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Chapter 1

The complex plane and the sphere of
Riemann.

1.1 The complex plane.
In R?, besides the usual vector space addition, which is defined by

(w1,y1) + (22, 92) = (z1 + T2, 91 + ¥2),

there is the operation of multiplication, defined by

(w1, 91) (22, 92) = (T122 — Y1Y2, T1Yy2 + Y172).

We can easily prove that R? equipped with these two binary operations is an algebraic field. The

neutral element of multiplication is (1,0) and the inverse of (x, ) # (0,0) is (%ﬂﬂ, —%)

We denote C the set R? equipped with the above addition and multiplication.
It is easy to prove that the function

Rz~ (2,0)€C

is a one-to-one field homomorphism from R into C. This permits the identification of R with the
subset {(z,0) |z € R} of C. In other words, we may identify every x € R with the corresponding
(x,0) € C and consider R as a subset of C. This is exactly the same as the identification we make
when we want to view R as the real line, the x-axis, in the two-dimensional plane identified with
R2. From now on we do not distinguish between x and (z,0), i.e.

x = (z,0).
We define i, the imaginary unit, to be the element (0, 1):
i =(0,1).
Now we have
(2,0) +i(y,0) = (,0) + (0,1)(y,0) = (,0) + (0,y) = (z,y).
If we replace (x,0) and (y, 0) with the corresponding = and y, we get
z + iy = (v,y).

From now on we shall write the elements of C = R? in both forms: z + iy and (z,y). We shall
prefer the first, x + iy, the complex form of the elements of C. We say that x + iy is a complex
number and that C is the set of complex numbers.
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Now the definitions of addition and multiplication take the forms:
(z1 +iy1) + (22 + iy2) = (z1 + x2) +i(y1 + y2),

(x1 4+ iy1)(z2 + iy2) = (122 — Y1y2) + i(21Y2 + Y122).

In particular we have
(#i)? = —1.

We shall prove later that, besides the polynomial equation z24-1 which has as solutions the complex
numbers =+, every polynomial equation with coefficients in C is solvable in C. In other words,
we shall prove that C is an algebraically closed field.

The usual order relation <, which makes R an ordered field, cannot be extended in C. In
fact, C cannot be equipped with any order relation so that it becomes an ordered field (with the
addition and muptiplication already defined in C). Indeed, no matter what the order relation is, we
must have that an element of the form 22 = z z is “positive” if z # 0, and then we end up with
the contradiction: 1 = 12 is “positive” and —1 = 4 is also “positive”. Therefore, when we write
inequalities like z < w or z < w we always accept that z, w are real numbers.

It is customary to use symbols like x, y, u, v, t, £, n for real numbers, and symbols like z, w,
¢ for complex numbers. For instance, we write: z = x + iy, w = u + v, { = & +in.

For every z = = + iy = (z,y) we introduce the symbols

RCZ:.CL‘, Imz:y, EII'*iy:(SC,fy), |Z|:\/m

These are called real part, imaginary part, conjugate, and absolute value (or modulus) of z,
respectively.
The useful identities

Rez = (2 +72), Imz = 3 (2 — %), 2% = |z|?

are trivial to prove. We also have the trivial inequalities
|Rez| < |z|, |Imz|<|z|, |z| <|Rez|+|Imz|,
and the triangle inequality
2] = |wl] < |z £ w| < [2] + [w].

The geometrical model for C is the same as for R?, i.e. the cartesian plane with two perpen-
dicular axes: every z = x + iy = (x,y) corresponds to the point of the plane with abscissa x
and ordinate y. The horizontal axis of all points x = (z,0) is the real axis. The vertical axis of
all points iy = (0, y) is the imaginary axis. In this framework, the cartesian plane is also called
complex plane.

We recall that the cartesian equation of the general /ine in the plane is

ax + by = c,

where a,b,c € R, a® +b? # 0. If we set z = = + iy and w = a + ib # 0, then the above equation
takes the form
Re(wz) = c.

Similarly, the defining inequalities az 4 by < c and ax + by > c of the two halfplanes on the
two sides of the line with equation ax+by = ¢ become Re(wz) < cand Re(wz) > ¢, respectively.
We shall denote
[21,22] = {(1 — t)Zl + t2o ‘ 0<t< 1}



the linear segment joining the points z1, zo. When we say interval we mean a linear segment on
the real line: [a, b] C R.
The euclidean distance between the points z; = (x1,y1) and zo = (x2,y2) is
V(w1 —22)? + (y1 — y2)? = |21 — 2.

Therefore, the circle, the open disc, and the closed disc with center z = (z,y) and radius r > 0
take the form

Co(r) ={wllw -2l =7}, D.(r)={wl|lw—2]<r}, D:(r)={w[lw-2z<r}

We recall the special symbols
T, D, D

for the unit circle Cp(1), the unit disc Dy(1) and the closed unit disc Dg(1), respectively.

The real part and the imaginary part of a complex function f : A — C, where A is any
nonempty set, are the functionsu = Re f: A - Randv =Im f : A — R, respectively, defined
by

u(a) = Re f(a) = 4(f(a) + f@),  v(a) = Im f(a) = &(f(a) = F(a))-
Of course, we have f(a) = u(a) +iv(a) = (u(a),v(a)) fora € A.

Now, C = R? has the familiar euclidean metric space structure. We have the notions of:
interior point, boundary point, limit point, and accumulation point of a set; interior A°, boundary
0A, and closure A of a set A; open set, closed set, compact set, and connected set. We also have the
notions of convergence of sequences of complex numbers, and limits and continuity of functions
defined in C or taking values in C.

We only recall the following very simple properties of limits. The variable points z, w may rep-
resent the terms of a sequence or the values of an independent variable or the values of a function,
and then we get the familiar algebraic properties of limits of sequences and of functions.

Of course, the convergence z — 2 is equivalent to |z — zo| — 0. Also, z — 2 is equivalent
to Re z — Re zg, Im z — Im 2q. This can be proved by using the inequalities

|Rez —Rezp| = |Re(z — 20)| < |z — 20|, |Imz—Imzy| = |Im(z— 20)| < |z — 20|,
|z — z0] <|Re(z — 20)| + |Im(z — 20)| = |Rez — Re zp| + | Im 2z — Im zp].
Moreover, if 2 — zp and w — wy, then z + w — zp + wo and zw — zgwp. Both can be proved
either by reducing them to convergence of real and imaginary parts or -preferably- by using the
triangle inequality:
|(z +w) = (20 + wo)| = [(z = 20) + (w — wo)| < |2 — 20| + |w — wol

and

|zw — zowo| = |(z — 20)(w — wo) + (2 — 20)wo + (w — wo)zo]

< [z = 20l|w — wol + [z — 20l|wo| + |w — wo[20]-

1 1 e Sl 1 _ |z—20
If 2 — 29 # 0, we can prove that - — 25 using the equality |7 — | = Tl
|Z — Zo| = |z — 20| to prove that z — zo implies Z — Zg. Similarly, we use the triangle inequality
l|z] — |20]] < |z — 20| to prove that z — zo implies |z| — |zo].

