) + C0

∫∫
D\Dγ(α)

| f ′(z)|2dA(z)

≥ C
∫∫
D

1− |α|2
|1− αz|2 | f

′(z)|2 log
1
|z|dA(z).

Hence

sup
z1∈D

∫∫
Dη(α)

| f ′(z)|2dµz1(z)

≥ C
∫∫
D

1− |α|2
|1− αz|2 | f

′(z)|2 log
1
|z|dA(z)− C0

∫∫
D\Dγ(α)

| f ′(z)|2dA(z).

Setting in the last relation f = fα = ψα(z) = α−z
1−αz , we have

|ψ′α(z)| =
1− |α|2
|1− αz|2

and

sup
z1∈D

∫∫
Dη(α)

(1− |α|2)2

|1− αz|4 dµz1(z)
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≥ C
∫∫
D

1− |α|2
|1− αz|2

(1− |α|2)2

|1− αz|4 log
1
|z|dA(z)− C0

∫∫
D\Dγ(α)

(1− |α|2)2

|1− αz|4 dA(z).

(10.8)

But

sup
z1∈D

∫∫
Dη(α)

(1− |α|2)2

|1− αz|4 dµz1(z) ≤ sup
z1∈D

µz1(Dη(α))

(1− |α|2)2 (10.9)

and

∫∫
D

1− |α|2
|1− αz|2

(1− |α|2)2

|1− αz|4 log
1
|z|dA(z) ≥ C

∫∫
D

1− |α|2
|1− αz|2

(1− |α|2)2

|1− αz|4 (1− |z|2)dA(z)

= C
∫∫
D

(1− |ψα(z)|2)|ψ′α(z)|2dA(z)

= C
∫∫
D

(1− |w|2)dA(w)

≥ C
∫∫

D 1
2
(0)

(1− |w|2)dA(w) ≥ C′,

(10.10)

where we used proposition 2.6.2, relation (2.16) and the change of variable

w = ψα(z). Moreover

C0

∫∫
D\Dγ(α)

(1− |α|2)2

|1− αz|4 dA(z) = C0

∫∫
D\Dγ(α)

|ψ′α(z)|2dA(z)

= C0

∫∫
D\Dγ(0)

dA(w)

= C0A(D \ Dγ(0))

= C0(1− γ2). (10.11)
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Using (10.9), (10.10) and (10.11) in relation (10.8) we get

sup
z1∈D

µz1(Dη(α))

(1− |α|2)2 ≥ C′ − C0(1− γ2).

If η approaches 1, then γ also approaches 1. So, we can choose η close enough

to 1, (and hence γ close enough to 1) so that

C′ − C0(1− γ2) > 0.

Therefore

sup
z1∈D

µz1(Dη(α)) ≥ C(1− |α|2)2

and finally, using (2.20),

sup
z1∈D

µz1(Dη(α)) ≥ δA(Dη(α)).

Next, we will prove a second necessary condition for the Cϕ to have closed

range on BMOA. For α ∈ D and E ⊂ D Borel, we define the measure

ρϕ,α(E) = m(ζ ∈ T : ϕ ◦ ψα(ζ) ∈ E) (10.12)

and, for b ∈ D, the measure νb on T as

dνb(ζ) = Pb(ζ)dm(ζ), (10.13)

where Pb(ζ) is the Poisson kernel defined in (2.11). The following is the result

we have to prove.

Theorem 10.1.3. Let Cϕ : BMOA→ BMOA has closed range. Then, there exists

C > 0 such that

sup
α∈D

m(ψα ◦ ϕ−1(E)) > C sup
β∈D

νβ(E)
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for all E Borel subsets of T.

Alternatively, we can restate the above theorem as:

Let Cϕ : BMOA→ BMOA has closed range. Then, there exists C > 0 such that

sup
α∈D

ρϕ,α|T(E) > C sup
β∈D

νβ(E),

for all E Borel subsets of T.

Proof. Let Cϕ have closed range. Then, there exists C > 0 (we can suppose

that C < 1) such that

‖ f ◦ ϕ‖∗ > C‖ f ‖∗ (10.14)

for all f ∈ BMOA. Let E be a Borel subset of T. Using theorem 9.1.6, we

choose functions fn ∈ Hp, n ∈N, such that

| fn(ζ)|2 =


1, if ζ ∈ E

1
2n , if ζ ∈ T \ E.

Since fn ∈ H∞ it’s true that fn ∈ BMOA, so we can use them in (10.14) to get

‖Cϕ fn‖2
∗ ≥ C‖ fn‖2

∗.

