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EXTENSIONS OF A THEOREM
OF MARCINKIEWICZ-ZYGMUND

AND OF ROGOSINSKI’S FORMULA
AND AN APPLICATION TO UNIVERSAL TAYLOR SERIES

E. S. KATSOPRINAKIS AND M. PAPADIMITRAKIS

(Communicated by Albert Baernstein II)

Abstract. This paper extends Rogosinski’s formula and the Marcinkiewicz-
Zygmund Theorem about circular structure of the limit points of the partial
sums of (C,1) summable Taylor series. Also a result about summability of Hp

Taylor series is proved and an application on Universal Taylor series is given.

1. Introduction

Let
∞∑

n=0

anzn, an ∈ C, be a power series, convergent for |z| < 1. A classical

theorem of Marcinkiewicz-Zygmund (see [2], [5], [9], Vol. II, p. 178) says that,
if this series is (C,1) summable at every point z of a subset E of the unit circle
T = {z ∈ C : |z| = 1}, then, for almost every z in E, the set of limit points of the
partial sums of the series has circular structure with center the (C,1) sum.

One of the results of this paper is an extension of the just mentioned theorem
to (C,k) summability with k ≥ 1. This is Theorem 1 in section 2. This result came
as an immediate consequence of an extention of the main ingredient in the proof of
the theorem of Marcinkiewicz-Zygmund, namely the formula of Rogosinski (see [2],
[9], Theorem 12.16, Ch. III). We extend this formula in Theorem 2 of section 2.

Our work on the formula of Rogosinski was motivated by our desire to answer
certain questions on the subject of Universal Taylor series (see [7]); more precisely,
whether such a series can be (C,k) summable on its circle of convergence and
whether it can belong to any of the Hardy spaces Hp. It was J. -P. Kahane who
suggested the above extension of Rogosinski’s formula in order to answer these
questions. The results related to this subject are contained in section 3.

Section 4 contains remarks and some further comments.

2. Main results

Let S(z) =
∑∞

n=0 anzn be a power series. We denote by SN (z) =
∑N

n=0 anzn

the partial sums of this series, and, generally, by S
(k)
N (z) its (C,k) sums. These are
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defined inductively (for integer k) by

S
(0)
N (z) = SN (z),

S
(k+1)
N (z) = S

(k)
0 (z) + · · ·+ S

(k)
N (z).

In the particular case of the constant power series 1 (which means a0 = 1, a1 =
a2 = · · · = 0) the corresponding sums are denoted by A

(k)
N . Hence

A
(0)
N = 1,

A
(k+1)
N = A

(k)
0 + · · ·+ A

(k)
N .

It is easy to see that A
(k)
N =

(
N+k

N

) ∼ Nk

Γ(k+1) , as N →∞.

By σ
(k)
N (z) we denote the (C,k) means of the series, defined by

σ
(k)
N (z) =

S
(k)
N (z)

A
(k)
N

.

We say that S(z) is (C,k) summable at the point z and that it has σ(k)(z) as its
(C,k) sum, if σ

(k)
N (z) → σ(k)(z), as N →∞.

All this is classical and the basic terminology and facts concerning (C,k) summa-
bility are described in [1] and [9]. For simplicity we restrict ourselves to the case of
integral k. Our first main result is the following:

Theorem 1. Let the power series S(z) converge for |z| < 1. Also let it be (C,k)
summable for every z in a certain subset E of the unit circle T , with (C,k) sum
σ(k)(z). Then, for almost every z of E, the set L(z) of limit points of the sequence

SN (z)− σ(k)(z)
Nk−1

, N = 1, 2, 3, . . . ,

has circular structure with center 0.

A set L in C has circular structure with center α if, for every z in L, the whole
circle {ζ : |ζ − α| = |z − α|} belongs to L.

The theorem of Marcinkiewicz-Zygmund is the special case k = 1 of Theorem 1.
Observe that, for k ≥ 2, the actual value of σ(k)(z) plays no role in the structure
of L(z).