We shall consider the limit = — oo in section 1.3 where the point co will be introduced.

We also mention the standard examples of polynomial functions

We use the equality

p(z) =ap2" + - +a1z+ap

and rational functions

_ p(2) _ apz"+-taiztag
r(z) = q(2) 7 bmz™ A+ tbrztbo

A polynomial function is continuous in C, and a rational function is also continuous in C except
at the roots of the polynomial in its denominator. Again, we shall consider the limits of p and r at
infinity, and the limits of 7 at the roots of its denominator in section 1.3.
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1.2 Argument and polar representation.

The trigonometric functions
sin:R—R, cos:R—R

are defined and their properties are studied in the theory of functions of a real variable. In particular,
we know that sin and cos are periodic in R, with smallest positive period 2, i.e. sin(6+27) = sin 6
and cos(f + 27) = cos 6.

Let I be any interval of length 27, which contains only one of its endpoints, e.g. [0, 27) or
(—m, 7. Then we know that for every a,b € R with a? + b> = 1 there exists a unique # € I so
that cos® = a and sind = b. Equivalently, for every ( € C with |¢| = 1 there exists a unique
0 € I so that ( = cos# + ¢ sinf. Therefore, the function

cos+isin: R — T
is periodic, with 27 as its smallest positive period, and its restriction
cos+isin: [ — T

is one-to-one and onto T. Thus, for every ( € T the equation cos + isinf = ( has infinitely
many solutions in R, and exactly one solution in /.

Now, for every z € C, z # 0, we have é € T, and so the equation cosf + isinf = é has
infinitely many solutions in R, and exactly one solution in the interval /. The set of all solutions
in R is called argument or angle of z and it is denoted arg z, i.e.

argz = {9 € R’ cosf +isinf = é}
So we have the equivalence:

fecargz < OHecRand cosf+isinf = |§

Thus, arg z has infinitely many elements and it is clear, by the 27-periodicity of sin and cos,
that these elements form a (two-sided) arithmetical progression of step 27. In other words, if 6 is
an arbitrary element of arg z, then all elements of arg z are described by 6 + k2w, k € Z.

On the other hand, the unique solution of the equation cos + isinf = |i in the specific

z
interval I = (—m, 7] is called principal argument or principal angle of z and it is denoted Arg z:

z

f=Argz & —rm<6<mand cos9+isin9:|i.

Thus, Arg z is one of the elements of arg z, the one which is contained in (—, 7].

Examples. (i) Arg3 = 0 and arg3 = {k27 | k € Z}.

(i) Arg(4i) = 5 and arg(4i) = {5 + k27 | k € Z}.

(iii) Arg(—2) = wand arg(—2) = {m + k27 | k € Z}.

(iv) Arg(1 +i) = T and arg(1 + i) = {§ + k27 | k € Z}.

(v) Arg(—1 —iv/3) = —2 and arg(—1 — iV/3) = {—2F + k2r | k € Z}.

We remark that we do not define argument or angle for the number 0.

Since the elements of arg z form an arithmetical progression of step 2, is is obvious that, if
21 # 0, 29 # 0, then either arg z; = arg 25 or arg z; N arg 23 = (). More precisely, it is easy to see
that arg z; = arg 29 if and only if j—f > 0 or, equivalently, if and only if 271, 25 belong to the same
halfline with vertex 0.

Comparing real and imaginary parts of the two sides of the following identity, we see that it is
equivalent to the well known addition formulas of sin and cos:

cos(01 + 62) + isin(f; + 62) = (cosB; + isinby)(cos Oy + isinby).
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A direct consequence by induction is the familiar formula of de Moivre:
cos(nf) + isin(nd) = (cosh + isinfh)"
for every n € Z.
Proposition 1.1. For every nonzero 21, za we have
arg(z129) = arg z1 + arg zo.

By this we mean that the sum of any element of arg z1 and any element of arg zo is an element
of arg(z122) and, conversely, any element of arg(z1z2) is the sum of an element of arg z1 and an
element of arg zo.

Proof. We take any 0 € argz; and any 0, € argz; and § = 6; + 62. Then by the addition
formulas,

cosf +isinf = (cos B + isinb;)(cosby + isinbhy) = %I% = éi;'

Therefore, 6 € arg(z122).
Conversely, we take any 0 € arg(z122). We consider §; € arg z; and we define f3 = 6 — ;. Then

cosf+isinf __ 2122/21 _ 22

cos by + isinfy = =g = e =

Therefore, 2 € arg 2o and 6 = 01 + 6. O
We note that the equality Arg(z122) = Arg 2, + Arg 2 is not true in general.
Example 1.2.1. Arg(—1) + Arg(—1) = 7 + 7 = 27, while Arg((—1)(—1)) = Arg1 = 0.

The equalities |z122] = |21||22| and arg(z122) = argz; + arg zo express the well known
geometric rule: when two complex numbers are multiplied, their distances from O are multiplied,
and their angles are added.

It is clear by now that for every z # 0 we may write

z =r(cosf +isinh),

where r = |z| and § € argz. This is called a polar representation of z. There are infinitely
many polar representations of z, one for each 6 € arg z. The polar representation with § = Arg z
is called principal polar representation of z.

As in the case of the argument, we do not define polar representation for the number 0.

Exercises.
1.2.1. Which are all the possible values of Arg(z122) — Argz; — Arg 23 ?

1.2.2. Prove that arg(1/z) = argZ = — arg z and arg(—z) = 7+ arg z, after you assign the proper
meaning to these equalities.

1.2.3. Prove the following statement for any nonzero z, z1, z9. It is true that z = z; 29 if and only
if the triangle 7(0, 1, z1) with vertices 0, 1, z; is similar to the triangle 7°(0, z2, z) with vertices
0, 22, z (0 corresponding to 0, 1 corresponding to z3, and z; corresponding to z). This expresses
the geometric visualization of the operation of multiplication in C.



1.3 Stereographic projection and the sphere of Riemann.

Let
S ={&n O eRE+n"+ 7 =1}
be the unit sphere in R3. Through the usual identifications, we may consider C = R? as the set of
points
z=z+iy=(z,y) = (z,9,0)
of R3,
A distinguished point of S? is the north pole

N = (0,0,1).