Using the norms defined in (2.13) and (2.14) we have

sup
α∈D

∫
T

| fn ◦ ϕ ◦ψα(ζ)− fn(ϕ(α))|2dm(ζ) > C sup
β∈D

∫
T

| fn(ζ)− fn(β)|2Pβ(ζ)dm(ζ)

and, consequently,

sup
α∈D

[ ∫
T

| fn ◦ ϕ ◦ ψα(ζ)|2dm(ζ)−| fn(ϕ(α))|2
]

> C sup
β∈D

[ ∫
T

| fn(ζ)|2Pβ(ζ)dm(ζ)− | fn(β)|2
]
.
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So, for arbitrary β ∈ D, we have

sup
α∈D

[ ∫
(ϕ◦ψα)−1(E)

| fn ◦ ϕ ◦ ψα(ζ)|2dm(ζ)
]

+ sup
α∈D

[ ∫
T\(ϕ◦ψα)−1(E)

| fn ◦ ϕ ◦ ψα(ζ)|2dm(ζ)− | fn(ϕ(α))|2
]

> C
∫
E

| fn(ζ)|2Pβ(ζ)dm(ζ) + C
∫

T\E

| fn(ζ)|2Pβ(ζ)dm(ζ)− C| fn(β)|2.

Hence,

sup
α∈D

[ ∫
(ϕ◦ψα)−1(E)

| fn ◦ ϕ ◦ ψα(ζ)|2dm(ζ)
]

+ sup
α∈D

[ ∫
T\(ϕ◦ψα)−1(E)

| fn ◦ ϕ ◦ ψα(ζ)|2dm(ζ)
]
− inf

α∈D

[
| fn(ϕ(α))|2

]

> C
∫
E

| fn(ζ)|2Pβ(ζ)dm(ζ) + C
∫

T\E

| fn(ζ)|2Pβ(ζ)dm(ζ)− C| fn(β)|2. (10.15)

From remark 2, after theorem 9.1.6, we conclude that the functions fn have

the form

fn(z) = eu(z)+iv(z),

where u(z) is the Poisson integral (defined in (2.12)) of the function log | fn(eiθ)|

and v(z) is a harmonic conjugate of u(z). So we have

| fn(z)| = eu(z) = exp
( ∫

T

log | fn(eiθ)|Pz(eiθ)dθ
)

. (10.16)

Because of (10.16), the relation (10.15) gives

sup
α∈D

m((ϕ ◦ ψα)
−1(E)) +

1
2n sup

α∈D

m(T \ (ϕ ◦ ψα)
−1(E))

− inf
α∈D

exp
(
− log 2n

∫
T\E

Pϕ(α)(e
iθ)dθ

)
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> Cνβ(E) +
C
2n νβ(T \ E)− C exp

(
− log 2n

∫
T\E

Pβ(eiθ)dθ
)

.

Therefore

sup
α∈D

m(ψα ◦ ϕ−1(E)) +
1
2n sup

α∈D

m(T \ ψα ◦ ϕ−1(E))− inf
α∈D

1

2nm(ψϕ(α)(T\E))

> Cνβ(E) +
C
2n νβ(T \ E)− C

2nνβ(T\E))
. (10.17)

Let’s suppose that 0 < m(T \ E) ≤ 1. Then, (10.17) gives

sup
α∈D

m(ψα ◦ ϕ−1(E)) +
1
2n −

1
2n > Cνβ(E) +

C
2n νβ(T \ E)− C

2nνβ(T\E))
.

Taking limit as n→ +∞ in the last relation, we get

sup
α∈D

m(ψα ◦ ϕ−1(E)) > Cνβ(E). (10.18)

Now, if we suppose m(T \ E) = 0 then, it’s also true that m(ψϕ(α)(T \ E)) = 0

and νβ(T \ E)) = 0, so (10.17) gives

sup
α∈D

m(ψα ◦ ϕ−1(E)) +
1
2n − 1 > Cνβ(E)− C.

i.e.

sup
α∈D

m(ψα ◦ ϕ−1(E)) +
1
2n > Cνβ(E) + 1− C.

But we have supposed C < 1 so, by cancelling 1− C from the right side of

the last relation, it follows that

sup
α∈D

m(ψα ◦ ϕ−1(E)) +
1
2n > Cνβ(E).
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Taking limit as n→ +∞ in the last relation, we get

sup
α∈D

m(ψα ◦ ϕ−1(E)) > Cνβ(E). (10.19)

Taking supremum over β ∈ D in (10.18) and (10.19) we get the desired result

and the proof of the theorem is complete.

10.2 A sufficient condition

For α ∈ D and E ⊂ D Borel, define the measure

µϕ,α(E) = m(ζ ∈ T : ψϕ(α) ◦ ϕ ◦ ψα(ζ) ∈ E). (10.20)

Next, we will prove a lemma, which will be used in the proof of theorem

10.2.2.

