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Chapter 1

The complex plane and the sphere of
Riemann.

1.1 The complex plane.

In R2, besides the usual vector space addition, which is defined by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

there is the operation of multiplication, defined by

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + y1x2).

Wecan easily prove thatR2 equippedwith these two binary operations is an algebraic field. The
neutral element of multiplication is (1, 0) and the inverse of (x, y) ̸= (0, 0) is

(
x

x2+y2
,− y

x2+y2

)
.

We denote C the set R2 equipped with the above addition and multiplication.
It is easy to prove that the function R ∋ x 7→ (x, 0) ∈ C is a one-to-one field homomorphism

from R into C. This permits the identification of R with the subset {(x, 0) |x ∈ R} of C. In other
words, we may identify x ∈ R with the corresponding (x, 0) ∈ C and consider R as a subset of
C. This is exactly the same as the identification we make when we want to view R as the real line,
the x-axis, in the two-dimensional plane identified with R2. From now on we do not distinguish
between x and (x, 0), i.e. (x, 0) = x.

We define i, the imaginary unit, to be the element (0, 1) and then we have

(x, 0) + i(y, 0) = (x, 0) + (0, 1)(y, 0) = (x, 0) + (0, y) = (x, y).

If we replace (x, 0) and (y, 0) with the corresponding x and y, we get

(x, y) = x+ iy.

From now on we shall write the elements of C = R2 in both forms: (x, y) and x + iy. We
shall prefer the second, x + iy, the complex form of the elements of C. We say that x + iy is a
complex number and that C is the set of complex numbers.

Now the definitions of addition and multiplication take the forms:

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2),

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + y1x2).

In particular we have (±i)2 = −1. We shall prove later that, besides the polynomial equation z2+1
which has as solutions the complex numbers±i, every polynomial equation with coefficients in C
is solvable in C. In other words, we shall prove that C is an algebraically closed field.
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The usual order relation < , which makes R an ordered field, cannot be extended in C. In
fact, C cannot be equipped with any order relation so that it becomes an ordered field (with the
addition and muptiplication already defined in C). Indeed, no matter what the order relation is, we
must have that an element of the form z2 = z z is “positive” if z ̸= 0, and then we end up with
the contradiction: 1 = 12 is “positive” and −1 = i2 is also “positive”. Therefore, when we write
inequalities like z ≤ w or z < w we always accept that z, w are real numbers.

It is customary to use symbols like x, y, u, v, t, ξ, η for real numbers and symbols like z, w, ζ
for complex numbers. For instance, we write z = x+ iy, w = u+ iv, ζ = ξ + iη.

For every z = (x, y) = x+ iy we introduce the symbols

Re z = x, Im z = y, z = (x,−y) = x− iy, |z| =
√

x2 + y2

These are called real part, imaginary part, conjugate and absolute value (or modulus) of z,
respectively.

The useful identities

Re z = 1
2(z + z), Im z = 1

2i(z − z), z z = |z|2

are trivial to prove.
The geometrical model for C is the same as for R2, i.e. the cartesian plane with two perpen-

dicular axes: every z = (x, y) = x + iy corresponds to the point of the plane with abscissa x
and ordinate y. The horizontal axis of all points (x, 0) = x is the real axis. The vertical axis of
all points (0, y) = iy is the imaginary axis. In this framework, the cartesian plane is also called
complex plane.

We recall that the cartesian equation of the general line in the plane is

ax+ by = c,

where a, b, c ∈ R, a2 + b2 ̸= 0. If we set z = x+ iy and w = a+ ib ̸= 0, then the above equation
takes the form

Re(wz) = c.

Similarly, the defining inequalities ax+ bc < c and ax+ bc > c of the two halfplanes on the
two sides of the line with equation ax+by = c become Re(wz) < c and Re(wz) > c, respectively.

We shall denote
[z1, z2] = {(1− t)z1 + tz2 | 0 ≤ t ≤ 1}

the linear segment joining the points z1, z2. When we say interval we mean a linear segment on
the real line: [a, b] ⊆ R.

The euclidean distance between the points z1 = (x1, y1) and z2 = (x2, y2) is√
(x1 − x2)2 + (y1 − y2)2 = |z1 − z2|.

Therefore, the circle, the open disc and the closed disc with center z = (x, y) and radius r > 0
take the form

Cz(r) = {w | |w − z| = r}, Dz(r) = {w | |w − z| < r}, Dz(r) = {w | |w − z| ≤ r}.

We recall the special symbols T for the unit circle C0(1), D for the unit disc D0(1) and D for the
closed unit disc D0(1).

The real part and the imaginary part of a complex function f : A → C, where A is any
nonempty set, are the functions u = Re f : A → R and v = Im f : A → R, respectively, defined
by

u(a) = Re f(a) = 1
2(f(a) + f(a)), v(a) = Im f(a) = 1

2i(f(a)− f(a)).

Of course, we have f(a) = u(a) + iv(a) = (u(a), v(a)) for a ∈ A.
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Now,C = R2 has the familiar euclidean metric space structure: we have the notions of interior
point, boundary point, limit point and accumulation point of a set, interior A◦, boundary ∂A and
closure A of a set A, open set, closed set, compact set and connected set and the related proper-
ties. We also have the notions of convergence of sequences of complex numbers and limits and
continuity of functions defined in C or taking values in C.

We only recall the following very simple properties of limits. The variable points z, w may
represent the terms of a sequence or the values of a function and so we get the familiar algebraic
properties of limits of sequences and of functions.

Of course, the convergence z → z0 is equivalent to |z − z0| → 0. If z = (x, y) and z0 =
(x0, y0), then the equivalence between z → z0 and x → x0, y → y0 now takes the form of the
equivalence between z → z0 and Re z → Re z0, Im z → Im z0. Also, if z → z0 andw → w0, then
z + w → z0 + w0 and zw → z0w0. Both can be proved either by reducing them to convergence
of real and imaginary parts or -preferably- by using the triangle inequality:

|(z + w)− (z0 + w0)| ≤ |z − z0|+ |w − w0|

and

|zw − z0w0| = |(z − z0)(w − w0) + (z − z0)w0 + (w − w0)z0|
≤ |z − z0||w − w0|+ |z − z0||w0|+ |w − w0||z0|.

If z → z0 ̸= 0, we can prove that 1
z → 1

z0
using the equality |1z −

1
z0
| = |z−z0|

|z||z0| . We use the equality
|z − z0| = |z − z0| to prove that z → z0 implies z → z0. Similarly, we use the triangle inequality
||z| − |z0|| ≤ |z − z0| to prove that z → z0 implies |z| → |z0|.

We shall consider the limit z → ∞ in section 1.3 where the point∞ will be introduced.
We also mention the standard examples of polynomial functions

p(z) = anz
n + · · ·+ a1z + a0

and rational functions
r(z) = p(z)

q(z) =
anzn+···+a1z+a0
bmzm+···+b1z+b0

.

A polynomial function is continuous in C and a rational function is also continuous in C except
at the roots of the polynomial in its denominator. Again, we shall consider the limits of p(z) and
r(z) at infinity and the limits of r(z) at the roots of its denominator in section 1.3 where the point
∞ will be introduced.

1.2 Argument and polar representation.

The trigonometric functions sin and cos are defined and their properties are studied in the theory
of functions of a real variable. In particular, we know that sin and cos are periodic with smallest
positive period 2π, i.e. sin(θ + 2π) = sin θ and cos(θ + 2π) = cos θ.

Let I be any interval of length 2π which contains only one of its endpoints, e.g. [0, 2π) or
(−π, π]. Then we know that for every a, b ∈ R with a2 + b2 = 1 there exists a unique θ ∈ I so
that cos θ = a and sin θ = b. Equivalently, for every ζ ∈ C with |ζ| = 1 there exists a unique
θ ∈ I so that ζ = cos θ + i sin θ. Therefore, the function

cos+i sin : R → T

is periodic with 2π as its smallest positive period and its restriction cos+i sin : I → T to any
interval I of length 2π which contains only one of its endpoints is one-to-one and onto T. Thus,
for every ζ ∈ T the equation cos θ+ i sin θ = ζ has infinitely many solutions in R and exactly one
solution in each interval I of length 2π which contains only one of its endpoints.
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Now, for every z ∈ C, z ̸= 0, we have z
|z| ∈ T and so the equation cos θ + i sin θ = z

|z|
has infinitely many solutions in R and exactly one solution in each interval I of length 2π which
contains only one of its endpoints. The set of all these solutions is called argument or angle of z
and it is denoted arg z, i.e.

arg z =
{
θ
∣∣ cos θ + i sin θ = z

|z|
}
.

So we have the equivalence:

θ ∈ arg z ⇔ cos θ + i sin θ = z
|z| .

Thus, arg z has infinitely many elements and it is clear, by the 2π-periodicity of sin and cos,
that these elements form a (two-sided) arithmetical progression of step 2π. In other words, if θ is
an arbitrary element of arg z, then all elements of arg z are described by θ + k2π, k ∈ Z.

On the other hand, the unique solution of the equation cos θ + i sin θ = z
|z| in the interval

(−π, π] is called principal argument or principal angle of z and it is denoted Arg z:

θ = Arg z ⇔ cos θ + i sin θ = z
|z| and − π < θ ≤ π.

Thus, Arg z is one of the elements of arg z, the one which is contained in (−π, π].

Examples. (i) Arg 3 = 0 and arg 3 = {k2π | k ∈ Z}.
(ii) Arg(4i) = π

2 and arg(4i) = {π
2 + k2π | k ∈ Z}.

(iii) Arg(−2) = π and arg(−2) = {π + k2π | k ∈ Z}.
(iv) Arg(1 + i) = π

4 and arg(1 + i) = {π
4 + k2π | k ∈ Z}.

(v) Arg(−1− i
√
3) = 4π

3 and arg(−1− i
√
3) = {4π

3 + k2π | k ∈ Z}.

We remark that we do not define argument or angle for the number 0.
Since the elements of arg z form an arithmetical progression of step 2π, is is obvious that, if

z1, z2 ̸= 0, then either arg z1 = arg z2 or arg z1 ∩ arg z2 = ∅. More precisely, arg z1 = arg z2 if
and only if z1

z2
> 0 or, equivalently, if and only if z1, z2 belong to the same halfline with vertex 0.

Comparing real and imaginary parts of the two sides of the following identity, we see that it is
equivalent to the well-known addition formulas of sin and cos:

cos(θ1 + θ2) + i sin(θ1 + θ2) = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2).

A direct consequence by induction is the familiar formula of de Moivre:

cos(nθ) + i sin(nθ) = (cos θ + i sin θ)n for every n ∈ Z.

Proposition 1.1. For every nonzero z1, z2 we have

arg(z1z2) = arg z1 + arg z2.

By this we mean that the sum of any element of arg z1 and any element of arg z2 is an element
of arg(z1z2) and, conversely, any element of arg(z1z2) is the sum of an element of arg z1 and an
element of arg z2.

Proof. We take any θ1 ∈ arg z1 and any θ2 ∈ arg z2 and θ = θ1 + θ2. Then by the addition
formulas, cos θ + i sin θ = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2) = z1

|z1|
z2
|z2| = z1z2

|z1z2| . Therefore,
θ ∈ arg(z1z2).
Conversely, we take any θ ∈ arg(z1z2). We consider θ1 ∈ arg z1 and we define θ2 = θ−θ1. Then
cos θ2 + i sin θ2 = cos θ+i sin θ

cos θ1+i sin θ1 = z1z2
|z1z2|

/
z1
|z1| =

z2
|z2| . Therefore, θ2 ∈ arg z2 and θ = θ1 + θ2.

We note that the equality Arg(z1z2) = Arg z1 + Arg z2 is not true in general.
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Example 1.2.1. Arg(−1) + Arg(−1) = π + π = 2π, while Arg((−1)(−1)) = Arg 1 = 0.

The equalities |z1z2| = |z1||z2| and arg(z1z2) = arg z1 + arg z2 express the well-known
geometric rule: when two complex numbers are multiplied, their distances from 0 are multiplied
and their angles are added.

It is clear by now that for every z ̸= 0 we may write

z = r(cos θ + i sin θ),

where r = |z| and θ ∈ arg z. This is called a polar representation of z. There are infinitely
many polar representations of z, one for each θ ∈ arg z. The polar representation with θ = Arg z
is called principal polar representation of z.

As in the case of the argument, we do not define polar representation for the number 0.

Exercises.

1.2.1.Which are all the possible values of Arg(z1z2)− Arg z1 − Arg z2 ?

1.2.2. Prove that arg 1
z = arg z = − arg z and arg(−z) = π + arg z, after you assign the proper

meaning to these equalities.

1.2.3. Prove the following statement for any nonzero z, z1 and z2. It is true that z = z1z2 if and only
if the triangle T (0, 1, z1) with vertices 0, 1, z1 is similar to the triangle T (0, z2, z) with vertices
0, z2, z (0 corresponding to 0, 1 corresponding to z2 and z1 corresponding to z). This expresses
the geometric visualization of the operation of multiplication in C.

1.3 Stereographic projection and the sphere of Riemann.

Let S2 = {(ξ, η, ζ) ∈ R3 | ξ2 + η2 + ζ2 = 1} be the unit sphere in R3. Through the usual
identifications, we consider C = R2 as the set of points z = x+ iy = (x, y) = (x, y, 0) of R3.

A characteristic point of S2 is the north pole N = (0, 0, 1). We take any z = x+ iy ∈ C and
the lineNz in R3, which containsN and z. Clearly, this line intersects S2 atN . We shall see that
there is a second point of intersection A = (ξ, η, ζ) of Nz and S2. That A = (ξ, η, ζ) belongs to
Nz is equivalent to

−−→
NA = t

−→
Nz for some t ∈ R. This is equivalent to

ξ − 0 = t(x− 0)

η − 0 = t(y − 0)

ζ − 1 = t(0− 1)

(1.1)

On the other hand, that A = (ξ, η, ζ) belongs to S2 is equivalent to

ξ2 + η2 + ζ2 = 1. (1.2)

That A = (ξ, η, ζ) is a common point of Nz and S2 is equivalent to (ξ, η, ζ, t) being a solution
of the system of the four equations (1.1) and (1.2). We easily solve this system and we find two
distinct solutions: the point N = (0, 0, 1), which we already know, and the point

A =
(

2x
x2+y2+1

, 2y
x2+y2+1

, x
2+y2−1

x2+y2+1

)
.

Now we consider the mapping

C ∋ z = x+ iy 7−→ A = (ξ, η, ζ) =
(

2x
x2+y2+1

, 2y
x2+y2+1

, x
2+y2−1

x2+y2+1

)
∈ S2 \ {N}

from C to S2 \ {N}. We check easily that this mapping is one-to-one and onto S2 \ {N} and that
the inverse mapping is

S2 \ {N} ∋ A = (ξ, η, ζ) 7−→ z = x+ iy = ξ
1−ζ + i η

1−ζ ∈ C.
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The two mutually inverse mappings just defined between C and S2 \ {N} are called stereo-
graphic projections. We write C ↔ S2 \ {N} to denote the action of the two stereographic
projections.

We shall see now that both stereographic projections are continuous. We take two points
z = x + iy and z0 = x0 + iy0 in C. Let their images, through stereographic projection, be the
points A = (ξ, η, ζ) and A0 = (ξ0, η0, ζ0) in S2 \ {N}. Using the formulas of stereographic
projection, we can prove that the euclidean distance in R3 between A and A0 equals

|A−A0| =
√

(ξ − ξ0)2 + (η − η0)2 + (ζ − ζ0)2

= . . . . . . =
2
√

(x−x0)2+(y−y0)2√
x2+y2+1

√
x2
0+y20+1

= 2|z−z0|√
|z|2+1

√
|z0|2+1

.
(1.3)

We also take z = x+ iy in C and let its image, through stereographic projection, be A = (ξ, η, ζ)
in S2 \ {N}. We find that the euclidean distance in R3 between A and N equals

|A−N | =
√

(ξ − 0)2 + (η − 0)2 + (ζ − 1)2 = . . . . . . = 2√
x2+y2+1

= 2√
|z|2+1

. (1.4)

Now, if z → z0, then (1.3) implies thatA → A0. Conversely, assume thatA → A0. ThenA ̸→ N
and (1.4) shows that |z| stays bounded. Hence (1.3) implies that z → z0. We conclude that both
stereographic projections are homeomorphisms between the metric spaces C and S2 \ {N}.

We can continue the previous argument and examine the behaviour of z inCwhen its imageA
in S2 \ {N} tends to the north poleN . Indeed, (1.4) shows that A → N if and only if |z| → +∞.
In other words, A → N if and only if the euclidean distance of z from 0 becomes arbitrarily large.

Now, it is natural to introduce and attach to C an “ideal point”, denoted∞ and called infinity,
whose euclidean distance from 0 is +∞. We define the extended complex plane or the sphere
of Riemann to be

Ĉ = C ∪ {∞}.

We also extend the previously defined stereographic projections C ↔ S2 \ {N} to be the stere-
ographic projections Ĉ ↔ S2 which map each of∞ ∈ Ĉ and N ∈ S2 onto the other.

Thus, both stereographic projections Ĉ ↔ S2 are bijective mappings between Ĉ and S2.
We have seen that their restrictions C ↔ S2 \ {N} are homeomorphisms between the metric
spacesC and S2\{N}. In order to examine the continuity properties of the extended stereographic
projections, we have to equip the sets Ĉ and S2with correspondingmetrics. Themetric on S2\{N},
i.e. the euclidean distance on R3, is also a metric on S2. But it is clear that the euclidean metric
on C cannot be extended to become a metric on Ĉ. The problem can be solved if we use the
equalities (1.3) and (1.4) to transfer the metric on S2 to a metric on Ĉ. If z, z0 ∈ C, we consider
their images A,A0 ∈ S2 \ {N} and we define the new distance between z, z0 to be equal to the
euclidean distance in R3 between A,A0 given by (1.3) in terms of z, z0. If z ∈ C and z0 = ∞,
we consider their images A ∈ S2 \ {N} and A0 = N and we define the new distance between
z, z0 to be equal to the euclidean distance in R3 between A,A0 given by (1.4) in terms of z. The
new distance between two points of C or between a point of C and ∞ is called chordal distance.
In other words, we define the chordal distance χ(z1, z2) between z1, z2 in Ĉ to be the euclidean
distance in R3 between their images, through stereographic projection, in S2. I.e.

χ(z1, z2) =


2|z1−z2|√

|z1|2+1
√

|z2|2+1
, if z1, z2 ∈ C

2√
|z|2+1

, if z1 = z ∈ C, z2 = ∞ or z1 = ∞, z2 = z ∈ C

0, if z1 = z2 = ∞

Proposition 1.2. The function χ : Ĉ× Ĉ → R is a metric on Ĉ.
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Proof. We must prove that chordal distance has the following basic properties:
(i) χ(z1, z2) ≥ 0 for every z1, z2 ∈ Ĉ.
(ii) If z1, z2 ∈ Ĉ, then: χ(z1, z2) = 0 if and only if z1 = z2.
(iii) χ(z1, z2) = χ(z2, z1) for every z1, z2 ∈ Ĉ.
(iv) χ(z1, z3) ≤ χ(z1, z2) + χ(z2, z3) for every z1, z2, z3 ∈ Ĉ.
The first three properties are obvious. The fourth, the triangle inequality, can be proved after many
calculations using the formula of the chordal distance. But there is a better way. If we take the
stereographic projections A1, A2, A3 in S2 of z1, z2, z3, then from the definition of the chordal
distance we have χ(zi, zj) = |Ai − Aj | and, since euclidean distance in R3 satisfies the triangle
inequality, we get χ(z1, z3) = |A1 −A3| ≤ |A1 −A2|+ |A2 −A3| = χ(z1, z2) + χ(z2, z3).

The metric χ on Ĉ is called chordal metric.
We thus have a second way to measure distances in the complex plane. Besides the euclidean

distance |z1 − z2| we also have the chordal distance χ(z1, z2) = 2|z1−z2|√
|z1|2+1

√
|z2|2+1

.

Proposition 1.3. Ĉ with the chordal metric and S2 with the euclidean metric ofR3 are homeomor-
phic metric spaces.

Proof. Stereographic projections are homeomorphisms between the two metric spaces. In fact
they are more than that: they are isometries. Indeed, if z1, z2 ∈ Ĉ correspond to A1, A2 ∈ S2,
then by the definition of the chordal metric we have χ(z1, z2) = |A1 − A2|. I.e. stereographic
projections preserve distances and hence they are both continuous.

Proposition 1.4 describes the relation between the chordal metric and the euclidean metric in
their common domain.

Proposition 1.4. The chordal metric on C and the euclidean metric on C are equivalent.

Proof. Indeed, if z, z0 ∈ C, then z → z0 with respect to the euclidean distance if and only if
z → z0 with respect to the chordal distance. To see this we consider the imagesA,A0 ∈ S2 \{N}
of z, z0 under stereographic projection. We have proved already that z → z0 with respect to the
euclidean distance in C if and only if A → A0 with respect to the euclidean distance in R3. But
the euclidean distance between A,A0 is equal to the chordal distance between z, z0. Therefore,
|z − z0| → 0 ⇔ |A−A0| → 0 ⇔ χ(z, z0) → 0.

Proposition 1.5. Let z ∈ C. Then z → ∞ in Ĉ if and only if |z| → +∞.

Proof. This is obvious from χ(z,∞) = 2/
√

|z|2 + 1.

We have introduced ∞ as the ideal point towards which a variable point z on the complex
plane moves when its euclidean distance from 0 becomes arbitrarily large. It is time to mention
the difference with the ideal points ±∞ we attach to R. A variable point x on the real line moves
away from 0 in exactly two specific directions: either to the left or to the right and then we say,
respectively, that it moves towards −∞ or towards +∞. On the plane though there are no two
uniquely specified directions. A point can move away from 0 either on arbitrary halflines (i.e.
in infinitely many directions) or making an arbitrary “spiral-like movement” or in a completely
arbitrary manner. Therefore, we may only say that the point moves towards infinity.

Now let us say a few things about neighborhoods of points in Ĉ with respect to the chordal
metric. We start with the neighborhoods of∞. If we denote Nx(r) the r-neighborhood of a point
x in the general metric space, then the r-neighborhood of∞ in the metric space (Ĉ, χ) is the set

N∞(r) = {z ∈ Ĉ |χ(z,∞) < r} = {z ∈ C | 2/
√

|z|2 + 1 < r} ∪ {∞}

=

{
{z ∈ C | |z| >

√
(4/r2)− 1} ∪ {∞}, if 0 < r ≤ 2

Ĉ, if r > 2
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We observe that the “small” neighborhoods of ∞, i.e. the neighborhoods N∞(r) with 0 <
r < 2, are the complements of closed discs in C with center 0, together with ∞. To simplify
notation we make the change of variable: 1

s =
√

4
r2

− 1. When r increases in (0, 2), s increases

in (0,+∞) and conversely. We call s-neighborhood of∞ in Ĉ the set

D∞(s) =
{
z
∣∣ |z| > 1

s

}
∪ {∞},

i.e. the complement of the closed disc with center 0 and radius 1
s , together with∞.

We see that the neighborhoods of∞ in Ĉ with respect to the chordal metric are of three kinds:
the sets D∞(s) with s > 0, the set Ĉ \ {0} (the case r = 2 or, equivalently, s = +∞) and the
whole set Ĉ. Since in any metric space the “small” neighborhoods are those which characterize
interior points, boundary points, limit points, limits of functions or sequences etc., in the case of Ĉ
and its point∞ we shall pay attention only to the neighborhoods of the formD∞(s).

Now the following should be clear.
(i) The point ∞ is an interior point of A ⊆ Ĉ with respect to the chordal metric if and only if A
contains, besides∞, the complement of a closed disc in C with center 0.
(ii) The point ∞ is not a limit point of A ⊆ Ĉ with respect to the chordal metric if and only if A
is contained in a closed disc with center 0 or, equivalently, A is a bounded set in C with respect to
the euclidean metric.
(iii) If ∞ /∈ A, i.e. if A ⊆ C, then the following four statements are equivalent: ∞ is a boundary
point of A with respect to the chordal metric, ∞ is a limit point of A with respect to the chordal
metric,∞ is an accumulation point of A with respect to the chordal metric, A is not bounded in C
with respect to the euclidean metric.

Now we continue with the neighborhoods with respect to the chordal metric of a point z0 ∈ C.
The r-neighborhood of z0 ∈ C in Ĉ with respect to the chordal metric is the set

Nz0(r) = {z ∈ Ĉ |χ(z, z0) < r}.

This set does not have a simple form. Depending on the exact values of z0 and r, it is an open
disc or an open halfplane or the complement of a closed disc (together with ∞). Even when
Nz0(r) is an open disc, z0 is not its euclidean center. Look at exercise 1.3.2 for details. Since
the chordal metric and the euclidean metric are equivalent in C, we have the following relation
between neighborhoods Nz0(r) with respect to the chordal metric and neighborhoods (i.e. the
familiar discs) Dz0(r) with respect to the euclidean metric: for every ϵ > 0 there is δ > 0 so that
Dz0(δ) ⊆ Nz0(ϵ) and, conversely, for every ϵ > 0 there is δ > 0 so that Nz0(δ) ⊆ Dz0(ϵ). From
this we conclude easily that z0 ∈ C is an interior point or a boundary point or a limit point of a
set A ⊆ Ĉ with respect to the chordal metric if and only if it is, respectively, an interior point or a
boundary point or a limit point of A with respect to the euclidean metric.

If A ⊆ C and we write A◦, ∂A and A for the interior, the boundary and the closure of A with
respect to the euclidean metric andA◦,χ, ∂χA andAχ for the interior, the boundary and the closure
of A with respect to the chordal metric, then we easily see that

A◦,χ = A◦, ∂χA = ∂A, Aχ = A if A is a bounded ⊆ C

and

A◦,χ = A◦, ∂χA = ∂A ∪ {∞}, Aχ = A ∪ {∞} if A is an unbounded ⊆ C.

Of course, when we say bounded or unbounded we mean with respect to the euclidean metric.
For instance, ifA ⊆ C is bounded, then it is open with respect to the chordal metric if and only

if it is open with respect to the euclidean metric, and it is closed with respect to the chordal metric
if and only if it is closed with respect to the euclidean metric. If A ⊆ C is not bounded, then again
it is open with respect to the chordal metric if and only if it is open with respect to the euclidean
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metric, but, even if it is closed with respect to the euclidean metric, we have to attach ∞ to A to
make it closed with respect to the chordal metric.

Regarding compactness, we know that C is not compact either with respect to the euclidean
metric or with respect to the chordal metric. Indeed,C is not compact with respect to the euclidean
metric, because it is not bounded. And then it is not compact with respect to the chordal metric,
because the two metrics are equivalent in C. But Ĉ is compact (with respect to the chordal metric,
of course). Indeed, Ĉ is homeomorphic to S2, which is compact since it is a closed and bounded
set in R3. Now, Ĉ is produced from C by the attachment to C of the single point∞. This situation
has a name in topology: we say that Ĉ is a one-point compactification of C.

Based on the usual algebraic rules of limits, we may extend in the standard way the algebraic
operations in the set Ĉ:

z +∞ = ∞+ z = ∞, −∞ = ∞, z −∞ = ∞− z = ∞,

z∞ = ∞ z = ∞ if z ̸= 0, ∞∞ = ∞,

1
∞ = 0, 1

0 = ∞, z
∞ = 0, ∞

z = ∞,

∞ = ∞, |∞| = +∞.

For example, the rule z0+∞ = ∞ (when z0 ∈ C) can be based on the following argument. If
z → z0 and w → ∞ in Ĉ, then |z − z0| → 0 and |w| → +∞ and then, by the triangle inequality,
|z+w| ≥ |w| − |z− z0| − |z0| → +∞. Hence z+w → ∞ in Ĉ. All other rules can be based on
similar arguments.

The following are not defined:

∞+∞, ∞−∞, 0∞, ∞ 0, ∞
∞ , 0

0 .

They are called indeterminate forms.
For instance, regarding the case of ∞ +∞, one can easily find examples of points z, w such

that z → ∞ and w → ∞ but such that z + w has either no limit or any preassigned limit. The
same is true in all other cases.

Observe the case of 1
0 = ∞. In R the expression 1

0 is an indeterminate form, since when the
real number x is small and> 0 then 1

x is large and> 0 and hence 1
x moves towards+∞, and when

x is small and < 0 then 1
x is large and < 0 and hence 1

x moves towards −∞. But in C, when z is
small, i.e. when |z| is small (and necessarily > 0), then the distance |1z | =

1
|z| of

1
z from 0 is large

and hence 1
z moves towards∞. So we define 1

0 = ∞.

Example 1.3.1. Let us consider any polynomial function p(z) = anz
n+an−1z

n−1+· · ·+a1z+a0
with an ̸= 0. The domain of definition of p is C.
For every z0 ∈ C we have

lim
z→z0

p(z) = p(z0),

using the algebraic rules of limits and the trivial limits: limz→z0 c = c and limz→z0 z = z0.
Therefore, p is continuous in C.
If the degree of p is ≥ 1, i.e. n ≥ 1 and an ̸= 0, then

lim
z→∞

p(z) = ∞

since p(z) = zn(an + an−1
1
z + · · ·+ a0

1
zn ) → ∞ an = ∞.

Thus, if the degree of p is≥ 1, we may define p(∞) = ∞ and then p : Ĉ → Ĉ is continuous in Ĉ.
If the degree of p is 0, then the function is constant: p(z) = a0 for all z. Hence

lim
z→∞

p(z) = a0.

In this case we may define p(∞) = a0 and again p : Ĉ → Ĉ is continuous in Ĉ.
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Example 1.3.2. Now we take a rational function r(z) = p(z)
q(z) =

anzn+···+a1z+a0
bmzm+···+b1z+b0

with an, bm ̸= 0.
The domain of definition of r is C \ {z1, . . . , zs}, where z1, . . . , zs are the roots of q.
If z0 ∈ C and q(z0) ̸= 0, then using the algebraic rules of limits, we get:

lim
z→z0

r(z) = r(z0).

Therefore r is continuous in its domain of definition.
Writing r in the form r(z) = zn−m(an + an−1

1
z + · · ·+ a0

1
zn )/(bm + bm−1

1
z + · · ·+ b0

1
zm ), we

can prove that

lim
z→∞

r(z) =


∞, if n > m
an
bn
, if n = m

0, if n < m

Finally, let z0 ∈ C and q(z0) = 0. Thus z0 is any of the roots z1, . . . , zs of q. Then z − z0 divides
q(z), and there is k ≥ 1 and a polynomial q1(z) so that q(z) = (z − z0)

kq1(z) and q1(z0) ̸= 0.
This means that the multiplicity of the root z0 of q(z) is k. There is also l ≥ 0 and a polynomial
p1(z) so that p(z) = (z − z0)

lp1(z) and p1(z0) ̸= 0. Indeed, if p(z0) = 0, then l ≥ 1 is the
multiplicity of z0 as a root of p(z) and, if p(z0) ̸= 0, we take l = 0 (and say that the multiplicity
of z0 as a root of p(z) is zero) and p1(z) = p(z). So for every z different from the roots of q(z)
we have r(z) = (z− z0)

l−k p1(z)
q1(z)

and p1(z0) ̸= 0, q1(z0) ̸= 0. Now p1(z0)
q1(z0)

is neither∞ nor 0, and
hence

lim
z→z0

r(z) =


∞, if k > l
p1(z0)
q1(z0)

, if k = l

0, if k < l

Exactly as in the polynomial case, a rational function can be considered to be a function r : Ĉ → Ĉ
continuous in Ĉ. Indeed, at every z0 ∈ Ĉ a rational function r has a specific limit. If z0 is in the
usual domain of definition of r, then the limit of r at z0 coincides with r(z0). If z0 is either ∞ or
a root of the denominator of r, then we define r(z0) to be the limit of r at z0.

Example 1.3.3. The sequence ((−2)n) does not have a limit as a real sequence since its subse-
quences of the odd and the even indices have the different limits −∞ and +∞. But as a complex
sequence ((−2)n) tends to∞, because |(−2)n| = 2n → +∞.

Example 1.3.4. Let us consider the geometric progression (zn).
If |z| < 1, then |zn − 0| = |z|n → 0 and hence zn → 0.
If |z| > 1, then |zn| = |z|n → +∞ and hence zn → ∞.
If z = 1, then zn = 1 → 1.
Finally, let |z| = 1, z ̸= 1 and assume that zn → w. Since |zn| = |z|n = 1 for every n, we find
that |w| = 1. From zn → w we have z = zn+1

zn → w
w = 1 and we arrive at a contradiction.

Thus:

zn


→ 0, if |z| < 1

→ 1, if z = 1

→ ∞, if |z| > 1

has no limit, if |z| = 1, z ̸= 1

Exercises.

1.3.1. Prove that χ(z1, z2) ≤ 2 for every z1, z2 ∈ Ĉ. When does χ(z1, z2) = 2 happen?

1.3.2. (i) Let l be any line in C. We define l̂ = l ∪ {∞} and call it line in Ĉ. We call circle in Ĉ
every circle inC. Prove that stereographic projection maps circles in Ĉ onto circles in S2 which do
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not containN (and conversely) and lines in Ĉ onto circles in S2 which containN (and conversely).
(ii) Find the images in S2 through stereographic projection of the following subsets (or collections
of subsets) of Ĉ: {z | |z| < 1}, {z | |z| = 1}, {z | |z| > 1}∪ {∞}, {z | Re z > 0}, {z | Re z = 0},
{z | Re z < 0}, the collection of lines containing a fixed point ̸= ∞, the collection of circles with
a fixed center, the collection of lines parallel to a fixed line, the collection of circles tangent to a
fixed circle at a fixed point, the collection of circles containing two fixed points.
(iii) Let z, w ∈ Ĉ and let A,B ∈ S2 be their images through stereographic projection. If z, w are
symmetric with respect to a line l̂ in Ĉ which contains 0, which is the relative position of A,B
with respect to the image of l̂ in S2? If w = 1

z , which is the relative position of A,B in S2?
(iv) Consider a set of the form P = {z ∈ Ĉ |χ(z, z0) = r}, where z0 ∈ Ĉ and r > 0, i.e. a
“circle” with respect to the chordal metric. If z0 = ∞, prove that P is a circle in Ĉ, i.e. in C, and
find its euclidean center and its euclidean radius. If z0 ∈ C, prove that P is either a circle in Ĉ,
i.e. in C, and in this case find its euclidean center and its euclidean radius, or a line in Ĉ.
(v) If the lines l̂1, l̂2 have angle θ at their common point z ∈ C, prove that their images through
stereographic projection, i.e. two circles in S2 containing the image A of z and the north pole N ,
have the same angle θ at both A and N .
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Chapter 2

Series and curvilinear integrals.

2.1 Series of numbers.

A series of complex numbers or, simply, complex series is an expression

z1 + z2 + · · ·+ zn + · · · or
∑+∞

n=1 zn.

If all zn are real, we talk about a series of real numbers or real series. The sn = z1+ · · ·+zn are
the partial sums of the series. We say that the series converges if the sequence (sn) converges
and then the limit s of (sn) is called sum of the series and we write

∑+∞
n=1 zn = s. We say that the

series diverges if (sn) diverges. If (sn) diverges to ∞, then we say that the series diverges to∞
and that∞ is the sum of the series and we write

∑+∞
n=1 zn = ∞.

We note that the sum of a complex series can be either a complex number or ∞. Only a real
series can have sum equal to+∞ or−∞. Therefore, when we write

∑+∞
n=1 zn = +∞ or−∞, we

accept that all zn are real and that the series diverges to +∞ or −∞ as a real series. Of course, if
a real series diverges to +∞ or −∞, then as a complex series it diverges to∞.

Example 2.1.1.We have
∑+∞

n=1 c = 0, if c = 0, and
∑+∞

n=1 c = ∞, if c ̸= 0.

Example 2.1.2. To examine the geometric series
∑+∞

n=0 z
n, we use the formula 1+z+ · · ·+zn =

1−zn+1

1−z for its partial sums, and we find that its sum is

∑+∞
n=0 z

n


= 1

1−z , if |z| < 1

= ∞, if |z| > 1 or z = 1

it does not exist, if |z| = 1, z ̸= 1

The usual simple algebraic rules, which hold for real series, hold also for complex series. We
mention them without proofs. The proofs for the complex case are identical with the proofs in the
real case.

Proposition 2.1. If
∑+∞

n=1 zn converges, then zn → 0.

Proposition 2.2. Provided that the right sides of the following formulas exist and that they are not
indeterminate forms, we have

∑+∞
n=1(zn+wn) =

∑+∞
n=1 zn+

∑+∞
n=1wn,

∑+∞
n=1 λzn = λ

∑+∞
n=1 zn

and
∑+∞

n=1 zn =
∑+∞

n=1 zn.
Moreover, if zn = xn + iyn, then

∑+∞
n=1 zn converges if and only if

∑+∞
n=1 xn and

∑+∞
n=1 yn

converge, and
∑+∞

n=1 zn =
∑+∞

n=1 xn + i
∑+∞

n=1 yn.

Regarding the comparison theorems, we may say that, since these are based on order relations
which can be expressed only between real numbers, when we write

∑+∞
n=1 zn ≤

∑+∞
n=1wn as a

consequence of zn ≤ wn, we accept that all zn, wn are real and then we just apply the well-known
comparison theorems for real series.
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Cauchy criterion. The series
∑+∞

n=1 zn converges if and only if for every ϵ > 0 there is n0 so that
|
∑n

k=m+1 zk| = |zm+1 + · · ·+ zn| < ϵ for every m,n with n > m ≥ n0.

Proof. Let sn = z1+ · · ·+zn. The series converges if and only if (sn) converges or, equivalently,
if and only if (sn) is a Cauchy sequence. That (sn) is a Cauchy sequence means that for every
ϵ > 0 there is n0 so that |zm+1+ · · ·+ zn| = |sn− sm| < ϵ for every n,m with n > m ≥ n0.

We say that
∑+∞

n=1 zn converges absolutely if the (real) series
∑+∞

n=1 |zn| converges, i.e. if∑+∞
n=1 |zn| < +∞.

Criterion of absolute convergence. If
∑+∞

n=1 zn converges absolutely, then it converges and we
have |

∑+∞
n=1 zn| ≤

∑+∞
n=1 |zn|.

Proof. Let
∑+∞

n=1 |zn| converge and take any ϵ > 0. From the Cauchy criterion we have that there
is n0 so that |zm+1| + · · · + |zn| < ϵ and hence |zm+1 + · · · + zn| < ϵ for every m,n with
n > m ≥ n0. The Cauchy criterion, again, implies that

∑+∞
n=1 zn converges.

Now we take the partial sums sn = z1 + · · ·+ zn and Sn = |z1|+ · · ·+ |zn|. We have |sn| ≤ Sn

for all n and, taking the limit of this as n → +∞, we finish the proof.

Ratio test of d’ Alembert. Let zn ̸= 0 for all n.
(i) If lim

∣∣ zn+1

zn

∣∣ < 1, then
∑+∞

n=1 zn converges absolutely.
(ii) If lim

∣∣ zn+1

zn

∣∣ > 1, then
∑+∞

n=1 zn diverges.
(iii) If lim

∣∣ zn+1

zn

∣∣ ≤ 1 ≤ lim
∣∣ zn+1

zn

∣∣, then there is no general conclusion.

Proof. (i) Take a so that lim
∣∣ zn+1

zn

∣∣ < a < 1. Then there is n0 so that
∣∣ zn+1

zn
| ≤ a for every n ≥ n0.

Now, for every n ≥ n0 we get |zn| = | zn
zn−1

| | zn−1

zn−2
| · · · | zn0+1

zn0
| |zn0 | ≤ an−n0 |zn0 | = c an, where

c = |zn0 |/an0 . Since 0 ≤ a < 1, the geometric series
∑+∞

n=1 a
n converges and, by comparison,∑+∞

n=1 |zn| also converges.
(ii) There is n0 so that

∣∣ zn+1

zn

∣∣ ≥ 1 for every n ≥ n0. Now, for every n ≥ n0 + 1 we have
|zn| ≥ |zn−1| ≥ · · · ≥ |zn0 | > 0. This implies that zn ̸→ 0 and

∑+∞
n=1 zn diverges.

(iii) For the series
∑+∞

n=1
1
n and

∑+∞
n=1

1
n2 we have that

∣∣1/(n+1)
1/n

∣∣ → 1 and
∣∣1/(n+1)2

1/n2

∣∣ → 1. The
first series diverges and the second converges.

Root test of Cauchy. (i) If lim n
√

|zn| < 1, then
∑+∞

n=1 zn converges absolutely.
(ii) If lim n

√
|zn| > 1, then

∑+∞
n=1 zn diverges.

(iii) If lim n
√

|zn| = 1, then there is no general conclusion.

Proof. (i) We consider any a such that lim n
√

|zn| < a < 1. Then there is n0 so that n
√

|zn| ≤ a
and hence |zn| ≤ an for every n ≥ n0. Since 0 ≤ a < 1, the geometric series

∑+∞
n=1 a

n converges
and, by comparison,

∑+∞
n=1 |zn| also converges.

(ii) We have n
√

|zn| ≥ 1 for infinitely many n. Therefore, |zn| ≥ 1 for infinitely many n and
hence zn ̸→ 0. Thus,

∑+∞
n=1 zn diverges.

(iii) For the series
∑+∞

n=1
1
n and

∑+∞
n=1

1
n2 we have n

√
|1/n| → 1 and n

√
|1/n2| → 1. The first

series diverges and the second converges.

Applying the ratio test and the root test to specific series
∑+∞

n=1 zn, we find very often that the
limits limn→+∞

∣∣ zn+1

zn

∣∣ and limn→+∞
n
√

|zn| exist. We know (and we used it in the proofs of parts
(iii) of both tests) that in this case: lim = lim = lim.

Example 2.1.3. To the series
∑+∞

n=1
zn

n! we apply the ratio test. If z = 0, the series obviously
converges absolutely. If z ̸= 0, then

∣∣ zn+1/(n+1)!
zn/n!

∣∣ = |z|/(n + 1) → 0 < 1. Hence the series
converges absolutely for every z.
Now we apply the root test. We have n

√
|zn/n!| = |z|/ n

√
n! → 0 < 1 and we arrive at the same

conclusion as before.
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Example 2.1.4.We consider
∑+∞

n=1
zn

n2 and we apply the ratio test. If z = 0, the series obviously
converges absolutely. If z ̸= 0, then

∣∣ zn+1/(n+1)2

zn/n2

∣∣ → |z|. Hence, if 0 < |z| < 1, the series
converges absolutely and, if |z| > 1, the series diverges.
Now we apply the root test. We have n

√
|zn/n2| → |z|. Therefore, if |z| < 1, the series converges

absolutely and, if |z| > 1, the series diverges.
If |z| = 1, none of the two tests applies. But we observe that

∑+∞
n=1

∣∣ zn
n2

∣∣ = ∑+∞
n=1

1
n2 < +∞ in

this case, and
∑+∞

n=1
zn

n2 converges absolutely.
Conclusion:

∑+∞
n=1

zn

n2 converges absolutely if |z| ≤ 1, and diverges if |z| > 1.

Lemma 2.1. Let (an) and (zn) be two sequences and sn = z1 + · · · + zn for every n. Then we
have ∑n

k=m+1 akzk =
∑n

k=m+1(ak − ak+1)sk + an+1sn − am+1sm

for every n,m with n > m. This is the summation by parts formula due to Abel.

Proof. We have∑n
k=m+1 akzk =

∑n
k=m+1 ak(sk − sk−1) =

∑n
k=m+1 aksk −

∑n−1
k=m ak+1sk

=
∑n

k=m+1(ak − ak+1)sk + an+1sn − am+1sm

and the proof is complete.

Dirichlet test. Let (an) and (zn) be two sequences and sn = z1 + · · ·+ zn for every n. If (an) is
real and decreasing and an → 0 and if (sn) is bounded, then

∑+∞
n=1 anzn converges.

Proof. There is M so that |sn| ≤ M for every n. Now, let ϵ > 0. Since an → 0, there is n0 so
that 0 ≤ an < ϵ

2M+1 for every n ≥ n0. Then lemma 2.1 implies that, if n0 ≤ m < n,∣∣∑n
k=m+1 akzk

∣∣ ≤ ∑n
k=m+1(ak − ak+1)|sk|+ an+1|sn|+ am+1|sm|

≤
∑n

k=m+1(ak − ak+1)M + an+1M + am+1M = 2am+1M < ϵ.

The criterion of Cauchy implies that
∑+∞

n=1 anzn converges.

Abel test. Let (an), (zn) be two sequences and sn = z1 + · · ·+ zn for every n. If (an) is real and
decreasing and bounded below and if (sn) converges, i.e. if

∑+∞
n=1 zn converges, then

∑+∞
n=1 anzn

converges.

Proof. Since (an) is real and decreasing and bounded below, there is a so that an → a. We set
a′n = an − a and then (a′n) is real and decreasing and a′n → 0. We also have that (sn) is bounded
and hence Dirichlet’s test implies that the series

∑+∞
n=1 a

′
nzn converges. Now, since

∑+∞
n=1 zn

also converges, we find that
∑+∞

n=1 anzn =
∑+∞

n=1 a
′
nzn + a

∑+∞
n=1 zn and hence

∑+∞
n=1 anzn

converges.

Example 2.1.5. If (an) is real and decreasing and an → 0, then
∑+∞

n=0 anz
n converges for every

z with |z| ≤ 1, z ̸= 1.
If |z| < 1, the result is immediate from the criterion of absolute convergence. Indeed, we have∑+∞

n=0 |anzn| ≤ a1
∑+∞

n=0 |z|n < +∞. If |z| = 1 and z ̸= 1, we apply the Dirichlet test. To do
this we prove that the partial sums sn = 1+z+z2+· · ·+zn are bounded: |sn| = |1−zn+1|

|1−z| ≤ 2
|1−z|

and 2
|1−z| is finite since z ̸= 1.

Example 2.1.6.We consider
∑+∞

n=1
zn

n . As in example 2.1.4, the application of either the ratio
test or the root test gives that the series converges absolutely if |z| < 1 and diverges if |z| > 1.
If |z| = 1, none of the two tests applies. If z = 1, the series becomes

∑+∞
n=1

1
n and diverges. If

|z| = 1, z ̸= 1, then
∑+∞

n=1

∣∣ zn
n

∣∣ = ∑+∞
n=1

1
n = +∞, and

∑+∞
n=1

zn

n does not converge absolutely.
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But the series is a particular instance of the series in the previous example and hence converges if
|z| = 1, z ̸= 1. In general, when a series is convergent but not absolutely convergent we say that
it is conditionally convergent.
Conclusion:

∑+∞
n=1

zn

n converges absolutely if |z| < 1, diverges if |z| > 1 or z = 1, and converges
conditionally if |z| = 1, z ̸= 1.

Let
∑+∞

n=0 an and
∑+∞

n=0 bn be two series. If cn = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0 for
every n ≥ 0, then the series∑+∞

n=0 cn =
∑+∞

n=0(a0bn + a1bn−1 + · · ·+ an−1b1 + anb0)

is called Cauchy product of the two series.

Proposition 2.3. If the series
∑+∞

n=0 an and
∑+∞

n=0 bn converge absolutely, then their Cauchy prod-
uct

∑+∞
n=0 cn converges absolutely. Moreover, we have

∑+∞
n=0 cn =

∑+∞
n=0 an

∑+∞
n=0 bn for the

sums of the three series.

Proof. We have |cn| ≤ |a0||bn| + |a1||bn−1| + · · · + |an−1||b1| + |an||b0|. Hence, if S =∑+∞
n=0 |an| < +∞ and T =

∑+∞
n=0 |bn| < +∞, then∑N

n=0 |cn| ≤
∑N

n=0

(∑n
k=0 |ak||bn−k|

)
=

∑N
k=0 |ak|

(∑N
n=k |bn−k|

)
≤

∑N
k=0 |ak|T ≤ ST

for every N . Thus,
∑+∞

n=0 |cn| ≤ ST < +∞ and
∑+∞

n=0 cn converges absolutely.
Now, let s =

∑+∞
n=0 an, t =

∑+∞
n=0 bn and u =

∑+∞
n=0 cn. Moreover, let sn = a0 + · · · + an,

tn = b0 + · · · + bn and un = c0 + · · · + cn be the partial sums of the three series and also
Sn = |a0|+ · · ·+ |an|, Tn = |b0|+ · · ·+ |bn|. Then

uN =
∑N

n=0 cn =
∑N

n=0

(∑n
k=0 akbn−k

)
=

∑N
k=0 ak

(∑N
n=k bn−k

)
=

∑N
k=0 ak

(∑N−k
m=0 bm

)
=

∑N
k=0 aktN−k

and hence sN tN − uN =
∑N

k=0 ak(tN − tN−k). We take p = [N2 ] and we get

sN tN − uN =
∑p

k=0 ak(tN − tN−k) +
∑N

k=p+1 ak(tN − tN−k). (2.1)

If 0 ≤ k ≤ p, then N − k ≥ N − p ≥ p and hence

|tN − tN−k| =
∣∣∑N

m=N−k+1 bm
∣∣ ≤ ∑+∞

m=N−k+1 |bm| ≤
∑+∞

m=p+1 |bm| = T − Tp. (2.2)

If p+ 1 ≤ k ≤ N , then

|tN − tN−k| =
∣∣∑N

m=N−k+1 bm
∣∣ ≤ ∑+∞

m=N−k+1 |bm| ≤ T. (2.3)

Now, (2.1), (2.2) and (2.3) imply

|sN tN − uN | ≤
∑p

k=0 |ak||tN − tN−k|+
∑N

k=p+1 |ak||tN − tN−k|

≤ (T − Tp)
∑p

k=0 |ak|+ T
∑N

k=p+1 |ak| ≤ (T − Tp)S + T (S − Sp).

Now, N → +∞ implies p → +∞ and hence Sp → S and Tp → T . Therefore, sN tN − uN → 0
when N → +∞ and we conclude that u = st.

Exercises.

2.1.1.Which of the series
∑+∞

n=1(
1
n + i

n2 ),
∑+∞

n=1(
n
2n + i

n3 ),
∑+∞

n=1
1+in

n2 ,
∑+∞

n=1
1

2+in ,
∑+∞

n=1
1

n+i ,∑+∞
n=1

1
n2+in

converge?
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2.1.2. Find the sum of the series
∑+∞

n=1 n(−1)n−1 if we consider it as a complex series and also if
we consider it as a real series.

2.1.3. Apply the ratio test whenever possible:
∑+∞

n=1 n
3in,

∑+∞
n=1

n!
in ,

∑+∞
n=1

(1+i)n

n! ,
∑+∞

n=1
(2i)nn!

nn ,∑+∞
n=1

(2+i)nn!
nn ,

∑+∞
n=1

enn!
nn ,

∑+∞
n=1

(n!)2

(2n)! ,
∑+∞

n=1
(4i)n(n!)2

(2n)! ,
∑+∞

n=1
(3+i)(6+i)(9+i)···(3n+i)

(3+4i)(3+8i)(3+12i)···(3+4ni) .
Apply the root test whenever possible:

∑+∞
n=1 n

nin,
∑+∞

n=1(
n+i
2n−i)

n,
∑+∞

n=1(
n+i
n−i)

2n,
∑+∞

n=1
n3

(1+2i)n ,∑+∞
n=1 n

3(1− i)n,
∑+∞

n=1
(2+3i)n

nn ,
∑+∞

n=1
n+i

( n
√
n+i)n

.

2.1.4. If
∑+∞

n=1 |zn| < +∞, prove that
∑+∞

n=1 zn(cosnθ + i sinnθ) converges.

2.1.5. Let zn = xn + iyn for all n. Prove that
∑+∞

n=1 zn converges absolutely if and only if∑+∞
n=1 xn,

∑+∞
n=1 yn converge absolutely.

2.1.6. Let |an|rn ≤ Mnk for all n. Prove that
∑+∞

n=1 anz
n converges for every z with |z| < r.

2.1.7. Find all z for which
∑+∞

n=1
zn

2+zn converges.

2.1.8. Let 0 ≤ θ0 < π
2 and Arg zn ∈ [−θ0, θ0] for every n. Prove that

∑+∞
n=1 zn converges if and

only if it converges absolutely. Prove that
∑+∞

n=1 zn = ∞ if and only if
∑+∞

n=1 |zn| = +∞.

2.1.9. Find a series
∑+∞

n=1 zn which converges and is such that
∑+∞

n=1 z
2
n diverges.

2.1.10. Check the conditional convergence and the absolute convergence of the series:
∑+∞

n=1
in

n ,∑+∞
n=2

in

n logn ,
∑+∞

n=2
in

n(logn)2 ,
∑+∞

n=1 i
n−1 sin 1

n ,
∑+∞

n=1 i
n−1(1− cos 1

n).

2.1.11. Let sn = z1 + · · · + zn for all n. If (an+1sn) converges and if
∑+∞

n=1(an − an+1)sn
converges, prove that

∑+∞
n=1 anzn converges. In particular: if (sn) is bounded, if an → 0 and if∑+∞

n=1 |an − an+1| < +∞, prove that
∑+∞

n=1 anzn converges.
What is the relation of all these with the tests of Dirichlet and Abel?

2.1.12. (i) If
∑+∞

n=0 an converges and
∑+∞

n=0 bn converges absolutely, prove that their Cauchy prod-
uct

∑+∞
n=0 cn converges and that

∑+∞
n=0 cn =

∑+∞
n=0 an

∑+∞
n=0 bn.

(ii) Prove that the series
∑+∞

n=1
(−1)n−1

√
n

converges but that the Cauchy product of this series with
itself does not converge.

2.2 Sequences and series of functions.

Let A be any nonempty set (not necessarily a subset of C), (fn) be a sequence of bounded
complex functions defined in A and f be a bounded complex function defined also in A. We say
that the sequence (fn) converges to f uniformly in A if

supa∈A |fn(a)− f(a)| → 0.