Now we take any z = x + iy € C and the line Nz in R3, which contains N and z. Clearly,
this line intersects S at V. We shall see that there is a second point of intersection A = (£,7,()
of Nz and S?. That A = (£,7,() belongs to Nz is equivalent to NA = t N% for some ¢ € R.
This is equivalent to

E—0=t(z—0)
n—0=t(y—0) (1.1
C—1=t0-1)

On the other hand, that A = (£, 7, ¢) belongs to S? is equivalent to
e+ + ¢ =1. (1.2)

That A = (&,1,¢) is a common point of Nz and S? is equivalent to (&, 7, (,t) being a solution
of the system of the four equations (1.1) and (1.2). We easily solve this system and we find two
distinct solutions: the point N = (0, 0, 1), which we already know, and the point

A _ ( 2x 2y m2—|—y2—1)
- x2+y2+1’ x2+y2+1’ 12+y2+1 .

Now we consider the mapping

. 2 2 2_1
Coz=z+iy—n A= ({n,() = (:132+2;2+1’ x2+?j/2+1’ iziim) €S2\ {N}

from C to S? \ {V}. We check easily that this mapping is one-to-one and onto S? \ { N} and that
the inverse mapping is

SQ\{N}BAZ(f,n,C)HZZwHy:l%Hl%GC

The two mutually inverse mappings just defined between C and S? \ { NN} are called stereo-
graphic projections. We write
C«+ S*\ {N}

to denote the action of the two stereographic projections.

We shall see now that both stereographic projections are continuous. We take two points
z = x + iy and zg = x + 2yo in C. Let their images, through stereographic projection, be the
points A = (&,7,¢) and Ag = (&,70,Co) in S? \ {IN}. Using the formulas of stereographic
projection and doing trivial algebraic manipulations, we can prove that the euclidean distance in
R3 between A and A equals

A~ Aol =/ (E— &)+ —m0)+ (C— G)?
_ RV == A T (13)

...... = ViRt 1122 2t o V02241 /|02 41"
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We also take z = z + iy in C and let its image, through stereographic projection, be A = (£, 7, ()
in S? \ {N}. We find that the euclidean distance in R? between A and N equals
- 2 2 2 _ _ 2 _ 2
JA-=N|=/(-02+n—-02+((-12=...... = Jmen s U (1.4)
If z — 2zg, then (1.3) implies that A — Ag. Conversely, assume that A — Ag. Then A A N
and (1.4) shows that |z| stays bounded. Hence (1.3) implies that z — zy. We conclude that both
stereographic projections are homeomorphisms between the metric spaces C and S* \ {N'}.

We can continue the previous argument and examine the behaviour of z in C when its image A
in S?\ {N} tends to the north pole N. Indeed, (1.4) shows that A — N if and only if |z| — +o0.
In other words, A — N if and only if the euclidean distance of z from 0 becomes arbitrarily large.

Now, it is natural to introduce and attach to C an “ideal point”, denoted oo and called infinity,
whose “euclidean distance” from 0 is +00. We define the extended complex plane or the sphere
of Riemann to be

C =CuU{oo}.

We also extend the previously defined stereographic projections C <> S? \ { N} to be the stereo-
graphic projections

C ¢+ §?
which map each of co € C and N € S? onto the other.

Thus, both stereographic projections C < S? are bijective mappings between C and S2. We
have seen that their restrictions C <+ S? \ { N} are homeomorphisms between the metric spaces
C and S? \ {N}. In order to examine the continuity properties of the extended stereographic
projections, we have to equip the sets C and S? with corresponding metrics. The metric on S?\{ N},
i.e. the euclidean distance on R3, is also a metric on S2. But it is clear that the euclidean metric
on C cannot be extended to become a metric on C. The problem can be solved if we use the
equalities (1.3) and (1.4) to transfer the metric on S? to a metric on C. If z, 20 € C, we consider
their images A, Ag € S? \ {N} and we define the new distance between z, zy to be equal to the
euclidean distance in R? between A, A given by (1.3) in terms of z, zp. If z € C and 2y = oo,
we consider their images A € S?\ {N} and Ag = N and we define the new distance between
2, zo to be equal to the euclidean distance in R? between A, Ay given by (1.4) in terms of z. The
new distance between two points of C or between a point of C and oo is called chordal distance.
In other words, we define the chordal distance x(z1, 22) between 21, 2 in C to be the euclidean
distance in R? between their images, through stereographic projection, in S%. ILe.

2|21 — 22|

if 21,29 € C
\/|z1|2+1\/|22|2+1’ 1, <2
_ 2 .
X(z1,22) = TR ifzy=2€C, 29 =000rz =00,20=2€C
|2|2+1
0, ifz1 =29 =00

Proposition 1.2. The function x : C x C — R is a metric on C.

Proof. We must prove that chordal distance has the following basic properties:

(1) x(z1, 22) >0 for every z1, 29 € C.

(ii) If 21, 29 € C, then: x(z1,22) = 0 ifand only if z; = 2.

(iii) x(z1, 22) = x(22, 21) for every z1, 23 € C. R

(iv) x(21,23) < x(21, 22) + x(22, 23) for every z1, 29, 23 € C.

The first three properties are obvious. The fourth, the triangle inequality, can be proved after many
calculations using the formula of the chordal distance. But there is a better way. If we take the
stereographic projections A1, Ao, A3 in S? of 21, 29, 23, then from the definition of the chordal
distance we have x(z;, z;) = |4; — A;| and we get

X(21,23) = |A1 — As| < JA — Ag| + |A2 — A3z| = x(21, 22) + x(22, 23),

since the euclidean distance in R? satisfies the triangle inequality. O
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The metric x on C is called chordal metric.
We thus have a second way to measure distances in the complex plane: besides the euclidean
distance |z; — 22| we also have the chordal distance x (21, 22).

Proposition 1.3. C with the chordal metric and S* with the euclidean metric of R? are homeomor-
phic metric spaces.

Proof. Stereographic projections are homeomorphisms between the two metric spaces. In fact
they are more than that: they are isometries. Indeed, if 21, 25 € C correspond to A1, Ay € S?,
then by the definition of the chordal metric we have x(z1,22) = |A1 — Ag|. Le. stereographic
projections preserve distances and so they are both continuous. O

Proposition 1.4 describes the relation between the chordal metric and the euclidean metric in
their common domain.

Proposition 1.4. The chordal metric on C and the euclidean metric on C are equivalent.