Lemma 10.2.1. Let ϕ : D → D analytic and f ∈ BMOA. If there is r ∈ (0, 1)

such that ϕ(D) ∩ Dr(α) 6= ∅ for all α ∈ D, then

‖ f ‖2
∗ � sup

α∈D

∫
T

| f (eiθ)− f (ϕ(α))|2Pϕ(α)(e
iθ)dθ

Proof. Let f ∈ BMOA, fixed. Then, there exists sequence zn ∈ D, n ∈ N,

such that

‖ f ‖2
∗ = lim

n→∞

∫∫
D

1− |zn|2
|1− znz|2 | f

′(z)|2 log
1
|z|dA(z).

Because ϕ(D) ∩ Dr(zn) 6= ∅, we have that there exist αn ∈ D such that

ϕ(αn) ∈ Dr(zn), for all n ∈N. It holds that

|1− znz| � |1− ϕ(αn)z|



10.2. A sufficient condition 111

for every n ∈N and for all z ∈ D. In addition, from (2.19), it follows that

1− |zn|2 � 1− |ϕ(αn)|2.

Hence,
1− |zn|2
|1− znz|2 log

1
|z| �

1− |ϕ(αn)|2

|1− ϕ(αn)z|2
log

1
|z|

for all z ∈ D. The underlying constants in the last relation depend only on r.

So, there exists Cr > 0 such that

‖ f ‖2
∗ = lim

n→∞

∫∫
D

1− |zn|2
|1− znz|2 | f

′(z)|2 log
1
|z|dA(z)

≤ sup
n∈N

∫∫
D

1− |zn|2
|1− znz|2 | f

′(z)|2 log
1
|z|dA(z)

≤ Cr sup
n∈N

∫∫
D

1− |ϕ(αn)|2

|1− ϕ(αn)z|2
| f ′(z)|2 log

1
|z|dA(z)

≤ Cr sup
α∈D

∫∫
D

1− |ϕ(α)|2

|1− ϕ(α)z|2
| f ′(z)|2 log

1
|z|dA(z)

≤ Cr sup
α∈D

∫∫
D

1− |α|2
|1− αz|2 | f

′(z)|2 log
1
|z|dA(z) = Cr‖ f ‖2

∗.

We proved that

‖ f ‖2
∗ � sup

β∈D

∫∫
D

1− |ϕ(β)|2

|1− ϕ(β)z|2
| f ′(z)|2 log

1
|z|dA(z). (10.21)

Let α ∈ D. Using the identity (see [24], relation (3.3), page 230)

∫
T

| f (eiθ)− f (α)|2Pα(eiθ)dθ =
∫∫
D

1− |α|2
|1− αz|2 | f

′(z)|2 log
1
|z|dA(z)
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in combination with (10.21), we finally get

‖ f ‖2
∗ � sup

β∈D

∫
T

| f (eiθ)− f (ϕ(β))|2Pϕ(β)(e
iθ)dθ.

Remark 3. If the assumptions of lemma 10.2.1 hold then, we can calculate the

BMOA norm of f by taking supremum over ϕ(D) and, not necessarily, over

D. This, of course, can be applied to all equivalent norms in BMOA.

Next, we will use measure µϕ,α as defined in (10.20).

Theorem 10.2.2. If there exist r ∈ (0, 1) and C > 0 such that ϕ(D)∩Dr(α) 6= ∅

and m(ψα ◦ ϕ−1 ◦ ψϕ(α)(E)) > Cm(E) for all α ∈ D and for all Borel E ⊂ T,

then, Cϕ : BMOA→ BMOA has closed range.

Alternatively, we can restate the above theorem as:

If there exists r ∈ (0, 1) and C > 0 such that, for all α ∈ D, ϕ(D) ∩ Dr(α) 6=

∅ and if the Radon-Nikodym derivative dµϕ,α|T
dm is bounded below from a positive

constant, then Cϕ : BMOA→ BMOA has closed range.

Proof. Let α ∈ D. We have

‖ f ◦ ϕ‖2
∗ = sup

β∈D

∫
T

| f ◦ ϕ ◦ ψβ(ζ)− f (ϕ(β))|2dm(ζ)

= sup
β∈D

∫∫
D

| f (ψϕ(β)(z))− f (ϕ(β))|2dµϕ,β(z)

≥
∫∫
D

| f (ψϕ(α)(z))− f (ϕ(α))|2dµϕ,α(z)

≥
∫
T

| f (ψϕ(α)(ζ))− f (ϕ(α))|2dµϕ,α(ζ)

≥ C
∫
T

| f (ψϕ(α)(ζ))− f (ϕ(α))|2dm(ζ),
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where the last inequality is justified by the fact that the Radon-Nikodym

derivative dµϕ,α|T
dm is bounded below from a positive constant C. So

‖ f ◦ ϕ‖2
∗ ≥ C

∫
T

| f (eiθ)− f (ϕ(α))|2Pϕ(α)(e
iθ)dθ.

