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Chapter 1

The complex plane and the sphere of
Riemann.

1.1 The complex plane.
In R?, besides the usual vector space addition, which is defined by

(z1,y1) + (T2, 92) = (21 + T2, Y1 + ¥2),

there is the operation of multiplication, defined by

(x1,11) (22, y2) = (Z122 — Y1Y2, T1Y2 + Y122).

We can easily prove that R? equipped with these two binary operations is an algebraic field. The
neutral element of multiplication is (1,0) and the inverse of (z,y) # (0,0) is (%w?’ —xzyTyQ)

We denote C the set R? equipped with the above addition and multiplication.

It is easy to prove that the function R > x — (z,0) € C is a one-to-one field homomorphism
from R into C. This permits the identification of R with the subset {(x,0) | x € R} of C. In other
words, we may identify 2 € R with the corresponding (z,0) € C and consider R as a subset of
C. This is exactly the same as the identification we make when we want to view R as the real line,
the z-axis, in the two-dimensional plane identified with R?. From now on we do not distinguish
between x and (x,0), i.e. (z,0) = x.

We define i, the imaginary unit, to be the element (0, 1) and then we have

(z,0) +i(y,0) = (2,0) +(0,1)(y,0) = (,0) + (0,y) = (z,y).
If we replace (x,0) and (y, 0) with the corresponding x and y, we get
(z,y) = x +iy.

From now on we shall write the elements of C = R? in both forms: (x,y) and = + iy. We
shall prefer the second, x + 4y, the complex form of the elements of C. We say that x + iy is a
complex number and that C is the set of complex numbers.

Now the definitions of addition and multiplication take the forms:

(x1 +iy1) + (22 +iy2) = (21 + 22) + i(y1 + ¥2),

(x1 4+ iy1)(z2 + iy2) = (122 — Y1y2) + (2192 + Y122).

In particular we have ()2 = —1. We shall prove later that, besides the polynomial equation z%+1
which has as solutions the complex numbers =+, every polynomial equation with coefficients in C
is solvable in C. In other words, we shall prove that C is an algebraically closed field.
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The usual order relation <, which makes R an ordered field, cannot be extended in C. In
fact, C cannot be equipped with any order relation so that it becomes an ordered field (with the
addition and muptiplication already defined in C). Indeed, no matter what the order relation is, we
must have that an element of the form 22 = z z is “positive” if z # 0, and then we end up with
the contradiction: 1 = 12 is “positive” and —1 = 2 is also “positive”. Therefore, when we write
inequalities like z < w or z < w we always accept that z, w are real numbers.

It is customary to use symbols like z, y, u, v, t, £, n for real numbers and symbols like z, w, ¢
for complex numbers. For instance, we write z = x 4+ 1y, w = u + v, ( = & 4 .

For every z = (z,y) = x + iy we introduce the symbols

Rez=x, Imz=vy, z=(v,—y) =z—1y, |z|]=vVa>+y>

These are called real part, imaginary part, conjugate and absolute value (or modulus) of z,
respectively.
The useful identities

Rez = (2 +72), Imz = 3 (2 — %), 2% = |z|?

are trivial to prove.

The geometrical model for C is the same as for R?, i.e. the cartesian plane with two perpen-
dicular axes: every z = (x,y) = x + iy corresponds to the point of the plane with abscissa
and ordinate y. The horizontal axis of all points (z,0) = x is the real axis. The vertical axis of
all points (0,y) = iy is the imaginary axis. In this framework, the cartesian plane is also called
complex plane.

We recall that the cartesian equation of the general line in the plane is

axr + by = c,

where a,b,c € R, a? +b? # 0. If we set z = = + iy and w = a + ib # 0, then the above equation
takes the form
Re(wz) = c.

Similarly, the defining inequalities ax + bc < ¢ and ax 4 bc > c of the two halfplanes on the
two sides of the line with equation az+by = ¢ become Re(wz) < cand Re(wz) > ¢, respectively.
We shall denote
[Zl,ZQ] = {(1 — t)Zl + 129 | 0<t< 1}

the linear segment joining the points z1, zo. When we say interval we mean a linear segment on
the real line: [a, b] C R.
The euclidean distance between the points z; = (z1,y1) and zo = (x2,¥2) is

\/(1’1 - CE2)2 + (y1 — y2)2 = |21 — 22].

Therefore, the circle, the open disc and the closed disc with center z = (x, y) and radius r > 0
take the form

Co(r) ={wllw =2l =7}, D.(r)={wl|lw—2| <r}, Da(r)={w[lw-2z<r}

We recall the special symbols T for the unit circle Cp(1), D for the unit disc Do(1) and D for the
closed unit disc Dg(1).

The real part and the imaginary part of a complex function f : A — C, where A is any
nonempty set, are the functionsu = Re f: A - Randv =Im f : A — R, respectively, defined
by

u(a) =Re f(a) = 3(f(a) + f(a)),  v(a) =1Im f(a) = 3(f(a) - f(a)).
(

Of course, we have f(a) = u(a) +iv(a) = (u(a),v(a)) fora € A.
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Now, C = R? has the familiar euclidean metric space structure: we have the notions of interior
point, boundary point, limit point and accumulation point of a set, interior A°, boundary 0A and
closure A of a set A, open set, closed set, compact set and connected set and the related proper-
ties. We also have the notions of convergence of sequences of complex numbers and limits and
continuity of functions defined in C or taking values in C.

We only recall the following very simple properties of limits. The variable points z, w may
represent the terms of a sequence or the values of a function and so we get the familiar algebraic
properties of limits of sequences and of functions.

Of course, the convergence z — zp is equivalent to |z — 29| — 0. If 2 = (z,y) and zp =
(0, Yo0), then the equivalence between z — zp and © — ¢, y — yo now takes the form of the
equivalence between z — zg and Re z — Re zg, Im z — Im 2g. Also, if 2 — 29 and w — wy, then
z+w — zg + wp and zw — zgwp. Both can be proved either by reducing them to convergence
of real and imaginary parts or -preferably- by using the triangle inequality:

|(z +w) — (20 + wo)| < [z — 20| + |w — wo

and
zw — zowo| = |(z — 20) (w — wp) + (2 — z0)wo + (w — wp) 20|
< |z — zol|lw — wol + |z — 20||wo| + |w — wol|z0].
If z — 2y # 0, we can prove that% — % using the equality \% — %\ = ||zﬂ§3||. We use the equality

|Z — Zo| = |z — 20| to prove that z — zo implies Z — Zg. Similarly, we use the triangle inequality
l|z| — |z0]] < |z — 20| to prove that z — zy implies |z| — |zo|.

We shall consider the limit 2 — oo in section 1.3 where the point oo will be introduced.

We also mention the standard examples of polynomial functions

p(z) =apz" + -+ a1z + ag

and rational functions
r(z) = P(z) _ anz"+-taiztag
q(z) bm 2™+ +b12+bo *

A polynomial function is continuous in C and a rational function is also continuous in C except
at the roots of the polynomial in its denominator. Again, we shall consider the limits of p(z) and
7(2) at infinity and the limits of 7(z) at the roots of its denominator in section 1.3 where the point
oo will be introduced.

1.2 Argument and polar representation.

The trigonometric functions sin and cos are defined and their properties are studied in the theory
of functions of a real variable. In particular, we know that sin and cos are periodic with smallest
positive period 27, i.e. sin(6 + 27) = sin§ and cos(f + 27) = cos 6.

Let I be any interval of length 27 which contains only one of its endpoints, e.g. [0,27) or
(—m, 7). Then we know that for every a,b € R with a® + b* = 1 there exists a unique 6 € I so
that cos = a and sinf = b. Equivalently, for every ( € C with || = 1 there exists a unique
0 € I so that { = cosf + isinf. Therefore, the function

cos+isin: R — T

is periodic with 27 as its smallest positive period and its restriction cos +isin : I — T to any
interval I of length 27 which contains only one of its endpoints is one-to-one and onto T. Thus,
for every ( € T the equation cos § + i sin # = ( has infinitely many solutions in R and exactly one
solution in each interval I of length 27 which contains only one of its endpoints.



Now, for every z € C, z # 0, we have ﬁ € T and so the equation cosf + isinf = é
has infinitely many solutions in R and exactly one solution in each interval I of length 27 which
contains only one of its endpoints. The set of all these solutions is called argument or angle of =

and it is denoted arg z, i.e.
argz = {0| cosf + isinf = é}
So we have the equivalence:

fecargz < cosf+isinf = |Z—‘

z

Thus, arg z has infinitely many elements and it is clear, by the 27-periodicity of sin and cos,
that these elements form a (two-sided) arithmetical progression of step 27. In other words, if 8 is
an arbitrary element of arg z, then all elements of arg z are described by 0 + k27, k € Z.

On the other hand, the unique solution of the equation cosf + isinf = |i in the interval

z|
(—m, | is called principal argument or principal angle of z and it is denoted Arg z:

0=Argz & cosG—H’sinG:éand —r<0<m.

Thus, Arg z is one of the elements of arg z, the one which is contained in (—, 7].

Examples. (i) Arg3 = 0 and arg3 = {k27 | k € Z}.
(i) Arg(4i) = T and arg(4i) = {§ + k27 | k € Z}.
(iii) Arg(—2) = wand arg(—2) = {w + k27 | k € Z}.
(iv) Arg(1+i) = § and arg(1 + i) = {§ + k27 | k € Z}.
(v) Arg(—1 —iv/3) = 4T and arg(—1 — iV/3) = {4 + k2r | k € Z}.
We remark that we do not define argument or angle for the number 0.
Since the elements of arg z form an arithmetical progression of step 2, is is obvious that, if
21,29 # 0, then either arg z; = arg 29 or arg z; N arg zo = (). More precisely, arg z; = arg 2o if
and only if % > 0 or, equivalently, if and only if 21, zo belong to the same halfline with vertex 0.

Comparing real and imaginary parts of the two sides of the following identity, we see that it is
equivalent to the well-known addition formulas of sin and cos:

cos(601 + 02) + isin(fy + 02) = (cos 01 + isin by )(cos Oz + i sinbs).
A direct consequence by induction is the familiar formula of de Moivre:
cos(nf) + isin(nf) = (cosf + isinh)" for every n € Z.
Proposition 1.1. For every nonzero z1, zo we have
arg(z129) = arg z; + arg zo.

By this we mean that the sum of any element of arg zy and any element of arg zo is an element
of arg(z122) and, conversely, any element of arg(z1z2) is the sum of an element of arg z1 and an
element of arg zo.

Proof. We take any 61 € argz; and any 0y € argzs and 6 = 01 + 65. Then by the addition

formulas, cos + isinf = (cosf; + isinfy)(cos by + isinby) = %é—;' = |22| Therefore,

0 € arg(z122).
Conversely, we take any 0 € arg(z122). We consider 0; € arg z; and we define f3 = § —6;. Then

A __ _cosO+isind __ zi1zo /21 __ 22 =
cosfy + isinfy = cos0, tisnfy = \zle|/ o T T Therefore, 05 € argzo and 6 = 61 + 05, [

We note that the equality Arg(z122) = Argz; + Arg 2 is not true in general.
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Example 1.2.1. Arg(—1) + Arg(—1) = 7 + © = 27, while Arg((—1)(—1)) = Argl = 0.

The equalities |z122| = |21]|22| and arg(z122) = argz; + argzo express the well-known
geometric rule: when two complex numbers are multiplied, their distances from O are multiplied
and their angles are added.

It is clear by now that for every z # 0 we may write

z=r(cosf +isinh),

where r = |z| and § € argz. This is called a polar representation of z. There are infinitely
many polar representations of z, one for each 6 € arg z. The polar representation with = Arg z
is called principal polar representation of z.

As in the case of the argument, we do not define polar representation for the number 0.

Exercises.
1.2.1. Which are all the possible values of Arg(z122) — Argz; — Arg 23 ?

1.2.2. Prove that arg % = argz = —argz and arg(—z) = 7 + arg z, after you assign the proper
meaning to these equalities.

1.2.3. Prove the following statement for any nonzero z, z; and zo. Itis true that z = z; 25 ifand only
if the triangle 7°(0, 1, z1) with vertices 0, 1, z1 is similar to the triangle 7'(0, z2, z) with vertices
0, 22, z (0 corresponding to 0, 1 corresponding to 23 and z; corresponding to z). This expresses
the geometric visualization of the operation of multiplication in C.

1.3 Stereographic projection and the sphere of Riemann.

Let S = {(&,1,¢) € R3[| €2 + n? + ¢? = 1} be the unit sphere in R3. Through the usual
identifications, we consider C = R? as the set of points z = x + iy = (z,y) = (z,y, 0) of R3.

A characteristic point of S? is the north pole N = (0,0, 1). We take any z = = + iy € C and
the line Nz in R3, which contains N and z. Clearly, this line intersects S? at N. We shall see that
there is a second point of intersection A = (£,7,() of Nz and S%. That A = (£, 7, ¢) belongs to
Nz is equivalent to NA = ¢t Nz for some ¢ € R. This is equivalent to

E—0=t(x—0)
n—0=t(y—0) (1.1)
C—1=t0-1)

On the other hand, that A = (£, 7, ¢) belongs to S? is equivalent to
E+n*+¢=1 (1.2)

That A = (£,7,¢) is a common point of Nz and S? is equivalent to (£, 7, (,t) being a solution
of the system of the four equations (1.1) and (1.2). We easily solve this system and we find two
distinct solutions: the point N = (0,0, 1), which we already know, and the point

A _ ( 2x 2y m2+y2—1)
- 1’2+y2+1’ x2+y2+1’ a:2+y2+1 .

Now we consider the mapping

2y :c2+y2—1) €S2 \ {N}

: 2
CBZZ$+71y — AZ(&"”’/?C):(12+;2+1712+y2+17x2+y2+1

from C to S? \ {N}. We check easily that this mapping is one-to-one and onto S? \ { N} and that
the inverse mapping is

AN} 2 A= (61,¢) — z=a+iy=+if eC.
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The two mutually inverse mappings just defined between C and S? \ { NN} are called stereo-
graphic projections. We write C <+ S?\ {N} to denote the action of the two stereographic
projections.

We shall see now that both stereographic projections are continuous. We take two points
z = x + iy and zg = xp + 2yo in C. Let their images, through stereographic projection, be the
points A = (&,7,¢) and Ag = (&,70,Co) in S? \ {IN}. Using the formulas of stereographic
projection, we can prove that the euclidean distance in R? between A and A equals

|A— Ao = V(£ = &)>+ (n—m0)? + (¢ — ¢0)?
_ /@)’ +y—w)® _ 22—z (1.3)
Va2 24123 +3+1 V2241 /]z02 417

We also take z = z + iy in C and let its image, through stereographic projection, be A = (£, 7, ()
in S? \ {N}. We find that the euclidean distance in R® between A and N equals

JA—=N|=/(=02+n—-02+((-12%=...... = \/inym = \/|z2|2+1' (1.4)
Now, if z — zp, then (1.3) implies that A — Ay. Conversely, assume that A — Ag. Then A A N
and (1.4) shows that |z| stays bounded. Hence (1.3) implies that z — zp. We conclude that both
stereographic projections are homeomorphisms between the metric spaces C and S* \ {N'}.

We can continue the previous argument and examine the behaviour of z in C when its image A
in S? \ {N} tends to the north pole V. Indeed, (1.4) shows that A — N if and only if |z| — +o0.
In other words, A — N if and only if the euclidean distance of z from 0 becomes arbitrarily large.

Now, it is natural to introduce and attach to C an “ideal point”, denoted oo and called infinity,
whose euclidean distance from 0 is +0o. We define the extended complex plane or the sphere
of Riemann to be

C =CuU{oo}.

We also extend the previously defined stereographic projections C <> S\ {N} to be the stere-
ographic projections C «++ S? which map each of co € Cand N € S? onto the other.

Thus, both stereographic projections C <+ S? are bijective mappings between C and S2.
We have seen that their restrictions C <+ S? \ {/N} are homeomorphisms between the metric
spaces C and S?\ {V'}. In order to examine the continuity properties of the extended stereographic
projections, we have to equip the sets C and S? with corresponding metrics. The metric on S?\ { N},
i.e. the euclidean distance on R3, is also a metric on S2. But it is clear that the euclidean metric
on C cannot be extended to become a metric on C. The problem can be solved if we use the
equalities (1.3) and (1.4) to transfer the metric on S? to a metric on C. If z, 2y € C, we consider
their images A, Ag € S? \ {N} and we define the new distance between z, z to be equal to the
euclidean distance in R3 between A, Aj given by (1.3) in terms of 2, zg. If z € C and zy = oo,
we consider their images A € S?\ {N} and Ag = N and we define the new distance between
2, 2o to be equal to the euclidean distance in R? between A, Ag given by (1.4) in terms of z. The
new distance between two points of C or between a point of C and oo is called chordal distance.
In other words, we define the chordal distance x(z1, z2) between 21, 22 in C to be the euclidean
distance in R? between their images, through stereographic projection, in S%. L.e.

2|21—22‘ .
if 21,29 € C
\/|21|2+1 \/|22|2+1’ 1y <2
_ 2 .
X(z1,22) = LR ifz1=2€C,z9=xo0rz; =00,29=2€C
|22+1
0, ifz1 = 29 =

Proposition 1.2. The function x : C x C — R is a metric on C.



Proof. We must prove that chordal distance has the following basic properties:

(1) x(z1, 22) > 0 for every 21, 29 € C.

(ii) If 21, 22 € C, then: x(z1,22) = 0 if and only if z; = zs.

(iii) x (21, 22) = X (22, z1) for every z1, 29 € C. R

(iv) x (21, 23) < x(21,22) + x(22, z3) for every 21, 22, z3 € C.

The first three properties are obvious. The fourth, the triangle inequality, can be proved after many
calculations using the formula of the chordal distance. But there is a better way. If we take the
stereographic projections Ay, Ay, A3 in S? of 21, 29, 23, then from the definition of the chordal
distance we have x(z;, 2;) = |A; — A;| and, since euclidean distance in R? satisfies the triangle
inequality, we get x (21, z3) = |A1 — As| < |A1 — Ag| + |Ag — A3| = x(21, 22) + x(22,23). O

The metric x on C is called chordal metric.
We thus have a second way to measure distances in the complex plane. Besides the euclidean
distance |27 — 22| we also have the chordal distance x(z1, 22) = 221 = 2| .
|21 2| x(z1, 22) NN e
Proposition 1.3. C with the chordal metric and S? with the euclidean metric of R? are homeomor-
phic metric spaces.

Proof. Stereographic projections are homeomorphisms between the two metric spaces. In fact
they are more than that: they are isometries. Indeed, if 21,25 € C correspond to A1, As € S?,
then by the definition of the chordal metric we have x(z1, 2z2) = |A1 — Ag|. Le. stereographic
projections preserve distances and hence they are both continuous. O

Proposition 1.4 describes the relation between the chordal metric and the euclidean metric in
their common domain.

Proposition 1.4. The chordal metric on C and the euclidean metric on C are equivalent.

Proof. Indeed, if z,2zy € C, then z — 2z with respect to the euclidean distance if and only if
z — 2o with respect to the chordal distance. To see this we consider the images 4, Ay € S?\ {N}
of z, zp under stereographic projection. We have proved already that z — 2z with respect to the
euclidean distance in C if and only if A — A with respect to the euclidean distance in R?. But
the euclidean distance between A, Ag is equal to the chordal distance between z, z9. Therefore,
|z — 20| >0 & |A—Ag] =0 < x(z,20) — 0. O

Proposition 1.5. Let z € C. Then z — o in C if and only if |z| — +oc.
Proof. This is obvious from x(z,00) = 2/+/|2|? + 1. O

We have introduced oo as the ideal point towards which a variable point z on the complex
plane moves when its euclidean distance from 0 becomes arbitrarily large. It is time to mention
the difference with the ideal points 00 we attach to R. A variable point x on the real line moves
away from 0 in exactly two specific directions: either to the left or to the right and then we say,
respectively, that it moves towards —oo or towards +oco. On the plane though there are no two
uniquely specified directions. A point can move away from 0 either on arbitrary halflines (i.e.
in infinitely many directions) or making an arbitrary “spiral-like movement” or in a completely
arbitrary manner. Therefore, we may only say that the point moves fowards infinity.

Now let us say a few things about neighborhoods of points in C with respect to the chordal
metric. We start with the neighborhoods of co. If we denote N, (r) the r-neighborhood of a point
x in the general metric space, then the r-neighborhood of oo in the metric space (@, X) is the set

Noo(r) = {z € C|x(2,00) <1} = {z € C|2/\/[:P + 1 < r} U {o0}
:{{AZ€C||Z’>\/W}U{OO}, ifo<r<2
C,

ifr>2
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We observe that the “small” neighborhoods of oo, i.e. the neighborhoods Ny (r) with 0 <
r < 2, are the complements of closed discs in C with center 0, together with co. To simplify

notation we make the change of variable: % =4/ 7% — 1. When 7 increases in (0, 2), s increases

in (0, +00) and conversely. We call s-neighborhood of oo in C the set
Doo(s) = {z] 2| > 1} U {oo},

i.e. the complement of the closed disc with center 0 and radius %, together with oo.

We see that the neighborhoods of co in C with respect to the chordal metric are of three kinds:
the sets Do () with s > 0, the set C \ {0} (the case r = 2 or, equivalently, s = +00) and the
whole set C. Since in any metric space the “small” neighborhoods are those which characterize
interior points, boundary points, limit points, limits of functions or sequences etc., in the case of C
and its point co we shall pay attention only to the neighborhoods of the form D (s).

Now the following should be clear.

(1) The point oo is an interior point of A C C with respect to the chordal metric if and only if A
contains, besides co, the complement of a closed disc in C with center 0.

(i1) The point oo is not a limit point of A C C with respect to the chordal metric if and only if A
is contained in a closed disc with center 0 or, equivalently, A is a bounded set in C with respect to
the euclidean metric.

(iii) If oo ¢ A, i.e. if A C C, then the following four statements are equivalent: oo is a boundary
point of A with respect to the chordal metric, co is a limit point of A with respect to the chordal
metric, oo is an accumulation point of A with respect to the chordal metric, A is not bounded in C
with respect to the euclidean metric.

Now we continue with the neighborhoods with respect to the chordal metric of a point zp € C.
The r-neighborhood of zy € C in C with respect to the chordal metric is the set

N, (r)={z¢€ C | x(z,20) <71}

This set does not have a simple form. Depending on the exact values of zy and r, it is an open
disc or an open halfplane or the complement of a closed disc (together with oo). Even when
N, (r) is an open disc, zy is not its euclidean center. Look at exercise 1.3.2 for details. Since
the chordal metric and the euclidean metric are equivalent in C, we have the following relation
between neighborhoods N, (r) with respect to the chordal metric and neighborhoods (i.e. the
familiar discs) D, () with respect to the euclidean metric: for every e > 0 there is § > 0 so that
D.,(8) C N,,(€) and, conversely, for every € > 0 there is § > 0 so that N, (d) C D, (€). From
this we conclude easily that z5 € C is an interior point or a boundary point or a limit point of a
set A C C with respect to the chordal metric if and only if it is, respectively, an interior point or a
boundary point or a limit point of A with respect to the euclidean metric.

If A C C and we write A°, OA and A for the interior, the boundary and the closure of A with
respect to the euclidean metric and A°X, 9, A and AX for the interior, the boundary and the closure
of A with respect to the chordal metric, then we easily see that

AX =A% 0, A=0A, AX=A4 if A isabounded C C
and
AOX = A° 9,A=0AU{oc0}, AX=AU{oco}  if Aisanunbounded C C.

Of course, when we say bounded or unbounded we mean with respect to the euclidean metric.
For instance, if A C C is bounded, then it is open with respect to the chordal metric if and only
if it is open with respect to the euclidean metric, and it is closed with respect to the chordal metric
if and only if it is closed with respect to the euclidean metric. If A C C is not bounded, then again
it is open with respect to the chordal metric if and only if it is open with respect to the euclidean
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metric, but, even if it is closed with respect to the euclidean metric, we have to attach oo to A to
make it closed with respect to the chordal metric.

Regarding compactness, we know that C is not compact either with respect to the euclidean
metric or with respect to the chordal metric. Indeed, C is not compact with respect to the euclidean
metric, because it is not bounded. And then it is not compact with respect to the chordal metric,
because the two metrics are equivalent in C. But Cis compact (with respect to the chordal metric,
of course). Indeed, Cis homeomorphic to S?, which is compact since it is a closed and bounded
setin R3. Now, C is produced from C by the attachment to C of the single point co. This situation
has a name in topology: we say that Cisa one-point compactification of C.

Based on the usual algebraic rules of limits, we may extend in the standard way the algebraic
operations in the set C:

2+ 00 =00+ 2 =00, —00 = 00, Z2—00=00—2 =00,
zoo=o00z=o00 ifz#0, 00 00 = 00,
1 1 _ z oo
=0 =0 =0 T=oo
0 = 00, |oo| = 4-00.

For example, the rule zp + oo = oo (when 2y € C) can be based on the following argument. If
z — zg and w — oo in C, then |z — zo| — 0 and |w| — 400 and then, by the triangle inequality,
|24 w| > |w| — |z — 20| — |20| = +00. Hence z +w — oo in C. All other rules can be based on
similar arguments.

The following are not defined:

[es) 0

oo +o00, oo—o00, 0oo, o000, 25, §-

They are called indeterminate forms.

For instance, regarding the case of co 4+ 0o, one can easily find examples of points z, w such
that z — oo and w — oo but such that z + w has either no limit or any preassigned limit. The
same is true in all other cases.

Observe the case of % = 00. In R the expression % is an indeterminate form, since when the
real number z is small and > 0 then % is large and > 0 and hence % moves towards 400, and when
x is small and < 0 then % is large and < 0 and hence % moves towards —oco. But in C, when z is

small, i.e. when |z| is small (and necessarily > 0), then the distance |%\ = ﬁ of % from O is large
1

and hence - moves towards oo. So we define % = 00.

Example 1.3.1. Let us consider any polynomial function p(z) = a, 2" +a,_12" 1+ -+a1z+ag
with a,, # 0. The domain of definition of p is C.
For every zp € C we have

lim p(Z) = p(ZO)>

Z—rZ20

using the algebraic rules of limits and the trivial limits: lim,,,,c = c and lim,_,,, z = zp.
Therefore, p is continuous in C.
If the degree of pis > 1,1i.e. n > 1 and a,, # 0, then

lim p(z) = o

Z—00

since p(z) = 2" (ay, + an_lé 4+ aozin) — 00 @y, = 00.
Thus, if the degree of p is > 1, we may define p(oco) = oo and then p : C — C is continuous in C.
If the degree of p is 0, then the function is constant: p(z) = ao for all z. Hence

Jim p(2) = o

In this case we may define p(oco) = ag and again p : C — C is continuous in C.
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Example 1.3.2. Now we take a rational function r(z) = % = %% with ay,, b, # 0.
The domain of definition of 7 is C \ {21, ..., 25}, where 21, . .., z5 are the roots of g.
If zp € C and g(29) # 0, then using the algebraic rules of limits, we get:

zlgglo r(z) = r(20).
Therefore r is continuous in its domain of definition.
Writing r in the form r(z) = 2" (ay + an—12 + -+ a2 )/ (bm + bm-12 + - + by %), we
can prove that

oo, ifn>m

lim r(z) = ifn=m

Z—00 bn?

0, ifn<m

Finally, let zo € C and g(z0) = 0. Thus z is any of the roots 21, .. ., z; of ¢. Then z — zy divides
q(z), and there is £ > 1 and a polynomial ¢ (z) so that ¢(z) = (z — 20)%q1(2) and ¢ (20) # 0.
This means that the multiplicity of the root zy of ¢(z) is k. There is also [ > 0 and a polynomial
p1(2) so that p(2) = (2 — 20)'p1(2) and p1(z9) # 0. Indeed, if p(z0) = 0, then [ > 1 is the
multiplicity of zg as a root of p(z) and, if p(zg) # 0, we take [ = 0 (and say that the multiplicity
of zp as a root of p(z) is zero) and p1(z) = p(z). So for every z different from the roots of ¢(z)
we have r(z) = (z — zo)l*kzi—g and p1(z0) # 0, q1(20) # 0. Now % is neither oo nor 0, and
hence

0, ifk > 1
Jim () = § B itk =
0, ifk <l

Exactly as in the polynomial case, a rational function can be considered to be a function r : G
continuous in C. Indeed, at every zp € C a rational function r has a specific limit. If zg is in the
usual domain of definition of r, then the limit of r at zy coincides with r(zp). If zg is either oo or
a root of the denominator of r, then we define r(zg) to be the limit of r at 2.

Example 1.3.3. The sequence ((—2)") does not have a limit as a real sequence since its subse-
quences of the odd and the even indices have the different limits —oo and 4-co. But as a complex
sequence ((—2)™) tends to oo, because |(—2)"| = 2" — +o0.

Example 1.3.4. Let us consider the geometric progression (z™).

If |z] < 1, then |2 — 0] = |z|"™ — 0 and hence z" — 0.

If |z] > 1, then |2"| = |2|™ — 400 and hence 2" — oo.

Ifz=1,thenz" =1 — 1.

Finally, let |z] = 1, z # 1 and assume that 2" — w. Since |z"| = |z|™ = 1 for every n, we find
that |w| = 1. From z" — w we have z = Zzzl — = = 1 and we arrive at a contradiction.

Thus:

0, if|2] < 1
n ) =1, ifz=1
z

— 00, if [z] > 1

has no limit, if|z|=12#1
Exercises.

1.3.1. Prove that x(z1, z2) < 2 for every 21, 22 € C. When does X(z1, z2) = 2 happen?

1.3.2. (i) Let [ be any line in C. We define [ = [ U {oo} and call it line in C. We call circle in C
every circle in C. Prove that stereographic projection maps circles in C onto circles in S? which do
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not contain N (and conversely) and lines in C onto circles in S? which contain N (and conversely).
(i1) Find the images in S? through stereographic projection of the following subsets (or collections
of subsets) of C: {z | |z| < 1}, {z||2| = 1}, {z]||2| > 1} U{o0}, {z| Rez > 0}, {z| Rez = 0},
{z| Re z < 0}, the collection of lines containing a fixed point # oo, the collection of circles with
a fixed center, the collection of lines parallel to a fixed line, the collection of circles tangent to a
fixed circle at a fixed point, the collection of circles containing two fixed points.

(iii) Let z,w € Cand let A, B € §2 be their images through stereographic projection. If z, w are
symmetric with respect to a line [ in C which contains 0, which is the relative position of A, B
with respect to the image of Tin S22 Ifw = %, which is the relative position of 4, B in S??

(iv) Consider a set of the form P = {z € C|x(z,20) = r}, where zy € C andr > 0, 1ie. a
“circle” with respect to the chordal metric. If 2o = oo, prove that P is a circle in C, i.e. in C, and
find its euclidean center and its euclidean radius. If zy € C, prove that P is either a circle in C,
i.e. in C, and in this case find its euclidean center and its euclidean radius, or a line in C.

(v) If the lines [y, I5 have angle € at their common point z € C, prove that their images through
stereographic projection, i.e. two circles in S? containing the image A of z and the north pole N,
have the same angle 6 at both A and V.
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Chapter 2

Series and curvilinear integrals.

2.1 Series of numbers.
A series of complex numbers or, simply, complex series is an expression

R I SRR R S or +o 2.

If all z,, are real, we talk about a series of real numbers or real series. The s,, = 21 +-- -+ z,, are
the partial sums of the series. We say that the series converges if the sequence (s,,) converges
and then the limit s of (s,,) is called sum of the series and we write :i’i zn = 5. We say that the
series diverges if (s,,) diverges. If (s,,) diverges to oo, then we say that the series diverges to co
and that oo is the sum of the series and we write Jll Zp = 0.

We note that the sum of a complex series can be either a complex number or co. Only a real
series can have sum equal to +oo or —oco. Therefore, when we write :{3 Zp = 400 or —o0, we
accept that all z,, are real and that the series diverges to +o0o or —oo as a real series. Of course, if

a real series diverges to 400 or —oo, then as a complex series it diverges to co.
Example 2.1.1. We have Z+ c=0,ifc=0,and Zn 1 ¢ =00,if ¢ # 0.

Example 2.1.2. To examine the geometric series Z —o 2", weusethe formulal+2+---+2"

L 12 "~ for its partial sums, and we find that its sum is
=1 if[z] <1
1—27
S0 2" = oo, if|z| >lorz=1

it does not exist, if|z|=1,2#1

The usual simple algebraic rules, which hold for real series, hold also for complex series. We
mention them without proofs. The proofs for the complex case are identical with the proofs in the
real case.

Proposition 2.1. If Z:g zn, converges, then z, — 0.

Proposition 2.2. Provided that the right sides of the following formulas exist and that they are not
indeterminate forms, we have 3"t (zp+wn) = 3.0 2+ 37wy, ES Az, = AN 2,
and 3,2z, = Z: 1%n:

Moreover, if zn = :L'n + zyn, then :“j zn, converges if and only if Z:{ Ty and Zn 1Yn
converge, and Xz = Zn 1 Tn + 10 Zn 1 Yn-

Regarding the comparison theorems, we may say that, since these are based on order relations
which can be expressed only between real numbers, when we write Zn 1 Wn as a
consequence of z, < w,, we accept that all z,,, w,, are real and then we Just apply the well-known

comparison theorems for real series.

12



Cauchy criterion. The series E:g zn, converges if and only if for every € > 0 there is ng so that
| > ket 2kl = [Zma1 + - 4 20| < € for every m,n withn > m > ny.

Proof. Lets, = z1+- - -+ z,. The series converges if and only if (s, ) converges or, equivalently,
if and only if (s,,) is a Cauchy sequence. That (s,) is a Cauchy sequence means that for every
€ > 0 there is ng so that |z, 11+ -+ 2| = |$p — S| < € forevery n, m withn > m >ny. O

We say that 31> 2, converges absolutely if the (real) series " |2,| converges, i.e. if
“+o0o
29 zn] < 4o0.

Criterion of absolute convergence. If Z;{i’i zn, converges absolutely, then it converges and we
+00 +00
have | > 2 zn| <307 |2l

Proof. Let Z;ﬁ? |z, | converge and take any € > 0. From the Cauchy criterion we have that there
is ng so that |zp,11| + - + |2n] < € and hence |zp,11 + -+ + 2,| < € for every m,n with
n > m > ng. The Cauchy criterion, again, implies that Z;:i’i Zp, converges.

Now we take the partial sums s,, = 21 + -+ + 2z, and S, = |z1| + - - - + |z, |. We have |s,,| < S,
for all n and, taking the limit of this as n — 400, we finish the proof. U

Ratio test of d’ Alembert. Let z,, # 0 for all n.

(i) If lim |Z’;—:1‘ < 1, then 3 2, converges absolutely.
(ii) If lim ‘%} > 1, then Y2 2, diverges.

(iii) If lim

Proof. (i) Take a so that lim | =1 < a < 1. Then there is ng so that | 2= < a forevery n > ny.

z : z i ]
—’z” L ‘ <1<Ilim ‘Z—“{ then there is no general conclusion.
n n

Now, for every n > ng we get |z,| = | 22| |z::; ~-\Z"0+1 | |2ne| < @™ ™02, | = ca™, where
¢ = |zpy|/a"™. Since 0 < a < 1, the geometric series +°‘i a™ converges and, by comparison,

2 |2,] also converges.
(11) There is ng so that |“==| > 1 for every n > ng. Now, for every n > ng + 1 we have

|zn| > |2n—1] > -+ > |zn,| > 0. This implies that z, / 0 and Z 1 2n diverges.

(iii) For the series ] L and ZJ”X’ L we have that ]1/ (n+1) ‘ — 1 and ‘1/17721)‘ — 1. The

first series diverges and the second converges. O

Root test of Cauchy. (i) IfTim {/|z,| < 1, then > 2, converges absolutely.

(ii) If@\"/ 20| > 1, then "% 2, diverges.
(iii) If lim {/|zy| = 1, then there is no general conclusion.

Proof. (i) We consider any a such that lim m < a < 1. Then there is ng so that ’(/W <a
and hence |z, | < a™ for every n > ng. Since 0 < a < 1, the geometric series Z:g a™ converges
and, by comparison, > |,,| also converges.

(i1)) We have m > 1 for infinitely many n. Therefore, |z,| > 1 for infinitely many n and
hence 2z, /4 0. Thus, > 2, dlverges

(iii) For the series 72 1

v20 L and 370 & we have {/[1/n| — 1and {/|1/n?| — 1. The first

series diverges and the second converges O

Applying the ratio test and the root test to specific series Z:g zn, we find very often that the

limits limy,— 4o | i | and limy, 400 {/]2n] exist. We know (and we used it in the proofs of parts

(iii) of both tests) that in this case: lim = lim = lim.

Example 2.1.3. To the series Z+°° Z, we apply the ratio test. If z = 0, the series obviously
m‘ = |z|/(n+ 1) — 0 < 1. Hence the series

z" /n!

converges absolutely. If z £ 0, then ‘
converges absolutely for every z.

Now we apply the root test. We have {/|z"/n!| = |z|/¥/n! — 0 < 1 and we arrive at the same
conclusion as before.
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Example 2.1.4. We consider Z+°° 27 and we apply the ratio test. If z = 0, the series obviously

converges absolutely. If z # 0, then ‘%} — |z|. Hence, if 0 < |z| < 1, the series

converges absolutely and, if |z| > 1, the series diverges.
Now we apply the root test. We have {/|2"/n?| — |z|. Therefore, if |2| < 1, the series converges
absolutely and, if |z| > 1, the series diverges.

If |2| = 1, none of the two tests applies. But we observe that 37 o

Tlln

Z"

n2

5> < +00 in
this case, and 7] Z; converges absolutely.
Conclusion: Y"1 2 ﬁ converges absolutely if |z| < 1, and diverges if |z| > 1.

Lemma 2.1. Let (ay,) and (z,) be two sequences and s,, = z1 + - -+ + zy, for every n. Then we
have

ZZ:m—i-l Ap2r = ZZ:m-H(ak — Qf11)Sk T Ant18n — Am+18m

for every n, m with n > m. This is the summation by parts formula due to Abel.

Proof. We have

ZZ:mH Ak = ZZ:mH ak(sk — sp-1) = ZZ:m+1 akSk — ZZ;},L Qk+1Sk

= ZZ:erl(ak — @k 41)Sk + An 4150 — Am415m
and the proof is complete. O

Dirichlet test. Let (ay,) and (zy,) be two sequences and s, = z1 + - - - + z, for every n. If (a,,) is
real and decreasing and a,, — 0 and if (s,,) is bounded, then Z:{g G 2y, CONVETgES.

Proof. There is M so that |s,| < M for every n. Now, let € > 0. Since a,, — 0, there is ngy so
that 0 < a,, < ﬁ for every n > ng. Then lemma 2.1 implies that, if ng < m < n,

| > st @hzk| < St (@ — g1) 8k + angt|sn] + amet]sm]
<Y g1k — @ 1) M + a1 M + a1 M = 2am 1 M < e

The criterion of Cauchy implies that Zzg G 2y, CONVErges. O

Abel test. Let (ay,), (2n,) be two sequences and s, = z1 + - - - + 2y, for every n. If (ay,) is real and
decreasing and bounded below and if (s,,) converges, i.e. if S > 2, converges, then > anzy,
converges.

Proof. Since (ay,) is real and decreasing and bounded below, there is a so that a,, — a. We set
a,, = a, — a and then (a;,) is real and decreasing and aél —> 0. We also have that (s,) is bounded
and hence Dirichlet’s test implies that the series Yt a! 2, converges Now, since Z % Zn
also converges, we find that Z:{g AnZpn = +°° anzn + az 1 #n and hence Z 1 OnZn

converges. O

Example 2.1.5. If (ay,) is real and decreasing and a,, — 0, then 370 a,,2™ converges for every
zwith 2| <1,z # 1.
If |z[ < 1, the result is immediate from the criterion of absolute convergence. Indeed, we have

2 anz"| < a1 3212912 < +oo. If|2| = 1 and z # 1, we apply the Dirichlet test. To do
[1—zm* 2
el S ]

thls we prove that the partial sums s, = 1+ z+2%+- - -4 2" are bounded: |s,| =
and | P is finite since z # 1.

Example 2.1.6. We consider :{i’i % As in example 2.1.4, the application of either the ratio
test or the root test gives that the series converges absolutely if |z| < 1 and diverges if |z| > 1.
If |z] = 1, none of the two tests applies. If z = 1, the series becomes Z+°° L and diverges. If

|z| =1, z # 1, then Z 0l = 400, and Z+°° Zn does not converge absolutely.

‘n‘ n=ln
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But the series is a particular instance of the series in the previous example and hence converges if
|z| =1, z # 1. In general, when a series is convergent but not absolutely convergent we say that
it is conditionally convergent

Conclusion: Y7 2 converges absolutely if |z| < 1, divergesif 2| > 1 or z = 1, and converges

conditionally if |z| = 1, z # 1.

Let) '~ 0 an and Z:ﬁ% b, be two series. If ¢, = agb, + a1bp_1 + -+ + ap_1b1 + aybg for
every n > 0, then the series

o8 e = 2% (a0bn + a1bn—1 + -+ + ap_1by + anbo)
is called Cauchy product of the two series.

Proposition 2.3. If the series Z n—p Qn and E o bn converge absolutely, then their Cauchy prod-
uct Zn o Cn converges absolutely. Moreover, we have Zn 20Cn = :Lri% an Z:i% by, for the
sums of the three series.

Proof. We have |c,| < |ao||bn| + |a1||bn—1] + -+ + |an—1l|b1] + |an||bo|. Hence, if S =
+90 |an] < +ooand T = 312 |b,| < +o0, then

n N
SN o lenl <N (zkzo k] 1br—rk]) = aio larl (e ba—kl) < Speg lax|T < ST

for every N. Thus, >~ "% |cn| < ST < +o0 and Z 20 Cn converges absolutely.

Now, let s = :O% an, t = Z:{i% by, and u = :{o‘a ¢n. Moreover, let s, = ag + -+ + an,
tn, = bo+ -+ b, and u, = co + --- + ¢, be the partial sums of the three series and also
Sn = lao| + -+ + |an|, T, = |bo| + - - - + |by|. Then

un = 3N gen = Sn o (o arbni) = Sneo ak(Sn s buk) = Sopo ak( St bim)

=Y ilo artn—k

and hence syty — uy = Zév:o ag(ty —ty_x). We take p = [%] and we get
SNtN —un = Y h_oak(tn — tn_k) + Zk;—p+1 ar(tn —tn—_r). (2.1
IfO<k<p,then N —k > N —p > pand hence
[t = tn—kl = | Come ki1 bm| < oSy g [ < X ot lbm| =T =T, (2.2)
Ifp+1<k<N,then
8 = tn—k] = | et | € g bl < T (2.3)

Now, (2.1), (2.2) and (2.3) imply

lsntn —un| < Dh_g lakl[tn — tn—k| + Zév:pﬂ lag||tn — tn—k]
N
< (T =Tp) o lakl + T Xk pin lan] < (T = Tp)S + T(S = Sp).

Now, N — +o0 implies p — +oo and hence S, — S and T}, — T'. Therefore, syty —uy — 0

when N — +oo and we conclude that © = st. O]
Exercises.
: : +oo /1 i +oo/ n +oo 144" +oo 1 +oo 1
2.1.1. Which of the series Y7 (2 + %), Y72 (9 + 5), D025 H4, 3005 T Qon—1 i’
+oo 1
n=1 2 converge?
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2.1.2. Find the sum of the series 37> n(—1)"~! if we consider it as a complex series and also if
we consider it as a real series.

2.1.3. Apply the ratio test whenever possible: "1 p3jn, St nl shtoc (49" g~too (20)"nt

n=1 "> n=1 n! n=1 nn >
+oo (2+i)"n! +00 emp! +oo (n!)? +oo (49)™ (n')2 +oo  (341)(6+1)(9+i)-- (3n+i)
n=1" pn > Zun=1 pn > Zin=1 ()1’ Lun=1" (2n)] ° Lun=1 (3+47)(3+8i)(3+12i)--(3+4ni) "
. ) 3
Apply the root test whenever possible: ¥ nnin, S0 (JekLyn §oboc(ndiyin Soc SR
Z-I—oo 7’L3( )n +oo (243" +o0 n+i
n=1 > n=1 nn n=1 ("\1/7-{-1)"

2.1.4. 1 57129 |2, < 400, prove that 3" 2, (cos nf + i sinnd) converges.

2.15.Let z, = x, + iy, for all n. Prove that S "> ~—1 %n converges absolutely if and only if

T, anl yn, converge absolutely.

2.1.6. Let |a,|r™ < MnP for all n. Prove that ZJrio a,z" converges for every z with |z| < r.
2.1.7. Find all z for which 19

TL

n=1 2+z”

converges.

2.1.8.Let 0 < 0y < § and Arg z, € [0, 90] for every n. Prove that > 2, converges if and
only if it converges absolutely. Prove that > 2, = oo if and only if 372 |2,| = +oc.

2.1.9. Find a series Z —7 #zn Which converges and is such that +E’1 22 diverges.
. ;T
2.1.10. Check the conditional convergence and the absolute convergence of the series: :{i’i -,
+oo 4" +oo i +00 n—1 +oo sn—1 1
n=2 nlogn’ 2n= 2n10gn2,zn 1? Sln* Yoy " (1 —cos ).

2.1.11.Let s,, = z1 + -+ + 2z, for all n. If (a,418,) converges and if Z:{i’i (an — ant1)Sn

converges prove that Z 2 Gnzy converges. In particular: if (s,,) is bounded, if a,, — 0 and if
n:l > lan — any1| < +oo, prove that Zzg p 2y CONVETEZES.

What is the relation of all these with the tests of Dirichlet and Abel?