Proof. If z, zg € C, then z — zy with respect to the euclidean distance if and only if z — zg with
respect to the chordal distance. To see this we consider the images A, Ag € S? \ {N} of z, 2o
under stereographic projection. We have proved already that z — 2y with respect to the euclidean
distance in C if and only if A — Ag with respect to the euclidean distance in R3. But the euclidean
distance between A, A is equal to the chordal distance between z, zg. Therefore,

|lz—20l >0 <& [A—A) =0 < x(z,20) = 0.
Thus, the euclidean metric and the chordal metric on C are equivalent. O
Proposition 1.5. Let z € C. Then z — oo in C if and only if |z| — +o0.
Proof. This is obvious from x(z, 00) = 2/+/]2]2 + 1. O

We have introduced oo as the ideal point towards which a variable point z on the complex
plane moves when its euclidean distance from 0 becomes arbitrarily large. /¢ is time to mention
the difference with the ideal points +00 we attach to R. A variable point x on the real line moves
away from 0 in exactly two specific directions: either to the left or to the right and then we say,
respectively, that it moves fowards —oo or towards +oo. On the plane though there are no two
uniquely specified directions. A point can move away from 0 either on arbitrary halflines (i.e.
in infinitely many directions) or making an arbitrary “spiral-like movement” or in a completely
arbitrary manner. Therefore, we may only say that the point moves towards infinity.

Now let us say a few things about neighborhoods of points in C with respect to the chordal
metric. We start with the neighborhoods of co. If we denote N, (r) the r-neighborhood of a point
x in the general metric space, then the r-neighborhood of oo in the metric space (@, X) is the set

Noo(r) ={z€C|x(z,00) <1} ={z € C|2/V]:F+ 1 < r} U {0}
{{z €C|lz| > V@/r2) —1}U {0}, if0<r<2
@7

ifr>2

We observe that the “small” neighborhoods of oo, i.e. the neighborhoods N (r) with 0 <
r < 2, are the complements of closed discs in C with center 0, together with co. To simplify

notation we make the change of variable: % =4/ 7% — 1. If r increases in (0, 2), then s increases

in (0, +00), and conversely. We call s-neighborhood of cc in C the set
Doo(s) = {z]|]2] > 1} U {oo},

i.e. the complement of the closed disc with center 0 and radius %, together with oo.
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We see that the neighborhoods of co in C with respect to the chordal metric are of three kinds:
the sets Deo(s) with s > 0, the set C \ {0} (the case 7 = 2 or, equivalently, s = +o00) and
the whole set C (the case > 2). Since in a metric space it is the “small” neighborhoods which
actually characterize interior points, boundary points, limit points, limits of functions or sequences
etc., in the case of C and oo we shall pay attention only to the neighborhoods of the form Do (s).

Now the following should be clear.

(i) The point oo is an interior point of A C C with respect to the chordal metric if and only if A
contains, besides oo, the complement of a closed disc in C with center 0.

(ii) The point oo is not a limit point of A C C with respect to the chordal metric if and only if A
is contained in a closed disc with center 0 or, equivalently, A is a bounded set in C with respect to
the euclidean metric.

(iii) If oo ¢ A, i.e. if A C C, then we have the following equivalences: [co is a boundary point of
A with respect to the chordal metric] < [oo is a limit point of A with respect to the chordal metric]
& [0 is an accumulation point of A with respect to the chordal metric] < [A is not bounded in
C with respect to the euclidean metric].

Now we continue with the neighborhoods with respect to the chordal metric of a point zg € C.
The r-neighborhood of 2y € C in C with respect to the chordal metric is the set

N, (r)={z¢€ C | x(z,20) <7}

This set does not have a simple form. Depending on the exact values of zy and r, it is an open
disc or an open halfplane or the complement of a closed disc (together with oo). Even when
N.,(r) is an open disc, zy is not its euclidean center. Look at exercise 1.3.2 for details. Since
the chordal metric and the euclidean metric are equivalent in C, we have the following relation
between neighborhoods N, (r) with respect to the chordal metric and neighborhoods (i.e. the
familiar discs) D, () with respect to the euclidean metric: for every e > 0 there is 6 > 0 so that
D.,(8) C N,,(¢) and, conversely, for every € > 0 there is § > 0 so that N, (0) C D, (€). From
this we conclude easily that zy € C is an interior point or a boundary point or a limit point of a
set A C C with respect to the chordal metric if and only if it is, respectively, an interior point or a
boundary point or a limit point of A with respect to the euclidean metric.

If A C C and we write A°, OA and A for the interior, the boundary and the closure of A with
respect to the euclidean metric and A°X, 9, A and AX for the interior, the boundary and the closure
of A with respect to the chordal metric, then we easily see that

APX =A% 0,A = 0A, AX = A
for bounded A C C, and
A*X = A 0, A=0AU{oo}, AX =AU {0}

for unbounded A C C. (Of course, when we say bounded or unbounded we mean with respect to
the euclidean metric.)

For instance, if A C C is bounded, then it is open with respect to the chordal metric if and only
if it is open with respect to the euclidean metric, and it is closed with respect to the chordal metric
if and only if it is closed with respect to the euclidean metric. If A C C is not bounded, then again
it is open with respect to the chordal metric if and only if it is open with respect to the euclidean
metric, but, even if it is closed with respect to the euclidean metric, we have to attach oo to A to
make it closed with respect to the chordal metric.

Regarding compactness, we know that C is not compact either with respect to the euclidean
metric or with respect to the chordal metric. Indeed, C is not compact with respect to the euclidean
metric, because it is not bounded. And then it is not compact with respect to the chordal metric,
because the two metrics are equivalent in C. But Cis compact (with respect to the chordal metric,
of course). Indeed, C is homeomorphic to S2, which is compact since it is a closed and bounded
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setin R3. Now, C is produced from C by the attachment to C of the single point co. This situation
has a name in topology: we say that Cisa one-point compactification of C.

Based on the usual algebraic rules of limits, we may extend in the standard way the algebraic
operations in the set C:

2+ 00 =00+ 2 =00, —00 = 00, Z2—00=00—2 =00,
zoo=o00z=o00 ifz#0, 00 00 = 00,
1 _ 1 _ z _ oo
s = [ o = z = %9
0 = oo, |oo| = +o0.

For example, the rule zp + 0o = oo (when zy € C) can be based on the following argument. If
z — zp and w — oo in C, then |z — zp| — 0 and |w| — 400 anAd then, by the triangle inequality,
|z 4+ w| > |w| — |z — 20| — |20] = +00. Hence z + w — oo in C. All other rules can be based on
similar arguments.

The following are not defined:

o0 +o00, o00—o0, 0oo, o000, 22, 8.

They are called indeterminate forms.

For instance, regarding the case of co 4+ 0o, one can easily find examples of points z, w such
that z — oo and w — oo but such that z + w has either no limit or any preassigned limit. The
same is true in all other cases.

Observe the case of j L — 50. In R the expression % is an indeterminate form, since when the
real number z is small and >0 then is large and > 0 and hence % - moves towards +o0, and when
x is small and < 0 then = is large and < 0 and hence l moves towards —oo But in C, when z is
small, i.e. when |z| is small (and necessarily > 0), then the distance HE | of L from 0 is large

1

and hence ; moves towards oo in C. So we define 1 5 =00 in C.