According to lemma 10.2.1, if we take supremum in the last relation over

ϕ(α) ∈ ϕ(D), we finally get

‖ f ◦ ϕ‖∗ > C‖ f ‖∗.

So Cϕ has closed range.

10.3 Regarding inner functions

In this section, we investigate the case Cϕ : BMOA→ BMOA to have closed

range, when ϕ is an inner function. Actually, it is known that if ϕ is an inner

function then Cϕ is an isometry and so it has closed range (see [10], [27], [42]).

Here, we shall give another proof that Cϕ is an isometry if ϕ is inner. First, we

prove a lemma using the following, well known theorem, due to Frostman.

For a proof, see theorem 6.4 in [24].

Theorem 10.3.1 (Frostman). Let ϕ be a nonconstant inner function on D. Then

for all w ∈ D, except possibly for a set of capacity zero, the function

Bw(z) =
ϕ(z)− w

1− wϕ(z)
(10.22)

is a Blaschke product.

Lemma 10.3.2. Let ϕ be an inner function. Then ϕ takes every value in the unit

disk D, except possibly of the values in a set of capacity zero.

Proof. Let ϕ be inner function and Γ the set of capacity zero mentioned in

theorem 10.3.1. Take an arbitrary but fixed w ∈ D \ Γ and let Bw be the



114 Chapter 10. Closed range composition operators on BMOA space

Blaschke product associating with ϕ as in theorem 10.3.1. Since Bw maps D

onto D, we have that there is at least one z1 ∈ D such that Bw(z1) = 0. From

(10.22), we have that ϕ(z) = Bw(z)+w
1+wBw(z)

, so ϕ(z1) = w and the proof of the

lemma is complete.

The following is the main result of this section.

Proposition 10.3.3. If ϕ : D → D is inner then Cϕ : BMOA → BMOA is an

isometry.

Proof. Let α ∈ D and E ⊂ T Borel, then we have that

µϕ,α|T(E) = m((ψϕ(α) ◦ ϕ ◦ ψα)
−1(E)).

We observe that the function ψϕ(α) ◦ ϕ ◦ ψα is inner and, in addition, ψϕ(α) ◦

ϕ ◦ ψα(0) = 0, so from (9.13), applied for the inner function ψϕ(α) ◦ ϕ ◦ ψα, we

get
dµϕ,α|T

dm
(ζ) =

1− |ψϕ(α) ◦ ϕ ◦ ψα(0)|
1 + |ψϕ(α) ◦ ϕ ◦ ψα(0)|

= 1 (10.23)

for all ζ ∈ T.

We will show that µϕ,α(D) = 0. It’s true that ψα(ζ) ∈ T, when ζ ∈ T and,

since ϕ is inner, ϕ(ψα(ζ)) ∈ T for m-a.e ζ ∈ T and obviously, ψϕ(α)(ϕ(ψα(ζ))) ∈

T for m-a.e ζ ∈ T. Hence, the implication: if ζ ∈ T then ψϕ(α)(ϕ(ψα(ζ))) ∈ T

is true just for m-a.e ζ ∈ T and, consequently, we have µϕ,α(D) = 0. There-

fore,

∫∫
D

| f (ψϕ(α)(z))− f (ϕ(α))|2dµϕ,α(z) =
∫
T

| f (ψϕ(α)(ζ))− f (ϕ(α))|2dµϕ,α(ζ)

(10.24)

for all f ∈ BMOA and for all α ∈ D.

Let f ∈ BMOA. Using (10.24), we get

∫
T

| f ◦ ϕ ◦ ψα(ζ)− f (ϕ(α))|2dm(ζ) =
∫∫
D

| f (ψϕ(α)(z))− f (ϕ(α))|2dµϕ,α(z)
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=
∫
T

| f (ψϕ(α)(ζ))− f (ϕ(α))|2dµϕ,α(ζ)

=
∫
T

| f (ψϕ(α)(ζ))− f (ϕ(α))|2dm(ζ)

where the last equality is justified by (10.23) and by the absolute continuity

of µϕ,α with respect to m.

Lemma 10.3.2 ensures that lemma 10.2.1 and remark 3 can be used, so

taking supremum over α ∈ D in the last relation we get

‖ f ◦ ϕ‖∗ = ‖ f ‖∗.

So Cϕ is an isometry.

10.3.1 Using Alexandrov-Clark measures

We can also prove relation (10.23) by using Alexandrov-Clark measures (see

section 2.7). Let β ∈ D. Then, according to the notation of (2.33), we have

that

µϕ,β|T = νψϕ(β)◦ϕ◦ψβ
. (10.25)

From (2.32), applied for the function ψϕ(β) ◦ ϕ ◦ ψβ, we get

‖µs
λ‖ =

1− |ψϕ(β) ◦ ϕ ◦ ψβ(0)|2

|λ− ψϕ(β) ◦ ϕ ◦ ψβ(0)|2
−
∫
T

1− |ψϕ(β) ◦ ϕ ◦ ψβ(ζ)|2

|λ− ψϕ(β) ◦ ϕ ◦ ψβ(ζ)|2
dm(ζ),

for m− a.e. λ ∈ T.