The proof of Theorem 1, as we mentioned in the Introduction, depends heavily
on the following extension of the formula of Rogosinski:

Theorem 2. Let S(z) be convergent for |z| < 1 and be (C,k) summable at z0, with
|z0| = 1. Let {zN} be a sequence with zN − z0 = O( 1

N ). Then,

SN (zN )− σ(k)(z0)

= (
zN

z0
)N

k∑
µ=0

(1 − z0

zN
)µ

k∑
m=µ

(
k − µ

m− µ

)
(−1)mA

(k)
N−m(σ(k)

N−m(z0)− σ(k)(z0)) + o(1),

as N →∞.

One trivially sees that, when k = 1, the formula of Theorem 2 becomes

SN (z)− σ(1)(z) = (
zN

z0
)N (SN (z0)− σ(1)(z0)) + o(1),

which is identical to Theorem 12.16, Ch. III in [9] (Rogosinski’s formula) with a
slight difference. In Rogosinski’s formula z0 = eix, zN = ei(x+aN ) with aN = O( 1

N ),
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i.e. zN is confined on the unit circle T . Here we allow zN to go out of T . The
possibility of doing this was initially observed by V. Nestoridis.

Proof of Theorem 2. Without loss of generality we assume that z0 = 1 and we
supress it from all occurrences, i.e. σ(k) = σ(k)(1), S(k)

N = S
(k)
N (1) etc. Hence

an = S
(0)
n − S

(0)
n−1 (where of course S

(0)
−1 = 0), and with repeated summations by

parts we find:

SN (zN ) =
N∑

n=0

anzn
N = S

(0)
N zN

N + (1− zN )
N−1∑
n=0

S(0)
n zn

N

= S
(0)
N zN

N + S
(1)
N−1z

N−1
N (1− zN ) + (1− zN )2

N−2∑
n=0

S(1)
n zn

N ,

and finally:

SN (zN ) = S
(0)
N zN

N + S
(1)
N−1z

N−1
N (1− zN ) + · · ·+ S

(k)
N−kzN−k

N (1− zN)k

+ (1 − zN)k+1
N−k−1∑

n=0

S(k)
n zn

N .(1)

The same formula applied to the constant series 1 implies:

1 = A
(0)
N zN

N + A
(1)
N−1z

N−1
N (1− zN ) + · · ·+ A

(k)
N−kzN−k

N (1− zN)k

+ (1− zN)k+1
N−k−1∑

n=0

A(k)
n zn

N .(2)

Multiplying (2) by σ(k) and substracting from (1) we get:

SN(zN )− σ(k) =
k∑

µ=0

(S(µ)
N−µ − σ(k)A

(µ)
N−µ)zN−µ

N (1− zN)µ

+ (1− zN )k+1
N−k−1∑

n=0

(S(k)
n − σ(k)A(k)

n )zn
N .(3)

Now consider the last sum in (3) i.e.

(1 − zN)k+1
N−k−1∑

n=0

(S(k)
n − σ(k)A(k)

n )zn
N = (1− zN)k+1

N−k−1∑
n=0

A(k)
n zn

N(σ(k)
n − σ(k)).

It can be considered as a “Toeplitz mean” of the sequence {σ(k)
n − σ(k)}. This

sequence tends to 0 and the two properties of the “coefficients”:

• (1 − zN)k+1A
(k)
n zn

N → 0, as N →∞, for fixed n

• |1 − zN |k+1

N−k−1∑
n=0

|A(k)
n ||zn

N | ≤ (
M

N
)k+1

N−k−1∑
n=0

cnk(1 +
M

N
)n ≤ cMk+1eM

(c, M are absolute constants),

guarantee that the last sum of (3) is o(1), as N →∞.
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Next, if µ < k, we get:

S(µ)
n = S(µ+1)

n − S
(µ+1)
n−1 = S(µ+2)

n − 2S
(µ+2)
n−1 + S

(µ+2)
n−2

= · · · =
k−µ∑
m=0

(
k − µ

m

)
(−1)mS

(k)
n−m(4)

and the same formula for A
(µ)
n .