In other words, fn → f uniformly inA if for every ϵ > 0 there is n0 so that |fn(a)−f(a)| ≤ ϵ
for every n ≥ n0 and every a ∈ A.

It is easy to see that, if fn → f uniformly in A, then fn(a) → f(a) for every a ∈ A, i.e.
(fn) converges to f pointwise in A. Indeed, for every a′ ∈ A we have 0 ≤ |fn(a′) − f(a′)| ≤
supa∈A |fn(a)− f(a)| → 0.

From the notion of uniform convergence of a sequence of functions we move to the notion
of uniform convergence of a series of functions in the obvious way, i.e. through the sequence of
partial sums of the series. We write sn = f1 + · · · + fn and we say that the series of functions∑+∞

n=1 fn converges to its sum s uniformly in A if sn → s uniformly in A. In this case we write∑+∞
n=1 fn = s uniformly in A.
As in the case of a sequence of functions, we have that, if

∑+∞
n=1 fn = s uniformly in A, then∑+∞

n=1 fn(a) = s(a) for every a ∈ A, i.e.
∑+∞

n=1 fn = s pointwise in A.
For the next two results we assume that A is a subset of a metric space.
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Proposition 2.4. Let fn → f uniformly in A and let a0 ∈ A. If every fn is continuous at a0, then
f is continuous at a0. In particular, if every fn is continuous in A, then f is continuous in A.

Proof. Let ϵ > 0. Then there is n0 so that |fn(a)− f(a)| ≤ ϵ
3 for every n ≥ n0 and every a ∈ A.

In particular, we have |fn0(a)− f(a)| ≤ ϵ
3 for every a ∈ A. Now, fn0 is continuous at a0 and so,

if a ∈ A is close to a0, then we have |fn0(a)− fn0(a0)| ≤ ϵ
3 and hence

|f(a)− f(a0)| ≤ |f(a)− fn0(a)|+ |fn0(a)− fn0(a0)|+ |fn0(a0)− f(a0)| ≤ ϵ
3 + ϵ

3 + ϵ
3 = ϵ.

Therefore, f is continuous at a0.

Proposition 2.5. Let
∑+∞

n=1 fn = s uniformly in A and let a0 ∈ A. If every fn is continuous at a0,
then s is continuous at a0. In particular, if every fn is continuous in A, then s is continuous in A.

Proof. We consider the partial sums sn = f1 + · · · + fn. Then every sn is continuous at a0 and
proposition 2.4 implies that s is continuous at a0.

Finally, we have a basic criterion for uniform convergence of a series of functions.

Weierstrass test. Let |fn(a)| ≤ Mn for every n and every a ∈ A. If the series (of non-negative
terms)

∑+∞
n=1Mn converges, i.e. if

∑+∞
n=1Mn < +∞, then

∑+∞
n=1 fn converges uniformly in A.

Proof. For every a ∈ A we have
∑+∞

n=1 |fn(a)| ≤
∑+∞

n=1Mn < +∞ and hence
∑+∞

n=1 fn(a)
converges (as a series of complex numbers). We define s(a) =

∑+∞
n=1 fn(a) for every a ∈ A.

Now we consider the partial sums sn = f1 + · · ·+ fn and then for every a ∈ A we have

|sn(a)− s(a)| =
∣∣∑n

k=1 fk(a)−
∑+∞

k=1 fk(a)
∣∣ = ∣∣∑+∞

k=n+1 fk(a)
∣∣ ≤ ∑+∞

k=n+1 |fk(a)|
≤

∑+∞
k=n+1Mk.

This implies that supa∈A |sn(a)− s(a)| ≤
∑+∞

k=n+1Mk → 0 when n → +∞ and hence sn → s
uniformly in A.

Exercises.

2.2.1. Prove that
∑+∞

n=−∞
1

(z+n)2
converges for every z ∈ C \ Z and uniformly in every compact

setK ⊆ C \ Z.

2.2.2. (i) If K ⊆ C \ T is compact, prove that there is r with 0 < r < 1 (r depends on K) so that
for every z ∈ K either |z| ≤ r or |z| ≥ 1

r holds.
(ii) Prove that

∑+∞
n=0

zn

z2n+1
converges uniformly in every compactK ⊆ C \ T.

2.2.3. (i) If Re z > −1
2 , prove that

∣∣ z
z+1

∣∣ < 1. If K ⊆ {z | Re z > −1
2} is compact, prove that

there is r with 0 < r < 1 (r depends onK) so that
∣∣ z
z+1

∣∣ ≤ r for every z ∈ K.
(ii) Prove that

∑+∞
n=0(

z
z+1)

n converges for every z in the halfplane {z | Re z > −1
2} and uniformly

in every compact subset of this halfplane.

2.3 Curvilinear integrals.

We shall first extend the notion of integral of a real function over an interval to the notion of
integral of a complex function over an interval.

Let f be a complex function defined in the interval [a, b] and let u = Re f and v = Im f be the
real and imaginary parts of f . We say that f is (Riemann) integrable over [a, b] if u, v are both
(Riemann) integrable over [a, b] and in this case we define the (Riemann) integral of f over [a, b]
to be ∫ b

a f(t) dt =
∫ b
a u(t) dt+ i

∫ b
a v(t) dt. (2.4)
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Since the numbers
∫ b
a u(t) dt and

∫ b
a v(t) dt are real, we see that

Re
∫ b
a f(t) dt =

∫ b
a Re f(t) dt, Im

∫ b
a f(t) dt =

∫ b
a Im f(t) dt.

Now let us take any subdivision∆ = {t0, . . . , tn} of [a, b] and any choice Ξ = {ξ1, . . . , ξn} of
intermediate points ξk ∈ [tk−1, tk] and the corresponding Riemann sum

∑n
k=1 f(ξk)(tk − tk−1).

If w(∆) = max1≤k≤n(tk − tk−1) is the width of the subdivision∆, then we know that

limw(∆)→0

∑n
k=1 u(ξk)(tk − tk−1) =

∫ b
a u(t) dt

limw(∆)→0

∑n
k=1 v(ξk)(tk − tk−1) =

∫ b
a v(t) dt.

Multiplying the second relation with i, adding and using (2.4), we find

limw(∆)→0

∑n
k=1 f(ξk)(tk − tk−1) =

∫ b
a f(t) dt.

Example 2.3.1. If f is piecewise-continuous in [a, b], then u = Re f and v = Im f are also
piecewise-continuous in [a, b]. Hence u, v are integrable, and so f is also integrable over [a, b].

The following propositions are analogous to similar well-known propositions about integrals of
real functions and can be proved easily by the reader. One should decompose every complex func-
tion into its real and imaginary parts and use the analogous properties for real functions together
with (2.4).

Proposition 2.6. Let f1, f2 be integrable over [a, b] and λ1, λ2 ∈ C. Then λ1f1+λ2f2 is integrable
over [a, b] and

∫ b
a (λ1f1(t) + λ2f2(t)) dt = λ1

∫ b
a f1(t) dt+ λ2

∫ b
a f2(t) dt.

Proposition 2.7. Let a < b < c. If f is integrable over [a, b] and over [b, c], then f is integrable
over [a, c] and

∫ c
a f(t) dt =

∫ b
a f(t) dt+

∫ c
b f(t) dt.

Proposition 2.8. If f1, f2 are integrable over [a, b], then f1f2 is integrable over [a, b].

The proof of the next proposition is not entirely trivial.

Proposition 2.9. If f is integrable over [a, b], then |f | is integrable over [a, b] and |
∫ b
a f(t) dt| ≤∫ b

a |f(t)| dt.

Proof. Let u = Re f , v = Im f . Then u, v are integrable over [a, b] hence |f | =
√
u2 + v2 is

integrable over [a, b]. Now we have two cases.
(i) Let

∫ b
a f(t) dt = 0. Then |

∫ b
a f(t) dt| ≤

∫ b
a |f(t)| dt is clearly true.

(ii) Let
∫ b
a f(t) dt ̸= 0. We take any element θ of the argument of the number

∫ b
a f(t) dt and we

set z = cos θ + i sin θ. Now, |
∫ b
a f(t) dt| = z

∫ b
a f(t) dt =

∫ b
a (z f(t)) dt. The left side of this

equality is real and hence its right side is also real and thus equal to its real part! Hence∣∣ ∫ b
a f(t) dt

∣∣ = Re
∫ b
a (z f(t)) dt =

∫ b
a Re(z f(t)) dt ≤

∫ b
a |z f(t)| dt =

∫ b
a |f(t)| dt

since Re(z f(t)) ≤ |z f(t)| for every t ∈ [a, b].

We recall that every continuous complex function γ : [a, b] → C, where [a, b] is any interval,
is called curve in the complex plane.

The set of the values of a curve γ, i.e. the set γ∗ = {γ(t) | t ∈ [a, b]} ⊆ C is the trajectory of
the curve and it is a compact and connected subset ofC, since γ is continuous and [a, b] is compact
and connected. The points γ(a) and γ(b) are the endpoints, the initial and the final endpoint,
respectively, of the curve.

The variable t ∈ [a, b] is the parameter and [a, b] is the parametric interval of the curve. When
the parameter t increases in [a, b], the variable point γ(t) moves on the trajectory γ∗ in a definite
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direction (from the initial to the final endpoint) which is the so-called direction of the curve. To
be more precise, the sense of direction is realized as follows: when a ≤ t1 < t2 ≤ b, then we say
that γ(t1) is before γ(t2) and that γ(t2) is after γ(t1) in the trajectory.

Finally,
z = γ(t), t ∈ [a, b],

is the parametric equation of the curve γ.
If the endpoints of the curve γ coincide, i.e. γ(a) = γ(b), then we say that the curve is closed.
If γ(t) ∈ A for all t ∈ [a, b], i.e. if γ∗ ⊆ A, then we say that the curve is in A.
The term curve for the continuous function γ is justified by the fact that the shape of its trajec-

tory γ∗ is, usually, what in everyday language we call curve in the plane. Sometimes we use the
term curve for the trajectory γ∗ even though this is not typically correct. The reason is that there
are cases of different curves γ1, γ2 with the same trajectory γ1∗ = γ2

∗.

Example 2.3.2. If z0, z1 ∈ C, then the parametric equation z = γ(t) = t−a
b−az1 +

b−t
b−az0, t ∈ [a, b],

defines a curve γ whose trajectory γ∗ is the linear segment [z0, z1]. Its initial and final endpoints
are z0 and z1, respectively, and its direction is from z0 to z1. The same linear segment [z0, z1] is
the trajectory of another curve γ with parametric equation z = γ(t) = tz1 + (1− t)z0, t ∈ [0, 1].

Example 2.3.3. If r > 0, then the parametric equation z = γ(t) = z0+r(cos t+i sin t), t ∈ [0, 2π],
defines a closed curve γ whose trajectory γ∗ is the circle Cz0(r). The direction of this curve is the
so-called positive direction of rotation around z0: the counterclockwise rotation.
If we consider the curve γ with parametric equation z = γ(t) = z0 + r(cos(2t) + i sin(2t)),
t ∈ [0, 2π], then we get a different curve. But the trajectories of the two curves coincide: the circle
Cz0(r). The direction of the two curves is the same: the positive direction of rotation around z0.
But the first curve goes around z0 only once, while the second curve goes around z0 twice.

Let γ : [a, b] → C be a curve and let x = Re γ and y = Im γ be the real and imaginary parts
of γ, i.e. γ(t) = x(t) + iy(t) = (x(t), y(t)) for all t ∈ [a, b]. If γ is differentiable at t0 ∈ [a, b]
or, equivalently, if x, y are differentiable at t0, then γ′(t0) = x′(t0) + iy′(t0) = (x′(t0), y

′(t0))
is the tangent vector of the trajectory γ∗ at its point γ(t0). If γ′(t0) ̸= 0, then the vector γ′(t0)
determines the tangent line of the trajectory γ∗ at its point γ(t0) and its direction is the same as
the direction of the curve. Strictly speaking, at its endpoints, γ(a), γ(b), the curve can only have
tangent halflines; not tangent lines. If t0 = a and γ′(a) ̸= 0, then the vector γ′(a) determines the
tangent halfline of the trajectory at the endpoint γ(a) with direction coinciding with the direction
of the curve. If t0 = b and γ′(b) ̸= 0, then the vector −γ′(b) determines the tangent halfline of
the trajectory at the endpoint γ(b) with direction opposite to the direction of the curve. If at some
t0 ∈ (a, b) the one-sided derivatives γ′−(t0) ̸= 0 and γ′+(t0) ̸= 0 exist but they are not equal, then
the tangent halflines of the trajectory at its point γ(t0) may not be opposite and so there may be
no tangent line of the trajectory at this point: one of the halflines is determined by γ′+(t0) and the
other by −γ′−(t0).

We know that, if the curve γ : [a, b] → C is continuously differentiable or smooth, i.e. if
γ′ : [a, b] → C is continuous in [a, b], then the length of the curve, denoted l(γ), is equal to

l(γ) =
∫ b
a |γ′(t)| dt. (2.5)

Example 2.3.4. The curve γ with parametric equation z = γ(t) = b−t
b−az0 +

t−a
b−az1, t ∈ [a, b], has

length l(γ) =
∫ b
a |γ′(t)| dt =

∫ b
a | z1−z0

b−a | dt = | z1−z0
b−a |

∫ b
a dt = |z1 − z0|.

Example 2.3.5. If r > 0 the curve γ with parametric equation z = γ(t) = z0 + r(cos t+ i sin t),
t ∈ [0, 2π], has length l(γ) =

∫ b
a |γ′(t)| dt =

∫ 2π
0 |r(− sin t+ i cos t)| dt =

∫ 2π
0 r dt = 2πr.

The same formula (2.5) gives the length of the curve γ if this is piecewise continuously differ-
entiable or piecewise smooth. This means that there is a subdivision a = t0 < t1 < . . . < tn−1 <
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tn = b of the parametric interval [a, b] so that the restriction of γ in every [tk−1, tk] is continuously
differentiable. (Strictly speaking, at the division points tk the derivative of γ may not exist; the
two one-sided derivatives should exist and be finite at these points.)

Now let γ1 : [a, b] → C be a curve. We consider any σ : [c, d] → [a, b] which is one-to-one
in the interval [c, d] and onto [a, b], has continuous derivative in [c, d] and has σ′(s) > 0 for every
s ∈ [c, d]. Thus, σ is strictly increasing in [c, d] and σ(c) = a, σ(d) = b. Every such σ is called
change of parameter. Then γ2 = γ1 ◦ σ : [c, d] → C is continuous in [c, d] and hence it is a
new curve. We say that γ2 is a reparametrization of γ1: the parameter of γ1 is t ∈ [a, b] and the
parameter of γ2 is s ∈ [c, d]. The curves γ1, γ2 have the same trajectory, the same endpoints and
the same direction. Since σ′ is continuous and> 0, the two curves are simultaneously (piecewise)
smooth and, in this case, their lengths are equal:

l(γ2) =
∫ d
c |γ2′(s)| ds =

∫ d
c |γ1′(σ(s))||σ′(s)| ds =

∫ d
c |γ1′(σ(s))|σ′(s) ds

=
∫ b
a |γ1′(t)| dt = l(γ1).

We may define the following relation between curves: γ1 ∼ γ2 if γ2 is a reparametrization of
γ1. It is not difficult to prove that this relation between curves is an equivalence relation, i.e. it
satisfies the following three properties:
(i) γ ∼ γ.
(ii) γ1 ∼ γ2 ⇒ γ2 ∼ γ1.
(iii) γ1 ∼ γ2, γ2 ∼ γ3 ⇒ γ1 ∼ γ3.
Indeed: (i) Let γ : [a, b] → C be any curve. We consider the change of parameter id : [a, b] →
[a, b], defined by id(t) = t, and then γ = γ ◦ id : [a, b] → C. Thus, γ ∼ γ. (ii) Let γ1 ∼ γ2.
Then γ2 = γ1 ◦ σ where σ : [c, d] → [a, b] is a change of parameter. But then σ−1 : [a, b] → [c, d]
is also a change of parameter and γ1 = γ2 ◦ σ−1. Therefore γ2 ∼ γ1. (iii) Let γ1 ∼ γ2 and
γ2 ∼ γ3. Then γ2 = γ1 ◦ σ and γ3 = γ2 ◦ τ , where σ : [c, d] → [a, b] and τ : [e, f ] → [c, d]
are changes of parameter. But then χ = σ ◦ τ : [e, f ] → [a, b] is a change of parameter and
γ3 = γ2 ◦ τ = (γ1 ◦ σ) ◦ τ = γ1 ◦ χ. Therefore γ1 ∼ γ3.

It is of some value to note that if we have a curve γ with parametric interval [a, b] and if
we are given an arbitrary interval [c, d], then there is a reparametrization of γ with parametric
interval [c, d] instead of [a, b]. We can do this if we can find an appropriate change of parameter
σ : [c, d] → [a, b]. There are many such σ, but a simple one is t = σ(s) = d−s

d−c a + s−c
d−c b,

s ∈ [c, d]. Therefore, if for some reason (and we shall presently see that there is such a reason) we
do not distinguish between curves which are reparametrizations of each other, then the parametric
interval of a curve is of no particular importance: we may consider a reparametrization of a given
curve changing the given parametric interval to any other which we might prefer.

For every curve γ : [a, b] → C we consider the curve ¬ γ : [a, b] → C given by (¬ γ)(t) =
γ(a + b − t), t ∈ [a, b]. Then ¬ γ is called opposite of γ. The curves γ and ¬ γ have the same
trajectory but opposite directions. Also, the two curves are simultaneously (piecewise) smooth
and, in this case, their lengths are equal:

l(¬ γ) =
∫ b
a |(¬ γ)′(t)| dt =

∫ b
a |γ′(a+ b− t)| dt = −

∫ a
b |γ′(s)| ds =

∫ b
a |γ′(s)| ds = l(γ).

If the curves γ1 : [a, b] → C and γ2 : [b, c] → C have γ1(b) = γ2(b), then we say that γ1, γ2
(in this order) are successive and then we may define the curve γ1

·
+ γ2 : [a, c] → C by

(γ1
·
+ γ2)(t) =

{
γ1(t), if a ≤ t ≤ b

γ2(t), if b ≤ t ≤ c

The curve γ1
·
+ γ2 is called sum of γ1 and γ2. If γ1 and γ2 are (piecewise) smooth, γ1

·
+ γ2 is also

piecewise smooth. The trajectory (γ1
·
+ γ2)

∗ is the union of the trajectories γ1∗ and γ2∗.
Of course, the sum of two curves can be generalized to the sum of more than two curves

provided that these are successive.
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Example 2.3.6. Every polygonal line can be considered as the trajectory of a piecewise regular
curve. This curve is the sum of successive curves each of which has as its trajectory a corresponding
linear segment of the polygonal line.

Through the operation of summation of successive curves, we may consider successive curves
as one curve and, conversely, we may consider one curve as a sum of successive curves.

The length of the sum of successive piecewise smooth curves equals the sum of their lengths:

l(γ1
·
+ γ2) =

∫ c
a |(γ1

·
+ γ2)

′(t)|dt =
∫ b
a |(γ1

·
+ γ2)

′(t)|dt+
∫ c
b |(γ1

·
+ γ2)

′(t)|dt

=
∫ b
a |γ1′(t)|dt+

∫ c
b |γ2′(t)|dt = l(γ1) + l(γ2).

Now we shall extend the notion of integral of a complex function over an interval to the notion
of integral of a complex function over a curve. Let γ : [a, b] → C be a piecewise smooth curve and
let f : γ∗ → C be continuous in the trajectory γ∗ = {γ(t) | t ∈ [a, b]}. Then f ◦ γ : [a, b] → C
is continuous in [a, b]. Thus, (f ◦ γ)γ′ is piecewise continuous in [a, b] and hence integrable over
[a, b]. We define the curvilinear integral of f over γ by∫

γ f(z) dz =
∫ b
a (f ◦ γ)(t)γ′(t) dt =

∫ b
a f(γ(t))γ′(t) dt.

We shall usually write ∮
γ f(z) dz

when γ is closed.
We remark that whenever a curve γ is mentioned with respect either to its length l(γ) or to a

curvilinear integral of a function over γ we shall always assume that γ is piecewise smooth.

Example 2.3.7. Let γ be the curve with parametric equation z = γ(t) = (1− t)z0+ tz1, t ∈ [0, 1].
The trajectory of γ is the linear segment [z0, z1] having direction from z0 to z1. If f is continuous
in [z0, z1], then the curvilinear integral

∫
γ f(z) dz is denoted

∫
[z0,z1]

f(z) dz. I.e.∫
[z0,z1]

f(z) dz =
∫
γ f(z) dz = (z1 − z0)

∫ 1
0 f((1− t)z0 + tz1) dt.

This is the curvilinear integral of f over the linear segment [z0, z1] from z0 to z1.

Example 2.3.8. Let r > 0 and γ be the curve with parametric equation z = γ(t) = z0 + r(cos t+
i sin t), t ∈ [0, 2π]. The trajectory of γ is the circle Cz0(r) with the positive direction of rotation
around z0. If f is continuous in the circleCz0(r), then the curvilinear integral

∮
γ f(z) dz is denoted∮

Cz0 (r)
f(z) dz. I.e.,∮
Cz0 (r)

f(z) dz =
∮
γ f(z) dz =

∫ 2π
0 f

(
z0 + r(cos t+ i sin t)

)
r(− sin t+ i cos t) dt.

This is the curvilinear integral of f over the circle Cz0(r) with the positive direction of rotation.

An important concrete instance of the previous example is the following.

Example 2.3.9. If n ∈ Z, we know that
∫ 2π
0 sin(nt) dt = 0. Also,

∫ 2π
0 cos(nt) dt = 2π, if n = 0,

and
∫ 2π
0 cos(nt) dt = 0, if n ̸= 0. Therefore, if n ∈ Z, we get∮

Cz0(r)
(z − z0)

n dz =
∫ 2π
0 rn(cos t+ i sin t)nr(− sin t+ i cos t) dt

= irn+1
∫ 2π
0 (cos t+ i sin t)n(cos t+ i sin t) dt

= irn+1
∫ 2π
0

(
cos((n+ 1)t) + i sin((n+ 1)t)

)
dt

=

{
2πi, if n = −1

0, if n ̸= −1
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The following propositions are easy to prove.

Proposition 2.10. If γ is a piecewise smooth curve, f1, f2 are continuous in γ∗ and λ1, λ2 ∈ C,
then

∫
γ(λ1f1(z) + λ2f2(z)) dz = λ1

∫
γ f1(z) dz + λ2

∫
γ f2(z) dz.

Proof. An application of proposition 2.6 and of the definition of the curvilinear integral.

Proposition 2.11. If γ is a piecewise smooth curve and f is continuous in γ∗, then |
∫
γ f(z) dz| ≤

supz∈γ∗ |f(z)|l(γ).

Proof. If γ : [a, b] → C, then∣∣ ∫
γ f(z) dz

∣∣ = ∣∣ ∫ b
a f(γ(t))γ′(t) dt

∣∣ ≤ ∫ b
a |f(γ(t))||γ′(t)| dt ≤ supz∈γ∗ |f(z)|

∫ b
a |γ′(t)| dt

= supz∈γ∗ |f(z)|l(γ).

The first inequality uses proposition 2.9.

Proposition 2.12. If γ is a piecewise smooth curve, fn, ϕ are continuous in γ∗ and fn → f uni-
formly in γ∗, then

∫
γ fn(z)ϕ(z) dz →

∫
γ f(z)ϕ(z) dz.

Proof. Because of uniform convergence, f is continuous in γ∗. Therefore, the existence of the
integrals

∫
γ fn(z)ϕ(z) dz and

∫
γ f(z)ϕ(z) dz is assured. Now, proposition 2.11 implies∣∣ ∫

γ fn(z)ϕ(z) dz −
∫
γ f(z)ϕ(z) dz

∣∣ = ∣∣ ∫
γ(fn(z)− f(z))ϕ(z) dz

∣∣
≤ supz∈γ∗ |fn(z)− f(z)| supz∈γ∗ |ϕ(z)|l(γ).

Since supz∈γ∗ |fn(z)− f(z)| → 0, we get that
∫
γ fn(z)ϕ(z) dz →

∫
γ f(z)ϕ(z) dz.

We may rewrite the result of proposition 2.12 in the form

limn→+∞
∫
γ fn(z)ϕ(z) dz =

∫
γ limn→+∞ fn(z)ϕ(z) dz

of an interchange between the symbols limn→+∞ and
∫
γ . This interchange under the assumption

of uniform convergence is the content of proposition 2.12.

Proposition 2.13. If γ is a piecewise smooth curve, fn, ϕ are continuous in γ∗ and
∑+∞

n=1 fn = s
uniformly in γ∗, then

∑+∞
n=1

∫
γ fn(z)ϕ(z) dz =

∫
γ s(z)ϕ(z) dz.

Proof. We consider the partial sums sn = f1 + · · · + fn and we apply proposition 2.12 to them.
Then∑n

k=1

∫
γ fk(z)ϕ(z) dz =

∫
γ

∑n
k=1 fk(z)ϕ(z) dz =

∫
γ sn(z)ϕ(z) dz →

∫
γ s(z)ϕ(z) dz.

I.e. the series (of numbers)
∑+∞

n=1

∫
γ fn(z)ϕ(z) dz converges to (the number)

∫
γ s(z)ϕ(z) dz.

As in the case of proposition 2.12, we may rewrite the result of proposition 2.13 in the form∑+∞
n=1

∫
γ fn(z)ϕ(z) dz =

∫
γ

∑+∞
n=1 fn(z)ϕ(z) dz,

since
∑+∞

n=1 fn(z) = s(z) for every z ∈ γ∗. Again, this interchange between the symbols
∑+∞

n=1

and
∫
γ under the assumption of uniform convergence is the content of proposition 2.13.

Proposition 2.14. If each of the piecewise smooth curves γ1, γ2 is a reparametrization of the other
and f is continuous in γ∗1 = γ∗2 , then

∫
γ2
f(z) dz =

∫
γ1
f(z) dz.

22



Proof. If γ1 : [a, b] → C and γ2 : [c, d] → C, then there is a change of parameter σ : [c, d] → [a, b]
so that γ2(s) = γ1(σ(s)) for all s ∈ [c, d]. Then∫

γ2
f(z) dz =

∫ d
c f(γ2(s))γ2

′(s) ds =
∫ d
c f(γ1(σ(s)))γ1

′(σ(s))σ′(s) ds

=
∫ b
a f(γ1(t))γ1

′(t) dt =
∫
γ1
f(z) dz

after a change of parameter in the third integral.

At this point we observe that replacing a curve γ1 with a reparametrization γ2 of it does not
alter certain objects related to the curve: its trajectory, its endpoints, its direction, its length, the
number of times it covers its trajectory and, more important, the curvilinear integrals of continuous
functions defined over its trajectory. Since in this course we shall use curves mostly to evaluate
curvilinear integrals, we conclude that there is no reason to distinguish between a curve and its
reparametrizations. Therefore, when we have a geometric object C which we would call, in ev-
eryday language, curve in the plane, e.g. a linear segment or a circle or a polygonal line, and a
continuous function f : C → C, we can give a meaning to∫

C f(z) dz

by specifying a piecewise continuously differentiable γ : [a, b] → C, i.e. a piecewise smooth
curve, with trajectory γ∗ coinciding with C, with endpoints coinciding with the endpoints of C
and a specific assigned direction. The use of different curves, which are reparametrizations of the
particular γ we have chosen, will not alter the value of the integral. In fact we have already seen
two examples of this situation. One is the curvilinear integral

∫
[z0,z1]

f(z) dz for which we use any
parametric equation with trajectory equal to the linear segment [z0, z1] and direction from z0 to
z1. The simplest such parametric equation is z = γ(t) = (1 − t)z0 + tz1, t ∈ [0, 1]. The second
example is the curvilinear integral

∮
Cz0 (r)

f(z) dz for which we use any parametric equation with
trajectory equal to the circle Cz0(r) and which covers this circle once and in the positive direction
of rotation around z0. The simplest such parametric equation is z = γ(t) = z0+ r(cos t+ i sin t),
t ∈ [0, 2π].

Proposition 2.15. Let γ1, γ2 be two successive piecewise smooth curves and let f be continuous
in γ∗1 ∪ γ∗2 . Then

∫
γ1

·
+γ2

f(z) dz =
∫
γ1
f(z) dz +

∫
γ2
f(z) dz.

Proof. Let γ1 : [a, b] → C and γ2 : [b, c] → C with γ1(b) = γ2(b). Then∫
γ1

·
+γ2

f(z) dz =
∫ c
a f

(
(γ1

·
+ γ2)(t)

)
(γ1

·
+ γ2)

′(t) dt

=
∫ b
a f(γ1(t))γ1

′(t) dt+
∫ c
b f(γ2(t))γ2

′(t) dt =
∫
γ1
f(z) dz +

∫
γ2
f(z) dz.

The second equality uses proposition 2.7.

Proposition 2.16. If γ is a piecewise smooth curve and f is continuous in γ∗, then
∫
¬ γ f(z) dz =

−
∫
γ f(z) dz.

Proof. If γ : [a, b] → C, then∫
¬ γ f(z) dz =

∫ b
a f((¬ γ)(t))(¬ γ)′(t) dt = −

∫ b
a f(γ(a+ b− t))γ′(a+ b− t) dt

=
∫ a
b f(γ(s))γ′(s) ds = −

∫ b
a f(γ(s))γ′(s) ds = −

∫
γ f(z) dz.

after a simple change of parameter in the third integral.

Example 2.3.10. Let γ be the curve describing the linear segment [z0, z1] from z0 to z1. Then
¬ γ describes the same segment from z1 to z0. Therefore,

∫
[z0,z1]

f(z) dz =
∫
γ f(z) dz and∫

[z1,z0]
f(z) dz =

∫
¬ γ f(z) dz. Hence

∫
[z1,z0]

f(z) dz = −
∫
[z0,z1]

f(z) dz.
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Before we leave this section, we should mention three variants of the notion of the curvilinear
integral. Let γ : [a, b] → C be a piecewise smooth curve and let f : γ∗ → C be continuous in the
trajectory γ∗ = {γ(t) | t ∈ [a, b]}. If γ(t) = (x(t), y(t)) = x(t) + iy(t) for every t ∈ [a, b], we
define ∫

γ f(z) dx =
∫ b
a f(γ(t))x′(t) dt,

∫
γ f(z) dy =

∫ b
a f(γ(t))y′(t) dt,∫

γ f(z) |dz| =
∫ b
a f(γ(t))|γ′(t)| dt.

Trivially, we have
∫
γ f(z) dz =

∫
γ f(z) dx+ i

∫
γ f(z) dy.

We leave to the reader the easy task to show that each of the three new integrals satisfies all
properties of the original

∫
γ f(z) dz, expressed in propositions 2.10 - 2.16. The only difference

is with the integral
∫
γ f(z) |dz| which, regarding proposition 2.16, does not change its sign when

we replace γ with ¬ γ. Moreover, the basic inequality in proposition 2.11 takes the more precise
form: ∣∣ ∫

γ f(z) dz
∣∣ ≤ ∫

γ |f(z)| |dz| ≤ supz∈γ∗ |f(z)|l(γ).
Indeed, observing the string of equalities/inequalities in the proof of proposition 2.11, we recognize∫
γ |f(z)| |dz| as the third integral from the left. It is very common with beginning students to make
the mistake: |

∫
γ f(z) dz| ≤

∫
γ |f(z)| dz.

We should also say that
∫
γ |dz| = l(γ). In calculus texts one usually sees the symbol ds

instead of |dz| for the infinitesimal length |γ′(t)| dt over the curve.

Exercises.

2.3.1. Calculate
∫
γ |z| dz, where γ is each of the following curves with initial endpoint −i and

final endpoint i. (i) γ(t) = it for t ∈ [−1, 1]. (ii) γ(t) = cos t + i sin t for t ∈ [−π
2 ,

π
2 ]. (iii)

γ(t) = − cos t+ i sin t for t ∈ [−π
2 ,

π
2 ].

2.3.2. (i) If n ∈ Z, n ≥ 0, prove that
∫
γ z

n dz =
zn+1
1 −zn+1

0
n+1 , where z0, z1 are the initial and the

final endpoint of the piecewise smooth γ.
(ii) Are there polynomials pn(z) so that pn(z) → 1

z uniformly in the circle C0(1)? Think in terms
of curvilinear integrals over the circle C0(1).

2.3.3. Let f be continuous in the ring {z | 0 < |z| < r0} or in the ring {z | r0 < |z| < +∞}.
We define M(r) = maxz∈C0(r) |f(z)| and assume that rM(r) → 0 when r → 0 or r → +∞,
respectively. If γr(t) = r(cos t + i sin t) for t1 ≤ t ≤ t2, then prove that

∫
γr
f(z) dz → 0 when

r → 0 or r → +∞, respectively.

2.3.4. Let f : Dz0(R) → C be continuous. Prove that limr→0

∮
Cz0 (r)

f(z)
z−z0

dz = 2πif(z0).

2.3.5. Let f : Ω → C be continuous in the open set Ω and let [an, bn], [a, b] ⊆ Ω for every n. If
an → a and bn → b, prove that

∫
[an,bn]

f(z) dz →
∫
[a,b] f(z) dz.

2.3.6. Let f : Ω → C be continuous in the open set Ω and γ be a piecewise smooth curve in Ω.
Prove that for every ϵ > 0 there is a polygonal curve σ in Ω so that |

∫
σ f(z) dz−

∫
γ f(z) dz| < ϵ.

2.3.7. Prove that |
∫ b
a f(t) dt| =

∫ b
a |f(t)| dt if and only if there is some halfline l with vertex 0 so

that f(t) ∈ l for every continuity point t of f .

2.3.8. Let γ : [a, b] → C be a piecewise smooth curve and f : γ∗ → C be continuous in γ∗. Con-
sider any subdivision ∆ = {t0, . . . , tn} of [a, b] and any choice Ξ = {ξ1, . . . , ξn} of intermediate
points ξk ∈ [tk−1, tk]. Then we say that∆∗ = {z0, . . . , zn}, where zk = γ(tk), is a subdivision of
the trajectory γ∗ and that Ξ∗ = {η1, . . . , ηn}, where ηk = γ(ξk), is a choice of intermediate points
on the trajectory: ηk is between zk−1 and zk on the trajectory. We say that

∑n
k=1 f(zk)(ηk−ηk−1)

is the corresponding Riemann sum. If w(∆∗) = max1≤k≤n |zk − zk−1| is the width of the subdi-
vision ∆∗, then prove that limw(∆∗)→0

∑n
k=1 f(zk)(ηk − ηk−1) =

∫
γ f(z) dz.
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Chapter 3

Holomorphic functions.

3.1 Differentiability and holomorphy.

Let f be a complex function defined in A ⊆ C and z0 be an interior point of A. We say that
f is differentiable at z0 if limz→z0

f(z)−f(z0)
z−z0

exists and is a complex number. We call this limit
derivative of f at z0 and denote it

f ′(z0) =
df
dz (z0) = limz→z0

f(z)−f(z0)
z−z0

.

Example 3.1.1. The constant function c is differentiable at every point of C and its derivative is
the constant function 0. Indeed, for every z0 we have dc

dz (z0) = limz→z0
c−c
z−z0

= limz→z0 0 = 0.

Example 3.1.2. The function z is differentiable at every point ofC and its derivative is the constant
function 1: for every z0 we have dz

dz (z0) = limz→z0
z−z0
z−z0

= limz→z0 1 = 1.

Example 3.1.3. Let f(z) = z. We shall prove that the limz→z0
f(z)−f(z0)

z−z0
= limz→z0

z−z0
z−z0

does
not exist, i.e. f is not differentiable at any z0.
Let z0 = x0 + iy0. The limit of f(z)−f(z0)

z−z0
when z → z0 on the horizontal line containing z0 is

limx→x0

(x+iy0)−(x0+iy0)
(x+iy0)−(x0+iy0)

= limx→x0
x−x0
x−x0

= limx→x0 1 = 1

and the limit of f(z)−f(z0)
z−z0

when z → z0 on the vertical line containing z0 is

limy→y0
(x0+iy)−(x0+iy0)
(x0+iy)−(x0+iy0)

= limy→y0
−iy+iy0
iy−iy0

= limy→y0(−1) = −1.

Since these two limits are different, the limz→z0
z−z0
z−z0

does not exist.

The proofs of the following four propositions are identical with the proofs of the well-known
analogous propositions for real functions of a real variable and we omit them.

Proposition 3.1. If f : A → C is differentiable at the interior point z0 of A ⊆ C, then f is
continuous at z0.

Proposition 3.2. If f, g : A → C are differentiable at the interior point z0 of A ⊆ C, then
f + g, f − g, fg : A → C are also differentiable at z0. Furthermore, if g(z) ̸= 0 for all z ∈ A,
then f

g : A → C is differentiable at z0. Finally, (f + g)′(z0) = f ′(z0) + g′(z0), (f − g)′(z0) =

f ′(z0)− g′(z0), (fg)′(z0) = f ′(z0)g(z0) + f(z0)g
′(z0) and (fg )

′(z0) =
f ′(z0)g(z0)−f(z0)g′(z0)

(g(z0))2
.

Proposition 3.3. If f : A → B is differentiable at the interior point z0 of A ⊆ C and g : B → C
is differentiable at the interior point w0 = f(z0) of B ⊆ C, then g ◦ f : A → C is differentiable
at z0. Also, (g ◦ f)′(z0) = g′(w0)f

′(z0).
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Proposition 3.4. Let f : A → B be one-to-one from A ⊆ C onto B ⊆ C and let f−1 : B → A be
the inverse function. Let also z0 be an interior point ofA andw0 = f(z0) be an interior point ofB.
If f is differentiable at z0 and f ′(z0) ̸= 0 and f−1 is continuous at w0, then f−1 is differentiable
at w0 and (f−1)′(w0) =

1
f ′(z0)

.

Example 3.1.4. Starting with the derivatives of the constant function c and the function z and using
the usual algebraic rules for derivatives, we get that every polynomial function is differentiable at
every point of C and that its derivative is another polynomial function: if p(z) = a0 + a1z +
a2z

2 + · · ·+ anz
n, then p′(z) = a1 + 2a2z + · · ·+ nanz

n−1.

Example 3.1.5. Every rational function is differentiable at every point of its domain of definition
and its derivative is another rational function.

Example 3.1.6. If h(z) = (z2 − 3z + 2)15 − 3(z2 − 3z + 2)2, then by the chain rule we get
h′(z) = 15(z2 − 3z + 2)14(2z − 3)− 6(z2 − 3z + 2)(2z − 3).

Let f be a complex function defined in A ⊆ C and z0 be an interior point of A. We say that f
is holomorphic (or analytic) at z0 if there is r > 0 so that Dz0(r) ⊆ A and f is differentiable at
every point of Dz0(r).

The notion of holomorphy is stronger than the notion of differentiability: for a function to be
holomorphic at a point it is necessary for it to be differentiable at this point and at all nearby points.

Example 3.1.7. Every polynomial function is holomorphic at every point of C.

Example 3.1.8. Every rational function is holomorphic at every point of its domain of definition.

Example 3.1.9. Let f(z) = |z|2. We have limz→0
f(z)−f(0)

z−0 = limz→0 z = 0 and f is differen-
tiable at 0 with f ′(0) = 0.
We take an arbitrary z0 ̸= 0 and we shall prove that the limz→z0

f(z)−f(z0)
z−z0

= limz→z0
|z|2−|z0|2

z−z0
does not exist and therefore f is not differentiable at z0.
Let z0 = x0 + iy0. The limit of f(z)−f(z0)

z−z0
when z → z0 on the horizontal line containing z0 is

limx→x0

|x+iy0|2−|x0+iy0|2
(x+iy0)−(x0+iy0)

= limx→x0
x2−x0

2

x−x0
= limx→x0(x+ x0) = 2x0

and the limit of f(z)−f(z0)
z−z0

when z → z0 on the vertical line containing z0 is

limy→y0
|x0+iy|2−|x0+iy0|2
(x0+iy)−(x0+iy0)

= limy→y0
y2−y02

iy−iy0
= −i limy→y0(y + y0) = −2iy0.

Since z0 ̸= 0, these two limits are different and the limz→z0
|z|2−|z0|2

z−z0
does not exist.

We conclude that f is differentiable only at 0 and that it is nowhere holomorphic.

The set of points at which f is holomorphic is called domain of holomorphy of f .

Proposition 3.5. IfB ⊆ C is the set of the points at which the complex function f is differentiable,
then the domain of holomorphy of f is the interior of B. In particular, the domain of holomorphy
of f is an open set.

Proof. LetU be the domain of holomorphy of f . If z ∈ U , there is r > 0 so that f is differentiable
at every point of Dz(r) and hence Dz(r) ⊆ B. Thus z is an interior point of B, i.e. z ∈ B◦.
Conversely, let z ∈ B◦. Then there is r > 0 so thatDz(r) ⊆ B, and so f is differentiable at every
point of Dz(r). Therefore f is holomorphic at z, i.e. z ∈ U .

Example 3.1.10. The domain of holomorphy of any polynomial function is C.

Example 3.1.11. The domain of holomorphy of any rational function is its domain of definition.
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Example 3.1.12. The domain of holomorphy of both functions f(z) = z and f(z) = |z|2 is the
empty set.

Let Ω ⊆ C be an open set. We say that the complex function f is holomorphic (or analytic)
in Ω if it is holomorphic at every point of Ω or, equivalently, if Ω is a subset of the domain of
holomorphy of f .

Clearly, the largest open set Ω in which f is holomorphic is its domain of holomorphy. It is
also clear that if f is differentiable at every point of an open set Ω, then f is holomorphic in Ω.

Let the complex function f be defined in the neighborhood D∞(r) of ∞. We consider the
complex function g defined in D0(r) by

g(w) = f(1/w), for every w with |w| < r.

We say that f is differentiable or holomorphic at ∞ if g is differentiable or holomorphic, respec-
tively, at 0.

We observe that g(0) = f(∞) and that the inverse functions w = 1
z and z = 1

w map each of
the neighborhoods D∞(r) = {z | |z| > 1

r} ∪ {∞} and D0(r) = {w | |w| < r} onto the other.
Now we shall see that the condition of differentiability of f at ∞, i.e. the differentiability of g at
0, can be translated into an equivalent condition in terms of f itself.

Proposition 3.6. Let f be a complex function defined in D∞(r). Then f is differentiable at ∞ if
and only if limz→∞ z(f(z)− f(∞)) ∈ C.

Proof. Let g(w) = f(1z ) be the function considered in the above definition. Through the change of
variable w = 1

z , we have
g(w)−g(0)

w−0 = z(f(z)− f(∞)). Thus, the existence of limw→0
g(w)−g(0)

w−0
is equivalent to the existence of limz→∞ z(f(z)− f(∞)). In fact the two limits are equal.

It is easy to see that differentiability of f at∞ implies continuity of f at∞.

Example 3.1.13.We shall check the differentiability (and hence holomorphy) of polynomial and
rational functions. We recall the notation and the results of examples 1.3.1 and 1.3.2.
A polynomial function p is continuous and complex-valued at∞ only if it is a constant p(z) = a0
and provided we define p(∞) = a0. In this case it is also differentiable at∞, since

limz→∞ z(p(z)− p(∞)) = limz→∞ 0 = 0.

A rational function r(z) = anzn+···+a1z+a0
bmzm+···+b1z+b0

is continuous and complex-valued at∞ only ifn ≤ m,
where n and m are the degrees of its numerator and denominator. If n = m, then we define
r(∞) = an

bn
and then, after some algebraic manipulations, we get

limz→∞ z(r(z)− r(∞)) = limz→∞ z
(
anzn+···+a1z+a0
bnzn+···+b1z+b0

− an
bn

)
= an−1bn−anbn−1

b2n
.

If n < m, then we define r(∞) = 0 and then we get

limz→∞ z(r(z)− r(∞)) = limz→∞ z anzn+···+a1z+a0
bmzm+···+b1z+b0

=

{
an

bn+1
, if n+ 1 = m

0, if n+ 1 < m

Exercises.

3.1.1. Check the differentiability of the functions Re z, Im z and |z|.

3.1.2. Let Ω be open and f : Ω → C. We take Ω∗ = {z | z ∈ Ω} and f∗ : Ω∗ → C given by
f∗(z) = f(z) for every z ∈ Ω∗. Prove that Ω∗ is open and that, if f is differentiable at z0 ∈ Ω,
then f∗ is differentiable at z0 ∈ Ω∗.
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3.1.3. Consider open sets U, V and f : V → U , g : U → C, h : V → C so that h is one-to-one
and h = g ◦ f . If h is differentiable at w0 ∈ V , g is differentiable at z0 = f(w0), g′(z0) ̸= 0 and
f is continuous at w0, prove that f is differentiable at w0 and f ′(w0) =

h′(w0)
g′(z0)

.

3.1.4. (i) If p is a polynomial of degree n with roots z1, . . . , zn, prove p′(z)
p(z) = 1

z−z1
+ · · ·+ 1

z−zn
for every z ̸= z1, . . . , zn. Then prove that, if the roots of p are contained in a closed halfplane,
then the roots of p′ are contained in the same halfplane. Conclude that the roots of p′ are contained
in the smallest convex polygon which contains the roots of p.
(ii) For every a and every n ∈ N, n ≥ 2 prove that the equation 1 + z + azn = 0 has at least one
root z ∈ D0(2).

3.1.5. (i) Let a1, . . . , an be distinct and q(z) = (z − a1) · · · (z − an). If the polynomial p has
degree < n, prove p(z)

q(z) =
∑n

k=1
p(ak)

q′(ak)(z−ak)
for every z ̸= a1, . . . , an.

(ii) Let a1, . . . , an be distinct. Prove that for every c1, . . . , cn there is a unique polynomial p of
degree < n so that p(ak) = ck for every k = 1, . . . , n.

3.1.6. Let f have continuous derivative in a neighborhood of z0. Prove that f(z′n)−f(z′′n)
z′n−z′′n

→ f ′(z0)

if z′n → z0, z′′n → z0 and z′n ̸= z′′n for every n.

3.2 The Cauchy-Riemann equations.

Now we shall relate the differentiability of f , as a complex function of z = x + iy, at some
interior point z0 = x0 + iy0 of its domain A ⊆ C with the partial derivatives of u = Re f and
v = Im f , as functions of (x, y) at the same point (x0, y0).

Theorem 3.1. Let f be a complex function defined in A ⊆ C, z0 = (x0, y0) be an interior point
of A and let u, v be the real and imaginary part of f . If f is differentiable at z0, then u, v have
partial derivatives with respect to x and y at (x0, y0) and

∂u
∂x(x0, y0) =

∂v
∂y (x0, y0),

∂u
∂y (x0, y0) = − ∂v

∂x(x0, y0). (3.1)

Proof. We assume

limz→z0
f(z)−f(z0)

z−z0
= f ′(z0) = µ+ iν, µ, ν ∈ R. (3.2)

Since the limit of f(z)−f(z0)
z−z0

exists when z tends to z0, the limits of the same expression when z
tends to z0 on the horizontal line containing z0 as well as on the vertical line containing z0 also
exist and have the same value:

limx→x0

f(x,y0)−f(x0,y0)
x−x0

= µ+ iν, limy→y0
f(x0,y)−f(x0,y0)

iy−iy0
= µ+ iν. (3.3)

From the first limit in (3.3) we get limx→x0

u(x,y0)+iv(x,y0)−u(x0,y0)−iv(x0,y0)
x−x0

= µ+ iν, and hence

∂u
∂x(x0, y0) = limx→x0

u(x,y0)−u(x0,y0)
x−x0

= µ,

∂v
∂x(x0, y0) = limx→x0

v(x,y0)−v(x0,y0)
x−x0

= ν.
(3.4)

From the second limit in (3.3) we find limy→y0
u(x0,y)+iv(x0,y)−u(x0,y0)−iv(x0,y0)

iy−iy0
= µ + iν, and

hence
∂v
∂y (x0, y0) = limy→y0

v(x0,y)−v(x0,y0)
y−y0

= µ,

∂u
∂y (x0, y0) = limx→x0

u(x0,y)−u(x0,y0)
y−y0

= −ν.
(3.5)

Comparing (3.4) and (3.5) we get (3.1).
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The equalities (3.1) are called (system of) Cauchy-Riemann equations at the point (x0, y0).
We observe that, if f is differentiable at z0, then (3.2), (3.4) and (3.5) imply

f ′(z0) =
∂u
∂x(x0, y0) + i ∂v∂x(x0, y0) =

∂v
∂y (x0, y0)− i∂u∂y (x0, y0).

The next result is the converse of theorem 3.1 but with extra assumptions.

Theorem 3.2. Let f be a complex function defined in A ⊆ C, z0 = (x0, y0) be an interior point of
A and let u, v be the real and imaginary part of f . If u, v have partial derivatives with respect to x
and y at every point of some neighborhood of (x0, y0) and if these partial derivatives are contin-
uous at (x0, y0) and if they satisfy the system of C-R equations at (x0, y0), then f is differentiable
at z0.

Proof. Using the C-R equations, we define the real numbers µ and ν by:

µ = ∂u
∂x(x0, y0) =

∂v
∂y (x0, y0), ν = −∂u

∂y (x0, y0) =
∂v
∂x(x0, y0). (3.6)

Now take an arbitrary ϵ > 0. Since ∂u
∂x ,

∂u
∂y are continuous at (x0, y0), there is r > 0 so that∣∣∂u

∂x(x, y)− µ
∣∣ < ϵ

4 ,
∣∣∂u
∂y (x, y) + ν

∣∣ < ϵ
4 for every (x, y) ∈ D(x0,y0)(r). (3.7)

We take any (x, y) ∈ D(x0,y0)(r) and we write

u(x, y)− u(x0, y0) = u(x, y)− u(x0, y) + u(x0, y)− u(x0, y0). (3.8)

By the mean value theorem, there is x′ between x and x0 so that

u(x, y)− u(x0, y) =
∂u
∂x(x

′, y)(x− x0) (3.9)

and y′ between y and y0 so that

u(x0, y)− u(x0, y0) =
∂u
∂y (x0, y

′)(y − y0). (3.10)

The x′, y′ depend on x, y, but the points (x′, y), (x0, y′) belong to D(x0,y0)(r). Therefore, (3.7)
implies ∣∣∂u

∂x(x
′, y)− µ

∣∣ < ϵ
4 ,

∣∣∂u
∂y (x0, y

′) + ν
∣∣ < ϵ

4 . (3.11)

Combining (3.8), (3.9) and (3.10), we find

u(x, y)− u(x0, y0)−
(
µ(x− x0)− ν(y − y0)

)
=

(
u(x, y)− u(x0, y)− µ(x− x0)

)
+

(
u(x0, y)− u(x0, y0) + ν(y − y0)

)
=

(
∂u
∂x(x

′, y)− µ
)
(x− x0) +

(
∂u
∂y (x0, y

′) + ν
)
(y − y0)

and, because of (3.11),∣∣u(x, y)− u(x0, y0)−
(
µ(x− x0)− ν(y − y0)

)∣∣
≤

∣∣∂u
∂x(x

′, y)− µ
∣∣|x− x0|+

∣∣∂u
∂y (x0, y

′) + ν
∣∣|y − y0|

< ϵ
4 |x− x0|+ ϵ

4 |y − y0| < ϵ
2

√
(x− x0)2 + (y − y0)2.

(3.12)

In the same manner, for the function v we get∣∣v(x, y)− v(x0, y0)−
(
ν(x− x0) + µ(y − y0)

)∣∣ < ϵ
2

√
(x− x0)2 + (y − y0)2. (3.13)

The inequalities (3.12) and (3.13) hold at every (x, y) ∈ D(x0,y0)(r).
We observe that the expressions inside the absolute values of the left sides of (3.12) and (3.13) are,
respectively, the real and the imaginary part of the number

f(z)− f(z0)− (µ+ iν)(z − z0) = f(x, y)− f(x0, y0)− (µ+ iν)
(
(x− x0) + i(y − y0)

)
.
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Therefore, (3.12) and (3.13) imply

|f(z)− f(z0)− (µ+ iν)(z − z0)| < ϵ
√

(x− x0)2 + (y − y0)2 = ϵ|z − z0|

for every z ∈ Dz0(r) and hence |
f(z)−f(z0)

z−z0
− (µ+ iν)| < ϵ for every z ∈ Dz0(r), z ̸= z0. Thus,

limz→z0
f(z)−f(z0)

z−z0
= µ+ iν, and f is differentiable at z0 with f ′(z0) = µ+ iν.

Example 3.2.1. The real and the imaginary parts of the function f(z) = z2 are u(x, y) = x2 − y2

and v(x, y) = 2xy. We find ∂u
∂x(x, y) = 2x, ∂u

∂y (x, y) = −2y, ∂v
∂x(x, y) = 2y and ∂v

∂y (x, y) = 2x
and we see that the partial derivatives are continuous in the whole plane and they satisfy the C-R
equations at every point. Theorem 3.2 implies that f(z) = z2 is differentiable at every point and
f ′(z) = ∂u

∂x(x, y) + i ∂v∂x(x, y) = 2x+ i2y = 2z.

Example 3.2.2.We reconsider the function f(z) = z of example 3.1.3. Its real and imaginary
parts are u(x, y) = x and v(x, y) = −y. The partial derivatives ∂u

∂x(x, y) = 1, ∂u
∂y (x, y) = 0,

∂v
∂x(x, y) = 0 and ∂v

∂y (x, y) = −1 do not satisfy the C-R equations at any point (x, y). Theorem
3.1 implies that f is not differentiable at any point.

Example 3.2.3.We reconsider the function f(z) = |z|2 of example 3.1.9. Its real and imaginary
parts are u(x, y) = x2+y2 and v(x, y) = 0. The partial derivatives are ∂u

∂x(x, y) = 2x, ∂u∂y (x, y) =
2y, ∂v

∂x(x, y) = 0 and ∂v
∂y (x, y) = 0 and they satisfy the C-R equations only at the point (0, 0).