2.1.12. (1) If )" 2 an converges and Z % bn converges absolutely, prove that their Cauchy prod-
uct 3" ¢, converges and that "9 0Cn = 2n= 2 an S8 by,
(i1) Prove that the series zn: 1)% converges but that the Cauchy product of this series with

itself does not converge.

2.2 Sequences and series of functions.

Let A be any nonempty set (not necessarily a subset of C), (f,,) be a sequence of bounded
complex functions defined in A and f be a bounded complex function defined also in A. We say
that the sequence (f,,) converges to f uniformly in A if

supe 4 [ fn(a) — fla)] = 0.

In other words, f,, — f uniformly in A if for every € > 0 there is ng so that | f,,(a) — f(a)| < €
for every n > ng and every a € A.

It is easy to see that, if f,, — f uniformly in A, then f,,(a) — f(a) for every a € A, i.e.
(fn) converges to f pointwise in A. Indeed, for every a’ € A we have 0 < |f,,(a') — f(d')| <
SUPac.1 | Fn(@) — F(a)] = 0.

From the notion of uniform convergence of a sequence of functions we move to the notion
of uniform convergence of a series of functions in the obvious way, i.e. through the sequence of
partial sums of the series. We write s,, = f1 + --- + f,, and we say that the series of functions

:{i‘i fn converges to its sum s uniformly in A if s,, — s uniformly in A. In this case we write
¥ fu = s uniformly in A.

As in the case of a sequence of functions, we have that, if Z+°° n = s uniformly in A, then
+ fa(a) = s(a) forevery a € A,ie. 3 f,, = s pointwise in A.

For the next two results we assume that A is a subset of a metric space.
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Proposition 2.4. Let f,, — f uniformly in A and let ay € A. If every fy, is continuous at ay, then
f is continuous at ag. In particular, if every f, is continuous in A, then f is continuous in A.

Proof. Let e > 0. Then there is ng so that | f,,(a) — f(a)| < § for every n > ng and every a € A.
In particular, we have | f,,(a) — f(a)| < § for every a € A. Now, fy, is continuous at ag and so,
ifa € Ais close to ag, then we have | f,(a) — fno(ao)| < § and hence

|f(a) = f(ao)| < [f(a) = fao(a)] + [ fno(a) = fro(@0)| + [ fno(ao) — flao)| < 5+ 5+ 5=
Therefore, f is continuous at a. ]

Proposition 2.5. Let :g n = S uniformly in A and let ag € A. If every f,, is continuous at ay,
then s is continuous at aq. In particular, if every f, is continuous in A, then s is continuous in A.

Proof. We consider the partial sums s, = f1 + --- + f,. Then every s, is continuous at ag and
proposition 2.4 implies that s is continuous at ay. O

Finally, we have a basic criterion for uniform convergence of a series of functions.

Weierstrass test. Let | f,(a)| < M, for every n and every a € A. If the series (of non-negative
terms) > M, converges, i.e. if Y15 M, < 400, then "> f,, converges uniformly in A.

Proof. For every a € A we have 3% | fu(a)| < M, < +oo and hence > f,.(a)
converges (as a series of complex numbers). We deﬁne s( ) = > fula) for every a € A.
Now we consider the partial sums s,, = f1 + - - - + f,, and then for every a € A we have

|sn(a) — s(a)| = ‘ZZ 1fk a) — }_ ‘Zk =n+1 fr(a )’ <Zk n+l|fk(a'>|

< Vit M
This implies that sup, 4 [sn(a) — s(a)| < 3°72° ) My — 0 when n — +oc and hence s,, — s
uniformly in A. 0
Exercises.
2.2.1. Prove that ) =" € Jrln)z converges for every z € C \ Z and uniformly in every compact

set K CC\ Z.

2.2.2. (i) If K C C\ T is compact, prove that there is 7 with 0 < r < 1 (r depends on K) so that
forevery z € K either 2| <ror|z| > 1 holds.

(ii) Prove that Z'__ converges unlformly in every compact K C C\ T.

n= 0 Z2"+1

2.2.3. (i) If Rez > —1, prove that }Zj_l} < 1. IfK C {z| Rez > —3} is compact, prove that

there is r with 0 < r < 1 (r depends on K) so that ‘ _ZH
(ii) Prove that 3" 120 (25 ~7)" converges for every z in the halfplane {z | Rez > — 1} and uniformly

in every compact subset of this halfplane.

‘<rf0reveryz€K

2.3 Curvilinear integrals.

We shall first extend the notion of integral of a real/ function over an interval to the notion of
integral of a complex function over an interval.

Let f be a complex function defined in the interval [a, b] and let w = Re f and v = Im f be the
real and imaginary parts of f. We say that f is (Riemann) integrable over [a, b] if u, v are both
(Riemann) integrable over [a, b] and in this case we define the (Riemann) integral of f over [a, b
to be

JPrydt = [Pu(tydt+i [P o(t)dt. (2.4)
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Since the numbers f t) dt and f t) dt are real, we see that

Refff(t) dt = ffRef(t) dt,  Im [0 f(t)dt = ["Im f(t) dt

Now let us take any subdivision A = {tq, ..., t,} of [a, b] and any choice E = {&1,...,&,} of
intermediate points & € [t;_1, t] and the corresponding Riemann sum » ;_; f(&;)(tk — ti—1)-
If w(A) = max;<p<p(tx — tx—1) is the width of the subdivision A, then we know that

limy, )0 Sy (&) (b — tro1) = [} u(t) dt

. n .
limy,(a) -0 Doy V(ER) (T — th—1) = [, v(t) dt.
Multiplying the second relation with ¢, adding and using (2.4), we find

limyy )0 S0y F(&R) (b — trr) = [2 F(2) dt

Example 2.3.1. If f is piecewise-continuous in [a,b], then v = Re f and v = Im f are also
piecewise-continuous in [a, b]. Hence u, v are integrable, and so f is also integrable over [a, b].

The following propositions are analogous to similar well-known propositions about integrals of
real functions and can be proved easily by the reader. One should decompose every complex func-
tion into its real and imaginary parts and use the analogous properties for real functions together
with (2.4).

Proposition 2.6. Let f1, f2 be integrable over|a, b] and \1, Ao € C. Then )\1 f1+A2fois integrable
over [a,b] and f;()\lfl( t) + Aafa(t)) dt = A\ f fi(t)dt + Ao f fa2(t)

Proposition 2.7. Let a < b < c. If f is integrable over [a,b] and over [, c|, then f is integrable
over la,c| and [ f(t)dt = fff(t) dt+ [ f(t)dt
Proposition 2.8. If f1, fo are integrable over |a, b, then fi fo is integrable over [a, b)].

The proof of the next proposition is not entirely trivial.

Proposition 2.9. If f is integrable over [a, b, then |f| is integrable over [a, b] and | f; f)dt] <
b
Ja 1F @) dt.

Proof. Let w = Re f, v = Im f. Then u,v are integrable over [a, b] hence |f| = Vu? + v? is
integrable over [a, b]. Now we have two cases.

(i) Let [° f(t)dt = 0. Then | [ f(t)dt| < [7|f(t)|dt is clearly true.

(ii) Let fab f(t)dt # 0. We take any element 6 of the argument of the number ff f(t) dt and we
set z = cos @ + isinf. Now, |fabf(t) dt] = Eff ft)dt = f;(z f(t))dt. The left side of this
equality is real and hence its right side is also real and thus equal to its real part! Hence

| [P f(t)dt] =Re [(z f(£))dt = [PRe(z f(1))dt < [Pz f(t)|dt = [P|f(2)
since Re(Z f(t)) < |z f(t)| for every t € [a, b]. O

We recall that every continuous complex function 7 : [a, b] — C, where [a, b] is any interval,
is called curve in the complex plane.

The set of the values of a curve 7, i.e. the set v* = {7(t) |t € [a,b]} C C is the trajectory of
the curve and it is a compact and connected subset of C, since -y is continuous and [, b] is compact
and connected. The points y(a) and ~(b) are the endpoints, the initial and the final endpoint,
respectively, of the curve.

The variable t € [a, b] is the parameter and [a, b] is the parametric interval of the curve. When
the parameter ¢ increases in [a, b], the variable point (¢) moves on the trajectory v* in a definite
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direction (from the initial to the final endpoint) which is the so-called direction of the curve. To
be more precise, the sense of direction is realized as follows: when a < t; < t9 < b, then we say
that y(t1) is before y(t2) and that y(¢2) is after v(¢1) in the trajectory.
Finally,
s=(t), telad)

is the parametric equation of the curve .

If the endpoints of the curve  coincide, i.e. y(a) = ~y(b), then we say that the curve is closed.

Ify(t) € Aforallt € [a,b],ie. if v* C A, then we say that the curve is in A.

The term curve for the continuous function - is justified by the fact that the shape of its trajec-
tory v* is, usually, what in everyday language we call curve in the plane. Sometimes we use the
term curve for the trajectory v* even though this is not typically correct. The reason is that there
are cases of different curves -1, 2 with the same trajectory v1* = 2.

Example 2.3.2. If zg, 21 € C, then the parametric equation z = y(t) = =221 + mzo, t € la,b],

defines a curve y whose trajectory v* is the linear segment [z, z1]. Its initial and final endpoints
are zp and z1, respectively, and its direction is from zg to z1. The same linear segment [z, z1] is
the trajectory of another curve ~ with parametric equation z = y(t) = tz1 + (1 — t)z9, t € [0, 1].

Example 2.3.3. If > 0, then the parametric equation z = (t) = zp+7r(cost+isint),t € [0, 27],
defines a closed curve v whose trajectory v* is the circle C, (7). The direction of this curve is the
so-called positive direction of rotation around zy: the counterclockwise rotation.

If we consider the curve v with parametric equation z = ~(t) = 29 + r(cos(2t) + isin(2t)),
t € [0, 27], then we get a different curve. But the trajectories of the two curves coincide: the circle
C,(r). The direction of the two curves is the same: the positive direction of rotation around z.
But the first curve goes around zg only once, while the second curve goes around z( twice.

Let~y : [a,b] — C be a curve and let x = Re~y and y = Imy be the real and imaginary parts
of v, i.e. y(t) = x(t) + iy(t) = (z(t),y(t)) for all t € [a,b]. If v is differentiable at ¢y € [a, b]
or, equivalently, if x, y are differentiable at to, then 7/ (tg) = z'(to) + i/ (to) = (2'(t0), ¥ (to))
is the tangent vector of the trajectory ~v* at its point v(to). If+'(to) # 0, then the vector +/(to)
determines the tangent line of the trajectory +* at its point -y(¢p) and its direction is the same as
the direction of the curve. Strictly speaking, at its endpoints, y(a), y(b), the curve can only have
tangent halflines; not tangent lines. If to = a and +/(a) # 0, then the vector 7/(a) determines the
tangent halfline of the trajectory at the endpoint y(a) with direction coinciding with the direction
of the curve. If to = b and 7/(b) # 0, then the vector —v(b) determines the tangent halfline of
the trajectory at the endpoint y(b) with direction opposite to the direction of the curve. If at some
to € (a,b) the one-sided derivatives v_(to) # 0 and v/, (tg) # O exist but they are not equal, then
the tangent halflines of the trajectory at its point v(tp) may not be opposite and so there may be
no tangent line of the trajectory at this point: one of the halflines is determined by +/_ (to) and the
other by —+_ (o).

We know that, if the curve v : [a,b] — C is continuously differentiable or smooth, i.e. if

v : [a,b] — C is continuous in [a, b], then the length of the curve, denoted I(7), is equal to

= [Pl ()] dt. 25)
Example 2.3.4. The curve y with parametric equation z = (t) = 2=Lzo + =221, ¢ € [a,b], has
length 1(7) = [2 /()] di = [ 55220 dt = |52 [ dt = |21 — 2],

Example 2.3.5. If » > 0 the curve y with parametric equation z = y(t) = zo + r(cost + isint),
t € [0, 2], has length [(~y f |/ (t)| dt = fo% |r(—sint +icost)|dt = ngrdt =277,

The same formula (2.5) gives the length of the curve ~ if this is piecewise continuously differ-
entiable or piecewise smooth. This means that there is a subdivision a =t < t] < ... <tp_1 <
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tn, = b of the parametric interval [a, b] so that the restriction of 7 in every [t;_1, tx] is continuously
differentiable. (Strictly speaking, at the division points ¢; the derivative of v may not exist; the
two one-sided derivatives should exist and be finite at these points.)
Now lety; : [a,b] — C be a curve. We consider any o : [¢,d] — [a, b] which is one-to-one
in the interval [c, d] and onto [a, b], has continuous derivative in [c, d| and has ¢/(s) > 0 for every
€ [c,d]. Thus, o is strictly increasing in [¢,d] and o(c) = a, o(d) = b. Every such o is called
change of parameter. Then 75 = 71 0 0 : [¢,d] — C is continuous in [c,d| and hence it is a
new curve. We say that 7 is a reparametrization of ;: the parameter of y; is ¢ € [a, b] and the
parameter of v is s € [, d]. The curves 71,2 have the same trajectory, the same endpoints and
the same direction. Since ¢’ is continuous and > 0, the two curves are simultaneously (piecewise)
smooth and, in this case, their lengths are equal:

2) = [ ()l ds = [T (a(s))]]o"(s)| ds = [ |y (0(s))|o” (s) ds
= [P/ (@) dt = U(m).

We may define the following relation between curves: v ~ 7 if 7y2 is a reparametrization of
~1. It is not difficult to prove that this relation between curves is an equivalence relation, i.e. it
satisfies the following three properties:

Dy~

i)y~ = 72~mn.

(i) y1 ~ 2, Y2~ = M~

Indeed: (i) Let «y : [a,b] — C be any curve. We consider the change of parameter id : [a,b] —
[a, b], defined by id(t) = ¢, and then v = vy o id : [a,b] — C. Thus, v ~ ~. (ii) Let v; ~ 7o.
Then 2 = 71 0 o where o : [c, d] — [a, b] is a change of parameter. But then 0~ : [a, b] — [c, d]
is also a change of parameter and y; = 79 o o~ !. Therefore vo ~ ;. (iii) Let 41 ~ 72 and
Y2 ~ 3. Then v2 = 71 00 and 73 = y2 o 7, where o : [c,d] — [a,b] and 7 : [e, f] — [c,d]
are changes of parameter. But then x = o o7 : [e, f] — [a,b] is a change of parameter and
v3 =207 = (y100) 07T =1 0x. Therefore y; ~ 3.

It is of some value to note that if we have a curve « with parametric interval [a, b] and if
we are given an arbitrary interval [c, d], then there is a reparametrization of v with parametric
interval [c, d] instead of [a, b]. We can do this if we can find an appropriate change of parameter
o : [e,d] — [a,b]. There are many such o, but a simple one is t = o(s) = “£a + =<,
s € [c, d]. Therefore, if for some reason (and we shall presently see that there is such a reason) we
do not distinguish between curves which are reparametrizations of each other, then the parametric
interval of a curve is of no particular importance: we may consider a reparametrization of a given
curve changing the given parametric interval to any other which we might prefer.

For every curve v : [a,b] — C we consider the curve =~ : [a,b] — C given by (—v)(t) =
v(a+b—1t),t € [a,b]. Then = is called opposite of . The curves  and =+ have the same
trajectory but opposite directions. Also, the two curves are simultaneously (piecewise) smooth
and, in this case, their lengths are equal:

A @ ldt = [P a+b - Dl dt = — [ ()] ds = [ 17/ (s) ds = 1().
If the curves 71 : [a, b] - Cand 7 : [b,c] — C have v;(b) = v2(b), then we say that 1,72

(in this order) are successive and then we may define the curve v; + Y2 : [a,c] = C by

m(t), ifa<t<b
v(t), ifb<t<c

(m + Y2)(t) = {

The curve 1 + o is called sum of v, and ~s. If y; and v, are (piecewise) smooth, v, + s is also

piecewise smooth. The trajectory (73 + ~2)* is the union of the trajectories y;* and o *.
Of course, the sum of two curves can be generalized to the sum of more than two curves
provided that these are successive.
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Example 2.3.6. Every polygonal line can be considered as the trajectory of a piecewise regular
curve. This curve is the sum of successive curves each of which has as its trajectory a corresponding
linear segment of the polygonal line.

Through the operation of summation of successive curves, we may consider successive curves
as one curve and, conversely, we may consider one curve as a sum of successive curves.
The length of the sum of successive piecewise smooth curves equals the sum of their lengths:

Uy +72) =[S0 + ) @Oldt = [21(7 + ) (@)dt + [ (v + 72) (£)]dt
— [P (O)]dt+ [f o' (8)|dE = 1(m) + 1(72).

Now we shall extend the notion of integral of a complex function over an interval to the notion
of integral of a complex function over a curve. Let~ : [a, b] — C be a piecewise smooth curve and
let f : v* — C be continuous in the trajectory v* = {~(¢) |t € [a,b]}. Then fo~y : [a,b] — C
is continuous in [a, b]. Thus, (f o)y’ is piecewise continuous in [a, b] and hence integrable over
[a, b]. We define the curvilinear integral of f over y by

[, [y dz = [(f o)) = [ 1

We shall usually write
$, f(=)dz

when + is closed.
We remark that whenever a curve +y is mentioned with respect either to its length [(y) or to a
curvilinear integral of a function over v we shall always assume that y is piecewise smooth.

Example 2.3.7. Let ~y be the curve with parametric equation z = y(t) = (1 —t)zg+tz1,t € [0, 1].
The trajectory of +y is the linear segment [z, 1] having direction from z to z1. If f is continuous
in [20, z1], then the curvilinear integral [ f(2) dz is denoted f[zo o f(z)dz Le.

S F(2)d2 = [ f(2) dz = (21 = 20) [y F((1 = )20 + tz1) dt.
This is the curvilinear integral of f over the linear segment 2y, z1| from zy to z1.

Example 2.3.8. Let 7 > 0 and ~y be the curve with parametric equation z = y(t) = zo + r(cost +
isint), t € [0,2n]. The trajectory of ~y is the circle C, () with the positive direction of rotation
around 2. If f is continuous in the circle C., (), then the curvilinear integral ﬁf f(2) dzis denoted

gfczo(r) f(2)dz. Le.,
fczo(r) f(z)dz= ¢ f(z)dz = fo% f(z0 4+ r(cost + isint))r(—sint + icost) dt.

This is the curvilinear integral of f over the circle C.,(r) with the positive direction of rotation.
An important concrete instance of the previous example is the following.

Example 2.3.9. If n € Z, we know that fo% sin(nt) dt = 0. Also, fo% cos(nt) dt = 2m, if n = 0,
and f027r cos(nt) dt = 0, if n # 0. Therefore, if n € Z, we get

$o. (2 = 20)" dz = JZTrm(cost + isint)"r(—sint + i cost) dt
20
= i+ [2T(cost + isint)™(cost + isint) dt

— i 27 (cos((n+ 1)) + i sin((n + 1)t)) dt
~J2mi, ifn=-1
o, ifn# -1
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The following propositions are easy to prove.

Proposition 2.10. If v is a piecewise smooth curve, fi1, fa are continuous in v* and A1, s € C,
then fv()\lfl(z) + )\gfg(z)) dz =M\ fV fl(Z) dz + Ao f7 fQ(Z) dz

Proof. An application of proposition 2.6 and of the definition of the curvilinear integral. O

Proposition 2.11. If y is a piecewise smooth curve and f is continuous in ~y*, then | fv f(z)dz| <

sup,e- |f(2)[1(7).
Proof. If v : [a,b] — C, then

| [, ) dz| = | [ F ) (@) dt] < f7 1)1 (D] dt < sup.c [£(2)] [ 17 ()] dt
= Supze'y* ‘ (Z)‘l(’}/)
The first inequality uses proposition 2.9. O

Proposition 2.12. If v is a piecewise smooth curve, fy, ¢ are continuous in v* and f, — f uni-
formly in ¥, then [ fo(2)¢(2) dz — [ f(2)¢(2) dz

Proof. Because of uniform convergence, f is continuous in v*. Therefore, the existence of the
integrals f,y fn(2)p(2) dz and fv f(2)¢(z) dz is assured. Now, proposition 2.11 implies

[, Fu(2)0(2) dz — [, F(2)6(2) dz| = | [, (fal2) — £(2))6(2) d2]
< supere |fu(2) = F(2)] sup.cre [0(2)(A).

Since sup,c.+ |fn(2) = f(2)] = 0, we get that [ fu(2)d(2) dz — [ f(2)¢(2) dz. O

We may rewrite the result of proposition 2.12 in the form
limy, 4 oo f.y fn(z)¢(z) dz = f.y limy, 4 oo fn(z)¢(z) dz

of an interchange between the symbols lim,,_, o, and fv' This interchange under the assumption
of uniform convergence is the content of proposition 2.12.

Proposition 2.13. If v lS a pwcewzse smooth curve, fn, @ are continuous in v* and Z+ fn=s
uniformly in ~*, then f fa(2)d(2) dz = f s(2)¢(2) dz.

Proof. We consider the partial sums s,, = f1 + --- + f,, and we apply proposition 2.12 to them.
Then

S L fu(2)0(2) dz = [0 fu(2)6(2) dz = [, su(2)6(2) dz — [ 5(2)6(2) d.
Le. the series (of numbers) Z f fn(2)p(2) dz converges to (the number) f 2)p(z)dz. O
As in the case of proposition 2.12, we may rewrite the result of proposition 2.13 in the form

5L In(@)8(2) d = [ SES fa(2)(z) dz,

—+00
n=1

since Y f,,(2) = s(z) for every z € y*. Again, this interchange between the symbols
and f7 under the assumption of uniform convergence is the content of proposition 2.13.

Proposition 2.14. [f each of the piecewise smooth curves 71, Y2 is a reparametrization of the other
and f is continuous in v; = 5, then fw f(z)dz = f,h f(z)dz
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Proof. Ify; : [a,b] — Cand~, : [¢,d] — C, then there is a change of parameter o : [c, d] — [a, b]
so that y2(s) = v1(o(s)) for all s € [¢,d]. Then

o, £(2)dz = [ f(ra(s)re!(s) ds = [ F(3(0 () (o(s))o’ (s) ds
= [ Fn@)n'(t)dt = [ f(z)dz
after a change of parameter in the third integral. O

At this point we observe that replacing a curve ~; with a reparametrization - of it does not
alter certain objects related to the curve: its trajectory, its endpoints, its direction, its length, the
number of times it covers its trajectory and, more important, the curvilinear integrals of continuous
functions defined over its trajectory. Since in this course we shall use curves mostly to evaluate
curvilinear integrals, we conclude that there is no reason to distinguish between a curve and its
reparametrizations. Therefore, when we have a geometric object C' which we would call, in ev-
eryday language, curve in the plane, e.g. a linear segment or a circle or a polygonal line, and a
continuous function f : C' = C, we can give a meaning to

fC f(z)dz

by specifying a piecewise continuously differentiable v : [a,b] — C, i.e. a piecewise smooth
curve, with trajectory v* coinciding with C', with endpoints coinciding with the endpoints of C'
and a specific assigned direction. The use of different curves, which are reparametrizations of the
particular v we have chosen, will not alter the value of the integral. In fact we have already seen
two examples of this situation. One is the curvilinear integral f[zmzﬂ f(2) dz for which we use any
parametric equation with trajectory equal to the linear segment [z, z1] and direction from zj to
z1. The simplest such parametric equation is z = v(¢) = (1 — t)zo + tz1, t € [0, 1]. The second
example is the curvilinear integral 55020 (r) f(2) dz for which we use any parametric equation with

trajectory equal to the circle C., (r) and which covers this circle once and in the positive direction
of rotation around zy. The simplest such parametric equation is z = (t) = zg + r(cost +isint),
t € [0, 2m7].

Proposition 2.15. Let 1, v2 be two successive piecewise smooth curves and let f be continuous

iny; U~s. Then f’Yl‘;"Y2 flzydz= [ f(z)dz+ [, f(2)d

Proof. Let~; : [a,b] — C and 2 : [b,c] = C with v;(b) = ~2(b). Then

J

L TE) s = [ (n +0)(0) o1+ ) (1)

= [P Fon () (O dt + [ Fa)e! (8 dt = [ f(z)dz+ [, F(z) dz.

The second equality uses proposition 2.7. O
Proposition 2.16. If v is a piecewise smooth curve and f is continuous in v*, then L,Y f(z)dz =
~ [, £(2)dz

Proof. If vy : [a,b] — C, then

Sy 1@ dz = [ F(=00) (=) (0 de = = [} f(r(a+b— 1)y (a+b— 1) dt
= [ F(r()Y (s) ds = = [ F(y(9))' (s) ds = = [, f(2) dz.
after a simple change of parameter in the third integral. O

Example 2.3.10. Let v be the curve describing the linear segment [zo, 21| from 2y to z;. Then
—~ describes the same segment from z; to zg. Therefore, f[zo a (2)dz = f7 f(2)dz and

f[%zo] f(z)dz = fﬁvf(z) dz. Hence f[%zo] f(z)dz = _f[zwﬂ f(2)dz.
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Before we leave this section, we should mention three variants of the notion of the curvilinear
integral. Let v : [a, b] — C be a piecewise smooth curve and let f : 4* — C be continuous in the
trajectory v* = {7(t) |t € [a,b]}. If y(t) = (x(t),y(t)) = z(t) + iy(t) for every t € [a,b], we

define
1@ de = [ 16O d [, fE)dy = [ 16y @ d,
o F(2) 1dz] = [} F(v(0) ' (8)] dt.

Trivially, we have f7 f(z)dz = f7 f(z)dx +1i f7 f(z)dy.

We leave to the reader the easy task to show that each of the three new integrals satisfies all
properties of the original fw f(2) dz, expressed in propositions 2.10 - 2.16. The only difference
is with the integral f7 f(2) |dz| which, regarding proposition 2.16, does not change its sign when
we replace v with —~. Moreover, the basic inequality in proposition 2.11 takes the more precise
form:

[, () d2] < [ 1£(2)] 2] < sup.coe 1£(2)IU().
Indeed, observing the string of equalities/inequalities in the proof of proposition 2.11, we recognize
f,y | f(2)||dz| as the third integral from the left. It is very common with beginning students to make
the mistake: | [ f(2)dz| < [ [f(2)|dz.

We should also say that f7 |dz| = I(7y). In calculus texts one usually sees the symbol ds
instead of |dz| for the infinitesimal length |y/(¢)| dt over the curve.

Exercises.

2.3.1. Calculate f7 |z| dz, where ~y is each of the following curves with initial endpoint —i and
final endpoint 7. (i) y(t) = it for t € [~1,1]. (ii) 7(t) = cost + isint fort € [~F, T]. (iii)
y(t) = —cost +isint fort € [-F, T].

n+1_ n+1
23.2.(4) If n € Z, n > 0, prove that f,y 2hdz = 2120 where 7, z; are the initial and the

n+1
final endpoint of the piecewise smooth ~.
(ii) Are there polynomials py, () so that py,(2) — 1 uniformly in the circle Co(1)? Think in terms
of curvilinear integrals over the circle Cp(1).

2.3.3. Let f be continuous in the ring {z |0 < |z| < rp} orin the ring {z|ry < |z| < +o0}.
We define M (r) = max.cc, () |f(2)| and assume that rM(r) — 0 when r — 0 or 7 — +o0,
respectively. If 7, (t) = r(cost + isint) for t; < t < ta, then prove that f% f(2)dz — 0 when
r — 0 or r — +o00, respectively.

2.34.Let f: D,,(R) — C be continuous. Prove that lim,_,o fCZO( ) gy = o f(20).

r) z—20

2.3.5. Let f : Q — C be continuous in the open set 2 and let [ay,, b,], [a,b] C Q for every n. If
a, — a and b, — b, prove that f[an by £ (2) dz = f[a y f(2) dz.

2.3.6. Let f : 2 — C be continuous in the open set ) and v be a piecewise smooth curve in 2.
Prove that for every e > 0 there is a polygonal curve o in Q so that | [ f(z) dz — f7 f(z)dz| <e.

2.3.7. Prove that | f; f(t)dt| = ff | f(¢)] dt if and only if there is some halfline [ with vertex 0 so
that f(¢) € [ for every continuity point ¢ of f.

2.3.8. Let 7y : [a,b] — C be a piecewise smooth curve and f : v* — C be continuous in v*. Con-
sider any subdivision A = {tg, ..., t,} of [a, b] and any choice = = {1, ..., &, } of intermediate
points & € [tx—_1, tx]. Then we say that A* = {2y, ..., 2, }, where z = (1), is a subdivision of
the trajectory v* and that =* = {ny,...,n,}, where n = v(&), is a choice of intermediate points
on the trajectory: 7, is between zj_1 and zj, on the trajectory. We say that » ;' f(2zx) (k. —nk—1)
is the corresponding Riemann sum. If w(A*) = max; <<y |2x — 251/ is the width of the subdi-

vision A*, then prove that limy, a+)—0 D_p—y f(2) (0 — Mk—1) = f7 f(z)dz.
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Chapter 3

Holomorphic functions.

3.1 Differentiability and holomorphy.

Let f be a complex function defined in A C C and 2, be an interior point of A. We say that
f is differentiable at z( if lim,_, . [(&)=f(z0)

o exists and is a complex number. We call this limit
derivative of f at zo and denote it

f/(z(]) - %<ZO) =lim,_,,, %ﬁ(}(m)'

Example 3.1.1. The constant function c is differentiable at every point of C and its derivative is
the constant function 0. Indeed, for every zg we have %(zo) =lim,_,, % = lim,,,0=0.
Example 3.1.2. The function z is differentiable at every point of C and its derivative is the constant
function 1: for every zy we have %(2‘0) = lim,_,, % =lim,,,, 1 =1

Example 3.1.3. Let f(z) = Z. We shall prove that the lim,_,, %ﬁém) = lim,_,,, % does
not exist, i.e. f is not differentiable at any z.

Let z9 = x¢ + iyo. The limit of %ﬁé'zo) when z — zg on the horizontal line containing z( is

(z+iyo)— (zo+iyo)
(z+iyo)—(zo+1iyo)

r—xQ

limg_,z, = limg 4, I:TO =limg_,;,1=1

and the limit of %ﬁo(zo) when z — 2z on the vertical line containing zg is

(zo+1y)—(zo+1iyo)
(zo+iy)—(zo+iyo)

: — 1 —WYtiyo _ i ~1) = —
limy = limy .y 5550 = im0 (=1) = —1.

Since these two limits are different, the lim,_, . i:g does not exist.

The proofs of the following four propositions are identical with the proofs of the well-known
analogous propositions for real functions of a real variable and we omit them.

Proposition 3.1. I f : A — C is differentiable at the interior point zo of A C C, then f is
continuous at z.

Proposition 3.2. If f,g : A — C are differentiable at the interior point zg of A C C, then
f+a,f—g,fg: A— Care also differentiable at zy. Furthermore, if g(z) # 0 for all z € A,
then g : A — C is differentiable at 2. Finally, (f + g)'(20) = f'(20) + ¢'(20), (f — 9)'(20) =

F'(20) = ¢'(20), (£9)'(20) = f'(20)9(20) + f(20)g'(20) and (L)' (z0) = LEolE) =L 0)a’(z0).

glzo0

Proposition 3.3. If f : A — B is differentiable at the interior point zg of A C Candg: B — C
is differentiable at the interior point wo = f(zg) of B C C, then go f : A — C is differentiable
at zy. Also, (g o f)'(z0) = ¢'(wo) f'(20).
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Proposition 3.4. Let f : A — B be one-to-one from A C Conto B C Candlet f~' : B — Abe
the inverse function. Let also zy be an interior point of A and wy = f(zo) be an interior point of B.
If f is differentiable at zy and f'(zy) # 0 and f~1 is continuous at wo, then f~1 is differentiable

at wo and (f~1) (wo) = m

Example 3.1.4. Starting with the derivatives of the constant function c and the function z and using
the usual algebraic rules for derivatives, we get that every polynomial function is differentiable at
every point of C and that its derivative is another polynomial function: if p(z) = a9 + a1z +
asz? + -+ ap2"™, then p'(z) = ag + 2a9z + - - - + na,z" L

Example 3.1.5. Every rational function is differentiable at every point of its domain of definition
and its derivative is another rational function.

Example 3.1.6. If h(z) = (2% — 32 + 2)1 — 3(2%2 — 3z + 2)?, then by the chain rule we get
h'(z) = 15(2% — 32 +2)(22 — 3) — 6(2% — 32+ 2)(22 — 3).

Let f be a complex function defined in A C C and z be an interior point of A. We say that f
is holomorphic (or analytic) at z if there is » > 0 so that D, (r) C A and f is differentiable at
every point of D, (r).

The notion of holomorphy is stronger than the notion of differentiability: for a function to be
holomorphic at a point it is necessary for it to be differentiable at this point and at all nearby points.

Example 3.1.7. Every polynomial function is holomorphic at every point of C.

Example 3.1.8. Every rational function is holomorphic at every point of its domain of definition.

Example 3.1.9. Let f(z) = |z|2. We have lim,_,o % = lim, ,0Z = 0 and f is differen-
tiable at 0 with f/(0) = 0.

2 2
We take an arbitrary zp # 0 and we shall prove that the lim,_, ., %ﬁéz‘)) = lim,_,,, %

does not exist and therefore f is not differentiable at z.
Let z9 = x¢ + iyo. The limit of @210 when 2 — zo on the horizontal line containing z( is

z2—20
: lz+iyol®—|zo+iyol® _ 1 z2—x9® _ 1: _
limg 4, @tivo)—(@otive) — limy g, =00 = limg_z, (x + xo) = 220

and the limit of £&=10) when 2 — zo on the vertical line containing zg is

zZ—20
. lzo+iy2—|zo+iyol® _ v—yo® 1 o
My sy oo g iy —(zoFige) — WMy—w0 y—iyo = —¢liMy—yo (Y +%0) = —2iy0.
. . . . . 2— 2 .
Since zg # 0, these two limits are different and the lim,_, ,, % does not exist.

We conclude that f is differentiable only at O and that it is nowhere holomorphic.
The set of points at which f is holomorphic is called domain of holomorphy of f.

Proposition 3.5. [f B C C is the set of the points at which the complex function f is differentiable,
then the domain of holomorphy of f is the interior of B. In particular, the domain of holomorphy
of f is an open set.

Proof. Let U be the domain of holomorphy of f. If z € U, there is r > 0 so that f is differentiable
at every point of D (r) and hence D, (r) C B. Thus z is an interior point of B, i.e. z € B°.

Conversely, let z € B°. Then there is » > 0 so that D, (r) C B, and so f is differentiable at every
point of D, (r). Therefore f is holomorphic at z, i.e. z € U. O

Example 3.1.10. The domain of holomorphy of any polynomial function is C.

Example 3.1.11. The domain of holomorphy of any rational function is its domain of definition.
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Example 3.1.12. The domain of holomorphy of both functions f(z) = Z and f(z) = |z|? is the
empty set.

Let  C C be an open set. We say that the complex function f is holomorphic (or analytic)
in € if it is holomorphic at every point of €2 or, equivalently, if €} is a subset of the domain of
holomorphy of f.

Clearly, the largest open set €2 in which f is holomorphic is its domain of holomorphy. It is
also clear that if f is differentiable at every point of an open set €, then f is holomorphic in ).

Let the complex function f be defined in the neighborhood Do, (r) of co. We consider the
complex function g defined in Dy (r) by

g(w) = f(1/w), for every w with |w| < 7.

We say that f is differentiable or holomorphic at oo if g is differentiable or holomorphic, respec-
tively, at 0.

We observe that g(0) = f(co) and that the inverse functions w = 1 and z = 1 map each of
the neighborhoods Do (1) = {z||z| > 1} U {oo} and Dy(r) = {w||w| < r} onto the other.
Now we shall see that the condition of differentiability of f at oo, i.e. the differentiability of g at
0, can be translated into an equivalent condition in terms of f itself.

Proposition 3.6. Let f be a complex function defined in Do (r). Then f is differentiable at oo if
and only if lim,_,o 2(f(z) — f(o0)) € C.

Proof. Letg(w) = f (%) be the function considered in the above definition. Through the change of

variable w = 1, we have % = 2(f(z) — f(c0)). Thus, the existence of lim,,_,o %

is equivalent to the existence of lim,_,o, z(f(2) — f(00)). In fact the two limits are equal. O
It is easy to see that differentiability of f at co implies continuity of f at co.

Example 3.1.13. We shall check the differentiability (and hence holomorphy) of polynomial and
rational functions. We recall the notation and the results of examples 1.3.1 and 1.3.2.

A polynomial function p is continuous and complex-valued at co only if it is a constant p(z) = ag
and provided we define p(oo0) = ag. In this case it is also differentiable at co, since

lim, 00 2(p(z) — p(00)) = lim,_,, 0 = 0.

. . _a z”+~-~+a1z+a0 . . _ .
A rational function r(z) = i T hiztho is continuous and c.omplex valued at co only if n < m,
where n and m are the degrees of its numerator and denominator. If n = m, then we define
r(00) = ¥ and then, after some algebraic manipulations, we get

n

. . _1bn—anb,—
lim, 00 2(7(2) — 7(00)) = lim, 0 z(—%ﬁiiii‘ﬁﬁgg - %) = Zn-l nb2an e

n

If n < m, then we define r(c0) = 0 and then we get

lim, 00 2(r(2) — r(00)) = lim,00 2

dn_ - ifn+1=m
by 2™ +b1z+bo T

anz"+-tajztag
0, ifn+1<m
Exercises.

3.1.1. Check the differentiability of the functions Re z, Im z and |z|.

3.1.2. Let Q beopenand f : Q@ — C. We take Q* = {z|z € Q} and f* : Q" — C given by
f*(z) = f(Z) for every z € Q*. Prove that Q* is open and that, if f is differentiable at 2y € €,
then f* is differentiable at Zg € Q*.
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3.1.3. Consider opensets U,V and f : V — U, g: U — C, h : V — C so that h is one-to-one
and h = g o f. If h is differentiable at wy € V, g is differentiable at zo = f(wo), ¢'(z0) # 0 and

f is continuous at wy, prove that f is differentiable at wy and f'(wg) = };/’((Zc?))'
3.1.4. (i) If p is a polynomial of degree n with roots 21, . . ., z,, prove ’;((j)) = Z_lz + -+ Z_lzn
for every z # z1,...,2,. Then prove that, if the roots of p are contained in a closed halfplane,

then the roots of p’ are contained in the same halfplane. Conclude that the roots of p’ are contained
in the smallest convex polygon which contains the roots of p.

(ii) For every a and every n € N, n > 2 prove that the equation 1 4 z 4+ a2™ = 0 has at least one
root z € Dy(2).

3.1.5. (i) Let aq, .. ., a, be distinct and ¢(z) = (z — a1)--- (2 — ay). If the polynomial p has

p(z) _ yon p(ak)
q§gree < n, prove oy = .Zk:1 m for every z # aq, . .. ) G- . .
(i1) Let aq, . . ., a, be distinct. Prove that for every cy, ..., c, there is a unique polynomial p of

degree < m so that p(ag) = ¢; forevery k =1,....n.

Iy _ 7
3.1.6. Let f have continuous derivative in a neighborhood of zy. Prove that % — f'(20)
if 2/, — 20, 2]l — zp and 2], # 2! for every n.

3.2 The Cauchy-Riemann equations.

Now we shall relate the differentiability of f, as a complex function of z = x + 4y, at some
interior point zg = x + iyg of its domain A C C with the partial derivatives of © = Re f and
v = Im f, as functions of (z,y) at the same point (¢, yo)-

Theorem 3.1. Let f be a complex function defined in A C C, zy = (x0,yo) be an interior point
of A and let u,v be the real and imaginary part of f. If f is differentiable at zy, then u,v have
partial derivatives with respect to x and y at (xo, yo) and

Ge(w0,90) = Fo(w0,90),  §h(w0,90) = — G2 (20, 90). (3.1

Proof. We assume

=10 = 1)y = p+iv,  pveR (3.2)

lim, 2, ===

Since the limit of %ﬁém) exists when z tends to zg, the limits of the same expression when z

tends to zp on the horizontal line containing zy as well as on the vertical line containing zg also
exist and have the same value:

1im$_>$0 %ﬁ:émo’yo) = u+ iy7 limy—WO f(z0,y)—=f(x0,y0)

i =+ iv. (3.3)

From the first limit in (3.3) we get lim,_, 4, u(@yo)-+iv(@.yo)—ulzo.yo) —iv(20.y0)

= u+ v, and hence

T—x0
Se(x0, yo) = limy .z, —“(m’yilizg””“’y“) =, (3.4)
2 (10 o) Ty U)o 0) _

From the second limit in (3.3) we find lim,_,,, "(‘To’y)“”(gjo’yi)y__llfgo’yo)_i”(m’yo) = p + iv, and

hence
@(a; ) = i v(zo,y)—v(z0,y0) _
dy 0,Y0) = My Y—y0 =M, (3 5)
%(xo, yO) = hmac—mo u(ro,y;:Zéro,yo) = -l

Comparing (3.4) and (3.5) we get (3.1). O
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The equalities (3.1) are called (system of) Cauchy-Riemann equations at the point (xg, yo).
We observe that, if f is differentiable at zg, then (3.2), (3.4) and (3.5) imply

F(20) = (20, yo) + 1 5% (w0, yo) = gy (w0,90) — Zgy (70, %0)-
The next result is the converse of theorem 3.1 but with extra assumptions.

Theorem 3.2. Let f be a complex function defined in A C C, zp = (x0, yo) be an interior point of
A and let u, v be the real and imaginary part of f. If u, v have partial derivatives with respect to x
and y at every point of some neighborhood of (x,yo) and if these partial derivatives are contin-
uous at (o, yo) and if they satisfy the system of C-R equations at (xq,yo), then f is differentiable
at 2.

Proof. Using the C-R equations, we define the real numbers i and v by:

M= gz (anyO) gy (anyO) v = —%@0790) = %($an0)' (36)

Now take an arbitrary € > 0. Since %, % are continuous at (g, yo), there is » > 0 so that

‘%(m,y) - u| <9 |g—Z(:U,y) + u‘ < for every (z,9) € Dz .40)(r)- (3.7)
We take any (7, y) € Dy, ) () and we write
u(w,y) — u(wo, yo) = u(x,y) — u(wo,y) + u(zo, y) — u(zo, yo)- (3.8)
By the mean value theorem, there is 2’ between z and ¢ so that
u(z,y) — u(zo,y) = §a(z',y)(x — o) (3.9)
and v between y and yg so that
u(@o, y) — u(zo,y0) = §4(x0,4')(y — o)- (3.10)
The 2,4’ depend on z,y, but the points (2,y), (z0,%’) belong to Dy, ) (r). Therefore, (3.7)
implies

du(r',y) —pl <&,

Combining (3.8), (3.9) and (3.10), we find

|94 (w0, y') +v| < §. (3.11)

u(z,y) — u(wo, Yo) — ( (x —z0) —v(y — yo))
= (u(z,y) — u(zo,y) — plz — x0)) + (u(xo,y) — u(wo, yo) + v(y — o))
= (G2 y) — 1) (@ — 20) + (52 (x0,4) +v) (y — v0)
and, because of (3.11),
}u(%y) — u(xo,Y0) — (M(»T —x0) —v(y — yo))‘
< |8, y) — pllx — ol + |32 (20, y') + v|ly — wol (3.12)

< glr —mwo| + {ly —yo| < 5\/ (x —20)? 4+ (y — yo)%

In the same manner, for the function v we get

lv(z,y) —v(zo,30) — (V(@ — z0) + 1y — w0))| < 5/ (x —20)2 + (y —w0)2.  (3.13)

The inequalities (3.12) and (3.13) hold at every (z,y) € Dz 40) (7).
We observe that the expressions inside the absolute values of the left sides of (3.12) and (3.13) are,
respectively, the real and the imaginary part of the number

f(2) = f(20) = (n+iv)(z — 20) = f(z,y) — f(@0,90) — (1 + ) (& — 20) + iy — y0))-
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Therefore, (3.12) and (3.13) imply

1f(2) = f(20) = (m+iv)(z — 20)] < ey/(x — 20)% + (y — 0)? = €|z — 20]

for every z € D, (r) and hence |M (n+iv)| < eforevery z € D, (r), z # 2. Thus,

zZ—20

lim,_,, Gt (G w+iv, and f is differentiable at zo with f'(zp) = p + iv. d

Z—20

Example 3.2.1. The real and the imaginary parts of the function f(z) = 22 are u(z,y) = 2% — ?

and v(z,y) = 2zy. We find 2 ez, y) = 2z, g—Z(a:,y) = -2y, %(m,y) = 2y and g—Z(x,y) =2
and we see that the partial derivatives are continuous in the whole plane and they satisfy the C-R
equations at every point Theorem 3.2 implies that f(z) = z? is differentiable at every point and
f'(z)= g;(:v y) + zax(:n y) =2z +1i2y = 2z.

Example 3.2.2. We reconsider the function f(z) = Z of example 3 1.3. Its real and imaginary
parts are u(z,y) = x and v(z,y) = —y. The partial derivatives 2 F(zy) =1, gZ( y) =0,

g; (z,y) = 0 and g—Z(:U, y) = —1 do not satisfy the C-R equations at any point (z,y). Theorem
3.1 implies that f is not differentiable at any point.

Example 3.2.3. We reconsider the function f(z) = |z|? of example 3.1.9. Its real and imaginary
parts are u(z,y) = v2+y? and v(z, y) = 0. The partial derivatives are 8“( y) = 2z, gg(x, y) =

2y, 9 ge(z,y) = 0 and g—Z(a:, y) = 0 and they satisfy the C-R equations only at the point (0, 0).
Theorem 3.1 implies that f is not differentiable at any point besides, perhaps, the point (0, 0).
Now, since the partial derivatives are continuous and satisfy the C R equations at (0, 0), theorem
3.2 implies that f is differentiable at 0 and f’(0) = %(0, 0) + Zax 2(0,0) =0+1i0=0.