Replacing (4) and the similar formula for A
(µ)
n in the first sum of (3) and taking

into account that the last sum of (3) is o(1) we get:

SN (zN)− σ(k)

=
k∑

µ=0

k−µ∑
m=0

(
k − µ

m

)
(−1)m(S(k)

N−µ−m − σ(k)A
(k)
N−µ−m)zN−µ

N (1− zN )µ + o(1)

= zN
N

k∑
µ=0

(1− 1
zN

)µ
k∑

m=µ

(
k − µ

m− µ

)
(−1)mA

(k)
N−m(σ(k)

N−m − σ(k)) + o(1)

and this proves Theorem 2.

Proof of Theorem 1. Using zN = z0, N = 0, 1, 2, . . . , in the formula of Theorem 2
one finds:

SN (z0)− σ(k)(z0) =
k∑

m=0

(
k

m

)
(−1)mA

(k)
N−m(σ(k)

N−m(z0)− σ(k)(z0)) + o(1).

This is the term µ = 0 of the sum in the same formula. Therefore

SN (zN )− σ(k)(z0)
Nk−1

= (
zN

z0
)N SN (z0)− σ(k)(z0)

Nk−1

+(
zN

z0
)N

k∑
µ=1

(1− z0

zN
)µ 1

Nk−1

k∑
m=µ

(
k − µ

m− µ

)
(−1)mA

(k)
N−m(σ(k)

N−m(z0)− σ(k)(z0))

+o(
1

Nk−1
).

The last sum is, in absolute value, less than or equal to

c(1 +
M

N
)N

k∑
µ=1

(
M

N
)µ 1

Nk−1

k∑
m=µ

(N −m)k|σ(k)
N−m(z0)− σ(k)(z0)| =

k∑
µ=1

o(
1

Nµ−1
),

which is o(1), as N →∞. Therefore,

SN (zN )− σ(k)(z0)
Nk−1

= (
zN

z0
)N SN(z0)− σ(k)(z0)

Nk−1
+ o(1), as N →∞.

Next, let z0 = eix, zN = ei(x+βN ), βN = O( 1
N ). Then,

SN (x + βN )− σ(k)(x)
Nk−1

= eiNβN
SN (x)− σ(k)(x)

Nk−1
+ o(1).

Assuming k ≥ 2 (for k = 1 we have the Marcinkiewicz-Zygmund Theorem) and
setting

tN (x) =
1

Nk−1
SN (x)
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we find:

tN (x + βN ) = eiNβN tN (x) + o(1), as N →∞.(5)

Now the rest of the proof is identical to the proof of the Marcinkiewicz- Zygmund
Theorem (see [9], Vol. II, p. 178). Only for the sake of completeness (and because
it is not so well known) we give here a sketch of proof.

Denote by D(ζ, r) the open disk centered at ζ with radius r, and by A(r1, r2)
the open ring centered at 0 with extremal radii r1 and r2. Remember that, for
every x ∈ E, S(x) is (C,k) summable and this implies (5) whenever βn = O( 1

n ). To
prove that L(x) has circular structure for almost every x in E, it is enough to prove
that, if D(ζ, r) is any disc with rational center ζ 6= 0 and rational radius r ≤ |ζ|,
then for almost every x ∈ E: if L(x) does not cut D(ζ, r), then it does not cut
A(|ζ| − r, |ζ|+ r) either. Now consider some increasing sequence of radii tending to
r, rk ↑ r. Consider also the set Ek,N of all x ∈ E such that: tn(x) is not in D(ζ, rk)
for every n ≥ N . It is enough to prove that for almost every x ∈ Ek,N the set L(x)
does not cut A(|ζ| − rk, |ζ|+ rk).

Take any point of density x of Ek,N . If L(x) cuts A(|ζ| − rk, |ζ| + rk) then, for
some sequence of n’s, tn(x) will tend to some point of A(|ζ| − rk, |ζ| + rk) making
an angle, say γ, with ζ. Find a sequence βn such that:

(i) x + βn ∈ Ek,N and (ii) nβn → −γ.