Since ϕ is an inner function we have that ψϕ(β) ◦ ϕ ◦ ψβ is also an inner

function, so |ψϕ(β) ◦ ϕ ◦ ψβ(ζ)| = 1 for m− a.e. ζ ∈ T. Moreover ψϕ(β) ◦ ϕ ◦

ψβ(0) = 0. Therefore

‖µs
λ‖ =

1− |ψϕ(β) ◦ ϕ ◦ ψβ(0)|2

|λ− ψϕ(β) ◦ ϕ ◦ ψβ(0)|2
= 1,
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for m− a.e. λ ∈ T.

From proposition 2.7.3 we get

dµϕ,β|T
dm

(λ) = ‖µs
λ‖ = 1

for m− a.e. λ ∈ T and for all β ∈ D.
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Chapter 11

Closed range composition

operators on Bergman spaces

The Bergman spaces Ap and the weighted Bergman spaces Ap
γ, γ > −1, as

well as some equivalent norms in these spaces were defined in section 2.1.2.

This chapter doesn’t contain any new result. We just show here that an al-

ready known proof of Akeroyd and Fulmer (2008) for Cϕ to have closed range

on Bergman space A2 works for Ap
γ, γ > −1 spaces (1 ≤ p < ∞).

Cϕ : Ap
γ → Ap

γ is bounded, for every analytic ϕ : D → D as it is implied

by a theorem due to Littlewood (see [51], Theorem 11.6).

Theorem 11.0.1 (Littlewood’s subordination theorem). If ϕ : D → D is ana-

lytic, p > 0 and γ > −1, then

∫∫
D

| f (ϕ(z))|p(1−|z|2)γdA(z) ≤
(1 + |ϕ(0)|

1− |ϕ(0)

)2+γ ∫∫
D

| f (z)|p(1−|z|2)γdA(z),

for all f ∈ Ap
γ.

In 2008, Akeroyd and Ghatage (see [2]), proved a necessary and sufficient

condition for Cϕ to have closed range in A2. In 2011, Akeroyd and Fulmer

(see [3]) gave a (more complicated) proof that condition for A2 space holds

also for all weighted Bergman spaces Ap
γ, 1 ≤ p < ∞, γ > −1. Here, we

present a simpler proof of the same result for Ap
γ, similar to the original proof

of Akeroyd and Ghatage for A2.
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Let ε > 0. Set

Ωε =
{

z ∈ D :
(1− |z|2)p+γ−1|ϕ′(z)|p−2

(1− |ϕ(z)|2)p+γ−1 > ε
}

(11.1)

and Gε = ϕ(Ωε).

Theorem 11.0.2. Let 1 ≤ p < ∞, γ > −1. The following are equivalent:

(i) Cϕ : Ap
γ → Ap

γ has closed range.

(ii) There exist ε > 0, δ > 0 and η ∈ (0, 1) such that the set Gε to satisfy the

condition

A(Gε ∩ Dη(a)) ≥ δA(Dη(a)) (11.2)

for all a ∈ D.

Proof. We will use the norm defined in (2.9). Because of lemmas 8.0.1, 8.0.3

and 8.0.4, we can, without loss of generality, suppose ϕ(0) = 0 and f (0) = 0

for all f ∈ Ap
γ. If f ∈ Ap

γ then f ′ ∈ Ap
p+γ, so we will make use of theorem

5.2.2 with G = Gε.

Proof (i) ⇒ (ii). Let’s suppose that Cϕ has closed range and (11.2) doesn’t

hold. Then, since (11.2) is the same with (5.4), from theorem (5.2.2) we have

that (5.3) doesn’t hold, too. This means that, for k ∈ N, there is sequence

fk ∈ Ap
γ with ‖ fk‖Ap

γ
= 1 and

∫∫
G1/k

| f ′k(w)|p(1− |w|2)p+γdA(w)→ 0, k→ +∞. (11.3)

For contradiction, we will show that ‖ fk ◦ ϕ‖Ap
γ
→ 0 as k→ ∞. We have:

‖ fk ◦ ϕ‖p
Ap

γ
�
∫∫
D

| f ′k(ϕ(z))|p|ϕ′(z)|p(1− |z|2)p+γdA(z)

=
∫∫

D\Ω1/k

| f ′k(ϕ(z))|p|ϕ′(z)|p(1− |z|2)p+γdA(z)
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+
∫∫

Ω1/k

| f ′k(z)|p|ϕ′(z)|p(1− |z|2)p+γdA(z).