Example 3.2.4. We shall see that the assumption of continuity of the partial derivatives of u, v at
(0, Yyo) in theorem 3.2 is crucial. We consider the function

) = fony) = | Ve T@0)# 0.0

Then its real and imaginary parts are

% if («, 0,0
u(z,y) = VI o) 7 (0.0 v(z,y) = 0.
0, if (z,y) = (0,0)

It is clear that 2% Se(z,y) = 0 and 8” ,(z,y) = 0 and the partial derivatives of v are continuous at
every (z,y). Moreover

3 . 3

if (z,y) # (0,0) o ———=, if(z,y) #(0,0)

Gu(x,y) = Q VP
0, if (z,y) = (0,0) ! 0, if (z,) = (0,0)

Y

Ba(a,9) = | VO

The partial derivatives of u are continuous at every (x,y) # (0, 0) but they are not continuous at

(0,0). For instance, the limit of ﬁ when (z,y) tends to (0,0) on the line with equation

y = x does not exist: lim,_, 10 ——2—— = +1/1/3.
(CC2+.Z’2)3
We will see now that f is not differentiable at 0, even though u, v do satisfy the C-R equations at

0. In fact the limit of £ ) (0) @/ VT hen 2 tends to 0 on the line with equationy = x

Ty
2?/VaTFa® _
T+iz (1+i )f

is lim,_, & limy,_,g = o] and it does not exist.

The next proposition is a corollary of theorem 3.2. It is the form of theorem 3.2 in which this
is usually applied.
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Proposition 3.7. Let f be a complex function defined in the open set Q2 C C and let u,v be the
real and the imaginary part of f. If u, v have partial derivatives which are continuous and which
satisfy the C-R equations at every point of 2, then f is holomorphic in ().

Proof. We take an arbitrary z € () and a neighborhood of z which is contained in 2. Theorem
3.2 implies that f is differentiable at z. Thus f is differentiable at every point of 2 and, since {2 is
open, f is holomorphic in €. O

An open and connected set €2 is called region.

Theorem 3.3. Let f be holomorphic in the region Q C C. If f'(z) = 0 for every z € Q, then [ is
constant in §Q.

First proof. Using f' = %Z + igx = g; zgz we fin

any linear segment [z1, zo| in §2 and its parametric equation (¢
the mean value theorem, there is ty € (0, 1) so that

u(z2) = u(z1) = (woy)(1) — (woy)(0) = 24 (ty)
84 (y(to)) (w2 — 1) + Z4(7(t0)) (2 — 1) = 0

where z; = x1 +1y; and zo = x5+ ty2. Thus, the values of u at the endpoints of any line segment
in  are equal. Now we take arbitrary 2/, 2” € ). Then there is a polygonal line inside 2 which
connects the two points 2’ and z”. The values of u at the endpoints of every line segment of the
polygonal line are equal and hence u(z’) = u(2"). Therefore w is constant in 2. Clearly, the same
is true for the function v and hence for f = u + iv.

d% g :gZ—a—Z—OmQ We take
)= (1 —t)z1 +tz,t €[0,1]. B

Second proof. We take arbitrary z, w € 2. Since €2 is a region, there is a piecewise smooth curve
v : [a,b] — Q such that y(a) = z, y(b) = w. In fact we may choose - to have a polygonal line in
Q as its trajectory. Then we have

fw) = £(2) = (F on)(b) = (Fom)(a) = [[(f o) (t)dt = [, F'(+()' (1) dt = 0
because f/(v(t)) = 0 for every t € [a,b]. We conclude that f(w) = f(z) for every w, z € Q and

hence f is constant in ). O

Let f be a complex function and let u, v be the real and imaginary part of f. If u, v have partial
derivatives with respect to z, y at the point zp = (xg, yo), is is trivial to prove that at the point z(
we have

0 of _ 0 -0
E=gtif, =S tiG (3.14)
We define the following differential operators:
o _1(0 0 o _1(0 - 0
5 =33 —i5y) 5 = 3(5: tigy) (3.15)

Applying the differential operators % and % to f and using (3.14), we have at the point zg:
0, 170 0 o) g
=G+ ) +5(E -5,
of _ 1(9 0 0
E=3(5 -5 +5(E+5)

From the second of equations (3.16) we see that the system of C-R equations at the point 2 is
equivalent to the single equation

(3.16)

of _
2=
at zg. Moreover, if the system of C-R equations is satisfied, then the first equation (3.16) implies
0 0
Bﬁjzc - 87; + Zaw f/

at zp. We summarize.
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Proposition 3.8. If the complex function f is differentiable at z, then —(zo) = f(z0) and
g£ (z0) = 0. Conversely, if 5 9 and af exist in a neighborhood of the point zy and they are
continuous at zy and if 82(20) = 0, then f is differentiable at z.

Proof. Trivial. The converse is a restatement of theorem 3.2. Indeed, (3.16) implies that the

existence or the continuity of gf; , 8f at a point is equivalent to the existence or the continuity,
respectively, of g’;, g;‘, gz, g; at the point. O

Sometimes a complex function f is given to us through an expression f(z,y) as a function of
two real variables and we are interested in finding an expression f(z) of the function in terms of
the single complex variable z. We then write x = Z“ LY =

fz,y) = (5575, Z;f)- (3.17)

In general, even after performing various algebraic simplifications we end up with an expression
in terms of both variables z and Z. In order to end up with the occurence of z only, it is reasonable
to impose the condition that the derivative of f(z,y) with respect to Z vanishes. From (3.17) and
a formal chain rule we get

of _ 1c0f | ;0f

0z ( +1 )

This is exactly the second differential operator (3.15) applied to f and we saw that the condition
% = 0 is equivalent to the system of C-R equations. We conclude that the function f(x,y) is a
function of the single variable z if and only if its real and imaginary parts satisfy the C-R equations.

Exercises.
3.2.1. Solve exercise 3.1.1 under the light of C-R equations.

3.2.2. (i) Prove that F'(x, y) = \/|zy| satisfies the C-R equations at 0 but that it is not differentiable
at 0.
(ii) Prove that the function with G(x,y) = Lyg if (z,y) # (0,0) and with G(0,0) = 0 satisfies

the C-R equations at 0, that G 2 ¢O) has a limit when z — 0 on every line which contains 0, but

that (G is not differentiable at 0.

3.2.3. Let f = u+ iv be a complex function and g;f, ng gg, gz exist in a neighborhood of zg and

be continuous at zg.

(1) If lim,_,,, Re %ﬁézo) exists and is a real number, prove that f is differentiable at zg.

’M
zZ—20

(i) If lim,_, ., ‘ exists and is a real number, prove that either f is differentiable at zg or

f is differentiable at z.

3.2.4. Let f = u + v be holomorphic in the region 2 C C.

(1) If either u or v is constant in €2, prove that f is constant in €.

(ii) More generally, if for some line [ it is true that f(z) € [ for every z € €O, prove that f is
constant in €.

(iii) Consider (ii) using a circle C' instead of a line [.

3.2.5. This exercise juxtaposes the notion of differentiability of a function of two real variables,
which we learn in multivariable calculus, and the notion of differentiability of a function of one
complex variable, which we learn in complex analysis: to distinguish between them we call the
first R-differentiability and the second C-differentiability.

We recall from multivariable calculus that a real function v defined in A C R? is R-differentiable
at the interior point (xg, yo) of A if there are a, b € R so that

u(@,y)—u(@o,y0) —(a(z—ro) +b(y—%0)) _

(z—20)?+(y—y0)?

z,y)—(z0,y0)
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In this case we have that %(l’o, Yo) = a and %Z(xo, yo) = b.

We also recall that a vector function f = (u,v) defined in A C R? is R-differentiable at the
interior point (xg, yo) of A if its real components u and v are both R-differentiable at (xo, yo), i.e.
if there are a, b, ¢, d € R so that

; u(z,y)—u(xo,y0) —(a(x—x0)+b(y—yo)) _

11m($7y)—>($07y0) . (Oxy_OxO)Q_'_(y_;O)Q gt _07

v(@y)—v(@o.yo)—(c(z—zo) +d(y—yo)) _ )
V(@—=20)2+(y—y0)?

In this case we have that g—g(azo, Yo) = a, g—Z(xo, yo) = b, g—;’;(xo, Yo) = G, g—Z(xg, yo) = d and that

M 1) (20,50)

the R-derivative of f is the 2 x 2 matrix [Z Z]

Prove that f = (u,v) = u+ v is C-differentiable at zo = (x¢, yo), i.e. that the lim,_, %ﬁém)

exists and is a complex number, if and only if f is R-differentiable at zo = (x0,yp) and its R-

T . . . a
derivative is an antisymmetric matrix: [ b

—-b . . .
a ] . In this case the C-derivative and the R-derivative

of f are related by f/(z9) = a + ib.

3.2.6. Consider the functions 2™, z", | 2|2 and, using the differential operator %, examine whether
they are functions of z only or, equivalently, whether they are holomorphic.

3.2.7. Let f be a complex function. If % and % exist in a neighborhood of the point zy and are

continuous at zg, prove that lim,_, ﬁ Jo i (2)dz = %(zo).
=0

3.3 Conformality.

Let the complex function f be continuous in A C C and 7 : [a,b] — A be a curve. Thus the
trajectory of y is contained in the domain of definition of f. We define the function

f(y)=fov:lab] =C,

which is continuous in [a, b]. Then f(+y) is a curve and we call it image of -y through f.

Now we also consider an interior point z of A and we assume that f is differentiable at z and
f(z) = w, f'(2) # 0. We also take any curve v : [a,b] — A with y(a) = z. Then 7 has z
as its initial point and its trajectory is contained in A. We also assume that -y is differentiable at
a and that 4/(a) # 0, i.e. that v has a non-zero tangent vector at the point z. The image curve
f(v) : [a,b] — Chas f(v)(a) = (fov)(a) = f(v(a)) = f(z) = w as its initial point and its
tangent vector at w is f(y) (a) = (f o)/ (a) = f'(v(a))vy'(a) = f'(2)7'(a) # 0. From this
equality we have two conclusions. The first is that

() (@) =1 ()|1Y (a)].

Thus, the length of the tangent vector of f(+y) at its initial point w equals the length of the tangent
vector of +y at its initial point z multiplied with the factor | f'(z)| > 0. We express this as:

[ multiplies the lengths of tangent vectors at z with the factor |f'(z)| > 0 or, in other words, f
expands the tangent vectors at z by the factor | f'(z)| > 0.

The second conclusion is that

arg f(7)(a) = arg f'(z) + arg~/(a). (3.18)

Thus, we find the angle of the tangent vector of f(+) at its initial point w by adding the angle of
1 (2) to the angle of the tangent vector of +y at its initial point z. We express this as:
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f increases the angles of the tangent vectors at z by the angle of f'(z) or, in other words, f rotates
the tangent vectors at z by the angle of f'(z).

We observe that the expansion and the rotation of the tangent vectors at z is uniform over all
these vectors: independently of their directions and their lengths, all these tangent vectors are
expanded by the same factor | f'(2)| and they are rotated by the same angle arg f’(z). Since, any
two of these tangent vectors are rotated by the same angle, we conclude that their relative angles
remain unchanged! Indeed, let us consider two of the above curves, ; and . Then the angle
between their tangent vectors at z is arg 5 (a) —arg v} (a) and the angle between the tangent vectors

of f(v1) and f(72) at w is arg f(y2)'(a) — arg f(71)'(a). From (3.18) for 71 and -y, we get
arg f(72)'(a) — arg f(m)'(a) = argy5(a) — arg 1 (a).

Therefore, the angle between the tangent vectors of f(+;) and f(72) at w is the same as the angle
between the tangent vectors of v, and 72 at z. We say:

f preserves the angle between tangent vectors at z.

This last property of f is called conformality of f at z and holds, as we just saw, under the
assumption that f is differentiable at z and f(z) # 0.

Exercises.

3.3.1. Consider the holomorphic function w = f(z) = az + b with a # 0.

(i) Prove that f is one-to-one from C onto C.

(ii) Prove that f maps lines and circles onto lines and circles, respectively.

(iii) Consider two lines with equations kx + ly = m and K’z + 'y = m’. Which is the condition
for the two lines to intersect? Under this condition, find their intersection point and the angle of
the two lines at this point. Then find the equations of the images of the two lines through f and
find their intersection point and their angle at this point. Confirm the conformality of f.

3.3.2. Consider the holomorphic function w = 2.

(i) With any fixed ug, vy, consider the hyperbolas with equations 2 — y? = wug and 22y = vg
on the z-plane (z = x + iy). Do they intersect and at which points? Find the angle of the two
hyperbolas at each of their common points.

(i) With any fixed xg,yo # 0, consider the parabolas with equations u = Zly%v

U= — ﬁvz + 202 on the w-plane (w = u + iv). Do they intersect and at which points? Find the
angle of the two parabolas at each of their common points.

2 — 4% and

3.3.3. Let f be holomorphic in the open set U C C so that f’ is continuous in U, let v be a
piecewise smooth curve in U and I' = f(y) be the image of «y through f. If the complex function
¢ is continuous in I'*, prove that [;. ¢(w) dw = [ ¢(f(2))f'(z) d=.
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Chapter 4

Examples of holomorphic functions.

4.1 Linear fractional transformations.
Every rational function of the form

T(z) = 253

is called linear fractional transformation. We assume that ad — bc # 0. It is easy to show that
ad — bc # 0 if and only if the function 7T’ is not constant.

In order to have the full picture of the definition of a linear fractional transformation 7', we
have to say something about the values of 1" at the roots of the denominator and at co. There are
two cases. If ¢ = 0, then because of ad — bc # 0 we have ad # 0 and then T'(2) = 2 + 2 for all
z € C. Since § # 0, we have that T'(c0) = oo. Thus

a b :
a 2. ifzeC .
T(z):{dz+d ne if ¢ = 0. 4.1)
0, if z =00
If ¢ # 0, then the denominator has z = —% as its root, which, because of ad — bc # 0, is not a root

of the numerator. Hence 7' (—%) = 00. Also T'(00) = 2. Thus

az+b : d
o d if2eC,z#-2¢

T(z) =4 oo, ifz=-4 if ¢ # 0. (4.2)
e, av z = 0o

We conclude that every linear fractional transformation (l.f.t.) is a function 7" : C—C and,
even though we write T'(z) = %+ we must have in mind the full formulas (4.1) and (4.2).

cz+d’
It is very easy to see that every 1.f.t. is one-to-one from C onto C. The formula of the inverse
Lft. of T'is

T_l(z) _ dz—b

—cz+a’
The identity function id(z) = z is clearly a L.f.t. witha = d = 1, b = ¢ = 0, and we easily see

that the composition of two Lf:t. is another Lf.t. Indeed, if T(z) = 22£5 and S(z) = g,’jj:g:, then

! / a"?z—“’—&-b’ ’ ’ ’ ’
(S o T)(Z) _ dT()+b _ 24 (a’a+b'c)z+(a’ b4+ d)

T JdT(z)+d T C/Lig+d/ (da+d'c)z+(c'b+d'd)

We observe that (a’a + b'c)(d'b+ d'd) — (a’b+ b'd)(da+ d'c) = (a'd — V') (ad — be) # 0.
Thus, the set of all 1.f.t. is a group with the binary operation of composition. The neutral
element of this group is the identity function.
Since a L.ft. is a rational function, it is continuous in C, and, as a particular instance of example
3.1.13, it is holomorphic in C except at the point at which it takes the value oco.
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We shall make a comment on an interesting relation between circles and lines. We observe that
the equations of circles and lines can be unified in the following manner: if o, 3,7 € R, w € C,
w # 0, a® + B2 # 0 and B%|w|? > 4ary, then the equation

alz|* + BRe(Wz) +v =0

is the equation of a line, if &« = 0, and the equation of a circle, if & # 0. In fact, if « = 0, then 3 # 0

and the equation becomes Re(wz) = —% and this is the equation of a line. If o # 0, the equation
2

becomes |z + 2 w|? = W This is the equation of the circle with center — 2w and radius

v/ B lw]2—day

3l . Conversely, every circle and every line have equations of this form. If, for instance,
we take the equation Re(wz) = c of a line, with w € C, w # 0, and ¢ € R, we may write it in the
form a|z|? + BRe(wz) + v = 0 by taking o« = 0, 3 = 1 and v = —c. If we take the equation
|z — 29| = r of a circle with zg € C and r > 0, we may write it as |2|? — 2Re(Z52) + |20|> = 72.
This becomes a|z|? + BRe(wz) +v = 0 by taking o = 1, v = [29]? — r? and: 3 = —2 and
w = zg,incase zg # 0, or § = 0 and w = 1, in case zg = 0. In all cases the choices of the
parameters satisfy the restrictions: a, 3,7 € R, w € C, w # 0, o® + $% # 0 and 2|w|? > 4ar.
This consideration of the equations of a line and a circle as special cases of one equation permits
us to unify the notions of circle and line into the single notion of generalized circle in C. If we
attach the point oo to any line (and leave circles unchanged), then we are talking about generalized
circles in C. Look at exercise 1.3.2 for another interesting unification of the notions of circle and
line: generalized circles in C are the images of circles in S* through stereographic projection.
Now, an important property of every Lf.t. is that it maps generalized circles in C onto gener-

alized circles in C. To prove it we consider three special cases first.

Example 4.1.1. Every function 7'(z) = z + bisa Lfit. witha = 1, ¢ = 0, d = 1 and, for an
obvious reason, it is called translation by b.

Every such 7" is holomorphic in C, one-to-one from C onto C and satisfies T'(c0) = oc. It is trivial
to prove that 7" maps lines in C onto lines in C and circles in C onto circles in C.

Example 4.1.2. Every function 7'(z) = az witha # Oisa l.ft. withb = ¢ =0,d = 1 and it is
called homothety with center 0.

Every such T rotates points around 0 by the fixed angle arga. Indeed, if w = T'(z) = az, then
argw = arg z + arga. Moreover, 7' multiplies distances between points by the fixed factor |al.
Indeed, if wy = T'(21) = az; and wy = T'(z2) = aze, then |w; — wa| = |al|z1 — 22|

Also T is holomorphic in C, one-to-one from C onto C, satisfies T(o0) = oo and it is easy to
prove that 7" maps lines in C onto lines in C and circles in C onto circles in C.

Example 4.1.3. The function 7(z) = 2 isalfit. witha = d = 0,¢ = b = 1 and it is called
inversion with respect to the circle T = Cp(1).

The inversion 7T is holomorphic in C \ {0}, one-to-one from C \ {0, 0} onto C \ {0, oo} and
satisfies 7'(0) = oo and T'(00) = 0. Moreover, it is easy to show that 7" maps (i) lines in C which
do not contain 0 onto circles in C which contain 0, (ii) lines in C which contain 0 onto lines in C
which contain 0, (iii) circles in C which contain 0 onto lines in C which do not contain 0 and (iv)
circles in C which do not contain 0 onto circles in C which do not contain 0.

Lemma 4.1. Every L.ft. is a composition of finitely many translations, homotheties and inversions.

Proof. LetT(z) = gjig
Ifc = 0,then T(z) = 9z + g. If we consider the homothety 71 (z) = 9z and the translation
Tr(z) =z + %, thenT = T5 o T3.

If ¢ # 0, then

%(Cz+d)+(b*a7d) bc ad 1
T(z) = cz+d + o

c
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If we consider the translation 71 (2) = z + %, the inversion T5(z) = 1, the homothety T3(2) =
be— adz and the translation Ty(z) = 2z + %, then T' = Ty o T3 0 Ty o T1. O

Proposition 4.1. Every Lf.t. maps generalized circles in C onto generalized circles in C.
Proof. A corollary of lemma 4.1 and of the examples 4.1.1, 4.1.2 and 4.1.3. O

Proposition 4.2. Take the distinct z1, 22, 23 € C and the distinct Wy, Wo, W3 € C. Then there is a
unique Lf.t. T so that T(z;) = w; for j = 1,2,3.

Proof. We consider the 1.f.t. S which, depending on whether one of z1, 22, 23 is co or not, has the

formula
Z29—Z23 Z2—Z1

20—21 z—23) if 21, 29, 23 # o0

z—z] : _
if z3 = 0o
_ zo—21"
S() = 24 if 29 = 00
z—=z23"? 2=
2-23 if 21 = o0
z—2z3

The 1.f.t. S has values: S(z1) =0, S(z2) =1, S(z3) = .

There is a similar 1.f.t. R with values: R(w;) =0, R(wg) =1, R(ws) = oc.

Then the 1.ft. T = R~! 0 S has values: T(21) = w1, T(22) = wa, T(23) = ws.

To prove the uniqueness of 7" with 7'(z1) = w1, T'(22) = wa, T'(23) = w3z we consider the previous
£t S, R and then the 1.ft. Q = Ro T o S~! has values: Q(0) = 0, Q(1) = 1, Q(o0) =
Since Q(00) = oo, we get that ) has the form Q(z) = az + b with a # 0. Now from Q(0) = 0
Q(1) = 1 we finda = 1, b = 0 and hence @ is the identity 1.f.t. id with id(z) = z. Thus
RoToS !=idandhence T = R~ !0 S. O

When we apply the previous results we should bear in mind that every three distinct points in
C belong to a unique generalized circle in C.

Example 4.1.4. The L.f.t. which maps the triple ¢, 2, 1 onto the triple 0, 1, co is

[\
—_

- — 2=l z—i 24 z—i . (24024 (1220)
w=T(z) s =5 52-5

[\

[N
=
[N

The points 4, 2, 1 in the z-plane are not co-linear and hence belong to a circle A. The points 0, 1 in
the w-plane belong to the real axis m. Thus the points 0, 1, co belong to the line B = m U {co}
in C. Now, 7" maps the circle A in the z-plane onto some generalized circle 7'(A) in the w-plane.
Since A contains 7, 2, 1, T'(A) must contain the images of 7,2, 1, i.e. 0, 1, 00. Thus T'(A) = B.

If we want to determine the circle A = C,,(r) which contains 4,2, 1, we have to find 2o, r so
that 4,2, 1 satisfy the equation |z — 29| = r. We just solve a system of three equations in three
real unknowns: xg, yo, r. But there is a second and probably easier way to find the equation of A.
Indeed, w belongs to m i and only if Im w = 0 if and only if Im GHEE0=2) — ¢ (and 2 # 1) if
and only if |2[2—3Re((1—4)z) = —2(and z # 1)ifand onlyif |z — 2(1+4)|? = —2+F[1+i|> = 3
(and z # 1) if and only if 2 belongs to C3(14y) /2(\/%) except 1. Since z = 1 is mapped onto
w = 00, we have that w belongs to B if and only if z belongs to the circle C3(q ;) /2( 5/ 2). We

conclude that A = 03(1+Z-)/2( 5/2).
Exercises.
4.1.1. Find L£t. T so that T(1) = 4, T(i) = 0, T(—1) = —i. Find T(T) and T(D).

4.1.2. Find L.ft. T'sothat T(D) = {z| Imz > 0}, T(3) = 1,T(1) = 0,7 (a) = —1, where a € T.
Can a be an arbitrary point of T?
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4.1.3. () Let Th(2) = 257 zzigl and Th(z) = %. Prove that 77, T3 are the same function if and

only if there is A # 0 so that as = Aay, bs = by, o = Acy, do = Ad.

(ii) Prove that every 1.f.t. T' can take the form 7'(z) = Zjis with ad — be = 1.

4.1.4. Let A be a generalized circle of the z-plane Cand Bbea generalized circle of the w-plane
C. Then, in an obvious way, A splits C into two disjoint sets A1 and A_ and, similarly, B splits C
into two disjoint sets By and B_. Now, let 7' be a 1.f.t. and let T(A) = B. Assume that zp € A
and wy = T'(z0) € By. Prove that T(A;) = By and T(A_) = B_.

4.1.5. A point z € Cis called fixed point of the L.ft. T if T(z) = z. Ifthe L.t T is not the identity
(in which case T has infinitely many fixed points), prove that 7" has either one or two fixed points
in C. In each case, which are the images through 7" of the generalized circles which contain its
fixed points?

Apply the above to each of: T'(2) = 2+ 2,T(z) =22 — 1,T(z) = m and T'(z) = 2=1,

4.1.6. (i) The points a, b € C are called symmetric with respect to C., (r) if either a = zp, b = 00
ora = 00, b = zp ora,b € C are on the same halfline with vertex zy and |a — zo||b — 2| = r%.
Observe that either a, b coincide with one and the same point of C., (r) or a, b are on different sides
of (7). Givena € C \ {20, 00}, describe a geometric construction “with ruler and compass” of
its symmetric point, b € C \ {20, 00}, with respect to C,, (r). Prove that a, b are symmetric with

respect to C, (1) if and only if b = 2zp + 51270.

(ii) The points a, b € C are called symmetric with respect to the line I = [ U {o0} in C if either
a=b=ooora,be Care symrnetric with respect to [. Prove that a, b are symmetric with respect
toifand onlyifb = z; —|— 22 7((1 — Z1), where z1, z5 are two distinct fixed points of the line /.

(iii) We take a 1.f.t. w = T( ) and generalized circles A in the z-plane C and B in the w-plane C.
Prove that, if 7" maps A onto B, then T' maps symmetric points with respect to A onto symmetric
points with respect to B.

(iv) Find Lft. T so that T(Cy(1)) = C;(3), T(i) = 3+ i, T(3) = 0.

4.1.7. The Lft. w = T'(2) is called real if it maps the real line (with o) in the z-plane C onto the
real line (with co) in the w-plane C.

(i) Prove that the 1.f.t. T is real if and only if there are a, b, c,d € R with ad — bc # 0 so that
T(:) = 22,

(ii) If the Lf.t. T isreal and T'(2) = g;fg, with a,b,c,d € R, ad — be # 0, we define sign T to be
the sign of ad — be. Using exercise 4.1.3(i), prove that sign T is well defined.

(iii) Prove that, if the 1.f.t. 7" is real, then 77! is real, and that, if the 1.f.t. S, T are real, then S o T
is real. Also prove that sign7~! = signT and sign(S o T') = sign S sign T

(iv) Take a real 1.f.t. T'. Prove that 7" maps the upper halfplane onto the upper halfplane (and the
lower onto the lower) if and only if sign7 = 41 and that 7" maps the upper halfplane onto the

lower halfplane (and the lower onto the upper) if and only if sign 7" = —1.

4.1.8. (i) Let 20 € D and [A| = 1 and consider the Lf.t. T'(2) = A{==. Prove that T'(T) = T and
T(z9) = 0. Find T'(D).

(ii) Let zp € D and let T be a L.f.t. such that T(T) = T and T'(zp) = 0. Prove that there is A with
[Al = 1sothat T'(z) = A{F=22.

(iii) Let a, b € D and let T be a Lf.t. such that T(T) = T and T'(a) = b. Prove that there is A with

b z—=b
[Al = 1so that ; (b%( )= = A=

4.1.9. Consider Hy = {2z | Imz > 0} and H_ = {2z | Imz < 0}.

(i) Let zo € Hy and |A| = 1 and consider the Lft. T'(z) = A\2=22. Prove that T(R U {oc}) = T
and T'(zp) = 0. Find T'(H,.).

(if) Let zp € H; and let T" be a L.f:t. such that T(R U {oo}) = T and T'(zp) = 0. Prove that there
is A with |A\| = 1 so that T'(z) = A\2=22

z—2z0 "
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4.1.10. Consider distinct 21, 29, 23,24 € C. We define the double ratio of 21, 22, 23, 24 (In this
order) to be (21, 22, 23, 24) = %%, if 21, 29, 23,24 € C. If one of the 21, 22, 23, 24 is 00,
say z; = 00, then we define (21, 22, 23, 24) as the limit of the above formula when z; — oo.

(i) Prove that (11(21), T(z2),T(23),T(24)) = (21, 22, 23, 24) for every 1.f.t. T and every distinct
21, 22,23,24 € C. R

(ii) Prove that the distinct 21, 29, 23, 24 € C belong to the same generalized circle if and only if
(21, 22, 23, 24) € R\ {0}.

(iii) If (21, 22, 23, 24) = A, find all values (depending on \) which result from this double ratio
after all rearrangements of 21, 29, 23, 24.

4.1.11. Prove that the group of all L.f.t. is simple, i.e. that its only normal subgroups are itself and
{I}, where I is the identity L.f.t.

4.2 The exponential function.
We define the exponential function exp : C — C by
expz = e”(cosy + isiny) for every z = x + iy.

Ifz € R,i.e. z = x+10, thenexp z = e*(cos 0+isin0) = e* = e*. This implies that we may
use the symbol e instead of exp z without the danger of contradiction, in the case that z is real,
between the symbol e* as we just defined it and the symbol e* as we know it from infinitesimal
calculus. Therefore, we define

e =expz=e"(cosy +isiny) for every z = x + iy.

Since z = x + iy implies |e*| = |e”|| cosy + i siny| = ¥, we have that

|€z‘ — eRez‘
From e* = e®(cosy + isiny) and |e?| = e” we get e* = |e?|(cosy + isiny). So y is one of
the elements of arg e” and hence

arge® = {Imz + k27 | k € Z}.

We have the basic equality

21 5”2

e le®? = P12,

Indeed: €®*(cosyy + i siny; )e™(cosyo +isinys) = 12 (cos(yy + y2) + i sin(y; + y2)) from
the addition formulas of cos and sin.

If zp — 21 = k2mi for some k € Z, then e = *1eM?™ = ¢%1(cos(k27) + i sin(k27)) = €.
Conversely, assume e*2 = e*! and let 29 — 21 = x + iy. Then e”(cosy + isiny) = e27*1 =
EZ = 1 and hence ¢* = 1, cosy = 1 and siny = 0. Therefore, x = 0 and y = k27 for some

k € Z. Thus, z0 — z1 = k2mi with k € Z. We proved that

e =€ & 29— 21 = k21 for some k € Z.
Forall z = z + iy we have |e*| = e” > 0 and hence

e #0.

On the other hand, if we take any w # 0 and if we use the notation In : (0, +00) — R for
the well known logarithmic function from infinitesimal calculus, then the solutions of the equation
e* = w are described as follows:

e =w < z=In|w|+ iy forsome y € argw.
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Indeed, if we write z = z + 1y, then the equality w = e* becomes w = e*(cosy + isiny) and it
just means that its right side is one of the polar representations of w. Hence, w = e* if and only
if e = |w| and y is a value of argw. Now, e” = |w| is equivalent to x = In |w|. Therefore, the
equation e = w has these infinitely many solutions: z = In |w|+ iy where y is any value of arg w.
All these solutions have the same real part, x = In|w/|, and their imaginary parts are the elements
of arg w.

From what we said already, it is clear that the exponential function is onto C \ {0} but not
one-to-one in C. In fact the exponential function is infinity-to-one since there are infinitely many
values of z corresponding to the same value of w # 0.

Based on the equality €Y = cos 3+ siny, we may write the polar representations of any z # 0
in an equivalent form:

z=r(cosf +isinf) < z=re?,
The second form is simpler and we shall use it extensively in the rest of the course. For instance,
we may rewrite the examples 2.3.8 and 2.3.9 as follows.

Example 4.2.1. Using the parametric equation z = () = zo + re®l, t € [0, 2x], for the circle
Cy (r), we have

fczo(r) f(Z) dz = fv f(z) dz = 027r f(z(] + Te”)i?"eit dt.

Example 4.2.2. If n € Z, we have f027r e dt = 2, if n = 0, and f027r eMdt = 0,ifn # 0.
Therefore, if n € Z, we get

2mi, ifn=-1

_ n _ (27 mintg. it gp  comtl (27 i(n41)t —
§Cz0(7")(z 20)"dz = [y rteire dt = ir" Tt [T dt {O, ifn £ 1

The real and imaginary parts of e* are u(x,y) = e”cosy and v(z,y) = e”siny. There-

. . . 8 8 . 6 .
fore, u,v have partial derivatives §%(z,y) = e”cosy, a—; = —e®siny, 5 = e’siny and
% = e* cosy, which are continuous and satisfy the system of C-R equations in C and hence

e is holomorphic in C. To calculate the derivative of e* we write

g—g(m,y) + ig—g(m,y) =e”cosy + ie*siny = e*(cosy + isiny)
and hence
de* _ _z
dz

We shall now examine the mapping properties of the function w = e*. We write z = x + 1y
and w = u + iv.

If z = x + 4y varies on the horizontal line h,, in the z-plane which intersects the y-axis at the
fixed point iy, then w = e* = e”(cosy + isiny) varies on the halfline r, in the w-plane with
vertex 0 (without 0) which forms angle y with the positive u-semiaxis. Also, if z varies on the
horizontal line h,, from left to right, i.e. when x increases from —oo to +o00, then w = e varies on
the halfline 7, from 0 to oo. If y increases by Ay > 0, i.e. if the horizontal line h,, moves upward,
then the corresponding halfline , rotates in the positive direction around 0 by the angle Ay. The
two horizontal lines h, and h, 2. are mapped onto the same halfline ry, = ry 2.

If the point z = z + 4y varies on the vertical line v, in the z-plane which intersects the x-axis
at the fixed point z, then w = e* = e®(cos y + ¢ sin y) varies on the circle Cy(e”), call it ¢, in the
w-plane. Also, if z moves upward on the vertical line v,, i.e. if y increases from —oo to +00, then
w = e” rotates on the circle ¢, infinitely many times in the positive direction. If y increases over
an interval of length 27, then w = e® describes the whole circle ¢, once in the positive direction.
If x increases by Ax > 0, i.e. if the vertical line v, moves to the right, then the circle ¢, with

radius e® becomes the circle ¢, A, with radius e?T4% = %A,
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We may combine the above results. For instance, if we consider the open rectangle
M= {z+iy|r <z <x2,91 <y <Y2}

in the z-plane with sides parallel to the two coordinate axes, then II is the intersection of the open
horizontal zone between the lines A, and h,, and the open vertical zone between the lines v,, and
Vy,. If Y2 — y1 < 2, then II is mapped onto the open “circular rectangle”

R = {rei6|e$1 <r<e®iyp << y2},

in the w-plane, which is the intersection of the angular region between the halflines r,, and r,
and the open ring between the circles ¢;, and c;,. If y2 — y1 = 2, then the “circular rectangle”
R is the open ring between the circles ¢, and c;, without its linear segment which belongs to the
halfline r,, = ry,. Of course, in this case, if II includes at least one of its horizontal sides, then its
image R is the whole open ring between the circles ¢, and c,.
Starting from €% = cosy+isiny and e = cos(—y)+1sin(—y) = cosy —i sin y, we easily
1

find that cosy = 3(e™ 4+ e~%) and siny = (e — e~ ) for every y € R. Now we extend the

trigonometric functions cosine and sine from R to C by defining

_ 1/ iz —iz ; _ 1 iz —iz
cosz = (e +e7%), sinz = g5(e” —e*%) for every z € C.

It is clear from the holomorphy of the exponential function that cos and sin are holomorphic
in C and that

dcosz o dsinz __
dz sSin z, 4z = COS 2.

It is also easy to show that cos and sin are 27-periodic.
Now we extend the tangent and the cotangent from R to C by defining

sin z
cos z’

Cos z

cotz = sin z

tan z =

for every z € C.

The solutions of cos z = 0 are z = § + k7, k € Z, and the solutions of sin z = 0 are z = k,
k € Z. Therefore, tan is defined and holomorphic in the open set C \ {§ + k7 | k € Z} and cot is
defined and holomorphic in the open set C \ {k7 | k € Z}. Both functions are 7-periodic.

Exercises.
4.2.1. Prove that e? = ¢ for all 2.
4.2.2. Prove that |e* — 1| < el?l — 1 < |z|el*l.

4.2.3. Let z — oo on any halfline. Depending on the halfline, study the existence of the lime® in
C. Which characteristic of the halfline determines the existence and the value of the limit?

4.2.4. Find the images through the exponential function of: {z +iy|a <z < b,0 <y <0+ w},
{r+iyla<z<bl<y<d+2n},{z+iylz<bld<y<O+n},{r+iy|lz<bi<y<
O+2rh, {x+iyla<z,<y<O+nh{x+iyla<z,0<y<O+2r}

4.2.5. Every horizontal and every vertical line in the z-plane are perpendicular. Also, every halfline
with vertex 0 and every circle with center 0 in the w-plane are perpendicular. How do these facts
relate to the conformality of the function w = e*?

4.2.6. (i) Prove that

- sin®z +cos?z = 1,

- sin(z + w) = sin z cos w + cos z sin w, cos(z + w) = cos z cosw — sin z sin w,

- |cos(x +iy)|> = cos® z + sinh? y, | sin(x + iy)|> = sin® 2 4 sinh? y.

(i) Study the function w = sin z in the vertical zone {x + iy | — § < = < 5} and the function
w = cos z in the vertical zone {z + iy | 0 < = < 7}. Examine the images through these functions
of the various horizontal linear segments (of length 7) and the various vertical lines inside these
two vertical zones.
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4.3 Branches of the logarithmic function.

In the last section we proved, for every w # 0, the equivalence
e“=w < z=In|w|+ iy forsome y € argw. (4.3)
For every w # 0 we consider the set

logw = {In|w| +iy |y € argw}

and we call it logarithm of w. So the elements of log w are the solutions of e = w, i.e.
ef=w <& zelogw.

If we take y = Argw, then we get the particular element

Logw = In|w| + i Argw

of log w and this is called principal logarithm of w.

Ifr = |w| and if § is any of the values of the argument of w, i.e. if w = r(cos §+i sin ) = re’
is any of the polar representations of w, then the values of arg w are the numbers 6 + k27, k € Z.
Hence the values of log w are the numbers Inr + i(0 + k27), k € Z.

0

Example 4.3.1. (i) Log1 = 0 and log 1 = {i2k7 | k € Z}.

(if) Log(—1) = ¢m and log(—1) = {i(2k + V)7 | k € Z}.

(iii) Logé = iZ and logi = {i(2k + 3)7 |k € Z}.

(iv) Log(—3i) = In3 — iZ and log(—i) = {In3 + i(2k — 1)7 | k € Z}.

(v) Log(1 +i) = Inv/2 +4% and log(1 + i) = {Inv2 +i(2k + 3)7 | k € Z}.
(vi) Log(1 —iv/3) = In2 — iZ and log(1 — iv/3) = {In2 +i(2k — 3)m | k € Z}.

For any fixed w # 0 the set log w has infinitely many elements, and any two of them differ by
an integral multiple of :27r. All elements of log w have the same real part = In |w|, and hence they
are on the same vertical line v, with equation x = In |w/|, and the vertical differences between them
are the integral multiples of 2. Therefore, every vertical segment of the line v,., which has length
27 and includes only one of its endpoints, contains exactly one element of log w. Moreover, every
horizontal zone, which has vertical width 27 and includes only one of its boundary lines (either the
upper or the lower one), contains exactly one element of log w for every w # 0. More precisely,
if we consider any 6, and the horizontal zone

Zp, ={x+iylbo<y<bp+2n} or Zp, ={x+iy|by <y <by+2r},

then Zj, contains exactly one element of log w : the one with imaginary part y equal to the (unique)
0 € argw satisfying 0y < 0 < 0y + 2w or 6y < 6 < 6y + 2m, respectively. For instance, if we
consider the special zone determined by 6y = —m which contains its upper boundary line, i.e.

Zx=A{z+iy| -7 <y<7},

then, for every w # 0, the unique element of log w which is contained in this zone is the principal
logarithm Log w.

Proposition 4.3. For all wy,ws # 0 we have
log(wjwe) = logw; + logws.

By this we mean that the sum of any element of log w1 and any element of log wy is an element of
log(wyws) and, conversely, any element of log(wiws) is the sum of an element of logwy and an
element of log ws.
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Proof. A corollary of proposition 1.1 and of the equality In |wjwa| = In |wi| + In |wa. O

It is already clear that the exponential function w = expz = e from C onto C \ {0} is not
one-to-one. Therefore, there is no inverse of the exponential function. If we want to produce
some kind of inverse of the exponential function, we may take any w in the range C \ {0} of the
function and select one value of z out of the infinitely many in C which satisfy the e* = w. There
are many instances of this method at a more elementary level. Let us consider for instance the
function y = 2?2 from (—oc, +00) onto [0, +0cc), which is not one-to-one in (—oco, +00). We
take any y € [0, +00) (the range of y = 2%) and find one x such that 22 = 3. There are exactly
two such z: z = /y and x = —,/y. Therefore, one might say that we have only two choices
for the inverse function: the choice # = /y for every y € [0, +00) and the choice z = —,/y
for every y € [0,400). But this is not correct. We may choose x = ,/y for some y € [0, +00)
and x = —,/y for the remaining y € [0, +00). It is obvious that there are infinitely many such
inverse functions, depending on the particular choice we make between z = /y and v = —,/y
for each value of y. Nevertheless, there is a criterion which reduces the number of our inverse
functions to exactly two: the criterion of continuity! We observe that the last function, with the
double formula, is not continuous. On the contrary, the function = = /i for every y € [0, +00)
and the function z = —,/y for every y € [0, +00) are both continuous. To prove that these are
the only continuous inverse functions is a simple exercise in real analysis. Indeed, assume that
there is some continuous inverse function = = f(y) of y = 22 defined in [0, +00) (the range of
y = x2). Le. f:[0,4+00) — R is continuous in [0, +00) and f(y)? = y for every y € [0, +00).
Let there be y1,y2 > 0 with y1 # 2 such that f(y1) = (/y1 and f(y2) = —/y2. Since f is
continuous in the interval between y1, y» and its values at the endpoints are opposite, there is some
y in this interval so that f(y) = 0. This is impossible, because y > 0 and either f(y) = \/y > 0
or f(y) = —/y < 0. Therefore, there are no such y1,y2 > 0 and hence we have exactly two
cases: either f(y) = |/y forevery y > 0 or f(y) = —,/y for every y > 0. We may say that there
are exactly two continuous branches of the square root in [0, 400): the branch z = ,/y and the
branch z = —/y.

Now let us go back to the determination of possible inverses of the exponential function.

Let A C C\ {0}. We say that the function f is a continuous branch of log in A if f is
continuous in A and for every w € A we have that f(w) is an element of log w or, equivalently,

AL for every w € A.
Proposition 4.4 gives many useful examples of continuous branches of the logarithm.
Proposition 4.4. Let 6y € R. We consider the set
Ag, = {re?? |0 < r < +00,0p < 0 < 0y + 2}

in the w-plane (i.e. C without the halfline with vertex O which forms angle 6y with the positive
u-semiaxis, where w = u + tv) and the open horizontal zone

Zpy ={x+iy| —oco<x < +00,00 <y <by+27}

in the z-plane. We define the function f : Ag, — Zg, as follows: for every w € Ay, we take
f(w) to be the unique element of log w in the zone Zy,. Then f is continuous in Ag, and so it is a
continuous branch of log in Ag,.

Proof. Assume that f is not continuous at some w in Ap,. Then there is a sequence (wy,) in Ag, so
that w,, — wand f(wy,) /4 f(w). This implies that there is 0 > 0 so that | f (w,,) — f(w)| > § > 0
for infinitely many n. These infinitely many n define a subsequence of (w,,). Now we ignore the
rest of the sequence (w,,) and concentrate on the specific subsequence. For simplicity we rename
the subsequence and call it (w;,) again. Therefore, we have a sequence (w,,) in Ag, such that

Wy — W and |f(wy) — f(w)] >6 >0 forevery n. (4.4)
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We set z = f(w) € Zy, and 2z, = f(wy,) € Zy, for every n. Then e* = w and e** = w,, for
every n and (4.4) becomes

Zn z

em —e and |z — 2] > 6 >0 forevery n. 4.5)

The real parts of the z,, are equal to In |w,, | and, since In |w,| — In|w|, the real parts of the z,, are
bounded. Moreover, since z,, € Zj,, the imaginary parts of the z,, are also bounded. Therefore, the
sequence (zy,) is bounded and the Bolzano-Weierstrass theorem implies that there is a subsequence
(2n, ) so that z,,, — 2’ for some 2. Since all z,,, belong to Zy,, we see that 2’ belongs to the closed
zone Zy, = {z+iy| —oo < x < +00,0p < y < 0y + 2r}. Taking the limit in (4.5), we get that
e” = e*and |2’ — z| > 4. Therefore, 2’ and z differ by a non-zero integral multiple of i27. But
this is impossible, because z belongs to the open zone Zp, and 2’ belongs to the closed zone Zy, .

Thus f is continuous at every w in Ay, . O

Our study of the mapping properties of the exponential function in the previous section gives
the following information about the mapping properties of the continuous branch f : Ag, — Zy,
of log, which is defined in proposition 4.4: f maps the halflines in Ap, with vertex 0 (without 0)
onto the horizontal lines in Zy, and the circles with center 0 (without their point on the halfline
which is excluded from Ag,) onto the vertical segments of Z,.

Choosing any real 6y, we have defined a continuous branch of log in the subset Ay, of the
w-plane, whose range is the zone Zy, of the z-plane. If, instead of 6y, we consider 6y + k27 with
any k € Z, then the domain A = Ay, 4o remains the same but the range, i.e. the zone Zy, o,
moves vertically by k27. The various zones Zg, 4 2, are successive and cover the whole z-plane
(except for their boundary lines with equations y = 0y + k27). We summarize:

If we exclude from the w-plane a halfline with vertex 0, then in the remaining open set A there
are infinitely many continuous branches of log defined. Each of them maps A onto some open
horizontal zone of the z-plane of width 2. These various open zones, which correspond to the
various continuous branches of log (in the same set A), are mutually disjoint, successive and cover
the z-plane (except for their boundary lines). Of course, if we change the original halfline which
determines the set A, then the corresponding zones and the corresponding continuous branches of
log also change.