Theorem 3.1 implies that f is not differentiable at any point besides, perhaps, the point (0, 0).
Now, since the partial derivatives are continuous and satisfy the C-R equations at (0, 0), theorem
3.2 implies that f is differentiable at 0 and f ′(0) = ∂u

∂x(0, 0) + i ∂v∂x(0, 0) = 0 + i0 = 0.

Example 3.2.4.We shall see that the assumption of continuity of the partial derivatives of u, v at
(x0, y0) in theorem 3.2 is crucial. We consider the function

f(z) = f(x, y) =


xy√
x2+y2

, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)

Then its real and imaginary parts are

u(x, y) =


xy√
x2+y2

, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)
v(x, y) = 0.

It is clear that ∂v
∂x(x, y) = 0 and ∂v

∂y (x, y) = 0 and the partial derivatives of v are continuous at
every (x, y). Moreover,

∂u
∂x(x, y) =


y3√

(x2+y2)3
, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)

∂u
∂y (x, y) =


x3√

(x2+y2)3
, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)

The partial derivatives of u are continuous at every (x, y) ̸= (0, 0) but they are not continuous at
(0, 0). For instance, the limit of y3√

(x2+y2)3
when (x, y) tends to (0, 0) on the line with equation

y = x does not exist: limx→±0
x3√

(x2+x2)3
= ±1/

√
8.

We will see now that f is not differentiable at 0, even though u, v do satisfy the C-R equations at
0. In fact the limit of f(z)−f(0)

z−0 =
(xy)/

√
x2+y2

x+iy when z tends to 0 on the line with equation y = x

is limx→0
x2/

√
x2+x2

x+ix = 1
(1+i)

√
2
limx→0

x
|x| and it does not exist.

The next proposition is a corollary of theorem 3.2. It is the form of theorem 3.2 in which this
is usually applied.
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Proposition 3.7. Let f be a complex function defined in the open set Ω ⊆ C and let u, v be the
real and the imaginary part of f . If u, v have partial derivatives which are continuous and which
satisfy the C-R equations at every point of Ω, then f is holomorphic in Ω.

Proof. We take an arbitrary z ∈ Ω and a neighborhood of z which is contained in Ω. Theorem
3.2 implies that f is differentiable at z. Thus f is differentiable at every point of Ω and, since Ω is
open, f is holomorphic in Ω.

An open and connected set Ω is called region.

Theorem 3.3. Let f be holomorphic in the region Ω ⊆ C. If f ′(z) = 0 for every z ∈ Ω, then f is
constant in Ω.

First proof. Using f ′ = ∂u
∂x + i ∂v∂x = ∂v

∂y − i∂u∂y , we find
∂u
∂x = ∂v

∂x = ∂v
∂y = ∂u

∂y = 0 in Ω. We take
any linear segment [z1, z2] in Ω and its parametric equation γ(t) = (1− t)z1 + tz2, t ∈ [0, 1]. By
the mean value theorem, there is t0 ∈ (0, 1) so that

u(z2)− u(z1) = (u ◦ γ)(1)− (u ◦ γ)(0) = d(u◦γ)
dt (t0)

= ∂u
∂x(γ(t0))(x2 − x1) +

∂u
∂y (γ(t0))(y2 − y1) = 0,

where z1 = x1+ iy1 and z2 = x2+ iy2. Thus, the values of u at the endpoints of any line segment
in Ω are equal. Now we take arbitrary z′, z′′ ∈ Ω. Then there is a polygonal line inside Ω which
connects the two points z′ and z′′. The values of u at the endpoints of every line segment of the
polygonal line are equal and hence u(z′) = u(z′′). Therefore u is constant in Ω. Clearly, the same
is true for the function v and hence for f = u+ iv.
Second proof. We take arbitrary z, w ∈ Ω. Since Ω is a region, there is a piecewise smooth curve
γ : [a, b] → Ω such that γ(a) = z, γ(b) = w. In fact we may choose γ to have a polygonal line in
Ω as its trajectory. Then we have

f(w)− f(z) = (f ◦ γ)(b)− (f ◦ γ)(a) =
∫ b
a (f ◦ γ)′(t) dt =

∫ b
a f ′(γ(t))γ′(t) dt = 0

because f ′(γ(t)) = 0 for every t ∈ [a, b]. We conclude that f(w) = f(z) for every w, z ∈ Ω and
hence f is constant in Ω.

Let f be a complex function and let u, v be the real and imaginary part of f . If u, v have partial
derivatives with respect to x, y at the point z0 = (x0, y0), is is trivial to prove that at the point z0
we have

∂f
∂x = ∂u

∂x + i ∂v∂x ,
∂f
∂y = ∂u

∂y + i∂v∂y . (3.14)

We define the following differential operators:

∂
∂z = 1

2

(
∂
∂x − i ∂

∂y

)
, ∂

∂z = 1
2

(
∂
∂x + i ∂

∂y

)
. (3.15)

Applying the differential operators ∂
∂z and ∂

∂z to f and using (3.14), we have at the point z0:

∂f
∂z = 1

2

(
∂u
∂x + ∂v

∂y

)
+ i

2

(
∂v
∂x − ∂u

∂y

)
,

∂f
∂z = 1

2

(
∂u
∂x − ∂v

∂y

)
+ i

2

(
∂v
∂x + ∂u

∂y

)
.

(3.16)

From the second of equations (3.16) we see that the system of C-R equations at the point z0 is
equivalent to the single equation

∂f
∂z = 0

at z0. Moreover, if the system of C-R equations is satisfied, then the first equation (3.16) implies
∂f
∂z = ∂u

∂x + i ∂v∂x = f ′

at z0. We summarize.
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Proposition 3.8. If the complex function f is differentiable at z0, then ∂f
∂z (z0) = f ′(z0) and

∂f
∂z (z0) = 0. Conversely, if ∂f

∂z and ∂f
∂z exist in a neighborhood of the point z0 and they are

continuous at z0 and if ∂f
∂z (z0) = 0, then f is differentiable at z0.

Proof. Trivial. The converse is a restatement of theorem 3.2. Indeed, (3.16) implies that the
existence or the continuity of ∂f

∂z ,
∂f
∂z at a point is equivalent to the existence or the continuity,

respectively, of ∂u
∂x ,

∂u
∂y ,

∂v
∂x ,

∂v
∂y at the point.

Sometimes a complex function f is given to us through an expression f(x, y) as a function of
two real variables and we are interested in finding an expression f(z) of the function in terms of
the single complex variable z. We then write x = z+z

2 , y = z−z
2i and hence

f(x, y) = f
(
z+z
2 , z−z

2i

)
. (3.17)

In general, even after performing various algebraic simplifications we end up with an expression
in terms of both variables z and z. In order to end up with the occurence of z only, it is reasonable
to impose the condition that the derivative of f(x, y) with respect to z vanishes. From (3.17) and
a formal chain rule we get

∂f
∂z = 1

2

(∂f
∂x + i∂f∂y

)
.

This is exactly the second differential operator (3.15) applied to f and we saw that the condition
∂f
∂z = 0 is equivalent to the system of C-R equations. We conclude that the function f(x, y) is a
function of the single variable z if and only if its real and imaginary parts satisfy the C-R equations.

Exercises.

3.2.1. Solve exercise 3.1.1 under the light of C-R equations.

3.2.2. (i) Prove thatF (x, y) =
√

|xy| satisfies the C-R equations at 0 but that it is not differentiable
at 0.
(ii) Prove that the function with G(x, y) = x2y

x4+y2
if (x, y) ̸= (0, 0) and with G(0, 0) = 0 satisfies

the C-R equations at 0, that G(z)−G(0)
z−0 has a limit when z → 0 on every line which contains 0, but

that G is not differentiable at 0.

3.2.3. Let f = u+ iv be a complex function and ∂u
∂x ,

∂u
∂y ,

∂v
∂x ,

∂v
∂y exist in a neighborhood of z0 and

be continuous at z0.
(i) If limz→z0 Re

f(z)−f(z0)
z−z0

exists and is a real number, prove that f is differentiable at z0.
(ii) If limz→z0

∣∣f(z)−f(z0)
z−z0

∣∣ exists and is a real number, prove that either f is differentiable at z0 or
f is differentiable at z0.

3.2.4. Let f = u+ iv be holomorphic in the region Ω ⊆ C.
(i) If either u or v is constant in Ω, prove that f is constant in Ω.
(ii) More generally, if for some line l it is true that f(z) ∈ l for every z ∈ Ω, prove that f is
constant in Ω.
(iii) Consider (ii) using a circle C instead of a line l.

3.2.5. This exercise juxtaposes the notion of differentiability of a function of two real variables,
which we learn in multivariable calculus, and the notion of differentiability of a function of one
complex variable, which we learn in complex analysis: to distinguish between them we call the
first R-differentiability and the second C-differentiability.
We recall from multivariable calculus that a real function u defined in A ⊆ R2 is R-differentiable
at the interior point (x0, y0) of A if there are a, b ∈ R so that

lim(x,y)→(x0,y0)
u(x,y)−u(x0,y0)−(a(x−x0)+b(y−y0))√

(x−x0)2+(y−y0)2
= 0.
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In this case we have that ∂u
∂x(x0, y0) = a and ∂u

∂y (x0, y0) = b.
We also recall that a vector function f = (u, v) defined in A ⊆ R2 is R-differentiable at the
interior point (x0, y0) of A if its real components u and v are both R-differentiable at (x0, y0), i.e.
if there are a, b, c, d ∈ R so that

lim(x,y)→(x0,y0)
u(x,y)−u(x0,y0)−(a(x−x0)+b(y−y0))√

(x−x0)2+(y−y0)2
= 0,

lim(x,y)→(x0,y0)
v(x,y)−v(x0,y0)−(c(x−x0)+d(y−y0))√

(x−x0)2+(y−y0)2
= 0.

In this case we have that ∂u
∂x(x0, y0) = a, ∂u

∂y (x0, y0) = b, ∂v
∂x(x0, y0) = c, ∂v

∂y (x0, y0) = d and that

the R-derivative of f is the 2× 2 matrix
[
a b
c d

]
.

Prove that f = (u, v) = u+ iv isC-differentiable at z0 = (x0, y0), i.e. that the limz→z0
f(z)−f(z0)

z−z0
exists and is a complex number, if and only if f is R-differentiable at z0 = (x0, y0) and its R-

derivative is an antisymmetric matrix:
[
a −b
b a

]
. In this case theC-derivative and theR-derivative

of f are related by f ′(z0) = a+ ib.

3.2.6. Consider the functions zn, zn, |z|2 and, using the differential operator ∂
∂z , examine whether

they are functions of z only or, equivalently, whether they are holomorphic.

3.2.7. Let f be a complex function. If ∂f
∂x and ∂f

∂y exist in a neighborhood of the point z0 and are
continuous at z0, prove that limr→0

1
2πir2

∫
Cz0 (r)

f(z) dz = ∂f
∂z (z0).

3.3 Conformality.

Let the complex function f be continuous in A ⊆ C and γ : [a, b] → A be a curve. Thus the
trajectory of γ is contained in the domain of definition of f . We define the function

f(γ) = f ◦ γ : [a, b] → C,

which is continuous in [a, b]. Then f(γ) is a curve and we call it image of γ through f .
Now we also consider an interior point z of A and we assume that f is differentiable at z and

f(z) = w, f ′(z) ̸= 0. We also take any curve γ : [a, b] → A with γ(a) = z. Then γ has z
as its initial point and its trajectory is contained in A. We also assume that γ is differentiable at
a and that γ′(a) ̸= 0, i.e. that γ has a non-zero tangent vector at the point z. The image curve
f(γ) : [a, b] → C has f(γ)(a) = (f ◦ γ)(a) = f(γ(a)) = f(z) = w as its initial point and its
tangent vector at w is f(γ)′(a) = (f ◦ γ)′(a) = f ′(γ(a))γ′(a) = f ′(z)γ′(a) ̸= 0. From this
equality we have two conclusions. The first is that

|f(γ)′(a)| = |f ′(z)||γ′(a)|.

Thus, the length of the tangent vector of f(γ) at its initial point w equals the length of the tangent
vector of γ at its initial point z multiplied with the factor |f ′(z)| > 0. We express this as:
f multiplies the lengths of tangent vectors at z with the factor |f ′(z)| > 0 or, in other words, f
expands the tangent vectors at z by the factor |f ′(z)| > 0.
The second conclusion is that

arg f(γ)′(a) = arg f ′(z) + arg γ′(a). (3.18)

Thus, we find the angle of the tangent vector of f(γ) at its initial point w by adding the angle of
f ′(z) to the angle of the tangent vector of γ at its initial point z. We express this as:
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f increases the angles of the tangent vectors at z by the angle of f ′(z) or, in other words, f rotates
the tangent vectors at z by the angle of f ′(z).

We observe that the expansion and the rotation of the tangent vectors at z is uniform over all
these vectors: independently of their directions and their lengths, all these tangent vectors are
expanded by the same factor |f ′(z)| and they are rotated by the same angle arg f ′(z). Since, any
two of these tangent vectors are rotated by the same angle, we conclude that their relative angles
remain unchanged! Indeed, let us consider two of the above curves, γ1 and γ2. Then the angle
between their tangent vectors at z is arg γ′2(a)−arg γ′1(a) and the angle between the tangent vectors
of f(γ1) and f(γ2) at w is arg f(γ2)′(a)− arg f(γ1)′(a). From (3.18) for γ1 and γ2 we get

arg f(γ2)′(a)− arg f(γ1)′(a) = arg γ′2(a)− arg γ′1(a).

Therefore, the angle between the tangent vectors of f(γ1) and f(γ2) at w is the same as the angle
between the tangent vectors of γ1 and γ2 at z. We say:
f preserves the angle between tangent vectors at z.

This last property of f is called conformality of f at z and holds, as we just saw, under the
assumption that f is differentiable at z and f ′(z) ̸= 0.

Exercises.

3.3.1. Consider the holomorphic function w = f(z) = az + b with a ̸= 0.
(i) Prove that f is one-to-one from C onto C.
(ii) Prove that f maps lines and circles onto lines and circles, respectively.
(iii) Consider two lines with equations kx+ ly = m and k′x+ l′y = m′. Which is the condition
for the two lines to intersect? Under this condition, find their intersection point and the angle of
the two lines at this point. Then find the equations of the images of the two lines through f and
find their intersection point and their angle at this point. Confirm the conformality of f .

3.3.2. Consider the holomorphic function w = z2.
(i) With any fixed u0, v0, consider the hyperbolas with equations x2 − y2 = u0 and 2xy = v0
on the z-plane (z = x + iy). Do they intersect and at which points? Find the angle of the two
hyperbolas at each of their common points.
(ii) With any fixed x0, y0 ̸= 0, consider the parabolas with equations u = 1

4y02
v2 − y0

2 and
u = − 1

4x0
2 v

2+x0
2 on the w-plane (w = u+ iv). Do they intersect and at which points? Find the

angle of the two parabolas at each of their common points.

3.3.3. Let f be holomorphic in the open set U ⊆ C so that f ′ is continuous in U , let γ be a
piecewise smooth curve in U and Γ = f(γ) be the image of γ through f . If the complex function
ϕ is continuous in Γ∗, prove that

∫
Γ ϕ(w) dw =

∫
γ ϕ(f(z))f

′(z) dz.

34



Chapter 4

Examples of holomorphic functions.

4.1 Linear fractional transformations.

Every rational function of the form

T (z) = az+b
cz+d

is called linear fractional transformation. We assume that ad − bc ̸= 0. It is easy to show that
ad− bc ̸= 0 if and only if the function T is not constant.

In order to have the full picture of the definition of a linear fractional transformation T , we
have to say something about the values of T at the roots of the denominator and at ∞. There are
two cases. If c = 0, then because of ad− bc ̸= 0 we have ad ̸= 0 and then T (z) = a

dz +
b
d for all

z ∈ C. Since a
d ̸= 0, we have that T (∞) = ∞. Thus

T (z) =

{
a
dz +

b
d , if z ∈ C

∞, if z = ∞
if c = 0. (4.1)

If c ̸= 0, then the denominator has z = −d
c as its root, which, because of ad− bc ̸= 0, is not a root

of the numerator. Hence T (−d
c ) = ∞. Also T (∞) = a

c . Thus

T (z) =


az+b
cz+d , if z ∈ C, z ̸= −d

c

∞, if z = −d
c

a
c , αν z = ∞

if c ̸= 0. (4.2)

We conclude that every linear fractional transformation (l.f.t.) is a function T : Ĉ → Ĉ and,
even though we write T (z) = az+b

cz+d , we must have in mind the full formulas (4.1) and (4.2).
It is very easy to see that every l.f.t. is one-to-one from Ĉ onto Ĉ. The formula of the inverse

l.f.t. of T is
T−1(z) = dz−b

−cz+a .

The identity function id(z) = z is clearly a l.f.t. with a = d = 1, b = c = 0, and we easily see
that the composition of two l.f.t. is another l.f.t. Indeed, if T (z) = az+b

cz+d and S(z) = a′z+b′

c′z+d′ , then

(S ◦ T )(z) = a′T (z)+b′

c′T (z)+d′ =
a′ az+b

cz+d
+b′

c′ az+b
cz+d

+d′
= (a′a+b′c)z+(a′b+b′d)

(c′a+d′c)z+(c′b+d′d) .

We observe that (a′a+ b′c)(c′b+ d′d)− (a′b+ b′d)(c′a+ d′c) = (a′d′ − b′c′)(ad− bc) ̸= 0.
Thus, the set of all l.f.t. is a group with the binary operation of composition. The neutral

element of this group is the identity function.
Since a l.f.t. is a rational function, it is continuous in Ĉ, and, as a particular instance of example

3.1.13, it is holomorphic in Ĉ except at the point at which it takes the value∞.
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We shall make a comment on an interesting relation between circles and lines. We observe that
the equations of circles and lines can be unified in the following manner: if α, β, γ ∈ R, w ∈ C,
w ̸= 0, α2 + β2 ̸= 0 and β2|w|2 ≥ 4αγ, then the equation

α|z|2 + β Re(wz) + γ = 0

is the equation of a line, ifα = 0, and the equation of a circle, ifα ̸= 0. In fact, ifα = 0, then β ̸= 0
and the equation becomes Re(wz) = − γ

β and this is the equation of a line. If α ̸= 0, the equation

becomes |z+ β
2αw|

2 = β2|w|2−4αγ
4α2 . This is the equation of the circle with center− β

2αw and radius√
β2|w|2−4αγ

2|α| . Conversely, every circle and every line have equations of this form. If, for instance,
we take the equation Re(wz) = c of a line, with w ∈ C, w ̸= 0, and c ∈ R, we may write it in the
form α|z|2 + β Re(wz) + γ = 0 by taking α = 0, β = 1 and γ = −c. If we take the equation
|z − z0| = r of a circle with z0 ∈ C and r ≥ 0, we may write it as |z|2 − 2Re(z0z) + |z0|2 = r2.
This becomes α|z|2 + β Re(wz) + γ = 0 by taking α = 1, γ = |z0|2 − r2 and: β = −2 and
w = z0, in case z0 ̸= 0, or β = 0 and w = 1, in case z0 = 0. In all cases the choices of the
parameters satisfy the restrictions: α, β, γ ∈ R, w ∈ C, w ̸= 0, α2 + β2 ̸= 0 and β2|w|2 ≥ 4αγ.

This consideration of the equations of a line and a circle as special cases of one equation permits
us to unify the notions of circle and line into the single notion of generalized circle in C. If we
attach the point∞ to any line (and leave circles unchanged), then we are talking about generalized
circles in Ĉ. Look at exercise 1.3.2 for another interesting unification of the notions of circle and
line: generalized circles in Ĉ are the images of circles in S2 through stereographic projection.

Now, an important property of every l.f.t. is that it maps generalized circles in Ĉ onto gener-
alized circles in Ĉ. To prove it we consider three special cases first.

Example 4.1.1. Every function T (z) = z + b is a l.f.t. with a = 1, c = 0, d = 1 and, for an
obvious reason, it is called translation by b.
Every such T is holomorphic inC, one-to-one fromC ontoC and satisfies T (∞) = ∞. It is trivial
to prove that T maps lines in Ĉ onto lines in Ĉ and circles in C onto circles in C.

Example 4.1.2. Every function T (z) = az with a ̸= 0 is a l.f.t. with b = c = 0, d = 1 and it is
called homothety with center 0.
Every such T rotates points around 0 by the fixed angle arg a. Indeed, if w = T (z) = az, then
argw = arg z + arg a. Moreover, T multiplies distances between points by the fixed factor |a|.
Indeed, if w1 = T (z1) = az1 and w2 = T (z2) = az2, then |w1 − w2| = |a||z1 − z2|.
Also T is holomorphic in C, one-to-one from C onto C, satisfies T (∞) = ∞ and it is easy to
prove that T maps lines in Ĉ onto lines in Ĉ and circles in C onto circles in C.

Example 4.1.3. The function T (z) = 1
z is a l.f.t. with a = d = 0, c = b = 1 and it is called

inversion with respect to the circle T = C0(1).
The inversion T is holomorphic in Ĉ \ {0}, one-to-one from Ĉ \ {0,∞} onto Ĉ \ {0,∞} and
satisfies T (0) = ∞ and T (∞) = 0. Moreover, it is easy to show that T maps (i) lines in Ĉ which
do not contain 0 onto circles in C which contain 0, (ii) lines in Ĉ which contain 0 onto lines in Ĉ
which contain 0, (iii) circles in C which contain 0 onto lines in Ĉ which do not contain 0 and (iv)
circles in C which do not contain 0 onto circles in C which do not contain 0.

Lemma 4.1. Every l.f.t. is a composition of finitely many translations, homotheties and inversions.

Proof. Let T (z) = az+b
cz+d .

If c = 0, then T (z) = a
dz + b

d . If we consider the homothety T1(z) = a
dz and the translation

T2(z) = z + b
d , then T = T2 ◦ T1.

If c ̸= 0, then
T (z) =

a
c
(cz+d)+(b−ad

c
)

cz+d = a
c +

bc−ad
c2

1
z+ d

c

.
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If we consider the translation T1(z) = z + d
c , the inversion T2(z) = 1

z , the homothety T3(z) =
bc−ad
c2

z and the translation T4(z) = z + a
c , then T = T4 ◦ T3 ◦ T2 ◦ T1.

Proposition 4.1. Every l.f.t. maps generalized circles in Ĉ onto generalized circles in Ĉ.

Proof. A corollary of lemma 4.1 and of the examples 4.1.1, 4.1.2 and 4.1.3.

Proposition 4.2. Take the distinct z1, z2, z3 ∈ Ĉ and the distinct w1, w2, w3 ∈ Ĉ. Then there is a
unique l.f.t. T so that T (zj) = wj for j = 1, 2, 3.

Proof. We consider the l.f.t. S which, depending on whether one of z1, z2, z3 is∞ or not, has the
formula

S(z) =


z2−z3
z2−z1

z−z1
z−z3

, if z1, z2, z3 ̸= ∞
z−z1
z2−z1

, if z3 = ∞
z−z1
z−z3

, if z2 = ∞
z2−z3
z−z3

, if z1 = ∞

The l.f.t. S has values: S(z1) = 0, S(z2) = 1, S(z3) = ∞.
There is a similar l.f.t. R with values: R(w1) = 0, R(w2) = 1, R(w3) = ∞.
Then the l.f.t. T = R−1 ◦ S has values: T (z1) = w1, T (z2) = w2, T (z3) = w3.
To prove the uniqueness ofT withT (z1) = w1, T (z2) = w2, T (z3) = w3we consider the previous
l.f.t S,R and then the l.f.t. Q = R ◦ T ◦ S−1 has values: Q(0) = 0, Q(1) = 1, Q(∞) = ∞.
Since Q(∞) = ∞, we get that Q has the form Q(z) = az + b with a ̸= 0. Now from Q(0) = 0,
Q(1) = 1 we find a = 1, b = 0 and hence Q is the identity l.f.t. id with id(z) = z. Thus
R ◦ T ◦ S−1 = id and hence T = R−1 ◦ S.

When we apply the previous results we should bear in mind that every three distinct points in
Ĉ belong to a unique generalized circle in Ĉ.

Example 4.1.4. The l.f.t. which maps the triple i, 2, 1 onto the triple 0, 1,∞ is

w = T (z) = 2−1
2−i

z−i
z−1 = 2+i

5
z−i
z−1 = (2+i)z+(1−2i)

5z−5 .

The points i, 2, 1 in the z-plane are not co-linear and hence belong to a circle A. The points 0, 1 in
the w-plane belong to the real axis m. Thus the points 0, 1,∞ belong to the line B = m ∪ {∞}
in Ĉ. Now, T maps the circle A in the z-plane onto some generalized circle T (A) in the w-plane.
Since A contains i, 2, 1, T (A) must contain the images of i, 2, 1, i.e. 0, 1,∞. Thus T (A) = B.
If we want to determine the circle A = Cz0(r) which contains i, 2, 1, we have to find z0, r so
that i, 2, 1 satisfy the equation |z − z0| = r. We just solve a system of three equations in three
real unknowns: x0, y0, r. But there is a second and probably easier way to find the equation of A.
Indeed, w belongs tom if and only if Imw = 0 if and only if Im (2+i)z+(1−2i)

5z−5 = 0 (and z ̸= 1) if
and only if |z|2−3Re((1−i)z) = −2 (and z ̸= 1) if and only if |z− 3

2(1+i)|2 = −2+ 9
4 |1+i|2 = 5

2

(and z ̸= 1) if and only if z belongs to C3(1+i)/2

(√
5/2

)
except 1. Since z = 1 is mapped onto

w = ∞, we have that w belongs to B if and only if z belongs to the circle C3(1+i)/2

(√
5/2

)
. We

conclude that A = C3(1+i)/2

(√
5/2

)
.

Exercises.

4.1.1. Find l.f.t. T so that T (1) = i, T (i) = 0, T (−1) = −i. Find T (T) and T (D).

4.1.2. Find l.f.t. T so that T (D) = {z | Im z > 0}, T (i) = 1, T (1) = 0, T (a) = −1, where a ∈ T.
Can a be an arbitrary point of T?
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4.1.3. (i) Let T1(z) =
a1z+b1
c1z+d1

and T2(z) =
a2z+b2
c2z+d2

. Prove that T1, T2 are the same function if and
only if there is λ ̸= 0 so that a2 = λa1, b2 = λb1, c2 = λc1, d2 = λd1.
(ii) Prove that every l.f.t. T can take the form T (z) = az+b

cz+d with ad− bc = 1.

4.1.4. Let A be a generalized circle of the z-plane Ĉ and B be a generalized circle of the w-plane
Ĉ. Then, in an obvious way,A splits Ĉ into two disjoint setsA+ andA− and, similarly,B splits Ĉ
into two disjoint sets B+ and B−. Now, let T be a l.f.t. and let T (A) = B. Assume that z0 ∈ A+

and w0 = T (z0) ∈ B+. Prove that T (A+) = B+ and T (A−) = B−.

4.1.5. A point z ∈ Ĉ is called fixed point of the l.f.t. T if T (z) = z. If the l.f.t. T is not the identity
(in which case T has infinitely many fixed points), prove that T has either one or two fixed points
in Ĉ. In each case, which are the images through T of the generalized circles which contain its
fixed points?
Apply the above to each of: T (z) = z + 2, T (z) = 2z − 1, T (z) = z−1

z+1 and T (z) = 3z−4
z−1 .

4.1.6. (i) The points a, b ∈ Ĉ are called symmetric with respect to Cz0(r) if either a = z0, b = ∞
or a = ∞, b = z0 or a, b ∈ C are on the same halfline with vertex z0 and |a − z0||b − z0| = r2.
Observe that either a, b coincide with one and the same point ofCz0(r) or a, b are on different sides
of Cz0(r). Given a ∈ Ĉ \ {z0,∞}, describe a geometric construction “with ruler and compass” of
its symmetric point, b ∈ Ĉ \ {z0,∞}, with respect to Cz0(r). Prove that a, b are symmetric with
respect to Cz0(r) if and only if b = z0 +

r2

a−z0
.

(ii) The points a, b ∈ Ĉ are called symmetric with respect to the line l̂ = l ∪ {∞} in Ĉ if either
a = b = ∞ or a, b ∈ C are symmetric with respect to l. Prove that a, b are symmetric with respect
to l̂ if and only if b = z1 +

z2−z1
z2−z1

(a− z1), where z1, z2 are two distinct fixed points of the line l.
(iii) We take a l.f.t. w = T (z) and generalized circles A in the z-plane Ĉ and B in the w-plane Ĉ.
Prove that, if T maps A onto B, then T maps symmetric points with respect to A onto symmetric
points with respect to B.
(iv) Find l.f.t. T so that T (C0(1)) = Ci(3), T (i) = 3 + i, T (12) = 0.

4.1.7. The l.f.t. w = T (z) is called real if it maps the real line (with∞) in the z-plane Ĉ onto the
real line (with∞) in the w-plane Ĉ.
(i) Prove that the l.f.t. T is real if and only if there are a, b, c, d ∈ R with ad − bc ̸= 0 so that
T (z) = az+b

cz+d .
(ii) If the l.f.t. T is real and T (z) = az+b

cz+d , with a, b, c, d ∈ R, ad− bc ̸= 0, we define signT to be
the sign of ad− bc. Using exercise 4.1.3(i), prove that signT is well defined.
(iii) Prove that, if the l.f.t. T is real, then T−1 is real, and that, if the l.f.t. S, T are real, then S ◦ T
is real. Also prove that signT−1 = signT and sign(S ◦ T ) = signS signT .
(iv) Take a real l.f.t. T . Prove that T maps the upper halfplane onto the upper halfplane (and the
lower onto the lower) if and only if signT = +1 and that T maps the upper halfplane onto the
lower halfplane (and the lower onto the upper) if and only if signT = −1.

4.1.8. (i) Let z0 ∈ D and |λ| = 1 and consider the l.f.t. T (z) = λ z−z0
1−z0z

. Prove that T (T) = T and
T (z0) = 0. Find T (D).
(ii) Let z0 ∈ D and let T be a l.f.t. such that T (T) = T and T (z0) = 0. Prove that there is λ with
|λ| = 1 so that T (z) = λ z−z0

1−z0z
.

(iii) Let a, b ∈ D and let T be a l.f.t. such that T (T) = T and T (a) = b. Prove that there is λ with
|λ| = 1 so that T (z)−b

1−bT (z)
= λ z−b

1−az .

4.1.9. Consider H+ = {z | Im z > 0} and H− = {z | Im z < 0}.
(i) Let z0 ∈ H+ and |λ| = 1 and consider the l.f.t. T (z) = λ z−z0

z−z0
. Prove that T (R ∪ {∞}) = T

and T (z0) = 0. Find T (H+).
(ii) Let z0 ∈ H+ and let T be a l.f.t. such that T (R ∪ {∞}) = T and T (z0) = 0. Prove that there
is λ with |λ| = 1 so that T (z) = λ z−z0

z−z0
.

38



4.1.10. Consider distinct z1, z2, z3, z4 ∈ Ĉ. We define the double ratio of z1, z2, z3, z4 (in this
order) to be (z1, z2, z3, z4) = z1−z3

z1−z4
z2−z4
z2−z3

, if z1, z2, z3, z4 ∈ C. If one of the z1, z2, z3, z4 is ∞,
say zj = ∞, then we define (z1, z2, z3, z4) as the limit of the above formula when zj → ∞.
(i) Prove that (T (z1), T (z2), T (z3), T (z4)) = (z1, z2, z3, z4) for every l.f.t. T and every distinct
z1, z2, z3, z4 ∈ Ĉ.
(ii) Prove that the distinct z1, z2, z3, z4 ∈ Ĉ belong to the same generalized circle if and only if
(z1, z2, z3, z4) ∈ R \ {0}.
(iii) If (z1, z2, z3, z4) = λ, find all values (depending on λ) which result from this double ratio
after all rearrangements of z1, z2, z3, z4.

4.1.11. Prove that the group of all l.f.t. is simple, i.e. that its only normal subgroups are itself and
{I}, where I is the identity l.f.t.

4.2 The exponential function.

We define the exponential function exp : C → C by

exp z = ex(cos y + i sin y) for every z = x+ iy.

If z ∈ R, i.e. z = x+i0, then exp z = ex(cos 0+i sin 0) = ex = ez . This implies that we may
use the symbol ez instead of exp z without the danger of contradiction, in the case that z is real,
between the symbol ez as we just defined it and the symbol ez as we know it from infinitesimal
calculus. Therefore, we define

ez = exp z = ex(cos y + i sin y) for every z = x+ iy.

Since z = x+ iy implies |ez| = |ex|| cos y + i sin y| = ex, we have that

|ez| = eRe z.

From ez = ex(cos y + i sin y) and |ez| = ex we get ez = |ez|(cos y + i sin y). So y is one of
the elements of arg ez and hence

arg ez = {Im z + k2π | k ∈ Z}.

We have the basic equality
ez1ez2 = ez1+z2 .

Indeed: ex1(cos y1 + i sin y1)ex2(cos y2 + i sin y2) = ex1+x2(cos(y1 + y2) + i sin(y1 + y2)) from
the addition formulas of cos and sin.

If z2 − z1 = k2πi for some k ∈ Z, then ez2 = ez1ek2πi = ez1(cos(k2π) + i sin(k2π)) = ez1 .
Conversely, assume ez2 = ez1 and let z2 − z1 = x + iy. Then ex(cos y + i sin y) = ez2−z1 =
ez2
ez1 = 1 and hence ex = 1, cos y = 1 and sin y = 0. Therefore, x = 0 and y = k2π for some
k ∈ Z. Thus, z2 − z1 = k2πi with k ∈ Z. We proved that

ez2 = ez1 ⇔ z2 − z1 = k2πi for some k ∈ Z.

For all z = x+ iy we have |ez| = ex > 0 and hence

ez ̸= 0.

On the other hand, if we take any w ̸= 0 and if we use the notation ln : (0,+∞) → R for
the well known logarithmic function from infinitesimal calculus, then the solutions of the equation
ez = w are described as follows:

ez = w ⇔ z = ln |w|+ iy for some y ∈ argw.
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Indeed, if we write z = x+ iy, then the equality w = ez becomes w = ex(cos y + i sin y) and it
just means that its right side is one of the polar representations of w. Hence, w = ez if and only
if ex = |w| and y is a value of argw. Now, ex = |w| is equivalent to x = ln |w|. Therefore, the
equation ez = w has these infinitely many solutions: z = ln |w|+iy where y is any value of argw.
All these solutions have the same real part, x = ln |w|, and their imaginary parts are the elements
of argw.

From what we said already, it is clear that the exponential function is onto C \ {0} but not
one-to-one in C. In fact the exponential function is infinity-to-one since there are infinitely many
values of z corresponding to the same value of w ̸= 0.

Based on the equality eiy = cos y+i sin y, we may write the polar representations of any z ̸= 0
in an equivalent form:

z = r(cos θ + i sin θ) ⇔ z = reiθ.

The second form is simpler and we shall use it extensively in the rest of the course. For instance,
we may rewrite the examples 2.3.8 and 2.3.9 as follows.

Example 4.2.1. Using the parametric equation z = γ(t) = z0 + reit, t ∈ [0, 2π], for the circle
Cz0(r), we have ∮

Cz0 (r)
f(z) dz =

∮
γ f(z) dz =

∫ 2π
0 f(z0 + reit)ireit dt.

Example 4.2.2. If n ∈ Z, we have
∫ 2π
0 eint dt = 2π, if n = 0, and

∫ 2π
0 eint dt = 0, if n ̸= 0.

Therefore, if n ∈ Z, we get

∮
Cz0 (r)

(z − z0)
n dz =

∫ 2π
0 rneintireit dt = irn+1

∫ 2π
0 ei(n+1)t dt =

{
2πi, if n = −1

0, if n ̸= −1

The real and imaginary parts of ez are u(x, y) = ex cos y and v(x, y) = ex sin y. There-
fore, u, v have partial derivatives ∂u

∂x(x, y) = ex cos y, ∂u
∂y = −ex sin y, ∂v

∂x = ex sin y and
∂v
∂y = ex cos y, which are continuous and satisfy the system of C-R equations in C and hence
ez is holomorphic in C. To calculate the derivative of ez we write

∂u
∂x(x, y) + i ∂v∂x(x, y) = ex cos y + iex sin y = ex(cos y + i sin y)

and hence
d ez

dz = ez.

We shall now examine the mapping properties of the function w = ez . We write z = x + iy
and w = u+ iv.

If z = x+ iy varies on the horizontal line hy in the z-plane which intersects the y-axis at the
fixed point iy, then w = ez = ex(cos y + i sin y) varies on the halfline ry in the w-plane with
vertex 0 (without 0) which forms angle y with the positive u-semiaxis. Also, if z varies on the
horizontal line hy from left to right, i.e. when x increases from−∞ to+∞, thenw = ez varies on
the halfline ry from 0 to∞. If y increases by∆y > 0, i.e. if the horizontal line hy moves upward,
then the corresponding halfline ry rotates in the positive direction around 0 by the angle ∆y. The
two horizontal lines hy and hy+2π are mapped onto the same halfline ry = ry+2π.

If the point z = x+ iy varies on the vertical line vx in the z-plane which intersects the x-axis
at the fixed point x, then w = ez = ex(cos y+ i sin y) varies on the circle C0(e

x), call it cx, in the
w-plane. Also, if z moves upward on the vertical line vx, i.e. if y increases from−∞ to+∞, then
w = ez rotates on the circle cx infinitely many times in the positive direction. If y increases over
an interval of length 2π, then w = ez describes the whole circle cx once in the positive direction.
If x increases by ∆x > 0, i.e. if the vertical line vx moves to the right, then the circle cx with
radius ex becomes the circle cx+∆x with radius ex+∆x = exe∆x.
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We may combine the above results. For instance, if we consider the open rectangle

Π = {x+ iy |x1 < x < x2, y1 < y < y2}

in the z-plane with sides parallel to the two coordinate axes, then Π is the intersection of the open
horizontal zone between the lines hy1 and hy2 and the open vertical zone between the lines vx1 and
vy2 . If y2 − y1 < 2π, then Π is mapped onto the open “circular rectangle”

R = {reiθ | ex1 < r < ex2 , y1 < θ < y2},

in the w-plane, which is the intersection of the angular region between the halflines ry1 and ry2
and the open ring between the circles cx1 and cx2 . If y2 − y1 = 2π, then the “circular rectangle”
R is the open ring between the circles cx1 and cx2 without its linear segment which belongs to the
halfline ry1 = ry2 . Of course, in this case, if Π includes at least one of its horizontal sides, then its
image R is the whole open ring between the circles cx1 and cx2 .

Starting from eiy = cos y+i sin y and e−iy = cos(−y)+i sin(−y) = cos y−i sin y, we easily
find that cos y = 1

2(e
iy + e−iy) and sin y = 1

2i(e
iy − e−iy) for every y ∈ R. Now we extend the

trigonometric functions cosine and sine from R to C by defining

cos z = 1
2(e

iz + e−iz), sin z = 1
2i(e

iz − e−iz) for every z ∈ C.

It is clear from the holomorphy of the exponential function that cos and sin are holomorphic
in C and that

d cos z
dz = − sin z, d sin z

dz = cos z.

It is also easy to show that cos and sin are 2π-periodic.
Now we extend the tangent and the cotangent from R to C by defining

tan z = sin z
cos z , cot z = cos z

sin z for every z ∈ C.

The solutions of cos z = 0 are z = π
2 + kπ, k ∈ Z, and the solutions of sin z = 0 are z = kπ,

k ∈ Z. Therefore, tan is defined and holomorphic in the open set C \ {π
2 + kπ | k ∈ Z} and cot is

defined and holomorphic in the open set C \ {kπ | k ∈ Z}. Both functions are π-periodic.

Exercises.

4.2.1. Prove that ez = ez for all z.

4.2.2. Prove that |ez − 1| ≤ e|z| − 1 ≤ |z|e|z|.

4.2.3. Let z → ∞ on any halfline. Depending on the halfline, study the existence of the lim ez in
Ĉ. Which characteristic of the halfline determines the existence and the value of the limit?

4.2.4. Find the images through the exponential function of: {x+ iy | a < x < b, θ < y < θ+ π},
{x+ iy | a < x < b, θ < y < θ+2π}, {x+ iy |x < b, θ < y < θ+ π}, {x+ iy |x < b, θ < y <
θ + 2π}, {x+ iy | a < x, θ < y < θ + π}, {x+ iy | a < x, θ < y < θ + 2π}.

4.2.5. Every horizontal and every vertical line in the z-plane are perpendicular. Also, every halfline
with vertex 0 and every circle with center 0 in the w-plane are perpendicular. How do these facts
relate to the conformality of the function w = ez?

4.2.6. (i) Prove that
· sin2 z + cos2 z = 1,
· sin(z + w) = sin z cosw + cos z sinw, cos(z + w) = cos z cosw − sin z sinw,
· | cos(x+ iy)|2 = cos2 x+ sinh2 y, | sin(x+ iy)|2 = sin2 x+ sinh2 y.
(ii) Study the function w = sin z in the vertical zone {x + iy | − π

2 < x < π
2 } and the function

w = cos z in the vertical zone {x+ iy | 0 < x < π}. Examine the images through these functions
of the various horizontal linear segments (of length π) and the various vertical lines inside these
two vertical zones.
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4.3 Branches of the logarithmic function.

In the last section we proved, for every w ̸= 0, the equivalence

ez = w ⇔ z = ln |w|+ iy for some y ∈ argw. (4.3)

For every w ̸= 0 we consider the set

logw = {ln |w|+ iy | y ∈ argw}

and we call it logarithm of w. So the elements of logw are the solutions of ez = w, i.e.

ez = w ⇔ z ∈ logw.

If we take y = Argw, then we get the particular element

Logw = ln |w|+ iArgw

of logw and this is called principal logarithm of w.
If r = |w| and if θ is any of the values of the argument ofw, i.e. ifw = r(cos θ+i sin θ) = reiθ

is any of the polar representations of w, then the values of argw are the numbers θ + k2π, k ∈ Z.
Hence the values of logw are the numbers ln r + i(θ + k2π), k ∈ Z.

Example 4.3.1. (i) Log 1 = 0 and log 1 = {i2kπ | k ∈ Z}.
(ii) Log(−1) = iπ and log(−1) = {i(2k + 1)π | k ∈ Z}.
(iii) Log i = iπ2 and log i = {i(2k + 1

2)π | k ∈ Z}.
(iv) Log(−3i) = ln 3− iπ2 and log(−i) = {ln 3 + i(2k − 1

2)π | k ∈ Z}.
(v) Log(1 + i) = ln

√
2 + iπ4 and log(1 + i) = {ln

√
2 + i(2k + 1

4)π | k ∈ Z}.
(vi) Log(1− i

√
3) = ln 2− iπ3 and log(1− i

√
3) = {ln 2 + i(2k − 1

3)π | k ∈ Z}.

For any fixed w ̸= 0 the set logw has infinitely many elements, and any two of them differ by
an integral multiple of i2π. All elements of logw have the same real part x = ln |w|, and hence they
are on the same vertical line vx with equation x = ln |w|, and the vertical differences between them
are the integral multiples of 2π. Therefore, every vertical segment of the line vx, which has length
2π and includes only one of its endpoints, contains exactly one element of logw. Moreover, every
horizontal zone, which has vertical width 2π and includes only one of its boundary lines (either the
upper or the lower one), contains exactly one element of logw for every w ̸= 0. More precisely,
if we consider any θ0 and the horizontal zone

Zθ0 = {x+ iy | θ0 < y ≤ θ0 + 2π} or Zθ0 = {x+ iy | θ0 ≤ y < θ0 + 2π},

thenZθ0 contains exactly one element of logw : the one with imaginary part y equal to the (unique)
θ ∈ argw satisfying θ0 < θ ≤ θ0 + 2π or θ0 ≤ θ < θ0 + 2π, respectively. For instance, if we
consider the special zone determined by θ0 = −π which contains its upper boundary line, i.e.

Z−π = {x+ iy | − π < y ≤ π},

then, for every w ̸= 0, the unique element of logw which is contained in this zone is the principal
logarithm Logw.

Proposition 4.3. For all w1, w2 ̸= 0 we have

log(w1w2) = logw1 + logw2.

By this we mean that the sum of any element of logw1 and any element of logw2 is an element of
log(w1w2) and, conversely, any element of log(w1w2) is the sum of an element of logw1 and an
element of logw2.
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Proof. A corollary of proposition 1.1 and of the equality ln |w1w2| = ln |w1|+ ln |w2|.

It is already clear that the exponential function w = exp z = ez from C onto C \ {0} is not
one-to-one. Therefore, there is no inverse of the exponential function. If we want to produce
some kind of inverse of the exponential function, we may take any w in the range C \ {0} of the
function and select one value of z out of the infinitely many in C which satisfy the ez = w. There
are many instances of this method at a more elementary level. Let us consider for instance the
function y = x2 from (−∞,+∞) onto [0,+∞), which is not one-to-one in (−∞,+∞). We
take any y ∈ [0,+∞) (the range of y = x2) and find one x such that x2 = y. There are exactly
two such x: x =

√
y and x = −√

y. Therefore, one might say that we have only two choices
for the inverse function: the choice x =

√
y for every y ∈ [0,+∞) and the choice x = −√

y
for every y ∈ [0,+∞). But this is not correct. We may choose x =

√
y for some y ∈ [0,+∞)

and x = −√
y for the remaining y ∈ [0,+∞). It is obvious that there are infinitely many such

inverse functions, depending on the particular choice we make between x =
√
y and x = −√

y
for each value of y. Nevertheless, there is a criterion which reduces the number of our inverse
functions to exactly two: the criterion of continuity! We observe that the last function, with the
double formula, is not continuous. On the contrary, the function x =

√
y for every y ∈ [0,+∞)

and the function x = −√
y for every y ∈ [0,+∞) are both continuous. To prove that these are

the only continuous inverse functions is a simple exercise in real analysis. Indeed, assume that
there is some continuous inverse function x = f(y) of y = x2 defined in [0,+∞) (the range of
y = x2). I.e. f : [0,+∞) → R is continuous in [0,+∞) and f(y)2 = y for every y ∈ [0,+∞).
Let there be y1, y2 > 0 with y1 ̸= y2 such that f(y1) =

√
y1 and f(y2) = −√

y2. Since f is
continuous in the interval between y1, y2 and its values at the endpoints are opposite, there is some
y in this interval so that f(y) = 0. This is impossible, because y > 0 and either f(y) = √

y > 0
or f(y) = −√

y < 0. Therefore, there are no such y1, y2 > 0 and hence we have exactly two
cases: either f(y) = √

y for every y ≥ 0 or f(y) = −√
y for every y ≥ 0. We may say that there

are exactly two continuous branches of the square root in [0,+∞): the branch x =
√
y and the

branch x = −√
y.

Now let us go back to the determination of possible inverses of the exponential function.
Let A ⊆ C \ {0}. We say that the function f is a continuous branch of log in A if f is

continuous in A and for every w ∈ A we have that f(w) is an element of logw or, equivalently,

ef(w) = w for every w ∈ A.

Proposition 4.4 gives many useful examples of continuous branches of the logarithm.

Proposition 4.4. Let θ0 ∈ R. We consider the set

Aθ0 = {reiθ | 0 < r < +∞, θ0 < θ < θ0 + 2π}

in the w-plane (i.e. C without the halfline with vertex 0 which forms angle θ0 with the positive
u-semiaxis, where w = u+ iv) and the open horizontal zone

Zθ0 = {x+ iy | −∞ < x < +∞, θ0 < y < θ0 + 2π}

in the z-plane. We define the function f : Aθ0 → Zθ0 as follows: for every w ∈ Aθ0 we take
f(w) to be the unique element of logw in the zone Zθ0 . Then f is continuous in Aθ0 and so it is a
continuous branch of log in Aθ0 .

Proof. Assume that f is not continuous at somew inAθ0 . Then there is a sequence (wn) inAθ0 so
thatwn → w and f(wn) ̸→ f(w). This implies that there is δ > 0 so that |f(wn)−f(w)| ≥ δ > 0
for infinitely many n. These infinitely many n define a subsequence of (wn). Now we ignore the
rest of the sequence (wn) and concentrate on the specific subsequence. For simplicity we rename
the subsequence and call it (wn) again. Therefore, we have a sequence (wn) in Aθ0 such that

wn → w and |f(wn)− f(w)| ≥ δ > 0 for every n. (4.4)
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We set z = f(w) ∈ Zθ0 and zn = f(wn) ∈ Zθ0 for every n. Then ez = w and ezn = wn for
every n and (4.4) becomes

ezn → ez and |zn − z| ≥ δ > 0 for every n. (4.5)

The real parts of the zn are equal to ln |wn| and, since ln |wn| → ln |w|, the real parts of the zn are
bounded. Moreover, since zn ∈ Zθ0 , the imaginary parts of the zn are also bounded. Therefore, the
sequence (zn) is bounded and the Bolzano-Weierstrass theorem implies that there is a subsequence
(znk

) so that znk
→ z′ for some z′. Since all znk

belong toZθ0 , we see that z′ belongs to the closed
zone Zθ0 = {x+ iy | −∞ < x < +∞, θ0 ≤ y ≤ θ0 +2π}. Taking the limit in (4.5), we get that
ez

′
= ez and |z′ − z| ≥ δ. Therefore, z′ and z differ by a non-zero integral multiple of i2π. But

this is impossible, because z belongs to the open zone Zθ0 and z′ belongs to the closed zone Zθ0 .
Thus f is continuous at every w in Aθ0 .

Our study of the mapping properties of the exponential function in the previous section gives
the following information about the mapping properties of the continuous branch f : Aθ0 → Zθ0

of log, which is defined in proposition 4.4: f maps the halflines in Aθ0 with vertex 0 (without 0)
onto the horizontal lines in Zθ0 and the circles with center 0 (without their point on the halfline
which is excluded from Aθ0) onto the vertical segments of Zθ0 .

Choosing any real θ0, we have defined a continuous branch of log in the subset Aθ0 of the
w-plane, whose range is the zone Zθ0 of the z-plane. If, instead of θ0, we consider θ0 + k2π with
any k ∈ Z, then the domain A = Aθ0+k2π remains the same but the range, i.e. the zone Zθ0+k2π,
moves vertically by k2π. The various zones Zθ0+k2π are successive and cover the whole z-plane
(except for their boundary lines with equations y = θ0 + k2π). We summarize:
If we exclude from the w-plane a halfline with vertex 0, then in the remaining open set A there
are infinitely many continuous branches of log defined. Each of them maps A onto some open
horizontal zone of the z-plane of width 2π. These various open zones, which correspond to the
various continuous branches of log (in the same setA), are mutually disjoint, successive and cover
the z-plane (except for their boundary lines). Of course, if we change the original halfline which
determines the setA, then the corresponding zones and the corresponding continuous branches of
log also change.

Example 4.3.2. One particular example of a continuous branch of log is defined when we choose
θ0 = −π. Then the set A−π = {reiθ | 0 < r < +∞,−π < θ < π} is the w-plane without
the negative u-semiaxis (where w = u + iv) and the range of the branch is the zone Z−π =
{x + iy | − ∞ < x < +∞,−π < y < π}. It is obvious that this branch is the function which
maps every w ∈ A−π onto the principal value z = Logw of logw. I.e. we get the so-called
principal branch of log

Log : A−π → Z−π.

We must keep in mind that in the same set A−π of the w-plane, besides the principal branch,
there are infinitely many other continuous branches of log defined. Each of them maps A−π in a
corresponding zone Z−π+k2π, with k ∈ Z, which is Z−π moved vertically by k2π. This branch
results from the principal branch Log by adding the constant ik2π and its formula is Log+i2kπ.

Now, we introduce a slight generalization of the notion of the branch of log, i.e. we define the
notion of the branch of log g, where g is a more general function than the identity g(w) = w.

LetA ⊆ C and g : A → C\{0} be continuous inA. We say that the function f is a continuous
branch of log g in A if f is continuous in A and for every w ∈ A we have that f(w) is an element
of log g(w) or, equivalently,

ef(w) = g(w) for every w ∈ A.
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Example 4.3.3. Let g : A → C \ {0} be continuous in A ⊆ C. If there is a continuous branch h
of log in g(A), then f = h ◦ g is a continuous branch of log g in A.
Indeed, f = h ◦ g is continuous in A and, since eh(z) = z for every z ∈ g(A), we also have
ef(w) = eh(g(w)) = g(w) for every w ∈ A.
This is a standard way to produce continuous branches of log g when we know continuous branches
of log in the range of g.
For instance, if g(w) = w − w0 and A = C \ l, where l is a halfline with vertex w0, then
g(A) = C \ l′, where l′ is the halfline with vertex 0 which is parallel to l. We know that there are
infinitely many branches of log defined in g(A) and hence there are infinitely many branches of
log(w − w0) defined in A.

Proposition 4.5. Let g : A → C\{0} be continuous inA ⊆ C and let f be any continuous branch
of log g inA. If w0 is an interior point ofA and g is differentiable at w0, then f is differentiable at
w0 and f ′(w0) =

g′(w0)
g(w0)

. Hence, if g is holomorphic in the interior ofA, then f is also holomorphic
in the interior of A.

Proof. We set z0 = f(w0) and z = f(w) for every w ∈ A. Then ez0 = g(w0) and ez = g(w).
Since f is continuous, w → w0 implies z → z0. Therefore, using the derivative of the exponential
function at z0, we see that

f(w)−f(w0)
w−w0

= z−z0
ez−ez0

g(w)−g(w0)
w−w0

→ g′(w0)
ez0 = g′(w0)

g(w0)
when w → w0.

Thus f is differentiable at w0 and f ′(w0) =
g′(w0)
g(w0)

.

Therefore, if g : A → C \ {0} is holomorphic in the open set A, every continuous branch of
log g can be called holomorphic branch of log g in A.

Example 4.3.4.We have defined infinitely many continuous branches of log in the open set which
results when we exclude any halfline with vertex 0 from the w-plane. All these branches are
holomorphic branches of log. In particular the principal branch Log : A−π → Z−π is holomorphic
in A−π.