Next, the relation Nϕ(w) ≤ 1− |w|2, for all w ∈ D (see lemma 2.4.1) will be

used, as well as the relations (2.21), 1− |w|2 ≤ 1− |ϕ(w)|2 (see lemma 2.2.1),

|ϕ′(w)|(1− |w|2) ≤ 1− |ϕ(w)|2 (see lemma 2.2.2) and the change of variable

w = ϕ(z) according to proposition 2.5.1. Hence,

∫∫
D\Ω1/k

| f ′k(ϕ(z))|p|ϕ′(z)|p(1− |z|2)p+γdA(z)

=
∫∫

D\Ω1/k

| f ′k(ϕ(z))|p
{
|ϕ′(z)|p−2(1− |z|2)p+γ−1

}
(1− |z|2)|ϕ′(z)|2dA(z)

≤ C
k

∫∫
D\Ω1/k

| f ′k(ϕ(z))|p(1− |ϕ(z)|2)p+γ−1 log
1
|z| |ϕ

′(z)|2dA(z)

=
C
k

∫∫
ϕ
(

D\Ω1/k

) | f ′k(w)|p(1− |w|2)p+γ−1Nϕ(w)dA(w)

=
C
k

∫∫
ϕ
(

D\Ω1/k

) | f ′k(w)|p(1− |w|2)p+γ−1(1− |w|2)dA(w)

≤ C
k

∫∫
ϕ
(

D\Ω1/k

) | f ′k(w)|p(1− |w|2)p+γdA(w)

≤ C
k

∫∫
D

| f ′k(w)|p(1− |w|2)p+γdA(w)

≤ C
k
‖ fk‖

p
Ap

γ
=

C
k
→ 0,

as k→ ∞. Moreover,

∫∫
Ω1/k

| f ′k(ϕ(z))|p|ϕ′(z)|p(1− |z|2)p+γdA(z)

=
∫∫

Ω1/k

| f ′k(ϕ(z))|p
{
|ϕ′(z)|(1− |z|2)

}p+γ−2
(1− |z|2)(1− |z|2)|ϕ′(z)|2dA(z)
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≤ C
∫∫

Ω1/k

| f ′k(ϕ(z))|p(1− |ϕ(z)|2)p+γ−2(1− |ϕ(z)|2) log
1
|z| |ϕ

′(z)|2dA(z)

= C
∫∫

Ω1/k

| f ′k(ϕ(z))|p(1− |ϕ(z)|2)p+γ−1 log
1
|z| |ϕ

′(z)|2dA(z)

≤ C
∫∫

G1/k

| f ′k(w)|p(1− |w|2)p+γ−1Nϕ(w)dA(w)

≤ C
∫∫

G1/k

| f ′k(w)|p(1− |w|2)p+γ−1(1− |w|2)dA(w)

≤ C
∫∫

G1/k

| f ′k(w)|p(1− |w|2)p+γdA(w)→ 0,

as k→ ∞.

So, we have proved that ‖ fk ◦ ϕ‖Ap
γ
→ 0, k → ∞, which contradicts (11.3)

and the proof of necessity is complete .

Proof (ii)⇒ (i). We have

‖ f ◦ ϕ‖p
Ap

γ
=
∫∫
D

| f ′(ϕ(z))|p|ϕ′(z)|p(1− |z|2)p+γdA(z)

=
∫∫
D

| f ′(ϕ(z))|p|ϕ′(z)|p−2(1− |z|2)p+γ−1(1− |z|2)|ϕ′(z)|2dA(z)

≥
∫∫
Ωε

| f ′(ϕ(z))|p
{
|ϕ′(z)|p−2(1− |z|2)p+γ−1

}
(1− |z|2)|ϕ′(z)|2dA(z).

Let z ∈ Ωε. Using lemma 2.2.2, we get

ε <
|ϕ′(z)|p−2(1− |z|2)p+γ−1

(1− |ϕ(z)|2)p+γ−1 <
(1− |ϕ(z)|2)p−2

(1− |z|2)p−2
(1− |z|2)p+γ−1

(1− |ϕ(z)|2)p+γ−1

≤ (1− |z|2)γ+1

(1− |ϕ(z)|2)γ+1 .