Then (i) implies that tn(x+βn) is not in D(ζ, rk) for all n ≥ N , while (ii), together
with (5), implies that tn(x + βn) is in D(ζ, rk) for a sequence of n’s.

Thus we arrive at a contradiction and we finish the proof of Theorem 1.
Note that a result of M. Riesz (see [1], Theorem 76) immediately implies that,

if
∞∑

n=0

anzn is (C,k) summable, then
∞∑

n=0

an

(n + 1)k−1
zn is (C,1) summable. There-

fore, by the Marcinkiewicz-Zygmund Theorem the limit points of the partial sums
N∑

n=0

an

(n + 1)k−1
zn have, for almost every z ∈ E, circular structure around the (C,1)

sum of the last series (which depends on z).

3. An application

A Taylor series
∑∞

n=0 anzn with radius of convergence equal to 1 is called Uni-
versal if, on any compact subset K of the complex plane not intersecting the open
unit disc and with connected complement, its partial sums approximate uniformly
any given function continuous on K and holomorphic in the interior of K.

This definition is due to V. Nestoridis who proved the existence and the basic
properties of such series in the framework of a project studying the behaviour of
partial sums of Taylor series (see [7], [8]).

Natural questions arise about this class of series. Here we answer two of them
by the following:

Theorem 3. A Universal Taylor series cannot be (C,k) summable at any point of
its circle of convergence. Also it cannot belong to any Hp space, p > 0.

Note that [6] contains the result that any Universal Taylor series cannot belong
to the class N of Nevanlinna, thus implying the last part of our Theorem 3. But
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since the method of proof is different and since it may have some independent
interest we include it here.

Proof of Theorem 3. Let S(z) =
∑∞

n=0 anzn be a Universal Taylor series. Assume
that it is (C,k) summable at a certain point z0, |z0| = 1. Let K = {ζ : |ζ| ≥
1, |ζ − z0| ≤ δ} for small δ > 0. Consider the constant function σ(k)(z0) + 1 on
K and (since S(z) is Universal) a subsequence of SN ’s converging uniformly on K
towards this constant. Let

zN =
z0

1− x
N

, where x > 0, N > x.

Then, the formula of Theorem 2 implies, for this subsequence of N ’s, that

e−x = lim
N

k∑
µ=0

xµAµ,N , x > 0,

where

Aµ,N =
1

Nk

k∑
m=µ

(
k − µ

m− µ

)
(−1)mA

(k)
N−m(σ(k)

N−m(z0)− σ(k)(z0)).

Therefore, a sequence of polynomials in x of degree not exceeding the fixed k
converges on the positive real axis towards e−x. This is clearly impossible!

The proof that S(z) does not belong to any Hp space, p > 0, will be an immediate
consequence of the following proposition:

Proposition 1. If the Taylor series S(z) =
∑∞

n=0 anzn, convergent in |z| < 1,
defines a function in some Hp space, p > 0, then the series is (C,k) summable at
almost every point of the unit circle for an appropriate k (depending only on p).

Proof of the proposition. It is enough to assume that S(z) never vanishes in |z| < 1.
Indeed, considering the standard decomposition S(z) = B(z)G(z), where B(z) is a
Blaschke product and G(z) never vanishes in |z| < 1, we can write

S(z) =
B(z) + 1

2
G(z) +

B(z)− 1
2

G(z) = S1(z) + S2(z).

Thus both Sj(z) never vanish in |z| < 1, and it is enough to work with each Sj(z).
First of all we observe that if 1 ≤ p, then S(z) is a Fourier series and thus it is

(C,ε) summable almost everywhere on |z| = 1, for every ε > 0 (see [9]). Also, if
we accept the Carleson–Hunt Theorem, we have that if 1 < p, then S(z) is (C,0)
summable a.e.

Next, let 1
2 < p < 1. Write S = SrSt, where r, t are chosen so that r + t = 1 and

r < p, t < p. Then, Sr ∈ Hp/r, St ∈ Hp/t and they are both (C,0) summable a.e.
Now we use a standard theorem (see [1], Theorem 164) saying that if two series

are (C,k) and (C,`) summable, then their Cauchy product is (C,k+`+1) summable.
Therefore S(z) is (C,1) summable a.e.