Proposition 4.6. Let g : A → C \ {0} be continuous in A ⊆ C.
(i) If f1 is a continuous branch of log g in A and f2 − f1 = ik2π in A, where k is a fixed integer,
then f2 is also a continuous branch of log g in A.
(ii) If, morever, A is connected and f1, f2 are continuous branches of log g in A, then f2 − f1 =
ik2π in A, where k is a fixed integer. In particular, if f1(w0) = f2(w0) for some w0 ∈ A, then
f1 = f2 in A.

Proof. (i) The continuity of f1 inA implies the continuity of f2 inA. We also have ef1(w) = g(w)
for every w ∈ A and hence ef2(w) = ef1(w)+ik2π = ef1(w)eik2π = g(w)1 = g(w) for every
w ∈ A. Therefore, f2 is a continuous branch of log g in A.
(ii) We consider the function k = 1

i2π (f2 − f1). Since for every w ∈ A both f2(w) and f1(w) are
elements of log g(w), we have that k(w) is an integer. Also, since both f1, f2 are continuous in A,
k is continuous in A. Now, k is a continuous real function in the connected set A, and hence it has
the intermediate value property. But since its only values are integers, it is constant in A. So there
is a fixed integer k so that 1

i2π (f2 − f1) = k or, equivalently, f2 − f1 = ik2π in A.
If f2(w0) = f1(w0) for some w0 ∈ A, then the integer k is 0 and we get that f2 = f1 in A.

Thus, if we know one continuous branch of log g in the connected set A, then we find every
other possible continuous branch of log g inA by adding to the known branch an arbitrary constant
of the form ik2π with k ∈ Z.
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Example 4.3.5. LetA = A−π be thew-plane without the negative u-semiaxis (wherew = u+iv).
We want to find a continuous branch of log in A having value z = 0 when w = 1.
We already know that the principal branch Log of the logarithm has value z = Log 1 = 0 atw = 1.
Since A is connected, there is no other such continuous branch of log in A.
Now, in the same setA = A−π wewant to find a continuous branch of log taking the value z = i4π
at w = 1.
SinceA is connected the branch we are looking for has the form Log+ik2π for some fixed integer
k. We try w = 1 in this equality and get k = 2.

Example 4.3.6. Let A = A0 = {reiθ | 0 < r < +∞, 0 < θ < 2π} be the w-plane without the
positive u-semiaxis (where w = u+ iv). We want to find a continuous branch of log in A taking
the value z = i(π2 + 4π) at w = i.
We consider the horizontal zones in the z-plane which correspond to the set A: to each k ∈ Z
corresponds the zone Z0+k2π = {x + iy | − ∞ < x < +∞, k2π < y < 2π + k2π}. Now
we choose the particular zone which contains the value z = i(π2 + 4π). This zone corresponds
to k = 2 and it is Z4π = {x + iy | − ∞ < x < +∞, 4π < y < 6π}. Then we consider the
continuous branch f of log which maps A onto Z4π:

f(w) = ln r + iθ for w = reiθ and r = |w| > 0, 4π < θ < 6π,

where θ is the unique value of argw which is contained in the interval (4π, 6π).
Since A is connected, there is no other such continuous branch of log in A.

Exercises.

4.3.1. Let z ̸= 0. Prove that the only element of exp(log z) is z and that the elements of log(exp z)
are z + k2πi, k ∈ Z.

4.3.2. If A is any of the sets {w | r1 ≤ |w| ≤ r2} \ [−r2,−r1], {w | 0 < |w| ≤ r2} \ [−r2, 0),
{w | r1 ≤ |w| < +∞} \ (−∞,−r1], find Log(A).

4.3.3.Work on the following in both cases: θ0 = −π and θ0 = 0.
Consider Aθ0 , i.e. the w-plane without the halfline with vertex 0 which forms angle θ0 with the
positive u-semiaxis. Consider also θ1, θ2 with θ0 < θ1 < θ2 < θ0 + 2π as well as r1, r2 with
0 < r1 < r2 < +∞. Draw the set P = {w = reiθ | r1 < r < r2, θ1 < θ < θ2} and its images
through the various continuous branches of log in Aθ0 .

4.3.4. Let P = {reiθ | 1 < r < 2,−3π
4 < θ < 3π

4 }, Q = {w = reiθ | 1 < r < 2, π4 < θ < 7π
4 }.

We know that there is a continuous branch f of log in P and a continuous branch g of log inQ. Is
it possible for f and g to coincide in P ∩Q?

4.3.5. Look back at exercise 1.2.1 and find all the possible values of Log(z1z2)−Log z1−Log z2.

4.3.6. Prove that there is no continuous branch of log defined in any circle C0(r) and hence in any
set A which contains such a circle.

4.3.7. Define wa = ea Logw for every w ∈ D1(1), and prove that limx→+∞
(
1 + z

x

)x
= ez for

every z.

4.3.8. Let A ⊆ C \ {0}. If A is connected and if f1, f2 are two different continuous branches of
log in A, prove that f1(A)∩ f2(A) = ∅. (Observe how this result is confirmed by the special case
ofA being C without a halfline with vertex 0 in which case the various continuous branches of log
in A map A onto disjoint horizontal zones.)

4.3.9. Let a < b. Discuss the geometric meaning of the number Log z−b
z−a for every z with Im z > 0.
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4.4 Powers and branches of roots.

If n ∈ N, n ≥ 2, the function
w = zn

is holomorphic in the z-plane C and we shall examine some mapping properties of this function.
We work with polar representations:

z = reiθ, w = rneinθ.

If θ ∈ R is constant and r varies in (0,+∞), i.e. if z moves on the halfline rθ in the z-plane
with vertex 0 (without 0) which forms angle θ with the positive x-semiaxis, then w = zn moves
on the halfline rϕ in the w-plane with vertex 0 (without 0) which forms angle ϕ = nθ with the
positive u-semiaxis. Also, if z moves on the halfline rθ from 0 to ∞, then w = zn moves on the
halfline rϕ from 0 to ∞. If θ increases by ∆θ > 0, i.e. if the halfline rθ turns in the positive
direction by an angle ∆θ, then the corresponding halfline rϕ turns in the positive direction by an
angle∆ϕ = n∆θ. The two halflines rθ and rθ+ 2π

n
are mapped onto the same halfline rϕ = rϕ+2π.

If r ∈ (0,+∞) is constant and θ varies inR, i.e. if the point z moves on the circleC0(r) in the
z-plane, then w = zn moves on the circle C0(r

n) in the w-plane. Also, if z rotates once on C0(r)
in the positive direction, i.e. if θ increases in an interval of length 2π, then w = zn rotates n times
on C0(r

n) in the positive direction. If θ increases in an interval of length 2π
n , then w = zn rotates

once on C0(r
n) in the positive direction. If r increases, i.e. if the circle C0(r) expands, then the

corresponding circle C0(r
n) also expands.

In the proof of the following propostion as well as in the whole course, we shall use the symbol
n
√
x only to denote the unique nonnegative n-th root of a nonnegative real number x.
If n ∈ N, n ≥ 2 and if we take any w = ReiΘ ̸= 0, then the equation zn = w has n solutions

which are described as follows:

zn = w = ReiΘ ⇔ z =
n
√
Rei(

Θ
n
+k 2π

n
) for some k = 0, 1, . . . , n− 1. (4.6)

Indeed, if we write z = reiθ, then the equality zn = w becomes rneinθ = ReiΘ and this is
equivalent to rn = R and nθ = Θ + k2π for some k ∈ Z. Solving for r and θ, we find the
solutions z = n

√
Rei(

Θ
n
+k 2π

n
), k ∈ Z. It is trivial to see that two of these solutions are the same if

and only if the corresponding values of k differ by a multiple of n and hence there are n distinct
solutions corresponding to the values 0, 1, . . . , n − 1 of k. We easily see that the solutions of
zn = w are the vertices of a regular n-gon inscribed in the circle C0(

n
√
R).

The set of the solutions of zn = w, which appear in the right side of (4.6), is called n-th root
of w and it is denoted w

1
n or w1/n, i.e.

w
1
n =

{ n
√
Rei(

Θ
n
+k 2π

n
)
∣∣ k = 0, 1, . . . , n− 1

}
when w = ReiΘ.

Thus, we have the equivalence
zn = w ⇔ z ∈ w

1
n .

Of course, if w = 0, then the equation zn = w has the unique solution z = 0 and then we
define 0

1
n = {0}.

To get (4.6) we considered a polar representation w = ReiΘ. This means that the values of
argw are the numbers θ = Θ+ k2π, k ∈ Z, and we have that

w
1
n =

{
n
√

|w| ei
θ
n

∣∣ θ ∈ argw
}
=

{
e

ζ
n

∣∣ ζ ∈ logw
}
.

Example 4.4.1. The n-th root of 1 is called n-th root of unity.
Since 1 = 1ei0, the elements of the n-th root of unity are the numbers eik

2π
n , k = 0, 1, . . . , n− 1.
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Obviously, one of them is 1 and, if we denote ei
2π
n by the symbol ωn, we find that the elements of

the n-th root of unity are the numbers

1, ωn, ω
2
n, . . . , ω

n−1
n .

This ωn is called principal n-th root of unity.

We saw that, if w ̸= 0, then w
1
n has exactly n elements which are on the vertices of a regular

n-gon inscribed in the circle C0(
n
√

|w|) of the z-plane. Therefore, every arc of this circle with
central angle 2π

n , which includes only one of its endpoints, contains exactly one of the elements of
w

1
n . Thus, every angular set in the z-plane with vertex 0 and angle 2π

n , which includes only one
of its boundary halflines, contains, for every w ̸= 0, exactly one element of w

1
n . In particular, if

we consider any θ0 and the angular set

Aθ0 =
{
reiθ

∣∣ r > 0, θ0 < θ ≤ θ0 +
2π
n

}
or Aθ0 =

{
reiθ

∣∣ r > 0, θ0 ≤ θ < θ0 +
2π
n

}
,

then Aθ0 contains exactly one element of w
1
n .

Clearly, the function w = zn from C \ {0} onto C \ {0} is n-to-one and has no inverse. So
we shall define branches of an inverse of w = zn.

Let A ⊆ C \ {0}. We say that the function f is a continuous branch of w
1
n in A if f is

continuous in A and for every w ∈ A we have that f(w) is an element of w
1
n or, equivalently,

f(w)n = w for every w ∈ A.

Proposition 4.7 gives many examples of continuous branches of w
1
n .

Proposition 4.7. Let ϕ0 ∈ R. We consider the set

Aϕ0 = {seiϕ | s > 0, ϕ0 < ϕ < ϕ0 + 2π}

in the w-plane (i.e. C without the halfline with vertex 0 which forms angle ϕ0 with the positive
u-semiaxis, where w = u+ iv) and the angular region

Bϕ0/n =
{
reiθ

∣∣ r > 0, ϕ0

n < θ < ϕ0

n + 2π
n

}
in the z-plane. We define the function f : Aϕ0 → Bϕ0/n as follows: for every w ∈ Aϕ0 we take
f(w) to be the unique element of w

1
n in the angular region Bϕ0/n. Then f is continuous in Aϕ0

and so it is a continuous branch of w
1
n in Aϕ0 .

Proof. Assume that f is not continuous at some w in Aϕ0 . Then there is a sequence (wk) in Aϕ0

so that wk → w and f(wk) ̸→ f(w). Then there is δ > 0 so that |f(wk) − f(w)| ≥ δ > 0 for
infinitely many k. These infinitely many k define a subsequence of (wk). Now we ignore the rest
of the sequence (wk) and concentrate on the specific subsequence. For simplicity we rename the
subsequence and call it (wk) again. Therefore, we have a sequence (wk) in Aϕ0 such that

wk → w and |f(wk)− f(w)| ≥ δ > 0 for every k. (4.7)

We set z = f(w) ∈ Bϕ0/n and zk = f(wk) ∈ Bϕ0/n for every k. Then zn = w and znk = wk for
every k and (4.7) becomes

znk → zn and |zk − z| ≥ δ > 0 for every k. (4.8)

Since |zk|n → |z|n and hence |zk| → |z|, we get that the sequence (zk) is bounded and the
Bolzano-Weierstrass theorem implies that there is a subsequence (zkm) so that zkm → z′ for
some z′. Since all zkm belong to Bϕ0/n, we have that z′ belongs to the closed angular region
Bϕ0/n = {z = reiθ | r ≥ 0, ϕ0

n ≤ θ ≤ ϕ0

n + 2π
n }. Taking the limit in (4.8), we get z′n = zn and

|z′ − z| ≥ δ. This is impossible, because z belongs to Bϕ0/n and z′ belongs to Bϕ0/n.
Thus f is continuous at every w in Aϕ0 .
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From the mapping properties of the function w = zn we get the following for the mapping
properties of the continuous branch f : Aϕ0 → Bϕ0/n of w

1
n , which is defined in proposition 4.7.

The function f maps the halflines inAϕ0 with vertex 0 (without 0) onto the halflines inBϕ0/n with
vertex 0 (without 0) and the circular arcs in Aϕ0 with center 0 onto the circular arcs in Bϕ0/n with
center 0.

Choosing any real ϕ0, we have defined a continuous branch of w
1
n in the subset Aϕ0 of the

w-plane, whose range is the angular region Bϕ0/n of the z-plane. If, instead of ϕ0, we consider
ϕ0+k2π with any k = 0, 1, . . . , n−1, then the setA = Aϕ0+k2π remains the same but the range,
i.e. the angular region B(ϕ0+k2π)/n, rotates by an angle k 2π

n . The n angular regions B(ϕ0+k2π)/n

with k = 0, 1, . . . , n−1 are successive and cover the z-plane (except for their n boundary halflines
with vertex 0). We summarize:
If we exclude from the w-plane any halfline with vertex 0, then in the remaining open set A there
are n continuous branches of w

1
n defined. Each of them maps A onto some open angular region

of the z-plane with vertex 0 and angle 2π
n . These various angular regions, which correspond

to the various continuous branches of w
1
n (in the same set A), are mutually disjoint, successive

and cover the z-plane (except for their boundary halflines). Of course, if we change the original
halfline which determines the setA, then the corresponding angular regions and the corresponding
branches of w

1
n also change.

Example 4.4.2.We get a concrete example of a continuous branch ofw
1
n when we take ϕ0 = −π.

Then the set A−π = {seiϕ | s > 0,−π < ϕ < π} is the w-plane without the negative u-semiaxis
(where w = u+ iv) and the range of the continuous branch of w

1
n is the angular region B−π/n =

{reiθ | r > 0,−π
n < θ < π

n}. This branch is given by

z = n
√
s ei

ϕ
n for w = seiϕ with − π < ϕ < π.

Clearly,
z = n

√
|w| ei

Argw
n = e

Logw
n .

On the same set A−π of the w-plane, besides the above continuous branch of w
1
n , we may de-

fine n continuous branches of w
1
n . Each of them maps A−π onto a corresponding angular region

B(−π+k2π)/n with k = 0, 1, . . . , n − 1, which results by rotating B−π/n in the positive direction
by the angle k 2π

n . This branch results from the original branch by multiplication by the constant
eik

2π
n and it is given by

z = n
√
s ei(

ϕ
n
+k 2π

n
) for w = seiϕ with − π < ϕ < π.

Now we introduce a generalization of the notion of continuous branch of w
1
n . We define the

notion of continuous branch of g
1
n , where g is a more general function than g(w) = w.

LetA ⊆ C and g : A → C\{0} be continuous inA. We say that the function f is a continuous
branch of g

1
n in A if f is continuous in A and for every w ∈ A we have that f(w) is an element

of g(w)
1
n or, equivalently,

f(w)n = g(w) for every w ∈ A.

Example 4.4.3. Let g : A → C \ {0} be continuous in A ⊆ C. If there is a continuous branch h

of w
1
n in g(A), then f = h ◦ g is a continuous branch of g

1
n in A.

Indeed, f = h ◦ g is continuous in A and, since h(z)n = z for every z ∈ g(A), we also have
f(w)n = h(g(w))n = g(w) for every w ∈ A.

Example 4.4.4. Let g : A → C \ {0} be continuous in A ⊆ C. If there is a continuous branch h

of log g in A, then f = e
1
n
h is a continuous branch of g

1
n in A.
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Indeed, f = e
1
n
h is continuous in A and, since eh(w) = g(w) for every w ∈ A, we also have

f(w)n = eh(w) = g(w) for every w ∈ A.
This is a standard way to produce continuous branches of g

1
n when we know continuous branches

of log g.

Proposition 4.8. Let g : A → C \ {0} be continuous in A ⊆ C and f be any continuous branch
of g

1
n in A. If w0 is an interior point of A and g is differentiable at w0, then f is differentiable

at w0 and f ′(w0) = g′(w0)f(w0)
ng(w0)

. Hence, if g is holomorphic in the interior of A, then f is also
holomorphic in the interior of A.

Proof. We set z0 = f(w0) and z = f(w) for every w ∈ A. Then zn0 = g(w0) and zn = g(w).
Since f is continuous, w → w0 implies z → z0. Therefore, using the derivative of the exponential
function at z0, we see that

f(w)− f(w0)

w − w0
=

z − z0
zn − zn0

g(w)− g(w0)

w − w0
→ g′(w0)

nzn−1
0

=
g′(w0)f(w0)

ng(w0)
when w → w0.

Thus f is differentiable at w0 and f ′(w0) =
g′(w0)f(w0)

ng(w0)
.

Therefore, if g : A → C \ {0} is holomorphic in the open set A, every continuous branch of
g

1
n can be called holomorphic branch of g

1
n in A.

Example 4.4.5.We have defined n distinct continuous branches of w
1
n in the open set A which

results when we exclude any halfline with vertex 0 from the w-plane. All these branches are
holomorphic branches of w

1
n in A.

Proposition 4.9. Let g : A → C \ {0} be continuous in A ⊆ C. Let also ωn = ei
2π
n be the

principal n-th root of unity.
(i) If f1 is a continuous branch of g

1
n in A and f2

f1
= ωk

n in A, where k = 0, 1, . . . , n− 1 is fixed,
then f2 is also a continuous branch of g

1
n in A.

(ii) If, moreover, A is connected and f1, f2 are continuous branches of g
1
n in A, then f2

f1
= ωk

n in
A, where k = 0, 1, . . . , n − 1 is fixed. In particular, if f1(w0) = f2(w0) for some w0 ∈ A, then
f1 = f2 in A.

Proof. (i) The continuity of f1 inA implies the continuity of f2 inA. We also have f1(w)n = g(w)
for every w ∈ A and hence f2(w)

n = f1(w)
n(ωk

n)
n = g(w)(ωn

n)
k = g(w) for every w ∈ A.

Thus, f2 is a continuous branch of g
1
n in A.

(ii) For eachw ∈ A the numbers f2(w), f1(w) are elements of g(w)
1
n . Hence (f2(w)

f1(w))
n = g(w)

g(w) = 1

and so f2
f1

: A → {1, ωn, . . . , ω
n−1
n }. Now, the function f2

f1
is continuous in A and A is connected,

hence the set f2
f1
(A) is also connected. Since f2

f1
(A) ⊆ {1, ωn, . . . , ω

n−1
n }, the set f2

f1
(A) contains

only one point. I.e. f2
f1

is constant in A and hence f2
f1

= ωk
n in A, where k = 0, 1, . . . , n − 1 is

fixed.
In case f2(w0) = f1(w0), then the integer k is 1 and we get f2 = f1 in A.

Thus, if we know one continuous branch of g
1
n in the connected set A, then we can find every

other of the n possible continuous branches of g
1
n in A by multiplying the known branch with any

constant n-th root of unity.

Example 4.4.6. LetA = A−π = {seiϕ | s > 0,−π < ϕ < π} be thew-plane without the negative
u-semiaxis (where w = u+ iv). We want to find a continuous branch of the square root w

1
2 in A

taking the value z = 1 at w = 1.
From the example 4.4.2 we already know the continuous branch of the square root which maps A
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onto the angular region B−π/2 = {reiθ | r > 0,−π
2 < θ < π

2 }, i.e. onto the right halfplane of the
z-plane, which is given by

z =
√
s ei

ϕ
2 for w = seiϕ with − π < ϕ < π.

Since A is connected, there is no other continuous branch of the square root in A taking the value
z = 1 at w = 1.

Example 4.4.7. Let A = A−π = {seiϕ | s > 0,−π < ϕ < π} again. Now we want to find a
continuous branch of the square root w

1
2 in A taking the value z = −1 at w = 1.

In the previous example we found one continuous branch of the square root in A. Since A is
connected, there are exactly two continuous branches of the square root in A. We consider the
principal square root of 1, i.e. ω2 = ei

2π
2 = eiπ = −1. (Trivial: the square roots of 1 are the

solutions of z2 = 1, i.e. the numbers 1,−1.) Then the second continuous branch of the square
root in A is given by

z =
√
s ei

ϕ
2 ω2 = −

√
s ei

ϕ
2 for w = seiϕ with − π < ϕ < π,

i.e. the opposite of the previous branch. This branchmapsA onto the angular regionB(−π+2π)/2 =

Bπ/2 = {reiθ | r > 0, π2 < θ < 3π
2 }, i.e. onto the left halfplane of the z-plane.

Exercises.

4.4.1. Describe the sets (−1)
1
2 , (−1)

1
3 , (−1)

1
4 , i

1
2 , i

1
3 , i

1
4 , (1−i

√
3

2 )
1
2 , (1−i

√
3

2 )
1
3 , (1−i

√
3

2 )
1
4 .

4.4.2. (i) Find the elements of log(i2) and of 2 log i and observe that the two sets are different.
(ii) Prove that for every w ̸= 0 and every n ∈ N the sets log(w

1
n ) and 1

n logw are equal.

4.4.3. Let w ̸= 0 and z be any of the elements of w
1
n . Prove that the elements of w

1
n are the

numbers z, zωn, zω
2
n, . . . , zω

n−1
n .

4.4.4. The set C∗ = C \ {0} is a group under multiplication. Let n ∈ N, n ≥ 2.
(i) Prove that the n-th root of unity, i.e. the set {1, ωn, ω

2
n, . . . , ω

n−1
n }, is a subgroup of C∗.

(ii) Let z = ωk
n be any of the elements of the n-th root of unity and ⟨z⟩ = {zm |m ∈ Z} be

the group generated by z. Prove that z is a generator of {1, ωn, ω
2
n, . . . , ω

n−1
n } or, equivalently,

⟨z⟩ = {1, ωn, ω
2
n, . . . , ω

n−1
n } if and only if gcd{k, n} = 1.

(iii) Prove that {1, ωn, ω
2
n, . . . , ω

n−1
n } has no subgroups other than {1} and itself if and only if n

is a prime number.

4.4.5. Look at exercise 3.3.2. Consider the curves on the z-plane with equations x2 − y2 = α and
2xy = β. If the two curves intersect at a point (x0, y0), find in two ways their angle at this point.

4.4.6. Prove that there is no continuous branch of w
1
n in any circle C0(r) and hence in any set A

which contains such a circle.

4.4.7. Find the continuous branches of the square root in C \ [0,+∞).

4.4.8. Find the continuous branches of the cube root in C \ (−∞, 0].

4.4.9. (i) Considering a holomorphic branch of (w + 1)
1
2 in C \ (−∞,−1] and a holomorphic

branch of (w − 1)
1
2 in C \ [1,+∞), prove that there is a holomorphic branch of (w2 − 1)

1
2 in

Ω = C \ ((−∞,−1] ∪ [1,+∞)).
(ii) Considering a holomorphic branch of (w+1)

1
2 in C \ (−∞,−1] and a holomorphic branch of

(w−1)
1
2 inC\(−∞, 1], prove that there is a holomorphic branch of (w2−1)

1
2 inΩ′ = C\[−1, 1].

(This is not as easy as (i).)
(iii) Prove that there is no continuous branch of (w2 − 1)

1
2 in any circle which surrounds one of

the points ±1 but not the other.
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4.4.10. Prove that we can define a holomorphic branch f of (1 − w)
1
2 + (1 + w)

1
2 in the region

A which results when we exclude from C two non-intersecting halflines, one with vertex +1 and
another with vertex −1. Prove that every such f satisfies f(w)4 − 4f(w)2 + 4w2 = 0 for every
w ∈ A. How many such branches f exist in A?

4.4.11. (i) Let w ̸= 0 and a ∈ Z. Prove that {eaz | z ∈ logw} has only one element, namely wa.
(ii) Generalizing (i), let w ̸= 0 and a ̸∈ Z. We define wa = {eaz | z ∈ logw} and this set may
have more than one elements. When does wa have finitely many elements and when does it have
infinitely many elements?
(iii) Describe the sets (1−i

√
3

2 )
1
2 , i

1
4 , 2i, i

√
2 and draw their elements.

(iv) Prove that the elements of wa+b are also elements of wawb, and that the elements of wab are
also elements of (wa)b.
(v) Let f be a continuous branch of log inA ⊆ C\{0}. Prove that g = eaf is a continuous branch
of wa in A and that g is differentiable at every interior point w0 of A and g′(w0) =

ag(w0)
w0

.
(vi) Prove that there is a unique holomorphic branch f of (1 − w)i = ei log(1−w) in D so that
f(0) = 1. Then prove that there are c1, c2 > 0 so that c1 < |f(w)| < c2 for every w ∈ D. Find
the best such c1, c2.

4.4.12.We define

arccosw = {z | cos z = w}, arcsinw = {z | sin z = w}, arctanw = {z | tan z = w}.

(i) Prove that the three sets are non-empty, except in the case of arctan(±i).
(ii) Express arccos, arcsin and arctan in terms of log.
(iii) It should be clear from exercise 4.2.6 that sin is one-to-one from {x + iy | − π

2 < x < π
2 }

onto Ω = C \ ((−∞,−1]∪ [1,+∞)). Prove that the inverse function g0 is a continuous branch of
arcsin inΩ, i.e. g0 is continuous inΩ and sin g0(w) = w for everyw ∈ Ω. Describe all continuous
branches g of arcsin in Ω and prove that they are holomorphic in Ω with g′(w) = 1/(1−w2)

1
2 for

every w ∈ Ω, where at the denominator appears a specific holomorphic branch of (1−w2)
1
2 in Ω.

(iv) From exercise 4.2.6 again, it is clear that cos is one-to-one from {x + iy | 0 < x < π} onto
Ω = C\((−∞,−1]∪[1,+∞)). Prove that the inverse function h0 is a continuous branch of arccos
in Ω, i.e. h0 is continuous in Ω and cosh0(w) = w for every w ∈ Ω. Describe all continuous
branches h of arccos in Ω and prove that they are holomorphic in Ω with h′(w) = −1/(1−w2)

1
2

for every w ∈ Ω, where at the denominator appears a specific holomorphic branch of (1 − w2)
1
2

in Ω.
(v) Prove that tan is one-to-one from {x+iy | − π

2 < x < π
2 } ontoU = C\{iv | v ≤ −1 or 1 ≤ v}.

Prove that the inverse function k0 is a continuous branch of arctan in U , i.e. k0 is continuous in U
and tan k0(w) = w for every w ∈ U . Describe all continuous branches k of arctan in U and prove
that they are holomorphic in U with k′(w) = 1

1+w2 for every w ∈ U .

4.4.13. Considering appropriate continuous branches of w
1
2 , evaluate

∫
γ

1
w1/2 dw for both curves

γ1(t) = eit, t ∈ [0, π], and γ2(t) = e−it, t ∈ [0, π].

4.5 Functions defined by curvilinear integrals.

4.5.1 Indefinite integrals.

Let the complex functions f, F be defined in the region Ω ⊆ C. We say that F is a primitive
of f in Ω if F ′(z) = f(z) for every z ∈ Ω.

Proposition 4.10. Let the complex function f be continuous in the region Ω ⊆ C. Then the fol-
lowing are equivalent.

52



(i)
∮
γ f(z) dz = 0 for every piecewise smooth closed curve γ in Ω.

(ii)
∫
γ1
f(z) dz =

∫
γ2
f(z) dz for every two piecewise smooth curves γ1, γ2 in Ω with the same

endpoints.
(iii) There is a primitive of f in Ω.

Proof. (iii)⇒ (i) Let F be any primitive of f in Ω. We take an arbitrary piecewise smooth curve
γ : [a, b] → Ω with γ(a) = γ(b). Then∮

γ f(z) dz =
∮
γ F

′(z) dz =
∫ b
a F ′(γ(t))γ′(t) dt =

∫ b
a (F ◦ γ)′(t) dt

= (F ◦ γ)(b)− (F ◦ γ)(a) = F (γ(b))− F (γ(a)) = 0.

(i)⇒ (ii) Assume that the piecewise smooth curves γ1, γ2 in Ω have the same endpoints. Then the
piecewise smooth curve γ = γ1

·
+ (¬ γ2) is a closed curve in Ω and then∫

γ1
f(z) dz −

∫
γ2
f(z) dz =

∫
γ1
f(z) dz +

∫
¬ γ2

f(z) dz =
∮
γ f(z) dz = 0.

(ii)⇒ (iii) We consider an arbitrary fixed z0 ∈ Ω. Then for every z ∈ Ω there is at least one
piecewise smooth curve γ in Ω with initial point z0 and final point z. We define the function
F : Ω → C by

F (z) =
∫
γ f(ζ) dζ. (4.9)

This formula defines F (z) uniquely, since the value of the curvilinear integral depends only on the
point z and not on the particular piecewise smooth curve γ which we use to join z0 to z.
Now we shall prove that F is a primitive of f in Ω. We take an arbitrary z ∈ Ω and a disc
Dz(r) ⊆ Ω. We also take a piecewise smooth curve γ in Ω with initial point z0 and final point
z. Then the value of F (z) is given by (4.9). Now we consider any w ∈ Dz(r) and the curve
γ

·
+ [z, w]. This curve is in Ω, it is piecewise smooth and has initial point z0 and final point w.

Therefore,
F (w) =

∫
γ

·
+[z,w]

f(ζ) dζ =
∫
γ f(ζ) dζ +

∫
[z,w] f(ζ) dζ. (4.10)

From (4.9) and (4.10) we get

F (w)−F (z)− f(z)(w− z) =
∫
[z,w] f(ζ) dζ − f(z)

∫
[z,w] dζ =

∫
[z,w](f(ζ)− f(z)) dζ. (4.11)

Now, since f is continuous, for every ϵ > 0 there is δ > 0 so that |f(ζ) − f(z)| < ϵ for every
ζ ∈ Ω with |ζ − z| < δ. Taking w ∈ Dz(r) with |w − z| < δ we automatically have |ζ − z| < δ
for every ζ ∈ [z, w] and (4.11) implies

|F (w)− F (z)− f(z)(w − z)| ≤ ϵ|w − z|.

Therefore,
∣∣F (w)−F (z)

w−z −f(z)
∣∣ ≤ ϵ for everyw with 0 < |w−z| < δ and henceF ′(z) = f(z).

Let the complex function f be continuous in the region Ω ⊆ C. If either one of the equivalent
conditions (i), (ii) of proposition 4.10 is satisfied, then as we saw in the proof of (ii)⇒ (iii) of
proposition 4.10, we may choose a fixed point z0 ∈ Ω and define F (z) =

∫
γ f(ζ) dζ for every

z ∈ Ω, where γ is an arbitrary piecewise smooth curve in Ω with initial point z0 and final point z.
Now, any function F of the form

F (z) =
∫
γ f(ζ) dζ + c for every z ∈ Ω,

where γ is any piecewise smooth curve in Ω with fixed (but otherwise arbitrary) initial point z0
and final point z and where c is an arbitrary constant, is called indefinite integral of f in Ω.

The crucial condition for the existence of an indefinite integral is (ii) (or its equivalent (i))
of proposition 4.10. As soon as this is satisfied, then by changing the base point z0 ∈ Ω or the
constant c we get different indefinite integrals F .
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In the proof of proposition 4.10 we saw that every indefinite integral of f is a primitive of f .
The converse is also true. Indeed, let F be any primitive of f in the regionΩ, i.e. let F ′(z) = f(z)
for every z ∈ Ω. Proposition 4.10 implies that condition (ii) is satisfied and, if we take any
piecewise smooth curve γ : [a, b] → Ω with initial point a fixed z0 ∈ Ω and final point z ∈ Ω,
then ∫

γ f(ζ) dζ =
∫
γ F

′(ζ) dζ =
∫ b
a F ′(γ(t))γ′(t) dt =

∫ b
a (F ◦ γ)′(t) dt

= (F ◦ γ)(b)− (F ◦ γ)(a) = F (z)− F (z0).
(4.12)

Thus, F has the form F (z) =
∫
γ f(ζ) dζ + F (z0) and hence it is an indefinite integral of f in Ω.

We summarize. Let the complex function f be continuous in the region Ω ⊆ C. Then the
notion of primitive of f in Ω coincides with the notion of indefinite integral of f in Ω. Moreover,
the existence of a primitive or, equivalently, of an indefinite integral of f in Ω is equivalent to the
validity of condition (ii) (or (i)) of proposition 4.10.

Regarding the number of possible primitives of f in Ω we may easily see that, if there is at
least one primitive F of f in Ω, then all others are of the form F + c for an arbitrary constant c.
Indeed, it is obvious that F + c is a primitive of f in Ω. Conversely, if G is a primitive of f in Ω,
then we have (G− F )′(z) = G′(z)− F ′(z) = f(z)− f(z) = 0 for every z ∈ Ω. Now, theorem
3.3 implies that G− F is a constant in Ω.

Since it is useful for calculations of curvilinear integrals, we state relation (4.12) as a separate
proposition.

Proposition 4.11. Let F be a primitive of the continuous function f in the region Ω ⊆ C. Then
for every piecewise smooth curve γ in Ω with initial endpoint z1 and final endpoint z2 we have∫
γ f(z) dz = F (z2)− F (z1).

Example 4.5.1. Every polynomial function p(z) = a0 + a1z + · · · + anz
n has the primitive

a0z+
a1
2 z

2+ · · ·+ an
n+1z

n+1 in C. Therefore, we have
∮
γ p(z) dz = 0 for every piecewise smooth

closed curve γ.
In particular, if n ∈ Z, n ≥ 0, we have

∮
γ(z − z0)

n dz = 0 for every piecewise smooth closed
curve γ. A very special case of this, with the circle Cz0(r), we saw in examples 2.3.9 and 4.2.2.

Example 4.5.2. The exponential function ez has the primitive ez in C. Hence
∮
γ e

z dz = 0 for
every piecewise smooth closed curve γ.

Example 4.5.3. Let z0 ∈ C and n ∈ N, n ≥ 2. Then the function 1
(z−z0)n

has the primitive
− 1

(n−1)(z−z0)n−1 in C \ {z0}. Therefore,
∮
γ

1
(z−z0)n

dz = 0 for every piecewise smooth closed
curve γ in C \ {z0}. A very special case of this, with the circle Cz0(r), we saw in examples 2.3.9
and 4.2.2.

Example 4.5.4. The function 1
z−z0

(the case n = 1 of the previous example) has no primitive in
C \ {z0} or even in any open ring Dz0(r1, r2) = {z | r1 < |z − z0| < r2}.
Indeed, if 1

z−z0
had a primitive in Dz0(r1, r2), then we would have

∮
γ

1
z−z0

dz = 0 for every
piecewise smooth closed curve γ in Dz0(r1, r2). Now, if we take a radius r so that r1 < r < r2
and the curve γ : [0, 2π] → Dz0(r1, r2) with parametric equation γ(t) = z0 + reit, then we have∮
γ

1
z−z0

dz =
∮
Cz0 (r)

1
z−z0

dz =
∫ 2π
0

1
reit

rieit dt = 2πi ̸= 0. In fact, we did exactly the same
calculation in example 4.2.2.

The following result is important.

Theorem 4.1. Let g : Ω → C\{0} be holomorphic in the regionΩ ⊆ C and let g′ be continuous in
Ω. Then a holomorphic branch of log g exists inΩ if and only if

∮
γ

g′(z)
g(z) dz = 0 for every piecewise

smooth closed curve γ in Ω.

54



Proof. Assume that there is a holomorphic branch of log g in Ω, i.e. there is F holomorphic in
Ω so that eF (z) = g(z) for every z ∈ Ω. Then F ′(z)eF (z) = g′(z) for every z ∈ Ω and hence
F ′(z) = g′(z)

g(z) for every z ∈ Ω. Therefore, F is a primitive of g′

g in Ω and thus,
∮
γ

g′(z)
g(z) dz = 0 for

every piecewise smooth closed curve γ in Ω.
Conversely, assume

∮
γ

g′(z)
g(z) dz = 0 for every piecewise smooth closed curve γ in Ω. Then g′

g has
a primitive, say F , in Ω. Now, we have d

dz (g(z)e
−F (z)) = g′(z)e−F (z) − g(z)F ′(z)e−F (z) = 0

for every z ∈ Ω. This implies that, for some constant c, we have g(z)e−F (z) = c for every z ∈ Ω.
Since c ̸= 0, there is a constant d so that ed = c and we finally get that eF (z)+d = g(z) for every
z ∈ Ω. Now the function F + d is a holomorphic branch of log g in Ω.

In the next chapter we shall prove that for every holomorphic g the derivative g′ is automat-
ically continuous. Therefore, a posteriori, the assumption in theorem 4.1 that g′ is continuous is
unnecessary.

Example 4.5.5. If the region Ω ⊆ C \ {z0} contains a circle Cz0(r), then there is no holomorphic
branch of log(z − z0) in Ω. In fact, example 4.5.4 shows that

∮
Cz0 (r)

1
z−z0

dz ̸= 0.

Example 4.5.6. Let g : Ω → C \ {0} be holomorphic in the region Ω ⊆ C, let g′ be continuous in
Ω and suppose that there is a halfline with vertex 0 so that g(Ω) ⊆ C \ l.
We know that a holomorphic branch of log exists in C \ l and now example 4.3.3 says that a
holomorphic branch of log g exists in Ω. From theorem 4.1 we also get that

∮
γ

g′(z)
g(z) dz = 0 for

every piecewise smooth closed curve γ in Ω.

4.5.2 Integrals with parameter.

Lemma 4.2. Let n ∈ N and γ be any piecewise smooth curve. If the complex function ϕ is contin-
uous in the trajectory γ∗, we define f(z) =

∫
γ

ϕ(ζ)
(ζ−z)n dζ for every z /∈ γ∗. Then f is holomorphic

in the open set C \ γ∗ and f ′(z) = n
∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ for every z /∈ γ∗.

Proof. We take any z ∈ C \ γ∗. Since C \ γ∗ is open, there is δ > 0 so thatDz(δ) ⊆ C \ γ∗. We
consider the smaller circleDz(

δ
2) and we have |ζ−w| ≥ δ

2 for every ζ ∈ γ∗ and everyw ∈ Dz(
δ
2).

Now for every w ∈ Dz(
δ
2) we get

f(w)−f(z)
w−z − n

∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ =

∫
γ

( 1
(ζ−w)n

− 1
(ζ−z)n

w−z − n
(ζ−z)n+1

)
ϕ(ζ) dζ. (4.13)

To simplify the notation, we temporarily set a = ζ − w and b = ζ − z, and, to estimate the
parenthesis in (4.13), we use the algebraic identity

1
an

− 1
bn

b−a − n
bn+1 = (b− a)

(
1

anb2
+ 2

an−1b3
+ · · ·+ n−1

a2bn
+ n

abn+1

)
.

We have that |a| ≥ δ
2 and |b| ≥ δ

2 for every ζ ∈ γ∗ and w ∈ Dz(
δ
2) and hence∣∣ 1

an
− 1

bn

b−a − n
bn+1

∣∣ ≤ |b− a|
(

1
|a|n|b|2 + · · ·+ n

|a||b|n+1

)
≤ |w − z|1+2+···+(n−1)+n

(δ/2)n+2 ≤ |w − z| n22n+2

δn+2 .
(4.14)

Now, (4.13) and (4.14) imply∣∣f(w)−f(z)
w−z − n

∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ

∣∣ ≤ |w − z| n22n+2

δn+2 supζ∈γ∗ |ϕ(ζ)| l(γ)

for every w ∈ Dz(
δ
2). Therefore, limw→z

f(w)−f(z)
w−z = n

∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ and f is differentiable at

z with f ′(z) = n
∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ.
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Observe that lemma 4.2 justifies the change of order of the operations of integration and dif-
ferentiation with respect to the parameter z:

f ′(z) = d
dzf(z) =

d
dz

∫
γ

ϕ(ζ)
(ζ−z)n dζ =

∫
γ

d
dz

( ϕ(ζ)
(ζ−z)n

)
dζ = n

∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ.

Proposition 4.12. Let γ be any piecewise smooth curve and the complex function ϕ be continuous
in the trajectory γ∗. Then the function f(z) =

∫
γ

ϕ(ζ)
ζ−z dζ is infinitely many times differentiable in

the open set C \ γ∗ and f (n)(z) = n!
∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ for every z /∈ γ∗.

Proof. Successive applications of lemma 4.2.

Exercises.

4.5.1. Let f, g be holomorphic in the region Ω ⊆ C and let f ′, g′ be continuous in Ω.
(i) If |f(z)−1| < 1 for every z ∈ Ω, prove that

∮
γ

f ′(z)
f(z) dz = 0 for every piecewise smooth closed

curve γ in Ω.
(ii) If |f(z) − g(z)| < |g(z)| for every z ∈ Ω, prove that

∮
γ

f ′(z)
f(z) dz =

∮
γ

g′(z)
g(z) dz for every

piecewise smooth closed curve γ in Ω.

4.5.2. Let γ be a piecewise smooth curve and the complex function ϕ be continuous in γ∗. We
know that the function f(z) =

∫
γ

ϕ(ζ)
ζ−z dζ is holomorphic in C \ γ∗. Prove that f is holomorphic

at∞.

4.5.3. Let the complex function f be continuous in R and let
∫ +∞
−∞

|f(t)|
1+|t| dt < +∞. Prove that the

function F (z) =
∫ +∞
−∞

f(t)
t−z dt is holomorphic in C \ R.

4.5.4. Let the complex function f be continuous in R and
∫ +∞
−∞ |f(t)|eM |t| dt < +∞ for every

M > 0. Prove that the function F (z) =
∫ +∞
−∞ f(t)etz dt is holomorphic in C.

4.5.5. Find the domains of holomorphy of the functions f(z) =
∫ 1
0

1
1+tz dt, g(z) =

∫ 1
−1

etz

1+t2
dt,

h(z) =
∫ +∞
0

etz

1+t2
dt and k(z) =

∫ +∞
0 e−tz2 dt.

4.6 Functions defined by power series.

Every series of the form∑+∞
n=0 an(z − z0)

n = a0 + a1(z − z0) + a2(z − z0)
2 + · · ·

is called power series with center z0 and coefficients an. The R ∈ [0,+∞] defined by

R = 1

lim n
√

|an|

is called radius of convergence of the power series. (Of course we understand that R = 0 if
lim n

√
|an| = +∞ and R = +∞ if lim n

√
|an| = 0.)

Proposition 4.13. Let
∑+∞

n=0 an(z − z0)
n be a power series with radius of convergence R.

If R = 0, then the series converges only at z0. If R > 0, then:
(i) The power series converges absolutely at every z ∈ Dz0(R).
(ii) The power series diverges at every z ̸∈ Dz0(R).
(iii) The power series converges uniformly in every closed disc Dz0(r) with r < R.
(iv) The sum s(z) =

∑+∞
n=0 an(z− z0)

n is holomorphic inDz0(R). The derivative of s inDz0(R)
is the sum t(z) =

∑+∞
n=1 nan(z−z0)

n−1 of the power series which results from
∑+∞

n=0 an(z−z0)
n

by formal termwise differentiation.
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Proof. If z = z0, then the power series consists only of its constant term a0 and hence converges.
If z ̸= z0, then by the definition of R we get lim n

√
|an(z − z0)n| = lim n

√
|an| |z − z0| = |z−z0|

R .
The root test of Cauchy for general series implies that the power series converges absolutely if
|z − z0| < R and diverges if |z − z0| > R and this is the content of (i) and (ii).
(iii) Let 0 < r < R. We take any R′ with r < R′ < R. Then lim n

√
|an| < 1

R′ and so there is
n0 so that n

√
|an| ≤ 1

R′ for every n ≥ n0. Then for every z ∈ Dz0(r) we have |an(z − z0)
n| =

|an| |z − z0|n ≤ ( r
R′ )n for every n ≥ n0. Since r

R′ < 1, we have
∑+∞

n=0(
r
R′ )n < +∞ and the test

of Weierstrass implies that the power series
∑+∞

n=0 an(z − z0)
n converges uniformly in Dz0(r).

(iv) Besides
∑+∞

n=0 an(z − z0)
n, we also consider the power series

∑+∞
n=1 nan(z − z0)

n−1. The
second power series results from the first by formal termwise differentiation. We shall prove that
the second series converges at every z ∈ Dz0(R) and that its sum is the derivative of the sum s of
the first series at every z ∈ Dz0(R).
Since n

√
n → 1, we have lim n

√
|nan| = lim n

√
n n
√

|an| = lim n
√

|an| and the radius of conver-
gence of the series

∑+∞
n=1 nan(z−z0)

n is alsoR. Thus,
∑+∞

n=1 nan(z−z0)
n−1 converges at every

z ∈ Dz0(R). We define t(z) =
∑+∞

n=1 nan(z − z0)
n−1 at every z ∈ Dz0(R).

Now at every z, w ∈ Dz0(R) we have s(w) − s(z) =
∑+∞

n=0 an((w − z0)
n − (z − z0)

n). For
simplicity, we shall set temporarily a = z − z0 and b = w − z0 and then we have

s(w)−s(z)
w−z − t(z) =

∑+∞
n=2 an(b

n−1 + bn−2a+ · · ·+ ban−2 + an−1 − nan−1)

= (w − z)
∑+∞

n=2 an(b
n−2 + 2bn−3a+ · · ·+ (n− 2)ban−3 + (n− 1)an−2).

(4.15)

We fix z ∈ Dz0(R) and δ = R−|z−z0|
2 > 0. We also setR1 = |z−z0|+δ = R−δ. Ifw ∈ Dz(δ),

then |b| ≤ R1 and |a| ≤ R1 and (4.15) implies∣∣ s(w)−s(z)
w−z − t(z)

∣∣ ≤ |w − z|
∑+∞

n=2 n
2|an|Rn−2

1 .

Since lim n
√

|n2anRn
1 | =

R1
R < 1, the last sum is a finite number independent of w ∈ Dz(δ).

Therefore, limw→z
s(w)−s(z)

w−z = t(z) and s is differentiable at z with s′(z) = t(z).

If R is the radius of convergence of
∑+∞

n=0 an(z − z0)
n, then the open disc Dz0(R) is called

disc of convergence of the power series.
We saw that, if 0 < R ≤ +∞, the sum s(z) of the power series is a holomorphic function in

Dz0(R). In fact the derivative of s(z) is the function t(z) which is the sum of the power series we
get by formal termwise differentiation of the original power series. We saw that the differentiated
power series has the same disc of convergence as the original series and hence we may repeat our
arguments: the function t(z) is holomorphic inDz0(R) and its derivative, i.e. the second derivative
of s(z), is the sum of the power series which we get by a second formal termwise differentiation of
the original power series. We conclude that the function s(z) is infinitely many times differentiable
in the disc of convergence Dz0(R) and

s(k)(z) =
∑+∞

n=k n(n− 1) · · · (n− k + 1)an(z − z0)
n−k for every z ∈ Dz0(R).

Example 4.6.1. For the power series
∑+∞

n=1
zn

n we get lim n
√
|1/n| = 1, and hence R = 1. The

disc of convergence is D. If s is the function defined by the power series in D, then s′(z) =∑+∞
n=1 z

n−1 = 1
1−z for every z ∈ D. We observe that−Log(1− z) is defined and is holomorphic

in D. Its derivative is 1
1−z and its value at 0 is 0. Since the functions s(z) and −Log(1− z) have

the same derivative in the region D and the same value at 0, we conclude that∑+∞
n=1

zn

n = −Log(1− z) for every z ∈ D.

We shall come back to this identity when we study the Taylor series of the function −Log(1− z)
in D.
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Example 4.6.2. For
∑+∞

n=1
zn

n2 we get lim n
√

|1/n2| = 1, and hence R = 1. The disc of conver-
gence is D.

Example 4.6.3. For
∑+∞

n=0
zn

n! we have lim
n
√

|1/n!| = 0 and hence R = +∞. The disc of con-
vergence is C. If s is the function defined by the power series in C, then s′(z) =

∑+∞
n=1

zn−1

(n−1)! =∑+∞
n=0

zn

n! = s(z) for every z. Now we have that d
dz (e

−zs(z)) = −e−zs(z) + e−zs′(z) = 0 for
every z. Since the value of e−zs(z) at 0 is 1, we find that e−zs(z) = 1 for every z and thus∑+∞

n=0
zn

n! = ez for every z.

We shall reprove this identity later, when we study the Taylor series of the function ez .
On the other hand, since the series

∑+∞
n=0

zn

n! and
∑+∞

n=0
wn

n! converge absolutely, proposition 2.3
implies that∑+∞

n=0
zn

n!

∑+∞
n=0

wn

n! =
∑+∞

n=0

(∑n
k=0

zk

k!
wn−k

(n−k)!

)
=

∑+∞
n=0

1
n!

(∑n
k=0

(
n
k

)
zkwn−k

)
=

∑+∞
n=0

(z+w)n

n! .

This provides us with a second proof of the identity ezew = ez+w.

Example 4.6.4. For
∑+∞

n=1 n!z
n we have lim n

√
n! = +∞, and hence R = 0. The power series

converges only at 0.

Every series of the form∑n=−1
−∞ an(z − z0)

n = · · ·+ a−3

(z−z0)3
+ a−2

(z−z0)2
+ a−1

z−z0

is called power series of second type with center z0 and coefficients an. The R ∈ [0,+∞]
defined by

R = lim m
√
|a−m|

is called radius of convergence of the power series.
The usual power series of the form

∑+∞
n=0 an(z−z0)

n are also called power series of first type,
to distinguish them from the power series of second type.

We observe that a power series of second type has no meaning at z0, in the same way that any
power series of first type (with an ̸= 0 for at least one n ≥ 1) has no meaning at∞. On the other
hand, if z = ∞, then a power series of second type becomes

∑n=−1
−∞ 0 = 0 and hence converges

with sum 0.
From now on in these notes we shall use the notations

Dz0(R,+∞) = {z |R < |z − z0|}, Dz0(R,+∞) = {z |R ≤ |z − z0|}

for the open and the closed unbounded ring with center z0 and internal radius R. We also use

Dz0(R1, R2) = {z |R1 < |z − z0| < R2}, Dz0(R1, R2) = {z |R1 ≤ |z − z0| ≤ R2}

to denote the open and the closed bounded ring with center z0, internal radius R1 and external
radius R2.

Proposition 4.14. Let
∑n=−1

−∞ an(z − z0)
n be a power series of second type with radius of con-

vergence R.
If R = +∞, then the series converges only at ∞. If R < +∞, then
(i) The power series converges absolutely at every z ∈ Dz0(R,+∞) ∪ {∞}.
(ii) The power series diverges at every z ̸∈ Dz0(R,+∞).
(iii) The power series converges uniformly in every Dz0(r,+∞) ∪ {∞} with r > R.
(iv) The sum s(z) =

∑n=−1
−∞ an(z − z0)

n is holomorphic in Dz0(R,+∞) ∪ {∞}. The derivative
of s inDz0(R,+∞) ∪ {∞} is the sum t(z) =

∑n=−1
−∞ nan(z − z0)

n−1 of the power series which
results from

∑n=−1
−∞ an(z − z0)

n by formal termwise differentiation.
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Proof. The easiest way is to reduce a power series of second type to a power series of first type
with the simple change of variablew = 1

z−z0
. Then the power series

∑n=−1
−∞ an(z−z0)

n takes the
form

∑n=−1
−∞ anw

−n =
∑+∞

m=1 a−mwm of a power series of first type with center 0. We also ob-
serve that z varies in the unbounded ringDz0(R,+∞) if and only ifw varies in the punctured disc
D0(

1
R)\{0}. Also, z varies in the unbounded ringDz0(r,+∞) if and only ifw varies in the punc-

tured discD0(
1
r )\{0}. Nowwe can use everything we know about the series

∑+∞
m=1 a−mwm from

proposition 4.13 to get the corresponding results about the series
∑n=−1

−∞ an(z − z0)
n. For exam-

ple, the differentiability of
∑n=−1

−∞ an(z−z0)
n results from the differentiability of

∑+∞
m=1 a−mwm

and the differentiability of the function w = 1
z−z0

. We leave all the details to the reader. We shall
only say a few things about the differentiability of s(z) =

∑n=−1
−∞ an(z − z0)

n at∞, using again
the transformed power series s∗(w) =

∑+∞
m=1 a−mwm. Since s(∞) = 0 and s∗(0) = 0, we have

limz→∞ z(s(z)− s(∞)) = limz→∞ zs(z) = limw→0(1 + z0w)
s∗(w)
w = s′∗(0) = a−1.

Therefore, s is differentiable at∞

If R is the radius of convergence of
∑n=−1

−∞ an(z − z0)
n, then the open ring Dz0(R,+∞) is

called ring of convergence of the power series. In fact the series converges inDz0(R,+∞)∪{∞},
which is an open set in Ĉ with respect to the chordal metric.

If 0 ≤ R < +∞, we saw that the sum s(z) of the power series is a holomorphic function in
Dz0(R,+∞) ∪ {∞}. In fact the derivative of the sum s(z) of the power series is the function
t(z) which is the sum of the power series we get by formal termwise differentiation of the original
power series. The differentiated power series converges in the same set Dz0(R,+∞) ∪ {∞}.
Therefore, we may repeat our arguments: the function t(z) is holomorphic inDz0(R,+∞)∪{∞}
and its derivative, i.e. the second derivative of s(z), is the sum of the power series which we get
by a second formal termwise differentiation of the original power series. We conclude that the
function s(z) is infinitely many times differentiable in Dz0(R,+∞) ∪ {∞} and

s(k)(z) =
∑n=−1

−∞ n(n−1) · · · (n−k+1)an(z−z0)
n−k for every z ∈ Dz0(R,+∞)∪{∞}.