Example 4.3.2. One particular example of a continuous branch of log is defined when we choose
0o = —m. Thentheset A, = {re?? |0 < r < +o00,—7 < 0 < 7} is the w-plane without
the negative u-semiaxis (where w = u + 4v) and the range of the branch is the zone Z_, =
{z +iy| — o0 <z < 400, —m < y < w}. It is obvious that this branch is the function which
maps every w € A_, onto the principal value z = Logw of logw. lL.e. we get the so-called
principal branch of log

Log: A — Z_,.

We must keep in mind that in the same set A_, of the w-plane, besides the principal branch,
there are infinitely many other continuous branches of log defined. Each of them maps A_ in a
corresponding zone Z_ . yor, With k € Z, which is Z_; moved vertically by k27. This branch
results from the principal branch Log by adding the constant k27 and its formula is Log +i2k7.

Now, we introduce a slight generalization of the notion of the branch of log, i.e. we define the
notion of the branch of log g, where g is a more general function than the identity g(w) = w.

Let AC Candg: A — C\{0} be continuous in A. We say that the function f is a continuous
branch of log g in A if f is continuous in A and for every w € A we have that f(w) is an element
of log g(w) or, equivalently,

ef W) = g(w) for every w € A.
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Example 4.3.3. Let g : A — C\ {0} be continuous in A C C. If there is a continuous branch i
of log in g(A), then f = h o g is a continuous branch of log ¢ in A.

Indeed, f = h o g is continuous in A and, since e"*) = 2 for every z € g(A), we also have
el (W) = ehl9(w)) — g(w) for every w € A.

This is a standard way to produce continuous branches of log g when we know continuous branches
of log in the range of g.

For instance, if g(w) = w — wp and A = C \ [, where [ is a halfline with vertex wy, then
g(A) = C\ I/, where I is the halfline with vertex 0 which is parallel to I. We know that there are
infinitely many branches of log defined in g(A) and hence there are infinitely many branches of
log(w — wp) defined in A.

Proposition 4.5. Let g : A — C\ {0} be continuous in A C C and let f be any continuous branch

of log g in A. If wq is an interior point of A and g is differentiable at wy, then f is differentiable at

wy and ['(wo) = %)

in the interior of A.

. Hence, if g is holomorphic in the interior of A, then f is also holomorphic

Proof. We set 29 = f(wp) and z = f(w) for every w € A. Then e* = g(wp) and e* = g(w).
Since f is continuous, w — wq implies z — zg. Therefore, using the derivative of the exponential
function at z(, we see that

fw)=f(wo) _ 2=z g(w)=g(wo) _, g'(wo) _ g'(wo)

w—wo eZ —e?0 w—wo €20 g(wO) When w — wo.

Thus f is differentiable at w and f'(wp) = L0 O

Therefore, if g : A — C \ {0} is holomorphic in the open set A, every continuous branch of
log g can be called holomorphic branch of log g in A.

Example 4.3.4. We have defined infinitely many continuous branches of log in the open set which
results when we exclude any halfline with vertex 0 from the w-plane. All these branches are
holomorphic branches of log. In particular the principal branch Log : A_; — Z_ is holomorphic
in A_,.

Proposition 4.6. Let g : A — C\ {0} be continuous in A C C.

(i) If f1 is a continuous branch of log g in A and fo — f1 = ik27 in A, where k is a fixed integer,
then fs is also a continuous branch of log g in A.

(ii) If, morever, A is connected and f1, fo are continuous branches of log g in A, then fo — f1 =
ik2m in A, where k is a fixed integer. In particular, if fi(wo) = fa(wy) for some wy € A, then
fi=frin A

Proof. (i) The continuity of f; in A implies the continuity of f5 in A. We also have e/1(®) = g(w)
for every w € A and hence e/2(¥) = efi(w)tik2r — ofi(w)eik2m — g(4)1 = g(w) for every
w € A. Therefore, fs is a continuous branch of log g in A.

(ii) We consider the function k = -1 (f» — f1). Since for every w € A both fo(w) and fi(w) are
elements of log g(w), we have that k(w) is an integer. Also, since both f1, f2 are continuous in A4,
k is continuous in A. Now, k is a continuous real function in the connected set A, and hence it has
the intermediate value property. But since its only values are integers, it is constant in A. So there
is a fixed integer k so that % (f2 — f1) = k or, equivalently, fo — f; = ik2m in A.

If fo(wp) = f1(wp) for some wy € A, then the integer k is 0 and we get that fo = f; in A. O

Thus, if we know one continuous branch of log g in the connected set A, then we find every
other possible continuous branch oflog g in A by adding to the known branch an arbitrary constant
of the form ik2w with k € Z.
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Example 4.3.5. Let A = A_ be the w-plane without the negative u-semiaxis (where w = u+iv).
We want to find a continuous branch of log in A having value z = 0 when w = 1.

We already know that the principal branch Log of the logarithm has value z = Logl = Qatw = 1.
Since A is connected, there is no other such continuous branch of log in A.

Now, in the same set A = A_ we want to find a continuous branch of log taking the value z = 4w
atw = 1.

Since A is connected the branch we are looking for has the form Log +ik27 for some fixed integer
k. We try w = 1 in this equality and get k = 2.

Example 4.3.6. Let A = Ay = {re?? |0 < r < +00,0 < 6 < 27} be the w-plane without the
positive u-semiaxis (where w = u + tv). We want to find a continuous branch of log in A taking
the value z = i(§ + 47) at w = 1.

We consider the horizontal zones in the z-plane which correspond to the set A: to each k € Z
corresponds the zone Zy ror = {z +iy| — 00 < z < +00,k271 < y < 27w + k27}. Now
we choose the particular zone which contains the value z = (5 + 4). This zone corresponds
tok = 2anditis Zyr = {z +iy| — oo < x < 400,471 < y < 67}. Then we consider the
continuous branch f of log which maps A onto Zy:

f(w) =1Inr+i6 for w=re? and r = |w| >0, 47 < 0 < 67,

where 0 is the unique value of argw which is contained in the interval (47, 67).
Since A is connected, there is no other such continuous branch of log in A.

Exercises.

4.3.1. Let z # 0. Prove that the only element of exp(log z) is z and that the elements of log(exp z)
are z + k2mi, k € 7Z.

4.3.2.If A is any of the sets {w |71 < |w| < ro} \ [—re, —71], {w |0 < |w| < 7o} \ [—7r2,0),
{w]|r; <|w| < 400} \ (—o0, —71], find Log(A).

4.3.3. Work on the following in both cases: 8y = —m and 6y = 0.

Consider Ay,, i.e. the w-plane without the halfline with vertex 0 which forms angle 6y with the
positive u-semiaxis. Consider also 61,60, with 8y < 61 < 02 < 6y + 27 as well as rq, ro with
0 <7 <re < +oo. Draw the set P = {w = ret? |r1 < r <rg,0; <6 < 6} and its images
through the various continuous branches of log in Ay, .

434. LetP={re? |1 <r<2,-3 <9 <3} Q={w=re? |1 <r <27 <6<}
We know that there is a continuous branch f of log in P and a continuous branch g of log in Q. Is
it possible for f and g to coincide in P N Q?

4.3.5. Look back at exercise 1.2.1 and find all the possible values of Log(z122) — Log z1 — Log z2.

4.3.6. Prove that there is no continuous branch of log defined in any circle Cy(r) and hence in any
set A which contains such a circle.

4.3.7. Define w?® = e® 2% for every w € Ds(1), and prove that lim,_, 4o (1 + 2)” = e for
every z.

43.8.Let A C C\ {0}. If A is connected and if fi, fo are two different continuous branches of
log in A, prove that f1(A) N f2(A) = (0. (Observe how this result is confirmed by the special case
of A being C without a halfline with vertex 0 in which case the various continuous branches of log
in A map A onto disjoint horizontal zones.)

z—b

4.3.9. Leta < b. Discuss the geometric meaning of the number Log 2=,

forevery z with Im z > 0.
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4.4 Powers and branches of roots.

If n € N, n > 2, the function

w=z"
is holomorphic in the z-plane C and we shall examine some mapping properties of this function.
We work with polar representations:
2 =re? w = e,

If 6 € R is constant and r varies in (0, +00), i.e. if z moves on the halfline ry in the z-plane
with vertex 0 (without 0) which forms angle 6 with the positive z-semiaxis, then w = z" moves
on the halfline 74 in the w-plane with vertex 0 (without 0) which forms angle ¢ = nf with the
positive u-semiaxis. Also, if z moves on the halfline ry from 0 to co, then w = z™ moves on the
halfline 74 from 0 to co. If 6 increases by Af > 0, i.e. if the halfline 74 turns in the positive
direction by an angle A6, then the corresponding halfline r turns in the positive direction by an
angle A¢ = nAf. The two halflines rg and 7, 2= are mapped onto the same halfline 7, = rg 1 o5.

If r € (0, +00) is constant and 6 varies in R, i.e. if the point z moves on the circle Cy(r) in the
z-plane, then w = 2™ moves on the circle Cy(r™) in the w-plane. Also, if z rotates once on Cy(r)
in the positive direction, i.e. if # increases in an interval of length 27, then w = 2" rotates n times
on Cy(r"™) in the positive direction. If # increases in an interval of length 2%, then w = 2" rotates
once on Cp(r™) in the positive direction. If r increases, i.e. if the circle C(r) expands, then the
corresponding circle Cp(r™) also expands.

In the proof of the following propostion as well as in the whole course, we shall use the symbol
{/x only to denote the unique nonnegative n-th root of a nonnegative real number .

Ifn € N, n > 2 and if we take any w = Re'® # 0, then the equation 2" = w has n solutions
which are described as follows:

M =w=Re® o 2= YR for some k = 0,1,...,n—1. (4.6)

Indeed, if we write z = 7, then the equality 2” = w becomes "™’ = Re'® and this is
equivalent to v = R and nf = © + k2x for some k € Z. Solving for r and 0, we find the
solutions z = VR ei(%Jrk ZTW), k € Z. 1t is trivial to see that two of these solutions are the same if
and only if the corresponding values of & differ by a multiple of n and hence there are n distinct
solutions corresponding to the values 0,1,...,n — 1 of k. We easily see that the solutions of
2" = w are the vertices of a regular n-gon inscribed in the circle Cp( Y/R).

The set of the solutions of 2" = w, which appear in the right side of (4.6), is called n-th root

1/n

. 1 .
of w and it is denoted w= or w/™, i.e.

w%:{(L/Eei(%Jrk%r)‘k:(),l,...,n—l} when w = Re™®.
Thus, we have the equivalence
1
l=w & z€Ewn.

Of course, if w = 0, then the equation z” = w has the unique solution z = 0 and then we
define O = {0}.

To get (4.6) we considered a polar representation w = Re’®. This means that the values of
arg w are the numbers § = © + k2x, k € Z, and we have that

wr — {3 \w]ei% |6 cargw} = {e%

¢ €logw}.

Example 4.4.1. The n-th root of 1 is called n-th root of unity.
. 27,27
Since 1 = 1¢%, the elements of the n-th root of unity are the numbers R k= 0,1,...,n— 1.
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Obviously, one of them is 1 and, if we denote i by the symbol w,,, we find that the elements of
the n-th root of unity are the numbers

1,wn,wg, RN
This wy, is called principal n-th root of unity.

We saw that, if w # 0, then ww has exactly n elements which are on the vertices of a regular
n-gon inscribed in the circle Cy( {/|w]|) of the z-plane. Therefore, every arc of this circle with
central angle %’r, which includes only one of its endpoints, contains exactly one of the elements of

Wi Thus, every angular set in the z-plane with vertex 0 and angle 2%, which includes only one

. . : 1 : :
of its boundary halflines, contains, for every w # 0, exactly one element of wn. In particular, if
we consider any 6 and the angular set

Agy ={re?|r>0,60 <0 <6g+2} or Agy={re?|r>0,00<6<b+2},

then Ap, contains exactly one element of w.

Clearly, the function w = 2" from C \ {0} onto C \ {0} is n-to-one and has no inverse. So
we shall define branches of an inverse of w = 2".

Let A C C\ {0}. We say that the function f is a continuous branch of wr in A if f is

continuous in A and for every w € A we have that f(w) is an element of wn or, equivalently,
flw)"=w for every w € A.

.. . . 1
Proposition 4.7 gives many examples of continuous branches of w= .

Proposition 4.7. Let ¢pg € R. We consider the set
Ay = {56 5> 0,00 < ¢ < ¢ + 2}

in the w-plane (i.e. C without the halfline with vertex O which forms angle ¢g with the positive
u-semiaxis, where w = u + tv) and the angular region

By = {re? |r>0,2 << % 4 2}
in the z-plane. We define the function f : Ay, — By, as follows: for every w € Ay, we take
f(w) to be the unique element ofw% in the angular region By ,. Then f is continuous in Ay,
and so it is a continuous branch of ww in Ag,.
Proof. Assume that f is not continuous at some w in Ag,. Then there is a sequence (wy) in Ay,
so that wy, — w and f(wg) 4 f(w). Then there is § > 0 so that | f(wy) — f(w)| > § > 0 for
infinitely many k. These infinitely many k define a subsequence of (wy). Now we ignore the rest

of the sequence (wy) and concentrate on the specific subsequence. For simplicity we rename the
subsequence and call it (wy,) again. Therefore, we have a sequence (wy,) in Ay, such that

Wk — w and |f(wg) — f(w)] > >0 forevery k. (4.7

We set z = f(w) € By, and 2, = f(wy) € By, p, for every k. Then 2" = w and 2} = wy, for
every k and (4.7) becomes

2y — 2" and |zx — 2| >0 >0 forevery k. (4.8)

Since |zx|" — |z|™ and hence |z;| — |z|, we get that the sequence (z;) is bounded and the
Bolzano-Weierstrass theorem implies that there is a subsequence (zg,, ) so that z, —— 2’ for
some 2'. Since all z;,, belong to By, /,,, we have that 2’ belongs to the closed angular region
E%/n ={z=re|r >0, % <0< % + %’r} Taking the limit in (4.8), we get '™ = 2™ and
|2/ — z| > 6. This is impossible, because z belongs to By, /n and %' belongs to B, /n-

Thus f is continuous at every w in Ag. O
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From the mapping properties of the function w = 2" we get the following for the mapping
properties of the continuous branch f : Ay, — By, of w%, which is defined in proposition 4.7.
The function f maps the halflines in Ay, with vertex 0 (without 0) onto the halflines in By, /,, with
vertex 0 (without 0) and the circular arcs in A4, with center 0 onto the circular arcs in By, /,, with
center 0. .

Choosing any real ¢, we have defined a continuous branch of w=n in the subset Ay, of the
w-plane, whose range is the angular region By, /,, of the z-plane. If, instead of ¢, we consider
¢o+ k27 withany k = 0,1,...,n— 1, then the set A = Ay o remains the same but the range,
i.e. the angular region By, 1 rar)/n, rotates by an angle k%’r The n angular regions By, 4 ror)/n
withk = 0,1,...,n—1 are successive and cover the z-plane (except for their n boundary halflines
with vertex 0). We summarize:

If we exclude from the w-plane any halfline with vertex O, then in the remaining open set A there

are n continuous branches of wr defined. Each of them maps A onto some open angular region

of the z-plane with vertex 0 and angle %’r These various angular regions, which correspond

to the various continuous branches of w (in the same set A), are mutually disjoint, successive
and cover the z-plane (except for their boundary halflines). Of course, if we change the original
halfline which determines the set A, then the corresponding angular regions and the corresponding
branches of wn also change.

Example 4.4.2. We get a concrete example of a continuous branch of wn when we take P = —T.
Then the set A_, = {se¢'®|s > 0,—7 < ¢ < 7} is the w-plane without the negative u-semiaxis

(where w = u + 7v) and the range of the continuous branch of w is the angular region B_ ./, =
{re?|r >0, —% <0 < T}. This branch is given by

¢ . .
2= {/se'n for w = se’® with — 7 < ¢ < .

Clearly,

- Arg w Log w
2= Yw|e n =e n .
On the same set A_ of the w-plane, besides the above continuous branch of w%, we may de-
. 1 . .
fine n continuous branches of w=. Each of them maps A_, onto a corresponding angular region
B(_xikom)m with k = 0,1,...,n — 1, which results by rotating B_, /,, in the positive direction
by the angle k:%’r This branch results from the original branch by multiplication by the constant

27

¢’ and it is given by

o) 2w ; .
z= Yselnths) for w = se’® with — 7 < ¢ < .

: o . . 1
Now we introduce a generalization of the notion of continuous branch of w=». We define the

notion of continuous branch of g% , where g is a more general function than g(w) = w.
Let AC Candg: A — C\{0} be continuous in A. We say that the function f is a continuous

branch of g% in A if f is continuous in A and for every w € A we have that f(w) is an element
of g(w)% or, equivalently,

f(w)" = g(w) for every w € A.

Example 4.4.3. Let g : A — C\ {0} be continuous in A C C. If there is a continuous branch h
of w= in g(A), then f = h o g is a continuous branch ofg% in A.

Indeed, f = h o g is continuous in A and, since h(z)" = z for every z € g(A), we also have
f(w)™ = h(g(w))” = g(w) for every w € A.

Example 4.4.4.Let g : A — C\ {0} be continuous in A C C. If there is a continuous branch &
ofloggin A, then f = ex M is a continuous branch of g% in A.
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Indeed, f = en s continuous in A and, since e(*) = g(w) for every w € A, we also have
f(w)* = M) = g(w) for every w € A.

This is a standard way to produce continuous branches of g% when we know continuous branches
of logg.

Proposition 4.8. Let g : A — C\ {0} be continuous in A C C and f be any continuous branch

ofg% in A. If wg is an interior point of A and g is differentiable at wy, then f is differentiable

at wo and f'(wo) = %fzé?@

holomorphic in the interior of A.

. Hence, if g is holomorphic in the interior of A, then f is also

Proof. We set 29 = f(wp) and z = f(w) for every w € A. Then 25 = g(wp) and 2" = g(w).
Since f is continuous, w — wq implies z — zg. Therefore, using the derivative of the exponential
function at zg, we see that

fw) = flwo) _ 2=z g(w) —g(wo)  g'(wo) _ g'(wo)f(wo)

= — — = when w — wy.
w — W 2 —zy W —wo nzy ng(wo)
i - _ 9'(wo) f(wo)
Thus f is differentiable at wq and f’(wp) = W. O

Therefore, if g : A — C \ {0} is holomorphic in the open set A, every continuous branch of
g% can be called holomorphic branch of g% in A.

Example 4.4.5. We have defined n distinct continuous branches of ww in the open set A which
results when we exclude any halfline with vertex 0 from the w-plane. All these branches are
holomorphic branches of w in A.

Proposition 4.9. Let g : A — C\ {0} be continuous in A C C. Let also w, = e be the
principal n-th root of unity.
(i) If f1 is a continuous branch ofg% in A and % =wkin A wherek = 0,1,...,n — 1 is fixed,

1
then fo is also a continuous branch of g= in A.

.. . . 1. .
(ii) If, moreover, A is connected and f1, fo are continuous branches of g» in A, then f—f = wh in

A, where k = 0,1,...,n — 1is fixed. In particular, if fi(wy) = fa(wy) for some wy € A, then
fi=foin A

Proof. (i) The continuity of f; in A implies the continuity of f in A. We also have f1(w)" = g(w)
for every w € A and hence fo(w)” = fi(w)"(Wk)" = g(w)(w?)* = g(w) for every w € A.

n
: . 1.
Thus, f5 is a continuous branch of g» in A.

(if) Foreach w € A the numbers fa(w), f1(w) are elements of g(w) = . Hence (}?Ezg "= % =1
and so % : A= {1,wn,...,w" 1}, Now, the function £2 is continuous in A and A is connected,

f1
hence the set %(A) is also connected. Since %(A) C{l,wp,..., w1}, the set %(A) contains
f2

only one point. Le. I is constant in A and hence % = wFin A, where k = 0,1,...,n — 1is
fixed.
In case fo(wg) = f1(wp), then the integer k is 1 and we get fo = fi in A. O

1
Thus, if we know one continuous branch of g» in the connected set A, then we can find every
1
other of the n possible continuous branches of g= in A by multiplying the known branch with any
constant n-th root of unity.

Example 4.4.6. Let A = A_, = {se!?|s > 0, —7 < ¢ < 7} be the w-plane without the negative
u-semiaxis (where w = u + iv). We want to find a continuous branch of the square root w? in A
taking the value z = l at w = 1.

From the example 4.4.2 we already know the continuous branch of the square root which maps A
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onto the angular region B_, /5 = {re?|r >0, —5 < 6 < §}, ie. onto the right halfplane of the
z-plane, which is given by

0 5
z2=4/se"2 for w = se'® with — 7 < ¢ < 7.

Since A is connected, there is no other continuous branch of the square root in A taking the value
z=1latw=1.

Example 4.4.7.Let A = A_, = {s¢®|s > 0,—71 < ¢ < 7} again. Now we want to find a
continuous branch of the square root w? in A taking the value z = —1 at w = 1.

In the previous example we found one continuous branch of the square root in A. Since A is
connected, there are exactly two continuous branches of the square root in A. We consider the
principal square root of 1, i.e. wy = e = " = —1. (Trivial: the square roots of 1 are the
solutions of 22 = 1, i.e. the numbers 1, —1.) Then the second continuous branch of the square
root in A is given by

i@ x4 ; .
2 =1/5€"2wy = —/5¢€"2 for w = se’® with — 7 < ¢ <,

i.e. the opposite of the previous branch. This branch maps A onto the angular region B(_r12x)/2 =
Brjo = {re?|r >0, 5 <0< 37” , i.e. onto the left halfplane of the z-plane.

Exercises.

4.4.1. Describe the sets (—1)7, (—1)3, (=1)3, 2, 3, i1, (F=03)5, (1=8)5 (133,
4.4.2. (i) Find the elements of log(i%) and of 2 log i and observe that the two sets are different.
(ii) Prove that for every w # 0 and every n € N the sets log(w%) and % log w are equal.

1 1
4.4.3. Let w # 0 and z be any of the elements of wn». Prove that the elements of w» are the
numbers z, 2wy, 2w?2, ..., 2wt

4.4.4. The set C* = C \ {0} is a group under multiplication. Letn € N, n > 2.

(i) Prove that the n-th root of unity, i.e. the set {1, w,,w?, ..., w" 1}, is a subgroup of C*.

(ii) Let z = w¥ be any of the elements of the n-th root of unity and (2) = {z™|m € Z} be
the group generated by z. Prove that z is a generator of {1, wy,,w?,...,w" 1} or, equivalently,
(z) = {1,wp,w?,...,w" '} if and only if gcd{k,n} = 1.

(iii) Prove that {1,w,,w?,...,w" 1} has no subgroups other than {1} and itself if and only if n
is a prime number.

4.4.5. Look at exercise 3.3.2. Consider the curves on the z-plane with equations 22 — y? = « and
2xy = (. If the two curves intersect at a point (g, 3o), find in two ways their angle at this point.

. . 1. . .
4.4.6. Prove that there is no continuous branch of w= in any circle Cy(r) and hence in any set A
which contains such a circle.

4.4.7. Find the continuous branches of the square root in C \ [0, +00).

4.4.8. Find the continuous branches of the cube root in C \ (—o0, 0].

4.4.9. (i) Considering a holomorphic branch of (w + 1)% in C\ (—o0,—1] and a holomorphic
branch of (w — 1)% in C \ [1,+00), prove that there is a holomorphic branch of (w? — 1)% in
Q=C\ ((—o0, —1]U[1, 4+00)).

(ii) Considering a holomorphic branch of (w + 1)% in C\ (—o0, —1] and a holomorphic branch of
(w— 1)% in C\ (—o0, 1], prove that there is a holomorphic branch of (w? — 1)% inQY =C\[-1,1].
(This is not as easy as (i).)

(iii) Prove that there is no continuous branch of (w? — 1)% in any circle which surrounds one of
the points 1 but not the other.
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4.4.10. Prove that we can define a holomorphic branch f of (1 — w)% +(1+ w)% in the region
A which results when we exclude from C two non-intersecting halflines, one with vertex +1 and
another with vertex —1. Prove that every such f satisfies f(w)* — 4f(w)? + 4w? = 0 for every
w € A. How many such branches f exist in A?

4.4.11. (i) Let w # 0 and a € Z. Prove that {e®* | z € logw} has only one element, namely w®.
(ii) Generalizing (i), let w # 0 and a ¢ Z. We define w® = {e%* |z € logw} and this set may
have more than one elements. When does w® have finitely many elements and when does it have
infinitely many elements?

(iii) Describe the sets (ILZ'\/E)%, i1, 2%, 2 and draw their elements.

(iv) Prove that the elements of w®*? are also elements of w®w?, and that the elements of w® are
also elements of (w®)®.

(v) Let f be a continuous branch of login A C C\ {0}. Prove that g = e/ is a continuous branch

ag(wo)

of w” in A and that g is differentiable at every interior point wq of A and ¢'(wg) = o

(vi) Prove that there is a unique holomorphic branch f of (1 — w)’ = e?°¢(1=%) in I so that
f(0) = 1. Then prove that there are ¢, co > 0 so that ¢; < |f(w)| < ¢ for every w € D. Find
the best such ¢y, cs.

4.4.12. We define
arccosw = {z| cosz = w}, arcsinw ={z|sinz=w}, arctanw = {z|tanz = w}.

(i) Prove that the three sets are non-empty, except in the case of arctan(+1).

(i1) Express arccos, arcsin and arctan in terms of log.

(iii) It should be clear from exercise 4.2.6 that sin is one-to-one from {z +iy| — § <z < §}
onto Q = C\ ((—oo, —1]U[1, +00)). Prove that the inverse function g is a continuous branch of
arcsin in €2, i.e. go is continuous in 2 and sin go(w) = w for every w € ). Describe all continuous
branches g of arcsin in € and prove that they are holomorphic in Q with ¢'(w) = 1/(1 — wQ)% for
every w € €), where at the denominator appears a specific holomorphic branch of (1 — wQ)% in €2.
(iv) From exercise 4.2.6 again, it is clear that cos is one-to-one from {z + iy |0 < = < 7} onto
Q = C\((—o0,—1JU[1, +00)). Prove that the inverse function hy is a continuous branch of arccos
in , i.e. hg is continuous in € and cos hp(w) = w for every w € Q. Describe all continuous
branches h of arccos in §2 and prove that they are holomorphic in 2 with A/ (w) = —1/(1 — wQ)%
for every w € (2, where at the denominator appears a specific holomorphic branch of (1 — wQ)%
in Q.

(v) Prove that tan is one-to-one from {z+iy | =5 <z < F}ontoU = C\{iv|v < —lorl < v}.
Prove that the inverse function kg is a continuous branch of arctan in U, i.e. kg 1s continuous in U
and tan ko(w) = w for every w € U. Describe all continuous branches k of arctan in U and prove
that they are holomorphic in U with &' (w) = ﬁ for every w € U.

4.4.13. Considering appropriate continuous branches of w%, evaluate f7 ﬁ dw for both curves
1 (t) = e, t € [0,7], and y2(t) = e, t € [0, 7).
4.5 Functions defined by curvilinear integrals.

4.5.1 Indefinite integrals.

Let the complex functions f, F' be defined in the region 2 C C. We say that F' is a primitive
of fin Qif F'(z) = f(z) for every z € Q.

Proposition 4.10. Let the complex function f be continuous in the region Q2 C C. Then the fol-
lowing are equivalent.
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(i) 557 f(2) dz = 0 for every piecewise smooth closed curve y in §).

(ii) fﬁy1 f(z)dz = fw f(2) dz for every two piecewise smooth curves 1,72 in Q2 with the same
endpoints.

(iii) There is a primitive of f in ().

Proof. (iii) = (i) Let I be any primitive of f in {2. We take an arbitrary piecewise smooth curve
v : [a,b] — Q with y(a) = v(b). Then

$, f(2)dz = §, F'(z)dz = [P F'(y()/ () dt = [°(F o) (t) dt
= (Foy)(b) - (F ov)(a) = F(y(b)) — F(y(a)) = 0.

(1) = (ii) Assume that the piecewise smooth curves =1, 2 in €2 have the same endpoints. Then the

piecewise smooth curve v = 1 + (—y2) is a closed curve in 2 and then

f’y1 f(2) dz—fw f(z)dz = f% f(z)alz—l—fﬁ,y2 f(z)dz = fyf(z) dz = 0.

(i1) = (iii)) We consider an arbitrary fixed zg € 2. Then for every z € 2 there is at least one
piecewise smooth curve ~ in 2 with initial point 2y and final point z. We define the function
F:Q—Cby

F(z) = [ f(¢)dC. (4.9)
This formula defines F'(z) uniquely, since the value of the curvilinear integral depends only on the
point z and not on the particular piecewise smooth curve v which we use to join zg to z.
Now we shall prove that F' is a primitive of f in 2. We take an arbitrary z € (2 and a disc

D,(r) C Q. We also take a piecewise smooth curve v in {2 with initial point zy and final point
z. Then the value of F'(z) is given by (4.9). Now we consider any w € D,(r) and the curve

y + [z, w]. This curve is in §2, it is piecewise smooth and has initial point zy and final point w.
Therefore,
F(w) = [

yHzw

Qe = [ F(Q)dC+ [,y () d. (4.10)
From (4.9) and (4.10) we get
F(w) ~ F(2) — f(2)(w—2) = [,y F(Q)dC — £(2) [y, 0y dC = fi, oy (F(Q) = F(2)) dC. (411)

Now, since f is continuous, for every ¢ > 0 there is § > 0 so that |f(¢) — f(z)| < € for every
¢ € Qwith |( — 2| < 4. Taking w € D,(r) with |w — z| < § we automatically have | — z| < §
for every ¢ € [z, w] and (4.11) implies

[F(w) = F(z) = f(2)(w = 2)[ < e|w —z|.

Therefore, W—f{z)‘ < eforevery wwith0 < |w—z| < dandhence F'(z) = f(z). O

Let the complex function f be continuous in the region {2 C C. If either one of the equivalent
conditions (i), (ii) of proposition 4.10 is satisfied, then as we saw in the proof of (ii) = (iii) of
proposition 4.10, we may choose a fixed point zy € € and define F(z) = fv f(¢) d¢ for every
z € (), where  is an arbitrary piecewise smooth curve in 2 with initial point zy and final point z.
Now, any function F' of the form

F(z)= [ f(()d(+c  forevery z € Q,

where ~ is any piecewise smooth curve in {2 with fixed (but otherwise arbitrary) initial point zg
and final point z and where c is an arbitrary constant, is called indefinite integral of f in 2.

The crucial condition for the existence of an indefinite integral is (ii) (or its equivalent (i))
of proposition 4.10. As soon as this is satisfied, then by changing the base point zg € €2 or the
constant ¢ we get different indefinite integrals F'.
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In the proof of proposition 4.10 we saw that every indefinite integral of f is a primitive of f.
The converse is also true. Indeed, let F' be any primitive of f in the region €, i.e. let F'(2) = f(z)
for every z € ). Proposition 4.10 implies that condition (ii) is satisfied and, if we take any
piecewise smooth curve vy : [a,b] — € with initial point a fixed zp € € and final point z € €,
then

[, F(Qd¢ = [ F'(C)d¢ = [} F'(v(1)y (t) dt = [}(F o) (t)dt
= (Fon)(b) — (F ov)(a) = F(2) — F(z0).

Thus, F' has the form F'(z f f(¢)d¢ + F(z0) and hence it is an indefinite integral of f in Q.

We summarize. Let the complex function f be continuous in the region Q0 C C. Then the
notion of primitive of f in §2 coincides with the notion of indefinite integral of f in Q). Moreover,
the existence of a primitive or, equivalently, of an indefinite integral of f in ) is equivalent to the
validity of condition (ii) (or (i)) of proposition 4.10.

Regarding the number of possible primitives of f in {2 we may easily see that, if there is at
least one primitive F' of f in €2, then all others are of the form F' + ¢ for an arbitrary constant c.
Indeed, it is obvious that F' 4 c is a primitive of f in {2. Conversely, if G is a primitive of f in {2,
then we have (G — F)'(2) = G'(z2) — F'(z) = f(z) — f(z) = 0 for every z € Q. Now, theorem
3.3 implies that G — F'is a constant in 2.

Since it is useful for calculations of curvilinear integrals, we state relation (4.12) as a separate
proposition.

(4.12)

Proposition 4.11. Let F' be a primitive of the continuous function f in the region 2 C C. Then
for every piecewise smooth curve ~y in ) with initial endpoint z, and final endpoint z2 we have

f7 f(2)dz = F(z2) — F(21).

Example 4.5.1. Every polynomial function p(z) = agp + a1z + -+ + a,2" has the primitive
apz+ Y24+ n+1in C. Therefore, we have fv p(z) dz = 0 for every piecewise smooth
closed curve .

In particular, if n € Z, n > 0, we have fw(z — z09)" dz = 0 for every piecewise smooth closed
curve 7. A very special case of this, with the circle C,,(r), we saw in examples 2.3.9 and 4.2.2.

n—l—lz

Example 4.5.2. The exponential function e* has the primitive e¢* in C. Hence ﬁy e*dz = 0 for
every piecewise smooth closed curve 7.

Example 453.Lletzg € Candn € N, n > 2 Then the function =) ) has the primitive
y=T in C\ {z}. Therefore, 519 0 ) dz = 0 for every piecewise smooth closed

o (n—l)(z 20 z2—20
curve v in C \ {zp}. A very special case of this, with the circle C,(r), we saw in examples 2.3.9

and 4.2.2.

Example 4.5.4. The function ﬁ (the case n = 1 of the previous example) has no primitive in

C\ {20} or even in any open ring D, (r1,m2) = {z|r1 < |z — 20| < ra}.

Indeed, i 2 (71, 72), then we would have 557 p— dz = 0 for every

piecewise smooth closed curve v in D (r1,72). Now, if we take a radius r so that r; < r < ry

and the curve vy : [0, 27r] — DzO (rl, 7"2) with parametric equation (t) = zy + re, then we have

¢ = f Loriet dt = 2mi # 0. In fact, we did exactly the same
v z—z0 zo C (r) zZ—20 Z() 0 re

calculatlon in exarnple 4.2.2.

The following result is important.

Theorem 4.1. Let g : Q@ — C\ {0} be holomorphic in the region ) C (C and let g' be continuous in

Q. Then a holomorphic branch of log g exists in () if and only if
smooth closed curve v in €.

N g(z) ) 4z =0 for every piecewise

54



Proof. Assume that there is a holomorphic branch of log g in €2, i.e. there is F' holomorphic in
Q so that eF'(?) = g(2) for every z € Q. Then F'(2)ef'(?) = ¢/(2) for every z € Q and hence
F'(2) = % for every z € Q. Therefore, F is a primitive of %l in Q and thus, jiy gg ,((ZZ))
every piecewise smooth closed curve « in €.

Conversely, assume N 5;, ((ZZ)) dz = 0 for every piecewise smooth closed curve v in 2. Then %/ has

a primitive, say F, in Q. Now, we have - (g(z)e ') = ¢/(2)e P — g(2)F'(2)e F*) = 0
for every z € Q. This implies that, for some constant ¢, we have g(z)e™ "' (2) = ¢ for every z € Q.
Since ¢ # 0, there is a constant d so that e’ = ¢ and we finally get that e/'(*)*4 = ¢(z) for every
z € ). Now the function F' + d is a holomorphic branch of log g in (2. O

In the next chapter we shall prove that for every holomorphic g the derivative ¢ is automat-
ically continuous. Therefore, a posteriori, the assumption in theorem 4.1 that ¢’ is continuous is
unnecessary.

Example 4.5.5. If the region 2 C C\ {2} contains a circle C,(r), then there is no holomorphic
branch of log(z — zp) in €. In fact, example 4.5.4 shows that f() () ﬁ dz # 0.
20

Example 4.5.6. Let g :  — C )\ {0} be holomorphic in the region 2 C C, let ¢’ be continuous in
(2 and suppose that there is a halfline with vertex 0 so that g(2) C C\ [.

We know that a holomorphic branch of log exists in C \ [ and now example 4.3.3 says that a
holomorphic branch of log g exists in {2. From theorem 4.1 we also get that N %l ((j)) dz = 0 for
every piecewise smooth closed curve « in €.

4.5.2 Integrals with parameter.

Lemma 4.2. Let n € N and v be any piecewise smooth curve. If the complex function ¢ is contin-
uous in the trajectory v*, we define f(z) = f,y (¢(C)

in the open set C\ v* and f'(2) = n o = —9€) (G d¢ for every z ¢ ~*.

¢ ~*. Then f is holomorphic

Proof- We take any z € (C\v Since C \ v* is open, thereis§ > 0 sothat D.(§) C C\ ~v*. We
consider the smaller circle D, ( ) and we have | —w| > 2 5 forevery ¢ € y*andeveryw € D, ( ).
Now for every w € D, ( ) we get

WGy OO e = [ (ST o) de. (413)

To simplify the notation, we temporarily set a = ( — w and b = ( — 2z, and, to estimate the
parenthesis in (4.13), we use the algebraic identity
11

Gt — g = b a)(Gp + o+ e ).

We have that |a| > g and |b| > g forevery ( € y* and w € Dz(g) and hence

11
B | < b al (e o )

1424+ (n—1)+ 209n+2
< |w— \W < |w — 2| BEe.

(4.14)

Now, (4.13) and (4.14) imply

n+2

‘f(w Z nf Z)n+1 dc‘ < ‘w - Z‘ 6n+2 SupCE’y | (C)‘ l(’)/)
w =n/ 1 C n +1 d¢ and f is differentiable at

zwith f'(z) =n o - an( O

for every w € Dz(é) Therefore limy,—, »
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Observe that lemma 4.2 justifies the change of order of the operations of integration and dif-
ferentiation with respect to the parameter z:

f/(Z) = diz (Z) = d ¥ (C z)" dc f7 dz( z)”) dC - nf C¢z()<"+1 dC

Proposition 4.12. Let v be any piecewise smooth curve and the complex function ¢ be continuous

in the trajectory v*. Then the functlon f(z f ¢(C) ~ d( is infinitely many times differentiable in

the open set C \ v* and M (z) = n! f © ¢Z()Cn+1 dCfor every z & v*.

Proof. Successive applications of lemma 4.2. O
Exercises.

4.5.1. Let f, g be holomorphic in the region Q C (C and let f’ g be continuous in Q.
@ If|f(2)
curve «y in €.

(i) If | f(2) — g(2)| < |g(2)| for every z € €, prove that ¢ J}((j)) dz = § Z((j)) dz for every
piecewise smooth closed curve v in €.

4.5.2. Let v be a piecewise smooth curve and the complex function ¢ be continuous in v*. We
know that the function f(z) = N ‘é’ CZ) d( is holomorphic in C \ v*. Prove that f is holomorphic
at oo.

4.5.3. Let the complex function f be continuous in R and let +;° ‘1f +(|2|| dt < 400. Prove that the
function F(z) = [~ oo S gy i holomorphic in C \ R.

oo t—=z

4.5.4. Let the complex function f be continuous inRand [* > O f()]eMl dt < +oo for every

M > 0. Prove that the function F|(z) = [*°° f(t)e'* dt is holomorphic in C.
4.5.5. Find the domains of holomorphy of the functions f(z fo T + =~ dt, g(z f T t2 dt,
h(z) = [y Sz dtand k(z) = [;F° e~ dt.

4.6 Functions defined by power series.

Every series of the form

r—i_(x(})an(Z—ZO) —ao+a1(z—zo)—|—a2(z_20)2+...

is called power series with center z( and coefficients a,,. The R € [0, +00] defined by

_ 1

—1im Y/ Jan]

is called radius of convergence of the power series. (Of course we understand that R = 0 if
lim {/|an| = 400 and R = +oo iflim {/|a,| = 0.)

Proposition 4.13. Let Zn 20 an(z — 20)™ be a power series with radius of convergence R.

If R = 0, then the series converges only at zy. If R > 0, then:

(i) The power series converges absolutely at every z € D, (R).

(ii) The power series diverges at every z & D, (R).

(iii) The power series converges uniformly in every closed disc D, (r) withr < R.

(iv) The sum s(2) = >0 an(z — 20)™ is holomorphic in D, (R). The derivative of s in D, (R)
is the sum t(z) = 12 nan (2 — 20)" ! of the power series which results from 3"+ a,(z — z0)"
by formal termwise differentiation.
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Proof. If z = 2y, then the power series consists only of its constant term ag and hence converges.
If z # 2o, then by the definition of R we get lim {/]a,,(z — 20)"| = lim ¥/|a,| |z — 20| = lz=zl| ZOI
The root test of Cauchy for general series implies that the power series converges absolutely 1f
|z — 29| < R and diverges if |z — zg| > R and this is the content of (i) and (ii).

(iii) Let 0 < r < R. We take any R’ with r < R’ < R. Then lim {/]a,| < % and so there is
ng so that ¥/[a,| < & for every n > ng. Then for every z € D (r) we have |a,(z — 20)"| =
lan| [z — 20" < ()" for every n > ng. Since #; < 1, we have ZZE%(%)” < 400 and the test
of Weierstrass 1mp11es that the power series Y720 an(z — 20)" converges uniformly in EZO (r).
(iv) Besides "9 a,, (2 — 20)", we also consider the power series Y7 na,(z — 20)"~!. The
second power series results from the first by formal termwise differentiation. We shall prove that
the second series converges at every z € D, (R) and that its sum is the derivative of the sum s of
the first series at every z € D, (R).

Since {/n — 1, we have lim {/|na,| = lim {/n {/|a,| = lim {/|a,| and the radius of conver-

gence of the series 3"t na, (2 — 2)" is also R. Thus, +2 nay(z— 20)" ! converges at every
2 € D,y (R). We define t(z) = 372 na, (2 — 20)" L atevery z € D, (R).
Now at every z,w € D,,(R) we have s(w) — s(2) = 1% a,((w — 2)" — (2 — 20)"). For

simplicity, we shall set temporarily a = z — 2p and b = w — z¢ and then we have

s(w)— z() t( ) i 2an(bn 1+bn 2a+ +ban—2+an—1_nan—1)

= (4.15)
= (w—2) 3% an ("2 + 2" Ba + -+ (n — 2)ba" 3 + (n — 1)a"?).

We fix z € D, (R) and § = m > 0. Wealsoset Ry = |z —z0|+6 = R—§. Ifw € D, (),

then |b| < R; and |a| < R; and (4.15) implies

‘M —t(z)| < |w — 2| 3525 n?an |RY 2.

w—=z

Since lim {/|n%a, R}| = £ < 1, the last sum is a finite number independent of w € D.(J).
Therefore, lim,,_, . S(wtg *(2) — {(z) and s is differentiable at z with s(z) = #(z). O

z

If R is the radius of convergence of 370 a,,(z — 20)", then the open disc D, (R) is called
disc of convergence of the power series.

We saw that, if 0 < R < 400, the sum s(z) of the power series is a holomorphic function in
D, (R). In fact the derivative of s(z) is the function ¢(z) which is the sum of the power series we
get by formal termwise differentiation of the original power series. We saw that the differentiated
power series has the same disc of convergence as the original series and hence we may repeat our
arguments: the function ¢(z) is holomorphic in D, (R) and its derivative, i.e. the second derivative
of s(z), is the sum of the power series which we get by a second formal termwise differentiation of
the original power series. We conclude that the function s(z) is infinitely many times differentiable
in the disc of convergence D, (R) and

s () =St nn—1)--(n—k+ Day(z — 20)" " forevery z € D, (R).

Example 4.6.1. For the power series :Lrool Zn we get lim ¥/|1/n| = 1, and hence R = 1. The
disc of convergence is D. If s is the function defined by the power series in D, then s'(z) =
Sl = L for every z € D. We observe that — Log(1 — z) is defined and is holomorphic
in D. Its derivative is -1 and its value at 0 is 0. Since the functions s(z) and — Log(1 — z) have
the same derivative in the region ID and the same value at 0, we conclude that
N2 = —Log(l - 2) for every z € D.

We shall come back to this identity when we study the Taylor series of the function — Log(1 — 2)
inD.
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Example 4.6.2. For > 22 we get lim ¥/|1/n2?| = 1, and hence R = 1. The disc of conver-
gence is D.

Example 4.6.3. For Zo% 2 we have lim {/|1/n!| = 0 and hence R = +oc. The disc of con-

vergence is C. If s is the functlon defined by the power series in C, then s'(z) = :{Oﬁ (fln_ll)! =

o0 2 = s(z) for every z. Now we have that £ (e7s(z)) = —e *s(2) + e *s/(z) = 0 for

n=0 n!
every z. Since the value of e #s(z) at 0 is 1, we find that e *s(z) = 1 for every z and thus

n
Y0 =e*  forevery z.

We shall reprove this identity later, when we study the Taylor series of the function e”.
On the other hand, since the series Z+°° Z and Z+°° w, converge absolutely, proposition 2.3

n=0 n!
implies that
+ + no_ wh =k _ gt 1 k k
n(x())iz' no%%_ (Zk Ok'(n k;)')_ ni%n'(zk O() w" )
(z+w)™

- n!
This provides us with a second proof of the identity e*e¥ = e*T%,

Example 4.6.4. For 37> nlz" we have lim {/n! = +oc, and hence R = 0. The power series
converges only at 0.

Every series of the form

-1
Yl an(z = 20)" = Gt e T i

is called power series of second type with center z; and coefficients a,. The R € [0, +o0]
defined by o
R =1im {/|a_m|

is called radius of convergence of the power series.

The usual power series of the form Zn 20 an(z — 20)™ are also called power series of first type,
to distinguish them from the power series of second type.

We observe that a power series of second type has no meaning at 2y, in the same way that any
power series of first type (with a,, # 0 for at least one n > 1) has no meaning at co. On the other
hand, if z = oo, then a power series of second type becomes » " 10 = 0 and hence converges
with sum 0.