Thus

1− |z|2 ≥ ε
1

γ+1 (1− |ϕ(z)|2), z ∈ Ωε. (11.4)

Our assumption is that (11.2) holds, which, as already said is the same with

(5.4), so from theorem (5.2.2) we have that (5.3) holds, too. Hence, continuing
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from the last integral and using (11.4), we get

∫∫
Ωε

| f ′(ϕ(z))|p
{
|ϕ′(z)|p−2(1− |z|2)p+γ−1

}
(1− |z|2)|ϕ′(z)|2dA(z)

≥ εε
1

γ+1

∫∫
Ωε

| f ′(ϕ(z))|p(1− |ϕ(z)|2)p+γ−1(1− |ϕ(z)|2)|ϕ′(z)|2dA(z)

= ε
γ+2
γ+1

∫∫
Gε

| f ′(w)|p(1− |w|2)p+γnϕ(w)dA(w)

≥ ε
γ+2
γ+1

∫∫
Gε

| f ′(w)|p(1− |w|2)p+γdA(w)

≥ ε
γ+2
γ+1 C

∫∫
D

| f ′(w)|p(1− |w|2)p+γdA(w)

= C‖ f ‖p
Ap

γ
,

where we used the fact that when w ∈ Gε ⊂ ϕ(D), then nϕ(w) ≥ 1. The last

inequality is justified by (5.3).

We proved that ‖ f ◦ ϕ‖Ap
γ
≥ C‖ f ‖Ap

γ
, so Cϕ has closed range.
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Appendix A

Some norms’ estimations

Lemma A.0.1. Let α ∈ D and 1 ≤ p < ∞. Then,

‖ψα − α‖p
Hp � 1− |α|.

Proof. Without loss of generality, we may suppose that α ∈ [0, 1), let α = r.

Then

‖ψα − α‖p
Hp =

∫ 2π

0
|(ψα − α)(eiθ)|pdθ

=
∫ 2π

0

(1− |α|2)p

|1− αeiθ|p
dθ

�
∫ π

0

(1− |α|2)p

|1− αeiθ|p
dθ.

If r ∈ [0, 1
2 ] then we have

C1 ≤
(1− |α|2)p−1

|1− αeiθ|p
≤ C2,

where C1 and C2 are absolute positive constants. Hence, |(ψα − α)(eiθ)|p �

1− |α| and we have nothing more to prove.

If r ∈ [1
2 , 1) then we have |1− αeiθ| � |1r − eiθ|. If 0 ≤ θ ≤ 1− r then

|1r − eiθ| � 1− r and if 1− r ≤ θ ≤ π then |1r − eiθ| � θ. So,

∫ π

0

(1− |α|2)p

|1− αeiθ|p
dθ =

∫ 1−r

0

(1− |α|2)p

|1− αeiθ|p
dθ +

∫ π

1−r

(1− |α|2)p

|1− αeiθ|p
dθ
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and

∫ 1−r

0

(1− |α|2)p

|1− αeiθ|p
dθ �

∫ 1−r

0

(1− r2)p

(1− r)p dθ � 1− r

and

∫ π

1−r

(1− |α|2)p

|1− αeiθ|p
dθ �

∫ π

1−r

(1− r2)p

θp dθ �
[ (1− r2)p

θp−1

]1−r

π
� 1− r.

Therefore ∫ π

0

(1− |α|2)p

|1− αeiθ|p
dθ � 1− r,

which is what we had to show.

Lemma A.0.2. Let α ∈ D. Then,

‖ψα − α‖∗ � 1.

Proof. Using proposition 2.6.2, relation (2.16) and the change of variable w =

ψα(z), we have

‖ψα − α‖2
∗ = sup

β∈D

∫∫
D

1− |β|2

|1− βz|2
|ψ′α(z)|2 log

1
|z|dA(z)

≥
∫∫
D

1− |α|2
|1− αz|2 |ψ

′
α(z)|2 log

1
|z|dA(z)

≥ C
∫∫
D

1− |α|2
|1− αz|2 |ψ

′
α(z)|2(1− |z|2)dA(z)

= C
∫∫
D

|ψ′α(z)|2(1− |ψα(z)|2)dA(z)

= C
∫∫
D

(1− |w|2)dA(w) ≥ C.
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Moreover, using the fact that (1−|β|2)(1−|z|2)
|1−βz|2 ≤ 1, for all z, β ∈ D, and the

change of variable w = ψα(z), we have

‖ψα − α‖2
∗ = sup

β∈D

∫∫
D

1− |β|2

|1− βz|2
|ψ′α(z)|2 log

1
|z|dA(z)

≤ C sup
β∈D

∫∫
D

1− |β|2

|1− βz|2
|ψ′α(z)|2(1− |z|2)dA(z)

≤ C sup
β∈D

∫∫
D

|ψ′α(z)|2dA(z)

= C
∫∫
D

dA(w) ≤ C.

So, ‖ψα − α‖∗ � 1.

Lemma A.0.3. Let α ∈ D. Then,

‖ψα − α‖Qp � 1.