Example 4.6.5.
∑n=−1

−∞
zn

−n =
∑+∞

m=1
1

mzm converges in D0(1,+∞) ∪ {∞} = Ĉ \ D.

Example 4.6.6.
∑n=−1

−∞
zn

n2 =
∑+∞

m=1
1

m2zm
converges in D0(1,+∞) ∪ {∞} = Ĉ \ D.

Example 4.6.7.
∑n=−1

−∞
zn

(−n)! =
∑+∞

m=1
1

m!zm converges in D0(0,+∞) ∪ {∞} = Ĉ \ {0}.

Example 4.6.8.
∑n=−1

−∞ (−n)!zn =
∑+∞

m=1
m!
zm converges only at∞.

Finally, we consider a series of the form∑+∞
−∞ an(z − z0)

n = · · ·+ a−2

(z−z0)2
+ a−1

z−z0
+ a0 + a1(z − z0) + a2(z − z0)

2 + · · ·

which consists of a power series of first type and a power series of second type. We assume
that an ̸= 0 for at least one n < 0 and for at least one n > 0. Then the original series is
called power series of third type with center z0 and coefficients an. The radius of convergence
R1 of

∑n=−1
−∞ an(z − z0)

n and the radius of convergence R2 of
∑+∞

n=0 an(z − z0)
n are called

radii of convergence of our power series. We say that
∑+∞

−∞ an(z − z0)
n converges at z if both∑n=−1

−∞ an(z − z0)
n and

∑+∞
n=0 an(z − z0)

n converge at z, and we say that
∑+∞

−∞ an(z − z0)
n

diverges at z in all other cases.
A power series of third type with center z0 has no meaning at the points z0 and∞.
A power series of third type is a combination of a power series of first type and a power series

of second type. Therefore, we expect that the properties of a power series of this new type are a
combination of properties of power series of the two previous types. Indeed, the next result is a
direct combination of propositions 4.13 and 4.14 and we omit the proof.
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Proposition 4.15. Let
∑+∞

−∞ an(z− z0)
n be a power series of third type with radii of convergence

R1, R2.
If R2 ≤ R1, then the series diverges at every z, except in the case 0 < R1 = R2 = R < +∞ and
then it may converge only at some z ∈ Cz0(R). If R1 < R2, then
(i) The power series converges absolutely at every z ∈ Dz0(R1, R2).
(ii) The power series diverges at every z ̸∈ Dz0(R1, R2).
(iii) The power series converges uniformly in every Dz0(r1, r2) with R1 < r1 < r2 < R2.
(iv) The sum s(z) =

∑+∞
−∞ an(z − z0)

n is holomorphic in Dz0(R1, R2). The derivative of s in
Dz0(R1, R2) is the sum t(z) =

∑+∞
−∞ nan(z − z0)

n−1 of the power series which results from∑+∞
−∞ an(z − z0)

n by formal termwise differentiation.

If R1 < R2, then Dz0(R1, R2) is called ring of convergence of
∑+∞

−∞ an(z − z0)
n and the

function s defined by the power series is infinitely many times differentiable inDz0(R1, R2).

Example 4.6.9.We consider
∑n=−1

−∞
2n

−nz
n + 1 +

∑+∞
n=1

1
n2 z

n.
Then

∑n=−1
−∞

2n

−nz
n has radius of convergence 1

2 and 1 +
∑+∞

n=1
1
n2 z

n has radius of convergence
1. Therefore, D0(

1
2 , 1) is the ring of convergence of

∑n=−1
−∞

2n

−nz
n + 1 +

∑+∞
n=1

1
n2 z

n.

Exercises.

4.6.1. Find the discs of convergence of
∑+∞

n=1 anz
n when an = n13, an = 1

n5 , an = 1
nn , an =

nlnn, an = (lnn)n, an = n!
nn , an = (n!)2

nn , an = (n!)2

(2n)! .

4.6.2. Find the rings of convergence of
∑n=−1

−∞ anz
n when an = n3, an = 1

n2 , an = 1
2n , an = 3n,

an = 1
(−n)!nn .

4.6.3. Find the ring of convergence and the sum of
∑n=−1

−∞ (−1)nzn +
∑+∞

n=1(
1
2i)

n+1zn.

4.6.4. (i) Using the geometric series
∑+∞

n=0 z
n, write 1

1−z as a power series with disc of convergence
D0(1) and as power series with ring of convergence D0(1,+∞).
(ii) Write 1

(z−3)(z−4) as a power series with disc of convergenceD0(3), as a power series with ring
of convergence D0(3, 4) and as a power series with ring of convergence D0(4,+∞).

4.6.5. Ifm ∈ N, using the geometric series
∑+∞

n=0 z
n, write 1

(1−z)m as a power series
∑+∞

n=0 anz
n,

and determine its disc of convergence.

4.6.6. Find the radius of convergence of 1 +
∑+∞

n=1
a(a+1)···(a+n−1)b(b+1)···(b+n−1)

1·2···n·c(c+1)···(c+n−1) zn, where c ̸=
0,−1,−2, . . . . This power series is called hypergeometric series with parameters a, b, c. Prove
that the function w = F (z; a, b, c), which is defined by the hypergeometric series in its disc of
convergence, is a solution of the differential equation z(1−z)w′′+(c−(a+b+1)z)w′−abw = 0.

4.6.7. (i) Prove that, if two power series of the type
∑+∞

n=0 an(z − z0)
n with positive radii of

convergence define the same function in the intersection of their discs of convergence, then the
two series coincide, i.e. they have the same coefficients an.
(ii) Prove a result analogous to (i) for two power series of the type

∑n=−1
−∞ an(z − z0)

n.

4.6.8. Let 0 < R < +∞.
(i) If

∑+∞
n=0 an(z − z0)

n converges absolutely for some z ∈ Cz0(R), prove that it converges
absolutely for every z ∈ Dz0(R).
(ii) If

∑+∞
n=0 an(z − z0)

n converges for some z ∈ Cz0(R), prove that it converges absolutely for
every z ∈ Dz0(R).

4.6.9. LetR′,R′′ andR be the radii of convergence of
∑+∞

n=0 an
′(z−z0)

n,
∑+∞

n=0 an
′′(z−z0)

n and∑+∞
n=0(an

′ + an
′′)(z− z0)

n, respectively. If R′ ̸= R′′, prove that R = min{R′, R′′}. If R′ = R′′,
prove that R ≥ R′ = R′′.
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4.6.10. Let
∑+∞

n=0 an(z − z0)
n and

∑+∞
n=0 bn(z − z0)

n be two power series and assume that cn =
a0bn + a1bn−1 + · · · + an−1b1 + anb0 for every n ≥ 0. If the two power series converge in the
disc Dz0(R), prove that the power series

∑+∞
n=0 cn(z − z0)

n also converges in Dz0(R) and that∑+∞
n=0 cn(z − z0)

n =
∑+∞

n=0 an(z − z0)
n
∑+∞

n=0 bn(z − z0)
n for every z ∈ Dz0(R).

4.6.11. Let R be the radius of convergence of
∑+∞

n=1 an(z − z0)
n. If 0 < R < +∞, find the radii

of convergence of
∑+∞

n=1 n
kan(z − z0)

n,
∑+∞

n=1 n!an(z − z0)
n,

∑+∞
n=1

an
n! (z − z0)

n.

4.6.12. Let k ∈ N, k ≥ 2. Find the z at which
∑+∞

n=1
zkn

n converges.

4.6.13. Find the z at which
∑+∞

n=1 z
n! converges.

4.6.14. Let 0 < b < 1. Find the ring of convergence of
∑+∞

n=−∞ bn
2
zn.

4.6.15. If s(z) =
∑+∞

n=0 an(z − z0)
n for every z ∈ Dz0(R) and |a1| ≥

∑+∞
n=2 n|an|Rn−1, prove

that s is one-to-one in Dz0(R).
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Chapter 5

Local behaviour and basic properties of
holomorphic functions.

5.1 The theorem of Cauchy for triangles.

Let∆ be a closed triangular region. Wewrite
∮
∂∆ f(z) dz to denote the curvilinear integral over

a piecewise smooth curve γ with trajectory γ∗ = ∂∆ which describes the triangle ∂∆ once and in
the positive direction. For instance, if z1, z2, z2 are the vertices of the triangle in the order which
agrees with the positive direction of ∂∆, then a valid curve is γ = [z1, z2]

·
+ [z2, z3]

·
+ [z3, z1].

Hence,
∮
∂∆ f(z) dz =

∫
[z1,z2]

f(z) dz +
∫
[z2,z3]

f(z) dz +
∫
[z3,z1]

f(z) dz.
Of course there are analogous statements for integrals

∮
∂R f(z) dz, when R is a closed rectan-

gular region or, more generally, a closed convex polygonal region.

The theorem of Cauchy-Goursat. If f is holomorphic in an open setΩ which contains the closed
triangular region ∆, then ∮

∂∆ f(z) dz = 0.

Proof. We write I =
∮
∂∆ f(z) dz, and we have to show that I = 0.

Let ∆ = ∆(z1, z2, z3) be the given closed triangular region with vertices z1, z2, z3 written in the
order which agrees with the positive direction of ∂∆. We take the pointsw3, w1, w2, which are the
midpoints of the linear segments [z1, z2], [z2, z3], [z3, z1], respectively. Then the closed triangular
region ∆(z1, z2, z3) splits into the four closed triangular regions ∆(1) = ∆(z1, w3, w2), ∆(2) =
∆(w3, z2, w1), ∆(3) = ∆(w1, z3, w2) and ∆(4) = ∆(w3, w1, w2) and we define the correspond-
ing curvilinear integrals: I(1) =

∮
∂∆(1) f(z) dz, I(2) =

∮
∂∆(2) f(z) dz, I(3) =

∮
∂∆(3) f(z) dz and

I(4) =
∮
∂∆(4) f(z) dz. We analyse each of the four integrals into three integrals over the three

linear segments of the corresponding triangle, we add the resulting twelve integrals and we ob-
serve the cancellations which occur between integrals over pairs of linear segments with opposite
directions. We end up with six integrals over six successive linear segments which add up to give
the three linear segments of the original triangle ∂∆. The result is I = I(1) + I(2) + I(3) + I(4).
This implies |I| ≤ |I(1)|+ |I(2)|+ |I(3)|+ |I(4)| and hence |I(j)| ≥ 1

4 |I| for at least one j. Now
we take the corresponding closed triangular region ∆(j) and, for simplicity, we denote it ∆1. We
also denote I1 the corresponding integral I(j). We have proved that there is a closed triangular
region ∆1 contained in the original ∆ such that, if I =

∮
∂∆ f(z) dz and I1 =

∮
∂∆1

f(z) dz, then
|I1| ≥ 1

4 |I|. We also observe that diam∆1 = 1
2 diam∆. We may continue inductively and pro-

duce a sequence of closed triangular regions ∆n and the corresponding sequence of curvilinear
integrals In =

∮
∂∆n

f(z) dz so that:
(i)∆ ⊇ ∆1 ⊇ · · · ⊇ ∆n ⊇ ∆n+1 ⊇ · · · ,
(ii) |In| ≥ 1

4n |I|,
(iii) diam∆n = 1

2n diam∆.
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Now, (i), (iii) imply that there is a (unique) point z contained in all ∆n. In particular, z ∈ ∆
and hence f is differentiable at z. If we take an arbitrary ϵ > 0, then there is δ > 0 so that
|f(ζ)−f(z)

ζ−z − f ′(z)| < ϵ for every ζ with 0 < |ζ − z| < δ. Thus,

|f(ζ)− f(z)− f ′(z)(ζ − z)| ≤ ϵ|ζ − z| for every ζ with |ζ − z| < δ. (5.1)

Because of (iii), there is some large n so that diam∆n < δ. Since z ∈ ∆n and diam∆n < δ, we
get |ζ − z| ≤ diam∆n < δ for every ζ ∈ ∂∆n ⊆ ∆n and now (5.1) and (iii) imply

|f(ζ)− f(z)− f ′(z)(ζ − z)| ≤ ϵ|ζ − z| ≤ ϵ diam∆n =
ϵ

2n
diam∆ for every ζ ∈ ∂∆n.

Therefore,∣∣ ∮
∂∆n

(f(ζ)− f(z)− f ′(z)(ζ − z)) dζ
∣∣ ≤ ϵ

2n diam∆ l(∂∆n) ≤ 3ϵ
4n (diam∆)2. (5.2)

Since f(z)+f ′(z)(ζ−z) is a polynomial function of ζ, we get
∮
∂∆n

(f(z)+f ′(z)(ζ−z)) dζ = 0
from example 4.5.1, and (5.2) becomes

|In| = |
∮
∂∆n

f(ζ) dζ| ≤ 3ϵ
4n (diam∆)2.

Finally, (ii) implies |I| ≤ 3ϵ(diam∆)2 and since ϵ > 0 is arbitrary, we conclude that I = 0.

5.2 Primitives and the theorem of Cauchy in convex regions.

Proposition 5.1. If f is holomorphic in the convex region Ω, then f has a primitive in Ω.

Proof. We fix z0 ∈ Ω. Then for every z ∈ Ω the linear segment [z0, z] is contained in Ω and we
define F (z) =

∫
[z0,z]

f(ζ) dζ. We shall prove that F is a primitive of f in Ω. We take arbitrary
z, w ∈ Ω and consider the closed triangular region∆ with vertices z0, z, w. Since Ω is convex,∆
is contained in Ω and the Cauchy-Goursat theorem implies

∮
∂∆ f(z) dz = 0, i.e.

∫
[z0,z]

f(ζ) dζ +∫
[z,w] f(ζ) dζ +

∫
[w,z0]

f(ζ) dζ = 0. Therefore F (w)− F (z) =
∫
[z,w] f(ζ) dζ and hence

F (w)− F (z)− f(z)(w − z) =
∫
[z,w] f(ζ) dζ − f(z)

∫
[z,w] dζ =

∫
[z,w](f(ζ)− f(z)) dζ. (5.3)

Since f is continuous, for every ϵ > 0 there is δ > 0 so that |f(ζ) − f(z)| < ϵ for every ζ ∈ Ω
with |ζ − z| < δ. Taking w ∈ Ω with |w − z| < δ we automatically have |ζ − z| < δ for every
ζ ∈ [z, w] and (5.3) implies

|F (w)− F (z)− f(z)(w − z)| ≤ ϵ|w − z|.

Therefore,
∣∣F (w)−F (z)

w−z −f(z)
∣∣ ≤ ϵ for everyw with 0 < |w−z| < δ and henceF ′(z) = f(z).

The theorem of Cauchy in convex regions. If f is holomorphic in the convex region Ω, then∮
γ f(z) dz = 0

for every piecewise smooth closed curve γ in Ω.

Proof. Direct from propositions 4.10 and 5.1.

Now we shall decribe a very useful technique to handle curvilinear integrals of holomorphic
functions. Every piecewise smooth closed curve γ we shall refer to will be visually simple, for
instance a circle or a triangle or a rectangle, and we shall be able to distinguish between the points
inside γ and the points outside γ. We assume that γ surrounds every point inside it once and in
the positive direction and that it does not surround the points outside it. The points inside γ form
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the region inside γ and the points outside γ form the region outside γ. Then γ∗ is the common
boundary of the region inside γ and the region outside γ. We shall concentrate on two characteristic
cases.
First case. Let f be holomorphic in the open set Ω and let γ be a piecewise smooth closed curve
in Ω. We want to evaluate

∮
γ f(z) dz.

If Ω is convex, then
∮
γ f(z) dz = 0. So let us assume that Ω is not convex. To continue, we

assume that the region inside γ, call it D, is contained in Ω, and hence f is holomorphic in D
as well as in ∂D = γ∗. Now our technique is the following. We split D into specific disjoint
open setsE1, . . . , Em so that their boundaries ∂E1, . . . , ∂Em are trajectories of piecewise smooth
closed curves σ1, . . . , σm, so that D = E1 ∪ · · · ∪ Em and, finally, so that, when we analyse in
an appropriate way each of σ1, . . . , σm in successive subcurves and drop those subcurves which
appear as pairs of opposite curves, the remaining subcurves can be summed up to give the original
curve γ. The result is: ∮

γ f(z) dz =
∮
σ1

f(z) dz + · · ·+
∮
σm

f(z) dz.

In fact we applied this technique in the proof of the theorem of Cauchy-Goursat.
Now, if the various E1, . . . , Em can be chosen so that each E1, . . . , Em is contained in a corre-
sponding convex open subset of Ω, then we conclude that∮

γ f(z) dz =
∮
σ1

f(z) dz + · · ·+
∮
σm

f(z) dz = 0 + · · ·+ 0 = 0.

Second case. Let f be holomorphic in the open set Ω and let γ, γ1, . . . , γn be n + 1 piecewise
smooth closed curves in Ω. We want to relate

∮
γ f(z) dz,

∮
γ1
f(z) dz, . . . ,

∮
γn

f(z) dz.
We assume that the regions inside γ1, . . . , γn are disjoint and that they are all contained in the
region inside γ. Let us call D the intermediate region, i.e. the set consisting of the points which
are inside γ and outside every γ1, . . . , γn, i.e. the intersection of the region inside γ and the regions
ouside γ1, . . . , γn. We further assume thatD is a subset of Ω, and hence f is holomorphic inD as
well as in ∂D = γ∗ ∪ γ∗1 ∪ · · · ∪ γ∗n. Now, here is the technique. We splitD into specific disjoint
open setsE1, . . . , Em so that their boundaries ∂E1, . . . , ∂Em are trajectories of piecewise smooth
closed curves σ1, . . . , σm, so that E = E1 ∪ · · · ∪ Em and, finally, so that, when we analyse in
an appropriate way each of σ1, . . . , σm in successive subcurves and drop those subcurves which
appear as pairs of opposite curves, the remaining subcurves can be summed up to give γ as well
as the opposites of γ1, . . . , γn. The result is:∮

γ f(z) dz −
∮
γ1
f(z) dz − · · · −

∮
γn

f(z) dz =
∮
σ1

f(z) dz + · · ·+
∮
σm

f(z) dz.

If the various E1, . . . , Em can be chosen so that each E1, . . . , Em is contained in a corresponding
convex open subset of Ω, then

∮
σ1

f(z) dz + · · ·+
∮
σm

f(z) dz = 0 + · · ·+ 0 = 0 and hence∮
γ f(z) dz =

∮
γ1
f(z) dz + · · ·+

∮
γn

f(z) dz.

Corollary 5.1. Let C,C1, . . . , Cn be n + 1 circles and let D,D1, . . . , Dn be the corresponding
open discs. Assume that D1, . . . , Dn are disjoint and that they are all contained in D. Consider
also the closed region M = D \ (D1 ∪ · · · ∪Dn). If f : Ω → C is holomorphic in an open set
Ω which contains M , then

∮
C f(z) dz =

∮
C1

f(z) dz + · · · +
∮
Cn

f(z) dz. Instead of circles we
may consider rectangles or triangles or any combination of the three shapes.

Exercises.

5.2.1. Let γR be the piecewise smooth closed curve which is the sum of the linear segment [0, R],
the arc of the circle C0(R) from R to Rei

π
4 in the positive direction and the linear segment

[Rei
π
4 , 0]. Also, let σR be the curve wich describes only the above arc from R to Rei

π
4 .
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(i) Prove that
∫
σR

e−z2 dz → 0 when R → +∞.
(ii) Using γR appropriately together with the formula

∫ +∞
0 e−t2 dt =

√
π
2 , prove the formulas for

the so-called Fresnel integrals:
∫ +∞
0 sin t2 dt =

∫ +∞
0 cos t2 dt =

√
π

2
√
2
.

5.2.2. Let y,R > 0 and γR,y be the piecewise smooth closed curve which is the sum of the linear
segments [−R,R], [R,R+ iy], [R+ iy,−R+ iy] and [−R+ iy,−R].
(i) If y > 0 is constant, prove that

∫
[R,R+iy] e

−z2 dz → 0 and
∫
[−R+iy,−R] e

−z2 dz → 0 when
R → +∞.
(ii) Using γR,y appropriately, prove that

∫ +∞
−∞ e−(x+iy)2 dx does not depend on y ∈ [0,+∞).

(iii) Using the formula
∫ +∞
0 e−x2

dt =
√
π
2 , prove that

∫ +∞
−∞ e−x2 cos(2xy) dx =

√
πe−y2 for

every y ≥ 0 (and hence for every y ≤ 0 also). This identity is very important in harmonic
analysis.

5.3 Cauchy’s formulas for circles and infinite differentiability.

Cauchy’s formula for circles. If f is holomorphic in an open set Ω containing the closed disc
Dz0(R), then

f(z) = 1
2πi

∮
Cz0 (R)

f(ζ)
ζ−z dζ for every z ∈ Dz0(R).

Proof. Let z ∈ Dz0(R). We consider any open discDz(r) with r < R− |z− z0|. ThenDz(r) ⊆
Dz0(R) and the function f(ζ)

ζ−z is holomorphic in the open set Ω \ {z} which contains the closed
region between the circles Cz(r) and Cz0(R). Corollary 5.1 implies∮

Cz0 (R)
f(ζ)
ζ−z dζ =

∮
Cz(r)

f(ζ)
ζ−z dζ. (5.4)

Now, we have
∮
Cz(r)

1
ζ−z dζ =

∫ 2π
0

1
reit

ireit dt = 2πi and hence∮
Cz(r)

f(ζ)
ζ−z dζ − 2πif(z) =

∮
Cz(r)

f(ζ)−f(z)
ζ−z dζ. (5.5)

We take ϵ > 0. Since f is continuous at z, there is δ > 0 so that |f(ζ)−f(z)| < ϵ for every ζ ∈ Ω
with |ζ − z| < δ. Therefore, if r < δ, (5.5) implies∣∣ ∮

Cz(r)
f(ζ)
ζ−z dζ − 2πif(z)

∣∣ ≤ ϵ
r 2πr = 2πϵ.

Since ϵ is arbitrary, we conclude that limr→0

∮
Cz(r)

f(ζ)
ζ−z dζ = 2πif(z). Now, letting r → 0 in

(5.4), we get
∮
Cz0 (R)

f(ζ)
ζ−z dζ = 2πif(z).

A particular instance of the formula of Cauchy is when we take z = z0, the center of the circle
Cz0(R). Using the parametric equation ζ = z0 +Reit, t ∈ [0, 2π], we get

f(z0) =
1
2π

∫ 2π
0 f(z0 +Reit) dt

and this is calledmean value property of the holomorphic function f .

Cauchy’s formula for derivatives and circles. If f is holomorphic in an open set Ω containing
the closed disc Dz0(R), then f is infinitely many times differentiable at every z ∈ Dz0(R) and

f (n)(z) = n!
2πi

∮
Cz0 (R)

f(ζ)
(ζ−z)n+1 dζ for every z ∈ Dz0(R) and every n ∈ N.

Proof. Proposition 4.12 says that 1
2πi

∮
Cz0(R)

f(ζ)
ζ−z dζ is an infinitely many times differentiable

function of z in the discDz0(R). On the other hand, Cauchy’s formula says that this function coin-
cides with the function f(z) in the same disc. Therefore f(z) is infinitely many times differentiable
inDz0(R). Moreover, the derivatives of f(z) are the same as the derivatives of 1

2πi

∮
Cz0 (R)

f(ζ)
ζ−z dζ

and these are given by the formulas in proposition 4.12.
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Example 5.3.1. Let n ∈ N. Then
∮
Cz0 (R)

1
(ζ−z)n dζ = 0 for every z ̸∈ Dz0(R). To see this we

observe that the circle Cz0(R) is contained in a slightly larger open disc Dz0(R
′) which does not

contain z: it is enough to take R < R′ < |z − z0|. Then the disc Dz0(R
′) is a convex region and

1
(ζ−z)n is a holomorphic function of ζ inDz0(R

′). Now the result is an application of the theorem
of Cauchy in convex regions.
On the other hand, for every z ∈ Dz0(R) we have

∮
Cz0 (R)

1
(ζ−z)n dζ = 2πi, if n = 1, and∮

Cz0 (R)
1

(ζ−z)n dζ = 0, if n ≥ 2. This is a simple application of Cauchy’s formula (for a function
and its derivatives) to the constant function 1. The special case z = z0 we have already seen in
examples 2.3.9 and 4.2.2.

Theorem 5.1. If f is holomorphic in the open set Ω, then f is infinitely many times differentiable
in Ω.

Proof. Let z0 ∈ Ω. We take a closed disc Dz0(R) ⊆ Ω and then f is infinitely many times
differentiable in Dz0(R) and hence at z0.

It is time to recall the remark after theorem 4.1. The assumption of continuity of the derivative
in theorem 4.1 is superfluous. The same we may say for the hypothesis in example 4.5.6 and in
exercises 3.3.3 and 4.5.1.

Cauchy’s estimates. If f is holomorphic in an open set containing the closed disc Dz0(R) and if
|f(ζ)| ≤ M for every ζ ∈ Cz0(R), then

|f (n)(z0)| ≤ n!M
Rn for every n ∈ N.

Proof. Direct application of Cauchy’s formulas.

Exercises.

5.3.1. Evaluate
∮
C0(r)

z2+1
z(z2+4)

dz for 0 < r < 2 and for 2 < r < +∞.

5.3.2. Ifn ∈ N, evaluate
∮
C0(1)

ez

zn dz and
∫ 2π
0 ecos θ sin(nθ−sin θ) dθ,

∫ 2π
0 ecos θ cos(nθ−sin θ) dθ.

5.3.3. If n ∈ N, evaluate
∮
C0(1)

eiz

zn dz,
∮
C0(1)

sin z
zn dz,

∮
C0(1)

ez−e−z

zn dz,
∮
C1(

1
2
)

Log z
(z−1)n dz.

5.3.4. Let f be holomorphic inC and let |f(z)| ≤ A+M |z|n for every z. Prove that f (n+1)(z) = 0
for every z and that f is a polynomial function of degree ≤ n.

5.3.5. Let the complex function f be continuous in Dz0(R) and holomorphic in Dz0(R). Prove
that f(z) = 1

2πi

∮
Cz0 (R)

f(ζ)
ζ−z dζ for every z ∈ Dz0(R).

5.3.6. Let f be holomorphic in an open set containing the closed disc Dz0(R) and let 0 < r < R.
If |f(z)| ≤ M for every z ∈ Cz0(R), find an upper bound for |f (n)| in Dz0(r), which depends
only on n, r,R,M and not on f or z0.

5.3.7. Let f be holomorphic in Dz0(R). If |f(z)| ≤ 1
R−|z−z0| for every z ∈ Dz0(R), find the

smallest possible upper bound for |f (n)(z0)|, which depends only on n,R and not on f or z0.

5.3.8. Let f be holomorphic and bounded in D. Prove that f(w) = 1
π

∫∫
D

f(z)
(1−zw)2

dxdy for every
w ∈ D.
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5.4 Morera’s theorem.

Theorem 5.1 and proposition 4.10 imply the following corollary. If the complex function f is
continuous in the region Ω ⊆ C and if

∮
γ f(z) dz = 0 for every piecewise smooth closed curve γ

in Ω, then f is holomorphic in Ω. Indeed, since
∮
γ f(z) dz = 0 for every piecewise smooth closed

curve γ in Ω, we get that f has a primitive, say F , in Ω. This means that F ′ = f in Ω and hence F
is holomorphic in Ω. Therefore, F is infinitely many times differentiable in Ω and then f is also
infinitely many times differentiable in Ω. In particular, f is holomorphic in Ω.

The next theorem proves the same result with weaker assumptions.

The theorem of Morera. If the complex function f is continuous in the open set Ω ⊆ C and if∮
∂∆ f(z) dz = 0 for every closed triangular region ∆ in Ω, then f is holomorphic in Ω.

Proof. Let z0 ∈ Ω. We consider a disc Dz0(R) ⊆ Ω. This disc is a convex set and we have that∮
∂∆ f(z) dz = 0 for every closed triangular region∆ inDz0(R). Then the proof of proposition 5.1
applies, andwe get that f has a primitive, sayF , inDz0(R). This means thatF ′ = f inDz0(R) and
hence F is holomorphic inDz0(R). Therefore, F is infinitely many times differentiable inDz0(R)
and f is also infinitely many times differentiable in Dz0(R). In particular, f is holomorphic in
Dz0(R) and hence at z0.

Exercises.

5.4.1. If the complex function f is continuous in the open set Ω and holomorphic in Ω \ l, where l
is a line, prove that f is holomorphic in Ω.

5.5 Liouville’s theorem. The fundamental theorem of algebra.

The theorem of Liouville. If f is holomorphic and bounded in C, then f is constant in C.

Proof. There is M ≥ 0 so that |f(z)| ≤ M for every z. We take any z0 and apply Cauchy’s
estimate for n = 1 with an arbitrary circle Cz0(R) and we find that |f ′(z0)| ≤ M

R . Letting
R → +∞, we get f ′(z0) = 0. Since z0 is arbitrary, we conclude that f is constant.

Fundamental theorem of algebra. Every polynomial of degree ≥ 1 has at least one root in C.

Proof. Let p be a polynomial of degree ≥ 1 and assume that p has no root in C.
We consider the function f = 1

p , which is holomorphic in C, and we see easily that it is also
bounded in C. Indeed, since limz→∞ p(z) = ∞, we have limz→∞ f(z) = 0, and hence there is
R > 0 so that |f(z)| ≤ 1 for every z with |z| > R. Since |f | is continuous in the compact disc
D0(R), there isM ′ ≥ 0 so that |f(z)| ≤ M ′ for every z with |z| ≤ R. TakingM = max{M ′, 1},
we have that |f(z)| ≤ M for every z and hence f is bounded.
Liouville’s theorem implies that f and hence p is constant and we arrive at a contradiction.

Having proved that a polynomial p has a root z1, we may prove in a purely algebraic way that
z − z1 is a factor of p, i.e. there is a polynomial p1 so that p(z) = (z − z1)p1(z) for every z.
Continuing inductively, we conclude that, if n ≥ 1 is the degree of p, there are z1, . . . , zn so that

p(z) = c(z − z1) · · · (z − zn) for every z

where c is a constant. Thus, every polynomial p of degree n ≥ 1 has exactly n roots in C.

Exercises.

5.5.1. If f : C → C is holomorphic in C and Re f is bounded in C, prove that f is constant in C.
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5.5.2.We say that z, w are symmetric with respect to T if either z = 0, w = ∞ or z = ∞, w = 0
or z, w ∈ C, z = 1

w .
Let r = p

q be a non-constant rational function so that the polynomials p, q have no common root
and so that r(z) ∈ T for every z ∈ T. Prove that, if a ∈ C \ {0} is a root of p of multiplicity k,
then b = 1

a is a root of q of multiplicity k and conversely. I.e. the roots of p and the roots of q form
pairs of points symmetric with respect to T. (In particular, p and q have the same degree.)

5.6 Maximum principle.

Maximum principle. Let f be holomorphic in the regionΩ ⊆ C andM = supz∈Ω |f(z)|. If there
is z0 ∈ Ω so that |f(z0)| = M , then f is constant in Ω.

Proof. We take any z ∈ Ω for which |f(z)| = M . We consider an open discDz(R) ⊆ Ω and any
r with 0 < r < R. The mean value property of f says that f(z) = 1

2π

∫ 2π
0 f(z + reit) dt. Since

|f(z + reit)| ≤ M for every t ∈ [0, 2π], we have

M = |f(z)| =
∣∣ 1
2π

∫ 2π
0 f(z + reit) dt

∣∣ ≤ 1
2π

∫ 2π
0 |f(z + reit)| dt ≤ M.

Hence, 1
2π

∫ 2π
0 |f(z + reit)| dt = M and, since |f(z + reit)| is a continuous function of t, we

get |f(z + reit)| = M for every t ∈ [0, 2π]. Now, r is arbitrary in the interval (0, R) and we
find that |f(z + reit)| = M for every t ∈ [0, 2π] and every r ∈ (0, R). So we get |f(w)| = M
for every w ∈ Dz(R). We proved that, if |f(z)| = M for a z ∈ Ω, then this equality holds in a
neighborhood of z. Now we define

B = {z ∈ Ω | |f(z)| = M}, C = {z ∈ Ω | |f(z)| < M}

and it is clear that B ∪ C = Ω.
If z ∈ B, then |f(z)| = M and hence the same is true at every point in a neighborhood of z.
Therefore z is not a limit point of C. Moreover, if z ∈ C then |f(z)| < M and, by the continuity
of f , the same is true in a neighborhood of z. Hence z is not a limit point of B.
If both B and C are non-empty, then they form a decomposition of Ω. But Ω is connected and,
since z0 ∈ B, we get that C = ∅. Therefore, |f(z)| = M for every z ∈ Ω.
Now we shall prove that f is constant in Ω. If M = 0, then clearly f = 0 in Ω. So let us assume
thatM > 0. If u and v are the real and the imaginary part of f , then u2+v2 = M2 inΩ and hence
u∂u
∂x + v ∂v

∂x = 0 and u∂u
∂y + v ∂v

∂y = 0 in Ω. Using the C-R equations, we get u∂u
∂x + v ∂v

∂x = 0 and
v ∂u
∂x −u ∂v

∂x = 0 in Ω. Viewing this as a system with unknowns ∂u
∂x ,

∂v
∂x , we see that its determinant

is u2 + v2 = M2 > 0, and we find that ∂u
∂x = 0 and ∂v

∂x = 0 in Ω. Therefore, f ′ = ∂u
∂x + i ∂v∂x = 0

in Ω and hence f is constant in the region Ω.

Maximum principle. Let the complex function f be holomorphic in the bounded region Ω and
continuous in Ω. Then either f is constant in Ω or |f | has a maximum value, say M , attained at
a point of ∂Ω and |f(z)| < M for every z ∈ Ω. In every case, |f | has a maximum value which is
attained at a point of ∂Ω.

Proof. If f is constant in Ω, then |f | is also constant, say M , in Ω. Then, obviously, M is the
maximum value of |f | and it is attained (everywhere and hence) at every point of ∂Ω.
Now we assume that f is not constant in Ω. This implies easily that f is not constant in Ω either.
Now, |f | is continuous in the compact set Ω and hence attains its maximum value, sayM , at some
point z0 ∈ Ω. I.e. we have |f(z0)| = M and |f(z)| ≤ M for every z ∈ Ω.
If any such z0 belongs to Ω, then the previous maximum principle implies that f is constant in Ω
and we arrive at a contradiction. We conclude that z0 ∈ ∂Ω and |f(z)| < M for every z ∈ Ω.

Exercise 5.6.3 refers to the case of an unbounded region Ω.

68



Exercises.

5.6.1. Let f be holomorphic in the region Ω ⊆ C and let m = infz∈Ω |f(z)|. If there is z0 ∈ Ω so
that |f(z0)| = m, prove that eitherm = 0 (and hence f(z0) = 0) orm > 0 and then f is constant
in Ω. This is calledminimum principle.

5.6.2. Let the complex function f be holomorphic in D and continuous in D, let |f(z)| > 1 for
every z ∈ T and f(0) = 1. Does f have a root in D?

5.6.3. State and prove the second maximum principle in the case of an unbounded region Ω ⊆ C.
In this case we must include the point∞ in Ω.

5.6.4. Let f be holomorphic in the bounded region Ω and limz→ζ f(z) = 0 for every ζ ∈ ∂Ω.
Prove that f is constant 0 in Ω.
In the case of an unbounded region Ω ⊆ C, we must include the point∞ in ∂Ω.

5.6.5. Let f be holomorphic in the region Ω ⊆ C and K = supz∈Ω Re f(z). If there is z0 ∈ Ω so
that Re f(z0) = K, prove that f is constant in Ω.

5.6.6. Prove the fundamental theorem of algebra using the maximum principle.

5.6.7. Let fn, f be holomorphic in the bounded regionΩ and continuous inΩ. If fn → f uniformly
in ∂Ω, prove that fn → f uniformly in Ω.
In the case of an unbounded region Ω ⊆ C, we must include the point∞ in ∂Ω.

5.6.8. Let R be a square region with center z0. Let f be holomorphic in R and continuous in R. If
|f(z)| ≤ m for every z in one of the four sides of R and |f(z)| ≤ M for every z in the other three
sides of R, prove that |f(z0)| ≤

4
√
mM3.

5.6.9. Let Ω = {x + iy | − π
2 < y < π

2 } and f(z) = ee
z . Then f is holomorphic in Ω and

continuous in Ω = {x+ iy | − π
2 ≤ y ≤ π

2 }. Prove that |f(x− iπ2 )| = |f(x+ iπ2 )| = 1 for every
x ∈ R and that limx→+∞ f(x) = +∞. Does this contradict the maximum principle?

5.6.10. Let the complex function f be holomorphic in the bounded region Ω and continuous in Ω.
If |f | is constant in ∂Ω, prove that either f has at least one root in Ω or f is constant in Ω.

5.6.11. Let f be holomorphic in the bounded region Ω and continuous in Ω. If Re f = 0 in ∂Ω,
prove that f is constant in Ω.

5.6.12. (i) Let f be holomorphic and non-constant in the region Ω ⊆ C. For every µ > 0 prove
that {z ∈ Ω | |f(z)| < µ} ∩ Ω = {z ∈ Ω | |f(z)| ≤ µ}.
(ii) Let p be a polynomial of degree n ≥ 1. Prove that for every µ > 0 the set {z | |p(z)| < µ} has
at most n connected components and each of them contains at least one root of p. How do these
connected components behave when µ → 0+ and when µ → +∞?

5.6.13. Let f be holomorphic and non-constant in the bounded regionΩ. If lim supΩ∋z→ζ |f(z)| ≤
M for every ζ ∈ ∂Ω, prove that |f(z)| < M for every z ∈ Ω.
In the case of an unbounded region Ω ⊆ C, we must include the point∞ in ∂Ω.

5.6.14. Let the complex function f be holomorphic in the bounded region Ω and continuous in Ω.
If U is an open set so that U ⊆ Ω, prove that supz∈∂U |f(z)| ≤ supz∈∂Ω |f(z)|. If equality holds,
prove that f is constant in Ω.

5.6.15. Let f be holomorphic in D0(R1, R2) and a ∈ R. Prove that |z|a|f(z)| has no maximum
value inD0(R1, R2), except if a ∈ Z and there is c so that f(z) = cz−a for every z ∈ D0(R1, R2).
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5.6.16. The three circles theorem of Hadamard. Let f be holomorphic in Dz0(R1, R2) and let
M(r) = maxz∈Cz0 (r)

|f(z)| for R1 < r < R2. Prove that lnM(r) is a convex function of ln r
in (R1, R2). I.e. prove that, if R1 < r1 < r < r2 < R2 and ln r = (1 − t) ln r1 + t ln r2 for
0 < t < 1, then lnM(r) ≤ (1− t) lnM(r1) + t lnM(r2).

5.6.17. The three lines theorem. Let f be holomorphic and bounded in the vertical zone K =
{x + iy |X1 < x < X2} and let M(x) = supy∈R |f(x + iy)| for X1 < x < X2. Prove that
lnM(x) is a convex function of x in (X1, X2). I.e. prove that, if X1 < x1 < x < x2 < X2 and
x = (1− t)x1 + tx2 for 0 < t < 1, then lnM(x) ≤ (1− t) lnM(x1) + t lnM(x2).

5.6.18. The Phragmén-Lindelöf theorem. Let f, ϕ be holomorphic in the bounded region Ω and
let ϕ be bounded in Ω and have no root in Ω. Let also A ∩B = ∅ and A ∪B = ∂Ω. If
(i) lim supΩ∋z→ζ |f(z)| ≤ M for every ζ ∈ A and
(ii) lim supΩ∋z→ζ |f(z)||ϕ(z)|ϵ ≤ M for every ζ ∈ B and every ϵ > 0,
then prove that |f(z)| ≤ M for every z ∈ Ω. If, moreover, f is non-constant in Ω, prove that
|f(z)| < M for every z ∈ Ω.

5.7 Taylor series and Laurent series.

Proposition 5.2. Let f be holomorphic in the open set Ω, z0 ∈ Ω and let Dz0(R) be the largest
disc with center z0 which is contained inΩ. Then there is a unique power series

∑+∞
n=0 an(z−z0)

n

so that
f(z) =

∑+∞
n=0 an(z − z0)

n for every z ∈ Dz0(R).

The coefficients are given by an = f (n)(z0)
n! = 1

2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ for 0 < r < R.

Proof. We take z ∈ Dz0(R), and then |z − z0| < R. If |z − z0| < r < R, then z ∈ Dz0(r) and,
according to the formula of Cauchy, we have

f(z) = 1
2πi

∮
Cz0 (r)

f(ζ)
ζ−z dζ. (5.6)

Now for every ζ ∈ Cz0(r) we have | z−z0
ζ−z0

| = |z−z0|
r < 1 and hence

1
ζ−z = 1

(ζ−z0)−(z−z0)
= 1

ζ−z0
1

1− z−z0
ζ−z0

= 1
ζ−z0

∑+∞
n=0(

z−z0
ζ−z0

)n.

The test of Weierstrass implies that
∑+∞

n=0

(
z−z0
ζ−z0

)n converges, as a series of functions of ζ, uni-
formly in Cz0(r). Indeed, | z−z0

ζ−z0
|n = ( |z−z0|

r )n for every ζ ∈ Cz0(r) and
∑+∞

n=0(
|z−z0|

r )n < +∞.
So from (5.6) we have that

f(z) =
∑+∞

n=0
1

2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ (z − z0)

n. (5.7)

Now, we observe that the radius r has been chosen to satisfy the inequality |z − z0| < r < R and
hence the integrals 1

2πi

∫
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ depend a priori on z. But there are two reasons that

these integrals actually do not depend on the value of r in the interval (0, R) and hence on z. The
first reason is that from the formulas of Cauchy we get 1

2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ = f (n)(z0)

n! when

0 < r < R. The second reason is that f(ζ)
(ζ−z0)n+1 is holomorphic in Dz0(R) \ {z0}, and because

of corollary 5.1, we have 1
2πi

∮
Cz0 (r1)

f(ζ)
(ζ−z0)n+1 dζ = 1

2πi

∮
Cz0(r2)

f(ζ)
(ζ−z0)n+1 dζ when 0 < r1 <

r2 < R. We conclude from (5.7) that f(z) =
∑+∞

n=0 an(z − z0)
n for every z ∈ Dz0(R), where

an = f (n)(z0)
n! = 1

2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ for 0 < r < R.
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Regarding uniqueness, assume that f(z) =
∑+∞

n=0 bn(z − z0)
n for every z ∈ Dz0(R). Then, if

0 < r < R, the series
∑+∞

n=0 bn(z − z0)
n converges uniformly in Cz0(r) and we get

2πiak =
∮
Cz0 (r)

f(ζ)
(ζ−z0)k+1 dζ =

∮
Cz0(r)

1
(ζ−z0)k+1

∑+∞
n=0 bn(ζ − z0)

n dζ

=
∑+∞

n=0 bn
∮
Cz0(r)

(ζ − z0)
n−k−1 dζ = 2πibk.

The last equality uses the calculation in example 4.2.2. Finally, bk = ak for every k.

The power series
∑+∞

n=0 an(z − z0)
n with an = f (n)(z0)

n! = 1
2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ for 0 <

r < R is called Taylor series of f in the disc Dz0(R), the largest open disc with center z0 which
is contained in the domain of holomorphy of f .

Example 5.7.1. The function f(z) = 1
1−z is holomorphic in C \ {1} and the largest open disc

with center 0 which is contained in C \ {1} is D0(1). To find the Taylor series of f in D0(1) we
calculate the derivatives f (n)(z) = n!

(1−z)n+1 for every n ≥ 0. Thus, an = f (n)(0)
n! = 1 for every

n ≥ 0 and the Taylor series of f is
∑+∞

n=0 z
n. I.e. 1

1−z =
∑+∞

n=0 z
n for every z ∈ D0(1). Of

course, this is already known.

Example 5.7.2. The function f(z) = 1
1+z2

= 1
(z+i)(z−i) is holomorphic in the open setC\{i,−i}

and the largest open disc with center 0 which is contained in C \ {i,−i} is D0(1). To find the
Taylor series of f inD0(1)we calculate the derivatives of f . Wewrite f(z) = − 1

2i(
1

i−z+
1

i+z ) and

get f (n)(z) = − 1
2i(

n!
(i−z)n+1 + (−1)n n!

(i+z)n+1 ) for every n ≥ 0. Hence an = f (n)(0)
n! = 1+(−1)n

2in

for every n ≥ 0. If n is odd, then an = 0. If n is even, then an = 1
in = (−1)

n
2 and the Taylor

series of f is
∑+∞

k=0(−1)kz2k. I.e. 1
1+z2

=
∑+∞

k=0(−1)kz2k for every z ∈ D0(1).
We may find the same formula if we use the Taylor series of 1

1−z , i.e.
1

1−z =
∑+∞

n=0 z
n. We

replace z with−z2 and find 1
1+z2

=
∑+∞

n=0(−1)nz2n. From the moment that we have found some
power series which coincides with our function in D0(1), then, because of uniqueness, this is the
Taylor series of our function.

Example 5.7.3. The exponential function f(z) = ez is holomorphic in C and the largest open disc
with center 0 which is contained in C isD0(+∞) = C. The derivatives of f are f (n)(z) = ez for
every n ≥ 0 and the coefficients of the Taylor series of f are an = f (n)(0)

n! = 1
n! for every n ≥ 0.

Thus, the Taylor series of f is
∑+∞

n=0
1
n!z

n and we have

ez =
∑+∞

n=0
1
n!z

n for every z.

We have proven this identity differently in example 4.6.3.

Example 5.7.4. The function f(z) = cos z, defined in exercise 4.2.6, is holomorphic in C and
the largest open disc with center 0 which is contained in C is D0(+∞) = C. The derivatives of
f are f (n)(z) = (−1)

n
2 cos z for even n and f (n)(z) = (−1)

n+1
2 sin z for odd n. Therefore, the

coefficients of the Taylor series are an = f (n)(0)
n! = (−1)

n
2

n! for even n and an = f (n)(0)
n! = 0 for

odd n. Thus, the Taylor series of f is
∑+∞

k=0
(−1)k

(2k)! z
2k and we have

cos z =
∑+∞

k=0
(−1)k

(2k)! z
2k for every z.

In the same manner we can prove that

sin z =
∑+∞

k=1
(−1)k−1

(2k−1)! z
2k−1 for every z.
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Another way to find the Taylor series of cos z and sin z is through the definitions of the two func-
tions and the Taylor series of ez . For instance:

cos z = eiz+e−iz

2 = 1
2

∑+∞
n=0

1
n!(iz)

n + 1
2

∑+∞
n=0

1
n!(−iz)n =

∑+∞
n=0

in(1+(−1)n)
2n! zn

=
∑+∞

k=0
i2k

(2k)!z
2k =

∑+∞
k=0

(−1)k

(2k)! z
2k.

The power series we found coincides with the function cos z in the largest open disc with center
0 which is contained in the domain of holomorphy of cos z and, because of uniqueness, this is the
Taylor series of cos z.

Example 5.7.5. The function f(z) = −Log(1 − z) is defined and holomorphic in C \ [1,+∞).
The largest disc with center 0 in C \ [1,+∞) is D. The derivatives of f are f (n)(z) = (n−1)!

(1−z)n for

every n ≥ 1. Thus, a0 = 0 and an = f (n)(0)
n! = 1

n for every n ≥ 1 and the Taylor series of f is∑+∞
n=1

zn

n . I.e.
−Log(1− z) =

∑+∞
n=1

zn

n for every z ∈ D.

Proposition 5.3. Let f be holomorphic in the open set Ω and let Dz0(R1, R2) be a largest open
ring with center z0 which is contained inΩ. Then there is a unique power series

∑+∞
−∞ an(z−z0)

n

so that
f(z) =

∑+∞
−∞ an(z − z0)

n for every z ∈ Dz0(R1, R2).

The coefficients are given by an = 1
2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ for R1 < r < R2.

Proof. We take z ∈ Dz0(R1, R2), and then R1 < |z − z0| < R2. We choose any r1, r2 so that
R1 < r1 < |z − z0| < r2 < R2. Then z ∈ Dz0(r1, r2) and

f(z) = 1
2πi

∮
Cz0 (r2)

f(ζ)
ζ−z dζ −

1
2πi

∮
Cz0 (r1)

f(ζ)
ζ−z dζ. (5.8)

To prove (5.8), we consider an open discDz(r) with r < min{r2 − |z− z0|, |z− z0| − r1}. Then
Dz(r) ⊆ Dz0(r1, r2) and we apply corollary 5.1 to f(ζ)

ζ−z , which is a holomorphic function of ζ in
Dz0(R1, R2) \ {z}. We get

∮
Cz0 (r2)

f(ζ)
ζ−z dz −

∮
Cz0 (r1)

f(ζ)
ζ−z dz =

∮
Cz(r)

f(ζ)
ζ−z dζ. Now as in the

proof of Cauchy’s formula for circles, we have limr→0

∮
Cz(r)

f(ζ)
ζ−z dζ = 2πif(z) and the proof of

(5.8) is complete.
For every ζ ∈ Cz0(r2) we have

1
ζ−z = 1

(ζ−z0)−(z−z0)
= 1

ζ−z0
1

1− z−z0
ζ−z0

= 1
ζ−z0

∑+∞
n=0(

z−z0
ζ−z0

)n,

because | z−z0
ζ−z0

| = |z−z0|
r2

< 1. Similarly, for every ζ ∈ Cz0(r1) we have

1
ζ−z = 1

(ζ−z0)−(z−z0)
= − 1

z−z0
1

1− ζ−z0
z−z0

= − 1
z−z0

∑+∞
n=0(

ζ−z0
z−z0

)n

because | ζ−z0
z−z0

| = r1
|z−z0| < 1. Exactly as in the proof of proposition 5.2, we see that these two

series of functions converge uniformly and (5.8) implies

f(z) =
∑+∞

n=0
1

2πi

∮
Cz0 (r2)

f(ζ)
(ζ−z0)n+1 dζ (z − z0)

n

+
∑+∞

n=0
1

2πi

∮
Cz0 (r1)

f(ζ)(ζ − z0)
n dζ 1

(z−z0)n+1 .

In the last series we change n+ 1 to −n and get

f(z) =
∑+∞

n=0
1

2πi

∮
Cz0 (r2)

f(ζ)
(ζ−z0)n+1 dζ (z − z0)

n

+
∑n=−1

−∞
1

2πi

∮
Cz0 (r1)

f(ζ)
(ζ−z0)n+1 dζ (z − z0)

n.
(5.9)
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Now, f(ζ)
(ζ−z0)n+1 is holomorphic in Dz0(R1, R2) and another application of corollary 5.1 implies

that
∮
Cz0 (r1)

f(ζ)
(ζ−z0)n+1 dζ =

∮
Cz0 (r2)

f(ζ)
(ζ−z0)n+1 dζ for R1 < r1 < r2 < R2. Therefore the coeffi-

cients of both series in (5.9) do not depend on the values of r1, r2, and we replace both radii with
any rwithR1 < r < R2. We conclude that f(z) =

∑+∞
−∞ an(z−z0)

n for every z ∈ Dz0(R1, R2),
where an = 1

2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ for R1 < r < R2.

Regarding uniqueness, assume that f(z) =
∑+∞

−∞ bn(z − z0)
n for every z ∈ Dz0(R1, R2). We

take any r with R1 < r < R2, and then
∑+∞

−∞ bn(z − z0)
n converges uniformly in Cz0(r). Then

2πiak =
∮
Cz0 (r)

f(ζ)
(ζ−z0)k+1 dζ =

∮
Cz0 (r)

1
(ζ−z0)k+1

∑+∞
−∞ bn(ζ − z0)

n dζ

=
∑+∞

−∞ bn
∮
Cz0 (r)

(ζ − z0)
n−k−1 dζ = 2πibk

and we get that bk = ak for every k.

The power series
∑+∞

−∞ an(z − z0)
n with an = 1

2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ for R1 < r < R2 is

called Laurent series of f in the ring Dz0(R1, R2), a largest open ring with center z0 which is
contained in the domain of holomorphy of f .

Example 5.7.6. The function f(z) = 1
z is holomorphic inC\{0}. The ringD0(0,+∞) = C\{0}

is the largest open ring with center 0 which is contained in C \ {0}. To find the Laurent series of
f in D0(0,+∞) we evaluate the coefficients an. We take any r with 0 < r < +∞, and then we
have an = 1

2πi

∮
C0(r)

1/ζ
ζn+1 dζ = 1

2πi

∮
C0(r)

1
ζn+2 dζ for every n. If n ̸= −1, then an = 0 and, if

n = −1, then a−1 = 1. Therefore, the Laurent series of f in D0(0,+∞) is
∑+∞

−∞ anz
n = z−1

and hence we have the obvious identity 1
z = z−1 for every z ∈ D0(0,+∞).

In the following examples we shall use the uniqueness of the Laurent series to find the Laurent
series of certain functions without evaluating integrals: we find in an indirect way a power series
which coincides with the function in a specific ring and then, because of uniqueness, this is the
Laurent series of the function in the ring.

Example 5.7.7. The function f(z) = 1
1−z is holomorphic in the open set C \ {1}. We have seen

that the largest open disc with center 0 which is contained in C \ {1} isD0(1) and that the Taylor
series of f in this disc is

∑+∞
n=0 z

n.
Another largest open ring with center 0 which is contained in C \ {1} is D0(1,+∞). To find the
Laurent series of f in this ring, we may evaluate the coefficients an using their formulas with the
integrals. But we can do something simpler. If z ∈ D0(1,+∞), then |1z | < 1 and hence

1
1−z = −1

z
1

1− 1
z

= −1
z

∑+∞
n=0(

1
z )

n = −
∑n=−1

−∞ zn.

Because of uniqueness, the Laurent series of f in D0(1,+∞) is −
∑n=−1

−∞ zn.