Example 1.3.1. Let us consider any polynomial function p(z) = a,2" +a,_12" 1+ - -+a1z+ag
with a,, # 0. The domain of definition of p is C.
For every zp € C we have

limzazo p(z) = p(Zo),

using the algebraic rules of limits and the trivial limits: lim, ,,,c = c and lim,_,,, z = zp.
Therefore, p is continuous in C.
If the degree of pis > 1,1i.e. n > 1 and a,, # 0, we write

p(2) = 2"(an + ap-1% + -+ aogr)

and we get
lim, o p(2) = oc.

Thus, if the degree of p is > 1, we may define p(co) = oo and then p : C — C is continuous in C.
If the degree of p is 0, then the function is constant: p(z) = ao for all z. Hence

lim,_, p(z) = aop.
In this case we may define p(oco) = ag and again p : C — C is continuous in C.

Example 1.3.2. Now we take a rational function r(z) = qug %%ﬂﬁ% with ap, by, # 0.

The domain of definition of 7 is C \ {21, ..., zs}, where z1, ..., z, are the roots of q.
If zp € C and ¢(2) # 0, then using the algebraic rules of limits, we get:

lim,_,., 7(2) = r(20).
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Therefore 7 is continuous in its domain of definition.
Writing 7 in the form

r(z) = 2"""(an + an1: + -+ a02) /(bm 4 b1t 4+ -+ boa),

we can prove that
oo, ifn>m

lim, 0 7(2) = ifn=m

an
b’
0, ifn<m

Finally, let 2y € C and ¢g(z9) = 0, i.e. zp is one of the roots q. Then z — 2 divides ¢(z), and
there is k& > 1 and a polynomial ¢; (2) so that ¢(z) = (2 — 20)*q1(2) and q1(20) # 0. This means
that the multiplicity of the root zy of ¢(z) is k. There is also > 0 and a polynomial p; (z) so that
p(2) = (2 — 20)'p1(2) and p1(20) # 0. Indeed, if p(zo) = 0, then I > 1 is the multiplicity of zg
as a root of p(z) and, if p(zg) # 0, we take [ = 0 (and we say that the multiplicity of zy as a root
of p(z) is zero) and p1(z) = p(z). So for every z different from the roots of ¢(z) we have

—

I—kp1(z
a1(2)

r(z) = (z = 20)

and py(z0) # 0, q1(20) # 0. Now 2220 ig neither oo nor 0, and hence

q1(z0)
0o,  ifk>1
lim. .o () = § BEY, ifk =1
0, ifk <1

Exactly as in the polynomial case, a rational function can be considered to be a function r : C—C
continuous in C. Indeed, as we just saw above, at every zg € C a rational function r has a specific
limit in C. Now, if zj is in the usual domain of definition of 7, then the limit of r at zy coincides
with r(zp). Moreover, if zy is either co or a root of the denominator of 7, then we define r(z) to
be the limit of 7 at zg.

Example 1.3.3. The sequence ((—2)") does not have a limit as a real sequence since its subse-
quences of the odd and the even indices have the different limits —oo and 4+-co. But as a complex
sequence ((—2)™) tends to oo, because |(—2)"| = 2" — +o0.

Example 1.3.4. Let us consider the geometric progression (z").
If |z| < 1, then |z™ — 0| = |2|" — 0 and hence 2" — 0.

If |z| > 1, then |2"| = |2|™ — 400 and hence 2" — oo.
Ifz=1,thenz" =1 — 1.

Finally, let |z] = 1, z # 1 and assume that 2" — w. Since |2"| = |

z|"™ = 1 for every n, we find

that |w| = 1. From z" — w we have z = ZZZI — = = 1 and we arrive at a contradiction.
Thus:
— 0, if|z] <1
n — 1, ifz=1
— 00, if[z] > 1

has no limit, if|z| =1,z #1
Exercises.

1.3.1. Prove that x(z1, 22) < 2 for every 21, 29 € C. When does X(z1, z2) = 2 happen?
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1.3.2. (i) Let [ be any line in C. We define T=1uU {oc} and call it line in C. We call circle in C

every circle in C. Prove that stereographic projection maps circles in C onto circles in S? which do

not contain N (and conversely) and lines in C onto circles in S? which contain N (and conversely).

(i) Find the images in S? through stereographic projection of the following subsets (or collections

of subsets) of C:

(@) {z][z[ <1} {z|[z] = 1}, {z]]2] > 1} U {oc},

(b) {z| Rez > 0}, {z| Rez =0}, {z| Rez < 0},

(c) the collection of lines containing a fixed point # oo,

(d) the collection of circles with a fixed center,

(e) the collection of lines parallel to a fixed line,

(f) the collection of circles tangent to a fixed circle at a fixed point,

(g) the collection of circles containing two fixed points.

(iii) Let z,w € C and let A Be€e 82 be their images through stereographic projection. If z, w are
symmetric with respect to a line lin C Wthh contains 0, which is the relative position of A, B

with respect to the image of 1inS?? Ifw = 2’ which is the relative position of A, B in S??

(iv) Consider a set of the form P = {z € C | x(2,20) = 1}, where 29 € Candr > 0, ie. a

“circle” with respect to the chordal metric. If zg = oo, prove that P is a circle in @, i.e. in C, and

find its euclidean center and its euclidean radius. If zg € C, prove that P is either a circle in ((A:,

i.e. in C -and in this case find its euclidean center and its euclidean radius- or a line in C.

(v) If the lines /1\1,2\2 have angle 6 at their common point z € C, prove that their images through

stereographic projection, i.e. two circles in S? containing the image A of z and the north pole N,

have the same angle 6 at both A and V.

1.3.3. Let X be a collection of unbounded and connected subsets of C. Prove that (| 4.5, A)U{oo}
is a connected subset of C.
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Chapter 2

Series and curvilinear integrals.

2.1 Series of numbers.
A series of complex numbers or, simply, complex series is an expression

21tz or +o o

If all z,, are real, we talk about a series of real numbers or real series. The s,, = z; +-- -+ 2, are
the partial sums of the series. We say that the series converges if the sequence (s,,) converges
and then the limit s of (s,,) is called sum of the series and we write :;i‘i zn = 5. We say that the
series diverges if (s,,) diverges. If (s,,) diverges to oo, then we say that the series diverges to co
and that oo is the sum of the series and we write :3 Zp = 00.

We note that the sum of a complex series can be either a complex number or co. Only a real
series can have sum equal to +oo or —oco. Therefore, when we write Jll Zp = 400 or —o0, we
accept that all z,, are real and that the series diverges to +o0o or —oo as a real series. Of course, if

a real series diverges to 400 or —oo, then as a complex series it diverges to co.
Example 2.1.1. We have 3> ¢ = 0,if c = 0, and 7 ¢ = o0, if ¢ # 0.