Proof. Using (2.16) and the change of variable w = ψα(z), we have

‖ψα − α‖2
Qp

= sup
β∈D

∫∫
D

(1− |β|2)p

|1− βz|2p
|ψ′α(z)|2(1− |z|2)pdA(z)

≥
∫∫
D

(1− |α|2)p

|1− αz|2p |ψ
′
α(z)|2(1− |z|2)pdA(z)

=
∫∫
D

|ψ′α(z)|2(1− |ψα(z)|2)pdA(z)

=
∫∫
D

(1− |w|2)pdA(w) ≥ C.
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Moreover, using the fact that (1−|β|2)p(1−|z|2)p

|1−βz|2p ≤ 1, for all z, β ∈ D and for all

p ∈ (0, ∞), and the change of variable w = ψα(z), we have

‖ψα − α‖2
Qp

= sup
β∈D

∫∫
D

(1− |β|2)p

|1− βz|2p
|ψ′α(z)|2(1− |z|2)pdA(z)

≤ C sup
β∈D

∫∫
D

|ψ′α(z)|2dA(z)

= C
∫∫
D

dA(w) = C.

So, ‖ψα − α‖∗ � 1.

Lemma A.0.4. Let α ∈ D and fα(z) = (1−|α|2)
2
p /[2α

p (1− αz)
2
p ]− (1−|α|2)

2
p /(2α

p ).

Then,

‖ fα‖Bp
0
� 1.

Proof. A simple calculation shows that

| f ′α(z)| =
(1− |α|2)

2
p

|1− αz|
2
p+1

,

hence, using the relation |1 − αψα(w)| = (1 − |α|2)/|1 − αw|, the identity

(2.16) and the change of variable z = ψα(w), we get

‖ fα‖p
Bp

0
=
∫∫
D

| f ′α(z)|p(1− |z|2)p−2dA(z)

=
∫∫
D

(1− |α|2)2

|1− αz|2+p (1− |z|
2)p−2dA(z)

=
∫∫
D

(1− |α|2)2

|1− αψα(w)|2+p (1− |ψα(w)|2)p−2|ψ′α(w)|2dA(w)

=
∫∫
D

(1− |w|2)p−2

|1− αw|p−2 dA(w).
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But, using the simple relation 1− |w| ≤ |1− αw|,

∫∫
D

(1− |w|2)p−2

|1− αw|p−2 dA(w) ≤
∫∫
D

(1− |w|2)p−2

(1− |w|)p−2 dA(w) ≤ C

and also, using (2.19),

∫∫
D

(1− |w|2)p−2

|1− αw|p−2 dA(w) ≥
∫∫

D 1
2
(0)

(1− |w|2)p−2

|1− αw|p−2 dA(w) ≥ C
∫∫

D 1
2
(0)

dA(w) = C.

So, ‖ fα‖Bp
0
� 1.
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A calculus result

Lemma B.0.1. If F ∈ H1
0 then there exists C > 0 such that

‖F‖H1
0
≤ C

∫∫
D

|F′(z)|dA(z).

Proof. Let eiθ ∈ T. Then we have that

F(eiθ) =
∫ eiθ

0
F′(z)dz.

Set z = reiθ, 0 ≤ r ≤ 1. It follows that

F(eiθ) =
∫ 1

0
F′(reiθ)eiθdr.

Thus

|F(eiθ)| ≤
∫ 1

0
|F′(reiθ)|dr.

Integrating the last relation with respect to θ we get

‖F‖H1
0
≤
∫ 2π

0

∫ 1

0
|F′(reiθ)|drdθ

=
∫ 2π

0

∫ 1

0

1
r
|F′(reiθ)|rdrdθ

=
∫ 2π

0

∫ 1
2

0

1
r
|F′(reiθ)|rdrdθ +

∫ 2π

0

∫ 1

1
2

1
r
|F′(reiθ)|rdrdθ

= A + B.
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Let |z| ≤ 1
2 and consider the euclidean disk E(z; 1

4) ⊂ D. Then, because of

the subharmonicity of |F′| we have

|F′(z)| ≤ 1
A(E(z; 1

4))

∫∫
E(z; 1

4 )

|F′(w)|dA(w)

= C
∫∫

E(z; 1
4 )

|F′(w)|dA(w)

≤ C
∫∫
D

|F′(w)|dA(w) (B.1)

Using (B.1), we get

A =
∫∫

0≤|z|≤ 1
2

1
|z| |F

′(z)|dA(z)

≤ C
∫∫

0≤|z|≤ 1
2

1
|z|

∫∫
D

|F′(w)|dA(w)dA(z)

≤ C
∫∫
D

|F′(w)|dA(w)
∫∫

0≤|z|≤ 1
2

1
|z|dA(z)

≤ C
∫∫
D

|F′(w)|dA(w). (B.2)

In addition, we have

B =
∫∫

1
2≤|z|≤1

1
|z| |F

′(z)|dA(z)

≤ C
∫∫

1
2≤|z|≤1

|F′(z)|dA(z). (B.3)

From (B.2) and (B.3) it follows that

‖F‖H1
0
≤ A + B ≤ C

∫∫
D

|F′(z)|dA(z)

which is the desired result.
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