Example 5.7.8. The function f(z) = 1
(z−1)(z−2) is holomorphic in C \ {1, 2}. There is a largest

open disc and two largest open rings with center 0which are contained inC\{1, 2} : the discD0(1)
and the rings D0(1, 2) and D0(2,+∞). To find the corresponding Taylor and Laurent series we
write f as a sum of simple fractions: f(z) = 1

z−2 − 1
z−1 .

If z ∈ D0(1), then |z| < 1 and | z2 | < 1, and hence

f(z) = −1
2

1
1− z

2
+ 1

1−z = −1
2

∑+∞
n=0(

z
2)

n +
∑+∞

n=0 z
n =

∑+∞
n=0(1−

1
2n+1 )z

n.

Therefore, the Taylor series of f in D0(1) is
∑+∞

n=0(1−
1

2n+1 )z
n.

If z ∈ D0(1, 2), then |1z | < 1 and | z2 | < 1, and hence

f(z) = −1
2

1
1− z

2
− 1

z
1

1− 1
z

= −1
2

∑+∞
n=0(

z
2)

n − 1
z

∑+∞
n=0(

1
z )

n = −
∑n=−1

−∞ zn −
∑+∞

n=0
1

2n+1 z
n.
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Therefore, the Laurent series of f in D0(1, 2) is −
∑n=−1

−∞ zn −
∑+∞

n=0
1

2n+1 z
n.

If z ∈ D0(2,+∞), then |1z | < 1 and |2z | < 1, and hence

f(z) = 1
z

1
1− 2

z

− 1
z

1
1− 1

z

= 1
z

∑+∞
n=0(

2
z )

n − 1
z

∑+∞
n=1(

1
z )

n =
∑n=−2

−∞ ( 1
2n+1 − 1)zn.

Therefore, the Laurent series of f in D0(2,+∞) is
∑n=−2

−∞ ( 1
2n+1 − 1)zn.

Example 5.7.9. The function f(z) = e
1
z is holomorphic in C \ {0}. ThenD0(0,+∞) = C \ {0}

is the only largest open ring with center 0which is contained inC\{0}. We find the Laurent series
of f inD0(0,+∞) using the Taylor series of ez in C. In the identity ez =

∑+∞
n=0

1
n!z

n we replace
z with 1

z and we find e
1
z =

∑n=−1
−∞

1
(−n)!z

n + 1 for every z ̸= 0. Therefore, the Laurent series of
f in D0(0,+∞) is

∑n=−1
−∞

1
(−n)!z

n + 1.

Exercises.

5.7.1. Let 0 < |a| < |b|. Find the three Laurent series with center 0, the two Laurent series with
center a and the two Laurent series with center b of the function z

(z−a)(z−b) .

5.7.2. Find the Taylor series of 1
1+z2

with center any a ∈ R.

5.7.3. Find the Taylor series with center 1 of the holomorphic branch of z
1
2 with value 1 at 1.

5.7.4. Let f be holomorphic in Dz0(R) and let
∑+∞

n=0 an(z − z0)
n be the Taylor series of f .

(i) Prove that, if 0 ≤ r < R, then 1
2π

∫ 2π
0 |f(z0 + reit)|2 dt =

∑+∞
n=0 |an|2r2n.

(ii) If |f(z)| ≤ M for every z ∈ Dz0(R), prove that
∑+∞

n=0 |an|2R2n ≤ M2.
(iii) If g is also holomorphic in Dz0(R) with Taylor series

∑+∞
n=0 bn(z − z0)

n, prove that, if 0 ≤
r < R, then 1

2π

∫ 2π
0 f(z0 + reit) g(z0 + reit) dt =

∑+∞
n=0 anbnr

2n.
5.7.5. Let f be holomorphic in Dz0(R1, R2). Prove that there are functions f1, f2 so that f2 is
holomorphic inDz0(R2) and f1 is holomorphic inDz0(R1,+∞)∪{∞} and so that f = f1+f2 in
Dz0(R1, R2). Prove that, if f is bounded inDz0(R1, R2), then f1, f2 are bounded inDz0(R1, R2).
5.7.6. Let f be holomorphic in D0(R,+∞). Prove that f is holomorphic also at ∞ if and only if
the Laurent series of f inD0(R,+∞) is of the form

∑n=−1
−∞ anz

n+a0. Observe that f(∞) = a0.

5.7.7. Prove that 1
cos z = 1 +

∑+∞
k=1

E2k
(2k)!z

2k for |z| < π
2 , where the numbers E2k satisfy the

recursive relations E2n −
(

2n
2n−2

)
E2n−2 +

(
2n

2n−4

)
E2n−4 − · · · + (−1)n−1

(
2n
2

)
E2 + (−1)n = 0.

Evaluate E2, E4, E6, E8. The numbers E2k are called Euler constants.
5.7.8. Let f be holomorphic in the horizontal zone Ω = {x+ iy |A < y < B} and periodic with
period 1, i.e. f(z + 1) = f(z) for every z ∈ Ω.
(i) Prove that there are cn so that f(z) =

∑+∞
−∞ cne

2πinz for every z ∈ Ω and find formulas for
the coefficients cn.
(ii) Prove that the series in (i) converges uniformly in every smaller zone {x + iy | a < y < b}
with A < a < b < B.
5.7.9. (i) Prove that e

w
2
(z− 1

z
) = b0(w)+

∑+∞
n=1 bn(w)(z

n+ (−1)n

zn ) for every z ̸= 0, where bn(w) =
1
π

∫ π
0 cos(nt− w sin t) dt for n ∈ N0.

(ii) Ifm,n ∈ N0, prove that 1
2πi

∫
C0(1)

(z2±1)m

zm+n+1 dz =

{
(±1)p(n+2p)!

p!(n+p)! ifm = n+ 2p, p ∈ N0

0, otherwise
(iii) The function bn(w) is called Bessel function of the first kind. Find the Taylor series of bn(w)
with center 0.
5.7.10. Let I be an open interval in R. The function f : I → C is called real analytic in I
if for every t0 ∈ I there are ϵ > 0 and an ∈ C, n ∈ N0, so that (t0 − ϵ, t0 + ϵ) ⊆ I and
f(t) =

∑+∞
n=0 an(t− t0)

n for every t ∈ (t0 − ϵ, t0 + ϵ).
Prove that, if f is real analytic in I , then there is an open set Ω ⊆ C so that I ⊆ Ω and so that f
can be extended as a function f : Ω → C holomorphic in Ω.
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5.8 Roots and the principle of identity.

Let f be holomorphic in the open set Ω and z0 ∈ Ω. We consider the largest open discDz0(R)
which is contained in Ω and the Taylor series of f in this disc. Then

f(z) =
∑+∞

n=0 an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · · for every z ∈ Dz0(R).

We assume that z0 is a root of f or, equivalently, that a0 = 0 and we distinguish between two
cases.
First case: an = 0 for every n.
Then, obviously, f(z) = 0 for every z ∈ Dz0(R), i.e. f is identically 0 in Dz0(R). Because of
the formulas for an, the condition an = 0 for every n is equivalent to f (n)(z0) = 0 for every n.
Second case: an ̸= 0 for at least one n.
We consider the smallest n ≥ 1 with an ̸= 0 and let this be N . I.e. a0 = a1 = . . . = aN−1 = 0
and aN ̸= 0. This is equivalent to f(z0) = f (1)(z0) = . . . = f (N−1)(z0) = 0 and f (N)(z0) ̸= 0.
Then we have f(z) = (z − z0)

N
∑+∞

n=0 aN+n(z − z0)
n for every z ∈ Dz0(R). The power series∑+∞

n=0 aN+n(z−z0)
n = aN +aN+1(z−z0)+aN+2(z−z0)

2+ · · · converges in the discDz0(R)
and defines a function g holomorphic in Dz0(R). Then

f(z) = (z − z0)
Ng(z) for every z ∈ Dz0(R),

and thus g(z) = f(z)
(z−z0)N

for every z ∈ Dz0(R) \ {z0}. We observe that f(z)
(z−z0)N

is a holomorphic
function in Ω \ {z0} and not only in Dz0(R) \ {z0}. Therefore, we may consider g as defined in
Ω\{z0}with the same formula: g(z) = f(z)

(z−z0)N
. We also recall that g is defined, through its power

series, at z0 and it is holomorphic inDz0(R) ⊆ Ω. In fact its value at z0 is g(z0) = aN = f (N)(z0)
N ! .

Thus, the formula of g, as a function holomorphic in Ω, can be written:

g(z) =


f(z)

(z−z0)N
, if z ∈ Ω \ {z0}

aN = f (N)(z0)
N ! , if z = z0

(5.10)

Since g(z0) = aN ̸= 0 and since g is continuous at z0, there is r with 0 < r ≤ R so that g(z) ̸= 0
for every z ∈ Dz0(r), and hence f(z) ̸= 0 for every z ∈ Dz0(r) \ {z0}.

Let f be holomorphic in the open set Ω, z0 ∈ Ω and
∑+∞

n=0 an(z − z0)
n be the Taylor series

of f at z0. Then we have three cases. (i) If an = 0 for every n, then we say that z0 is a root of f
of infinite multiplicity. (ii) If a0 = a1 = . . . = aN−1 = 0 and aN ̸= 0 for some N ≥ 1, then we
say that z0 is a root of f ofmultiplicity N. (iii) In case f(z0) = a0 ̸= 0 we say that z0 is a root of
f of multiplicity 0.

We saw that, if z0 is a root of f of infinite multiplicity, then f is identically 0 in the largest
disc with center z0 which is contained in the domain of holomorphy of f . If z0 is a root of f of
finite multiplicity, then there is some discDz0(r) which contains no other root of f besides z0 and
hence we say that the root z0 is isolated. Moreover, if the multiplicity of z0 isN , then the function
g(z) = f(z)

(z−z0)N
, which is holomorphic in Ω\{z0}, can be defined at z0 as g(z0) = aN = f (N)(z0)

N !

and then it is holomorphic in Ω. In other words, we can factorize (z− z0)
N from f(z), i.e. we can

write f(z) = (z − z0)
Ng(z) with a function g holomorphic in Ω. This is a striking generalization

of the analogous factorization for polynomials: is z0 is a root of the polynomial p(z) of multiplicity
N , then we can write p(z) = (z − z0)

Nq(z), where q(z) is another polynomial.

Example 5.8.1. The function ez
3 − 1 is holomorphic in C and its Taylor series with center 0 is∑+∞

n=1
1
n! z

3n. Therefore, ez3 − 1 = z3
∑+∞

n=1
1
n! z

3(n−1) = z3
∑+∞

n=0
1

(n+1)! z
3n = z3g(z) for ev-

ery z, where g is the function defined by the power series
∑+∞

n=0
1

(n+1)! z
3n. Now g is holomorphic

in C with g(0) = 1 ̸= 0, hence 0 is a root of ez3 − 1 of multiplicity 3.
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Lemma 5.1. If f is holomorphic in the regionΩ and if z0 ∈ Ω is a root of f of infinite multiplicity,
then f is identically 0 in Ω.

Proof. f is identically 0 in some disc with center z0. We define

B = {z ∈ Ω | f is identically 0 in some disc with center z}

and the complementary set C = Ω \B. Obviously, B ∪ C = Ω and B ̸= ∅, since z0 ∈ B.
If z ∈ B, then f is identically 0 in some disc Dz(r), and if we take any w ∈ Dz(r), then f
is identically 0 in some small disc Dw(r

′) ⊆ Dz(r). Thus every w ∈ Dz(r) belongs to B, i.e.
Dz(r) ⊆ B and z is not a limit point of C.
Now, let z ∈ C. Then f is identically 0 in no disc with center z, and hence z is not a root of infinite
multiplicity of f . Therefore, there is a discDz(r) in which the only possible root of f is its center
z. Then this disc contains no w ∈ B and z is not a limit point of B.
Thus, none of B,C contains a limit point of the other. Since B ̸= ∅, we must have C = ∅,
otherwise B,C would form a decomposition of Ω. Hence Ω = B and f is identically 0 in Ω.

Principle of identity. If f is holomorphic in the regionΩ and if the roots of f have an accumulation
point in Ω, then f is identically 0 in Ω.

Proof. Suppose that there is a sequence (zn) of roots of f so that zn → z with z ∈ Ω and zn ≠ z
for every n. Since f is continuous at z and zn → z, we have 0 = f(zn) → f(z) and hence
f(z) = 0. If z is a root of finite multiplicity of f , then there would be some disc Dz(r) in which
the only root of f is its center z. This is wrong, since Dz(r) contains, after some index, all roots
zn and these are different from z. Therefore, z is a root of infinite multiplicity of f , and lemma
5.1 implies that f is identically 0 in Ω.

Lemma 5.1 and the principle of identity can be stated for a non-connected open set Ω. Then
the result of lemma 5.1 holds in the connected component of Ω which contains the root of infinite
multiplicity z0 and the result of the principle of identity holds in the connected component of Ω
which contains the accumulation point of the roots of f .

Instead of speaking only about the roots of f , i.e. the solutions of the equation f(z) = 0, we
may state our results for the solutions of the equation f(z) = w for any fixed w. The results are
the same as before. We just consider the function g(z) = f(z) − w, and then the solutions of
f(z) = w are the same as the roots of g. For instance, if z0 is a solution of f(z) = w of infinite
multiplicity, then f is constantw in some discDz0(R) and, if z0 is a solution of f(z) = w of finite
multiplicity N , then in some disc Dz0(r) the function f takes the value w only at the center z0.
Then lemma 5.1 says that, if f is holomorphic in the region Ω and z0 is a solution of f(z) = w
of infinite multiplicity, then f is constant w in Ω. And the principle of identity says that, if f is
holomorphic in the region Ω and the solutions of f(z) = w have an accumulation point in Ω, then
f is constant w in Ω.

The principle of identity has another equivalent form.

Principle of identity. If f is holomorphic in the region Ω and if some compact K ⊆ Ω contains
infinitely many roots of f , then f is identically 0 in Ω.

Proof. Let us assume the previous principle of identity and let us suppose that some compact
K ⊆ Ω contains infinitely many roots of f . Then there is a sequence (zn) of roots of f inK with
distinct terms. SinceK is compact, there is a subsequence (znk

) so that znk
→ z for some z ∈ K.

But then z ∈ Ω is an accumulation point of roots of f and hence f is identically 0 in Ω.
Conversely, let us assume the present form of the principle of identity and let us suppose that the
roots of f have an accumulation point in Ω. Then there is a sequence (zn) of roots of f so that
zn → z with z ∈ Ω and zn ̸= z for every n. We take a compact disc Dz(r) ⊆ Ω and then this
disc contains infinitely many of the roots zn. Hence f is identically 0 in Ω.
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Example 5.8.2. Assume that there is f holomorphic in C so that f( 1n) =
n

n+1 for every n ∈ N.
Wewrite f( 1n) =

1
1+ 1

n

and compare the functions f(z) and 1
1+z . Both are holomorphic inC\{−1}

and their difference f(z)− 1
1+z has roots at the points

1
n which have 0 as their accumulation point.

Since 0 ∈ C \ {−1} and C \ {−1} is connected, we have that f(z) − 1
1+z is identically 0 in this

set, i.e. f(z) = 1
1+z for every z ̸= −1. Since we assume that f is holomorphic at −1, we get

limz→−1
1

1+z = limz→−1 f(z) = f(−1) and we arrive at a contradiction.

Example 5.8.3. Assume that there is some f holomorphic in C \ {0} so that f(x) =
√
x for every

x ∈ (0,+∞) or even for every x in some subinterval (a, b) of (0,+∞).
We consider the continuous branch g of z

1
2 in the open set A = C \ (−∞, 0] which has value 1 at

z = 1. The function g is given by

g(z) =
√
r ei

θ
2 for z = reiθ with r > 0 and − π < θ < π.

We see that f(x) =
√
x = g(x) for every x ∈ (a, b). Hence f − g is holomorphic in the region A

and has roots at all points of (a, b). We conclude that f − g is identically 0 in A. I.e.

f(z) =
√
r ei

θ
2 for z = reiθ with r > 0 and − π < θ < π.

Since f is holomorphic in C \ {0}, it is continuous at every point of (−∞, 0), e.g. at −1.
We take points z = reiθ converging to −1 from the upper halfplane. This means that r → 1 and
θ → π−. Then we have f(−1) = limr→1,θ→π−

√
r ei

θ
2 = ei

π
2 = i.

Now we take points z = reiθ converging to −1 from the lower halfplane. This means that r → 1

and θ → −π+. Then we have f(−1) = limr→1,θ→−π+
√
r ei

θ
2 = e−iπ

2 = −i.
We arrive at a contradiction.

Exercises.

5.8.1. Let f be holomorphic in the discDz0(R) and let z0 be a root of multiplicity N ≥ 1 of f . If
F is a primitive of f in Dz0(R) and F (z0) = w0, which is the multiplicity of z0 as a solution of
F (z) = w0?

5.8.2. Is there any f holomorphic in C which satisfies one of the following?
(i) f( 1n) = (−1)n for every n ∈ N.
(ii) f( 1n) =

1+(−1)n

n for every n ∈ N.
(iii) f( 1

2k ) = f( 1
2k+1) =

1
k for every k ∈ N.

5.8.3. Is there any f holomorphic in C \ {0} so that f(x) = |x| for every x ∈ R \ {0}?

5.8.4. Let f, g be holomorphic in the region Ω and 0 ∈ Ω. If f , g have no root in Ω and if
f ′( 1n)/f(

1
n) = g′( 1n)/g(

1
n) for every n ∈ N, what do you conclude about f , g?

5.8.5. Let f, g be holomorphic in the region Ω. If fg = 0 in Ω, prove that either f = 0 in Ω or
g = 0 in Ω.

5.8.6. Let f, g be holomorphic in the region Ω. If f g is holomorphic in Ω, prove that either g = 0
in Ω or f is constant in Ω.

5.8.7. (i) Let the region Ω be symmetric with respect to R, i.e. z ∈ Ω for every z ∈ Ω. If Ω ̸= ∅,
prove that Ω ∩ R ̸= ∅. Let also f be holomorphic in Ω and assume that f(z) ∈ R for every
z ∈ Ω ∩ R. Prove that f(z) = f(z) for every z ∈ Ω.
(ii) Let the region Ω ⊆ C \ {0} be symmetric with respect to T, i.e. 1

z ∈ Ω for every z ∈ Ω. If
Ω ̸= ∅, prove that Ω∩T ̸= ∅. Let also f be holomorphic in Ω and assume that f(z) ∈ T for every
z ∈ Ω ∩ T. Prove that f(1z ) =

1

f(z)
for every z ∈ Ω.

(iii) Let f be holomorphic inC and let f(z) ∈ T for every z ∈ T. Prove that there is cwith |c| = 1
and n ∈ N0 so that f(z) = czn for every z.
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5.8.8. (i) Let z0 ∈ D and T (z) = z−z0
1−z0z

for z ∈ D. Prove that T is holomorphic in D and
continuous in D. Also prove that T (z) ∈ D for every z ∈ D and that T (z) ∈ T for every z ∈ T.
(ii) Let z1, . . . , zn ∈ D and |c| = 1 and B(z) = c

∏n
k=1

z−zk
1−zkz

for z ∈ D. Prove that B is
holomorphic in D and continuous in D. Also prove that B(z) ∈ D for every z ∈ D and that
B(z) ∈ T for every z ∈ T.
(iii) Prove the converse of (ii). I.e. let f be holomorphic inD and continuous inD and let f(z) ∈ D
for every z ∈ D and f(z) ∈ T for every z ∈ T. If f is non-constant, prove that there is n ∈ N and
z1, . . . , zn ∈ D and c with |c| = 1 so that f(z) = c

∏n
k=1

z−zk
1−zkz

for every z ∈ D.

5.8.9. Let f, g be holomorphic in C and |f(z)| ≤ |g(z)| for every z. Prove that there is µ so that
f(z) = µg(z) for every z.

5.8.10. Let f be holomorphic in D. Prove that there is a sequence (zn) in D so that |zn| → 1 and
(f(zn)) is bounded.

5.8.11.Many of the results of this section hold also for the point∞.
(i) Let Ω ⊆ C be an open set containing some ring D0(R,+∞) and let f be holomorphic in
Ω∪ {∞}. Then, according to exercice 5.7.6, the Laurent series of f inD0(R,+∞) is of the form∑n=−1

−∞ anz
n + a0 and also f(∞) = a0.

If an = 0 for every n ≤ 0, we say that∞ is a root of f of multiplicity +∞, and in this case prove
that f is identically 0 in the connected component of Ω which contains D0(R,+∞).
If a0 = a−1 = . . . = a−N+1 = 0 and a−N ̸= 0, we say that ∞ is a root of f of multiplicity N ,
and in this case prove that∞ is an isolated root of f , i.e. there is some r ≥ R so that f has no root
in D0(r,+∞).
Of course, if a0 ̸= 0, we say that∞ is a root of f of multiplicity 0.
If∞ is an accumulation point of roots of f , prove that f is identically 0 in the connected component
of Ω which contains D0(R,+∞).
Prove that∞ is a root of f of multiplicityN if and only if 0 is a root of g of multiplicityN , where
g is defined by g(w) = f( 1

w ).
(ii) Let r = p

q be a rational function and let n be the degree of the polynomial p and m be the
degree of the polynomial q. If n ≤ m, prove that∞ is a root of r of multiplicitym− n.

5.9 Isolated singularities.

We say that z0 is an isolated singularity of f if there is some disc Dz0(R) so that f is holo-
morphic in Dz0(R) \ {z0}. Then f has a Laurent series in Dz0(0, R) = Dz0(R) \ {z0}. I.e.

f(z) =
∑+∞

−∞ an(z − z0)
n for every z ∈ Dz0(R) \ {z0}.

Now we have three cases. (i) If an = 0 for every n < 0, then we say that z0 is a removable
singularity of f . (ii) If an ̸= 0 for at least one n < 0 and there are only finitely many n < 0 such
that an ̸= 0, then we say that z0 is a pole of f . (iii) If an ̸= 0 for infinitely many n < 0, then we
say that z0 is an essential singularity of f .

Let us start with the case of a removable singularity z0. Then f(z) =
∑+∞

n=0 an(z − z0)
n for

every z ∈ Dz0(R)\{z0}. The power series
∑+∞

n=0 an(z−z0)
n converges at every z ∈ Dz0(R) and

defines a holomorphic function inDz0(R) with value a0 at z0. The function f may not be defined
at z0 or it may be defined at z0 with a value f(z0) either equal to a0 or not equal to a0. Now, in any
case, we define (or redefine) f at z0 to be f(z0) = a0. Then we have f(z) =

∑+∞
n=0 an(z − z0)

n

for every z ∈ Dz0(R) and f becomes holomorphic in Dz0(R).
We summarize. If z0 ∈ Ω is a removable singularity of f , then f can be defined (or redefined)

appropriately at z0 so that it becomes holomorphic in a disc with center z0. The Laurent series
of f at z0 reduces to a power series of first type and this power series is the Taylor series of the
(extended) f in a disc with center z0.
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Here is a useful test to decide if an isolated singularity is removable without calculating the
Laurent series of the function.

Riemann’s criterion. Let z0 be an isolated singularity of f . If limz→z0(z − z0)f(z) = 0, then z0
is a removable singularity of f .

Proof. Let f(z) =
∑+∞

−∞ an(z − z0)
n for every z ∈ Dz0(R) \ {z0}. We take any ϵ > 0 and then

there is δ > 0 so that |z − z0||f(z)| ≤ ϵ for every z ∈ Dz0(R) with 0 < |z − z0| < δ. Now, we
consider any r with 0 < r < min{δ,R, 1} and any n < 0. Then we have

|an| =
∣∣ 1
2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ

∣∣ ≤ 1
2π

ϵ
rn+2 2πr = ϵr−n−1 = ϵr|n|−1 ≤ ϵ.

Since ϵ > 0 is arbitrary, we get an = 0 for every n < 0 and z0 is a removable singularity of f .

In the case of an isolated singularity z0 for f , sometimes we know that the limz→z0 f(z) exists
and it is finite or that f is bounded close to z0. In both cases we have that limz→z0(z−z0)f(z) = 0
is satisfied and we conclude that z0 is a removable singularity of f .

Example 5.9.1. The function f(z) = z2−3z+2
z−2 is holomorphic in C\{2}. Since limz→2 f(z) = 1,

the point 2 is a removable singularity of f . If we define f(2) = 1, then f , now defined in C, is
holomorphic in C. In fact, the extended f is the simple function z − 1 in C.

Now we consider the case of a pole z0 of f . Let
∑+∞

−∞ an(z − z0)
n be the Laurent series of f

in the ringDz0(R) \ {z0} and then there is a largestm ≥ 1 so that a−m ̸= 0. LetN be this largest
m. Then we say that z0 is a pole of f of order N or of multiplicity N and we have

f(z) =
a−N

(z−z0)N
+ · · ·+ a−1

z−z0
+

∑+∞
n=0 an(z − z0)

n for every z ∈ Dz0(R) \ {z0}

with a−N ̸= 0. We may write this as f(z) = 1
(z−z0)N

∑+∞
n=0 an−N (z − z0)

n for every z ∈
Dz0(R) \ {z0}. Since the power series

∑+∞
n=0 an−N (z − z0)

n converges in the disc Dz0(R), it
defines a function g holomorphic in Dz0(R) and we have

f(z) = g(z)
(z−z0)N

for every z ∈ Dz0(R) \ {z0}.

Observe that g(z0) = a−N ̸= 0.
It is easy to prove the converse. Suppose there is a g holomorphic in some disc Dz0(R) so

that g(z0) ̸= 0 and f(z) = g(z)
(z−z0)N

for every z ∈ Dz0(R) \ {z0}. Let
∑+∞

n=0 bn(z − z0)
n be the

Taylor series of g and then we have f(z) = b0
(z−z0)N

+ · · · + bN−1

z−z0
+

∑+∞
n=0 bn+N (z − z0)

n for
z ∈ Dz0(R) \ {z0}. The last power series is the Laurent series of f in Dz0(R) \ {z0} and since
b0 = g(z0) ̸= 0, we have that z0 is a pole of f of order N .

Here are some more comments. Since g(z0) ̸= 0 and g is continuous at z0, we have that
g does not vanish at any point of some disc Dz0(r) with 0 < r ≤ R. Then h(z) = 1

g(z) is
holomorphic in Dz0(r) and 1

f(z) = (z − z0)
Nh(z) for every z ∈ Dz0(r) \ {z0}. Therefore, z0

is a removable singularity of 1
f . Moreover, if we define 1

f to take the value 0 at z0, then we have
1
f (z) = (z−z0)

Nh(z) for every z ∈ Dz0(r) and, since h(z0) ̸= 0, then z0 is a root of the extended
1
f of multiplicityN . It is easy to prove in a similar way the converse, and we conclude that z0 is a
pole of f of order N if and only if it is a root of 1

f of mutiplicity N .

Example 5.9.2.Many times we meet functions of the form f = p
q , where p, q are holomorphic in

a neighborhood of z0. For instance, if p, q are polynomials, then f is a rational function.
Let z0 be a root of p and q of multiplicity M ≥ 0 and N ≥ 0, respectively. In this case we saw
that there are holomorphic functions p1 and q1 in a neighborhood Dz0(R) of z0 so that p(z) =
(z − z0)

Mp1(z) and q(z) = (z − z0)
Nq1(z) for every z ∈ Dz0(R) and also p1(z0) ̸= 0 and
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q1(z0) ̸= 0. (Of course we consider the case that none of p, q is identically 0.) Then there is r with
0 < r ≤ R so that p1(z) ̸= 0 and q1(z) ̸= 0 for every z ∈ Dz0(r), and then we have

f(z) = p(z)
q(z) = (z − z0)

M−N p1(z)
q1(z)

= (z − z0)
M−Ng(z) for every z ∈ Dz0(r) \ {z0},

where the function g = p1
q1

is holomorphic in Dz0(r) and g(z0) =
p1(z0)
q1(z0)

̸= 0. Now we have two
cases. If M ≥ N , then z0 is a removable singularity of f , and f (after we extend it appropriately
at z0) is holomorphic at z0 and z0 is a root of f of multiplicity M − N . If M < N , then z0 is a
pole of order N −M of f .

Here are some concrete instances of this example.

Example 5.9.3. The function f(z) = z2−3z+2
(z−2)2

is holomorphic in C \ {2}.
Since z2 − 3z + 2 = (z − 2)(z − 1), we have f(z) = z−1

z−2 for z ̸= 2. The function g(z) = z − 1
is holomorphic in C and g(2) = 1 ̸= 0. Therefore, 2 is a pole of f of order 1.

Example 5.9.4. The function f(z) = ez−1
z3

is holomorphic in C \ {0}.
The Taylor series of ez − 1 with center 0 is z + 1

2! z
2 + 1

3! z
3 + · · · . Hence ez − 1 = zg(z) with

g(z) = 1+ 1
2! z+

1
3! z

2+ · · · . The function g is holomorphic in C and g(0) = 1 ̸= 0 and we have
f(z) = g(z)

z2
for z ̸= 0. Therefore, 0 is a pole of f of order 2.

Example 5.9.5. The function cot z = cos z
sin z is holomorphic in C \ {kπ | k ∈ Z}.

The points kπ, k ∈ Z, are isolated singularities of cot z and we shall prove that they are all poles
of order 1. We fix k ∈ Z. The Taylor series of sin z with center kπ results from the Taylor series
of sin z with center 0, as follows

sin z = sin((z − kπ) + kπ) = cos kπ sin(z − kπ) = (−1)k sin(z − kπ)

= (−1)k
(
(z − kπ)− 1

3!(z − kπ)3 + · · ·
)
= (−1)k(z − kπ)− (−1)k

3! (z − kπ)3 + · · · .

Therefore, sin z = (z − kπ)q1(z) for every z, where the function q1 is holomorphic in C with
q1(kπ) = (−1)k. Hence, cot z = cos z

(z−kπ)q1(z)
= g(z)

z−kπ with g(z) = cos z
q1(z)

and g is holomorphic in
the disc Dkπ(π) and g(kπ) = cos kπ

q1(kπ)
= 1. Therefore, kπ is a pole of cot z of order 1.

(Observe that Dkπ(π) is the largest open disc with center kπ which is contained in the domain of
holomorphy of g because it is the largest open disc with center kπ which does not contain any root
of q1. This is true because q1(z) = sin z

z−kπ vanishes at every lπ with l ∈ Z, l ̸= k.)
The Laurent series of cot z in Dkπ(0, π) is cot z = 1

z−kπ + g′(kπ) + 1
2g

′′(kπ)(z − kπ) + · · · .

For the determination of poles there is a criterion similar to the criterion of Riemann for re-
movable singularities.

Proposition 5.4. Let z0 be an isolated singularity of f . Then z0 is a pole of f if and only if
limz→z0 f(z) = ∞.

Proof. There is a disc Dz0(R) so that f is holomorphic in Dz0(R) \ {z0}.
If z0 is a pole of orderN of f , then we saw that there is a function g holomorphic inDz0(R) so that
g(z0) ̸= 0 and f(z) = g(z)

(z−z0)N
for every z ∈ Dz0(R) \ {z0}. This implies limz→z0 f(z) = ∞.

Conversely, let limz→z0 f(z) = ∞. Then there is r with 0 < r ≤ R so that f(z) ̸= 0 for ev-
ery z ∈ Dz0(r) \ {z0} and then the function h = 1

f is holomorphic in Dz0(r) \ {z0}. Since
limz→z0 h(z) = limz→z0

1
f(z) = 0, the criterion of Riemann implies that z0 is a removable sin-

gularity of h. Therefore, we may define h appropriately at z0 so that it becomes holomorphic in
Dz0(r): we set h(z0) = limz→z0 h(z) = 0. It is clear that z0 is the only root of (the extended)
h in Dz0(r) and, if N is the multiplicity of this root, then h(z) = (z − z0)

Nh1(z) where h1 is
holomorphic in Dz0(r) and has no root in Dz0(r). Thus, the function g = 1

h1
is holomorphic in

Dz0(r) and, clearly, has no root inDz0(r). Now we have altogether that f(z) = g(z)
(z−z0)N

for every
z ∈ Dz0(r) \ {z0} with g(z0) ̸= 0, and so z0 is a pole of f of order N .
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There is one more test for the case of a pole which also determines the exact order of the pole.

Proposition 5.5. Let z0 be an isolated singularity of f . Then z0 is a pole of f of order N ≥ 1 if
and only if the limz→z0(z − z0)

Nf(z) exists and it is finite and ̸= 0.

Proof. If z0 is a pole of f of orderN , then we repeat the beginning of the proof of proposition 5.4
and we get that limz→z0(z − z0)

Nf(z) = limz→z0 g(z) = g(z0) ̸= 0.
Conversely, let limz→z0(z − z0)

Nf(z) be finite and ̸= 0. Riemann’s criterion implies that the
function g(z) = (z−z0)

Nf(z), which is holomorphic in some ringDz0(R)\{z0}, can be extended
at z0 by setting g(z0) = limz→z0 g(z) = limz→z0(z − z0)

Nf(z) ̸= 0, and the extended g is
holomorphic in Dz0(R). Therefore, there is a g holomorphic in Dz0(R) with g(z0) ̸= 0 so that
f(z) = g(z)

(z−z0)N
for every z ∈ Dz0(R) \ {z0} and z0 is a pole of f of order N .

Finally, for the case of an essential singularity we have the following result.

Proposition 5.6. Let z0 be an isolated singularity of f . Then z0 is an essential singularity of f if
and only if the limz→z0 f(z) does not exist.

Proof. By the criterion of Riemann, z0 is a removable singularity if and only if the limz→z0 f(z)
exists and it is finite. Proposition 5.4 says that z0 is a pole if and only if limz→z0 f(z) = ∞.

Example 5.9.6. In example 5.7.9 we saw that
∑n=−1

−∞
1

(−n)! z
n + 1 is the Laurent series of e

1
z in

D0(0,+∞). Hence 0 is an essential singularity of e
1
z .

Therefore, the limz→0 e
1
z does not exist. We can see this without proving first that 0 is an essential

singularity of e
1
z . In fact, proving that the limz→0 e

1
z does not exist is another way to see that

0 is an essential singularity of e
1
z . Indeed, if z = x tends to 0 on the positive x-semiaxis, then

|e
1
z | = e

1
x → +∞, and hence e

1
z → ∞. If z = x tends to 0 on the negative x-semiaxis, then

|e
1
z | = e

1
x → 0, and hence e

1
z → 0. Thus, the limz→0 e

1
z does not exist.

Let z0 be an isolated singularity of f and let
∑+∞

−∞ an(z − z0)
n be the Laurent series of f in

the ringDz0(0, R) = Dz0(R) \ {z0}. Then
∑n=−1

−∞ an(z− z0)
n is called the singular part of the

Laurent series of f or, simply, the singular part of f at z0. Also,
∑+∞

n=0 an(z − z0)
n is called the

regular part of the Laurent series of f or, simply, the regular part of f at z0.
We have seen that in the case of a removable singularity z0 the singular part of f at z0 is zero

and the Laurent series of f at z0 consists only of its regular part. In the case of a pole z0 of f of
order N the singular part at z0 is a finite sum of the form

∑N
n=1

a−n

(z−z0)n
with a−N ̸= 0. In this

case the singular part is a rational function whose denominator is (z − z0)
N . In the case of an

essential singularity z0 the singular part at z0 has infinitely many terms.
If we subtract from f its singular part at its singularity z0, then we get

f(z)−
∑n=−1

−∞ an(z − z0)
n =

∑+∞
n=0 an(z − z0)

n,

which is a power series of first type and hence converges in the discDz0(R), including the center
z0. Therefore, z0 is a removable singularity of the function F (z) = f(z) −

∑n=−1
−∞ an(z − z0)

n

and if we define F to have value F (z0) = a0 at z0, then this function is holomorphic in Dz0(R).
We shall now establish the well known analysis of a rational function into a sum of simple

fractions.

Proposition 5.7. Let r = p
q be a rational function. We assume that the polynomials p, q have no

common roots (and hence no common factors), that the degree of p is n, the degree of q is m and
that z1, . . . , zk are the roots of q with corresponding multiplicities m1, . . . ,mk. Then

r(z) = p1(
1

z−z1
) + · · ·+ pk(

1
z−zk

) + p0(z),

where p1, . . . , pk are polynomials without constant terms and of degreesm1, . . . ,mk, respectively,
and p0 is either the null polynomial, if n < m, or a polynomial of degree n−m, if n ≥ m.

81



Proof. We saw in example 5.9.2 that each zj is a pole of r of degreemj . Then the singular part of
r at zj has the form

∑mj

l=1
a−l

(z−z0)l
with a−mj ̸= 0. This can be written pj(

1
z−zj

), where pj is the
polynomial pj(z) =

∑mj

l=1 a−lz
l without constant term and of degreemj .

We subtract from r all its singular parts at z1, . . . , zk and we form the function

p0(z) = r(z)−
(
p1(

1
z−z1

) + · · ·+ pk(
1

z−zk
)
)
.

This function is a rational function defined in C \ {z1, . . . , zk} and its only possible poles are the
points z1, . . . , zk. We observe, though, that every zj is a removable singularity of r(z)−pj(

1
z−zj

)

and that each of p1( 1
z−z1

), . . . , pk(
1

z−zk
), besides pj( 1

z−zj
), is holomorphic at zj . Thus, every zj

is a removable singularity of p0. In other words, the rational function p0 has no poles and hence it
is a polynomial. Now, we have the identity

r(z) = p1(
1

z−z1
) + · · ·+ pk(

1
z−zk

) + p0(z)

and we consider two cases. If n < m, then limz→∞ r(z) = 0 and, since limz→∞ pj(
1

z−zj
) = 0

for every j, we have that limz→∞ p0(z) = 0. Thus, p0 is the null polynomial. If n ≥ m, then
c = limz→∞

r(z)
zn−m is a complex number ̸= 0. Since limz→∞ pj(

1
z−zj

)/zn−m = 0 for every j, we

have that limz→∞
p0(z)
zn−m = c ̸= 0. Thus the polynomial p0 has degree n−m.

Exercises.

5.9.1. Is 0 an isolated singularity of 1
sin(1/z) ?

5.9.2. Find the isolated (non-removable) singularities of: 1
z2+5z+6

, 1
(z2−1)2

, ez−1
z , ez−1

z3
, z2

sin z ,
1

sin z ,
tan z, 1

sin2 z , e
z + e1/z , 1

ez−1 . Which of the singularities are poles and what is their order?

5.9.3. Find the initial four terms of the Laurent series at 0 of the functions: cot z, 1
sin z ,

z
sin2 z ,

1
ez−1 .

5.9.4. Prove that an isolated singularity of f cannot be a pole of ef .

5.9.5. Let z0 be an isolated singularity of f , which is not constant in any neighborhood of z0. If
there is s ∈ R so that limz→z0 |z − z0|s|f(z)| ∈ [0,+∞], prove that z0 is either a removable
singularity or a pole of f and that there ism ∈ Z so that

lim
z→z0

|z − z0|s|f(z)|


= 0, if s > m

= +∞, if s < m

∈ (0,+∞), if s = m

5.9.6. Let f be holomorphic in Dz0(R) \ {z0} and let either Re f or Im f be bounded either from
above or from below in Dz0(R) \ {z0}. Prove that z0 is a removable singularity of f .

5.9.7. Let f be holomorphic in D0(R) \ {z0}, where R > 1 and |z0| = 1, and let z0 be a pole of
f . If f(z) =

∑+∞
n=0 anz

n is the Taylor series of f in D0(1), prove that an
an+1

→ z0.

5.9.8. Let Ω be a region so that every point of Ω is either a point of holomorphy or an isolated
singularity of f . If the roots of f have an accumulation point in Ω, which is not an essential
singularity of f , prove that f is identically 0 in Ω.

5.9.9. (i) Let z0 be an essential singularity of f and let w ∈ C. Prove that for every r > 0 the
function 1

f−w is not bounded in Dz0(r) \ {z0}.
(ii) Prove the Casorati-Weierstrass theorem. If z0 is an essential singularity of f , then for every
w there is a sequence (zn) with zn → z0 and zn ̸= z0 for every n so that f(zn) → w.
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5.9.10. (i) Prove that every 2kπi, k ∈ Z, is a pole of 1
ez−1 of order 1.

(ii) Prove that 1
ez−1 = 1

z − 1
2 +

∑+∞
k=1(−1)k−1 Bk

(2k)!z
2k−1 for |z| < 2π, where the numbers Bk

satisfy the recursive relations 1
(2k+1)! −

1
2(2k)! +

∑k
ν=1

(−1)ν−1Bν

(2ν)!(2k−2ν+1)! = 0, k ≥ 1. Evaluate
B1, B2, B3. The numbers Bk are called Bernoulli constants.

5.9.11. Look at exercises 5.7.6 and 5.8.11. We shall extend what we said in this section to the case
of the point∞.
(i) We say that∞ is an isolated singularity of f if f is holomorphic in some ringD0(R,+∞). Let∑+∞

−∞ anz
n be the Laurent series of f in this ring. If an = 0 for every n ≥ 1, then we say that∞

is a removable singularity of f . If an ̸= 0 for at least one n ≥ 1 and for only finitely many n ≥ 1,
then we say that ∞ is a pole of f . Finally, if an ̸= 0 for infinitely many n ≥ 1, then we say that
∞ is an essential singularity of f .
Prove that∞ is a removable singularity of f if and only if limz→∞

f(z)
z = 0.

Prove that∞ is a pole of f if and only if limz→∞ f(z) = ∞.
Let ∞ be a pole of f and let N be the largest n ≥ 1 with an ̸= 0. Then we say that ∞ is a pole
of f of order N . Prove that ∞ is a pole of f of order N if and only if there is a g holomorphic in
D0(R,+∞)∪{∞} so that g(∞) ̸= 0 and f(z) = zNg(z) for every z ∈ D0(R,+∞). Moreover,
prove that∞ is a pole of f of orderN if and only if the limz→∞

f(z)
zN

exists and it is finite and ̸= 0.
Prove that∞ is an essential singularity of f if and only if the limz→∞ f(z) does not exist.
(ii) Let r = p

q be a rational function and let n be the degree of the polynomial p and m be the
degree of the polynomial q. Prove that ∞ is a removable singularity of r if m ≥ n and that it is a
pole of r of order n − m if n > m. In particular, a polynomial p of degree n ≥ 1 has a pole of
order n at∞.
(iii) What kind of an isolated singularity is∞ for the functions ez , e

1
z , z2e

1
z , sin z, sin 1

z , z
5 sin 1

z ?
(iv) What kind of an isolated singularity is ∞ for any holomorphic branch of (z2 − 1)

1
2 in the

region C \ [−1, 1]? (For the existence of such a branch look at exercise 4.4.9.)
(v) Is∞ an isolated singularity of 1

sin z or of tan z?

5.10 The open mapping theorem.

Open mapping theorem. If f is holomorphic and not constant in the region Ω, then f(U) is open
for every open U ⊆ Ω.

Proof. Let U ⊆ Ω be open. We shall prove that f(U) is also open, i.e. that every w0 ∈ f(U) is
an interior point of f(U).
Since w0 ∈ f(U) there is some z0 ∈ U so that f(z0) = w0. Since U is open, there is r > 0 so that
Dz0(r) ⊆ U . Since f is non-constant in Ω, the solution z0 of the equation f(z) = w0 is isolated.
Therefore, we may take r small enough so that f(z) = w0 has no solution in Dz0(r) except z0.
This means that f(z) ̸= w0 for every z ∈ Dz0(r) \ {z0}. In particular, f(z) ̸= w0 for every
z ∈ Cz0(r). Now, the real function |f(z) − w0| is continuous and the circle Cz0(r) is compact.
Therefore, the restriction of |f(z)−w0| inCz0(r) attains a minimum value at some point ofCz0(r)
which is a positive number. We denote ϵ this minimum and we have:

ϵ = minz∈Cz0(r)
|f(z)− w0| > 0. (5.11)

Now, we consider any w /∈ f(Dz0(r)). Again, the real function |f(z) − w| is continuous and
the disc Dz0(r) is compact. Therefore the restriction of |f(z) − w| in Dz0(r) attains a minimum
value at some point ofDz0(r) which is positive. But now we can say more: the function 1

f(z)−w is
holomorphic in Dz0(r) and continuous in Dz0(r). The second version of the maximum principle
implies that the function 1

|f(z)−w| , restricted inDz0(r), attains its maximum value at the boundary
Cz0(r). Equivalently, the function |f(z) − w|, restricted in Dz0(r), attains its minimum value at
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the boundary Cz0(r). Since one of the values of |f(z)−w| inDz0(r) is |f(z0)−w| = |w0 −w|,
we get

|w0 − w| ≥ minz∈Cz0 (r)
|f(z)− w|. (5.12)

Now, we also have |f(z)− w| ≥ |f(z)− w0| − |w0 − w| and, using (5.11) and (5.12), we get

|w0 − w| ≥ minz∈Cz0 (r)
|f(z)− w| ≥ minz∈Cz0 (r)

|f(z)− w0| − |w0 − w| = ϵ− |w0 − w|.

Thus |w0 − w| ≥ ϵ
2 and we have proved that any w /∈ f(Dz0(r)) satisfies |w0 − w| ≥ ϵ

2 . This
implies that every w ∈ Dw0(

ϵ
2) belongs to f(Dz0(r)). Hence Dw0(

ϵ
2) ⊆ f(Dz0(r)) ⊆ f(U) and

so w0 is an interior point of f(U).

Exercises.

5.10.1. Prove the first maximum principle using the open mapping theorem.

5.11 Local mapping properties.

Proposition 5.8. Let f be holomorphic in the open set Ω and let z0 ∈ Ω with f ′(z0) ̸= 0. Then
there is an open set U ⊆ Ω containing z0 so thatW = f(U) is an open set containingw0 = f(z0)
and so that the function f : U → W is one-to-one. Moreover, the function f−1 : W → U is
holomorphic in W .

Proof. We consider the Taylor series
∑+∞

n=0 an(z−z0)
n of f in its disc of convergenceDz0(R) ⊆

Ω. We know that the differentiated series
∑+∞

n=1 nan(z−z0)
n−1 converges absolutely in the same

disc, i.e.
∑+∞

n=1 n|an||z − z0|n−1 < +∞ for every z ∈ Dz0(R). Thus,
∑+∞

n=1 n|an|(z − z0)
n−1

converges in Dz0(R) and defines a continuous function in this disc. In particular, we have that
limz→z0

∑+∞
n=1 n|an|(z − z0)

n−1 = |a1| or, equivalently, limz→z0

∑+∞
n=2 n|an|(z − z0)

n−1 = 0.
Since a1 = f ′(z0) ̸= 0, there is a small enough r > 0 so that∑+∞

n=2 n|an|rn−1 < |a1|.

We shall see now that f : Dz0(r) → C is one-to-one. Assume that this is not the case and that
there are z1, z2 ∈ Dz0(r) so that z1 ̸= z2 and f(z1) = f(z2). Then

∑+∞
n=0 an(z1 − z0)

n =∑+∞
n=0 an(z2 − z0)

n and hence

a1 =
∑+∞

n=2 an((z1−z0)
n−1+(z1−z0)

n−2(z2−z0)+· · ·+(z1−z0)(z2−z0)
n−2+(z2−z0)

n−1).

This implies |a1| ≤
∑+∞

n=2 n|an|rn−1 and we arrive at a contradiction.
Since f ′ is continuous at z0 and f ′(z0) ̸= 0, by taking a smaller r > 0 if necessary, we may
suppose that f ′(z) ̸= 0 for every z ∈ Dz0(r). Now we take U = Dz0(r). From the open mapping
theorem we have that the set W = f(U) = f(Dz0(r)) is open. We have already proved that
f : U → W is one-to-one and hence the inverse mapping f−1 : W → U is defined. Now it is
easy to see that this inverse mapping is continuous in W . Indeed let w ∈ W . Then there is (a
unique) z ∈ U so that f(z) = w. We take any ϵ > 0 small enough so that Dz(ϵ) ⊆ U . Then the
set f(Dz(ϵ)) is open and contains w. Hence there is δ > 0 so that Dw(δ) ⊆ f(Dz(ϵ)). Then for
every w′ ∈ Dw(δ) the (unique) z′ ∈ U which satisfies f(z′) = w′ is contained in Dz(ϵ). This
says that for every w′ ∈ W with |w′ − w| < δ we have |f−1(w′) − f−1(w)| = |z′ − z| < ϵ and
the function f−1 : W → U is continuous at every w ∈ W . Now, proposition 3.4 implies that
f−1 : W → U is holomorphic inW .

Theorem 5.2. Let f be holomorphic in the region Ω and let z0 ∈ Ω and w0 = f(z0). Let z0 be
a solution of f(z) = w0 of multiplicity N . Then there is an open set U ⊆ Ω containing z0 so
that W = f(U) is an open set containing w0 = f(z0) and so that the function f : U → W is
N -to-one.
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Proof. We know that there is a disc Dz0(R) and a function g holomorphic in Dz0(R) so that
f(z)−w0 = (z− z0)

Ng(z) for every z ∈ Dz0(R) and g(z0) ̸= 0. By the continuity of g we have
that there is r ≤ R so that g(z) ̸= 0 for every z ∈ Dz0(r). Then the function

g′

g is holomorphic in
Dz0(r) and the theorem of Cauchy in convex regions implies that

∮
γ

g′(z)
g(z) dz = 0 for every closed

curve γ inDz0(r). Now, theorem 4.1 implies that there is a holomorphic branch of log g inDz0(r)
and then example 4.4.4 says that there is a holomorphic branch of g1/N in Dz0(r). I.e. there is a
function ϕ holomorphic in Dz0(r) so that ϕ(z)N = g(z) for every z ∈ Dz0(r).
Now we consider the function h(z) = (z − z0)ϕ(z). This is holomorphic in Dz0(r) and we have
that f(z) − w0 = h(z)N for every z ∈ Dz0(r). Moreover, h′(z0) = ϕ(z0) ̸= 0. Proposition 5.8,
applied to h, implies that there is an open set U0 ⊆ Dz0(r) containing z0 so that W0 = h(U0) is
an open set containing h(z0) = 0 and so that the function h : U0 → W0 is one-to-one. Now, we
consider a discD0(r0) ⊆ W0 and the open set U = h−1(D0(r0)) ⊆ U0. Then h : U → D0(r0) is
holomorphic in U , ontoD0(r0) and one-to-one in U . Moreover, we have that f(z)−w0 = h(z)N

for every z ∈ U . Since the N -th power w = ζN maps the disc D0(r0) onto the disc D0(r
N
0 )

and in an N -to-one manner, we conclude that f : U → W is N -to-one, where W is the disc
Dw0(r

N
0 ).

In the proof of theorem 5.2 if we take any linear segment [w0, w] in the disc Dw0(r
N
0 ), where

w is a point of the circle Cw0(r
N
0 ), then, through the mapping w = w0 + ζN , this linear segment

corresponds to N linear segments [0, z1], . . . [0, zN ] in the disc D0(r0), where z1, . . . , zN are N
points on the circle C0(r0). These N linear segments form N successive angles at 0 all equal to
2π
N . Now the one-to-one function h−1 : D0(r0) → U maps these linear segments onto N curves
γ1, . . . , γN with common initial endpoint z0 and N corresponding final endpoints on ∂U . Since
h′(z0) ̸= 0, the conformality of h at z0 implies that γ1, . . . , γN formN successive angles at z0 all
equal to 2π

N . TheN successive “angular” regions U1, . . . , UN in U between the curves γ1, . . . , γN
are mapped by h onto the corresponding succesive angular regionsA1, . . . , AN inD0(r0) between
the linear segments [0, z1], . . . [0, zN ] and these are then mapped by the mapping w = w0 + ζN

onto the same region B = Dw0(r
N
0 ) \ [w0, w]. We conclude that f , which is the composition of

the two mappings, maps each of U1, . . . , UN in U onto B and in an one-to-one manner.

Exercises.

5.11.1. Let f be holomorphic inD0(R), f ′(0) ̸= 0 and n ∈ N. Prove that there is r > 0 and there
is g holomorphic in D0(r) so that f(zn) = f(0) + (g(z))n for every z ∈ D0(r).

5.11.2. Let Ω1,Ω2 be two regions, let f : Ω1 → Ω2 and g : Ω2 → C be non-constant functions
and let h = g ◦ f .
(i) If f, h are holomorphic in Ω1, is g holomorphic in Ω2?
(ii) If g, h are holomorphic in Ω2,Ω1, respectively, is f holomorphic in Ω1?

5.11.3. If f is holomorphic and one-to-one in C, prove that there are a ̸= 0 and b so that f(z) =
az + b for every z.
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Chapter 6

Global behaviour of holomorphic
functions.

6.1 Index of a closed curve with respect to a point.

LetA ⊆ C and g : A → C\{0} be continuous inA. We say that the function h is a continuous
branch of arg g inA if h is continuous inA and for every w ∈ A we have that h(w) is an element
of arg g(w) or, equivalently,

g(w) = |g(w)|eih(w) for every w ∈ A.

We recall the notion of a continuous branch of log g. We say that f is a continuous branch of
log g if f is continuous in A and f(w) is an element of log g(w) or, equivalently,

ef(w) = g(w) for every w ∈ A.

Proposition 6.1. Let A ⊆ C and g : A → C \ {0} be continuous in A. Then there is a one-to-one
correspondence between continuous branches of log g and continuous branches of arg g in A.

Proof. If h is a continuous branch of arg g in A, then the function

f = ln |g|+ ih (6.1)

is a continuous branch of log g in A. Indeed, it is clear that f is continuous in A and also that
ef(w) = eln |g(w)|eih(w) = |g(w)|eih(w) = g(w) for every w ∈ A.
Conversely, if f is a continuous branch of log g inA, then h, defined through (6.1), is a continuous
branch of arg g in A. Indeed, h is continuous in A and also eih(w) = ef(w)e− ln |g(w)| = g(w)

|g(w)| and
hence g(w) = |g(w)|eih(w) for every w ∈ A.