Example 2.1.2. To examine the geometric series Z —_p 2", weusethe formula 1+ 2z +---+ 2"

1 lz "~ for its partial sums, and we find that its sum is
1 .
=1, if[z] <1
S 2 = o0, if|z] >1lorz=1

does not exist, if|z|=1,z#1

The usual simple algebraic rules, which hold for real series, hold also for complex series. We
mention them without proofs. The proofs in the complex case are identical with the proofs in the
real case.

Proposition 2.1. If Z:g zn, converges, then z, — 0.

Proposition 2.2. Provided that the right sides of the following formulas exist and that they are not
indeterminate forms, we have

+o0 +00 +0o0 +00 —— _ N\t
n:l(zn + wn) = n=1 Zn + Zn:l Wn, Z AZ” =A Zn’ n=1 Z” - Zn 1%n-
Moreover, if z, = xn + tyn, then Jll zn, converges if and only if xn and Zn 1 Yn

converge, and
o0 _ +o0
nzlzn - Zn lxn—i_ZZn 1Yn-
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Regarding the comparison theorems, we may say that, since these are based on order relations
which can be expressed only between real numbers, when we write zn < Z ~] Wy asa
consequence of z,, < wy,, we accept that all z,, w,, are real and then we Just apply the well known
comparison theorems for real series.

Cauchy criterion. The series Z:ﬁ zn, converges if and only if for every € > 0 there is ng so that
| > h—ma1 2kl = [Zma1 + - - 4 2a| < € for every m,n withn > m > ng.

Proof. Lets, = z1+- -+ zy. The series converges if and only if (s,,) converges or, equivalently,
if and only if (s,,) is a Cauchy sequence. That (s,,) is a Cauchy sequence means that for every
€ > 0 there is ng so that |z, 11+ -+ 2| = |sn — S| < € forevery n, m withn > m > ny. O

We say that Z: zn, converges absolutely if the (real) series Z 1 |zn| converges, i.e. if
+o00
2] zn] < 4o0.

Criterion of absolute convergence. If Z:ﬁ’i zn, converges absolutely, then it converges and we
have
+oo +oo
| nm1 2nl < 22020 |2n] < 4o0.

Proof. Let Z:{i‘i |2| converge and take any € > 0. From the Cauchy criterion we have that there
is ng so that |z,,4+1]| + -+ + |zn| < € and hence |z,+1 —|— -+ zp| < € for every m,n with
n > m > ng. The Cauchy criterion, again, 1mp11es that >~ "> z,, converges.

Now we take the partial sums s, = z1 + -+ -+ 2z, and S,, = |21| + - - + |2n|. We have |s,| < S,
for all n and then we take the limit of this as n — +oc. O

Ratio test of d’ Alembert. Let z,, # 0 for all n.
(i) If lim |Z7Z‘—:1‘ < 1, then Y 2, converges absolutely.
(ii) If lim ‘%} > 1, then Y2 2, diverges.

(iii) If lim ’%‘ <1<lim ‘ ZZ—“| then there is no general conclusion.

Proof. (i) Take a so that lim | 25| < a < 1. Then there is ng so that |*2| < a for every
n > ng. Now, for every n > ng we get

Zn—1 ’ . ‘Zn0+1|

Zn— 1‘ ’Zn_g |ZTL0’ é an_no‘zn0| — Can,

|zn| = ‘
where ¢ = |2,,|/a™. Since 0 < a < 1, the geometric series >, ">} a™ converges and, by compar-
ison, 379 |2,| also converges.
(i1) There is ng so that |Z”+1 ‘ > 1 for every n > ng. Now, for every n > ng we have

20| = |2n-1] = -+ = [2n0] > 0.

This implies that z,, /4 0 and SO Z+°° zn diverges.

(iii) For the series 7> L and S+ 1 we have that ‘1/ (nt+1) ‘ — land ‘1/(177:21)2‘ — 1. The

first series diverges and the second converges O

Root test of Cauchy. (i) Iflim {/|z,| < 1, then S 2, converges absolutely.

(ii) Iflﬂ\”/ 20| > 1, then 3" 2, diverges.
(iii) If lim {/|zy| = 1, then there is no general conclusion.

Proof. (i) We consider any a such that lim {/|z,| < a < 1. Then there is ng so that {/]z,| < a
and hence |z, | < a” for every n > ng. Since 0 < a < 1, the geometric series ZJFO({ a™ converges
and, by comparison, > |,,| also converges.

(ii) We have {/|z,| > 1 for infinitely many n. Therefore, |2,| > 1 for infinitely many n and
hence z, /4 0. Thus, Z 1 Zn dlverges

(iii) For the series 3, L and 3" | > we have {/[1/n] — 1 and {/[1/n?] — 1. The first

series diverges and the second converges. O
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Applying the ratio test and the root test to specific series Z:g Zn, we find very often that the
limits limy,— 4o | il | and limy, 400 {/]2n] exist. We know (and we used it in the proofs of parts

(iii) of both tests) that in this case: lim = lim = lim.

Example 2.1.3. To the series Z+°° Z, we apply the ratio test. If z = 0, the series obviously
2"+ /(n4-1)!
z" /n!

converges absolutely. If z # 0, then }
converges absolutely for every z.

Now we apply the root test. We have {/]z"/nl| = |z|/¥/n! — 0 < 1 and we arrive at the same
conclusion as before.

| = |z|/(n +1) — 0 < 1 and so the series

Example 2.1.4. We consider Ioci 27 and we apply the ratio test. If z = 0, the series obviously
converges absolutely. If z # 0, then ‘%} — |z|. Hence, if 0 < |z| < 1, the series

converges absolutely and, if |z| > 1, the series diverges.
Now we apply the root test. We have {/|2"/n?| — |z|. Therefore, if |2| < 1, the series converges
absolutely and, if |z| > 1, the series diverges.

If |2| = 1, none of the two tests applies. But we observe that 7

+oo 1

Zﬂ,
n=lnz < +00 in

n2

this case, and ZJ“)O 7 converges absolutely.
Conclusion: "+ 2 ? converges absolutely if |z| < 1, and diverges if |z| > 1.

Lemma 2.1. Let (ay,), (z,) be two sequences and let s, = z1 + - - - + zy, for every n. Then

ZZ:mJA Az = Zzzm+1(ak — Ak11)5k + Q15 — Qmy1Sm
for every n, m with n > m. This is the summation by parts formula due to Abel.

Proof. We have

S h it W% = D1 @k (Sk = Sk=1) = ki1 @hSk — D hem Th415K
= ZZ:m—i-l(ak - ak‘—i—l)sk + Ap+15n — Gm+1Sm

and the proof is complete. O

Dirichlet test. Let (ay,), (z,) be two sequences and let s, = z1 + - - - + zp, for every n. If (ay,) is
real and decreasing and a,, — 0 and if (s,,) is bounded, then Z:{g (nZn CONVErges.