From now on in these notes we shall use the notations

Dy(R,+00) ={z| R < |z — 2|},  Ds(R,+00) ={2|R <[z — 2}
for the open and the closed unbounded ring with center zy and internal radius R. We also use
DZO(Rl,RQ) = {Z | R1 < |Z — 20| < RQ}, EZO(Rl,Rg) = {Z ‘ R1 < ‘Z — Zo‘ < RQ}

to denote the open and the closed bounded ring with center zg, internal radius R; and external
radius Rs.

Proposition 4.14. Let Zﬁjo_l an(z — 20)™ be a power series of second type with radius of con-
vergence R.

If R = 400, then the series converges only at co. If R < 400, then

(i) The power series converges absolutely at every z € D, (R, +00) U {o0}.

(ii) The power series diverges at every z ¢ D, (R, +0).

(iii) The power series converges uniformly in every D, (r,+00) U {co} withr > R.

(iv) The sum s(z) = Zﬁzofl an(z — 20)" is holomorphic in D,,(R,+00) U{oo}. The derivative
of sin D, (R, +oo) U {oo} is the sum t(z) = 3"  nan(z — 20)" " of the power series which
results from » " an(z — 20)" by formal termwise differentiation.
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Proof. The easiest way is to reduce a power series of second type to a power series of first type

with the simple change of variable w = . Then the power series S = 4, (2 — 29)™ takes the

form Zfzo_l apw " = Z:;‘;Ol a_mw™ of a power series of first type with center 0. We also ob-
serve that z varies in the unbounded ring D (R, +00) if and only if w varies in the punctured disc
Do(%)\{0}. Also, z varies in the unbounded ring D, (r, +-00) if and only if w varies in the punc-
tured disc Do (1) \ {0}. Now we can use everything we know about the series 37, a_,,,w™ from
proposition 4.13 to get the corresponding results about the series Zf;_l an(z — 2z0)™. For exam-

ple, the differentiability of "= a,, (2 — 2)" results from the differentiability of 3° % a_,,w™

o

and the differentiability of the function w = ——. We leave all the details to the reader. We shall

z—z0 "

n=-—1

only say a few things about the differentiability of s(2) = > "'
the transformed power series s, (w) = 7% a_,,w™. Since 5(c0) = 0 and 5,(0) = 0, we have

an(z — zp)™ at oo, using again

—

S« (w

lim, o0 2(8(2) — s(00)) = lim, 0 25(2) = limy—(1 + 2ow) =s,(0) =a_.

Therefore, s is differentiable at oo ]

If R is the radius of convergence of 32"~ " a,,(z — 29)", then the open ring D, (R, +00) is
called ring of convergence of the power series. In fact the series converges in D, (R, +00)U{cc},
which is an open set in C with respect to the chordal metric.

If0 < R < 400, we saw that the sum s(z) of the power series is a holomorphic function in
D, (R, +00) U {oo}. In fact the derivative of the sum s(z) of the power series is the function
t(z) which is the sum of the power series we get by formal termwise differentiation of the original
power series. The differentiated power series converges in the same set D, (R, +00) U {o0}.
Therefore, we may repeat our arguments: the function ¢(z) is holomorphic in D, (R, 4+00) U{oco}
and its derivative, i.e. the second derivative of s(z), is the sum of the power series which we get
by a second formal termwise differentiation of the original power series. We conclude that the
Sunction s(z) is infinitely many times differentiable in D, (R, +0o0) U {cc} and
sB(2) =" nn—1)- (n—k+1)an(z—2)"F forevery z € D, (R, +00)U{o0}.

—00

Example 4.6.5. "7 1 22 = St Lo converges in Dy (1, +00) U {00} = C\D.

-n m=1 mz™m

Example 4.6.6. "~ 1 20 = 3" 1 _ converges in Dy(1, 4+00) U {oo} = C\D.

m=1 mQZm

Example 4.6.7. >"7 ! (fZ)! = 3" L converges in Dy(0, +00) U {00} = C \ {0}.
Example 4.6.8. 3" ' (—n)lz" = S5 Zﬂﬁl converges only at co.

Finally, we consider a series of the form

Sz —2)" =+ (Zcfzi)g T a0+ ai(z — 20) +as(z — 20) + -

which consists of a power series of first type and a power series of second type. We assume
that a,, # O for at least one n < 0 and for at least one n > 0. Then the original series is
called power series of third type with center zy and coefficients a,,. The radius of convergence
Ry of 3" " an(z — )™ and the radius of convergence Ry of 3, a,, (2 — 20)" are called
radii of convergence of our power series. We say that Zfz an(z — 2zp)" converges at z if both
"= lan(z — 20)" and 3% a, (2 — 29)™ converge at z, and we say that S a,,(z — )"

diverges at z in all other cases.

A power series of third type with center zg has no meaning at the points 2y and co.

A power series of third type is a combination of a power series of first type and a power series
of second type. Therefore, we expect that the properties of a power series of this new type are a
combination of properties of power series of the two previous types. Indeed, the next result is a
direct combination of propositions 4.13 and 4.14 and we omit the proof.
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Proposition 4.15. Let Zf§ an(z — 20)™ be a power series of third type with radii of convergence
Ry, Ro.

If Ry < Ry, then the series diverges at every z, except in the case ) < Ry = Rp = R < 400 and
then it may converge only at some z € C,,(R). If R1 < Ro, then

(i) The power series converges absolutely at every z € D, (R1, Ra).

(ii) The power series diverges at every z ¢ D, (R, Ra).

(iii) The power series converges uniformly in every EZO (ri,7m9) with Ry <11 < 19 < Ro.

(iv) The sum s(z) = Y7 a,(z — 20)" is holomorphic in D, (R, Ra). The derivative of s in
D,y (R1, Ra) is the sum t(z) = Y. nay(z — 20)" " of the power series which results from
S % an(z — 20)" by formal termwise differentiation.

If Ry < Ra, then D, (R1, Ry) is called ring of convergence of Zfz an(z — zo)™ and the
function s defined by the power series is inﬁnitely many times differentiable in D (R1, Ra).

Example 4.6.9. We consider 32" " 2 Znt1 + SoaS] "

Then Zﬁjo_l %z" has radius of convergence 5 and 1 + Z 12 z" has radius of convergence
1. Therefore, Do(3, 1) is the ring of convergence of Eﬁ; z +1+>7 n12 2"
Exercises.
4.6.1. Find the discs of convergence of 3% a,,2" when a,, = n'3, a,, = %, ap = 2, a =
12 12
" gy = (Inn)", ap = 2, an = 2 a, = g;‘n))!-
4.6.2. Fmd the rings of convergence of Z anz when a,, = n?, a, = le, an = 2%, an = 3",
e
4.6.3. Find the ring of convergence and the sum of Zn_fl( 12 4+ 30 (£)n e,
4.6.4. (1) Using the geometric series Z —o #"", write ;= as a power series with disc of convergence

Dy(1) and as power series with ring of convergence Do( , +00).
(i1) Write m as a power series with disc of convergence Dy(3), as a power series with ring
of convergence Dy(3,4) and as a power series with ring of convergence Dy (4, +00).

4.6.5. If m € N, using the geometric series Z —o 2", write 0 as a power series Zn 0 anz"

1
1— Z) m
and determine its disc of convergence.

4.6.6. Find the radius of convergence of 1 + 37 ¢ a+11)2 (‘iféz;il)’(bzrcﬁn_(bgnfl)z”, where ¢ #

0,—1,—2, .... This power series is called hypergeometric series with parameters a, b, c. Prove
that the function w = F'(z;a,b, c), which is defined by the hypergeometric series in its disc of
convergence, is a solution of the differential equation z(1— Z)w’ "+ (c—(a+b+1)z)w' —abw = 0.

4.6.7. (i) Prove that, if two power series of the type > ') a,(z — z9)"™ with positive radii of
convergence define the same function in the intersection of their discs of convergence, then the
two series coincide, i.e. they have the same coefficients a,,.

(ii) Prove a result analogous to (i) for two power series of the type Eﬁ;_l an(z — 20)™.

4.6.8. Let0<R<—i—oo

(i) If Y°7%0 an(z — 20)™ converges absolutely for some z € C,(R), prove that it converges
absolutely for every z € D, (R).

(i) If Y720 an(z — 20)™ converges for some z € C.(R), prove that it converges absolutely for
every z € D, (R).

4.6.9. Let R/, R" and R be the radii of convergence of 3,720 a,,’ (2 —20)™, 3,20 an” (2 — 20)™ and
:{(Xa(an +ayn")(z — 20)", respectively. If R" # R”, prove that R = min{R’, R"}. If R’ = R”,
prove that R > R = R".

60



4.6.10. Let >0 an(z — 20)" and 3720 by, (2 — 29)™ be two power series and assume that ¢,, =
apby, + a1bp—1 + - + an—_1b1 + apby for every n > 0. If the two power series converge in the
disc D, (R), prove that the power series >_."%0 ¢, (z — 20)" also converges in D,,(R) and that

Fo0 en(z — 20)" = D22 an(z — 20)" E+°° bn(z — z0)" for every z € D, (R).
4.6.11. Let R be the radius of convergence of /> a,,(z — 20)". If 0 < R < +00, find the radii
of convergence of 37 nFan (2 — 20)", Y125 nlan(z — 20)™, 3025 % (2 — 20)™

4.6.12. Let k € N, k > 2. Find the 2 at which 379 z converges.

nln

4.6.13. Find the z at which >~ 2™ converges.

2

4.6.14. Let 0 < b < 1. Find the ring of convergence of b 2.

n=—oo

4.6.15.1f s(2) = 3720 an(z — 20)" for every z € D, (R) and |a1| > Y72 nja,|R" L, prove
that s is one-to-one in D, (R).

61



Chapter 5

Local behaviour and basic properties of
holomorphic functions.

5.1 The theorem of Cauchy for triangles.

Let A be a closed triangular region. We write fa A J(2) dz to denote the curvilinear integral over
a piecewise smooth curve ~ with trajectory v* = A which describes the triangle 0A once and in
the positive direction. For instance, if 21, 29, 22 are the vertices of the triangle in the order which

agrees with the positive direction of A, then a Valid curve is v = [21, 2] + [22, 23] + |23, 21).
Hence’ fBA f(Z) dZ = ‘[[21722] f dz + fzz 23 dZ + f[zs,zl] f(z) dz

Of course there are analogous statements for 1ntegrals fa r f(2) dz, when R is a closed rectan-
gular region or, more generally, a closed convex polygonal region.

The theorem of Cauchy-Goursat. If f is holomorphic in an open set Q) which contains the closed
triangular region A, then

Joa f(2)dz = 0.

Proof. We write I = 566 A f(2) dz, and we have to show that I = 0.
Let A = A(z, 22, 23) be the glven closed triangular region with vertices 21, 22, z3 written in the
order which agrees with the positive direction of 9A. We take the points ws, w1, we, which are the
midpoints of the linear segments [z1, 2], [22, 23], [23, 21], respectively. Then the closed triangular
region A(z1, 29, z3) splits into the four closed triangular regions AL = A(z1, w3, w3), A®?) =
A(ws, 22, w1), AB) = A(wi, z3,wz) and AW = A(wg, w1, w2) and we define the correspond-
1ng curvilinear integrals: I = §, 1) f(2) dz, I® = §, (o) f(2)dz, I®) = §, () f(2) dz and
= 558 A@ f(2)dz. We analyse each of the four integrals 1nt0 three integrals over the three
linear segments of the corresponding triangle, we add the resulting twelve integrals and we ob-
serve the cancellations which occur between integrals over pairs of linear segments with opposite
directions. We end up with six integrals over six successive linear segments which add up to give
the three linear segments of the original triangle JA. The resultis I = 1) + 1) 4 1) 4 14,
This implies [7| < [IW| + [I®)| + [I®)| + [I™®| and hence [I1)| > 1 |I| for at least one j. Now
we take the corresponding closed triangular region A) and, for simplicity, we denote it A;. We
also denote I; the corresponding integral 7). We have proved that there is a closed triangular
region A contained in the original A such that, if [ = 398 A S (z)dzand I} = fa A z) dz, then
|I;] > X|I|. We also observe that diam Ay = J diam A. We may continue 1nduct1vely and pro-
duce a sequence of closed triangular regions A,, and the corresponding sequence of curvilinear
integrals I,, = §,, f(2)dz so that:
DADAI D DA, 2 A1 2D,
(ii) 1] > =111,
(iii) diam A, = 2% diam A.
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Now, (i), (iii) imply that there is a (unique) point z contained in all A,,. In particular, z € A
and hence f is differentiable at z. If we take an arbitrary ¢ > 0, then there is 4 > 0 so that
]f f(z) — f'(2)| < e forevery ¢ with 0 < | — z| < 4. Thus,

1f(Q) = f(2) = ()¢ —2)| < el —2]  forevery ¢ with [¢ — z] < 0. (.1

Because of (iii), there is some large n so that diam A,, < 4. Since z € A,, and diam A,, < J, we
get |¢ — z| < diam A,, < ¢ for every ¢ € 0A,, C A,, and now (5.1) and (iii) imply

1f(C) — f(z) = F/(2)(C—2)] <€ — 2| < ediamA,, = 2% diam A for every ¢ € 0A,,.
Therefore,
| $on, (F(O) = f(2) = ['(2)(C = 2)) d(| < 5 diam A(DA,,) < §5(diam A)?, (5.2)

Since f(2) + f'(2)(¢ — 2) is a polynomial function of ¢, we get §,\ (f(2)+ f'(2)(( —2))d( =0
from example 4.5.1, and (5.2) becomes

|| = ’563A f(¢)d¢| < 36 <~ (diam A)

Finally, (ii) implies |I| < 3¢(diam A)? and since € > 0 is arbitrary, we conclude that I = 0. [

5.2 Primitives and the theorem of Cauchy in convex regions.

Proposition 5.1. If f is holomorphic in the convex region ), then f has a primitive in ().

Proof. We fix zy € . Then for every z € € the linear segment [zg, 2| is contained in 2 and we
define F'(z) = f [70,7] f(¢) d¢. We shall prove that F is a primitive of f in . We take arbitrary
z,w € ) and consider the closed triangular region A with Vertlces 20, 2, w. Since 2 is convex, A
is contained in €2 and the Cauchy-Goursat theorem 1mphes fa A f(2)dz=0,ie. f[zo,z ¢)d¢ +

f[z,w] F(¢Q)d¢ + f[w,zo} f(¢)d¢ = 0. Therefore F(w) f[zw ¢) d¢ and hence

F(w) — F(2) ~ f(2)(w — 2) = [, 1) d¢ — f(2) f[z,w] 06 = fio (FQ) = F2) G- (53)

Since f is continuous, for every € > 0 there is 6 > 0 so that | f({) — f(2)| < € for every ( € Q
with | — z| < 0. Taking w €  with |w — z| < ¢ we automatically have |( — z| < ¢ for every
¢ € [z,w] and (5.3) implies

[F(w) = F(z) = f(z)(w = 2)| < e|w — 2|

, F(w)-F(2)

— f(2)| < eforevery wwith0 < |w—z| < §and hence F'(z) = f(z). O

The theorem of Cauchy in convex regions. If f is holomorphic in the convex region ), then

$ f(z)dz =
for every piecewise smooth closed curve 7y in ().
Proof. Direct from propositions 4.10 and 5.1. O

Now we shall decribe a very useful technique to handle curvilinear integrals of holomorphic
functions. Every piecewise smooth closed curve v we shall refer to will be visually simple, for
instance a circle or a triangle or a rectangle, and we shall be able to distinguish between the points
inside ~y and the points outside . We assume that v surrounds every point inside it once and in
the positive direction and that it does not surround the points outside it. The points inside v form
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the region inside ~ and the points outside v form the region outside . Then +* is the common
boundary of the region inside v and the region outside . We shall concentrate on two characteristic
cases.

First case. Let f be holomorphic in the open set €2 and let ¥ be a piecewise smooth closed curve
in Q. We want to evaluate ¢ f(z)dz.

If Q2 is convex, then 5‘% f(z)dz = 0. So let us assume that 2 is not convex. To continue, we
assume that the region inside ~, call it D, is contained in 2, and hence f is holomorphic in D
as well as in 0D = ~*. Now our technique is the following. We split D into specific disjoint
opensets F1, ..., E,, so that their boundaries OF1, . .., dF,, are trajectories of piecewise smooth
closed curves o1, ...,0.,, so that D = Ey U---U E,, and, finally, so that, when we analyse in
an appropriate way each of oy, ..., o, in successive subcurves and drop those subcurves which
appear as pairs of opposite curves, the remaining subcurves can be summed up to give the original
curve . The result is:

fyf(z)d«z: fgl f(2)dz+---+ ¢ f(2)dz

In fact we applied this technique in the proof of the theorem of Cauchy-Goursat.

Now, if the various E1, ..., E,, can be chosen so that each E1, ..., E,, is contained in a corre-
sponding convex open subset of €2, then we conclude that

$ f(2)dz=¢, f()dz+ -+ §, [f(z)dz=0+ -+0=0.

Second case. Let f be holomorphic in the open set €2 and let v, ~v1,...,7v, be n 4+ 1 piecewise
smooth closed curves in 2. We want to relate ¢ f(z)dz, §, f(2)dz,....$ f(2)dz.

We assume that the regions inside 71, ..., 7, are disjoint and that they are all contained in the
region inside . Let us call D the intermediate region, i.e. the set consisting of the points which
are inside «y and outside every 71, . . . , Yn, 1.€. the intersection of the region inside y and the regions
ouside 71, ..., V.. We further assume that D is a subset of €2, and hence f is holomorphic in D as
well as in 0D = v* U~f U---U~;. Now, here is the technique. We split D into specific disjoint
opensets F1, ..., E,, so that their boundaries 0F1, . .., dF,, are trajectories of piecewise smooth
closed curves o1, ...,0.m,, sothat E = E U --- U E,, and, finally, so that, when we analyse in
an appropriate way each of o1, . .., o, in successive subcurves and drop those subcurves which
appear as pairs of opposite curves, the remaining subcurves can be summed up to give v as well
as the opposites of v, . . ., ¥,. The result is:

$ f(2)de— ¢ f(z)dz—--—¢ f(z)dz=§, f(z)de+---+§, [(z)de

If the various F1, ..., E,, can be chosen so that each E1, ..., F,, is contained in a corresponding
convex open subset of Q, then §_ f(2)dz+---+ ¢, f(2)dz=0+---+0=0and hence

§f(2)dz=§ f()dz+---+§ f(z)dz

Corollary 5.1. Let C,C4,...,C, be n + 1 circles and let D, D1, ..., D, be the corresponding
open discs. Assume that D1, ..., D, are disjoint and that they are all contained in D. Consider
also the closed region M = D\ (D1 U ---U Dy). If f : Q — C is holomorphic in an open set
Q which contains M, then §., f(z) dz = fCl f(z)dz+ -+ fgn f(2)dz. Instead of circles we
may consider rectangles or triangles or any combination of the three shapes.

Exercises.

5.2.1. Let yg be the piecewise smooth closed curve which is the sum of the linear segment [0, R],
the arc of the circle Cy(R) from R to Re'i in the positive direction and the linear segment
[Re’g ,0]. Also, let o be the curve wich describes only the above arc from R to Re'T.
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(i) Prove that f e~ dz — 0 when R — +oc.

(i1) Using g appropriately together with the formula +°° e dt = f

+
the so-called Fresnel integrals: [,"*sint?dt = [;" cost?dt = 2&

5.2.2. Let y, R > 0 and g4 be the piecewise smooth closed curve which is the sum of the linear
segments [—R, R, [R, R+ iy], [R + iy, —R + iy] and [-R + iy, —R)].

(i) If y > 0 is constant, prove that f[RRHy} e * dz — 0 and f[iRHyﬁR] e~ dz — 0 when
R — 4o0.

(i1) Using yg appropriately, prove that f
(iii) Using the formula f0+°° —2? gt = %, prove that fj;o e~ cos(2zy) dz = \/me V" for
every y > 0 (and hence for every y < 0 also). This identity is very important in harmonic
analysis.

, prove the formulas for

o0 e=(=+)” 4z does not depend on y € [0, +00).

5.3 Cauchy’s formulas for circles and infinite differentiability.

Cauchy’s formula for circles. If f is holomorphic in an open set ) containing the closed disc
D..(R), then

f(z)= ﬁ szo(R) Jg(_cz) d¢ Jor every z € D, (R).

Proof. Let z € D, (R). We consider any open disc D, (r) withr < R — |z — zg|. Then D, (r) C
D, (R) and the function C(O is holomorphic in the open set 2 \ {z} which contains the closed
region between the circles C,(r) and C,, (R). Corollary 5.1 implies

$o. (B d¢ = §, () K dc. (5.4)
Now, we have fcz ") Tz f Zt ire' dt = 2mi and hence
$o iy L dC — 2mif(2) = §, () LLE ac. (5.5)

We take € > 0. Since f is continuous at z, there is § > 0 so that | f({) — f(z)| < e forevery ( € Q
with | — z| < §. Therefore, if r < §, (5.5) implies

| fcz(r) 5(2 d¢ —2mif(z)] < €2mr = 2me.

Since ¢ is arbitrary, we conclude that lim, 5502 r) J;(_CZ d¢ = 2mif(z). Now, letting » — 0 in

(54), we get f, L) d¢ = 2mif (2). O

A particular instance of the formula of Cauchy is when we take z = 2y, the center of the circle
C.,(R). Using the parametric equation ( = 29 + Re®, t € [0, 27], we get

= L 27 f(z0 + Re') dt

—

and this is called mean value property of the holomorphic function f.

Cauchy’s formula for derivatives and circles. If f is holomorphic in an open set (X containing
the closed disc D, (R), then f is inﬁnitely many times differentiable at every z € D, (R) and

(2 = 5o 3§C n+1 d¢  forevery z € D,,(R) and every n € N.

Proof. Proposition 4.12 says that ﬁ szo (R) % d( is an infinitely many times differentiable
function of z in the disc D, (R). On the other hand, Cauchy’s formula says that this function coin-
cides with the function f(z) in the same disc. Therefore f(z) is infinitely many times differentiable
in D, (R). Moreover, the derivatives of f(z) are the same as the derivatives of 51- szo (R) % d¢
and these are given by the formulas in proposition 4.12. O

65



Example 5.3.1. Let n € N. Then §C (R oy d¢ = 0 for every z ¢ D.,(R). To see this we

observe that the circle C(R) is contalned ina shghtly larger open disc D, (R’) which does not
contain z: it is enough to take R < R’ < |z — zp|. Then the disc D,,(R’) is a convex region and
ﬁ is a holomorphic function of ¢ in D, (R’). Now the result is an application of the theorem
of Cauchy in convex regions.

On the other hand, for every z € D, (R) we have fc (C yad¢ = 2mi, if n = 1, and

fo dC 0, if n > 2. This is a simple apphcatlon of Cauchy s formula (for a function

and 1ts derlvatlves) to the constant function 1. The special case z = zy we have already seen in
examples 2.3.9 and 4.2.2.

Theorem 5.1. If f is holomorphic in the open set (), then f is infinitely many times differentiable
in €.

Proof. Let zg € €. We take a closed disc D,,(R) C € and then f is infinitely many times
differentiable in D, (R) and hence at 2. O

It is time to recall the remark after theorem 4.1. The assumption of continuity of the derivative
in theorem 4.1 is superfluous. The same we may say for the hypothesis in example 4.5.6 and in
exercises 3.3.3 and 4.5.1.

Cauchy’s estimates. If f is holomorphic in an open set containing the closed disc D ,,(R) and if
|f(Q)] < M forevery ¢ € Cy,(R), then

|f(")(20)| < "}5){1 for every n € N.

Proof. Direct application of Cauchy’s formulas. O
Exercises.
5.3.1. Evaluate fCo( Z(Z2+4) dzfor0 <r < 2andfor2 < r < +4o0.

53.2.1fn € N, evaluate ¢, ) £ < dzand [ e sin(nf—sin0) do, [2" e3¢ cos(nf—sin §) df.

et? inz ef—e % Logz
5.3.3.If n € N, evaluate foo(l) & dz, fco(l) L2 dz, 5500(1) e ® dz, fCl () (Zogl)n dz.

5.3.4. Let f be holomorphic in C and let | f(2)| < A+ M]|z|" for every z. Prove that f("+1(2) = 0
for every z and that f is a polynomial function of degree < n.

5.3.5. Let the complex function f be continuous in D, (R) and holomorphic in D,,(R). Prove
that f(2) = 2= fcz / (fz) d¢ for every z € D, (R).

5.3.6. Let f be holomorphic in an open set containing the closed disc D, (R) and let 0 < r < R.
If |f(2)| < M for every z € C,,(R), find an upper bound for || in D, (r), which depends
only on n,r, R, M and not on f or z.

5.3.7. Let f be holomorphic in D, (R). If |f(z)] < m for every z € D, (R), find the

smallest possible upper bound for | f(") ()|, which depends only on n, R and not on f or z.

5.3.8. Let f be holomorphic and bounded in D. Prove that f(w) = 1 [ fD i zw)g dxdy for every
w € D.
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5.4 Morera’s theorem.

Theorem 5.1 and proposition 4.10 imply the following corollary. If the complex function f is
continuous in the region ) C C and if fv f(2) dz = 0 for every piecewise smooth closed curve ~y
in Q, then f is holomorphic in §). Indeed, since fv f(2) dz = 0 for every piecewise smooth closed
curve vy in €2, we get that f has a primitive, say F', in €. This means that F/ = f in 2 and hence F’
is holomorphic in §2. Therefore, F' is infinitely many times differentiable in €2 and then f is also
infinitely many times differentiable in 2. In particular, f is holomorphic in £2.

The next theorem proves the same result with weaker assumptions.

The theorem of Morera. If the complex function f is continuous in the open set 0 C C and if
fa A f(2) dz = 0 for every closed triangular region A in Q, then [ is holomorphic in Q.

Proof. Let zg € §2. We consider a disc D,,(R) C . This disc is a convex set and we have that
$a f(2) dz = 0 for every closed triangular region A in D, (R). Then the proof of proposition 5.1
applies, and we get that f has a primitive, say F, in D, (R). This means that F' = fin D, (R) and
hence F is holomorphic in D, (R). Therefore, F is infinitely many times differentiable in D, (R)
and f is also infinitely many times differentiable in D (R). In particular, f is holomorphic in
D, (R) and hence at z. O

Exercises.

5.4.1. If the complex function f is continuous in the open set €2 and holomorphic in Q \ [, where [
is a line, prove that f is holomorphic in €.

5.5 Liouville’s theorem. The fundamental theorem of algebra.

The theorem of Liouville. If f is holomorphic and bounded in C, then f is constant in C.

Proof. There is M > 0 so that |f(z)| < M for every z. We take any 2 and apply Cauchy’s
estimate for n = 1 with an arbitrary circle C,(R) and we find that | f'(z9)] < 7. Letting
R — 400, we get f'(z9) = 0. Since 2 is arbitrary, we conclude that f is constant. 0

Fundamental theorem of algebra. Every polynomial of degree > 1 has at least one root in C.

Proof. Let p be a polynomial of degree > 1 and assume that p has no root in C.

We consider the function f = %, which is holomorphic in C, and we see easily that it is also
bounded in C. Indeed, since lim,_, o, p(z) = oo, we have lim,_,~, f(z) = 0, and hence there is
R > 0sothat | f(z)| < 1 for every z with |z| > R. Since |f] is continuous in the compact disc
Do(R), there is M’ > 0so that | f(2)| < M’ for every z with |z| < R. Taking M = max{M’, 1},
we have that | f(z)| < M for every z and hence f is bounded.

Liouville’s theorem implies that f and hence p is constant and we arrive at a contradiction. O

Having proved that a polynomial p has a root z1, we may prove in a purely algebraic way that
z — z1 is a factor of p, i.e. there is a polynomial p; so that p(z) = (z — z1)p1(2) for every z.
Continuing inductively, we conclude that, if n > 1 is the degree of p, there are 21, .. ., z, so that

p(z) =clz—21)- (2 — 2n) for every z
where c is a constant. Thus, every polynomial p of degree n > 1 has exactly n roots in C.
Exercises.

5.5.1.1If f : C — C is holomorphic in C and Re f is bounded in C, prove that f is constant in C.
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5.5.2. We say that z, w are symmetric with respect to T if either z = 0, w = oo or z = co,w = 0
orz,weC,z= %

Let » = £ be a non-constant rational function so that the polynomials p, ¢ have no common root
and so that r(z) € T for every z € T. Prove that, if a € C\ {0} is a root of p of multiplicity &,
then b = 1s aroot of g of multiplicity k and conversely. L.e. the roots of p and the roots of ¢ form

pairs of pomts symmetric with respect to T. (In particular, p and g have the same degree.)

5.6 Maximum principle.

Maximum principle. Let f be holomorphic in the region Q@ C C and M = sup,.q | f(2)|. If there
is zo € Q2 so that |f(z0)| = M, then f is constant in ).

Proof. We take any z € 2 for which | f(z)| = M. We consider an open disc D,(R) C € and any
r with 0 < 7 < R. The mean value property of f says that f(z) = 5 OQW f(z + re't) dt. Since
|f(z 4+ ret)| < M for every t € [0, 27], we have

= () = | 27 f(z +reit)dt| < & [T |f(z + reit)|dt < M.

Hence, T f(z + reit)| dt = M and, since |f(z + re't)| is a continuous function of ¢, we
get | f (z —i— re”)] = M for every t € [0,27]. Now, r is arbitrary in the interval (0, R) and we
find that |f(z + re®)| = M for every t € [0,27] and every r € (0, R). So we get |f(w)| = M
for every w € D,(R). We proved that, if |f(z)| = M for a z € €, then this equality holds in a
neighborhood of z. Now we define

B={zcQ|[f(x)l =M},  C={zeQl|f(z)] <M}

and it is clear that BU C' = Q.

If z € B, then |f(2)| = M and hence the same is true at every point in a neighborhood of z.
Therefore z is not a limit point of C'. Moreover, if z € C then |f(z)| < M and, by the continuity
of f, the same is true in a neighborhood of z. Hence z is not a limit point of B.

If both B and C' are non-empty, then they form a decomposition of (2. But €2 is connected and,
since zg € B, we get that C' = (). Therefore, |f(z)| = M for every z € .

Now we shall prove that f is constant in 2. If M = 0, then clearly f = 0 in Q2. So let us assume
that M > 0. Ifu and v are the real and the imaginary part of f, then u? +v? = M 2 in Q and hence

ug; —|—vgx = 0and “ay +v8y = 01in §2. Using the C-R equations, we getu +vg” = 0and

Ugg —ud a = 0 in ). Viewing this as a system with unknowns g“, g” , we see that its determinant

isu? +v% = M? >0, andweﬁndthat% = 0 and % = 01in . Therefore, f' = g—; +i% =0
in 2 and hence f is constant in the region ). O

Maximum principle. Let the complex function f be holomorphic in the bounded region ) and
continuous in Q. Then either f is constant in O or | f| has a maximum value, say M, attained at
a point of 0 and | f(z)| < M for every z € Q. In every case,
attained at a point of OS2

Proof. If f is constant in €2, then |f] is also constant, say M, in Q. Then, obviously, M is the
maximum value of | f| and it is attained (everywhere and hence) at every point of Of2.

Now we assume that f is not constant in . This implies easily that f is not constant in € either.
Now, | f| is continuous in the compact set 2 and hence attains its maximum value, say M, at some
point 29 € €. Le. we have |f(20)| = M and |f(z)| < M for every z € Q.

If any such zy belongs to €2, then the previous maximum principle implies that f is constant in €2
and we arrive at a contradiction. We conclude that zop € 02 and |f(z)| < M forevery z € . O

Exercise 5.6.3 refers to the case of an unbounded region ).
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Exercises.

5.6.1. Let f be holomorphic in the region {2 C C and let m = inf.cq |f(2)|. If there is z5 € 2 s0
that | f(z0)| = m, prove that either m = 0 (and hence f(z9) = 0) or m > 0 and then f is constant
in §2. This is called minimum principle.

5.6.2. Let the complex function f be holomorphic in D and continuous in D, let |f(2)| > 1 for
every z € T and f(0) = 1. Does f have a root in D?

5.6.3. State and prove the second maximum principle in the case of an unbounded region 2 C C.
In this case we must include the point co in €.

5.6.4. Let f be holomorphic in the bounded region €2 and lim._,¢ f(z) = 0 for every { € 0.
Prove that f is constant 0 in €.
In the case of an unbounded region 2 C C, we must include the point co in 0f).

5.6.5. Let f be holomorphic in the region Q2 C C and K = sup,. Re f(z). If there is 29 € Q2 so
that Re f(z9) = K, prove that f is constant in ).

5.6.6. Prove the fundamental theorem of algebra using the maximum principle.

5.6.7. Let f,,, f be holomorphic in the bounded region {2 and continuous in Q. If f,, — f uniformly
in 0f), prove that f, — f uniformly in (2.
In the case of an unbounded region 2 C C, we must include the point oo in 0.

5.6.8. Let R be a square region with center 2. Let f be holomorphic in R and continuous in R. If
|f(2)| < m for every z in one of the four sides of R and |f(z)| < M for every z in the other three
sides of R, prove that | f(20)| < V'mM3.

5.69.Let Q = {zx +iy| — 3 <y < 3} and f(z) = . Then f is holomorphic in Q and
continuous in = {x + iy | y < 5}. Provethat |[f(z —i5)| = | f(x +i5)| = 1 for every

us

T <

2 —

x € R and that lim,_, o, f(z) = +00. Does this contradict the maximum principle?

5.6.10. Let the complex function f be holomorphic in the bounded region 2 and continuous in €2.
If | f| is constant in OS2, prove that either f has at least one root in 2 or f is constant in (2.

5.6.11. Let f be holomorphic in the bounded region €2 and continuous in 2. If Re f = 0 in 99,
prove that f is constant in €.

5.6.12. (i) Let f be holomorphic and non-constant in the region 2 C C. For every p > 0 prove
that {z € Q[[f(2)] < p} N2 ={z € Q[[f(2)] < p}.

(ii) Let p be a polynomial of degree n > 1. Prove that for every u > 0 the set {z | [p(z)| < p} has
at most n connected components and each of them contains at least one root of p. How do these
connected components behave when 1 — 0+ and when p — +00?

5.6.13. Let f be holomorphic and non-constant in the bounded region Q. If lim supgs, . | f(2)| <
M for every ¢ € 09, prove that | f(2)| < M for every z € Q.
In the case of an unbounded region ) C C, we must include the point oo in 0f2.

5.6.14. Let the complex function f be holomorphic in the bounded region €2 and continuous in Q.
If U is an open set so that U C €2, prove that sup, ;7 | f(2)| < sup,cpq | f(2)]. If equality holds,
prove that f is constant in 2.

5.6.15. Let f be holomorphic in Dy(R1, R2) and a € R. Prove that |z|*| f(z)| has no maximum
value in Do(R1, R2), exceptifa € Z and there is cso that f(z) = cz~% forevery z € Dy(R1, R2).
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5.6.16. The three circles theorem of Hadamard. Let f be holomorphic in D,, (R, R2) and let
M(r) = max.cc, (r) |f(2)] for R1 < r < Rs. Prove that In M (r) is a convex function of Inr
in (Ry, R). Le. prove that, if Ry < r1 <7 < ry < RyandInr = (1 —¢)Inr; + tlnre for
0<t<l,thenlnM(r) < (1—t)InM(ry)+tin M(re).

5.6.17. The three lines theorem. Let f be holomorphic and bounded in the vertical zone K =
{z +iy| X1 < o < Xo} and let M (z) = sup,cg |f(z + iy)| for X1 < x < X». Prove that
In M (z) is a convex function of z in (X7, X2). Le. prove that, if X1 < 21 < < 2 < X3 and
r=(1—t)x; +tegfor0 <t <1, thenlnM(z) < (1—t)InM(x1)+ tinM(z2).

5.6.18. The Phragmén-Lindelof theorem. Let f, ¢ be holomorphic in the bounded region €2 and
let ¢ be bounded in 2 and have no root in . Letalso AN B =(and AU B = 99. If

() limsupg ., [f(2)| < M forevery ¢ € A and

(ii) lim supgy ., | f(2)[[¢(2)|° < M for every ¢ € B and every € > 0,

then prove that |f(z)| < M for every z € Q. If, moreover, f is non-constant in 2, prove that
|f(2)] < M for every z € Q.

5.7 Taylor series and Laurent series.

Proposition 5.2. Let f be holomorphic in the open set €2, zo € ) and let DZO(R) be the largest
disc with center zo which is contained in ). Then there is a unique power series Z 2o an(z—20)"
so that

f(z) =30 an(z — )" forevery z € D(R).

(n)
The coefficients are given by a,, = ! HEZO) = ﬁ $o (r) = zo n+1 d¢ for0 <r < R.
! 0

Proof. Wetake z € D, (R), and then |z — 29| < R. If |z — 29| < r < R, then z € D,,(r) and,
according to the formula of Cauchy, we have

f(Z 271'1 fC’ZO (r) ( z dC (5.6)

Now for every ¢ € C(r) we have |Z=22| = lz=z0] Zol < 1 and hence

1 1 1 1 1 +00(sz0 )n
(—=z (¢—20)—(2—20) — C 20 1— z Zg C 20 n=0\C{—zg

The test of Weierstrass implies that +°° (z_jo

formly in C, (r). Indeed, |Z=22|" = (|z ZO') for every ¢ € C,(r) and ) > 0(@)" < +o0.
So from (5.6) we have that

) converges, as a series of functions of ¢, uni-

F(2) = X020 55 $o, ) g dC (2 = 20)"™ (5.7)

Now, we observe that the radius r has been chosen to satisfy the inequality |z — 29| < r < R and

hence the integrals ﬁ /. C. () % d¢ depend a priori on z. But there are two reasons that
20

these integrals actually do not depend on the value of 7 in the interval (0, R) and hence on z. The

first reason is that from the formulas of Cauchy we get %m 390 " T C—]; (Oc))nﬂ d¢ = ! W;szo) when
ZO .

0 < r < R. The second reason is that % is holomorphic in D,,(R) \ {#0}, and because

of corollary 5.1, we have 5L 35102 (1) % ¢ = = szo(rz (Cgﬁ d¢ when 0 < 71 <

ro < R. We conclude from (5. 7) that f(z) = 320 an(z — 20)" for every z € D, (R), where

(n)
a, =1 nEZO) — ﬁj;czo(r Wd(for0<r<R
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Regarding uniqueness, assume that f(2) = >0 b, (2 — 20)" for every z € D, (R). Then, if
0 < r < R, the series Z:j’) bn(z — 2z9)™ converges uniformly in C,(r) and we get

2miay = fC r = ZO k+1 d¢ = fozo (r) C= Zo)k+1 Z"’OO bn (¢ — 2z0)" dC

= +°°b fC (€ — 20)"*F1d¢ = 2miby,.

The last equality uses the calculation in example 4.2.2. Finally, b, = a;, for every k. O

The power series >0 a,,(2 — 20)" with a,, = f<n7)1§z0) = 3= o, &= Zo)n+1 dg for 0 <

r < R is called Taylor series of f in the disc D, (R), the largest open disc with center zy which
is contained in the domain of holomorphy of f.

Example 5.7.1. The function f(z) = 7L is holomorphic in C \ {1} and the largest open disc
with center 0 which is contained in C \ {1} is Do(1). To find the Taylor series of f in Dy(1) we

calculate the derivatives f(™(z) = W for every n > 0. Thus, a, = £ o )( )

n > 0 and the Taylor series of f is >, 20 2". Le. = Y t20 2" for every z € Dg(1). Of
course, this is already known.

= 1 for every

Example 5.7.2. The function f(2) = =5 = € H)l(z
and the largest open disc with center 0 which is contained in C \ {7, —i} is Do(1). To find the

—7y 1s holomorphic in the open set C \{¢,—i}

Taylor series of f in Dy(1) we calculate the derivatives of f. We write f(z) = —5- (- + Ziz) and
(n)

get f(M)(2) = ;@(# + (- 1)"#) for every n > 0. Hence a, = £ n!(o) = Héin)

for every n > 0. If n is odd, then a,, = 0. If n is even, then a,, = zin = (—1)% and the Taylor

series of f is Y120 (—1)F22F. Le. 7y = 220 (—1)%22" for everyz € DO( ).

We may ﬁnd the same formula if we use the Taylor series of 1 o, e 15 = ZIO% 2"

+2 (—=1)"2". From the moment that we have found some

power series which coincides with our function in Dg(1), then, because of uniqueness, this is the
Taylor series of our function.

Example 5.7.3. The exponential function f(z) = e* is holomorphic in C and the largest open disc
with center 0 which is contained in C is Dy(+00) = C. The derivatives of f are (") (z) = ¢* for
every n > 0 and the coefficients of the Taylor series of f are a,, = ! (72!(0) =

Thus, the Taylor series of f is :{i% %z” and we have

% for every n > 0.

z _ oo 1 .n
e = o ni?" for every z.

We have proven this identity differently in example 4.6.3.

Example 5.7.4. The function f(z) = cos z, defined in exercise 4.2.6, is holomorphic in C and
the largest open disc with center O which is contained in C is Dy(400) = C. The derivatives of

fare f(M(z) = (=1)2 cos z for even n and f(")(z) = (—1)%rl sin z for odd n. Therefore, the

. . ") _1\% n)
coefficients of the Taylor series are a,, = I ( ) = % for even n and a,, = 1 ,(0) = 0 for

odd n. Thus, the Taylor series of f is goa ((2]3, 2%¢ and we have

_ oo (DR o
OS2 = ) k0 @Ry for every z.

In the same manner we can prove that

oo (DR op g
sinz =) io) Gromr for every z.



Another way to find the Taylor series of cos z and sin z is through the definitions of the two func-
tions and the Taylor series of . For instance:

_ e¥te® _ +oo 1 +o0 L(_jz)n =y A+ (=D") n
Cosz = 2 - 2 n= On'( ) t3 Zn 0 n! _ZZ) — ZLun=0 2n! z
Z—‘roo i2k +oo (=1)F 2
k=0 T 2/<;)! k=0 "(2k)!

The power series we found coincides with the function cos z in the largest open disc with center
0 which is contained in the domain of holomorphy of cos z and, because of uniqueness, this is the
Taylor series of cos z.

Example 5.7.5. The function f(z) = — Log(1 — z) is defined and holomorphic in C \ [1, +0c0).

The largest disc with center 0 in C \ [1, +00) is . The derivatives of f are f(")(z) = ((f 1)) for

(n)
every n > 1. Thus, ag = 0 and a,, = fT!(O) = % for every n > 1 and the Taylor series of f is
+ n
A ) §
—Log(l—2z) =Y = for every z € D.

n=1

Proposition 5.3. Let f be holomorphic in the open set ) and let D, (R, R2) be a largest open
ring with center zo which is contained in §). Then there is a unique power series Zfz an(z—20)"
so that

f(2) =32 a,(z — z)" for every z € D, (R1, Ra).

The coefficients are given by a,, = 27” fo = Zo)nﬂ d( for R1 < r < Rs.

Proof. We take z € D, (R, R2), and then Ry < |z — 29| < Ra. We choose any 71, r2 so that
Ry <ry <|z— 2z <ra < Ry. Then z € D, (r1,r2) and

27rz fC (r2) C ZdC 27r7, §C

To prove (5.8), we consider an open disc D, (r) with r < min{rs — |z — 29|, |z — 20| — r1}. Then
D.(r) C D,,(r1,72) and we apply corollary 5.1to C( )

D.,(Ri,R2) \ {z}. We get ff() fo = fcz( ) ~ d¢. Now as in the
proof of Cauchy’s formula for 01rcles, we have hmr_m ggcz(r) / (CZ) d¢ = 2mif(z) and the proof of

(5.8) is complete. B
For every ¢ € C,,(r2) we have

(5.8)

Wthh is a holomorphic function of ¢ in

_ 1 1 1 1 +o0 (z—zo )n
—z ~ (C—20)—(2—20) C 20 1— Z ) C 20 n=0\C—z9/
20

because |Z=22| = |Zrz0| < 1. Similarly, for every ¢ € C,,(r1) we have
1 1 _ 1 1 _ 1 +00(C*20)n
(—z = ((—z0)—(z—20) ~ z—201_%=20 = z—zp &n=0\z—29
Z*ZO
because \g zg | = |Z 20\ < 1. Exactly as in the proof of proposition 5.2, we see that these two

series of functions converge uniformly and (5.8) implies
+
f(Z) = nO% 2mi fC’ZO (r2) WdC(Z—Zo)
n= 0 2m ng - ZO) d¢ (Z_Zi)nﬁ-
In the last series we change n + 1 to —n and get
1(2) = 025 g5 S () eirr 4 (2 = 20)" 59)
=-1 £ '
+ ZT_LOO ﬁ fC’zO(m) (C,Z(O))nﬁ-l ¢ (Z - ZO)n-
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% is holomorphic in D, (R, R2) and another application of corollary 5.1 implies

(€
that f, ) o = $o (1) ey € for Ry < 71 < 7o < Ry. Therefore the coeffi-
cients of both series in (5.9) do not depend on the values of r1, 73, and we replace both radii with
anyr with Ry < r < Ra. We conclude that f(2) = 37 a,,(2—z2)" forevery z € D, (R1, Ra),

where an = 51§, () ) T nH d¢ for Ry < r < Ry.

Now,

Regarding uniqueness, assume that f(z) = 3. b, (2 — )" for every z € D, (R1, R2). We
take any r with Ry < 7 < Ra, and then Y- b,,(z — 29)™ converges uniformly in C., (r). Then

2miay = fC NN z(o)k+l d¢ = szo 20 k+1 ZJrOOb (¢ —z0)™dC
= th bn szo (6~ 20)" 1 d¢ = 2miby,

and we get that by, = ay, for every k. ]

The power series 2 a,,(z — 20)" with a, = 5% ¢ ) % d¢ for Ry <7 < Ry is
20

27
called Laurent series of f in the ring D, (R, R2), a largest open ring with center zy which is

contained in the domain of holomorphy of f.