If p = 1
2 , then r = t = 1

2 gives that S(z) is (C,1 + ε) summable a.e. for every
ε > 0.

Proceed inductively: If 1
k+1 < p < 1

k , we write S = SrSt, where r + t = 1, r <

kp, t < p. Then Sr ∈ Hp/r, St ∈ Hp/t. Hence St is (C,0) summable a.e. and (we
assume that) Sr is (C,k − 1) summable a.e. Therefore S is (C,k) summable a.e. If
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p = 1
k+1 , the choice r = kp, t = p gives that S is (C,k + ε) summable a.e. for every

ε > 0.
This finishes the proof of the proposition and of Theorem 3.

4. Remarks and comments

We initially offer two remarks on Theorem 1.
1. For simplicity in Theorem 1 we restricted ourselves to the case of integral k.

We believe that this restriction is unnecessary and one can prove Theorem 1 for k
real, k > 0, using suitably the formula of Theorem 2; the reader will find such kind
of arguments in [5].

In [5] Marcinkiewicz and Zygmund actually proved that:
“If the series S(z) is summable (C,k+1) (where k ∈ R, k > −1) at every point

z of a set E ⊆ T , to sum σ(k+1)(z), then at almost every point z of E the set
L(k)(z) of limit points of the sequence σ

(k)
N (z) is of circular structure, with center

σ(k+1)(z)”.
This result suggests that Theorem 1 may be extended as follows:
Let the power series S(z) converge for |z| < 1. Also let it be (C,k) summable

(where k ∈ R, k > 0) for every z in a certain subset E of the unit circle T , with
(C,k) sum σ(k)(z). Then, for almost every z of E, the set L(m)(z) of limit points
of the sequence

σ
(m)
N (z)− σ(k)(z)

Nk−m−1
, N = 1, 2, 3, . . . , 0 ≤ m < k,

has circular structure with center 0.
Observe that, although, in the case k 6= m + 1, the actual value of σ(k)(z) plays

no role in the structure of L(m)(z), we include it in order to cover the case k = m+1
(which corresponds to the theorem of Marcinkiewicz and Zygmund).

Next, we note that we can replace the factor (1 − z0
zN

)µ, appearing in the right
member of the formula of Theorem 2, by the factor (log zN

z0
)µ. Thus, another

extension of the formula of Rogosinski is the following:

SN (zN )− σ(k)(z0)

= (
zN

z0
)N

k∑
µ=0

(log
zN

z0
)µ

k∑
m=µ

(
k − µ

m− µ

)
(−1)mA

(k)
N−m(σ(k)

N−m(z0)− σ(k)(z0)) + o(1),

as N →∞.
Now we shall make some comments for the class of Universal Taylor Series. As

we mentioned before, several questions arise naturally about this class of series
(see [3], [4], [6] and [7]). Although some of them have been answered, there are
others which remain open. For example, is a Universal Taylor series always non-
continuable across T ? To establish such properties of this class of series is a natural
direction of research and may be difficult, as is mentioned in [3].

On the other hand we observe that, according to the Theorem 8.37, Ch. V in
[9], if S(z) =

∑∞
n=0 anzn is a Universal Taylor series, then almost all the functions

St(z) =
∞∑

n=0

anznφn(t), and S∗t (z) =
∞∑

n=0

anznφ∗n(t),

where φn(t), 0 < t < 1, are the sequence of Rademacher’s functions and φ∗n(t) =
1
2 (1 + φn(t)), are not continuable across T . Moreover, for almost all t, the series
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St(z) and S∗t (z) are not Universal, since otherwise they shall have subsequences
convergent on some arc of T , which amounts to an application of a linear method of
summation to each of them - a contradiction according to the results of paragraph
8, Chapter V in [9] (let us notice that

∑∞
n=0 |an|2 = ∞). Writing now S(z) =

2S∗t (z) − St(z) we see that every Universal Taylor series can be expressed as the
sum of two non-Universal and not continuable Taylor series.
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