Proof. There is M so that |s,| < M for every n. Now, let € > 0. Since a,, — 0, there is ngy so
that 0 < a,, < ﬁ for every n > ng. Then lemma 2.1 implies that, if ng < m < n,

| ZZ:erl akzk‘ < Zzzm+1(ak — ag41)|8k| + ant1]sn| + am+1]sm|
<Y hemgt (@ = app 1)) M 4 a1 M + a1 M = 20,11 M < €.

The criterion of Cauchy implies that Z:{i’i GnZn CONVErges. ]

Abel test. Let (ay,), (zn) be two sequences and let s, = z1 + -+ + zy, for every n. If (ay) is
real and decreasing and bounded below and if (s,) converges, i.e. if Z:{i’i zn, converges, then

—+00
n=1 AnZn Cconverges.

Proof. Since (ay) is real and decreasing and bounded below, there is a so that a,, — a. We

set a), = a, — a and then (a})) is real and decreasing and a, — 0. We also have that (s,,) is
+o0

bounded and so Dirichlet test implies that the series Zn 1 al, z, converges. Now, since '] z,
also converges, we find that

+oo +oo

2 Unzn = X ahz +a Z
and hence Zzg GnZn CONVErges. ]
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Example 2.1.5. If (ay,) is real and decreasing and a,, — 0, then 370 a,,2™ converges for every
zwith |z| <1,z # 1.

n+1
Indeed, for the partial sums s, = 1+ 2 + 22 + - - - + 2" we have |s,,| = e

=] 132 and the

Dirichlet test implies the convergence of Zn 0 an2".
Example 2.1.6. We consider j{i’i % As in example 2.1.4, the application of either the ratio
test or the root test gives that the series converges absolutely if |z| < 1, and diverges if |z| > 1.

If |z| = 1, none of the two tests applies. If z = 1, the series becomes > 7> L and diverges. If

n=1ln
2] =1,z # 1,then Y27 || = 2272 & = +o00, and )" 72] 2~ does not converge absolutely.

But the series is a partlcular instance of the series in the previous example and hence converges if
|z| =1, z # 1. In general, when a series is convergent but not absolutely convergent we say that
it is conditionally convergent

Conclusion: > Zn converges absolutely if |z| < 1, diverges if |z| > 1 or z = 1, and converges

conditionally if |z| = 1, z # 1.

Let 3720 a,, and Z:C’% b, be two series. If ¢,, = agb, + ai1b,_1 + -+ + an_1b1 + aybg for
every n > 0, then the series

;LLOC()) Cn = Z:ic())(aﬂbn + albnfl + -+ anflbl + anbo)
is called Cauchy product of the two series.

Proposition 2.3. If one of the series Zn 0 On and Z:ﬁ% b, converges and the other converges
absolutely, then their Cauchy product ano cn, converges. Moreover, we have

—+00 “+o00
n=0%n = n= Oanz b

for the sums of the three series.
Ifboth E;:% an and Z o bn converge absolutely, then their Cauchy product Zn o Cn coOnverges
absolutely.

Proof. First assume that both series converge absolutely. We have
|en| < laollbn| + [a1[[bn—1| + - - + [an—1[[br] + |an||bol-

Hence, if S = >0 |a,| < +ooand T = 3729 b, | < +oo, then

fozo len| < Zfzvzo (ZZ:O ‘akanfk‘) = Z}]{!VZO |ag| ( ery:k ‘bnfk’) < Z}]CVZO lax|T < ST

for every N. Thus, > |e,| < ST < +ooand so 7% ¢, converges absolutely.
Now, assume that Zn O an converges absolutely, i.e. S = 3% |a,| < 400, and that 30 b,
converges and let

s =3 a,, t=>"2b,.

Moreover, let s,, = ag+ -+ + apn, t, = bg+ -+ b, and u,, = cg + - - - + ¢, be the partial sums
of the three series and also S,, = |ag| + - - - + |ay|. Then

UN = 27]1\[:0 Cn = 25:0 (ZZ:O akzbn—k) = ZI]cV:O ak(Z ) Zk 0 ak(ZN ob )
= S hlo artn—k

and hence
SNtN —unN = Z;cv:() ak(tN — thk)-

We take p = [IV /2] and we get
SNty —un = Y o ap(ty —tn—i) + Ziv:pﬂ ar(tn —tn_r). (2.1)

16



IfO<k<p,then N —k > N —p > pand hence
(tN — tN—k| < SUPy, >y [tm — tnl. (2.2)
Ifp+1<k<N,then
tn — tn—k| < [EN] + [tv—k] < 25up,,5q [tm] < +o0. (2.3)
Now, (2.1), (2.2) and (2.3) imply
svtn — un| < S0 lawlltn — tv—kl + Xhe e laklltn — ty—il

N
< SUPy, >y |tm — tnl Zi:o |ag| + 2 SUp,,>1 [tml Zk:p+1 |a|
< Supm,nzp |tm - tn’ S+ 2supm21 |tm‘ (S - Sp)

Now, N — +oc implies p — +oo. Hence S, — S and sup,,, ,,~,, [tm — tn| — 0 by the Cauchy
criterion for the convergent sequence (¢, ). Therefore, syty —uy — 0 when N — +oo. We also
have that sy — s and ¢ty — t and we conclude that uy — st. O

Exercises.
2.1.1. Which of the following series converge?

+oo 1 i +00 1 n i +oo 144™ +oo 1 +oo 1 +o0 1
n:l(ﬁ + ﬁ)a n:1(27 + ﬁ)a anl n2 n=1 2447 n=1 n+i’ n=1 n24+in"

2.1.2. Find the sum of the series 37> n(—1)""! if we consider it as a complex series and also if
we consider it as a real series.

2.1.3. (i) Apply the ratio test whenever possible:

+oco 3 . 400 n! +oo (14)" +o00 (2¢)"n! +oo (24i)"n!

Zn 1 n=1 7> n=1"nl n=1" nn > n=1 nn ’

Z+oo en! +oo (n!)? +oo (44)™(n!)2 +oo  (344)(644)(9+1) - (3n+i)
n=1"nn 1 n=1 (2n)!’ n=1"(2n)] n=1 (3+47)(3+81)(3+124)--(3+4n7) *

(ii) Apply the root test whenever possible:

+oo nin +00( n+i )n +oo (n+i)2n +o0 n3
=1 n=1\2n—¢/ > n=1\n—g ’ n=1 (142:)"’
Z—i—oo n3(1 _ Z)n +oo (2434)" +oo _ n+i
n=1 9 n=1 nmn 9 n=1 (%_j’_l)n .

2.1.4.1f 3729 |2, < +oo, prove that 37 2, (cos né + i sinnf) converges.

2.1.5. Let z, = =z, + ty, for all n. Prove that Zzg zpn, converges absolutely if and only if
Z+ 1 Zn, E;{j yn, converge absolutely.