Example 5.7.6. The function f(z) = L is holomorphic in C\ {0}. The ring Dy (0, = C\{0}
is the largest open ring with center 0 Wthh is contained in C \ {0}. To find the Laurent series of
fin Dy(0, —|—oo) we evaluate the coefﬁcients an. We take any r with 0 < 7 < 400, and then we
have a,, = 5= fCo Cln/ e ac = — fCo C"1+2 d¢ for every n. If n # —1, then a,, = 0 and, if
n = —1, then a_; = 1. Therefore, the Laurent series of f in Dy (0, +00) is Zfz a2 = 271
and hence we have the obvious identity % = 2! for every z € Dq(0, +00).

In the following examples we shall use the uniqueness of the Laurent series to find the Laurent
series of certain functions without evaluating integrals: we find in an indirect way a power series
which coincides with the function in a specific ring and then, because of uniqueness, this is the
Laurent series of the function in the ring.

Example 5.7.7. The function f(z) = 12 is holomorphic in the open set C \ {1}. We have seen
that the largest open disc with center 0 which is contained in C \ {1} is Dy (1) and that the Taylor
series of f in this disc is Y129 2™

Another largest open ring with center 0 which is contained in C \ {1} is Dy(1, +00). To find the
Laurent series of f in this ring, we may evaluate the coefficients a,, using their formulas with the
integrals. But we can do something simpler. If z € Dy(1, +00), then |%\ < 1 and hence

1 _ 1.1 _ _1x oo _ n=—1 _n
1—2 = z1-1 — z n= 0( ) - —00 z
z
. . . . =1
Because of uniqueness, the Laurent series of f in Do(1,4+00)is — > " 2".

Example 5.7.8. The function f(z) = m is holomorphic in C \ {1,2}. There is a largest
open disc and two largest open rings with center 0 which are contained in C\ {1, 2} : the disc Dy(1)
and the rings Dy (1, 2) and Dy(2, +00). To find the corresponding Taylor and Laurent series we
write f as a sum of simple fractions: f(z) = zi2 — 211.

If z € Do(1), then |z| < 1and |5| < 1, and hence

F) = —heky s = AT+ TS e = i - e

Therefore, the Taylor series of f in Do(1) is Y10 (1 — zrr) 2™
If z € Dy(1,2), then |1 < 1 and || < 1, and hence

=—1
FR) =3z —irr = 3 L3 - XSG = - A - S e 2
z
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Therefore, the Laurent series of f in Dy(1,2) is — Y 5. ' 2" — Y719 et 27

If z € Dy(2,+00), then || < 1 and |2| < 1, and hence
——2
F) =iz — i = 1 Xato(3) = 1 ()" = X0 (e — D)2

Therefore, the Laurent series of f in Dy(2, 400) is Zﬁj;%# —1)z"

Example 5.7.9. The function f(z) = e is holomorphic in C \ {0}. Then Dy (0, +00) = C\ {0}

is the only largest open ring with center 0 which is contained in C\ {0}. We find the Laurent series

of fin Dy(0, +00) using the Taylor series of ¢* in C. In the identity e* = :O% 1, 2™ we replace

z with % and we find e* = ET_L:_I (_ln)! 2™ + 1 for every z # (. Therefore, the Laurent series of

o0

fin Do (0, +00) is 2T e + 1

Exercises.

5.7.1. Let 0 < |a| < |b|. Find the three Laurent series with center 0, the two Laurent series with

center a and the two Laurent series with center b of the function m.

5.7.2. Find the Taylor series of H% with center any a € R.

5.7.3. Find the Taylor series with center 1 of the holomorphic branch of 2% with value 1 at 1.

5.7.4. Let f be holomorphic in D, (R) and let >°7°0 a,,(2 — 20)" be the Taylor series of .

(i) Prove that, if 0 < r < R, then o= [ | f(z0 + re”)|2 dt = 320 |an|?r?n,

(i) If | f (2)| < M for every z € D,,(R), prove that 37 |a,,|?R?" < M2

(iii) If ¢ is also holomorphic in D, (R) with Taylor series Z+°° bn(z — 20)™, prove that, if 0 <
r < R, then 5- f f(z0 +re®) g(zo + reit) dt = %% anbpr?.

5.7.5. Let f be holomorphic in D, (R, R2). Prove that there are functions fi, f2 so that f is
holomorphic in D, (R2) and f; is holomorphic in D, (R, +00)U{oco} and so that f = f; + f2 in
D, (R1, Ry). Prove that, if f is bounded in D, (R1, R2), then fi, f2 are bounded in D, (R1, R2).
5.7.6. Let f be holomorphic in Dy(R, +0o0). Prove that f is holomorphic also at oo if and only if
the Laurent series of f in Dy(R, +00) is of the form 3"= ! a,,2™ + ag. Observe that f(c0) = ag.

=1+ Z;(’? gfc",z% for |z| < 7, where the numbers Eo; satisfy the

recursive relations Egn — (2n—2)E2n—2 + (") B — o+ (1) N By + (-1 = 0.
Evaluate F», F4, Fg, E's. The numbers Fo;, are called Euler constants.

5.7.8. Let f be holomorphic in the horizontal zone Q = {z + iy | A < y < B} and periodic with
period 1,1i.e. f(z+ 1) = f(z) for every z € Q2.

(i) Prove that there are c,, so that f(z) = .7 ¢, 2™ for every z € Q and find formulas for
the coefficients ¢,,.

(ii) Prove that the series in (i) converges uniformly in every smaller zone {z + iy|a < y < b}
with A <a <b< B.

5.7.9. (i) Prove that 3 (=2) = bo(w) +>272 b (w) (2" + (;L)n) for every z # 0, where b, (w) =
L [ cos(nt — wsint) dt for n € Ny.

.. ) '
(ii) If m, n € Ny, prove that 27” J. o) W pl(n+p)! .
0, otherwise

(iii) The function b, (w) is called Bessel function of the first kind. Find the Taylor series of b, (w)
with center 0.

5.7.10. Let I be an open interval in R. The function f : I — C is called real analytic in /
if for every ty € I there are ¢ > 0 and a,, € C, n € Ny, so that (t9p — €,tp + €) C I and
F(t) = 32020 an(t — to)" forevery t € (to — €, 1o + €).

Prove that, if f is real analytic in I, then there is an open set {2 C C so that I C €2 and so that f
can be extended as a function f : 2 — C holomorphic in €.
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5.8 Roots and the principle of identity.

Let f be holomorphic in the open set {2 and zy € §2. We consider the largest open disc D, (R)
which is contained in €2 and the Taylor series of f in this disc. Then

f(2) =320 an(z — 20)" = ao + a1(z — 20) + as(z — 20)2 + - - - forevery z € D,,(R).

We assume that z( is a root of f or, equivalently, that ap = 0 and we distinguish between two
cases.
First case: a,, = 0 for every n.
Then, obviously, f(z) = 0 for every z € D, (R), i.e. f is identically 0 in D, (R). Because of
the formulas for a,,, the condition a,, = 0 for every n is equivalent to f(")(zy) = 0 for every n.
Second case: a,, # 0 for at least one n.
We consider the smallest n > 1 with a,, # 0 and let thisbe N. l.e. ag = a1 = ... =any_1 =0
and ay # 0. This is equivalent to f(z0) = f(M(z0) = ... = fON "V (z5) = 0 and fN)(20) # 0.
Then we have f(2) = (2 — 20) 32,720 anin(z — 20)™ for every z € D, (R). The power series
S ann(z—20)" = an +ant1(z —20) +anta(z —20)2 + - - converges in the disc D, (R)
and defines a function g holomorphic in D, (R). Then

()= (z—20)Ng(z)  forevery z € D, (R),

and thus g(z orevery z € L, Zoy. Weobserve that ———< 1S a holomorphic
dth = Loy f D.,(R We observe that 220 is a holomorphi

function in 2\ {20} and not only in D, (R) \ {20}. Therefore, we may consider g as defined in

Q\ {20} with the same formula: g(z) = (Zf (z )) . We also recall that g is defined, through its power

series, at zg and it is holomorphic in D, (R) C 2. In fact its value at zq is g(z0) = any = %
Thus, the formula of g, as a function holomorphic in 2, can be written:
f(z) :
ifz e Q\{z
gz) = { G707 \ (a0} (5.10)
an = fN(! ), if 2 = 2z

Since g(zp) = an # 0 and since g is continuous at zo, there is  with 0 < r < R so that g(z) # 0
for every z € D, (r), and hence f(z) # 0 for every z € D, (r) \ {z0}.

Let f be holomorphic in the open set €, zp €  and Z:j’) an(z — zo)"™ be the Taylor series
of f at zyp. Then we have three cases. (i) If a,, = 0 for every n, then we say that 2 is a root of f
of infinite multiplicity. (i) Ifap = a1 = ... = ay—1 = 0 and ay # 0 for some N > 1, then we
say that z( is a root of f of multiplicity N. (iii) In case f(z9) = ag # 0 we say that 2 is a root of
f of multiplicity 0.

We saw that, if z( is a root of f of infinite multiplicity, then f is identically O in the largest
disc with center zy which is contained in the domain of holomorphy of f. If zg is a root of f of
finite multiplicity, then there is some disc D, () which contains no other root of f besides 2 and
hence we say that the root zy is isolated. Moreover, if the multiplicity of 2 is IV, then the function

g(z) = o= fz 0))N , which is holomorphic in 2\ {20}, can be defined at g as g(z9) = ay = f(N)(ZO)

and then it is holomorphic in €. In other words, we can factorize (z — 2y firom f(z), i.e. we can
write f(2) = (z — 20) g(2) with a function g holomorphic in ). This is a striking generalization
of the analogous factorization for polynomials: is 2 is a root of the polynomial p(z) of multiplicity
N, then we can write p(2) = (z — 29)" q(2), where ¢(z) is another polynomial.

Example 5.8.1. The function e”’ — 1is holomorphic in C and its Taylor series with center O is
Z:OOI 71! Z3n Therefore 6 — 1= 23 Z+S.i T}' z n 1) 3 +SO (n—‘,l—l) 3” = 239(2) for ev-
1
n+1)

in C with g(0) = 1 # 0, hence 0 is a root ofe”” — 1 of multiplicity 3.

ery z, where g is the function defined by the power series z ™. Now g is holomorphic
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Lemma 5.1. If f is holomorphic in the region Q) and if zg € Q) is a root of f of infinite multiplicity,
then f is identically 0 in Q.

Proof. f isidentically 0 in some disc with center z5. We define
B = {z € Q] f is identically 0 in some disc with center z}

and the complementary set C' = Q \ B. Obviously, BUC = Q and B # (, since 2y € B.

If z € B, then f is identically 0 in some disc D,(r), and if we take any w € D,(r), then f
is identically 0 in some small disc D, (") C D, (r). Thus every w € D.(r) belongs to B, i.e.
D, (r) C B and z is not a limit point of C'.

Now, let z € C. Then f is identically 0 in no disc with center z, and hence z is not a root of infinite
multiplicity of f. Therefore, there is a disc D, () in which the only possible root of f is its center
z. Then this disc contains no w € B and z is not a limit point of B.

Thus, none of B, C contains a limit point of the other. Since B # (), we must have C = (),
otherwise B, C would form a decomposition of 2. Hence 2 = B and f is identically 0 in 2. [

Principle of identity. If f is holomorphic in the region §2 and if the roots of f have an accumulation
point in S, then f is identically 0 in €.

Proof. Suppose that there is a sequence (z,) of roots of f so that z,, — z with z € Q and z,, # =
for every n. Since f is continuous at z and 2z, — z, we have 0 = f(z,) — f(2) and hence
f(z) = 0. If z is a root of finite multiplicity of f, then there would be some disc D, (r) in which
the only root of f is its center z. This is wrong, since D,(r) contains, after some index, all roots
zn, and these are different from z. Therefore, z is a root of infinite multiplicity of f, and lemma
5.1 implies that f is identically 0 in €. O

Lemma 5.1 and the principle of identity can be stated for a non-connected open set €2. Then
the result of lemma 5.1 holds in the connected component of €2 which contains the root of infinite
multiplicity zp and the result of the principle of identity holds in the connected component of €2
which contains the accumulation point of the roots of f.

Instead of speaking only about the roots of f, i.e. the solutions of the equation f(z) = 0, we
may state our results for the solutions of the equation f(z) = w for any fixed w. The results are
the same as before. We just consider the function g(z) = f(z) — w, and then the solutions of
f(2) = w are the same as the roots of g. For instance, if 2 is a solution of f(z) = w of infinite
multiplicity, then f is constant w in some disc D, (R) and, if 2 is a solution of f(z) = w of finite
multiplicity N, then in some disc D, (r) the function f takes the value w only at the center z.
Then lemma 5.1 says that, if f is holomorphic in the region €2 and z is a solution of f(z) = w
of infinite multiplicity, then f is constant w in 2. And the principle of identity says that, if f is
holomorphic in the region €2 and the solutions of f(z) = w have an accumulation point in €2, then
f is constant w in €.

The principle of identity has another equivalent form.

Principle of identity. If f is holomorphic in the region € and if some compact K C ) contains
infinitely many roots of f, then f is identically O in (2.

Proof. Let us assume the previous principle of identity and let us suppose that some compact
K C Q contains infinitely many roots of f. Then there is a sequence (z,,) of roots of f in K with
distinct terms. Since K is compact, there is a subsequence (zy,, ) so that z,, — z for some z € K.
But then z € € is an accumulation point of roots of f and hence f is identically 0 in 2.

Conversely, let us assume the present form of the principle of identity and let us suppose that the
roots of f have an accumulation point in 2. Then there is a sequence (z,) of roots of f so that
2 — z with z € Q and 2, # 2 for every n. We take a compact disc D, (r) C €2 and then this
disc contains infinitely many of the roots z,,. Hence f is identically 0 in €2. O
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1

n
We write f(1) = 1i + and compare the functions f(z) and ﬁ Both are holomorphic in C\{—1}
and their difference f(z) — 1—; has roots at the points % which have 0 as their accumulation point.
Since 0 € C\ {—1} and C \ {—1} is connected, we have that f(z) — l—iz is identically 0 in this

set, i.e. f(z) = l}rz for every z # —1. Since we assume that f is holomorphic at —1, we get

lim,_,_1 ﬁ = lim,—,_1 f(2) = f(—1) and we arrive at a contradiction.

Example 5.8.2. Assume that there is f holomorphic in C so that f(+) = o4 foreveryn € N.

Example 5.8.3. Assume that there is some f holomorphic in C\ {0} so that f(z) = /x for every
x € (0,400) or even for every x in some subinterval (a, b) of (0, +00).

We consider the continuous branch g of 22 in the open set A = C\ (—o0, 0] which has value 1 at
z = 1. The function g is given by

g(z):\/;ei% for 2 =re" withr >0and — 7 <0 < 7.

We see that f(z) = \/x = g(x) for every « € (a,b). Hence f — g is holomorphic in the region A
and has roots at all points of (a,b). We conclude that f — g is identically 0 in A. Le.

f(z):\/;eig for z = re’ withr > 0and —7 <0 < 7.

Since f is holomorphic in C \ {0}, it is continuous at every point of (—o0, 0), e.g. at —1.

We take points z = re’ converging to —1 from the upper halfplane. This means that r — 1 and
. ;0 T

6 — m—. Then we have f(—1) = lim, 1 g, /T€'2 =¢€'2 = 1.

Now we take points z = e’ converging to —1 from the lower halfplane. This means that  — 1

.0 .
and § — —n+. Then we have f(—1) =lim, 1 g,y V/7€'2 =€7'2 = —i,
We arrive at a contradiction.

Exercises.

5.8.1. Let f be holomorphic in the disc D, (R) and let zy be a root of multiplicity N > 1 of f. If
F is a primitive of f in D,,(R) and F'(z9) = wo, which is the multiplicity of zy as a solution of
F (Z) = wo?

5.8.2. Is there any f holomorphic in C which satisfies one of the following?

(i) f(1) = (—=1)" forevery n € N.

(i) f(1) = ZEU" for every n € N.

(iii) f(55) = f(z7) = 7 forevery k € N.

5.8.3. Is there any f holomorphic in C \ {0} so that f(z) = |z| forevery x € R\ {0}?

5.8.4. Let f, g be holomorphic in the region 2 and 0 € . If f, g have no root in 2 and if
P2/ f(E) =9 (£)/g(2) for every n € N, what do you conclude about f, g?

5.8.5. Let f, g be holomorphic in the region 2. If fg = 0 in €, prove that either f = 0 in 2 or
g=0in Q.

5.8.6. Let f, g be holomorphic in the region . If f g is holomorphic in €2, prove that either g = 0
in Q or f is constant in €.

5.8.7. (i) Let the region £ be symmetric with respect to R, i.e. Z € Q for every z € Q. If Q # 0,
prove that Q N R # (). Let also f be holomorphic in €2 and assume that f(z) € R for every
z € QNR. Prove that f(z) = f(z) for every z € Q.

(ii) Let the region 2 C C \ {0} be symmetric with respect to T, i.e. % € Q forevery z € Q. If
Q # (0, prove that QN'T # (). Let also f be holomorphic in 2 and assume that f(z) € T for every

z € QNT. Prove that f(1) = % for every z € Q.

(iii) Let f be holomorphic in C and let f(z) € T for every z € T. Prove that there is ¢ with |c| = 1
and n € Ny so that f(z) = cz" for every z.
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5.88.() Let 20 € Dand T'(2) = {2 for z € D. Prove that T is holomorphic in I and

continuous in D. Also prove that T'(z) € I for every z € D and that T'(z) € T for every z € T.
(ii) Let z1,...,2, € Dand |¢| = 1 and B(z) = c[[;_; =L for z € D. Prove that B is

1-2z;z
holomorphic in D and continuous in D. Also prove that B(z) € D for every z € D and that
B(z) € T forevery z € T.
(iii) Prove the converse of (ii). L.e. let f be holomorphic in D and continuous in D and let f(z) € D
forevery z € D and f(z) € T for every z € T. If f is non-constant, prove that there is n € N and

15+, 2n € Dand c with |c] = 1 so that f(2) = ¢[[j_; {2 forevery z € D.

5.8.9. Let f, g be holomorphic in C and |f(2)| < |g(z)| for every z. Prove that there is y so that
f(2) = pg(z) for every z.

5.8.10. Let f be holomorphic in D. Prove that there is a sequence (z,) in D so that |z,| — 1 and
(f(2n)) is bounded.

5.8.11. Many of the results of this section hold also for the point co.

(i) Let 2 C C be an open set containing some ring Do(R,+o0) and let f be holomorphic in
QU {oo}. Then, according to exercice 5.7.6, the Laurent series of f in Dy(R, +00) is of the form
S~ 42" + ag and also f(o0) = ag.

If a,, = 0 for every n < 0, we say that oo is a root of f of multiplicity +o0, and in this case prove

that f is identically 0 in the connected component of 2 which contains Dy (R, +00).

Ifag=a_1=...=a_n31 = 0and a_n # 0, we say that oo is a root of f of multiplicity N,
and in this case prove that co is an isolated root of f, i.e. there is some > R so that f has no root
in Dy(r, +00).

Of course, if ag # 0, we say that oo is a root of f of multiplicity 0.

If co is an accumulation point of roots of f, prove that f is identically 0 in the connected component
of  which contains Dy (R, +00).

Prove that co is a root of f of multiplicity IV if and only if 0 is a root of g of multiplicity N, where
g is defined by g(w) = f().

(i) Let r = 76’ be a rational function and let n be the degree of the polynomial p and m be the

degree of the polynomial q. If n < m, prove that co is a root of r of multiplicity m — n.

5.9 Isolated singularities.

We say that zg is an isolated singularity of f if there is some disc D, (R) so that f is holo-
morphic in D, (R) \ {z0}. Then f has a Laurent series in D, (0, R) = D, (R) \ {z0}. Le.

f(2) =3 2 a,(z — z)" forevery z € D, (R) \ {20}

Now we have three cases. (i) If a,, = 0 for every n < 0, then we say that zy is a removable
singularity of f. (i) If a,, # O for at least one n < 0 and there are only finitely many n < 0 such
that a,, # 0, then we say that zg is a pole of f. (iii) If a,, # 0 for infinitely many n < 0, then we
say that zg is an essential singularity of f.

Let us start with the case of a removable singularity zo. Then f(z) = 3,70 an(z — 2o)" for
every z € D, (R)\ {20} The power series 3" a,,(z—2o)" converges at every z € D, (R) and
defines a holomorphic function in D, (R) with value a at zy. The function f may not be defined
at zo or it may be defined at z( with a value f(zo) either equal to ag or not equal to ag. Now, in any
case, we define (or redefine) f at 2 to be f(z9) = ao. Then we have f(2) = > a(z — 20)"
for every z € D,,(R) and f becomes holomorphic in D, (R).

We summarize. If zg € ) is a removable singularity of f, then f can be defined (or redefined)
appropriately at zy so that it becomes holomorphic in a disc with center zy. The Laurent series
of f at zg reduces to a power series of first type and this power series is the Taylor series of the
(extended) f in a disc with center z.
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Here is a useful test to decide if an isolated singularity is removable without calculating the
Laurent series of the function.

Riemann’s criterion. Let zg be an isolated singularity of f. If lim,_,.,(z — z0) f(z) = 0, then 2
is a removable singularity of f.

Proof. Let f(2) = 3. 7% ay(2 — 20)" for every z € D, (R) \ {z0}. We take any ¢ > 0 and then
there is 6 > 0 so that |z — zo||f(z)| < e forevery z € D, (R) with 0 < |z — 29| < . Now, we
consider any  with 0 < r < min{d, R, 1} and any n < 0. Then we have

1 1 —n— —
|CLn| = |Tm szo(r) (C—];E)C))’1+1 dC’ < ﬂr”ﬁ-‘r? 21 = er " = €T|n| ! <e

Since € > 0 is arbitrary, we get a,, = 0 for every n < 0 and % is a removable singularity of f. [

In the case of an isolated singularity zo for f, sometimes we know that the lim,_, ., f(z) exists
and it is finite or that f is bounded close to zp. In both cases we have that lim,_, ., (z —20) f(2) = 0
is satisfied and we conclude that z( is a removable singularity of f.

Example 5.9.1. The function f(z) = M is holomorphic in C\ {2}. Since lim,_,5 f(z) =
the point 2 is a removable singularity of f If we define f(2) = 1, then f, now defined in (C is
holomorphic in C. In fact, the extended f is the simple function z — 1 in C.

Now we consider the case of a pole zy of f. Let ng an(z — zo)™ be the Laurent series of f
in the ring D, (R) \ {20} and then there is a largest m > 1 so that a_,,, # 0. Let NV be this largest
m. Then we say that zg is a pole of f of order N or of multiplicity N and we have

f(z) = (Z zo)N + - P ZO + En o0 an(z —20)" forevery z € D, (R) \ {20}

with a_y # 0. We may write this as f(z) = m S an_n(z — 20)" for every z €
D,y (R) \ {20}. Since the power series >_°0 a,—n(z — 29)™ converges in the disc D, (R), it

defines a function g holomorphic in D (R) and we have

f(z) = % forevery z € D, (R) \ {20}

Observe that g(z9) = a—ny # 0.
It is easy to prove the converse. Suppose there is a g holomorphic in some disc D, (R) so

that g(z9) # 0 and f(z) = (zg(zi)))N for every z € D, (R) \ {20}. Let 3.2 b, (2 — 20)™ be the

Taylor series of g and then we have f(z) = (Z_bfoo)w T S by N (2 — 20)™ for

z2—20

z € D, (R) \ {20} The last power series is the Laurent series of f in DZU( )\ {20} and since
bo = g(z0) # 0, we have that 2 is a pole of f of order V.

Here are some more comments. Since g(zp) # 0 and ¢ is continuous at zp, we have that
g does not vanish at any point of some disc D, (r) with 0 < r < R. Then h(z) = ﬁ is
holomorphic in D, (r) and ﬁ = (2 — 20)Vh(z) for every z € D, (r) \ {z0}. Therefore, 2o
is a removable singularity of % Moreover, if we define % to take the value 0 at zy, then we have
%(z) = (z—20)Vh(z) forevery z € D,,(r) and, since h(zg) # 0, then zq is a root of the extended
% of multiplicity V. It is easy to prove in a similar way the converse, and we conclude that 2 is a
pole of f of order N if and only ifit is a root of% of mutiplicity N.

Example 5.9.2. Many times we meet functions of the form f = %, where p, ¢ are holomorphic in
a neighborhood of zy. For instance, if p, ¢ are polynomials, then f is a rational function.

Let zg be a root of p and ¢ of multiplicity M > 0 and N > 0, respectively. In this case we saw
that there are holomorphic functions p; and ¢; in a neighborhood D, (R) of 2y so that p(z) =
(z — 20)Mp1(2) and q(2) = (2 — 20)Vqu(2) for every z € D, (R) and also p1(zp) # 0 and
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q1(z0) # 0. (Of course we consider the case that none of p, ¢ is identically 0.) Then there is r with
0 < r < Rsothat pi(z) # 0and q1(z) # 0 for every z € D,,(r), and then we have

f(2) =BG = (2= 2)MNEE = (2 - 2)MNg(z)  forevery z € Doy (r) \ {20},

where the function g = % is holomorphic in D, (r) and g(zp) = 2 i(zgg # 0. Now we have two

cases. If M > N, then z( is a removable singularity of f, and f (after we extend it appropriately
at zg) is holomorphic at zy and zg is a root of f of multiplicity M — N. If M < N, then z is a
pole of order N — M of f.

Here are some concrete instances of this example.

Example 5.9.3. The function f(z) = (_3Z)+ 2 s holomorphlc inC\ {2}.

Since 22 — 32 + 2 = (2 — 2)(z — 1), we have f(z) = 2=
is holomorphic in C and g(2) = 1 7é 0. Therefore, 2 is a pole of f of order 1.

Example 5.9.4. The function f(z) =
The Taylor serles ofe — 1 with center 0 isz+ g 22 + 3, 234 Hence e* — 1 = zg(z) with
g(z) =1+ 52+ 3 2%+ - . The function g is holomorphic in C and g(0) = 1 # 0 and we have

f(z) = @ for z # 0. Therefore, 0 is a pole of f of order 2.
Example 5.9.5. The function cot z = £2£ is holomorphic in C \ {k7 | k € Z}.

sin z
The points k7, k € Z, are isolated singularities of cot z and we shall prove that they are all poles
of order 1. We fix k € Z. The Taylor series of sin z with center k7 results from the Taylor series

of sin z with center 0, as follows

(2)=2—-1

sin z = sin((z — kx) 4+ k) = cos krsin(z — kr) = (—1)F sin(z — kn)

= (-1 ((z = k) = &z = km)? 4 ) = (~DF(z — k) = G5 (2 — k) +

Therefore, sinz = (z — km)qi(2) for every z, where the function ¢; is holomorphic in C with

q1(kw) = (—1)*. Hence, cotz = = Z?rs)zl( 5 = Zg(? with g(z) = CO(SZ) and g is holomorphic in

the disc Dy (7) and g(km) = ;"(Sk’”r) = 1. Therefore, k7 is a pole of cot z of order 1.

(Observe that Dy, () is the largest open disc with center km which is contained in the domain of

holomorphy of g because it is the largest open disc with center k7 which does not contain any root
sin z

of ¢1. This is true because ¢1(z) = %= vanishes at every Imwithl € Z,1 # k.)
+ ¢/ (km) + 1g" (km) (2 — k) +

For the determination of poles there is a criterion similar to the criterion of Riemann for re-
movable singularities.

The Laurent series of cot z in D;m((), T)iscotz = ——

Proposition 5.4. Let zy be an isolated singularity of f. Then zy is a pole of f if and only if
lim,_,, f(z) = co.

Proof. There is a disc D, (R) so that f is holomorphic in D, (R) \ {z0}.
If 2 is a pole of order IV of f, then we saw that there is a function g holomorphic in D, (R) so that

g(20) #0and f(z) = (Zf(;)),v for every z € D, (R) \ {20}. This implies lim,_,,, f(z) = oc.

Conversely, let lim,_,., f(z) = oo. Then there is  with 0 < r» < R so that f(z) # 0 for ev-
ery z € D, (r) \ {20} and then the function h = % is holomorphic in D, (r) \ {z0}. Since

lim,_,., h(z) = lim,_,,, ﬁ = 0, the criterion of Riemann implies that z is a removable sin-
gularity of h. Therefore, we may define h appropriately at zy so that it becomes holomorphic in
D, (r): we set h(zp) = lim,—,,, h(z) = 0. It is clear that 2 is the only root of (the extended)
hin D, (r) and, if N is the multiplicity of this root, then h(z) = (z — 20)"V h1(z) where h; is
holomorphic in D, (r) and has no root in D, (r). Thus, the function g = 1 is holomorphic in

D, (r) and, clearly, has no root in D, (). Now we have altogether that f(z ) =G g go)) ~ forevery

z € D,y (r) \ {20} with g(z0) # 0, and so zy is a pole of f of order V. O
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There is one more test for the case of a pole which also determines the exact order of the pole.

Proposition 5.5. Let zg be an isolated singularity of f. Then zq is a pole of f of order N > 1 if
and only if the lim,_, , (z — 20)" f(2) exists and it is finite and # 0.

Proof. 1f 2z is a pole of f of order NV, then we repeat the beginning of the proof of proposition 5.4
and we get that lim, ., (z — 20)" f(2) = lim,_,, g(2) = g(20) # 0.

Conversely, let lim,_,,,(z — 29)" f(2) be finite and # 0. Riemann’s criterion implies that the
function g(2) = (z—20)" f(z), which is holomorphic in some ring D, (R)\ {20}, can be extended
at zo by setting g(z9) = lim,_,,, g(z) = lim,,,,(z — 20)N f(2) # 0, and the extended g is
holomorphic in D, (R). Therefore, there is a g holomorphic in D, (R) with g(z9) # 0 so that
F(z) = —29_ forevery z € D, (R) \ {0} and 2 is a pole of f of order N. O

(z—20)N

Finally, for the case of an essential singularity we have the following result.

Proposition 5.6. Let zg be an isolated singularity of f. Then zg is an essential singularity of f if
and only if the lim,_, ., f(z) does not exist.

Proof. By the criterion of Riemann, zj is a removable singularity if and only if the lim,_, ., f(2)
exists and it is finite. Proposition 5.4 says that zj is a pole if and only if lim,_,,, f(2) = co. O

Example 5.9.6. In example 5.7.9 we saw that Zﬁ;_l (_ln)! 2" + 1 is the Laurent series of e in

Dy(0, +00). Hence 0 is an essential singularity of ex.

Therefore, the lim,_,q e% does not exist. We can see this without proving first that 0 is an essential
singularity of e%. In fact, proving that the lim,_, ex does not exist is another way to see that
0 is an essential singularity of ex. Indeed, if z = x tends to O on the positive x-semiaxis, then
|e§| = er — 400, and hence ez — o0o. If 2 =  tends to 0 on the negative x-semiaxis, then
|e§| —er — 0, and hence ex — 0. Thus, the lim,_,q e= does not exist.

Let 2o be an isolated singularity of f and let Zfz an(z — zo)™ be the Laurent series of f in

the ring D, (0, R) = D,,(R) \ {20}. Then Zﬁ;ﬁl an(z — 2p)" is called the singular part of the
Laurent series of f or, simply, the singular part of f at zy. Also, Zi% an(z — 2z9)" is called the
regular part of the Laurent series of f or, simply, the regular part of f at zg.

We have seen that in the case of a removable singularity zg the singular part of f at z is zero
and the Laurent series of f at zg consists only of its regular part. In the case of a pole zy of f of
order IV the singular part at zq is a finite sum of the form 25:1 (Zci;zg)n with a_pn # 0. In this
case the singular part is a rational function whose denominator is (z — z9)". In the case of an
essential singularity zg the singular part at zy has infinitely many terms.

If we subtract from f its singular part at its singularity zg, then we get

F2) = S5 an(z — 20)" = 5% an(z — 20)",

which is a power series of first type and hence converges in the disc D, (R), including the center

2o. Therefore, 2o is a removable singularity of the function F(z) = f(z) — 3."2 " an(z — 20)"

and if we define F' to have value F'(zg) = ag at 2, then this function is holomorphic in D, (R).
We shall now establish the well known analysis of a rational function into a sum of simple

fractions.

Proposition 5.7. Let v = £ be a rational function. We assume that the polynomials p, q have no
common roots (and hence no common factors), that the degree of p is n, the degree of q is m and

that z1, . . ., zx are the roots of q with corresponding multiplicities my, ..., mg. Then
1 1
r(z) = pi(s=) + -+ or(=5) +pol2),
where py, . . ., D, are polynomials without constant terms and of degrees my, . . . , my, respectively,

and py is either the null polynomial, if n < m, or a polynomial of degree n — m, if n > m.
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Proof. We saw in exarnple 5. 9 2 that each z; is a pole of r of degree m;. Then the singular part of
r at z; has the form >, )l with a_p,; # 0. This can be written pj( ) where p; is the

polynomial p;(z) = lel a_lz without constant term and of degree m;.
We subtract from r all its singular parts at z1, . . ., z; and we form the function

po(z) = 7(2) = (m1(z25) + -+ oe(325)-

This function is a rational function defined in C \ {z1, ..., 2z} and its only possible poles are the
points z1, ..., z;. We observe, though, that every z; is a removable singularity of r(z) — p; (i)
and that each ofpl(z Zl) T ~), besides p; (= ]) is holomorphic at z;. Thus, every z;
is a removable singularity of pg. In other words, the rational function pg has no poles and hence it

is a polynomial. Now, we have the identity

r(z) = pi(z25) + -+ pr(z25) +po(2)

and we consider two cases. If n < m, then lim,_,, 7(z) = 0 and, since lim,_, p]( = ) =20
for every j, we have that lim,_,o pg(z) = 0. Thus, py is the null polynomial. If n > m, then

c=lim, ,o Z’;( 2n is a complex number # 0. Since lim,_, o, pj( ) /z"~™ = 0 for every j, we
have that lim,_, o, f 2&2 = ¢ # 0. Thus the polynomial py has degree n—m. O
Exercises.

5.9.1. Is 0 an isolated singularity of sm(1 Sn(172) ?

i i ; i . 1 1 =1 e*f=1 22 1
5.9.2. Find the isolated (non-removable) singularities of: —=—, =12 F 0 szt sz

1/z

tan z, 12 ,e +e

z 1

5.9.3. Find the initial four terms of the Laurent series at 0 of the functions: cot z, 51rllz el

5.9.4. Prove that an isolated singularity of f cannot be a pole of e/.

5.9.5. Let zg be an isolated singularity of f, which is not constant in any neighborhood of zy. If
there is s € R so that lim,_,,, |z — 20|*|f(2)| € [0,+40o0], prove that z; is either a removable
singularity or a pole of f and that there is m € Z so that

=0, ifs >m
lim |z — z0|*|f(2)| = 400, ifs<m
Z—20

€ (0,400), ifs=m

5.9.6. Let f be holomorphic in D,,(R) \ {20} and let either Re f or Im f be bounded either from
above or from below in D, (R) \ {z0}. Prove that z is a removable singularity of f.

5.9.7. Let f be holomorphic in Do(R) \ {z0}, where R > 1 and |zo| = 1, and let z be a pole of
fIf f(2) = 32020 @, 2™ is the Taylor series of f in Do(1), prove that aiil — 20.

5.9.8. Let 2 be a region so that every point of € is either a point of holomorphy or an isolated
singularity of f. If the roots of f have an accumulation point in {2, which is not an essential
singularity of f, prove that f is identically 0 in €2.

5.9.9. (i) Let zg be an essential singularity of f and let w € C. Prove that for every » > 0 the
function f—% is not bounded in D, (r) \ {z0}.
(i1) Prove the Casorati-Weierstrass theorem. If z; is an essential singularity of f, then for every

w there is a sequence (z,) with z, — 2¢ and z,, # 2o for every n so that f(z,) — w.
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5.9.10. (i) Prove that every 2kmi, k € Z, is a pole of ﬁ of order 1.

(i) Prove that - = 1 — 1 + Z;ﬁc’l(—l)k_lﬁz%_l for |z| < 2w, where the numbers By,
satisfy the recursive relations m - ﬁ + 3 % = 0, k > 1. Evaluate

Bi, B, Bs. The numbers By, are called Bernoulli constants.

5.9.11. Look at exercises 5.7.6 and 5.8.11. We shall extend what we said in this section to the case
of the point co.

(i) We say that oo is an isolated singularity of f if f is holomorphic in some ring Dy(R, +00). Let
Zfi anz" be the Laurent series of f in this ring. If a,, = 0 for every n > 1, then we say that co
is a removable singularity of f. If a,, # O for at least one n > 1 and for only finitely many n > 1,
then we say that oo is a pole of f. Finally, if a,, # 0 for infinitely many n > 1, then we say that
oo is an essential singularity of f.

Prove that co is a removable singularity of f if and only if lim,_, @ = 0.

Prove that oo is a pole of f if and only if lim,_, o, f(z) = co.

Let oo be a pole of f and let V be the largest n > 1 with a,, # 0. Then we say that co is a pole
of f of order N. Prove that oo is a pole of f of order IV if and only if there is a g holomorphic in
Do(R, +00) U {00} so that g(co) # 0 and f(z) = 2™V g(z) for every z € Dy(R, +00). Moreover,
prove that co is a pole of f of order N if and only if the lim,_, o, % exists and it is finite and # 0.
Prove that oo is an essential singularity of f if and only if the lim,_,, f(z) does not exist.

(i) Let r = % be a rational function and let n be the degree of the polynomial p and m be the
degree of the polynomial g. Prove that co is a removable singularity of » if m > n and that it is a
pole of r of order n — m if n > m. In particular, a polynomial p of degree n > 1 has a pole of
order n at co. ) )

(iil) What kind of an isolated singularity is co for the functions €7, e~, 22e=, sin z, sin %, 25 sin % ?
(iv) What kind of an isolated singularity is oo for any holomorphic branch of (2% — 1)% in the
region C \ [—1, 1]? (For the existence of such a branch look at exercise 4.4.9.)

(v) Is oo an isolated singularity of =-— or of tan z?

sin z

5.10 The open mapping theorem.

Open mapping theorem. If f is holomorphic and not constant in the region ), then f(U) is open
for every open U C €.

Proof. Let U C  be open. We shall prove that f(U) is also open, i.e. that every wy € f(U) is
an interior point of f(U).

Since wy € f(U) there is some zy € U so that f(zp) = wg. Since U is open, there is 7 > 0 so that
D.,(r) C U. Since f is non-constant in €2, the solution 2 of the equation f(z) = wy is isolated.
Therefore, we may take r small enough so that f(z) = wg has no solution in D, (r) except zo.
This means that f(z) # wo for every z € D, (1) \ {20}. In particular, f(z) # wp for every
z € Cy(r). Now, the real function |f(z) — wp| is continuous and the circle C., () is compact.
Therefore, the restriction of | f (z) —wo| in C, (r) attains a minimum value at some point of C',, ()
which is a positive number. We denote e this minimum and we have:

€ =min,ec, (r) [f(2) — wo| > 0. (5.11)

Now, we consider any w ¢ f(D,,(r)). Again, the real function |f(z) — w]| is continuous and
the disc D, (r) is compact. Therefore the restriction of | f(z) — w| in D, (r) attains a minimum

value at some point of D, (1) which is positive. But now we can say more: the function f(z)%w is

holomorphic in D, (r) and continuous in D, (r). The second version of the maximum principle
implies that the function m, restricted in D (r), attains its maximum value at the boundary

C., (r). Equivalently, the function | f(z) — w|, restricted in D, (), attains its minimum value at
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the boundary C, (r). Since one of the values of | f(2) — w| in D, (r) is | f(20) — w| = |wo — w],
we get
lwo — w| = minec, () |f(2) —wl. (5.12)

Now, we also have |f(z) — w| > |f(z) — wo| — Jwy — w| and, using (5.11) and (5.12), we get

lwo — w| = min,ec, () | f(2) — w| = min.ec, o) [f(2) = wo| — |wo — w| =€ = Jwo — wl.

Thus |wg — w| > § and we have proved that any w ¢ f (D, (1)) satisfies |wo — w| > §. This
implies that every w € Dy, (§) belongs to f(D,(r)). Hence Dy, (5) € f(D4y(r)) € f(U) and
s0 wy is an interior point of f(U). O

Exercises.

5.10.1. Prove the first maximum principle using the open mapping theorem.

5.11 Local mapping properties.

Proposition 5.8. Let f be holomorphic in the open set Q) and let zy € Q with f'(z9) # 0. Then
there is an open set U C ) containing zo so that W = f(U) is an open set containing wo = f(zo)
and so that the function f : U — W is one-to-one. Moreover, the function f~* : W — U is
holomorphic in W.

Proof. We consider the Taylor series > .9 a,, (2 — 20)" of f in its disc of convergence D,,(R) C
Q. We know that the differentiated series Z:{i’i nan(z — 20)" ! converges absolutely in the same
disc, i.e. % nlan||z — 20["7! < 400 for every z € D, (R). Thus, 37 nlay,|(z — 20)"
converges in D, (R) and defines a continuous function in this disc. In particular, we have that
lim,_, ,, Z:{i’i nlan|(z — 20)"~ = |ai| or, equivalently, lim,_, ,, Z:{i’; nlan|(z — 20)" "t = 0.
Since a1 = f'(z0) # 0, there is a small enough r > 0 so that

225 nlag |t < aal.
We shall see now that f : D, (r) — C is one-to-one. Assume that this is not the case and that
there are 21,22 € D,,(r) so that z; # 22 and f(z1) = f(z2). Then ;ri% an(z1 — 20)" =

¥o0 an(z2 — 20)"™ and hence

a1 = 3% an((21—20)" 4 (21— 20)"2(2a—20) ++ - -+ (21— 20) (22— 20)" 2+ (20— 20)" ).

This implies |a1| < 375 n|a,|r"~! and we arrive at a contradiction.

Since f’ is continuous at zg and f'(z9) # 0, by taking a smaller » > 0 if necessary, we may
suppose that f/(z) # 0 for every z € D, (r). Now we take U = D, (r). From the open mapping
theorem we have that the set W = f(U) = f(D,,(r)) is open. We have already proved that
f : U — W is one-to-one and hence the inverse mapping f~! : W — U is defined. Now it is
easy to see that this inverse mapping is continuous in W. Indeed let w € W. Then there is (a
unique) z € U so that f(z) = w. We take any ¢ > 0 small enough so that D,(¢) C U. Then the
set f(D(e)) is open and contains w. Hence there is 6 > 0 so that D,,(6) C f(D,(¢e)). Then for
every w' € D,(d) the (unique) 2’ € U which satisfies f(2’) = w’ is contained in D, (¢). This
says that for every w' € W with |w’ — w| < § we have |f~1(w') — f~1(w)| = |2’ — 2| < eand
the function f~! : W — U is continuous at every w € W. Now, proposition 3.4 implies that
f~': W — U is holomorphic in . O

Theorem 5.2. Let f be holomorphic in the region Q) and let zy € Q and wo = f(z0). Let zo be
a solution of f(z) = wo of multiplicity N. Then there is an open set U C §) containing zy so
that W = f(U) is an open set containing wo = f(2¢0) and so that the function f : U — W is
N-to-one.
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Proof. We know that there is a disc D, (R) and a function g holomorphic in D, (R) so that
f(2) —wo = (2 — 20)Vg(2) for every z € D, (R) and g(zo) # 0. By the continuity of g we have
that there is 7 < R so that g(z) # 0 for every z € D, (r). Then the function % is holomorphic in

D, (r) and the theorem of Cauchy in convex regions implies that fv % dz = 0 for every closed
curve v in D, (7). Now, theorem 4.1 implies that there is a holomorphic branch of log g in D, (1)
and then example 4.4.4 says that there is a holomorphic branch of ¢*/V in D, (r). Le. there is a
function ¢ holomorphic in D, (r) so that ¢(2) = g(z) for every z € D, (7).

Now we consider the function h(z) = (z — z0)¢(z). This is holomorphic in D, (r) and we have
that f(z) — wo = h(2)" for every z € D, (r). Moreover, h'(z9) = ¢(z0) # 0. Proposition 5.8,
applied to h, implies that there is an open set Uy C D, (r) containing z so that Wy = h(Up) is
an open set containing h(zp) = 0 and so that the function h : Uy — W) is one-to-one. Now, we
consider a disc Dg(rg) € Wy and the open set U = h=1(Dq(rg)) C Up. Then h : U — Dq(r0) is
holomorphic in U, onto Dy(7) and one-to-one in U. Moreover, we have that f(z) —wo = h(z)™
for every z € U. Since the N-th power w = ¢ maps the disc Dy(ro) onto the disc Do(rf)
and in an N-to-one manner, we conclude that f : U — W is N-to-one, where W is the disc
Do (7)) [

In the proof of theorem 5.2 if we take any linear segment [wp, w] in the disc Dy, (rd’), where
w is a point of the circle Cy, ({Y), then, through the mapping w = wq + ¢V, this linear segment
corresponds to N linear segments [0, z1], ... [0, zy] in the disc Dgy(rg), where z1,...,zy are N
points on the circle Cy(r(). These N linear segments form N successive angles at 0 all equal to
QW”. Now the one-to-one function A~ : Dg(r¢) — U maps these linear segments onto N curves
Y1, - - -,7yn With common initial endpoint zy and IV corresponding final endpoints on OU. Since
h'(z0) # 0, the conformality of h at z implies that 71, . .., yx form N successive angles at 2 all
equal to %r The N successive “angular” regions Uy, ..., Uy in U between the curves vy, ..., YN
are mapped by h onto the corresponding succesive angular regions A1, ..., Ay in Dy(rp) between
the linear segments [0, 21], ... [0, zy] and these are then mapped by the mapping w = wq + ¢V
onto the same region B = D, (rd’) \ [wo, w]. We conclude that f, which is the composition of
the two mappings, maps each of Uy, ..., Uy in U onto B and in an one-to-one manner.