In other words, relation (6.1) says that, if we have a continuous branch f of log g inA, then the
imaginary part h of f is a continuous branch of arg g in A. Conversely, if we have a continuous
branch h of arg g inA, then the function f with imaginary part h and real part ln |g| is a continuous
branch of log g in A.

The next result is analogous to proposition 4.6 and their proofs are almost identical.

Proposition 6.2. Let g : A → C \ {0} be continuous in A ⊆ C.
(i) If h1 is a continuous branch of arg g in A and h2 − h1 = k2π in A, where k is a fixed integer,
then h2 is also a continuous branch of arg g in A.
(ii) If, moreover, A is connected and h1, h2 are continuous branches of arg g inA, then h2−h1 =
k2π in A, where k is a fixed integer. In particular, if h1(w0) = h2(w0) for some w0 ∈ A, then
h1 = h2 in A.
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Proposition 6.3. Let g1, g2 : A → C \ {0} be continuous in A ⊆ C.
(i) If f1, f2 are continuous branches of log g1, log g2 in A, then f1 + f2 is a continuous branch of
log(g1g2) in A.
(ii) If h1, h2 are continuous branches of arg g1, arg g2 in A, then h1 + h2 is a continuous branch
of arg(g1g2) in A.

Proof. (i) f1 + f2 is continuous in A and also ef1(w)+f2(w) = ef1(w)ef2(w) = g1(w)g2(w) for
every w ∈ A.
(ii) Just as in (i).

Proposition 6.4 is the first existence result of this section: A is an interval in R.

Proposition 6.4. Let g : [a, b] → C \ {0} be continuous in the interval [a, b]. Then there is a
continuous branch of log g and a continuous branch of arg g in [a, b].

Proof. It is enough to prove the existence of a continuous branch of log g.
Since g is continuous in [a, b], there is ϵ > 0 so that |g(t)| ≥ ϵ for every t ∈ [a, b]. Now, g is
also uniformly continuous in [a, b] and hence there is δ > 0 so that |g(t′) − g(t′′)| < ϵ for every
t′, t′′ ∈ [a, b] with |t′ − t′′| < δ. We take successive points a = t0 < t1 < . . . < tn−1 < tn = b
so that tk − tk−1 < δ for every k = 1, . . . , n. Then, for every k = 1, . . . , n, the set {g(t) | t ∈
[tk−1, tk]} is contained in the discDg(tk)(ϵ). Since |g(tk)| ≥ ϵ, the discDg(tk)(ϵ) does not contain
0 and hence a continuous branch of log is defined in this disc. Then example 4.3.3 says that there
is a continuous branch, say fk, of log g in [tk−1, tk].
Now, f1 is a continuous branch of log g in [t0, t1] and f2 is a continuous branch of log g in [t1, t2].
Then f2(t1) − f1(t1) = m2πi for some m ∈ Z. We replace the function f2 with the function
f2 −m2πi and the new function f2 is also a continuous branch of log g in [t1, t2] with f2(t1) =
f1(t1). Working with the (new) function f2 and the function f3 which is a continuous branch
of log g in [t2, t3], we see as before that f3(t2) − f2(t2) = l2πi for some l ∈ Z. We replace the
function f3 with the function f3− l2πi and the new function f3 is also a continuous branch of log g
in [t2, t3] with f3(t2) = f2(t2). We continue inductively and finally we end up with continuous
branches fk of log g in [tk−1, tk] for every k = 1, . . . , n so that fk(tk) = fk+1(tk) for every
k = 1, . . . , n− 1. Therefore, the function f : [a, b] → C which is defined to be equal to fk in the
corresponding interval [tk−1, tk] for every k = 1, . . . , n is continuous in [a, b]. Moereover, f is a
continuous branch of log g in every [tk−1, tk] and hence in [a, b].

We consider any curve γ : [a, b] → C \ {z0}. Then the function γ − z0 : [a, b] → C \ {0} is
continuous in [a, b] and, according to proposition 6.4, there is a continuous branch f of log(γ−z0)
and a continuous branch h of arg(γ − z0) in [a, b] related by

f = ln |γ − z0|+ ih. (6.2)

Then the functions f+k2πi and h+k2π, where k is an arbitrary, but constant, integer, are also
continuous branches of log(γ − z0) and arg(γ − z0) in [a, b]. Moreover, since [a, b] is connected,
these are all the continuous branches of log(γ − z0) and arg(γ − z0) in [a, b].

Now, let h be any continuous branch of arg(γ − z0) in [a, b]. We observe that the expression
h(b)−h(a) is independent of the particular choice of h. Indeed, if h1 is another continuous branch
of arg(γ − z0) in [a, b], then there is a constant integer k so that h1 = h + k2π in [a, b] and then
we have h1(b)− h1(a) = (h(b) + k2π)− (h(a) + k2π) = h(b)− h(a).

Now, the expression
∆ arg(γ − z0) = h(b)− h(a)

is called total increment of argument or total increment of angle over the curve γ with respect
to z0.

Let us consider the important special case when the curve γ : [a, b] → C \ {z0} is closed, i.e.
when γ(b) = γ(a). This implies γ(b)− z0 = γ(a)− z0, and hence ln |γ(b)− z0| = ln |γ(a)− z0|.
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It also implies that h(b) and h(a) differ by some integer multiple of 2π: indeed, both h(b), h(a) are
values of arg(γ(b)− z0) = arg(γ(a)− z0). Therefore the expresion∆ arg(γ− z0) = h(b)−h(a)
is an integer multiple of 2π. Then the integer

n(γ; z0) =
∆ arg(γ−z0)

2π

is called rotation number or index of γ with respect to z0.
It is easy to see the geometric content of the notion of rotation number or index of a closed curve

γ with respect to z0. When t increases in [a, b], the angle h(t) of γ(t) − z0 varies continuously
from h(a) to h(b). Since ∆ arg(γ − z0) = h(b) − h(a) = k2π for a certain integer k, the
number n(γ; z0) = ∆ arg(γ−z0)

2π = h(b)−h(a)
2π = k shows the numbers of complete rotations of the

continuously moving point γ(t) around z0.

Proposition 6.5. Let γ1 and γ2 be closed curves inC\{z0}with the same endpoints. Then γ1
·
+ γ2

is defined and it is also a closed curve inC\{z0} and also n(γ1
·
+ γ2; z0) = n(γ1; z0)+n(γ2; z0).

Proof. Let γ1 : [a, b] → C \ {z0} and γ2 : [b, c] → C \ {z0} be the two curves and h1 : [a, b] → R
and h2 : [b, c] → R be continuous branches of arg(γ1 − z0) and arg(γ2 − z0). We may redefine
h2 by adding to it an appropriate integer multiple of 2π so that h2(b) = h1(b). Then the function
h : [a, c] → Rwhich equals h1 in [a, b] and h2 in [b, c] is a continuous branch of log((γ1

·
+ γ2)−z0)

in [a, c]. Therefore h(c)− h(a) = h(c)− h(b) + h(b)− h(a) = h2(c)− h2(b) + h1(b)− h1(a)

and hence n(γ1
·
+ γ2; z0) = n(γ1; z0) + n(γ2; z0).

Proposition 6.6. Let γ1, γ2 be closed curves in C \ {z0} so that each is a reparametrization of the
other. Then n(γ2; z0) = n(γ1; z0).

Proof. Let γ1 : [a, b] → C\{z0} and γ2 : [c, d] → C\{z0} be the two curves and σ : [c, d] → [a, b]
be the change of parameter so that γ2 = γ1 ◦ σ. If h is a continuous branch of arg(γ1 − z0) in
[a, b], then h ◦ σ is a continuous branch of arg(γ2 − z0) in [c, d]. Indeed, from eih(t) = γ1(t)−z0

|γ1(t)−z0|

for every t ∈ [a, b] we get eih(σ(s)) = γ1(σ(s))−z0
|γ1(σ(s))−z0| =

γ2(s)−z0
|γ2(s)−z0| for every s ∈ [c, d]. Therefore,

from h(σ(d))− h(σ(c)) = h(b)− h(a) we get n(γ2; z0) = n(γ1; z0).

Proposition 6.7. Let γ be a closed curve in C \ {z0}. Then n(¬ γ; z0) = −n(γ; z0).

Proof. Let γ,¬ γ : [a, b] → C \ {z0} be the two curves. Then ¬ γ(t) = γ(a + b − t) for every
t ∈ [a, b]. If h is a continuous branch of arg(γ− z0) in [a, b], then the function k(t) = h(a+ b− t)

is a continuous branch of arg(¬ γ−z0) in [a, b]. Indeed, from eih(t) = γ(t)−z0
|γ(t)−z0| for every t ∈ [a, b]

we get eik(t) = eih(a+b−t) = γ(a+b−t)−z0
|γ(a+b−t)−z0| = ¬ γ(t)−z0

|¬ γ(t)−z0| for every t ∈ [a, b]. Therefore, from
k(b)− k(a) = h(a)− h(b) we get n(¬ γ; z0) = −n(γ; z0).

Proposition 6.8. Let γ be a closed curve in C \ {z0}. If a continuous branch of log is defined in
the set γ∗ − z0 ⊆ C \ {0}, then n(γ; z0) = 0.

Proof. We shall apply the argument of example 4.3.3. Let γ : [a, b] → C\{z0} be the closed curve
and q be a continuous branch of log in γ∗ − z0 ⊆ C \ {0}. Then the function f = q ◦ (γ− z0) is a
continuous branch of log(γ − z0) in [a, b]. Now, since the curve γ is closed, we have γ(b) = γ(a)
and hence f(b) = q(γ(b) − z0) = q(γ(a) − z0) = f(a). According to (6.2), the imaginary part
h of f is a continuous branch of arg(γ − z0) in [a, b]. From f(b) = f(a) we get h(b) = h(a) and
hence n(γ; z0) = h(b)−h(a)

2π = 0.

Example 6.1.1.We consider the set A = C \ l, where l is any halfline with vertex z0. We know
that a holomorphic branch of log(z − z0) exists in A and hence n(γ; z0) = 0 for every closed
curve γ inA. This is geometrically obvious: since γ is inA, it does not intersect the halfline l with
vertex z0, and hence it cannot make any complete rotation around z0.
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Proposition 6.9. Let γ1, γ2 : [a, b] → C \ {z0} be closed curves such that |γ1(t) − γ2(t)| <
|γ2(t)− z0| for every t ∈ [a, b]. Then n(γ1; z0) = n(γ2; z0).

Proof. From |γ1(t)− γ2(t)| < |γ2(t)− z0| we get∣∣γ1(t)−z0
γ2(t)−z0

− 1
∣∣ < 1 for every t ∈ [a, b].

Now, we apply again the argument of example 4.3.3. We consider the function g : [a, b] → D1(1)

with g(t) = γ1(t)−z0
γ2(t)−z0

for every t ∈ [a, b]. Let q be a continuous branch of log in D1(1). Then
f = q ◦ g is a continuous branch of log g in [a, b]. Since the curves γ1, γ2 are closed, we have that
g(b) = g(a) and hence f(b) = q(g(b)) = q(g(a)) = f(a). According to (6.2), the imaginary part
h of f is a continuous branch of arg g in [a, b]. From f(b) = f(a) we get h(b) = h(a).
Now let h2 be a continuous branch of arg(γ2 − z0) in [a, b]. Since, γ1 − z0 = (γ2 − z0)g in [a, b],
proposition 6.3 implies that h1 = h2+h is a continuous branch of arg(γ1−z0) in [a, b]. Therefore,
h1(b)−h1(a) = h2(b)−h2(a)+h(b)−h(a) = h2(b)−h2(a) and hence n(γ1; z0) = n(γ2; z0)

For every curve γ in C \ {z0} we may consider the translated curve γz0 = γ − z0 in C \ {0}.
It is clear that n(γ; z0) = n(γz0 ; 0).

Proposition 6.10. Let γ be a closed curve. Then the integer-valued function n(γ; · ) : C\γ∗ → Z
is constant in every connected component of the open set C \ γ∗. We also have that n(γ; z) = 0
for every z in the unbounded connected component of C \ γ∗.

Proof. Let γ : [a, b] → C be the curve and let z ∈ C\γ∗. Then there is some discDz(r) contained
in C \ γ∗ and hence |w − z| < r ≤ |γ(t)− z| for every t ∈ [a, b] and every w ∈ Dz(r).
We take any w ∈ Dz(r) and we consider the translated curves γz = γ− z and γw = γ−w. Then
we have that |γw(t)− γz(t)| = |w− z| < |γz(t)| for every t ∈ [a, b]. Proposition 6.9 implies that
n(γw; 0) = n(γz; 0) and hence n(γ;w) = n(γ; z).
We proved that the function n(γ; · ) : C\γ∗ → Z is locally constant: for every z ∈ C\γ∗ there is
a discDz(r) so that n(γ;w) = n(γ; z) for every w ∈ Dz(r). Of coure, this implies that n(γ; · ) is
continuous inC\γ∗. Now, letΩ be a connected component ofC\γ∗. Since n(γ; · ) is continuous
and integer-valued in the connected set Ω, it is constant in Ω.
Since γ∗ is bounded, it is contained in some disc D0(R). Then the connected ring D0(R,+∞)
is contained in C \ γ∗ and hence it is contained in (exactly) one of the connected components,
call it Ω, of C \ γ∗. Then Ω is the only unbounded connected component of C \ γ∗ and we shall
prove that n(γ; z) = 0 for every z ∈ Ω. Let c be the constant value of n(γ; z) in Ω. We take
any z0 ∈ D0(R,+∞) and then obviously there is a halfline l with vertex z0 which does not
intersect the disc D0(R) and hence it does not intersect γ∗ either. From example 6.1.1 we have
that c = n(γ; z0) = 0.

Proposition 6.10 says that if z1, z2 are in the same connected component of the complement of
the trajectory of the closed curve γ, then the number of complete rotations of γ around z1 is equal
to the number of complete rotations of γ around z2.

Let γ be a closed curve and z /∈ γ∗. We say that γ surrounds z if n(γ; z) ̸= 0.
Now we consider the case of a piecewise smooth curve γ, and initially we do not assume that

γ is closed. Then there is a succession of points a = t0 < t1 < · · · < tn−1 < tn = b so that
γ is continuously differentiable in every [tk−1, tk]. We consider an arbitrary fixed z0 /∈ γ∗ and
we define f(t) =

∫ t
a

γ′(s)
γ(s)−z0

ds for t ∈ [a, b]. Then f is continuous in [a, b] and differentiable

at every point of continuity of γ′

γ−z0
. So in every (tk−1, tk) we have f ′(t) = γ′(t)

γ(t)−z0
and hence

d
dt

(
(γ(t) − z0)e

−f(t)
)
= γ′(t)e−f(t) − (γ(t) − z0)f

′(t)e−f(t) = 0. Thus, (γ(t) − z0)e
−f(t) is

constant in each (tk−1, tk) with a constant value which a priori depends on k. Since this function
is continuous in [a, b], it is constant in [a, b]. Hence there is c ∈ C so that (γ(t) − z0)e

−f(t) = c
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for every t ∈ [a, b]. Since c ̸= 0, there is d ∈ C so that ed = c, and thus ef(t)+d = γ(t) − z0 for
every t ∈ [a, b]. Now we redefine f by adding to it the constant d, i.e. we write

f(t) =
∫ t
a

γ′(s)
γ(s)−z0

ds+ d for every t ∈ [a, b] (6.3)

and we have ef(t) = γ(t)− z0 for every t ∈ [a, b]. In other words, the function f is a continuous
branch of log(γ − z0) in [a, b]. Now, the real part of f is ln |γ − z0| and, if we denote h the
imaginary part of f , then h is a continuous branch of arg(γ − z0) in [a, b].

We have that f(b)−f(a) =
∫ b
a

γ′(s)
γ(s)−z0

ds =
∫
γ

1
ζ−z0

dζ. Since∆ arg(γ−z0) = h(b)−h(a) =

Im(f(b)− f(a)), we get
∆ arg(γ − z0) = Im

∫
γ

1
ζ−z0

dζ.

In the case of a closed curve we have the following result.

Proposition 6.11. Let γ be a piecewise smooth closed curve in C \ {z0}. Then

n(γ; z0) =
1

2πi

∮
γ

1
ζ−z0

dζ.

Proof. Using the notation of the previous discussion, we have n(γ; z0) = ∆ arg(γ−z0)
2π = h(b)−h(a)

2π .
Since γ is closed, we have that ln |γ(b)− z0| = ln |γ(a)− z0| and from (6.2) and (6.3) we get that
n(γ; z0) =

f(b)−f(a)
2πi = 1

2πi

∫ b
a

γ′(s)
γ(s)−z0

ds = 1
2πi

∮
γ

1
ζ−z0

dζ.

Example 6.1.2.We take n ∈ Z and consider the closed curve γ : [0, 2π] → C \ {z0} with
parametric equation γ(t) = z0 + reint. It is clear that, if n ̸= 0 and t increases in the interval
[0, 2π], then γ(t) describes |n| times the circle Cz0(r) in the positive direction, if n > 0, and in the
negative direction, if n < 0. In the case n = 0, then γ(t) is constant and describes |n| = 0 times
the circle Cz0(r). All these agree with the result of the calculation:

n(γ; z0) =
1

2πi

∮
γ

1
ζ−z0

dζ = 1
2πi

∫ 2π
0

1
reint rine

int dt = n.

Since γ∗ = Cz0(r), the complement of γ∗ has two connected components: the discDz0(r) and the
ringDz0(r,+∞). Thus, n(γ; z) = n(γ; z0) = nwhen z ∈ Dz0(r). Also, sinceDz0(r,+∞) is the
unbounded component of the complement of γ∗, we have that n(γ; z) = 0when z ∈ Dz0(r,+∞).

Proposition 6.12. Let Ω ⊆ C\{z0} be a region. Then a holomorphic branch of log(z− z0) exists
in Ω if and only if n(γ; z0) = 0 for every closed curve γ in Ω.

Proof. If n(γ; z0) = 0 for every closed curve γ inΩ, then n(γ; z0) = 0 for every piecewise smooth
closed curve γ inΩ. Now, theorem 4.1 applied to g(z) = z−z0 implies that a holomorphic branch
of log(z − z0) exists in Ω. The converse is a corollary of proposition 6.8.

Of course example 6.1.1 is relevant to proposition 6.12.

Cauchy’s formula for derivatives and closed curves in convex regions. If f is holomorphic in
the convex region Ω and γ is a piecewise smooth closed curve in Ω, then for all n ∈ N0 we have

n(γ; z)f (n)(z) = n!
2πi

∮
γ

f(ζ)
(ζ−z)n+1 dζ for every z ∈ Ω \ γ∗.

Proof. The function F (ζ) = f(ζ)−f(z)
ζ−z is holomorphic inΩ\{z}. Since z is a root of f(ζ)−f(z),

the singularity z of F is removable. So we may define F at z with F (z) = limζ→z
f(ζ)−f(z)

ζ−z =

f ′(z) and then F becomes holomorphic in Ω. Now we apply the theorem of Cauchy in convex
regions and get

∮
γ

f(ζ)−f(z)
ζ−z dζ =

∮
γ F (ζ) dζ = 0 for every z ∈ Ω \ γ∗. This implies∮

γ
f(ζ)
ζ−z dζ = f(z)

∮
γ

1
ζ−z dζ = f(z)2πin(γ; z) (6.4)
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for every z ∈ Ω \ γ∗. This is the result of the statement in the case n = 0.
Now, we consider a small disc Dz(r) ⊆ C \ γ∗. This is possible, since z belongs to the open set
C \ γ∗. The disc Dz(r) is connected and hence it is contained in one connected component of
C \ γ∗. Therefore, the index n(γ;w) is a constant function of w in Dz(r), i.e. n(γ;w) = n(γ; z)
for every w ∈ Dz(r). This implies that all derivatives of n(γ;w) vanish at z and so when we
differentiate (6.4) we get n!

∮
γ

f(ζ)
(ζ−z)n+1 dζ = f (n)(z)2πin(γ; z) for every n ≥ 1.

A particular instance of the last result is Cauchy’s formula for derivatives and circles. Indeed,
when the curve γ describes the circle Cz0(R) once in the positive direction we have n(γ; z) = 1
for all z ∈ Dz0(R). We originally proved the result in the case of a circle, using corollary 5.1.
We now have a “new” proof using that z is a removable singularity of f(ζ)−f(z)

ζ−z . We have also
introduced the notion of the index of a closed curve. This new proof together with the introduction
of the notion of index allows us to generalize the case of a circle to the case of a more general
piecewise smooth closed curve. There is still a restriction in the sense that the curve has to be
contained in a convex region in which the function is holomorphic. This is because our proof is
based on Cauchy’s theorem in convex regions. In this chapter we shall replace this restriction on
the region with a restriction on the curve.

Exercises.

6.1.1. (i) Consider closed curves γ1, γ2 and z not on their trajectories. Assume that there are succes-
sive points w(1)

1 , . . . , w
(1)
n , w

(1)
n+1 = w

(1)
1 of γ∗1 and successive points w

(2)
1 , . . . , w

(2)
n , w

(2)
n+1 = w

(2)
1

of γ∗2 and curves σ1, . . . , σn, σn+1 = σ1 so that every σj goes from w
(1)
j to w

(2)
j and so that, for

each j = 1, . . . , n, the part of γ1 between w
(1)
j , w

(1)
j+1, the part of γ2 between w

(2)
j , w

(2)
j+1, σj and

σj+1 are all in a convex subregion Dj of C \ {z}. Prove that n(γ1; z) = n(γ2; z).
(ii) Take a point z and two halflines l,m with vertex z. Let A ∈ l, A ̸= z and B ∈ m, B ̸= z.
Consider any curve γ1 from A to B in one of the two angular regions defined by l,m and any
curve γ2 from B to A in the second angular region defined by l,m. Consider the closed curve
γ = γ1

·
+ γ2. Using appropriately a small circle with center z, prove that n(γ; z) = ±1.

6.1.2. If γ1, γ2 are closed curves in C \ {0} then γ1γ2 is a closed curve in C \ {0}. Prove that
∆ arg(γ1γ2) = ∆ arg γ1 +∆ arg γ2.

6.1.3. Let F ⊆ C be closed and connected, ±1 ∈ F and Ω = C \ F . Prove that there is a
holomorphic branch of log z−1

z+1 in Ω. Prove also that there is a holomorphic branch of (z2 − 1)1/2

in Ω.

6.2 Homotopy.

Let γ0, γ1 : [a, b] → C be two curves. We say that γ1 is homotopic to γ0 if there is a continuous
function F : [a, b] × [0, 1] → C so that F (t, 0) = γ0(t) and F (t, 1) = γ1(t) for every t ∈ [a, b].
The function F is called a homotopy from γ0 to γ1.

For each s ∈ [0, 1] the function γs : [a, b] → C, given by γs(t) = F (t, s) for t ∈ [a, b], is
continuous and hence it is a curve. We shall call it intermediate curve between γ0 and γ1.

Since [a, b]× [0, 1] is compact, the homotopy F is uniformly continuous. Thus for every ϵ > 0
there is δ > 0 so that |F (t′, s′)− F (t′′, s′′)| < ϵ when

√
(t′ − t′′)2 + (s′ − s′′)2 < δ. Therefore,

if |s′ − s′′| < δ then we have |γs′(t) − γs′′(t)| < ϵ for every t ∈ [a, b], i.e. the curves γs′ and
γs′′ are uniformly close. We see that when s increases in [0, 1] the curves γs form a continuously
varying family of curves, starting with γ0 and ending with γ1. To be more precise, we have a
mapping [0, 1] ∋ s 7→ γs ∈ C([a, b]), which is continuous from [0, 1] with the euclidean distance
to C([a, b]) with the uniform distance:

|s′ − s′′| < δ ⇒ supt∈[a,b] |γs′(t)− γs′′(t)| < ϵ.
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If all curves γs are closed, i.e. if F (a, s) = F (b, s) for every s ∈ [0, 1], then we say that F is
a homotopy with closed intermediate curves. If all curves γs have the same initial endpoint and
the same final endpoint, i.e. if F (a, s) is constant and F (b, s) is constant for s ∈ [0, 1], then we
say that F is a homotopy with fixed endpoints.

If all curves γs are in the same set A, then we say that F is a homotopy in A.
We may define a relation between curves in a set A: we write γ0 ≡ γ1 if there is a homotopy

in A from γ0 to γ1. It is easy to see that this is an equivalence relation:
(i) Every curve γ : [a, b] → A is homotopic to itself through the homotopy F : [a, b]× [0, 1] → A
given by F (t, s) = γ(t).
(ii) IfF : [a, b]×[0, 1] → A is a homotopy from γ0 to γ1, i.e. ifF (t, 0) = γ0(t) andF (t, 1) = γ1(t)
for t ∈ [a, b], then the functionG : [a, b]×[0, 1] → A given byG(t, s) = F (t, 1−s) is a homotopy
from γ1 to γ0. In fact G is continuous and G(t, 0) = γ1(t) and G(t, 1) = γ0(t) for t ∈ [a, b].
(iii) If F : [a, b] × [0, 1] → A is a homotopy from γ0 to γ1, i.e. if F (t, 0) = γ0(t) and F (t, 1) =
γ1(t) for t ∈ [a, b], and ifG : [a, b]×[0, 1] → A is a homotopy from γ1 to γ2, i.e. ifG(t, 0) = γ1(t)
and G(t, 1) = γ2(t) for t ∈ [a, b], then H : [a, b]× [0, 1] → A, given by

H(t, s) =

{
F (t, 2s), t ∈ [a, b], s ∈ [0, 12 ]

G(t, 2s− 1), t ∈ [a, b], s ∈ [12 , 1]

is a homotopy from γ0 to γ2. Indeed, H is continuous and H(t, 0) = γ0(t) and H(t, 1) = γ2(t)
for t ∈ [a, b].

Furthermore, the previous argument shows that the relation of homotopy with closed interme-
diate curves and the relation of homotopy with fixed endpoints are both equivalence relations.

Example 6.2.1. If the set A is convex, every two curves in A are homotopic in A. Indeed, let
γ0, γ1 : [a, b] → A be two curves inA. Since γ0(t), γ1(t) ∈ A andA is convex, the linear segment
[γ0(t), γ1(t)] is contained in A. Now, if we define F : [a, b]× [0, 1] → C by

F (t, s) = (1− s)γ0(t) + sγ1(t),

then F is continuous and all its values are in A. Moreover, F (t, 0) = γ0(t) and F (t, 1) = γ1(t)
for t ∈ [a, b]. Therefore, F is a homotopy in A from γ0 to γ1. It is easy to see that, if γ0 and γ1 are
closed, then all intermediate curves are closed. Also, if γ0 and γ1 have the same initial endpoint
and the same final endpoint, then all intermediate curves have the same initial endpoint and the
same final endpoint.

Proposition 6.13. Let γ0, γ1 be two closed curves in C \ {z}. If there is a homotopy in C \ {z},
with closed intermediate curves, between γ0 and γ1, then n(γ0; z) = n(γ1; z).

Proof. Let F : [a, b]× [0, 1] → C \ {z} be a homotopy with closed intermediate curves, between
γ0 and γ1. Since F is continuous and [a, b] × [0, 1] is compact and F does not take the value z,
there is ϵ > 0 so that |F (t, s)−z| ≥ ϵ for every t ∈ [a, b] and s ∈ [0, 1]. Also, since F is uniformly
continuous, there is δ > 0 so that |s′ − s′′| < δ implies |γs′(t) − γs′′(t)| < ϵ for every t ∈ [a, b],
where γs is the intermediate curve corresponding to s ∈ [0, 1]. Then we have |γs′(t)− γs′′(t)| <
|γs′′(t) − z| for every t ∈ [a, b] and proposition 6.9 implies that n(γs′ ; z) = n(γs′′ ; z). Now
we take successive points 0 = s0 < s1 < . . . < sn−1 < sn = 1 so that sk − sk−1 < δ for
every k = 1, . . . , n. Then we have n(γsk−1

; z) = n(γsk ; z) for every k = 1, . . . , n and hence
n(γ0; z) = n(γ1; z).

Proposition 6.14. Let f be holomorphic in the open set Ω.
(i) If γ0, γ1 are piecewise smooth curves in Ω with the same initial endpoint and the same fi-
nal endpoint and if there is a homotopy in Ω, with fixed endpoints, between γ0 and γ1, then∫
γ0
f(z) dz =

∫
γ1
f(z) dz.

(ii) If γ0, γ1 are piecewise smooth closed curves in Ω and if there is a homotopy in Ω, with closed
intermediate curves, between γ0 and γ1, then

∮
γ0
f(z) dz =

∮
γ1
f(z) dz.
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Proof. (i) Let F : [a, b] × [0, 1] → Ω be the homotopy in Ω from γ0 to γ1. Then the subset
F ([a, b]× [0, 1]) of Ω is compact and there is ϵ > 0 so that

|z − w| ≥ ϵ for every z ∈ F ([a, b]× [0, 1]) and every w ∈ Ωc. (6.5)

Since F is uniformly continuous, there is δ > 0 so that

|F (t′, s′)− F (t′′, s′′)| < ϵ if |t′ − t′′| < δ and |s′ − s′′| < δ. (6.6)

We take points a = t0 < t1 < . . . < tn−1 < tn = b and 0 = s0 < s1 < . . . < sm−1 < sm = 1
so that tk − tk−1 < δ and sl − sl−1 < δ for all k and l. Then (6.5) and (6.6) imply that every
rectangle [tk−1, tk]× [sl−1, sl] is mapped by F in the disc DF (tk−1,sl−1)(ϵ) which is contained in
Ω. Since f is holomorphic in this disc, its curvilinear integral over any closed curve in this disc is
equal to 0.
Now we denote γ0,k and γ1,k the restrictions of γ0 and γ1 in [tk−1, tk]. We also denote σk,l the
linear segment [F (tk−1, sl), F (tk, sl)] for k = 1, . . . , n and l = 1, . . . ,m− 1. Finally, we denote
ρk,l the linear segment [F (tk, sl−1), F (tk, sl)] for k = 0, . . . , n and l = 1, . . . ,m. Then for every
k = 1, . . . , n we have∫

γ0,k
f(z) dz −

∫
σk,1

f(z) dz =
∫
ρk−1,1

f(z) dz −
∫
ρk,1

f(z) dz∫
σk,l−1

f(z) dz −
∫
σk,l

f(z) dz =
∫
ρk−1,l

f(z) dz −
∫
ρk,l

f(z) dz for l = 2, . . . ,m− 1∫
σk,m−1

f(z) dz −
∫
γ1,k

f(z) dz =
∫
ρk−1,m

f(z) dz −
∫
ρk,m

f(z) dz.

Adding these m equalities and then adding for k = 1, . . . , n and considering cancellations, we
find ∫

γ0
f(z) dz −

∫
γ1
f(z) dz =

∑m
l=1

∫
ρ0,l

f(z) dz −
∑m

l=1

∫
ρn,l

f(z) dz. (6.7)

Since all intermediate curves have the same initial endpoint and the same final endpoint, we see
that all linear segments ρ0,l and ρn,l are single point sets and hence all integrals in the right side of
(6.7) are equal to 0. Thus,

∫
γ0
f(z) dz =

∫
γ1
f(z) dz.

(ii) Since all intermediate curves are closed, we have F (a, s) = F (b, s) for every s ∈ [0, 1].
Therefore, for each l the linear segments ρ0,l and ρn,l coincide and again the right side of (6.7) is
equal to 0. Thus,

∮
γ0
f(z) dz =

∮
γ1
f(z) dz.

Exercises.

6.2.1. Let A be arcwise connected and γ1(t) = z1 and γ2(t) = z2 be two constant curves in A. If
a curve γ is homotopic in A to γ1, prove that γ is homotopic in A to γ2.

6.2.2. If γ is a closed curve in C \ {0}, prove that γ is homotopic in C \ {0} to a closed curve
whose trajectory is contained in the circle T.

6.2.3. (i) Let f be continuous in D0(R). We define γ(t) = f(Reit) for every t ∈ [0, 2π]. Prove
that, if n(γ;w) ̸= 0, then w ∈ f(D0(R)). I.e. {w |w is surrounded by γ} ⊆ f(D0(R)).
(ii) Using the result of (i), prove the fundamental theorem of algebra.

6.2.4. Let p ∈ A and letMp(A) be the set of all closed curves with both of their endpoints at p. If
γ1, γ2 ∈ Mp(A), then clearly γ1

·
+ γ2 ∈ Mp(A). Also, if γ ∈ Mp(A), then ¬ γ ∈ Mp(A).

(i) Prove that the relation of homotopy in A with closed intermediate curves and fixed endpoints
(= p) is an equivalence relation inMp(A). The set of all equivalence classes is denotedHp(A) =
{[γ] | γ ∈ Mp(A)}.
(ii) If γ, γ1, γ2 ∈ Mp(A), we define [γ1] + [γ2] = [γ1

·
+ γ2] and −[γ] = [¬γ]. Prove that these

are well-defined and that Hp(A) with these operations is a group, whose neutral element is [γp],
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where γp is the constant curve p.
(iii) If A is arcwise connected, prove that for every p, q ∈ A the groups Hp(A) and Hq(A) are
isomorphic. In this case we writeH(A). (See exercise 6.2.1.)
(iv) Prove thatH(C) ∼= {0},H(C \ {0}) ∼= Z,H(T) ∼= Z.

6.2.5. Let z1, z2, z3, w1, w2, w3 be distinct points. Is it possible to join every zk with every wj

with simple curves γkj whose trajectories are mutually disjoint?

6.3 Combinatorial results for curves and square nets.

Lemma 6.1. Let Σ = {σ1, . . . , σn} be a set of curves (not necessarily closed) and let A =
{a1, . . . , am} be the set of their endpoints (m ≤ 2n). We assume that for every point of A the
number of the curves inΣ that arrive at this point is the same as the number of the curves inΣ that
leave from this point. Then we can partition Σ into subsets Σ1, . . . ,Σk so that each Σj consists of
successive curves and the sum γj of the curves in Σj is a closed curve.

Proof. We describe the following algorithm for the partitioning of Σ.
We start with σ1. The final endpoint of σ1 is the initial endpoint of at least one curve in Σ. If the
final endpoint of σ1 coincides with its initial endpoint, then σ1 is closed and we stop the process. If
this is not the case, then, renumbering if necessary the curves σ2, . . . , σn, we may assume that the
final endpoint of σ1 coincides with the initial endpoint of σ2. If the final endpoint of σ2 coincides
with the initial endpoint of σ1, then the sum of σ1, σ2 is a closed curve and we stop the process. If
the final endpoint of σ2 coincides with its initial endpoint, then σ2 is a closed curve and we stop
the process. If the final endpoint of σ2 is not the initial point of either σ1 or σ2, then renumbering
if necessary the curves σ3, . . . , σn, we may assume that the final endpoint of σ2 coincides with
the initial endpoint of σ3. Then, exactly as before, we examine whether the final endpoint of σ3
coincides with the initial endpoint of σ1 or of σ2 or of σ3. Then, respectively, the sum of σ1, σ2, σ3
or the sum of σ2, σ3 or σ3 by itself is a closed curve and we stop the process. If the final endpoint
of σ3 is not the initial endpoint of either σ1 or σ2 or σ3, then renumbering if necessary the curves
σ4, . . . , σn, we may assume that the final endpoint of σ3 coincides with the initial endpoint of
σ4. Now, it is clear that this process will eventually stop, because we have only finitely many
curves. Therefore, we shall eventually find successive curves σ1, σ2, . . . , σk−1, σk (1 ≤ k ≤
n) so that the final endpoint of σk coincides with the initial endpoint of one of the same curves
σ1, σ2, . . . , σk−1, σk. Let the final endpoint of σk coincide with the initial endpoint of σl for some l
with 1 ≤ l ≤ k. Then the sum of σl, σl+1, . . . , σk−1, σk is a closed curve and we stop the process.
Now we set Σ1 = {σl, σl+1, . . . , σk−1, σk} and call γ1 the closed curve which is the sum of
σl, σl+1, . . . , σk−1, σk. Then we drop the curves of Σ1 from Σ, i.e. we consider the set Σ′ =
Σ \ Σ1 = {σ1, . . . , σl−1, σk+1, . . . , σn}.
Each endpoint of the curves in Σ′ is one of the points of A = {a1, . . . , am}, say it is aj . Then the
number of the curves in Σ that arrive at aj is the same as the number of the curves in Σ that leave
from aj . But the curves σl, σl+1, . . . , σk−1, σk are successive and hence if one of them arrives at
aj then the next one leaves from aj . Therefore, the remaining curves ofΣ′ have the same property:
the number of the curves in Σ′ that arrive at aj is the same as the number of the curves in Σ′ that
leave from aj . Thus Σ′ has the same property as the original Σ.
Now we continue our algorithm with Σ′. We find a subset Σ2 of Σ′ which consists of successive
curves and we call γ2 the closed curve which is the sum of the curves in Σ2. Then we drop the
curves of Σ2 from Σ′, i.e. we consider the set Σ′′ = Σ′ \Σ2 = Σ \ (Σ1 ∪Σ2). We go on until we
exhaust the original Σ.

Lemma 6.2. We take any δ > 0 and two perpendicular lines. For each of them we consider all its
parallel lines at distances equal to integermultiples of δ. The result is a net of closed square regions
of sidelength δ which cover the plane and have disjoint interiors. We choose any of those closed
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square regions, sayQ1, . . . , Ql. We consider the closed boundary curves ∂Q1, . . . , ∂Ql with their
positive direction. Each of them is the sum of four corresponding linear segments, considered as
curves with the same direction. We drop the linear segments (with necessarily opposite directions)
which are common to any two neighboring square regions from among the Q1, . . . , Ql and we
consider the setΣ = {σ1, . . . , σn} of all the remaining linear segments, i.e. those which belong to
only one ofQ1, . . . , Ql. Then we can partition Σ into subsets Σ1, . . . ,Σk so that each Σj consists
of successive linear segments and the sum γj of the linear segments in Σj is a closed curve.

Proof. It is enough to prove that Σ has the property described in lemma 6.1, i.e. that for every
point of intersection a of our lines the number of the curves in Σ that arrive at a is the same as
the number of the curves in Σ that leave from a. This can be done easily, considering cases for
the number, 0 or 1 or 2 or 3 or 4, of the squares among Q1, . . . , Ql which have a as one of their
corners.

Lemma 6.3. LetΩ be an open set andK ⊆ Ω be compact. Then there is δ > 0 so that |z−w| ≥ 2δ
for every z ∈ K and every w ∈ Ωc. For this δ > 0 we consider the net of closed square regions
of lemma 6.2 and we take all closed square regionsQ1, . . . , Ql of the net which intersectK. Then
Q1, . . . , Ql are contained inΩ. As in lemma 6.2, we consider the setΣ = {σ1, . . . , σn} of all linear
segments which belong to only one of Q1, . . . , Ql and we partition Σ into subsets Σ1, . . . ,Σk so
that each Σj consists of successive linear segments and the sum γj of the linear segments in Σj

is a closed curve. Then γ∗1 ∪ · · · ∪ γ∗k ⊆ Ω \ K (i.e. every γj is in Ω \ K) and the distance of
every z ∈ γ∗1 ∪ · · · ∪ γ∗k fromK is ≤ δ

√
2. Moreover, for every f holomorphic in Ω and for every

z ∈ K, we have
f(z) =

∑k
j=1

1
2πi

∮
γj

f(ζ)
ζ−z dζ. (6.8)

Proof. Each of the closed square regions Q1, . . . , Ql, say Qm, intersects K and its diameter is
equal to

√
2δ. Therefore, the distance of every point of Qm from K is ≤

√
2δ. Since

√
2δ < 2δ,

we see that Qm is contained in Ω.
Consider any of the linear segments σ1, . . . , σn, say σj . Now, σj belongs to one of Q1, . . . , Ql,
say Qm. Since Qm is contained in Ω, we have that σj is also contained in Ω. Moreover, the
distance of every point of Qm from K is ≤

√
2δ and hence the distance of every point of σj

from K is ≤
√
2δ. If σj intersects K, then both closed square regions of our net which lie on the

two sides of σj intersect K and hence both are among Q1, . . . , Ql. This is impossible because σj
belongs to only one ofQ1, . . . , Ql. Therefore, σj does not intersectK and hence it is contained in
Ω \K. Finally, since each of γ1, . . . , γk is the sum of certain of the σ1, . . . , σn, we have proved
that γ∗1 ∪ · · · ∪ γ∗k ⊆ Ω \K and that the distance of every z ∈ γ∗1 ∪ · · · ∪ γ∗k fromK is ≤ δ

√
2.

Now we take any z ∈ K. Then z belongs to one Q1, . . . , Ql, say Qm. Let us assume that z is an
interior point ofQm. Since the closed square regionQm is contained inΩ, there is a slightly larger
open square region Q′ which is also contained in Ω. Now f is holomorphic in the convex region
Q′ and Cauchy’s formula in section 6.1 says that

f(z) = 1
2πi

∮
∂Qm

f(ζ)
ζ−z dζ, (6.9)

because the index of ∂Qm with respect to z is equal to 1. Now we take any closed square region
Qp with p ̸= m. Then z is not contained in Qp and again we may find an open square region
Q′ slightly larger than Qp which is contained in Ω and which does not contain z. Then f(ζ)

ζ−z is a
holomorphic function of ζ in the convex region Q′ and hence

0 = 1
2πi

∮
∂Qp

f(ζ)
ζ−z dζ for p ̸= m. (6.10)

We add (6.9) and (6.10) and we get

f(z) =
∑l

p=1
1

2πi

∮
∂Qp

f(ζ)
ζ−z dζ. (6.11)
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Now we split the integral over each ∂Qp in four integrals over the boundary linear segments of
∂Qp and we get 4l integrals. We recall that if a linear segment belongs to two neighboring closed
square regions, then it appears twice among the integrals with opposite directions and hence the two
integrals cancel. Therefore, the remaining integrals will be only over the boundary linear segments
which belong to exactly one of Q1, . . . , Ql, i.e. the linear segments of the set Σ = {σ1, . . . , σn}.
Thus (6.11) becomes

f(z) =
∑

σ∈Σ
1

2πi

∫
σ

f(ζ)
ζ−z dζ.

The subsets Σ1, . . . ,Σk form a partition of Σ and hence

f(z) =
∑k

j=1

∑
σ∈Σj

1
2πi

∫
σ

f(ζ)
ζ−z dζ.

Finally, since γj is the sum of the successive linear segments σ ∈ Σj , we end up with (6.8).
Now let z be a boundary point of Qm. Then we may consider a variable point z′ in the interior of
Qm so that z′ → z. We have proved (6.8) for z′, i.e.

f(z′) =
∑k

j=1
1

2πi

∮
γj

f(ζ)
ζ−z′ dζ.

Proposition 4.12 implies the continuity of the right side as a function of z′. Therefore, taking the
limit as z′ → z, we end up again with (6.8).

6.4 The theorem of Cauchy in general open sets.

Let σ1, . . . , σn be any curves (not necessarily closed) and k1, . . . , kn be any integers (not nec-
essarily non-negative). Then we say that the curves σ1, . . . , σn considered k1, . . . , kn times, re-
spectively, form a chain Σ. The integer kj is called multiplicity of the corresponding σj in the
chain Σ. If every σj is closed, then Σ is called closed chain or cycle. If every σj is in a setA, then
we say that Σ is in A.

If a curve σ is not among the curves which constitute a chain Σ, we may include it among
those curves by assigning multiplicity 0 to σ. And now we may introduce the algebraic structure
of a module in the set of all chains in the following manner. If Σ′ and Σ′′ are two chains, we
may assume that they are formed by the same collection σ1, . . . , σn of curves. If k′1, . . . , k′n and
k′′1 , . . . , k

′′
n are the corresponding multiplicities in the chains Σ′ and Σ′′, then we define Σ′+Σ′′ to

be the chain which consists of σ1, . . . , σn with multiplicities k′1+k′′1 , . . . , k
′
n+k′′n. Moreover, if k

is an integer and Σ is a chain formed by the curves σ1, . . . , σn with multiplicities k1, . . . , kn, then
we define kΣ to be the chain formed by σ1, . . . , σn with multiplicities kk1, . . . , kkn. It is very
easy to show that, under this addition of chains and this multiplication of chains and integers, the
set of chains is a Z-module. The opposite −Σ of a chain Σ is (−1)Σ and the neutral element of
addition is the chain which contains no curve (or any curves with multiplicities 0).

If Σ is a chain formed by the curves σ1, . . . , σn with multiplicities k1, . . . , kn, we immediately
see that, under the above definitions of addition andmultiplication, we haveΣ = k1σ1+· · ·+knσn.
Here we consider each σj as a chain consisting of only one curve with multiplicity 1.

We shall not go into this algebraic point of view, since it does not have much to offer in our
study of complex analysis. We shall keep in mind, though, the definition and notation of Σ′ +Σ′′

and kΣ and from time to time we shall feel free to make certain mild algebraic comments.
Now we consider a chainΣ formed by the piecewise smooth curves σ1, . . . , σn with multiplic-

ities k1, . . . , kn and a continuous ϕ : σ∗
1 ∪ · · · ∪ σ∗

n → C. We define the curvilinear integral of
ϕ over Σ by ∫

Σ ϕ(z) dz =
∑n

j=1 kj
∫
σj

ϕ(z) dz.

If Σ is a cycle, we may use the notation ∮
Σ ϕ(z) dz.
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It is easy to show that∫
k1Σ1+k2Σ2

ϕ(z) dz = k1
∫
Σ1

ϕ(z) dz + k2
∫
Σ2

ϕ(z) dz.

This says that integration “respects” the linear structure of the Z-module of chains.
Moreover, for every z which does not belong to σ∗

1 ∪ · · · ∪ σ∗
n we define the rotation number

or index of the chain Σ with respect to z by

n(Σ; z) =
∑n

j=1 kjn(σj ; z).

We may say that n(Σ; z) is the total number of rotations around z of the curves forming Σ,
taking into account their multiplicities.

Combining the last two definitions, we easily see that the index of a cycle consisting of piece-
wise smooth closed curves is given by the same integral form which gives the index of a piecewise
smooth closed curve:

n(Σ; z) = 1
2πi

∮
Σ

1
ζ−z dζ.

Indeed, n(Σ; z) =
∑n

j=1 kjn(σj ; z) =
∑n

j=1 kj
1

2πi

∮
σj

1
ζ−z dζ = 1

2πi

∮
Σ

1
ζ−z dζ.

Now we state a basic definition.
Let Σ be a cycle in the open set Ω. We say that Σ is null-homologous in Ω if n(Σ; z) = 0 for

every z ∈ Ωc.
In other words, a cycle Σ in Ω is null-homologous in Ω if the total number of rotations of the

curves forming Σ, taking into account their multiplicities, around every point of the complement
of Ω is zero.

Lemma 6.4. Let Ω ⊆ C be open, δ > 0 and K = {z ∈ Ω | |z| ≤ R, |z −w| ≥ δ for all w ∈ Ωc}.
Then K is a compact subset of Ω.

Proof. SinceK ⊆ D0(R), the setK is bounded.
Now, let zn ∈ K for every n and zn → z. If we prove that z ∈ K, then K is closed and hence
compact. We have |zn| ≤ R for every n and thus |z| ≤ R. For everyw ∈ Ωc we have |zn−w| ≥ δ
for every n and hence |z − w| ≥ δ. Therefore z ∈ K.

The theorem of Cauchy in general open sets. If f is holomorphic in the open set Ω and if the
cycle Σ, consisting of piecewise smooth closed curves, is null-homologous in Ω, then∮

Σ f(z) dz = 0.

Proof. Let the cycleΣ consist of the piecewise smooth closed curves σ1, . . . , σn withmultiplicities
k1, . . . , kn. Since σ∗

1 ∪ · · · ∪ σ∗
n is a compact subset of Ω, there is δ > 0 so that every point of

σ∗
1 ∪ · · · ∪ σ∗

n has a distance ≥ 2δ from Ωc and there is R > 0 so that σ∗
1 ∪ · · · ∪ σ∗

n is contained
in the closed disc D0(R). We consider the set

K = {z ∈ Ω | |z| ≤ R, |z − w| ≥ 2δ for every w ∈ Ωc}

of lemma 6.4 (with 2δ instead of δ). ThenK is a compact subset ofΩwhich contains σ∗
1∪· · ·∪σ∗

n.
With the same δ and with this set K we form the closed curves γ1, . . . , γk in Ω \ K, which are
described in lemma 6.3. According to lemma 6.3 we have

f(z) =
∑k

l=1
1

2πi

∮
γl

f(ζ)
ζ−z dζ for every z ∈ σ∗

1 ∪ · · · ∪ σ∗
n.

Hence ∮
Σ f(z) dz =

∑n
j=1 kj

∮
σj

f(z) dz =
∑n

j=1 kj
∮
σj

(∑k
l=1

1
2πi

∮
γl

f(ζ)
ζ−z dζ

)
dz

= −
∑k

l=1

∮
γl

(∑n
j=1 kj

1
2πi

∮
σj

1
z−ζ dz

)
f(ζ) dζ

= −
∑k

l=1

∮
γl

(∑n
j=1 kj n(σj ; ζ)

)
, f(ζ) dζ

= −
∑k

l=1

∮
γl
n(Σ; ζ)f(ζ) dζ.

(6.12)
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Now we consider the index n(Σ; ζ) =
∑n

j=1 kj n(σj ; ζ) when, as in the integrals in (6.12), ζ
belongs to any of γ∗1 , . . . , γ∗k . Since every such ζ is in Ω \ K, either ζ ̸∈ D0(R) or the distance
of ζ from Ωc is < 2δ. If ζ ̸∈ D0(R), then, since Σ is in D0(R), we have that n(Σ; ζ) = 0. If the
distance of ζ from Ωc is < 2δ, then there is w ∈ Ωc so that |ζ − w| < 2δ. Then every point of the
linear segment [ζ, w] has distance< 2δ from w and hence from Ωc. Thus [ζ, w] is not contained in
K which implies that [ζ, w] is in the complement of σ∗

1, . . . , σ
∗
n. Since [ζ, w] is connected and it is

contained in the complement of every σ∗
j we have that n(σj ; ζ) = n(σj ;w) for every j = 1, . . . , n.

Therefore,
n(Σ; ζ) =

∑n
j=1 kj n(σj ; ζ) =

∑n
j=1 kj n(σj ;w) = n(Σ;w) = 0

because w ∈ Ωc and Σ is null-homologous in Ω. Now (6.12) implies
∮
Σ f(z) dz = 0.

It is interesting to see that the assumption of our last result is at the same time a special case
of it. Indeed, if we take any w ∈ Ωc, then the function f(z) = 1

z−w is holomorphic in Ω and the
theorem of Cauchy implies that

∮
Σ

1
z−w dz = 0. But this says that n(Σ;w) = 0. In other words,

we have the following situation. The assumption that Σ is null-homologous in Ω is equivalent to
the validity of the theorem of Cauchy for the very particular holomorphic functions of the form
f(z) = 1

z−w for every w ∈ Ωc. Therefore the real content of the theorem of Cauchy is that the
validity of

∮
Σ f(z) dz = 0 for the special holomorphic functions in Ω of the form f(z) = 1

z−w for
every w ∈ Ωc implies its validity for every function f which is holomorphic in Ω.

Example 6.4.1. Let γ be any piecewise smooth closed curve in the convex regionΩ and letw ∈ Ωc.
Thenw is contained in the unbounded connected component ofC\γ∗ and proposition 6.10 implies
that n(γ;w) = 0. Hence γ is null-homologous in Ω. Now the theorem of Cauchy for general open
sets says that

∮
γ f(z) dz = 0 for every f holomorphic in Ω. We conclude that the theorem of

Cauchy for convex regions is a corrolary of the theorem of Cauchy for general open sets.

Example 6.4.2.We consider the open set Dz0(R1, R2) with 0 ≤ R1 < R2 ≤ +∞. We con-
sider the closed curve γ which describes the circle Cz0(r), with R1 < r < R2, once and in the
positive direction. This curve is not null-homologous inDz0(R1, R2). Indeed, z0 is in the comple-
ment of Dz0(R1, R2) and n(γ; z0) = 1

2πi

∮
Cz0 (r)

1
z−z0

dz = 1. Therefore, we do not expect that∮
γ f(z) dz = 0 is true for every f which is holomorphic in Dz0(R1, R2). In fact, this is certainly
not true for f(z) = 1

z−z0
which is holomorphic in Dz0(R1, R2).

Example 6.4.3.We consider the same open set Dz0(R1, R2) as in the previous example and an
arbitrary piecewise smooth closed curve γ in Dz0(R1, R2). We shall see how we can evaluate∮
γ f(z) dz with a minimum of effort for any f holomorphic in Dz0(R1, R2). It is clear that, de-
pending on the specific curve γ, it may be difficult to evaluate the integral using a parametric
equation of γ.
Let us assume that the shape of the trajectory and the direction of γ allow us to count the number
of rotations of γ around z0, i.e. we assume that we know the integer k = n(γ; z0). Since the disc
Dz0(R1) is one of the two connected components of the complement ofDz0(R1, R2), we have that
n(γ; z) = k for every z ∈ Dz0(R1). On the other hand, we have that n(γ; z) = 0 for every z in
the unbounded connected component of the complement ofDz0(R1, R2), which isDz0(R2,+∞).
Now we take a piecewise smooth closed curve γ1 inDz0(R1, R2) such that the

∮
γ1
f(z) dz may be

much easier to evaluate than the original
∮
γ f(z) dz. For instance, we may consider γ1 to describe

the circle Cz0(r) with R1 < r < R2 once and in the positive direction. In this case we have that
n(γ1; z) = 1 for every z ∈ Dz0(R1) and n(γ1; z) = 0 for every z ∈ Dz0(R2,+∞). Nowwe form
the cycle Σ = 1 γ + (−k) γ1 and we have n(Σ; z) = 1n(γ; z) + (−k)n(γ1; z) = k + (−k) = 0
for every z ∈ Dz0(R1) and also n(Σ; z) = 1n(γ; z) + (−k)n(γ1; z) = 0 + 0 = 0 for every
z ∈ Dz0(R2,+∞). Therefore, Σ is null-homologous in Dz0(R1, R2) and the theorem of Cauchy
implies 0 =

∮
Σ f(z) dz = 1

∮
γ f(z) dz + (−k)

∮
γ1
f(z) dz and hence∮

γ f(z) dz = k
∮
γ1
f(z) dz = k

∮
Cz0 (r)

f(z) dz.
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We see that the evaluation of
∮
γ f(z) dz has been reduced to the evaluation of the possibly much

simpler integral
∮
Cz0 (r)

f(z) dz and the evaluation of the index n(γ; z0).
We shall generalize this technique in the following sections and chapters.