Exercises.

5.11.1. Let f be holomorphic in Dy(R), f'(0) # 0 and n € N. Prove that there is 7 > 0 and there
is g holomorphic in Dy(r) so that f(2") = f(0) + (g(2))" for every z € Dy(r).

5.11.2. Let 1, Q)5 be two regions, let f : 2y — 9 and g : 29 — C be non-constant functions
andleth =go f.

(i) If f, h are holomorphic in {21, is g holomorphic in 29?

(i1) If g, h are holomorphic in 29, €21, respectively, is f holomorphic in £2;?

5.11.3.If f is holomorphic and one-to-one in C, prove that there are a # 0 and b so that f(z) =
az + b for every z.
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Chapter 6

Global behaviour of holomorphic
functions.

6.1 Index of a closed curve with respect to a point.

Let AC Candg: A — C\ {0} be continuous in A. We say that the function A is a continuous
branch of arg g in A if & is continuous in A and for every w € A we have that A(w) is an element
of arg g(w) or, equivalently,

g(w) = |g(w)|e®) for every w € A.

We recall the notion of a continuous branch of log g. We say that f is a continuous branch of
log g if f is continuous in A and f(w) is an element of log g(w) or, equivalently,

e’ = g(w) for every w € A.

Proposition 6.1. Let A C Cand g : A — C\ {0} be continuous in A. Then there is a one-to-one
correspondence between continuous branches of log g and continuous branches of arg g in A.

Proof. 1f h is a continuous branch of arg g in A, then the function
f=1Inlg| +ih (6.1)

is a continuous branch of log g in A. Indeed, it is clear that f is continuous in A and also that
ef (W) = ehnlgW)lgih(w) — |g(w)[e () = g(w) for every w € A.

Conversely, if f is a continuous branch of log g in A, then h, defined through (6.1), is a continuous
branch of arg g in A. Indeed, h is continuous in A and also () = ef(w)e=Inlg(w)| — % and

th(w)

hence g(w) = |g(w)le for every w € A. O

In other words, relation (6.1) says that, if we have a continuous branch f of log g in A, then the
imaginary part h of f is a continuous branch of arg g in A. Conversely, if we have a continuous
branch h of arg g in A, then the function f with imaginary part h and real part In |g| is a continuous
branch of log g in A.

The next result is analogous to proposition 4.6 and their proofs are almost identical.

Proposition 6.2. Let g : A — C\ {0} be continuous in A C C.

(i) If hy is a continuous branch of arg g in A and ho — h1 = k2w in A, where k is a fixed integer,
then hs is also a continuous branch of arg g in A.

(ii) If, moreover, A is connected and hy, hy are continuous branches of arg g in A, then ho — hy =
k2w in A, where k is a fixed integer. In particular, if h1(wo) = ha(wg) for some wy € A, then
hi1 = hy in A.
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Proposition 6.3. Let g1, g2 : A — C\ {0} be continuous in A C C.
(i) If f1, fo are continuous branches of log g1, log g2 in A, then f1 + fo is a continuous branch of

log(g192) in A.
(ii) If h1, ho are continuous branches of arg g1, arg gs in A, then hy + hs is a continuous branch

of arg(g1g2) in A.

Proof. (i) fi + fo is continuous in A and also e/1(W+2(w) — cfiw)ef2(w) — g (1)gy(w) for
every w € A.
(i1) Just as in (i). O

Proposition 6.4 is the first existence result of this section: A is an interval in R.

Proposition 6.4. Let g : [a,b] — C\ {0} be continuous in the interval [a,b]. Then there is a
continuous branch of log g and a continuous branch of arg g in [a, b).

Proof. It is enough to prove the existence of a continuous branch of log g.

Since ¢ is continuous in [a, b], there is € > 0 so that |g(t)| > € for every t € [a,b]. Now, ¢ is
also uniformly continuous in [a, b] and hence there is § > 0 so that |g(t') — g(t")| < € for every
t',t" € [a,b] with |t — t"| < . We take successive points a =t < t1 < ... < tp_1 <tp =0
so that t;, — tx_1 < d forevery k = 1,...,n. Then, for every k = 1,...,n, the set {g(t) |t €
[tk—1,tx]} is contained in the disc Dy, )(¢). Since |g(tx)| > ¢, the disc Dy, ) (€) does not contain
0 and hence a continuous branch of log is defined in this disc. Then example 4.3.3 says that there
is a continuous branch, say fi, of logg in [tx_1, tx].

Now, f1 is a continuous branch of log g in [to, ¢1] and f5 is a continuous branch of log g in [¢1, to].
Then fa(t1) — fi(t1) = m2mi for some m € Z. We replace the function fs with the function
fo — m2mi and the new function f5 is also a continuous branch of log g in [t1, to] with fa(t1) =
f1(t1). Working with the (new) function fy and the function f3 which is a continuous branch
of log g in [t2, t3], we see as before that f5(to) — fa(t2) = [2mi for some [ € Z. We replace the
function f3 with the function f3 — 277 and the new function f3 is also a continuous branch of log g
in [tg, ts] with f3(t2) = fa(t2). We continue inductively and finally we end up with continuous
branches fi of logg in [tx_1,tx] for every k = 1,...,n so that fx(tx) = fr+1(tx) for every
k =1,...,n — 1. Therefore, the function f : [a,b] — C which is defined to be equal to f in the
corresponding interval [tx_1,t] for every k = 1,...,n is continuous in [a, b]. Moereover, f is a
continuous branch of log g in every [t;_1, tx] and hence in [a, b]. O

We consider any curve 7 : [a,b] — C\ {20}. Then the function y — z : [a,b] — C\ {0} is
continuous in [a, b] and, according to proposition 6.4, there is a continuous branch f of log(~y — 2)
and a continuous branch h of arg(y — zp) in [a, b] related by

f=In|y — 2| + ih. (6.2)

Then the functions f + k27 and h+ k27, where k is an arbitrary, but constant, integer, are also
continuous branches of log(y — zp) and arg(y — 2¢) in [a, b]. Moreover, since [a, b] is connected,
these are all the continuous branches of log(y — z¢) and arg(y — zp) in [a, b].

Now, let h be any continuous branch of arg(y — z) in [a, b]. We observe that the expression
h(b) — h(a) is independent of the particular choice of h. Indeed, if h; is another continuous branch
of arg(y — zp) in [a, b], then there is a constant integer k so that h; = h + k27 in [a, b] and then
we have hi(b) — hyi(a) = (h(b) + k27) — (h(a) + k27) = h(b) — h(a).

Now, the expression

Aarg(y — z0) = h(b) — h(a)

is called total increment of argument or total increment of angle over the curve v with respect
to zp.

Let us consider the important special case when the curve v : [a,b] — C\ {20} is closed, i.e.
when v(b) = 7(a). This implies (b) — zo = y(a) — 20, and hence In |y(b) — 29| = In|y(a) — zp|.
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It also implies that 1(b) and h(a) differ by some integer multiple of 27: indeed, both A(b), h(a) are
values of arg(y(b) — z9) = arg(y(a) — zo). Therefore the expresion A arg(y — zo) = h(b) — h(a)
is an integer multiple of 27. Then the integer

n(7; z9) = 22E1—20) argéZ_ZO)

is called rotation number or index of v with respect to zg.
It is easy to see the geometric content of the notion of rotation number or index of a closed curve
v with respect to zgp. When ¢ increases in [a, b], the angle h(t) of y(t) — zo varies continuously
from h(a) to h(b). Since Aarg(y — z9) = h(b) — h(a) = k2x for a certain integer k, the
number n(7; 20) = Aargéjr_zo) = h(b);rh(a)
continuously moving point y(¢) around 2.

= k shows the numbers of complete rotations of the

Proposition 6.5. Let vy and 2 be closed curves in C\ {zo } with the same endpoints. Then y, + Yo
is defined and it is also a closed curve in C\ {zo } and also n(v1 + o3 20) = n(v1; z0) +n(72; 20)-
Proof. Lety; : [a,b] — C\{z0} and 2 : [b,¢c] — C\ {20} be the two curves and h; : [a,b] — R

and hs : [b,c] — R be continuous branches of arg(y; — zp) and arg(y2 — z9). We may redefine
ho by adding to it an appropriate integer multiple of 27 so that hy(b) = h1(b). Then the function

h: [a, ] — R which equals hy in [a, b] and hs in [b, ¢] is a continuous branch of log((y1 + 72) —20)
in [a, |. Therefore h(c) — h(a) = h(c) — h(b) + h(b) — h(a) = ha(c) — ha(b) + h1(b) — hi(a)

and hence n(7; T Y23 20) = n(y1; 20) + n(y2; 20)- O

Proposition 6.6. Let v1, v2 be closed curves in C\ {zo} so that each is a reparametrization of the
other. Then n(vy2; z0) = n(v1; 20).

Proof. Let~; : [a,b] - C\{20}and~2 : [¢,d] — C\{zo} bethetwo curvesand o : [c,d] — [a, D]
be the change of parameter so that vo = 71 o . If h is a continuous branch of arg(v; — zp) in

[a, ], then o & is a continuous branch of arg(y2 — 20) in [c, d]. Indeed, from ") = %
for every t € [a,b] we get eM(7(5) = wlg E ;g Zg‘ = \122 g -1 for every s € [c,d]. Therefore,
from h(o(d)) — h(o(c)) = h(b) — h(a) we get n(7y2; z0) = n(71; 20). O

Proposition 6.7. Let v be a closed curve in C\ {z0}. Then n(=-; z0) = —n(7; 20)-

Proof. Lety,—y : [a,b] = C\ {2} be the two curves. Then =~(t) = v(a + b — t) for every
t € [a,b]. If h is a continuous branch of arg(y — 2¢) in [a, b], then the function k(t) = h(a+b—1t)

is a continuous branch of arg(—~~ — z9) in [a, b]. Indeed, from e*(!) = ggt;%o forevery t € [a, b]
we get eF(t) = eihlatb=t) — QEZiZigiiﬁ\ = E%g o7 for every ¢ € [a,b]. Therefore, from
k(b) — k(a) = h(a) — h(b) we get n(~%; ) = —n(¥: %). O

Proposition 6.8. Let y be a closed curve in C \ {z}. If a continuous branch of log is defined in
the set v* — zg C C\ {0}, then n(~; z9) = 0.

Proof. We shall apply the argument of example 4.3.3. Lety : [a, b] — C\{z0} be the closed curve
and ¢ be a continuous branch of log in v* — zgp C C\ {0}. Then the function f = go (v —zp) isa
continuous branch of log(y — zp) in [a, b]. Now, since the curve ~ is closed, we have v(b) = v(a)
and hence f(b) = q(v(b) — z0) = q(y(a) — z0) = f(a). According to (6.2), the imaginary part
h of f is a continuous branch of arg(y — 2¢) in [a, b]. From f(b) = f(a) we get h(b) = h(a) and

hb)=h(a) _ -

hence n(v; 20) = =5

Example 6.1.1. We consider the set A = C \ [, where [ is any halfline with vertex z;. We know
that a holomorphic branch of log(z — zp) exists in A and hence n(y; 29) = 0 for every closed
curve v in A. This is geometrically obvious: since 7y is in A, it does not intersect the halfline | with
vertex zg, and hence it cannot make any complete rotation around 2.
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Proposition 6.9. Let v1,7v2 : [a,b] — C\ {20} be closed curves such that |y1(t) — 72(t)| <
[72(¢) — 20| for every t € [a,b]. Then n(y1; z0) = n(72; 20)-

Proof. From [1(t) = ya(t)] < |12(t) — 70| we get

1;8:23 -1 <1 for every ¢ € [a, b].

Now, we apply again the argument of example 4.3.3. We consider the function g : [a,b] — D;(1)
with g(t) = zzgg:zg for every t € [a,b]. Let g be a continuous branch of log in D;(1). Then
f = qogisacontinuous branch of log g in [a, b]. Since the curves 71,y are closed, we have that
g(b) = g(a) and hence f(b) = q(g(b)) = q(g(a)) = f(a). According to (6.2), the imaginary part
h of f is a continuous branch of arg g in [a, b]. From f(b) = f(a) we get h(b) = h(a).

Now let ha be a continuous branch of arg(y2 — zp) in [a, b]. Since, 71 — 29 = (72 — 20)g in [a, b],
proposition 6.3 implies that h; = ho+ h is a continuous branch of arg(y; — zo) in [a, b]. Therefore,
hl (b) —hl (a) = hz(b) —hz((l)—i—h(b) —h(a) = hg(b) —hg(a) and hence n(vl; Zg) = n('yg; Zo) O

For every curve v in C \ {zo} we may consider the translated curve v,, = v — 2o in C \ {0}.
It is clear that n(y; z9) = n(7z,;0).

Proposition 6.10. Let v be a closed curve. Then the integer-valued functionn(vy; - ) : C\v* = Z
is constant in every connected component of the open set C \ v*. We also have that n(~y;z) = 0
for every z in the unbounded connected component of C \ v*.

Proof. Let~ : [a,b] — Cbethe curve and let z € C\ v*. Then there is some disc D, (r) contained
in C \ v* and hence |w — z| < r < |y(t) — z| for every t € [a,b] and every w € D,(r).

We take any w € D,(r) and we consider the translated curves v, = v — z and y,, = 7 — w. Then
we have that |y, (t) — 7:(t)| = |w — 2| < |7.(t)| for every ¢ € [a, b]. Proposition 6.9 implies that
n(yw; 0) = n(vz;0) and hence n(v; w) = n(y; 2).

We proved that the function n(y; - ) : C\v* — Z is locally constant: for every z € C\ +* there is
adisc D, (r) so that n(y; w) = n(y; z) for every w € D,(r). Of coure, this implies that n(~; - ) is
continuous in C\ v*. Now, let 2 be a connected component of C \ v*. Since n(+y; - ) is continuous
and integer-valued in the connected set €2, it is constant in 2.

Since +* is bounded, it is contained in some disc Do(R). Then the connected ring Dy (R, +00)
is contained in C \ «* and hence it is contained in (exactly) one of the connected components,
call it Q, of C \ 7*. Then ( is the only unbounded connected component of C \ +* and we shall
prove that n(vy; z) = 0 for every z € Q. Let ¢ be the constant value of n(v; z) in 2. We take
any z9 € Dg(R,+o0) and then obviously there is a halfline [ with vertex zp which does not
intersect the disc Do(R) and hence it does not intersect v* either. From example 6.1.1 we have
that ¢ = n(y; 29) = 0. O

Proposition 6.10 says that if 21, 2o are in the same connected component of the complement of
the trajectory of the closed curve vy, then the number of complete rotations of vy around z; is equal
to the number of complete rotations of v around zs.

Let v be a closed curve and z ¢ v*. We say that v surrounds z if n(v; z) # 0.

Now we consider the case of a piecewise smooth curve -, and initially we do not assume that
v is closed. Then there is a succession of points a = tg < t; < -+ < tp,—1 < t, = b so that
«y is continuously differentiable in every [t;_1,t;]. We consider an arbitrary fixed zp ¢ +* and

we define f(t) = [} 7{2 ,)(f)ZO ds for t € [a,b]. Then f is continuous in [a,b] and differentiable

. . . / . (¢
at every point of continuity of vjzo. So in every (tx_1,t;) we have f'(t) = 7&)7(7)20 and hence

F((v(1) = 20)eTD) = A ()e O — (3(t) = 20) f/(t)e /") = 0. Thus, (y(t) — z0)e /") is
constant in each (¢;_1, t;) with a constant value which a priori depends on k. Since this function
is continuous in [a, b], it is constant in [a, b]. Hence there is ¢ € C so that (y(t) — z)e /®) = ¢
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for every t € [a,b]. Since ¢ # 0, there is d € C so that e = ¢, and thus /() +d = ~(t) — 2, for
every t € [a, b]. Now we redefine f by adding to it the constant d, i.e. we write

Ft) = Ji ﬁzo ds+d  forevery t € [a, ] (6.3)
and we have e/ () = ~(t) — 2, for every t € [a, b]. In other words, the function f is a continuous
branch of log(y — zp) in [a,b]. Now, the real part of f is In|y — zo| and, if we denote h the
imaginary part of f, then h is a continuous branch of arg( — 2p) in [a, b].

We have that f(b)— f(a) = f; ’Y(Z)(i)zo ds = fv d¢. Since A arg(y—z9) = h(b)—h(a) =
Im(f(b) — f(a)), we get

C—z0

Aarg(y — 2) =Im [, CEZO dc.
In the case of a closed curve we have the following result.
Proposition 6.11. Let v be a piecewise smooth closed curve in C\ {zo}. Then

n(')/? ZO) = ﬁ y C}ZO dg.

Aarg(y—z0) _ h(b)fh(a)

Proof. Using the notation of the previous discussion, we have n(v; zp) =

2m
Since ~ is closed, we have that In |y(b) — 29| = In|vy(a) — 20| and from (6.2) and (6.3) we get that
b)—f(a b 4/(s
n(fy; ZO) - 4 )27r{( ) = ﬁ a 'y(’Ts)(—)zo - ﬁ v (—z0 dC u

Example 6.1.2. We take n € Z and consider the closed curve v : [0,27] — C \ {29} with
parametric equation y(t) = 2o + re'™. It is clear that, if n # 0 and t increases in the interval
[0, 27], then (¢) describes |n| times the circle C, (r) in the positive direction, if n > 0, and in the
negative direction, if n < 0. In the case n = 0, then ~y(¢) is constant and describes |n| = 0 times
the circle C, (). All these agree with the result of the calculation:

1 _ 2 1 int gy
n(7v; 20) = 57 T ZO d¢ = 2m —mt Tine'™ dt = n.

Since v* = C, (), the complement of v* has two connected components: the disc D, (r) and the
ring D, (7, +00). Thus, n(vy; z) = n(vy;20) = nwhen z € D, (r). Also, since D, (r, +00) is the
unbounded component of the complement of *, we have that n(~y; z) = 0 when z € D, (r, +00).

Proposition 6.12. Let Q C C\ {20} be a region. Then a holomorphic branch of log(z — zp) exists
in Q if and only if n(v; z0) = 0 for every closed curve =y in .

Proof. 1Ifn(vy; zg) = 0 for every closed curve v in €, then n(; z9) = 0 for every piecewise smooth
closed curve ~y in Q2. Now, theorem 4.1 applied to g(z) = z — 2z implies that a holomorphic branch
of log(z — zp) exists in §2. The converse is a corollary of proposition 6.8. O

Of course example 6.1.1 is relevant to proposition 6.12.

Cauchy’s formula for derivatives and closed curves in convex regions. If f is holomorphic in
the convex region ) and vy is a piecewise smooth closed curve in §, then for all n € Ny we have

n(:2)f(z) = 4% f, ik dC forevery z €\ 7"

Proof. The function F'(¢) = =1z ) f(z) is holomorphic in 2\ {z}. Since z is aroot of f({) — f(2),

the singularity z of F'is removable. So we may define F' at z with F'(2) = lim¢_,, % =
f'(z) and then F becomes holomorphic in 2. Now we apply the theorem of Cauchy in convex

regions and get f f 2 ¢ = f F(¢)d¢ = 0 forevery z € Q \ v*. This implies

f. gf(f; d¢ = f(2) §, 2 d¢ = f(2)2min(y; 2) (6.4)
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for every z € 2\ 7*. This is the result of the statement in the case n = 0.

Now, we consider a small disc D, (r) C C \ v*. This is possible, since z belongs to the open set
C \ v*. The disc D.(r) is connected and hence it is contained in one connected component of
C \ v*. Therefore, the index n(7; w) is a constant function of w in D,(r), i.e. n(y;w) = n(7; z)
for every w € D,(r). This implies that all derivatives of n(v;w) vanish at z and so when we
differentiate (6.4) we get n! f n+1 d¢ = ™ (2)2min(y; z) for every n > 1. O

A particular instance of the last result is Cauchy’s formula for derivatives and circles. Indeed,
when the curve ~ describes the circle C,, (R) once in the positive direction we have n(y; z) = 1
for all z € D,,(R). We originally proved the result in the case of a circle, using corollary 5.1.
We now have a “new” proof using that z is a removable singularity of w We have also
introduced the notion of the index of a closed curve. This new proof together with the introduction
of the notion of index allows us to generalize the case of a circle to the case of a more general
piecewise smooth closed curve. There is still a restriction in the sense that the curve has to be
contained in a convex region in which the function is holomorphic. This is because our proof is
based on Cauchy’s theorem in convex regions. In this chapter we shall replace this restriction on

the region with a restriction on the curve.
Exercises.

6.1.1. (i) Consider closed curves 1, 2 and z not on their trajectories. Assume that there are succes-
: : (1) n 1O _ (1) (2 ) @) ,@ _,3
sive points wy *, ..., wpn ", Wy {1 = of 77 and successive points wy™, ..., wy ", w7 = w;

of 75 and curves 01, ...,0,,0,41 = 01 so that every o; goes from w§ ) to w(?)
(2, (2)

each j = 1,...,n, the part of v; between wj( ) (Jr)l, the part of ~» between w; Wi,
0j+1 are all in a convex subregion D; of C \ {z} Prove that n(v1; 2) = n(y2; 2).

(ii) Take a point z and two halflines l7 m with vertex z. Let A € [, A # zand B € m, B # z.
Consider any curve +; from A to B in one of the two angular regions defined by I, m and any

curve 9 from B to A in the second angular region defined by I, m. Consider the closed curve

and so that, for

o; and

Yy=m + 2. Using appropriately a small circle with center z, prove that n(vy; z) = +1.

6.1.2. If 1, 72 are closed curves in C \ {0} then ;72 is a closed curve in C \ {0}. Prove that
Aarg(y172) = Aargy + Aarge.

6.1.3.Let ' C C be closed and connected, +1 € F and Q@ = C\ F. Prove that there is a
holomorphic branch of log Z% in Q. Prove also that there is a holomorphic branch of (22 — 1)1/2
in {2
in (2.

6.2 Homotopy.

Letv0,71 : [a,b] — Cbe two curves. We say that y; is hemotopic to 7 if there is a continuous
function F' : [a,b] x [0,1] — C so that F'(t,0) = ~vo(t) and F'(¢,1) = 1(t) for every ¢t € [a, b].
The function F' is called a homotopy from g to ;.

For each s € [0, 1] the function 75 : [a,b] — C, given by v5(t) = F(t,s) fort € [a,b], is
continuous and hence it is a curve. We shall call it intermediate curve between g and 7.

Since [a, b] x [0, 1] is compact, the homotopy F' is uniformly continuous. Thus for every € > 0
there is 6 > 0 so that |[F'(t/, ") — F(t",s")| < e when /(¥ —")2 + (s’ — §"")2 < 4. Therefore,
if |s' — s”| < 4 then we have |y (t) — v~ (t)| < € for every t € [a,b], i.e. the curves vy and
s are uniformly close. We see that when s increases in [0, 1] the curves 75 form a continuously
varying family of curves, starting with ~y and ending with ~;. To be more precise, we have a
mapping [0, 1] © s — 75 € C([a, b]), which is continuous from [0, 1] with the euclidean distance
to C([a, b]) with the uniform distance:

‘S/ . S”| <5 = Supte[a,b] |’Ys’ (t) — Vg (t)| < €.
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If all curves ~; are closed, i.e. if F'(a,s) = F(b, s) for every s € [0, 1], then we say that F' is
a homotopy with closed intermediate curves. If all curves v, have the same initial endpoint and
the same final endpoint, i.e. if F'(a, s) is constant and F'(b, s) is constant for s € [0, 1], then we
say that F' is a homotopy with fixed endpoints.

If all curves ~y, are in the same set A, then we say that F' is a homotopy in A.

We may define a relation between curves in a set A: we write g = -1 if there is a homotopy
in A from ~q to 7. It is easy to see that this is an equivalence relation:
(i) Every curve 7y : [a, b] — A is homotopic to itself through the homotopy F : [a,b] x [0,1] — A
given by F'(t,s) = ~(t).
(i) If F' : [a, b] x]0, 1] — Aisahomotopy from vy to~yi,i.e. if F(¢,0) = yo(t) and F'(¢,1) = v1(t)
fort € [a, ], then the function G : [a, b] x [0, 1] — A given by G(t, s) = F(t,1—s) is a homotopy
from 7, to vo. In fact G is continuous and G(¢,0) = 71 (¢) and G(t, 1) = 7o(t) for ¢ € [a, b].
(iii) If F' : [a,b] x [0,1] — A is a homotopy from g to 7, i.e. if F'(¢,0) = ~o(t) and F(¢,1) =
71 (t) fort € [a,b],and if G : [a, b] X [0, 1] — A is ahomotopy from v; to y2,i.e. if G(¢,0) = v1(t)
and G(t,1) = y(t) for t € [a,b], then H : [a,b] x [0,1] — A, given by

H(t ) = F(t’ 23)7 te [a’ b]’ 5 € [07 %]
S) = G(t,2s—1), te [a,b],se[%,l]

is a homotopy from 7 to 2. Indeed, H is continuous and H (¢,0) = ~(¢) and H(¢t,1) = ~2(t)
fort € [a, b].

Furthermore, the previous argument shows that the relation of homotopy with closed interme-
diate curves and the relation of homotopy with fixed endpoints are both equivalence relations.

Example 6.2.1. If the set A is convex, every two curves in A are homotopic in A. Indeed, let
0,71 : [a, b] — Abetwo curves in A. Since yo(t),v1(t) € A and A is convex, the linear segment
[Y0(t),v1(t)] is contained in A. Now, if we define F' : [a, b] x [0,1] — C by

F(t,s) = (1 —s)v(t) + sm(?),

then F' is continuous and all its values are in A. Moreover, F'(t,0) = 7o(t) and F(t,1) = y1(t)
fort € [a, b]. Therefore, F' is a homotopy in A from g to ;. It is easy to see that, if 7y and ; are
closed, then all intermediate curves are closed. Also, if 79 and ;7 have the same initial endpoint
and the same final endpoint, then all intermediate curves have the same initial endpoint and the
same final endpoint.

Proposition 6.13. Let g, v1 be two closed curves in C\ {z}. If there is a homotopy in C\ {z},
with closed intermediate curves, between ~yy and 1, then n(~p; z) = n(y1; 2).

Proof. Let F : [a,b] x [0,1] — C\ {z} be a homotopy with closed intermediate curves, between
~o and ~y1. Since F is continuous and [a, b] x [0, 1] is compact and F' does not take the value z,
there is € > O sothat |F'(t,s)—z| > eforevery ¢ € [a,b] and s € [0, 1]. Also, since F is uniformly
continuous, there is & > 0 so that |s' — s”| < § implies |yy () — 757 (t)| < € for every t € [a, b],
where 5 is the intermediate curve corresponding to s € [0, 1]. Then we have |y (t) — vs (t)| <
|y (t) — z| for every t € [a,b] and proposition 6.9 implies that n(vy;2) = n(ys;2). Now

we take successive points 0 = sg < §1 < ... < Sp—1 < S, = 1 so that sp — sp_1 < 0 for
every k = 1,...,n. Then we have n(v,,_,;2) = n(vs,;z) forevery k = 1,...,n and hence
n(v0; 2) = n(y1; 2). O

Proposition 6.14. Let f be holomorphic in the open set Q.

(1) If 0,71 are piecewise smooth curves in () with the same initial endpoint and the same fi-
nal endpoint and if there is a homotopy in ), with fixed endpoints, between vy and 71, then
[ [ dz= [ [(=)d=

(i) If vo, 11 are piecewise smooth closed curves in ) and if there is a homotopy in (), with closed
intermediate curves, between o and 1, then ¢ f(2)dz = ¢ f(2)dz.
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Proof. (i) Let F' : [a,b] x [0,1] — € be the homotopy in §2 from ~y to v;. Then the subset
F(Ja,b] x [0,1]) of Q is compact and there is € > 0 so that

|z —w| > € for every z € F([a,b] x [0,1]) and every w € Q°. (6.5)
Since F' is uniformly continuous, there is § > 0 so that
|F(t',s") — F(t", ") <e if [t —¢"] < §and |s' — §"| < 4. (6.6)

Wetake pointsa =tg <t < ... <tph_1 <tp=band0 =590 < $1 < ... < $p-1 < Sy =1
so that t, — tx_1 < 6 and s; — s;_1 < 0 for all k and {. Then (6.5) and (6.6) imply that every
rectangle [ty _1,%x] X [s;_1, 51| is mapped by F'in the disc Dp(;, , 5, ,)(€) which is contained in
Q. Since f is holomorphic in this disc, its curvilinear integral over any closed curve in this disc is
equal to 0.

Now we denote g 1, and 71 j the restrictions of vy and 71 in [t;_1,t;]. We also denote oy, the
linear segment [F'(t;_1,s;), F(tg,s;)] fork =1,...,nandl = 1,...,m — 1. Finally, we denote
pr, the linear segment [F'(ty, s;—1), F(t, s;)] fork =0,...,nand [ = 1,...,m. Then for every
k=1,...,n wehave

f’YOkudZ_kale fpk 11 dz_fpmdeZ

f%ll z) z—faklfz fkll dz—f S forl=2,....m—1
f%ml zdz—kafz f dz—f f()dz
Adding these m equalities and then adding for £k = 1,...,n and considering cancellations, we
find
o fe)dz— [ f(z)dz=37", fpo,l f(z)dz—=>", fpn,l f(z)d=. (6.7)

Since all intermediate curves have the same initial endpoint and the same final endpoint, we see
that all linear segments pg ; and p,, ; are single point sets and hence all integrals in the right side of
(6.7) are equal to 0. Thus, f% f(z)dz = f% f(z)dz

(if) Since all intermediate curves are closed, we have F'(a,s) = F(b,s) for every s € [0,1].
Therefore, for each [ the linear segments pg; and p,,; coincide and again the right side of (6.7) is
equal to 0. Thus, § f(z)dz= ¢  f(z)dz. O

Exercises.

6.2.1. Let A be arcwise connected and 1 (t) = z1 and y2(t) = 22 be two constant curves in A. If
a curve vy is homotopic in A to 7, prove that v is homotopic in A to ;.

6.2.2. If 7y is a closed curve in C \ {0}, prove that « is homotopic in C \ {0} to a closed curve
whose trajectory is contained in the circle T.

6.2.3. (i) Let f be continuous in Do(R). We define y(t) = f(Re") for every t € [0, 27]. Prove
that, if n(vy; w) # 0, then w € f(Dy(R)). Le. {w ]| w is surrounded by v} C f(Dy(R)).
(i1) Using the result of (i), prove the fundamental theorem of algebra.

6.2.4. Let p € A and let M,,(A) be the set of all closed curves with both of their endpoints at p. If

1,72 € Mp(A), then clearly v +ye My (A). Also, if v € M, (A), then —v € M, (A).
(1) Prove that the relation of homotopy in A with closed intermediate curves and fixed endpoints
(= p) is an equivalence relation in M,(A). The set of all equivalence classes is denoted #,(A) =

{11y e Mp(A)}.

(i) If v, 71,72 € Mp(A), we define [v1] + [12] = [m + 5] and —[y] = []. Prove that these
are well-defined and that #,(A) with these operations is a group, whose neutral element is [y,],
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where v, is the constant curve p.
(iii) If A is arcwise connected, prove that for every p,q € A the groups #,(A) and H,(A) are
isomorphic. In this case we write 7(A). (See exercise 6.2.1.)

(iv) Prove that #(C) = {0}, H(C\ {0}) = Z, H(T) = Z.

6.2.5. Let 21, 22, 23, w1, we, w3 be distinct points. Is it possible to join every z; with every w;
with simple curves 7;; whose trajectories are mutually disjoint?

6.3 Combinatorial results for curves and square nets.

Lemma 6.1. Let X = {o1,...,0,} be a set of curves (not necessarily closed) and let A =
{a1,...,am} be the set of their endpoints (m < 2n). We assume that for every point of A the
number of the curves in X that arrive at this point is the same as the number of the curves in 3 that
leave from this point. Then we can partition X into subsets X1, . . ., X, so that each ¥; consists of
successive curves and the sum ; of the curves in ¥; is a closed curve.

Proof. We describe the following algorithm for the partitioning of 3.

We start with o1. The final endpoint of o is the initial endpoint of at least one curve in X. If the
final endpoint of o1 coincides with its initial endpoint, then o; is closed and we stop the process. If
this is not the case, then, renumbering if necessary the curves o9, . . ., 0,, we may assume that the
final endpoint of o coincides with the initial endpoint of o5. If the final endpoint of o2 coincides
with the initial endpoint of o1, then the sum of 1, 09 is a closed curve and we stop the process. If
the final endpoint of o9 coincides with its initial endpoint, then o9 is a closed curve and we stop
the process. If the final endpoint of o2 is not the initial point of either o1 or o, then renumbering
if necessary the curves o3, ..., 0y, we may assume that the final endpoint of o5 coincides with
the initial endpoint of o3. Then, exactly as before, we examine whether the final endpoint of o3
coincides with the initial endpoint of o1 or of o9 or of 3. Then, respectively, the sum of o1, 02, 073
or the sum of g9, 03 or o3 by itself is a closed curve and we stop the process. If the final endpoint
of o3 is not the initial endpoint of either o1 or o2 or o3, then renumbering if necessary the curves
04,...,0p, we may assume that the final endpoint of o3 coincides with the initial endpoint of
4. Now, it is clear that this process will eventually stop, because we have only finitely many
curves. Therefore, we shall eventually find successive curves o1,09,...,0_1,0r (1 < k <
n) so that the final endpoint of o coincides with the initial endpoint of one of the same curves
01,09,...,0k_1,0%. Let the final endpoint of oy, coincide with the initial endpoint of o; for some [
with 1 <[ < k. Then the sum of 0y, 0441, ...,0%_1, 0% is a closed curve and we stop the process.
Now we set X1 = {o0y,0741,...,0k-1,0%} and call v; the closed curve which is the sum of
01,0041, --,0k_1,0k. Then we drop the curves of X1 from X, i.e. we consider the set ¥/ =
b)) \ 21 == {0'1, ey O1—1y0k41,- - ,O'n}.

Each endpoint of the curves in X’ is one of the points of A = {a1, ..., an}, say it is a;. Then the
number of the curves in X that arrive at a; is the same as the number of the curves in ¥ that leave
from a;. But the curves 0y, 0741, ...,0,_1, 0} are successive and hence if one of them arrives at
a; then the next one leaves from a;. Therefore, the remaining curves of ¥/ have the same property:
the number of the curves in X' that arrive at a; is the same as the number of the curves in ¥’ that
leave from a;. Thus ¥’ has the same property as the original X.

Now we continue our algorithm with X', We find a subset X5 of ¥/ which consists of successive
curves and we call o the closed curve which is the sum of the curves in 5. Then we drop the
curves of Yo from Y/, i.e. we consider the set X7 = 3\ 3y = X\ (X1 U X5). We go on until we
exhaust the original 3. O

Lemma 6.2. We take any 6 > 0 and two perpendicular lines. For each of them we consider all its
parallel lines at distances equal to integer multiples of 0. The result is a net of closed square regions
of sidelength § which cover the plane and have disjoint interiors. We choose any of those closed
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square regions, say Q1, . . . , Q. We consider the closed boundary curves Q)+, . . ., 0Q; with their
positive direction. Each of them is the sum of four corresponding linear segments, considered as
curves with the same direction. We drop the linear segments (with necessarily opposite directions)

which are common to any two neighboring square regions from among the Q1,...,Q; and we
consider the set ¥ = {01, . ..,0,} of all the remaining linear segments, i.e. those which belong to
only one of Q1, ..., Q. Then we can partition 3 into subsets X1, . .., ¥y, so that each X consists

of successive linear segments and the sum ; of the linear segments in ¥; is a closed curve.

Proof. It is enough to prove that 3 has the property described in lemma 6.1, i.e. that for every
point of intersection a of our lines the number of the curves in ¥ that arrive at a is the same as
the number of the curves in X that leave from a. This can be done easily, considering cases for
the number, 0 or 1 or 2 or 3 or 4, of the squares among ()1, . . ., ; which have a as one of their
corners. O

Lemma 6.3. Let Q) be an open set and K C Q) be compact. Then thereis § > 0 so that |z—w| > 26
for every z € K and every w € QF. For this § > 0 we consider the net of closed square regions
of lemma 6.2 and we take all closed square regions Q1, . . ., Q; of the net which intersect K. Then
Q1, ..., Qq are contained in ). Asinlemma 6.2, we consider the set ¥ = {01, ...,0,} of all linear
segments which belong to only one of Q1, ..., Q; and we partition ¥ into subsets 31, . .., % S0
that each ;5 consists of successive linear segments and the sum y; of the linear segments in ¥;
is a closed curve. Then y{ U ---U~; C Q\ K (i.e. everyv;isin Q\ K) and the distance of
every z € ¥ U--- U~} from K is < 5v/2. Moreover, for every f holomorphic in Q and for every
z € K, we have

F) =8 ¢, HLdc (6.8)

Proof. Each of the closed square regions 1, ..., Q;, say @, intersects K and its diameter is
equal to v/28. Therefore, the distance of every point of ), from K is < V/268. Since /28 < 26,
we see that (), is contained in ).

Consider any of the linear segments o071, ..., 0,, say 0. Now, o; belongs to one of Q1,...,Q);,
say (). Since @, is contained in {2, we have that o is also contained in {). Moreover, the
distance of every point of @,, from K is < /26 and hence the distance of every point of o
from K is < /2. If o intersects K, then both closed square regions of our net which lie on the
two sides of o intersect K and hence both are among ()1, . . ., ;. This is impossible because o;
belongs to only one of ()1, .. ., Q;. Therefore, o; does not intersect K and hence it is contained in
Q\ K. Finally, since each of 1, ..., is the sum of certain of the o1, ..., 0,, we have proved
that 77 U --- Uq; € Q\ K and that the distance of every z € 7f U --- U} from K is < 2.
Now we take any z € K. Then z belongs to one Q1, ..., Q;, say Q,. Let us assume that z is an
interior point of (0,,,. Since the closed square region (), is contained in €2, there is a slightly larger
open square region ' which is also contained in 2. Now f is holomorphic in the convex region
Q' and Cauchy’s formula in section 6.1 says that

F(2) = 55 50, L dc, (6.9)

because the index of 9Q),,, with respect to z is equal to 1. Now we take any closed square region
Qp with p # m. Then z is not contained in (), and again we may find an open square region

Q' slightly larger than @), which is contained in €2 and which does not contain z. Then (C) is a
holomorphic function of ¢ in the convex region Q" and hence
= 2 $oo, - & ac for p#m. (6.10)
We add (6.9) and (6.10) and we get
(2) = Y1 25 $og, 2L dC. (6.11)

95



Now we split the integral over each J(),, in four integrals over the boundary linear segments of
0@, and we get 41 integrals. We recall that if a linear segment belongs to two neighboring closed
square regions, then it appears twice among the integrals with opposite directions and hence the two
integrals cancel. Therefore, the remaining integrals will be only over the boundary linear segments
which belong to exactly one of Q1, ..., @y, i.e. the linear segments of the set ¥ = {o1,...,0,}.
Thus (6.11) becomes

1) = Yoen 2 J, £ d.
The subsets X1, . . ., X form a partition of 3 and hence
()= S50 Y ex, ot Jy 2L dC.

Finally, since ; is the sum of the successive linear segments o € ¥;, we end up with (6.8).
Now let z be a boundary point of @,,,. Then we may consider a variable point 2’ in the interior of
Q. so that 2z’ — z. We have proved (6.8) for 2/, i.e.

F) =iy o §, 29 dc.

Proposition 4.12 implies the continuity of the right side as a function of z’. Therefore, taking the
limit as 2’ — 2, we end up again with (6.8). O

6.4 The theorem of Cauchy in general open sets.

Let o1, ..., 0, be any curves (not necessarily closed) and k1, . . ., k,, be any integers (not nec-
essarily non-negative). Then we say that the curves o1, ..., 0, considered k1, ..., k, times, re-
spectively, form a chain Y. The integer k; is called multiplicity of the corresponding o in the
chain 3. If every o is closed, then X is called closed chain or cycle. If every o is in a set A, then
we say that X is in A.

If a curve o is not among the curves which constitute a chain X, we may include it among
those curves by assigning multiplicity 0 to 0. And now we may introduce the algebraic structure
of a module in the set of all chains in the following manner. If ¥/ and X" are two chains, we
may assume that they are formed by the same collection o1, . .., 0, of curves. If k], ..., k], and

..., k' are the corresponding multiplicities in the chains ¥’ and X", then we define X' 4+ X" to
be the chain which consists of o1, . . ., oy, with multiplicities k] + k7, . .., k, + k].. Moreover, if k
is an integer and X. is a chain formed by the curves o1, . . . , 0, with multiplicities k1, .. ., ky, then
we define £X to be the chain formed by o1, ..., o, with multiplicities kk1, ..., kk,. It is very
easy to show that, under this addition of chains and this multiplication of chains and integers, the
set of chains is a Z-module. The opposite — of a chain 3 is (—1)X and the neutral element of
addition is the chain which contains no curve (or any curves with multiplicities 0).

If ¥ is a chain formed by the curves o1, . . . , g, with multiplicities k1, . . ., k,, we immediately
see that, under the above definitions of addition and multiplication, we have 3 = ko1 +- - -+kn 0.
Here we consider each o as a chain consisting of only one curve with multiplicity 1.

We shall not go into this algebraic point of view, since it does not have much to offer in our
study of complex analysis. We shall keep in mind, though, the definition and notation of ¥’ + X"
and k£ and from time to time we shall feel free to make certain mild algebraic comments.

Now we consider a chain 3 formed by the piecewise smooth curves o1, . . . , o, with multiplic-
ities k1, ..., k, and a continuous ¢ : o7 U --- U o, — C. We define the curvilinear integral of
¢ over X by

Jso(z)dz =300 k; faj o(z) dz.

If ¥ is a cycle, we may use the notation

552 @(z) dz.
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It is easy to show that

fk121+k222 d)( ) Z = kl fz dz + kQ fE dZ

This says that integration “respects” the linear structure of the Z-module of chains.
Moreover, for every z which does not belong to o} U - - - U o}, we define the rotation number
or index of the chain X with respect to z by

n(E;z) =30 kin(oy; 2).

We may say that n(3; z) is the total number of rotations around z of the curves forming X,
taking into account their multiplicities.

Combining the last two definitions, we easily see that the index of a cycle consisting of piece-
wise smooth closed curves is given by the same integral form which gives the index of a piecewise
smooth closed curve:

(EZ 27r1 ECZC'

Indeed, n(3;2) = 320, kjn(oy;2) = >0, Ky o fgg = =L § 2 = dC.

Now we state a basic definition.

Let X be a cycle in the open set {2. We say that 3 is null-homologous in 2 if n(X; z) = 0 for
every z € Q€.

In other words, a cycle X in €2 is null-homologous in €2 if the total number of rotations of the
curves forming ¥, taking into account their multiplicities, around every point of the complement
of 2 is zero.

Lemma 6.4. Let 2 C C be open, 6 > 0and K = {z € Q| |z| < R,|z —w| > § forall w € Q°}.
Then K is a compact subset of ).

Proof. Since K C Dgo(R), the set K is bounded.

Now, let z,, € K for every n and z, — z. If we prove that z € K, then K is closed and hence
compact. We have |z,,| < R for every n and thus |z| < R. Forevery w € Q° we have |z, —w| > §
for every n and hence |z — w| > §. Therefore z € K. O

The theorem of Cauchy in general open sets. If f is holomorphic in the open set §) and if the
cycle %5, consisting of piecewise smooth closed curves, is null-homologous in 2, then

$e [(2)dz = 0.

Proof. Letthe cycle X consist of the piecewise smooth closed curves o1, . . . , o, with multiplicities
ki,...,ky,. Since o] U --- U o, is a compact subset of (2, there is § > 0 so that every point of
o] U---Uoy, has a distance > 26 from 2 and there is R > 0 so that o] U - -- U o}, is contained
in the closed disc Do(R). We consider the set

K ={z€Q||z| <R,|z —w| > 26 forevery w € Q°}

of lemma 6.4 (with 26 instead of §). Then K is a compact subset of 2 which contains oy U- - -Uo.
With the same § and with this set K we form the closed curves 71, ...,7, in  \ K, which are
described in lemma 6.3. According to lemma 6.3 we have

f(z) = Zuszwfi) forevery z € o} U--- Ua}.

Hence
kf(z)dzz ;Lﬂk'f deZ:Z?ﬂkjfgj(lez ﬁylgz )
leﬁyl( j=1 ki 2 ajfigdz)f(g)dc
_—lelﬂl (X kjn(os;0)), F(C) d¢
= =2 §, (SO () dC.

97

(6.12)



Now we consider the index n(X;¢) = Z;‘L:1 kjn(oj;C) when, as in the integrals in (6.12), ¢
belongs to any of 77, ..., 7. Since every such ¢ is in Q \ K, either ¢ & Do(R) or the distance
of ¢ from Q¢ is < 26. If ¢ & Do(R), then, since ¥ is in Do(R), we have that n(3;¢) = 0. If the
distance of ¢ from € is < 20, then there is w € Q¢ so that |( — w| < 2§. Then every point of the
linear segment [, w] has distance < 24 from w and hence from Q¢. Thus [(, w] is not contained in

K which implies that [(, w] is in the complement of o7, . .., o. Since [, w] is connected and it is
contained in the complement of every o} we have that (0 ; ¢) = n(o;; w) foreveryj =1,...,n.
Therefore,

n(E;¢) =7 kjn(o: Q) = 27 kjn(ojiw) =n(S;w) =0
because w € Q¢ and ¥ is null-homologous in . Now (6.12) implies §, f(z) dz = 0. O

It is interesting to see that the assumption of our last result is at the same time a special case
of it. Indeed, if we take any w € ¢, then the function f(z) = ﬁ is holomorphic in {2 and the
theorem of Cauchy implies that ¢, —*— dz = 0. But this says that n(3; w) = 0. In other words,
we have the following situation. The assumption that 3 is null-homologous in €2 is equivalent to
the validity of the theorem of Cauchy for the very particular holomorphic functions of the form
f(z) = ﬁ for every w € Q°. Therefore the real content of the theorem of Cauchy is that the
validity of $s, f(z) dz = 0 for the special holomorphic functions in ) of the form f(z) = wa for
every w € Q° implies its validity for every function f which is holomorphic in €.

Example 6.4.1. Let v be any piecewise smooth closed curve in the convex region (2 and let w € Q€.
Then w is contained in the unbounded connected component of C\ v* and proposition 6.10 implies
that n(; w) = 0. Hence ~ is null-homologous in 2. Now the theorem of Cauchy for general open
sets says that fv f(z)dz = 0 for every f holomorphic in Q2. We conclude that the theorem of
Cauchy for convex regions is a corrolary of the theorem of Cauchy for general open sets.

Example 6.4.2. We consider the open set D, (R, Ry) with 0 < Ry < Ry < +o00. We con-
sider the closed curve  which describes the circle C(r), with Ry < r < Ra, once and in the
positive direction. This curve is not null-homologous in D, (R, R2). Indeed, z is in the comple-
ment of D, (R, R2) and n(vy; z0) = ﬁ fCZO r) ﬁ dz = 1. Therefore, we do not expect that

3?7 f(2)dz = 0 is true for every f which is holomorphic in D, (R, R2). In fact, this is certainly
not true for f(z) = ﬁ which is holomorphic in D, (R1, Ra).

Example 6.4.3. We consider the same open set D, (R, R2) as in the previous example and an
arbitrary piecewise smooth closed curve v in D,,(R1, R2). We shall see how we can evaluate
fv f(z) dz with a minimum of effort for any f holomorphic in D, (R, R2). It is clear that, de-
pending on the specific curve v, it may be difficult to evaluate the integral using a parametric
equation of 7.

Let us assume that the shape of the trajectory and the direction of v allow us to count the number
of rotations of ~y around 2z, i.e. we assume that we know the integer & = n(+y; zo). Since the disc
D, (Ry) is one of the two connected components of the complement of D, (Ry, R), we have that
n(v;z) = k for every z € D,,(R1). On the other hand, we have that n(v; z) = 0 for every z in
the unbounded connected component of the complement of D, (R, Rz), which is D, (Rs, +00).
Now we take a piecewise smooth closed curve 71 in D, (R, R2) such that the f% f(2) dz may be
much easier to evaluate than the original ﬁ/ f(2) dz. For instance, we may consider ~y; to describe
the circle C,, (r) with Ry < r < Rs once and in the positive direction. In this case we have that
n(y1;2) = 1forevery z € D, (Ry) and n(~; z) = 0 forevery z € D, (Rz, +00). Now we form
the cycle ¥ = 1+ + (—k) v and we have n(X; 2) = 1n(y; 2) + (k) n(y1;2) =k + (=k) =0
for every z € D,,(R1) and also n(3;2) = 1n(y;2) + (=k)n(y1;2) = 0+ 0 = 0 for every
2 € D,y (Rg,+00). Therefore, ¥ is null-homologous in D, (R;, Ry) and the theorem of Cauchy
implies 0 = ¢ f(2)dz =1 fv f(z)dz + (—k) f% f(z) dz and hence

$, /() de=k§, f(z)dz=ky () f(2)d=
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We see that the evaluation of §7 f(2) dz has been reduced to the evaluation of the possibly much
simpler integral §, i (z) dz and the evaluation of the index n(~; zg).

20
We shall generalize this technique in the following sections and chapters.

Now we generalize Cauchy’s formulas for derivatives.

Cauchy’s formula for derivatives and closed curves in general open sets. If f is holomorphic in
the open set () and if the cycle 3., consisting of piecewise smooth closed curves, is null-homologous
in ), then for all n € Ny we have

n(3;2) f(2) = 2% f (Ll dC
for every z € Q which does not belong to the trajectory of any closed curve forming ¥..

Proof. The function F'({) = M is holomorphic in 2\ {z}. Since z isaroot of f({) — f(2),

the singularity z is removable. Therefore, we may define F at z with F'(z) = lim¢_, . [)=1(z) ) (Z)
f'(2) and then F’ becomes holomorphic in 2. Now we apply the theorem of Cauchy i 1n general
open sets and get fz e f HO-1G) ge = $ F(¢) d¢ = 0, which implies

fz &= dC f(z fz C—2 d¢ = f(2)2min(%; 2)

for every z € ) which does not belong to the trajectory of any closed curve forming X. This is
the result of the statement in the case n = 0. For derivatives of order n > 1 we differentiate both
sides of the last formula, just as in the proof of the same theorem in convex sets, using the fact that
the index of X is constant in a neighborhood of z. 0

Exercises.

6.4.1. Let f be holomorphic in D \ {0}. If the piecewise smooth closed curve v isin D \ {0} and
n(7;0) = 0, evaluate § f(z) dz

6.4.2. Let f be holomorphic in C and f(1 ) = 6, f(—1) = 10. Prove that, if 7y is any piecewise
smooth closed curve in C \ {—1,1}, then - 3% [(2) 7 dz can take every integral value.

6.43.Let f(2) = (L + % )e” for z # 0. Find all the values of a so that fv f(z)dz = 0 for every

z
piecewise smooth closed curve v in C \ {0}.

6.4.4. (i) Find all possible values of 567 j;j; dz, where -y is an arbitrary piecewise smooth closed
curve in C \ {0, 1}.

(i1) Find all possible values of f7 igj dz, where + is an arbitrary piecewise smooth curve in C \
{0, 1} with initial endpoint —i and final endpoint i.

6.4.5. Find all possible values of f 52~ dz, where  is an arbitrary piecewise smooth closed
curve in C\ {0, 7}.

6.4.6. Let f be holomorphic in the open set €2 and + be a piecewise smooth closed curve null-
homologous in 2. If | f({)| < 1forevery ¢ € v*, 29 € Qandn(y; z0) # 0, prove that | f(z)| < 1.
6.5 The residue theorem.

Let 2 be an isolated singularity of f and let 3" 7% a,,(# — 29)™ be the Laurent series of f in
the ring D, (R) \ {z0}. Then the coefficient a_; is called residue of f at zy and we denote

Res(f; Zo) =a—1.

We know that Res(f;z9) = a—1 = ﬁ szo(r) f(¢)d¢ for0 < r < R.
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Example 6.5.1. If zg is a removable singularity of f, then a,, = 0 for every n < 0 and in particular
Res(f;z9) = 0.
Example 6.5.2. Every function of the form f(z) = —L— with N > 2 has residue 0 at z.

(z—z0)N

Example 6.5.3. If zj is a pole of f of order N > 1, then we can find “easily” the residue of f
at zp. Indeed, there is a function g holomorphic in a disc D,,(R) so that g(zp) # 0 and f(z) =
9G)_ for every z € D, (R) \ {20}. From the Taylor series >0 b, (z — 20)" of g we see that

(z—20)
(N—-1) (ZO)

Res(f;z0) =by-1 = g(JVT)!' For instance, if N = 1, then Res(f;29) = g(z0) and, if N = 2,
then Res(f; 20) = ¢'(20).

Example 6.5.4. We consider a power series of the form " a,,(z — 29)" and we assume that its
radius of convergence is 0, i.e. that it converges in the ring D (0, +00). If f is the holomorphic
function defined by the power series in D, (0, +00), then

5w $, F(¢) dC = n(v; 20)a-1 = n(7; 20) Res(f; 20)

for every piecewise smooth closed curve v in C \ {zp}. Indeed, since the power series converges
uniformly in the compact set v* which is contained in its ring of convergence, we have

o §, F(Q)dC = Y i (¢ — 20)" dC = %22 §, A dC = n(: 20) Res(f; z).

where, for n < —2 we used the result of example 4.5.3. Of course, this result holds for a general
cycle ¥ which consists of piecewise smooth closed curves v in C \ {zp}.

The residue theorem is a generalization of the last example.

The residue theorem. Let f be holomorphic, except for isolated singularities, in the open set §)
and ¥ be a cycle which is null-homologous in () and so that no isolated singularity of f is in the
trajectory of any of the closed curves forming 3. Then n(X;z) # 0 for at most finitely many
isolated singularities z of f. Moreover, if 3. consists of piecewise smooth closed curves, then

% fE f(C) dC = Zz sing. of f n(z» Z) Res(f; Z),
where the sum, extended over all isolated singularities of f in (), is finite.

First proof. Let us assume that n(X; z) # 0 for infinitely many isolated singularities z of f in (.
Then there is a sequence (z,,) of distinct isolated singularities of f in Q2 so that n(%; z,,) # 0 for
every n. Since the trajectories of the curves which form ¥ are bounded sets, ¥ is in some disc
Dy(R). Hence n(3; z) = 0 for every z outside Do(R). Thus, the sequence (z,) is in Do(R). The
Bolzano-Weierstrass theorem implies that there is a subsequence (zy,, ) so that z,, — z for some
z. Then z is a limit point of 2.

If z € €, then either f is holomorphic at z or z is an isolated singularity of f. In any case, there
are no isolated singularities of f in a neighborhood of z, except perhaps z itself. This contradicts
zn, being distinct and z,, — z.

If z € 00 and hence z € QF, then n(X;z) = 0. Now there is a disc D(r) which does not
intersect any of the trajectories of the curves which form X. Since D, (r) is connected, we have
that n(3; w) = 0 for every w € D, (r). But this contradicts z,, — z and n(3; 2y, ) # 0 for all k.
In any case we arrive at a contradiction and thus n(3; z) # 0 for at most finitely many isolated
singularities z of f in €2. Therefore, the sum . .. o (2 2) Res(f; 2) is finite.

Let 21, ..., 2z, be the isolated singularities of f in  with n(X;z;) # 0fork = 1,...,n. Le.
n(3; z) = 0 for every other isolated singularity z of f in €.

We define the integers

p1="n(3;21),...,00 = n(3; 2p)
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and then ) n(X; z) Res(f;2) = > p_; Pk Res(f; z). Therefore, it is enough to prove

z sing. of f

srs $ £(O) dC = Sy pi Res(f; 21). (6.13)

Since every 21, ..., 2, is an isolated singularity, there are disjoint closed discs D, (ry) for k =
1,...,n so that each of them contains no singularity of f except its center. We denote 7y, the
closed curve which describes the circle C, () once and in the positive direction. We consider
the cycle

E/:2+(_p1)71+"'+(_pn)7n

and the open set

Q' =Q\ {z € Q| z singularity of f}.
Clearly, f is holomorphic in 2’ and we shall prove that the cycle ¥’ is null-homologous in €', i.e.
n(X;2z) = 0forevery z ¢ Q. If z ¢ U, then either z ¢ Q or 2 = z1,..., 2, or 2 is any other
isolated singularity of f in (2.
If z ¢ Q or if z is any isolated singularity of f in  different from z1, ..., z,, then n(X;z) = 0
and n(yx; z) = 0 for every k. Therefore

n(¥;z) = n(3;2) — pin(y1;2) — - — pun(vn; 2) = 0.

If z = 2, for some ko, then n(X; 2) = n(3;2k,) = Pr, and n(Vk,: 2) = n(Vkyi 2k,) = 1 and
n(Ye; 2) = n(yk; 2k,) = 0 for every k # kq. Therefore

n(X;z) = n(%;2) —pin(v;z) — - — Pan(n; 2) = Pro — Pho = 0.

Thus, X’ is null-homologous in £2’. Since f is holomorphic in €, the theorem of Cauchy implies

$ss F(¢) d¢ = 0. Hence
$o F(O)dC = Y5y pr §, F(C)dC = 2mi S, pi Res(f; 2)

and we proved (6.13).

Second proof. We follow the first proof up to the point where we considered the isolated singular-
ities z1, ..., zp of f. Le. n(X; z) = 0 for every isolated singularity of f different from z1, ..., z,.
Now, we consider the corresponding singular parts s1, ..., s, of f at z;,..., z,. Then we know
from section 5.9 that f — s is holomorphic at z; and also that s is holomorphic in C \ {zx}.
Hence the function g = f — s; — ... — s, is holomorphic in {2 except at the isolated singularities
of f which are different from 21, ..., z,. We consider the open set

Q" =0\ {z € Q|2 is asingularity of f,z # 21,..., 2}

and then g is holomorphic in ”. Also, ¥ is null-homologous in £2”. Therefore, the theorem of
Cauchy implies that ﬁ $ 9(¢) d¢ = 0 and hence

ot I [(O) 6 = Y00 o5 o s1(Q) dC = 7y (s 21) Res (s 21)
= > =1 (25 zk) Res(f; 2),
where for the second equality we used the result of example 6.5.4. O

The residue theorem is a powerful tool for the evaluation of integrals, because it reduces this
evaluation to the location of the isolated sinularities of the function to be integrated and to the
evaluation of the corresponding residues. Let us see some characteristic examples.
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Example 6.5.5. Evaluation offJr () dx, where r = ’; is a rational function, deg g > degp+2
and q has no real roots.
Letp(x) = apz™+- - -+ a1x + ag, with a,, # 0, and g(x) = by z™ + - - +b1x+b0,withb #0,
and m > n + 2. Then r is continuous in R and the generalized integral f +oo (x) dx converges.
To see this, we observe that lim,_,, 2™ "r(z) = 1?72 Hence, if ¢ = |‘“”|‘ 0, there is Ry > 0 so
that

S <M r(2)] < 2¢ when |z| > Ry. (6.14)

Now, since m—n > 2, we get f_RO |r(x)| dx < 2cf_£° \xl’}“" dr < 400 andf z)|dx <
2¢ |, go —r dx < +oo. Thus, the integrals f o () dx, +°° r(x) dz converge absolutely

and so they converge. Moreover, r is continuous in [— Ry, Ro| and so the integral [~ > oo (x) dx
converges.

We consider the roots of ¢ in the upper halfplane and let them be z1, ..., 257, where M < m.
We take any R > Ry so that z1, ..., z)s are contained in the disc Dy(R). We apply the residue
theorem with r = q which is holomorphic in C except for the roots of ¢ and with the closed curve
~r which is the sum of the linear segment [— R, R], with parametric equation z = z, = € [—R, R],
and of the curve op, with parametric equation z = Re®, t € [0, 7], which describes the upper
semicircle of Cy(R) from R to —R. The trajectory of yr contains no isolated singularity of r.

Since g rotates around each of 21, . .., zps once and in the positive direction, the residue theorem
implies

— o r(z) dz = Res(r; zl) + - 4+ Res(r; zp).
We have that 55 2)dz = f[_ rr () dz + f z) dz and hence

f—R r(z)de = f[—R,R] r(z)dz = 2mi(Res(r; 21) + - - - + Res(r; zpr)) — fch r(z)dz.

Since R > Ry, (6.14) and m > n + 2 imply | fUR dz‘ <
we conclude that

Rm ¢ 1R — 0when R — 400 and

[T r(x) de = 2mi(Res(r; 21) + - - + Res(r; 2ar)).

Thus, to evaluate f too () dx we need only to find the residues of r at the poles z1, ..., zps of r
in the upper halfplane
Example 6.5.6. Evaluation of pv f+ (z) dx, where r = % is a rational function, degq =

degp + 1 and q has no real root.
Let p(z) = apz™ + -+ + a1x + ap, with a,, # 0, and q(z) = b 1" 4 by + b,
with b,+1 # 0. It easy to see that the generalized mtegral f ooy () dx does not converge. In-
deed, we recall the estimate (6.14), i.e. |r(z)| > 2| ; when |z[ > Ro Therefore, for real z = «
we have that |r(z)| > 5= when z > Ry. Now, r has constant 51gn in [Ry,+00) and hence
’f;;oor(x)dﬂ = ;_OOO Ir(x)| dz > szOO Ldr = +oo0. Thus, r(m)dm = 400 or —00
and, similarly, f:o]jo r(x) dx = +oo or —
Since the generalized integral diverges we examine its principal value, i.c.

pv f+ r)dr = limp_, f (x)dx.
It is easy to see that 7(z) — b:zl % is a rational function whose denominator has degree two units
larger than the degree of its numerator. According to the previous example, there is Ry > 0 so that

n (&
|r(2) = 52 1] < me  Wwhen [2[ > Ry. (6.15)
As in the previous example, we consider the roots z1, ..., zjs of g in the upper halfplane and we
take R > Ry sothat zq, ..., z)s are contained in Dy(R). We apply the residue theorem with rr = g

and the same closed curve v and we get

o § r(2)dz = Res(r; z1) + - - - + Res(r; zpr).

211 Jygr
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Now, ¢ r(z)dz = f[—R,R] r(z)dz + [, r(z)dz and hence

ff%f(@ do = 2mi(Res(ri 1) + -+ + Res(rizn)) = [, (1) = o 1) ds = g [, L

bn+1 4 bn+1

The last term is

an 1 it _
T Jon 2 02 = 5.5 Jo Rew iRe™ dt = im g

Since R > Ry, we have from (6.15) that ‘ fO'R r(z) — baL Z dz’ < 2 TR — 0 when R — +00
and we finally get

pv f+°° (x) dx = 2mi(Res(r; 21) + - - - + Res(r; 2pr)) — im R
Example 6.5.7. Evaluation of pv f +oo (z) dx, where r = % is a rational function, degq >
degp + 1 and q has real roots, all wzth multlplzczly 1.
Letp(z) = apa™+- - -+ayx+ap, witha,, # 0,and g(x) = by, 2™+ - -+byz+bg, with b, # 0, and

m > n+1. We assume that the real roots of g are x1, . .., z,, withz < ... < z,, and that these are
not roots of p. We take ¢y > 0 so that the intervals [931 —€0, X1+ €0l -, [T — €0, Tn + €0] around
the real roots of ¢ are disjoint. In order for f +oo (z) dx to converge, the generalized integrals

[+ r(x)dx and ffkﬁeo (x) dz must converge for every xj. This is not correct. Indeed, we

T —€Q

write 7(z) = (z—aZ:)S;k(z) = g’“(x) , where ¢y, is a polynomial with qx(z1) # 0 and where g, = ;;

is a rational function holomorphic at . Since lim,_,,, gx(z) = gx(zr) # 0, there is e, with

1 lgx (zk)]
2 [z—ay|

for every z with 0 < |z — x| < €x. The function r has constant sign in (z, zx + €x]. Therefore,
| ka+ek dx| z”e’“ I (2)| do > losleell fm”e’“ ~ dx = +o00 and the generalized inte-

gral f x’“+6’“ (z)dz does not converge. Slmllarly, f e ( ) dz does not converge either. This

0 < e < g so that |gx(2)| > 1 |gk(2x)| for every z with |z —x%| < €. Hence, [r(z)| >

is why we examine the principal value of f +oo () dx, i.e.

prJroo dx—llmR_>+OOE_>0+(le “r(x) olac—i-f‘r2 “r(x)dr + -

- (6.16)
-+ f ; 1+e d$ + f )dx) - hmR%Jroo e—0+ (R, E).

We evaluate I (R, €) using a variant of the curve v of the previous examples: the curve yg ¢, which
is the sum of the linear segments [—R, z1 — €], [v1 + €, 22 — €], ..., [Tn_1 + €, 2, — €], [zn + € R],
of the curve o g, which describes the upper semicircle of Cy(R) from R to — R, and of the curves
Ole,---,0n,e Where each oy, . describes the upper semicircle of the corresponding C, (¢) from
x), — € to ), + €. We just take R large enough and € small enough so that the curve g . rotates
once and in the positive direction around each of the roots z1, . .., zps of ¢ in the upper halfplane.
Then 7g ¢ rotates no times around each of the remaining roots of ¢g. The residue theorem implies
that
fm’( r(z)dz = 2mi(Res(r; 21) + - - - + Res(r; 2p1))

and hence
I(R,€) = 2mi(Res(r; 21) + -+ + Res(r; zm)) — [, 7(2) dz
—f (@) de == [ r(2)dz

Now, x, is a pole of r of order 1 and r can be written r(z) = P fr(z) for z # xy in a disc
with center xy, where fi is holomorphic at x, and ¢, = Res(r;zy). Since fj is bounded in a
disc with center xy, there is M), > 0 and €}, > 0 so that | f(z)| < M, for |z — x| < €], Thus,
0 < € < ¢, implies | f%e f1(2) dz| < Myme and hence lim,_,o.+ f%e f1(2) dz = 0. Therefore,

fake r(z)dz = ¢ ka — xk dz + f z)dz

= —micg + fU’k . fr(2) dz — —TiC when € — 0 + .

(6.17)

(6.18)

103



The limit of f z) dz when R — +o0 has been evaluated in the previous two examples:

limp_y 4o [, 7(2) dz = {?ﬂ o iiz i ZI i (6.19)
Now, (6.16), (6.17), (6.18) and (6.19) imply
pv [ r(x) dv = 2mi(Res(r; 1) + - - + Res(r; 2ar))
0, ifm>n+2

+ mi(Res(r;x1) + -+ + Res(r;xy,)) — ¢ . )
(Res(rs @) (rs@n)) {mb:le, ifm=n-+1

Example 6.5.8. Evaluation of f oo (x) cos z dz, f too (x) sinx dx (or of their principal values),
where r = % is a ratlonalfunctlon degq > degp + 1 the real roots of q (if they exist) have
multiplicity 1 and, also, the coefficients of p, q are real numbers.

Since the coefficients of p, ¢ are real, we have that 7(x) € R for every = € R which is not a root

of ¢. Hence,
[Fr(x)cosadr =Re [T r(x)ede,  [TXr(zx)sinwdr =Im [ r(z)e® da

and we evaluate [ r(2)e™® dx (or its principal value).

The method of evaluation has been described already in the previous three examples. We use either
the curve y or the curve yg  and we evaluate the residues of 7(z)e’* at the roots of q.

We shall concentrate on the important specific generalized integral

+00 sinz _ 1 [+oosingx
fO T T =73 f—oo T dz.

(Equality holds because S22 is even.) We shall evaluate pv fj;o % dx instead of fj;o sme dz.

Observe that e— = E+i W diverges at 0 because its real part “>* diverges at 0. The imaginary
pa converges at( and in fact, if we define
becomes continuous at 0.

The function ? is holomorphic in C except for a pole at 0 of order 1. We consider the closed
curve yg . which is the sum of the linear segments [—R, —¢| and [¢, R], of the curve o, which
describes the upper semicircle of Cy(R) from R to —R, and of the curve o, which describes the
upper semicircle of Cp(e) from —e to €. Then . does not rotate around the pole 0 of % The

rt Sig‘” sinZ at () to have value lim,_o % =1, then it

. . . iz
residue theorem implies fm £~ dz = 0 and hence
€

Cdr=— [ Cdz— [ < de (6.20)

Now,

etz m giRte! _ Rsint+iRcost
fUdez—OthRedt zfe dt

and

| [, S dz| < [TeBontar =2 [T/ emRsint g < g [T/ =5 gy

(6.21)
=Z(1—-ef) =0 when R — +o0.

For the second inequality we used the well known inequality sint > % for0 <t < 7. From the

Laurent series of % at 0 we see that % = % + h(z) for z # 0, where h is holomorphic in C.
Now, h is bounded in a neighborhood of 0, i.e. there is M > 0 so that |h(z)| < 1 when |z| < 1.
Hence, for ¢ < 1 we have | fge h(z)dz| < Mme — 0 when ¢ — 0+. Therefore

fge % dz = foe %dz + fos h(z) dz

(6.22)
=—mi+ [, h(z)dz — —mi  whene—0+.
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From (6.20), (6.21) and (6.22):

+00 et . —e iz R iz ]
pv ffoo 67 dr = hmeﬁ‘OﬁR%Jroo ( "R 67 dx + fe 67 dﬂf) = 1.

: cosz : sing —€ ¢i® R ¢t _ o, (Rsinz
Since =2 is odd and *7-* is even, we get LR -dx + fe —dr =21 fe *F dx and hence

f+00 sinz

R
0 dr = hme%OJr R—+o0 f ST g

[

Example 6.5.9. We shall evaluate f0+°° In o da.

We consider the holomorphic branch of the logarithm, which we shall denote log z, in the open
region A = C\ {iy|y < 0} and which takes the value 0 at 1. This branch is given by

logz = Inr 4 i6 forz:rewwithr>0and—g<9<377r

log z

The function 557 is holomorphic in A except for the point 2 which is a pole of order 1. Indeed,
we write ‘3324 = (log ZZ)/ (QZZHZ) ZEZQ)Z and we have that g(z) = l(fzz. is holomorphic in A with

g(2i) = § — In2 ;. Moreover, Res( ‘;%;L, 2i) = g(2i) = § — In2 j. Now we consider the closed

curve YR e of the previous example. We take R large enough and e small enough so that v . rotates
once and in the positive direction around the pole 2i. From the residue theorem we have that

log z o . log z wln2 w2 -
fm’e 2y dz = 2miRes( 2553 2i) = "5 + Tr i

Taking real parts of both sides, we find

R Inz mln2 _ log » . log z
2 21 d 5 RerR g dz Refae o dz.
log z In R+7r log z In e+7r
Now, URZ2+4d ]< wR—)OwhenR—>+ooand|f 2+4dz‘< me — 0 when
€ — 04. Hence
+00 Inz T Inx miln2
fo 22+4 dr = hm6~>0+,R~>+oo fe 22+4 dr = 1 -
Example 6.5.10. We shall evaluate [, 2 d:z: when 0 < a < 1.
We write 22 instead of z:
+o00 xa 1 +o0 gp2a—1 o +oo b
0 T+ _2f z2+1 $—2f 241

withb=2a¢—1and -1 < b < 1.

We consider the holomorphic branch log z of the previous example in the same region A. The

function h(z) = €®'°¢% is holomorphic in A and, if z = x is real, we have h(z) = e?"* = zb.

The function z@(j)l is holomorphic in A except for a pole at ¢ of order 1. Indeed, we write 2( +) =

4 , b
% = @ and we have that g(z) = ( ) is holomorphic in A with g(i) = hQ(;) = e

b ;
Moreover, Res( hQ( +)1 1) = g(i) = 6271. . Now we consider the same closed curve vg . of the

previous example The residue theorem implies

fm M) gy = 2miRes( 221 i) = me's °,

2+1 2+17
and hence .
bmi xb _ 2 h(z) h(z)
(e +1)f6 xQHdaz—ﬂez fURZQHd ffg Z2+1dz.
Now‘faR ZQHdz‘ < R2 17TR—> 0 when R — —|—ooand‘f0_ z2+1d2‘ < 27‘(’6 — 0 when
€ — 04. Hence
brw
+o00 ga— 1 _ 2me 2 * _ ™
fO a:+1 - 2] 2 f x2+1 dx = ebmif1 T sinaw”

105



We shall evaluate +°° ”” dx in a different way.

We consider the holomorphlc branch of the logarithm, which we shall denote log z again, in the
region B = C\ {x | x > 0} and which takes the value i7 at —1. This branch is given by

logz = Inr + 60 for z = re'® with r > 0 and 0 < 6§ < 2.

The function h(z) = e(@—1)logz j hff is holomorphic in B except
at the point —1 which is a pole of order 1. Indeed, we have Res(%, —1) = h(-1) = ele=Dm,

We also consider the closed curve vg . 5 which is the sum of the curve o s, which describes the
arc of Cy(R) from Re™ to Re’(2”_5) in the positive direction, of the curve o 5, which describes
the arc of Cy(€) from ee’®™=9) to e in the negative direction, of the linear segment [ee®, Re™]

and of the linear segment [Re*(>7=%) ¢e?(27=9)]_ The residue theorem implies that

h(z o
§7R,e,a Zgrl) dz = 2miRes( SLI), ) = 2miela= Vi

and hence

h
f[eezé Rezé] Zgrl) dZ + fRez(Qﬂ- 8) 661(277 6)} Z—(i-zl) dZ

= 2miela—Dm _ fchs zS—zl) dz — fg 5 Zg_zl) dz.

Now, dz‘ < % Therefore

d | < QWRG d ‘ fo’sﬁ }Z’LS;Z:E

OR,s z+1

a

h(z)
‘ fee“s ,Reid) z+1 dZ + fRel(27r 9),eet(2m=9)] 241 dz — 2miel

We have

a—1)mi 2 R® 2me
‘ < R—-1 + 1—€-

(6.23)

(Z — elad R po—1
f[ee“s Reid) z+1 - f re’5+1

Keeping € and R fixed, we take the limit when 6 — 0+. Clearly, ¢’*® — 1. Also,
uniformly in [e, R] and hence

1

- r+1

1
retd+1

R ra—1
f[eeza Reid] Zil dz — f T dr when § — 0+ . (6.24)

We also have

h _ )
f[Rez‘(%fa)’eei(zﬁfs)] % dz = a(2r—8) fe = “;+1 dr.
Keeping ¢ and R fixed, we take the limit when § — 0-+. Exactly as with (6.24), we get

ra— 1

.f[Rei(zﬁ—ls)’gei(Qﬂ—é)} Z(H) dz — —et2om f m o dr when 6 — 0+ . (6.25)

From (6.23), (6.24) and (6.25) we get

|(1 _ ei2a7r) feR " ClT — 9riela— l)ﬂ'z‘ < 27rR1 + 2171'_6:

Finally, we let ¢ — 0+ and R — +o0 and we conclude that

+o00 g4 R pa-1 dr = omiela—Dmi o

0 T+1 de' — 11m€—)0+ R—+o00 f r+1 r = 1—ei2am — sinarw®

Example 6.5.11. Evaluation of fO r(sin, cos 0) d, where r(s,t) is a rational function of two
variables.

We parametrize Co(1) with z = €%, § € [0, 2], and we have cos 6 = (2 + 1), sinf = (2 — 1)

and % = e = iz. Hence

fo% r(sinf,cosf) df = 1 fCo 21y 1,

2z ’ 2zz z

The function s(z) = r(zz;“l, Z;i_zl )1 is a rational function of z. We apply the residue theorem

after we evaluate the residues of s at its poles in the disc Dy(1).
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Exercises.

6.5.1. Find the singular parts as well as the residues of e +el/%, Cosz%l at their

1 1
2245246 (22-1)2°
isolated singularities.

6.5.2. Find the residues of W’ tan z, 12 -, eZ —=—7 at their isolated singularities.

6.5.3.1f f = gh, where g is holomorphic at zg and h has a pole of order 1 at 2y, prove that
Res(f;20) = g(z0) Res(h; 20).

6.54.Let f = where g, h are holomorphic in a neighborhood of zy. Assume that 2 is a root of
h of multlphclty N and not a root of ¢g. Then zq is a pole of f of order V.

(i) If N = 1, prove that Res(f; z9) = h,((ioo))

(i) 1T = 2, prove that Res(f; 20) = S2Col! Go)2aa" o)

4

+oo 1 +o0 1 +o0 1 +00
6.5.5. Evaluate fioo 2241 dl‘, fioo mdl‘, fioo de, oo 1—916-908 dzx.

oo 2243 g

6.5.6. Evaluate pv [°° ZtL 4z, pv dx, pv

oo 2241 —00 m —oo z(22+1)
6.5.7. Evaluate f G +°1°S(§2 1 42, N +;o xxfff dz,pv [T - I(‘;"QS jfl) dx.
6.5.8. Evaluate f02 md@ f %d& when 0 < a < 1, fﬁ/z a+sm — dx when
la| > 1.
6.5.9. Evaluate f0+ m dx when —1 < a < 1.
6.5.10. Evaluate f0+oo M% dz, f0+oo h;fl dz f+°° In( llti ) dr when 0 < a < 2.
6.5.11. Evaluate [*27 52y,
6.5.12. Evaluate [,"* =< dz, [[" -2 dx, using [ T dr = g
6.5.13. Evaluate 0 2+C059 db.

6.5.14.1f 21, ..., 2y € Do(R) are distinct and f is holomorphic in an open set containing D (R),

provethathO(R) % dz = 27m'( ((21))4- + f((ZN))) wherep(z) = (z—21) - (z2—2p).

6.5.15.1f n € N, evaluate ¢, tanmzdz.

6.5.16. Letr = % be a rational function with degg > degp + 2. If 21, . . ., 2, are the distinct roots
of ¢, prove that Y _,'_ Res(r; z) = 0.
What is the value of >}, Res(r; z;) if deg ¢ = degp + 1?

6.5.17.1f f(z) = ¢**"/?), prove that Res(f;0) = 3,2 mrnryr-

6.5.18. (i) If n € N, prove that there is M > 0 independent of n so that |cotz| < M for every
z € R, where R, is the square region with corners at the points &=(n + 3)m £ i(n + 3)m.
(ii) Prove that §,, %* dz — 0 when n — +o0.

+o0 1 _ x2
(iii) Prove that ) ./ = -5 = %

(iv) Let f be holomorphic in C except for poles z1, ..., zy and let lim,_, 2 f(z) = 0. Prove that

lim s oo Y F(B) = — YO Res(f(2) cot 2 2).
(v) Find the sums 37> where a > 0, and the sum >+

where a ¢ Z.

1 1
n=1 n2+a2’ o (n+a)?’
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6.5.19. Let p, g be polynomials with degq > degp + 2. For each m € N let I,,, be the square
region with corners at (m + 3)(£1 £1).

(i) Prove that §,,, L_2() 7. 5 0 whenm — +o0.

sinmz g(z)

(i1) Prove the same result if deg ¢ = degp + 1.

T2

dz — 0 when n — +o0.

6.5.20. Let —1 < v < 1 and n € N. Prove that fco(nJr £,

sinmmz z—a

6.5.21. (i) Let p, ¢ be polynomials with degq > degp + 1 and ¢(k) # 0 for every k € Z. Prove
that limy,— 400 > _pe e qg,’zg is equal to the sum of the residues of —7 cot w22 Ezg at the roots of q.

Also, prove that lim, 100 > pe . (—1)FEH E,]zg is equal to the sum of the residues of — 7rsmlm qg;

at the roots of ¢.
(ii) Prove 7rcot 7w = liMmy, 100 Zk__m Lo =Ly S (G ) ifw ¢ Z.

(iii) Prove —5— = Zk——oo = k — ifw ¢ Z.

. 1 T 7r\/a/ 4e~ T a/b
(IV) Prove Zk 1 a+bk2 —  2a + 2\/>b e‘ir\/a/ —e —my/a/b

if ab > 0.

(V) Prove Zk 1 a+bk2 = —21(1 — \/L— ﬁ if ab > 0.

6.6 The argument principle. The theorem of Rouché.

A function f is called meromorphic in the open set 2 if it is holomorphic in §2 except at certain
points in 2 which are poles of f.
Let f be meromorphic in the open set 2. If w € C, we shall denote A,, the set of solutions of
f(z) =w,ie.
Ay ={z€ Q] f(z) = w}.

If f is not constant in any connected component of €2, then the solutions of f(z) = w are isolated
points.

Also, letting f have the value oo at each of its poles in €2, so that f becomes continuous at its
poles considered as a function from €2 to C, we denote A, the set of solutions of f (z) = o0, i.e.

A ={2€ Q]| f(2) =0} ={z € Q| zisapoleof f}.

The argument principle. Let w € C. We assume that f is meromorphic in the open set () and that
it is not constant in any connected component of . We also consider . to be a cycle, which consists
of piecewise smooth closed curves and which is null-homologous in §Q, so that no element of A, U
Ao is in the trajectory of any of the closed curves forming X.. Then n(X; z) # 0 for at most finitely
many elements of Ay U Ao and hence the sums ) . o n(3;2)m(z) and ) _c 4 n(3;2) m(z),
where m(z) is the corresponding multiplicity of z € A, U A, are finite. Moreover,

(D) w) = o foy 70 dC = Sy n(S2)m(z) = Yoy n(Si2)m(z).  (6.26)

Furthermore, even if the closed curves which form Y are not necessarily piecewise smooth, then

the left and the right side of (6.26) are still equal.

Proof. At first we assume that the closed curves forming 3 are all piecewise continuous.

We apply the residue theorem to the function f{—/w The isolated singularities of this function are
the elements of A, U A,

If m(z) is the multiplicity of z € A,,, then there is a g holomorphic in some neighborhood D, ()
of z so that f(¢) —w = (¢ — 2)™*)g(¢) when ¢ € D, (r) and also g(z) # 0. Since g(z) # 0, we
may assume that 7 is small enough so that g(¢) # 0 when ¢ € D,(r). Therefore

o = C2+ 0 when (e D)\ {2},
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Since £ is holomorphic in D, (r), we have that z is a pole of L — of order 1 with residue m/(z).
If m(z) is the order of z € A, there is a g holomorphic in some nelghborhood D, (r) of z so that
flQ) —w= % when ¢ € D (r) and also g(z) # 0. Since g(z) # 0, we may assume that

(C==z)™

r is small enough so that g(¢) # 0 when ( € D,(r). Hence

A = =@ 4 2l when ¢ € D.(r) \ {2}
Since £ is holomorphic in D, (r), we have that z is a pole of f{—/w of order 1 with residue —m(z).
Now, the residue theorem implies the second equality in (6.26). The first equality is a matter of
a simple change of variable. If { = ~(¢), t € [a, ], is the parametric equation of any curve 7
forming ¥, then the parametric equation of f(v) is n = f(y(¢)), t € [a, b], and hence:

Lrb ()0 Q)
n(f( 27rz fﬂf T 2rida FY@))-w dt = 27rz ffy fO)—w dg.

The rest is simple if we recall that ¥ = nyy; + - - - +ngye and f(3) =ni f(y1) + -+ nef ().
Now we assume that the curves v which form X are not necessarily piecewise smooth.

We consider any of the closed curves which form ¥ with parametric equation ¢ = (), t € [a, b],
and the corresponding f(7) with parametric equation n = f(y(t)), t € [a,b]. The set A, U A
has no accumulation point in 2. Thus, the set A,, U A, U Q€ is closed and we also have that it is
disjoint from v*. Therefore, there is ¢; > 0 so that

|v(t) — 2| > 2€ for every t € [a,b] and every z € A, U As U Q°. (6.27)
We consider the set
K ={z||z —v(t)| < ¢ foratleastone ¢ € [a,b]}

and we easily see that K is a compact subset of 2 \ (4, U A ) and hence f is continuous in K.
Also, we have f(z) # w forevery z € K and v* is a subset of K and hence there is €2 > 0 so that

lf(v(t) —w| > € for every t € [a, b]. (6.28)
Since f is continuous in K, there is §; with 0 < §; < €7 so that
2N — f(Z"N] < e for every 2/, 2" € K with |2/ — 2| < 6. 6.29
ry
Finally, there is § > 0 so that
Iy (') — (") < & for every t',t" € [a, b] with |t' —t"] < 6. (6.30)

Now we take successive points a = tg < t1 < ... < tp_1 < t, = bsothatt; —t_1 < J for
every k and we consider the polygonal curve o : [a,b] — C consisting of the successive linear
segments [Y(tx—1),v(tx)]. It is easy to see that we have

lo(t) —v(t)] < 61 < e for every ¢ € [a, b]. (6.31)

Indeed, if t € [t;_1, tx], then, because of (6.30), we have

t—tp_
lo(t) = ()] = [(F25 5 (1) + T (t) — (1))
t—t
< gty (te-) = YO+ g () — ()]
< tktft_,ilfgl + tiitf,:l 01 =91 <ey.

Now, (6.27), (6.31) imply |o(t) — v(t)| < |y(t) — 2| for every ¢ € [a,b] and every z € A, U Ao
Proposition 6.9 implies n(y; z) = n(o; z) for every z € A, U A and hence

> cea, M(vi2)m(z)= 3 ca n(y;2) m(2)
= ZzeAw n(o;z)m(z) — Zzero n(o;z) m(z).
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Also, (6.31) implies o (t) € K forevery t € [a, b] and, because of (6.29), | f(o(t)) — f(v(¢))| < €2
forevery t € [a,b]. Butthen (6.28) implies | f(o(t))— f(~(t))| < |f(y(t))—w]| forevery t € [a, b].
Proposition 6.9 again implies

n(f(7);w) = n(f(o);w). (6.33)

Since the curve o is piecewise smooth, we have from the first part of the proof that
n(flo);w) =3 ca, nlo;2)m(2) =X . ca_nlo;2) m(z). (6.34)
Now, (6.32), (6.33) and (6.34) imply the equality of the left and the right side of (6.26) for each ~
forming Y and the proof is finished by addition over all such ~. O

The geometric content of the argument principle is described as follows. The number of ro-
tations of f(X) around w is equal to the total number of rotations of ¥ around the solutions of
f(2) = w minus the total number of rotations of ¥ around the poles of f. When we count the
solutions of f(z) = w and the poles of f we take into account their multiplicities. We count m(z)
points at every point z € A,, U Ay, which has multiplicity m(z).

If f has no pole in €2, i.e. if f is holomorphic in €2, then the argument principle says that the
number of rotations of f(X) around w is equal to the total number of rotations of ¥ around the
solutions of f(z) = w. In fact, if ¥ is such that for every z not in the trajectories of the curves
forming ¥ we have either n(X;2) = 1 or n(X;z) = 0, then the number of rotations of f(X)
around w is equal to the number of solutions of f(z) = w which are surrounded by X..

The theorem of Rouché. Let w € C. We assume that f, g are holomorphic in the open set () and
that they are not constant in any connected component of ). We also consider 3 to be a cycle
which is null-homologous in Q2. If | f () — g(¢)| < |9(¢) — w| for every ( in the trajectories of the
closed curves forming ¥, then

Soen, 1SR mp(z) = Docan 1S5 2) my(),
where my(z) and mgy(z) are the corresponding multiplicities and A, y = {z € Q| f(z) = w},
Apg={2€Qg(z) = w}

Proof. We observe that the condition |f(¢) — g(¢)| < |g(¢) — w| for every ( in the trajectories of

the closed curves forming 3 implies that no element of A, ; U A,, 4 is in these trajectories. The

function h = f:—jfu’ is holomorphic in €2 except for the elements of A,, 4, which are either poles or

removable singularities of . From (6.26) we have
n(h(X);0) = ZZGAO,h n(3; z) mp(z) — ZZero,h n(3; z) mp(z). (6.35)

If 2z € Ay ¢ \ Aw,g, then z € Agp and mp(2) = my(2). Similarly, if z € Ay, 4\ Ay, then
z € Asop and mp(z) = mg(z). Finally, if 2 € A,y N Ay 4, then we have three cases. If
my(z) > mg(z),thenz € Ag p and mp(2) = mys(2) —mg(2). if my(2) < mg(2),thenz € Ay p,
and my(2) = mg(2) — my(2). f myp(z) = my(2), then z & Agp U As j, and my(2) = 0. All
these imply
2zeay, ME2)mn(2)= 2 e, (X5 2) ma(2)
= a2 my() — Ve, 0 2) mg(2)

and from (6.35) we get
Seen,, WD) mp(z) = Yoea,, 0 2) m(z) = n(h(S); 0).

Now, our hypothesis says that |h(z) — 1| < 1 for every z in the trajectories of the curves forming
Y. Therefore, the cycle ~(X) is in the disc D;(1) and hence n(h(X);0) = 0. O
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Example 6.6.1. We shall find the number of roots of f(z) = 2" — 22° + 623 — 2+ 1 inD.
We consider g(z) = 62 and we have

f(2) =g(2)| = |27 = 22° =2+ 1] < |2|" + 202" + [2] + 1 = 5 < 6]z = |g(=)]

for every z € T. Now we apply the theorem of Rouché with w = 0 and X consisting of only
the curve v which describes T once and in the positive direction. We have n(y; z) = 1 for every
z € D and n(y;2) = 0 for every z ¢ D. The only solution of g(z) = 0in D is z = 0 with
multiplicity my(0) = 3. Therefore Zzer,g n(y; z) mg(z) = Zzer,ng mg(2z) = 3. More-
over, 3 e, , (Vi 2)mp(z) = Y.ca, i mf(2). Now the theorem of Rouché implies that
Zzer,fmlD) my(z) = 3 and hence f has three roots in ID.

Exercises.

6.6.1. Let f be holomorphic in D,,(R), let 0 < r < R and assume that there is no solution of

f(z) = win C.y(r). If k € N, what is the content of 5 szO ) f{;)(i)w 2k dz?

6.6.2. Let f be holomorphic in D and continuous in D and let | f(z)| < 1 for every z € T. Prove
that the equation f(z) = 2" has exactly n solutions in D.

6.6.3. Find the number of roots of
(i) z* — 62 + 3 in Dy(1,2).
(ii) 2* + 823 + 322 +- 82 +3in {z| Rez > 0}.

6.64.Letzy,...,2, €D. InC)\ {%, e %} we consider the function f(z) = [[;_, f:%’“z.
(i) Prove that f(z) € D for every z € D and that f(z) € T for every z € T.

(i) Find the index with respect to 0 of the curve with parametric equation z = f(e®), t € [0, 27].
(iii) Prove that for every w € D the equation f(z) = w has exactly n solutions in D.

6.6.5. Prove that the set of all meromorphic functions in the region {2 is an algebraic field.

6.6.6. Let f be holomorphic in the open set 2. We assume that « is a closed piecewise smooth
curve in €2, that C \ v* has only one bounded connected component U and that n(vy;z) = 1 for
every z € U. We also assume that C \ f(y)* has only one bounded connected component V' and
that n(f(y);w) = N forevery w € V.

() If f(z) & f(vy)* for every z € U, prove that f is N-to-one from U onto V.

(i) If moreover N = 1, we may consider the inverse function f~! : V' — U. Prove that f ! (w) =

o $ f%)(fzu d¢ foreveryw € V.

6.6.7.Let f(z) = S0 an2" for z € D and let F C D be compact with 0 € F. If u =
inf.cor | f(2)| and m is the number of roots of f in F, prove that u < |ag| + |a1| + - - - + |am].

111