Now we generalize Cauchy’s formulas for derivatives.

Cauchy’s formula for derivatives and closed curves in general open sets. If f is holomorphic in
the open setΩ and if the cycleΣ, consisting of piecewise smooth closed curves, is null-homologous
in Ω, then for all n ∈ N0 we have

n(Σ; z)f (n)(z) = n!
2πi

∮
Σ

f(ζ)
(ζ−z)n+1 dζ

for every z ∈ Ω which does not belong to the trajectory of any closed curve forming Σ.

Proof. The function F (ζ) = f(ζ)−f(z)
ζ−z is holomorphic inΩ\{z}. Since z is a root of f(ζ)−f(z),

the singularity z is removable. Therefore, we may define F at z with F (z) = limζ→z
f(ζ)−f(z)

ζ−z =

f ′(z) and then F becomes holomorphic in Ω. Now we apply the theorem of Cauchy in general
open sets and get

∮
Σ

f(ζ)−f(z)
ζ−z dζ =

∮
Σ F (ζ) dζ = 0, which implies∮

Σ
f(ζ)
ζ−z dζ = f(z)

∮
Σ

1
ζ−z dζ = f(z)2πin(Σ; z)

for every z ∈ Ω which does not belong to the trajectory of any closed curve forming Σ. This is
the result of the statement in the case n = 0. For derivatives of order n ≥ 1 we differentiate both
sides of the last formula, just as in the proof of the same theorem in convex sets, using the fact that
the index of Σ is constant in a neighborhood of z.

Exercises.

6.4.1. Let f be holomorphic in D \ {0}. If the piecewise smooth closed curve γ is in D \ {0} and
n(γ; 0) = 0, evaluate

∮
γ f(z) dz.

6.4.2. Let f be holomorphic in C and f(1) = 6, f(−1) = 10. Prove that, if γ is any piecewise
smooth closed curve in C \ {−1, 1}, then 1

2πi

∮
γ

f(z)
z2−1

dz can take every integral value.

6.4.3. Let f(z) = (1z + a
z3
)ez for z ̸= 0. Find all the values of a so that

∮
γ f(z) dz = 0 for every

piecewise smooth closed curve γ in C \ {0}.

6.4.4. (i) Find all possible values of
∮
γ

2z−1
z2−z

dz, where γ is an arbitrary piecewise smooth closed
curve in C \ {0, 1}.
(ii) Find all possible values of

∫
γ

2z−1
z2−z

dz, where γ is an arbitrary piecewise smooth curve in C \
{0, 1} with initial endpoint −i and final endpoint i.

6.4.5. Find all possible values of
∮
γ

cos z
z2−πz

dz, where γ is an arbitrary piecewise smooth closed
curve in C \ {0, π}.

6.4.6. Let f be holomorphic in the open set Ω and γ be a piecewise smooth closed curve null-
homologous inΩ. If |f(ζ)| ≤ 1 for every ζ ∈ γ∗, z0 ∈ Ω and n(γ; z0) ̸= 0, prove that |f(z0)| ≤ 1.

6.5 The residue theorem.

Let z0 be an isolated singularity of f and let
∑+∞

−∞ an(z − z0)
n be the Laurent series of f in

the ring Dz0(R) \ {z0}. Then the coefficient a−1 is called residue of f at z0 and we denote

Res(f ; z0) = a−1.

We know that Res(f ; z0) = a−1 =
1

2πi

∮
Cz0(r)

f(ζ) dζ for 0 < r < R.
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Example 6.5.1. If z0 is a removable singularity of f , then an = 0 for every n < 0 and in particular
Res(f ; z0) = 0.

Example 6.5.2. Every function of the form f(z) = 1
(z−z0)N

with N ≥ 2 has residue 0 at z0.

Example 6.5.3. If z0 is a pole of f of order N ≥ 1, then we can find “easily” the residue of f
at z0. Indeed, there is a function g holomorphic in a disc Dz0(R) so that g(z0) ̸= 0 and f(z) =

g(z)
(z−z0)N

for every z ∈ Dz0(R) \ {z0}. From the Taylor series
∑+∞

n=0 bn(z − z0)
n of g we see that

Res(f ; z0) = bN−1 = g(N−1)(z0)
(N−1)! . For instance, if N = 1, then Res(f ; z0) = g(z0) and, if N = 2,

then Res(f ; z0) = g′(z0).

Example 6.5.4.We consider a power series of the form
∑n=−1

−∞ an(z−z0)
n and we assume that its

radius of convergence is 0, i.e. that it converges in the ring Dz0(0,+∞). If f is the holomorphic
function defined by the power series in Dz0(0,+∞), then

1
2πi

∮
γ f(ζ) dζ = n(γ; z0)a−1 = n(γ; z0)Res(f ; z0)

for every piecewise smooth closed curve γ in C \ {z0}. Indeed, since the power series converges
uniformly in the compact set γ∗ which is contained in its ring of convergence, we have

1
2πi

∮
γ f(ζ) dζ =

∑n=−1
−∞

an
2πi

∮
γ(ζ − z0)

n dζ = a−1

2πi

∮
γ

1
ζ−z0

dζ = n(γ; z0)Res(f ; z0),

where, for n ≤ −2 we used the result of example 4.5.3. Of course, this result holds for a general
cycle Σ which consists of piecewise smooth closed curves γ in C \ {z0}.

The residue theorem is a generalization of the last example.

The residue theorem. Let f be holomorphic, except for isolated singularities, in the open set Ω
and Σ be a cycle which is null-homologous in Ω and so that no isolated singularity of f is in the
trajectory of any of the closed curves forming Σ. Then n(Σ; z) ̸= 0 for at most finitely many
isolated singularities z of f . Moreover, if Σ consists of piecewise smooth closed curves, then

1
2πi

∮
Σ f(ζ) dζ =

∑
z sing. of f n(Σ; z) Res(f ; z),

where the sum, extended over all isolated singularities of f in Ω, is finite.

First proof. Let us assume that n(Σ; z) ̸= 0 for infinitely many isolated singularities z of f in Ω.
Then there is a sequence (zn) of distinct isolated singularities of f in Ω so that n(Σ; zn) ̸= 0 for
every n. Since the trajectories of the curves which form Σ are bounded sets, Σ is in some disc
D0(R). Hence n(Σ; z) = 0 for every z outsideD0(R). Thus, the sequence (zn) is inD0(R). The
Bolzano-Weierstrass theorem implies that there is a subsequence (znk

) so that znk
→ z for some

z. Then z is a limit point of Ω.
If z ∈ Ω, then either f is holomorphic at z or z is an isolated singularity of f . In any case, there
are no isolated singularities of f in a neighborhood of z, except perhaps z itself. This contradicts
znk

being distinct and znk
→ z.

If z ∈ ∂Ω and hence z ∈ Ωc, then n(Σ; z) = 0. Now there is a disc Dz(r) which does not
intersect any of the trajectories of the curves which form Σ. Since Dz(r) is connected, we have
that n(Σ;w) = 0 for every w ∈ Dz(r). But this contradicts znk

→ z and n(Σ; znk
) ̸= 0 for all k.

In any case we arrive at a contradiction and thus n(Σ; z) ̸= 0 for at most finitely many isolated
singularities z of f in Ω. Therefore, the sum

∑
z sing. of f n(Σ; z) Res(f ; z) is finite.

Let z1, . . . , zn be the isolated singularities of f in Ω with n(Σ; zk) ̸= 0 for k = 1, . . . , n. I.e.
n(Σ; z) = 0 for every other isolated singularity z of f in Ω.
We define the integers

p1 = n(Σ; z1), . . . , pn = n(Σ; zn)
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and then
∑

z sing. of f n(Σ; z) Res(f ; z) =
∑n

k=1 pk Res(f ; zk). Therefore, it is enough to prove

1
2πi

∮
Σ f(ζ) dζ =

∑n
k=1 pk Res(f ; zk). (6.13)

Since every z1, . . . , zn is an isolated singularity, there are disjoint closed discs Dzk(rk) for k =
1, . . . , n so that each of them contains no singularity of f except its center. We denote γk the
closed curve which describes the circle Czk(rk) once and in the positive direction. We consider
the cycle

Σ′ = Σ+ (−p1) γ1 + · · ·+ (−pn) γn

and the open set
Ω′ = Ω \ {z ∈ Ω | z singularity of f}.

Clearly, f is holomorphic in Ω′ and we shall prove that the cycle Σ′ is null-homologous in Ω′, i.e.
n(Σ′; z) = 0 for every z /∈ Ω′. If z /∈ Ω′, then either z /∈ Ω or z = z1, . . . , zn or z is any other
isolated singularity of f in Ω.
If z /∈ Ω or if z is any isolated singularity of f in Ω different from z1, . . . , zn, then n(Σ; z) = 0
and n(γk; z) = 0 for every k. Therefore

n(Σ′; z) = n(Σ; z)− p1n(γ1; z)− · · · − pnn(γn; z) = 0.

If z = zk0 for some k0, then n(Σ; z) = n(Σ; zk0) = pk0 and n(γk0 ; z) = n(γk0 ; zk0) = 1 and
n(γk; z) = n(γk; zk0) = 0 for every k ̸= k0. Therefore

n(Σ′; z) = n(Σ; z)− p1n(γ1; z)− · · · − pnn(γn; z) = pk0 − pk0 = 0.

Thus, Σ′ is null-homologous in Ω′. Since f is holomorphic in Ω′, the theorem of Cauchy implies∮
Σ′ f(ζ) dζ = 0. Hence∮

Σ f(ζ) dζ =
∑n

k=1 pk
∮
γk

f(ζ) dζ = 2πi
∑n

k=1 pk Res(f ; zk)

and we proved (6.13).
Second proof. We follow the first proof up to the point where we considered the isolated singular-
ities z1, . . . , zn of f . I.e. n(Σ; z) = 0 for every isolated singularity of f different from z1, . . . , zn.
Now, we consider the corresponding singular parts s1, . . . , sn of f at z1, . . . , zn. Then we know
from section 5.9 that f − sk is holomorphic at zk and also that sk is holomorphic in C \ {zk}.
Hence the function g = f − s1 − . . .− sn is holomorphic in Ω except at the isolated singularities
of f which are different from z1, . . . , zn. We consider the open set

Ω′′ = Ω \ {z ∈ Ω | z is a singularity of f, z ̸= z1, . . . , zn}.

and then g is holomorphic in Ω′′. Also, Σ is null-homologous in Ω′′. Therefore, the theorem of
Cauchy implies that 1

2πi

∮
Σ g(ζ) dζ = 0 and hence

1
2πi

∮
Σ f(ζ) dζ =

∑n
k=1

1
2πi

∮
Σ sk(ζ) dζ =

∑n
k=1 n(Σ; zk)Res(sk; zk)

=
∑n

k=1 n(Σ; zk)Res(f ; zk),

where for the second equality we used the result of example 6.5.4.

The residue theorem is a powerful tool for the evaluation of integrals, because it reduces this
evaluation to the location of the isolated sinularities of the function to be integrated and to the
evaluation of the corresponding residues. Let us see some characteristic examples.
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Example 6.5.5. Evaluation of
∫ +∞
−∞ r(x) dx, where r = p

q is a rational function, deg q ≥ deg p+2
and q has no real roots.
Let p(x) = anx

n+ · · ·+a1x+a0, with an ̸= 0, and q(x) = bmxm+ · · ·+b1x+b0, with bm ̸= 0,
and m ≥ n + 2. Then r is continuous in R and the generalized integral

∫ +∞
−∞ r(x) dx converges.

To see this, we observe that limz→∞ zm−nr(z) = an
bm

. Hence, if c = |an|
|bm| > 0, there is R0 > 0 so

that
c
2 ≤ |z|m−n|r(z)| ≤ 2c when |z| ≥ R0. (6.14)

Now, sincem−n ≥ 2, we get
∫ −R0

−∞ |r(x)| dx ≤ 2c
∫ −R0

−∞
1

|x|m−n dx < +∞ and
∫ +∞
R0

|r(x)| dx ≤
2c

∫ +∞
R0

1
xm−n dx < +∞. Thus, the integrals

∫ −R0

−∞ r(x) dx,
∫ +∞
R0

r(x) dx converge absolutely
and so they converge. Moreover, r is continuous in [−R0, R0] and so the integral

∫ +∞
−∞ r(x) dx

converges.
We consider the roots of q in the upper halfplane and let them be z1, . . . , zM , where M ≤ m.
We take any R > R0 so that z1, . . . , zM are contained in the disc D0(R). We apply the residue
theorem with r = p

q which is holomorphic in C except for the roots of q and with the closed curve
γR which is the sum of the linear segment [−R,R], with parametric equation z = x, x ∈ [−R,R],
and of the curve σR, with parametric equation z = Reit, t ∈ [0, π], which describes the upper
semicircle of C0(R) from R to −R. The trajectory of γR contains no isolated singularity of r.
Since γR rotates around each of z1, . . . , zM once and in the positive direction, the residue theorem
implies

1
2πi

∮
γR

r(z) dz = Res(r; z1) + · · ·+ Res(r; zM ).

We have that
∮
γR

r(z) dz =
∫
[−R,R] r(z) dz +

∫
σR

r(z) dz and hence∫ R
−R r(x) dx =

∫
[−R,R] r(z) dz = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))−

∫
σR

r(z) dz.

Since R > R0, (6.14) andm ≥ n+2 imply
∣∣ ∫

σR
r(z) dz

∣∣ ≤ 2c
Rm−n πR → 0 when R → +∞ and

we conclude that ∫ +∞
−∞ r(x) dx = 2πi(Res(r; z1) + · · ·+ Res(r; zM )).

Thus, to evaluate
∫ +∞
−∞ r(x) dx we need only to find the residues of r at the poles z1, . . . , zM of r

in the upper halfplane.

Example 6.5.6. Evaluation of pv
∫ +∞
−∞ r(x) dx, where r = p

q is a rational function, deg q =
deg p+ 1 and q has no real root.
Let p(x) = anx

n + · · · + a1x + a0, with an ̸= 0, and q(x) = bn+1x
n+1 + · · · + b1x + b0,

with bn+1 ̸= 0. It easy to see that the generalized integral
∫ +∞
−∞ r(x) dx does not converge. In-

deed, we recall the estimate (6.14), i.e. |r(z)| ≥ c
2|z| when |z| ≥ R0. Therefore, for real z = x

we have that |r(x)| ≥ c
2x when x ≥ R0. Now, r has constant sign in [R0,+∞) and hence∣∣ ∫ +∞

R0
r(x) dx

∣∣ =
∫ +∞
R0

|r(x)| dx ≥ c
2

∫ +∞
R0

1
x dx = +∞. Thus,

∫ +∞
R0

r(x) dx = +∞ or −∞
and, similarly,

∫ −R0

−∞ r(x) dx = +∞ or −∞.
Since the generalized integral diverges, we examine its principal value, i.e.

pv
∫ +∞
−∞ r(x) dx = limR→+∞

∫ R
−R r(x) dx.

It is easy to see that r(z)− an
bn+1

1
z is a rational function whose denominator has degree two units

larger than the degree of its numerator. According to the previous example, there isR0 > 0 so that∣∣r(z)− an
bn+1

1
z

∣∣ ≤ C
|z|2 when |z| ≥ R0. (6.15)

As in the previous example, we consider the roots z1, . . . , zM of q in the upper halfplane and we
takeR > R0 so that z1, . . . , zM are contained inD0(R). We apply the residue theoremwith r = p

q
and the same closed curve γR and we get

1
2πi

∮
γR

r(z) dz = Res(r; z1) + · · ·+ Res(r; zM ).
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Now,
∮
γR

r(z) dz =
∫
[−R,R] r(z) dz +

∫
σR

r(z) dz and hence∫ R
−R r(x) dx = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))−

∫
σR

(
r(z)− an

bn+1

1
z

)
dz − an

bn+1

∫
σR

1
z dz.

The last term is
an

bn+1

∫
σR

1
z dz = an

bn+1

∫ π
0

1
Reit

iReit dt = iπ an
bn+1

.

Since R > R0, we have from (6.15) that
∣∣ ∫

σR
(r(z)− an

bn+1

1
z ) dz

∣∣ ≤ C
R2 πR → 0 when R → +∞

and we finally get

pv
∫ +∞
−∞ r(x) dx = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))− iπ an

bn+1
.

Example 6.5.7. Evaluation of pv
∫ +∞
−∞ r(x) dx, where r = p

q is a rational function, deg q ≥
deg p+ 1 and q has real roots, all with multiplicity 1.
Let p(x) = anx

n+· · ·+a1x+a0, with an ̸= 0, and q(x) = bmxm+· · ·+b1x+b0, with bm ̸= 0, and
m ≥ n+1. We assume that the real roots of q are x1, . . . , xn with x1 < . . . < xn and that these are
not roots of p. We take ϵ0 > 0 so that the intervals [x1− ϵ0, x1+ ϵ0], . . . , [xn− ϵ0, xn+ ϵ0] around
the real roots of q are disjoint. In order for

∫ +∞
−∞ r(x) dx to converge, the generalized integrals∫ xk

xk−ϵ0
r(x) dx and

∫ xk+ϵ0
xk

r(x) dx must converge for every xk. This is not correct. Indeed, we
write r(z) = p(z)

(z−xk)qk(z)
= gk(z)

z−xk
, where qk is a polynomial with qk(xk) ̸= 0 and where gk = p

qk
is a rational function holomorphic at xk. Since limz→xk

gk(z) = gk(xk) ̸= 0, there is ϵk with
0 < ϵk ≤ ϵ0 so that |gk(z)| ≥ 1

2 |gk(xk)| for every z with |z−xk| ≤ ϵk. Hence, |r(z)| ≥ 1
2

|gk(xk)|
|z−xk|

for every z with 0 < |z − xk| ≤ ϵk. The function r has constant sign in (xk, xk + ϵk]. Therefore,∣∣ ∫ xk+ϵk
xk

r(x) dx
∣∣ = ∫ xk+ϵk

xk
|r(x)| dx ≥ |gk(xk)|

2

∫ xk+ϵk
xk

1
x−xk

dx = +∞ and the generalized inte-
gral

∫ xk+ϵk
xk

r(x) dx does not converge. Similarly,
∫ xk

xk−ϵk
r(x) dx does not converge either. This

is why we examine the principal value of
∫ +∞
−∞ r(x) dx, i.e.

pv
∫ +∞
−∞ r(x) dx = limR→+∞,ϵ→0+

( ∫ x1−ϵ
−R r(x) dx+

∫ x2−ϵ
x1+ϵ r(x) dx+ · · ·

· · ·+
∫ xn−ϵ
xn−1+ϵ r(x) dx+

∫ R
xn+ϵ r(x) dx

)
= limR→+∞,ϵ→0+ I(R, ϵ).

(6.16)

We evaluate I(R, ϵ) using a variant of the curve γR of the previous examples: the curve γR,ϵ, which
is the sum of the linear segments [−R, x1− ϵ], [x1+ ϵ, x2− ϵ], . . . , [xn−1+ ϵ, xn− ϵ], [xn+ ϵ, R],
of the curve σR, which describes the upper semicircle of C0(R) from R to −R, and of the curves
σ1,ϵ, . . . , σn,ϵ, where each σk,ϵ describes the upper semicircle of the corresponding Cxk

(ϵ) from
xk − ϵ to xk + ϵ. We just take R large enough and ϵ small enough so that the curve γR,ϵ rotates
once and in the positive direction around each of the roots z1, . . . , zM of q in the upper halfplane.
Then γR,ϵ rotates no times around each of the remaining roots of q. The residue theorem implies
that ∮

γR,ϵ
r(z) dz = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))

and hence

I(R, ϵ) = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))−
∫
σR

r(z) dz

−
∫
σ1,ϵ

r(z) dz − · · · −
∫
σn,ϵ

r(z) dz.
(6.17)

Now, xk is a pole of r of order 1 and r can be written r(z) = ck
z−xk

+ fk(z) for z ̸= xk in a disc
with center xk, where fk is holomorphic at xk and ck = Res(r;xk). Since fk is bounded in a
disc with center xk, there is Mk ≥ 0 and ϵ′k > 0 so that |fk(z)| ≤ Mk for |z − xk| ≤ ϵ′k. Thus,
0 < ϵ ≤ ϵ′k implies |

∫
σk,ϵ

fk(z) dz| ≤ Mkπϵ and hence limϵ→0+

∫
σk,ϵ

fk(z) dz = 0. Therefore,∫
σk,ϵ

r(z) dz = ck
∫
σk,ϵ

1
z−xk

dz +
∫
σk,ϵ

fk(z) dz

= −πick +
∫
σk,ϵ

fk(z) dz → −πick when ϵ → 0 + .
(6.18)
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The limit of
∫
σR

r(z) dz when R → +∞ has been evaluated in the previous two examples:

limR→+∞
∫
σR

r(z) dz =

{
0, ifm ≥ n+ 2

iπ an
bn+1

, ifm = n+ 1
(6.19)

Now, (6.16), (6.17), (6.18) and (6.19) imply

pv
∫ +∞
−∞ r(x) dx = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))

+ πi(Res(r;x1) + · · ·+ Res(r;xn))−

{
0, ifm ≥ n+ 2

iπ an
bn+1

, ifm = n+ 1

Example 6.5.8. Evaluation of
∫ +∞
−∞ r(x) cosx dx,

∫ +∞
−∞ r(x) sinx dx (or of their principal values),

where r = p
q is a rational function, deg q ≥ deg p + 1, the real roots of q (if they exist) have

multiplicity 1 and, also, the coefficients of p, q are real numbers.
Since the coefficients of p, q are real, we have that r(x) ∈ R for every x ∈ R which is not a root
of q. Hence,∫ +∞

−∞ r(x) cosx dx = Re
∫ +∞
−∞ r(x)eix dx,

∫ +∞
−∞ r(x) sinx dx = Im

∫ +∞
−∞ r(x)eix dx

and we evaluate
∫ +∞
−∞ r(x)eix dx (or its principal value).

The method of evaluation has been described already in the previous three examples. We use either
the curve γR or the curve γR,ϵ and we evaluate the residues of r(z)eiz at the roots of q.
We shall concentrate on the important specific generalized integral∫ +∞

0
sinx
x dx = 1

2

∫ +∞
−∞

sinx
x dx.

(Equality holds because sinx
x is even.) We shall evaluate pv

∫ +∞
−∞

eix

x dx instead of
∫ +∞
−∞

sinx
x dx.

Observe that eixx = cosx
x +i sinxx diverges at 0 because its real part cosxx diverges at 0. The imaginary

part sinx
x converges at 0 and, in fact, if we define sinx

x at 0 to have value limx→0
sinx
x = 1, then it

becomes continuous at 0.
The function eiz

z is holomorphic in C except for a pole at 0 of order 1. We consider the closed
curve γR,ϵ which is the sum of the linear segments [−R,−ϵ] and [ϵ, R], of the curve σR, which
describes the upper semicircle of C0(R) from R to −R, and of the curve σϵ, which describes the
upper semicircle of C0(ϵ) from −ϵ to ϵ. Then γR,ϵ does not rotate around the pole 0 of eiz

z . The
residue theorem implies

∮
γR,ϵ

eiz

z dz = 0 and hence∫ −ϵ
−R

eix

x dx+
∫ R
ϵ

eix

x dx = −
∫
σR

eiz

z dz −
∫
σϵ

eiz

z dz. (6.20)

Now, ∫
σR

eiz

z dz =
∫ π
0

eiReit

Reit
iReit dt = i

∫ π
0 e−R sin t+iR cos t dt

and ∣∣ ∫
σR

eiz

z dz
∣∣ ≤ ∫ π

0 e−R sin t dt = 2
∫ π/2
0 e−R sin t dt ≤ 2

∫ π/2
0 e−

2R
π

t dt

= π
R(1− e−R) → 0 when R → +∞.

(6.21)

For the second inequality we used the well known inequality sin t ≥ 2t
π for 0 ≤ t ≤ π

2 . From the
Laurent series of eiz

z at 0 we see that eiz

z = 1
z + h(z) for z ̸= 0, where h is holomorphic in C.

Now, h is bounded in a neighborhood of 0, i.e. there is M ≥ 0 so that |h(z)| ≤ 1 when |z| ≤ 1.
Hence, for ϵ ≤ 1 we have |

∫
σϵ
h(z) dz| ≤ Mπϵ → 0 when ϵ → 0+. Therefore∫

σϵ

eiz

z dz =
∫
σϵ

1
z dz +

∫
σϵ
h(z) dz

= −πi+
∫
σϵ
h(z) dz → −πi when ϵ → 0 + .

(6.22)
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From (6.20), (6.21) and (6.22):

pv
∫ +∞
−∞

eix

x dx = limϵ→0+,R→+∞
( ∫ −ϵ

−R
eix

x dx+
∫ R
ϵ

eix

x dx
)
= πi.

Since cosx
x is odd and sinx

x is even, we get
∫ −ϵ
−R

eix

x dx+
∫ R
ϵ

eix

x dx = 2i
∫ R
ϵ

sinx
x dx and hence∫ +∞

0
sinx
x dx = limϵ→0+,R→+∞

∫ R
ϵ

sinx
x dx = π

2 .

Example 6.5.9.We shall evaluate
∫ +∞
0

lnx
x2+4

dx.
We consider the holomorphic branch of the logarithm, which we shall denote log z, in the open
region A = C \ {iy | y ≤ 0} and which takes the value 0 at 1. This branch is given by

log z = ln r + iθ for z = reiθ with r > 0 and − π
2 < θ < 3π

2 .

The function log z
z2+4

is holomorphic in A except for the point 2i which is a pole of order 1. Indeed,
we write log z

z2+4
= (log z)/(z+2i)

z−2i = g(z)
z−2i and we have that g(z) = log z

z+2i is holomorphic in A with
g(2i) = π

8 − ln 2
4 i. Moreover, Res( log z

z2+4
; 2i) = g(2i) = π

8 − ln 2
4 i. Now we consider the closed

curve γR,ϵ of the previous example. We takeR large enough and ϵ small enough so that γR,ϵ rotates
once and in the positive direction around the pole 2i. From the residue theorem we have that∮

γR,ϵ

log z
z2+4

dz = 2πiRes( log z
z2+4

; 2i) = π ln 2
2 + π2

4 i.

Taking real parts of both sides, we find

2
∫ R
ϵ

lnx
x2+4

dx = π ln 2
2 − Re

∫
σR

log z
z2+4

dz − Re
∫
σϵ

log z
z2+4

dz.

Now,
∣∣ ∫

σR

log z
z2+4

dz
∣∣ ≤ lnR+π

R2−4
πR → 0 whenR → +∞ and

∣∣ ∫
σϵ

log z
z2+4

dz
∣∣ ≤ ln ϵ+π

4−ϵ2
πϵ → 0 when

ϵ → 0+. Hence ∫ +∞
0

lnx
x2+4

dx = limϵ→0+,R→+∞
∫ R
ϵ

lnx
x2+4

dx = π ln 2
4 .

Example 6.5.10.We shall evaluate
∫ +∞
0

xa−1

x+1 dx when 0 < a < 1.
We write x2 instead of x:∫ +∞

0
xa−1

x+1 dx = 2
∫ +∞
0

x2a−1

x2+1
dx = 2

∫ +∞
0

xb

x2+1
dx

with b = 2a− 1 and −1 < b < 1.
We consider the holomorphic branch log z of the previous example in the same region A. The
function h(z) = eb log z is holomorphic in A and, if z = x is real, we have h(x) = eb lnx = xb.
The function h(z)

z2+1
is holomorphic in A except for a pole at i of order 1. Indeed, we write h(z)

z2+1
=

h(z)/(z+i)
z−i = g(z)

z−i and we have that g(z) = h(z)
z+i is holomorphic in A with g(i) = h(i)

2i = e
bπ
2 i

2i .

Moreover, Res( h(z)
z2+1

; i) = g(i) = e
bπ
2 i

2i . Now we consider the same closed curve γR,ϵ of the
previous example. The residue theorem implies∮

γR,ϵ

h(z)
z2+1

dz = 2πiRes( h(z)
z2+1

; i) = πe
bπ
2

i,

and hence
(ebπi + 1)

∫ R
ϵ

xb

x2+1
dx = πe

bπ
2

i −
∫
σR

h(z)
z2+1

dz −
∫
σϵ

h(z)
z2+1

dz.

Now
∣∣ ∫

σR

h(z)
z2+1

dz
∣∣ ≤ Rb

R2−1
πR → 0 when R → +∞ and

∣∣ ∫
σϵ

h(z)
z2+1

dz
∣∣ ≤ ϵb

1−ϵ2
πϵ → 0 when

ϵ → 0+. Hence∫ +∞
0

xa−1

x+1 dx = 2
∫ +∞
0

xb

x2+1
dx = limϵ→0+,R→+∞ 2

∫ R
ϵ

xb

x2+1
dx = 2πe

bπ
2 i

ebπi+1
= π

sin aπ .
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We shall evaluate
∫ +∞
0

xa−1

x+1 dx in a different way.
We consider the holomorphic branch of the logarithm, which we shall denote log z again, in the
region B = C \ {x |x ≥ 0} and which takes the value iπ at −1. This branch is given by

log z = ln r + iθ for z = reiθ with r > 0 and 0 < θ < 2π.

The function h(z) = e(a−1) log z is holomorphic in B, and hence h(z)
z+1 is holomorphic in B except

at the point −1 which is a pole of order 1. Indeed, we have Res(h(z)z+1 ;−1) = h(−1) = e(a−1)πi.
We also consider the closed curve γR,ϵ,δ which is the sum of the curve σR,δ, which describes the
arc of C0(R) from Reiδ to Rei(2π−δ) in the positive direction, of the curve σϵ,δ, which describes
the arc of C0(ϵ) from ϵei(2π−δ) to ϵeiδ in the negative direction, of the linear segment [ϵeiδ, Reiδ]
and of the linear segment [Rei(2π−δ), ϵei(2π−δ)]. The residue theorem implies that∮

γR,ϵ,δ

h(z)
z+1 dz = 2πiRes(h(z)z+1 ;−1) = 2πie(a−1)πi

and hence ∫
[ϵeiδ ,Reiδ ]

h(z)
z+1 dz +

∫
[Rei(2π−δ),ϵei(2π−δ)]

h(z)
z+1 dz

= 2πie(a−1)πi −
∫
σR,δ

h(z)
z+1 dz −

∫
σϵ,δ

h(z)
z+1 dz.

Now,
∣∣ ∫

σR,δ

h(z)
z+1 dz

∣∣ ≤ 2πRa

R−1 and
∣∣ ∫

σϵ,δ

h(z)
z+1 dz

∣∣ ≤ 2πϵa

1−ϵ . Therefore∣∣ ∫
[ϵeiδ,Reiδ ]

h(z)
z+1 dz +

∫
[Rei(2π−δ),ϵei(2π−δ)]

h(z)
z+1 dz − 2πie(a−1)πi

∣∣ ≤ 2πRa

R−1 + 2πϵa

1−ϵ . (6.23)

We have ∫
[ϵeiδ ,Reiδ ]

h(z)
z+1 dz = eiaδ

∫ R
ϵ

ra−1

reiδ+1
dr.

Keeping ϵ and R fixed, we take the limit when δ → 0+. Clearly, eiaδ → 1. Also, 1
reiδ+1

→ 1
r+1

uniformly in [ϵ, R] and hence∫
[ϵeiδ,Reiδ]

h(z)
z+1 dz →

∫ R
ϵ

ra−1

r+1 dr when δ → 0 + . (6.24)

We also have ∫
[Rei(2π−δ),ϵei(2π−δ)]

h(z)
z+1 dz = −eia(2π−δ)

∫ R
ϵ

ra−1

re−iδ+1
dr.

Keeping ϵ and R fixed, we take the limit when δ → 0+. Exactly as with (6.24), we get∫
[Rei(2π−δ),ϵei(2π−δ)]

h(z)
z+1 dz → −ei2aπ

∫ R
ϵ

ra−1

r+1 dr when δ → 0 + . (6.25)

From (6.23), (6.24) and (6.25) we get∣∣(1− ei2aπ)
∫ R
ϵ

ra−1

r+1 dr − 2πie(a−1)πi
∣∣ ≤ 2πRa

R−1 + 2πϵa

1−ϵ .

Finally, we let ϵ → 0+ and R → +∞ and we conclude that∫ +∞
0

xa−1

x+1 dx = limϵ→0+,R→+∞
∫ R
ϵ

ra−1

r+1 dr = 2πie(a−1)πi

1−ei2aπ
= π

sin aπ .

Example 6.5.11. Evaluation of
∫ 2π
0 r(sin θ, cos θ) dθ, where r(s, t) is a rational function of two

variables.
We parametrize C0(1) with z = eiθ, θ ∈ [0, 2π], and we have cos θ = 1

2(z+
1
z ), sin θ = 1

2i(z−
1
z )

and dz
dθ = ieiθ = iz. Hence∫ 2π

0 r(sin θ, cos θ) dθ = 1
i

∮
C0(1)

r( z
2+1
2z , z

2−1
2iz ) 1

z dz.

The function s(z) = r( z
2+1
2z , z

2−1
2iz )1z is a rational function of z. We apply the residue theorem

after we evaluate the residues of s at its poles in the disc D0(1).
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Exercises.

6.5.1. Find the singular parts as well as the residues of 1
z2+5z+6

, 1
(z2−1)2

, ez + e1/z , cos z−1
z4

at their
isolated singularities.

6.5.2. Find the residues of 1
sin z , tan z,

1
sin2 z ,

1
ez−1 at their isolated singularities.

6.5.3. If f = gh, where g is holomorphic at z0 and h has a pole of order 1 at z0, prove that
Res(f ; z0) = g(z0)Res(h; z0).

6.5.4. Let f = g
h , where g, h are holomorphic in a neighborhood of z0. Assume that z0 is a root of

h of multiplicity N and not a root of g. Then z0 is a pole of f of order N .
(i) If N = 1, prove that Res(f ; z0) = g(z0)

h′(z0)
.

(ii) If N = 2, prove that Res(f ; z0) = 6g′(z0)h′′(z0)−2g(z0)h′′′(z0)
3h′′(z0)2

.

6.5.5. Evaluate
∫ +∞
−∞

1
x2+1

dx,
∫ +∞
−∞

1
(x2+1)(x2+4)

dx,
∫ +∞
−∞

1
(x2+1)2

dx,
∫ +∞
−∞

x4

1+x8 dx.

6.5.6. Evaluate pv
∫ +∞
−∞

x+1
x2+1

dx, pv
∫ +∞
−∞

x3

x4−4x2+5
dx, pv

∫ +∞
−∞

x2+3
x(x2+1)

dx.

6.5.7. Evaluate
∫ +∞
−∞

cosx
(x2+1)(x2+4)

dx,
∫ +∞
−∞

x3 sinx
x4+1

dx, pv
∫ +∞
−∞

cosx
x(x2+1)

dx.

6.5.8. Evaluate
∫ 2π
0

1
(1−a cos θ)2 dθ,

∫ 2π
0

cos 2θ
1−2a cos θ+a2

dθ when 0 < a < 1,
∫ π/2
0

1
a+sin2 x dx when

|a| > 1.

6.5.9. Evaluate
∫ +∞
0

xa

x2+3x+2
dx when −1 < a < 1.

6.5.10. Evaluate
∫ +∞
0

lnx
(x2+1)(x2+4)

dx,
∫ +∞
0

ln2 x
x2+1

dx,
∫ +∞
0

ln(1+x2)
x1+a dx when 0 < a < 2.

6.5.11. Evaluate
∫ +∞
−∞

cosx
ex+e−x dx.

6.5.12. Evaluate
∫ +∞
0

1
x3+8

dx,
∫ +∞
0

x
x4+16

dx, using
∫ +∞
0

xa−1

x+1 dx = π
sin aπ .

6.5.13. Evaluate
∫ 2π
0

1
2+cos θ dθ.

6.5.14. If z1, . . . , zN ∈ D0(R) are distinct and f is holomorphic in an open set containingD0(R),
prove that

∮
C0(R)

f(z)
(z−z1)···(z−zn)

dz = 2πi
( f(z1)
p′(z1)

+· · ·+ f(zN )
p′(zN )

)
, where p(z) = (z−z1) · · · (z−zn).

6.5.15. If n ∈ N, evaluate
∮
C0(n)

tanπz dz.

6.5.16. Let r = p
q be a rational function with deg q ≥ deg p+2. If z1, . . . , zn are the distinct roots

of q, prove that
∑n

k=1 Res(r; zk) = 0.
What is the value of

∑n
k=1 Res(r; zk) if deg q = deg p+ 1?

6.5.17. If f(z) = ez+(1/z), prove that Res(f ; 0) =
∑+∞

n=0
1

n!(n+1)! .

6.5.18. (i) If n ∈ N, prove that there is M ≥ 0 independent of n so that | cot z| ≤ M for every
z ∈ ∂Rn, where Rn is the square region with corners at the points ±(n+ 1

2)π ± i(n+ 1
2)π.

(ii) Prove that
∮
∂Rn

cot z
z2

dz → 0 when n → +∞.
(iii) Prove that

∑+∞
n=1

1
n2 = π2

6 .
(iv) Let f be holomorphic in C except for poles z1, . . . , zN and let limz→∞ zf(z) = 0. Prove that
limn→+∞

∑n
k=−n f(k) = −

∑N
j=1 Res(f(z) cot z; zj).

(v) Find the sums
∑+∞

n=1
1

n2+a2
, where a > 0, and the sum

∑+∞
−∞

1
(n+a)2

, where a /∈ Z.
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6.5.19. Let p, q be polynomials with deg q ≥ deg p + 2. For each m ∈ N let Im be the square
region with corners at (m+ 1

2)(±1± i).
(i) Prove that

∮
∂Im

1
sinπz

p(z)
q(z) dz → 0 whenm → +∞.

(ii) Prove the same result if deg q = deg p+ 1.

6.5.20. Let −1 < ν < 1 and n ∈ N. Prove that
∮
C0(n+

1
2
)
eiνπz

sinπz
1

z−a dz → 0 when n → +∞.

6.5.21. (i) Let p, q be polynomials with deg q ≥ deg p + 1 and q(k) ̸= 0 for every k ∈ Z. Prove
that limm→+∞

∑m
k=−m

p(k)
q(k) is equal to the sum of the residues of −π cotπz p(z)

q(z) at the roots of q.

Also, prove that limm→+∞
∑m

k=−m(−1)k p(k)
q(k) is equal to the sum of the residues of −π 1

sinπz
p(z)
q(z)

at the roots of q.
(ii) Prove π cotπw = limm→+∞

∑m
k=−m

1
w−k = 1

w +
∑+∞

k=−∞( 1
w−k + 1

k ) if w /∈ Z.
(iii) Prove π2

sin2 πw =
∑+∞

k=−∞
1

(w−k)2
if w /∈ Z.

(iv) Prove
∑+∞

k=1
1

a+bk2
= − 1

2a + π
2
√
ab

eπ
√

a/b+e−π
√

a/b

eπ
√

a/b−e−π
√

a/b
if ab > 0.

(v) Prove
∑+∞

k=1
(−1)k

a+bk2
= − 1

2a − π√
ab

1

eπ
√

a/b−e−π
√

a/b
if ab > 0.

6.6 The argument principle. The theorem of Rouché.

A function f is calledmeromorphic in the open setΩ if it is holomorphic inΩ except at certain
points in Ω which are poles of f .

Let f be meromorphic in the open set Ω. If w ∈ C, we shall denote Aw the set of solutions of
f(z) = w, i.e.

Aw = {z ∈ Ω | f(z) = w}.

If f is not constant in any connected component of Ω, then the solutions of f(z) = w are isolated
points.

Also, letting f have the value ∞ at each of its poles in Ω, so that f becomes continuous at its
poles considered as a function from Ω to Ĉ, we denote A∞ the set of solutions of f(z) = ∞, i.e.

A∞ = {z ∈ Ω | f(z) = ∞} = {z ∈ Ω | z is a pole of f}.

The argument principle. Letw ∈ C. We assume that f is meromorphic in the open setΩ and that
it is not constant in any connected component ofΩ. We also considerΣ to be a cycle, which consists
of piecewise smooth closed curves and which is null-homologous in Ω, so that no element of Aw ∪
A∞ is in the trajectory of any of the closed curves formingΣ. Then n(Σ; z) ̸= 0 for at most finitely
many elements ofAw ∪A∞ and hence the sums

∑
z∈Aw

n(Σ; z)m(z) and
∑

z∈A∞
n(Σ; z)m(z),

where m(z) is the corresponding multiplicity of z ∈ Aw ∪A∞, are finite. Moreover,

n(f(Σ);w) = 1
2πi

∮
Σ

f ′(ζ)
f(ζ)−w dζ =

∑
z∈Aw

n(Σ; z)m(z)−
∑

z∈A∞
n(Σ; z)m(z). (6.26)

Furthermore, even if the closed curves which form Σ are not necessarily piecewise smooth, then
the left and the right side of (6.26) are still equal.

Proof. At first we assume that the closed curves forming Σ are all piecewise continuous.
We apply the residue theorem to the function f ′

f−w . The isolated singularities of this function are
the elements of Aw ∪A∞.
Ifm(z) is the multiplicity of z ∈ Aw, then there is a g holomorphic in some neighborhood Dz(r)
of z so that f(ζ)−w = (ζ − z)m(z)g(ζ) when ζ ∈ Dz(r) and also g(z) ̸= 0. Since g(z) ̸= 0, we
may assume that r is small enough so that g(ζ) ̸= 0 when ζ ∈ Dz(r). Therefore

f ′(ζ)
f(ζ)−w = m(z)

ζ−z + g′(ζ)
g(ζ) when ζ ∈ Dz(r) \ {z}.
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Since g′

g is holomorphic in Dz(r), we have that z is a pole of f ′

f−w of order 1 with residuem(z).
Ifm(z) is the order of z ∈ A∞, there is a g holomorphic in some neighborhoodDz(r) of z so that
f(ζ) − w = g(ζ)

(ζ−z)m(z) when ζ ∈ Dz(r) and also g(z) ̸= 0. Since g(z) ̸= 0, we may assume that
r is small enough so that g(ζ) ̸= 0 when ζ ∈ Dz(r). Hence

f ′(ζ)
f(ζ)−w = −m(z)

ζ−z + g′(ζ)
g(ζ) when ζ ∈ Dz(r) \ {z}.

Since g′

g is holomorphic inDz(r), we have that z is a pole of f ′

f−w of order 1 with residue −m(z).
Now, the residue theorem implies the second equality in (6.26). The first equality is a matter of
a simple change of variable. If ζ = γ(t), t ∈ [a, b], is the parametric equation of any curve γ
forming Σ, then the parametric equation of f(γ) is η = f(γ(t)), t ∈ [a, b], and hence:

n(f(γ);w) = 1
2πi

∮
f(γ)

1
η−w dη = 1

2πi

∫ b
a

f ′(γ(t))γ′(t)
f(γ(t))−w dt = 1

2πi

∮
γ

f ′(ζ)
f(ζ)−w dζ.

The rest is simple if we recall that Σ = n1γ1 + · · ·+nkγk and f(Σ) = n1f(γ1)+ · · ·+nkf(γk).
Now we assume that the curves γ which form Σ are not necessarily piecewise smooth.
We consider any of the closed curves which form Σ with parametric equation ζ = γ(t), t ∈ [a, b],
and the corresponding f(γ) with parametric equation η = f(γ(t)), t ∈ [a, b]. The set Aw ∪ A∞
has no accumulation point in Ω. Thus, the set Aw ∪A∞ ∪ Ωc is closed and we also have that it is
disjoint from γ∗. Therefore, there is ϵ1 > 0 so that

|γ(t)− z| ≥ 2ϵ1 for every t ∈ [a, b] and every z ∈ Aw ∪A∞ ∪ Ωc. (6.27)

We consider the set

K = {z | |z − γ(t)| ≤ ϵ1 for at least one t ∈ [a, b]}

and we easily see that K is a compact subset of Ω \ (Aw ∪ A∞) and hence f is continuous in K.
Also, we have f(z) ̸= w for every z ∈ K and γ∗ is a subset ofK and hence there is ϵ2 > 0 so that

|f(γ(t))− w| ≥ ϵ2 for every t ∈ [a, b]. (6.28)

Since f is continuous inK, there is δ1 with 0 < δ1 ≤ ϵ1 so that

|f(z′)− f(z′′)| < ϵ2 for every z′, z′′ ∈ K with |z′ − z′′| < δ1. (6.29)

Finally, there is δ > 0 so that

|γ(t′)− γ(t′′)| < δ1 for every t′, t′′ ∈ [a, b] with |t′ − t′′| < δ. (6.30)

Now we take successive points a = t0 < t1 < . . . < tn−1 < tn = b so that tk − tk−1 < δ for
every k and we consider the polygonal curve σ : [a, b] → C consisting of the successive linear
segments [γ(tk−1), γ(tk)]. It is easy to see that we have

|σ(t)− γ(t)| < δ1 ≤ ϵ1 for every t ∈ [a, b]. (6.31)

Indeed, if t ∈ [tk−1, tk], then, because of (6.30), we have

|σ(t)− γ(t)| =
∣∣( tk−t

tk−tk−1
γ(tk−1) +

t−tk−1

tk−tk−1
γ(tk)

)
− γ(t)

∣∣
≤ tk−t

tk−tk−1
|γ(tk−1)− γ(t)|+ t−tk−1

tk−tk−1
|γ(tk)− γ(t)|

< tk−t
tk−tk−1

δ1 +
t−tk−1

tk−tk−1
δ1 = δ1 ≤ ϵ1.

Now, (6.27), (6.31) imply |σ(t)− γ(t)| < |γ(t)− z| for every t ∈ [a, b] and every z ∈ Aw ∪A∞.
Proposition 6.9 implies n(γ; z) = n(σ; z) for every z ∈ Aw ∪A∞ and hence∑

z∈Aw
n(γ; z)m(z)−

∑
z∈A∞

n(γ; z)m(z)

=
∑

z∈Aw
n(σ; z)m(z)−

∑
z∈A∞

n(σ; z)m(z).
(6.32)
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Also, (6.31) implies σ(t) ∈ K for every t ∈ [a, b] and, because of (6.29), |f(σ(t))−f(γ(t))| < ϵ2
for every t ∈ [a, b]. But then (6.28) implies |f(σ(t))−f(γ(t))| < |f(γ(t))−w| for every t ∈ [a, b].
Proposition 6.9 again implies

n(f(γ);w) = n(f(σ);w). (6.33)

Since the curve σ is piecewise smooth, we have from the first part of the proof that

n(f(σ);w) =
∑

z∈Aw
n(σ; z)m(z)−

∑
z∈A∞

n(σ; z)m(z). (6.34)

Now, (6.32), (6.33) and (6.34) imply the equality of the left and the right side of (6.26) for each γ
forming Σ and the proof is finished by addition over all such γ.

The geometric content of the argument principle is described as follows. The number of ro-
tations of f(Σ) around w is equal to the total number of rotations of Σ around the solutions of
f(z) = w minus the total number of rotations of Σ around the poles of f . When we count the
solutions of f(z) = w and the poles of f we take into account their multiplicities. We countm(z)
points at every point z ∈ Aw ∪A∞ which has multiplicitym(z).

If f has no pole in Ω, i.e. if f is holomorphic in Ω, then the argument principle says that the
number of rotations of f(Σ) around w is equal to the total number of rotations of Σ around the
solutions of f(z) = w. In fact, if Σ is such that for every z not in the trajectories of the curves
forming Σ we have either n(Σ; z) = 1 or n(Σ; z) = 0, then the number of rotations of f(Σ)
around w is equal to the number of solutions of f(z) = w which are surrounded by Σ.

The theorem of Rouché. Let w ∈ C. We assume that f, g are holomorphic in the open set Ω and
that they are not constant in any connected component of Ω. We also consider Σ to be a cycle
which is null-homologous in Ω. If |f(ζ)− g(ζ)| < |g(ζ)−w| for every ζ in the trajectories of the
closed curves forming Σ, then∑

z∈Aw,f
n(Σ; z)mf (z) =

∑
z∈Aw,g

n(Σ; z)mg(z),

where mf (z) and mg(z) are the corresponding multiplicities and Aw,f = {z ∈ Ω | f(z) = w},
Aw,g = {z ∈ Ω | g(z) = w}.

Proof. We observe that the condition |f(ζ)− g(ζ)| < |g(ζ)−w| for every ζ in the trajectories of
the closed curves forming Σ implies that no element of Aw,f ∪ Aw,g is in these trajectories. The
function h = f−w

g−w is holomorphic in Ω except for the elements of Aw,g, which are either poles or
removable singularities of h. From (6.26) we have

n(h(Σ); 0) =
∑

z∈A0,h
n(Σ; z)mh(z)−

∑
z∈A∞,h

n(Σ; z)mh(z). (6.35)

If z ∈ Aw,f \ Aw,g, then z ∈ A0,h and mh(z) = mf (z). Similarly, if z ∈ Aw,g \ Aw,f , then
z ∈ A∞,h and mh(z) = mg(z). Finally, if z ∈ Aw,f ∩ Aw,g, then we have three cases. If
mf (z) > mg(z), then z ∈ A0,h andmh(z) = mf (z)−mg(z). Ifmf (z) < mg(z), then z ∈ A∞,h

and mh(z) = mg(z) −mf (z). If mf (z) = mg(z), then z ̸∈ A0,h ∪ A∞,h and mh(z) = 0. All
these imply∑

z∈A0,h
n(Σ; z)mh(z)−

∑
z∈A∞,h

n(Σ; z)mh(z)

=
∑

z∈Aw,f
n(Σ; z)mf (z)−

∑
z∈Aw,g

n(Σ; z)mg(z)

and from (6.35) we get∑
z∈Aw,f

n(Σ; z)mf (z)−
∑

z∈Aw,g
n(Σ; z)mg(z) = n(h(Σ); 0).

Now, our hypothesis says that |h(z)− 1| < 1 for every z in the trajectories of the curves forming
Σ. Therefore, the cycle h(Σ) is in the disc D1(1) and hence n(h(Σ); 0) = 0.
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Example 6.6.1.We shall find the number of roots of f(z) = z7 − 2z5 + 6z3 − z + 1 in D.
We consider g(z) = 6z3 and we have

|f(z)− g(z)| = |z7 − 2z5 − z + 1| ≤ |z|7 + 2|z|5 + |z|+ 1 = 5 < 6|z|3 = |g(z)|

for every z ∈ T. Now we apply the theorem of Rouché with w = 0 and Σ consisting of only
the curve γ which describes T once and in the positive direction. We have n(γ; z) = 1 for every
z ∈ D and n(γ; z) = 0 for every z ̸∈ D. The only solution of g(z) = 0 in D is z = 0 with
multiplicity mg(0) = 3. Therefore

∑
z∈A0,g

n(γ; z)mg(z) =
∑

z∈A0,g∩Dmg(z) = 3. More-
over,

∑
z∈A0,f

n(γ; z)mf (z) =
∑

z∈A0,f∩Dmf (z). Now the theorem of Rouché implies that∑
z∈A0,f∩Dmf (z) = 3 and hence f has three roots in D.

Exercises.

6.6.1. Let f be holomorphic in Dz0(R), let 0 < r < R and assume that there is no solution of
f(z) = w in Cz0(r). If k ∈ N, what is the content of 1

2πi

∮
Cz0 (r)

f ′(z)
f(z)−w zk dz?

6.6.2. Let f be holomorphic in D and continuous in D and let |f(z)| < 1 for every z ∈ T. Prove
that the equation f(z) = zn has exactly n solutions in D.

6.6.3. Find the number of roots of
(i) z4 − 6z + 3 in D0(1, 2).
(ii) z4 + 8z3 + 3z2 + 8z + 3 in {z | Re z > 0}.

6.6.4. Let z1, . . . , zn ∈ D. In C \
{

1
z1
, . . . , 1

zk

}
we consider the function f(z) =

∏n
k=1

z−zk
1−zk z .

(i) Prove that f(z) ∈ D for every z ∈ D and that f(z) ∈ T for every z ∈ T.
(ii) Find the index with respect to 0 of the curve with parametric equation z = f(eit), t ∈ [0, 2π].
(iii) Prove that for every w ∈ D the equation f(z) = w has exactly n solutions in D.

6.6.5. Prove that the set of all meromorphic functions in the region Ω is an algebraic field.

6.6.6. Let f be holomorphic in the open set Ω. We assume that γ is a closed piecewise smooth
curve in Ω, that C \ γ∗ has only one bounded connected component U and that n(γ; z) = 1 for
every z ∈ U . We also assume that C \ f(γ)∗ has only one bounded connected component V and
that n(f(γ);w) = N for every w ∈ V .
(i) If f(z) /∈ f(γ)∗ for every z ∈ U , prove that f is N-to-one from U onto V .
(ii) If moreoverN = 1, we may consider the inverse function f−1 : V → U . Prove that f−1(w) =
1

2πi

∮
Σ

ζf ′(ζ)
f(ζ)−w dζ for every w ∈ V .

6.6.7. Let f(z) =
∑+∞

n=0 anz
n for z ∈ D and let F ⊆ D be compact with 0 ∈ F . If µ =

infz∈∂F |f(z)| andm is the number of roots of f in F , prove that µ ≤ |a0|+ |a1|+ · · ·+ |am|.
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