2.1.6. Let |a, |7 < Mn* for all n. Prove that 3"+ a,,2™ converges for every z with |z| < 7.

’V

2.1.7. Find all z for which Zn 1 T

converges.

2.1.8. Let | Arg z,,| < 6 < 5 forevery n. Prove that Z -1 zn, converges if and only if it converges

absolutely. Prove that z, = oo ifand only if Y "7 |2, | = +oc.

n= 1

2.1.9. Find a series Z: zn, Which converges and is such that Z 29 22 diverges.

2.1.10. Check for every z the conditional convergence and the absolute convergence of the series:

+oo 2" +oo _ 2" +oo _ 2" +oo n 1 +oo _n 1
n=1 n n=2 nlogn’ n=2 plogZn’ =17 Sln* Zn 17 ( COSn).
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2.1.11. For each a > 0 find all z for which the series 37 Z—Z converges.

2.1.12. (i) Let s,, = 21 + - -~ + 2z, for all n. If (ay,415,) converges and if E;{i‘i(an — Gp+1)Sn

converges, prove that Z:ﬁ anzpn converges. In particular: if (s, ) is bounded, if a,, — 0 and if
:{3 |an — ant1| < +oo, prove that Z:ﬁ pZp, CONVETEZES.

What is the relation of all these with the tests of Dirichlet and Abel?

(ii) If the sequence (ay,) satisfies Yt |a,41—an| < +00, we say that it is of bounded variation.

Prove that every sequence of bounded variation converges.

Prove that the set of all sequences of bounded variation is a linear space (over C).

Prove that every real sequence which is monotone and bounded is of bounded variation.

For every a € R we define a = (|a| + a)/2 and a— = (|a|] — a)/2. Observe that 0 < a4 < |al,

0<a_<]al,la|=ay+a_anda=ay —a_.

If (a,) is a real sequence, then > |ay11 — an| < 400 implies 3% (ant1 — an)4 < +00

and Z:{i’i (an+1 — an)— < +oo. Using this, prove that every real sequence of bounded variation

with limit O is the difference of two decreasing sequences with limit 0.

2.1.13. Prove that the series Z:ﬁ‘j (71/);71 converges but that the Cauchy product of this series
with itself does not converge.

2.2 Curvilinear integrals.

We shall first extend the notion of integral of a real/ function over an interval to the notion of
integral of a complex function over an interval.

Let f be a complex function defined in the interval [a, b] and let w = Re f and v = Im f be the
real and imaginary parts of f. We say that f is (Riemann) integrable over [a, b] if u, v are both
(Riemann) integrable over [a, b] and in this case we define the (Riemann) integral of f over [a, b
to be

JPrydt = [Pu(tydt+i [P o(t)dt. (2.4)

Since the numbers f; u(t) dt and fab v(t) dt are real, we see that

Re [P f(t)dt = [PRe f(t)dt,  Im [ f(t)dt = ["Tm f(t)dL.

Now let us take any subdivision A = {tq, ..., t,} of [a, b] and any choice = = {&;1,...,§,} of
intermediate points & € [tx_1, t;] and the corresponding Riemann sum >, f (&) (tx — tr—1).
If w(A) = max;<p<p(tr — tx—1) is the width of the subdivision A, then we know that

limay(a) 0 Spy w(Er) (b — tr1) = [ ult) dt

. n b
limy,a)—0 Popey V(&) (tk — th1) = [, v(t) dt.
Multiplying the second relation with ¢, adding and using (2.4), we find
. n b
limyy )0 Dop—y F(&R) (tk — te—1) = [, f(t) dt.

Example 2.2.1. If f is piecewise continuous in [a,b], then v = Re f and v = Im f are also
piecewise continuous in [a, b]. Hence u, v are integrable, and so f is also integrable over [a, b].

The following propositions are analogous to similar well known propositions about integrals of
real functions and can be proved easily by the reader. One should decompose every complex func-
tion into its real and imaginary parts and use the analogous properties for real functions together
with (2.4).
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Proposition 2.4. Let f1, fo be integrable over [a, bl and \1, Ao € C. Then A1 f1+\o f is integrable
over |a, b] and

JPOWAE) + Ao fo(t)) dt = M [P fu(t)dt + Xa [ fa(t)

Proposition 2.5. Let a < b < c. If f is integrable over [a,b] and over [b,c|, then f is integrable
over |a, c| and

Jer@ydt = [P f@tydt + [ f(t)dt
Proposition 2.6. If f1, f2 are integrable over [a, b, then f1 f2 is integrable over [a, b].

The proof of the next proposition is not entirely trivial.

Proposition 2.7. If f is integrable over [a, b], then | f| is integrable over [a,b] and

| [P F(tyde] < [°17(2)] dt.

Proof. Letu = Re f, v = Im f. Then u,v are integrable over [a, b] hence |f| = Vu? + v? is
integrable over [a, b]. Now we have two cases.

It [7 f(t)dt = 0, then | [7 f(t)dt| < [7|f(t)| dt is clearly true.

If ff f(t) dt # 0, then we take any element 0 of the argument of the number f; f(t) dt and we set
z = cosf + isin6. Now,

|2 f@ydt| == [P f(t)dt = [Pz F(t)) dt

The left side of this equality is real and hence its right side is also real and thus equal to its real
part! Hence

| [ f(t)dt| =Re [Pz f(t))dt = ["Re(z f(t))dt < [\ |z f(t)|dt = [ |f(t)| dt
since Re(Z f(t)) < |z f(t)| for every t € [a, b]. O

We recall that every continuous complex function 7y : [a, b] — C, where [a, b] is any interval,
is called curve in the complex plane.

The set of the values of a curve v, i.e. the set v* = {v(¢) |t € [a,b]} C C is the trajectory of
the curve and it is a compact and connected subset of C, since -y is continuous and [a, b] is compact
and connected. The points y(a) and ~(b) are the endpoints, the initial and the final endpoint,
respectively, of the curve.

The variable t € [a, b] is the parameter and [a, ] is the parametric interval of the curve. When
the parameter ¢ increases in [a, b], the variable point (¢) moves on the trajectory v* in a definite
direction (from the initial to the final endpoint) which is the so-called direction of the curve. To
be more precise, the sense of direction is understood as follows: if a < ¢ < to < b, then we say
that y(t1) is before v(t2) and that v(t2) is after v(t1) in the trajectory.

Finally,

z = ~(t), t € [a,b],

is the so-called parametric equation of the curve ~.

If the endpoints of the curve  coincide, i.e. y(a) = ~y(b), then we say that the curve is closed.

Ify(t) € Aforallt € [a,b],ie. if v* C A, then we say that the curve is in A.

The term curve for the continuous function - is justified by the fact that the shape of its trajec-
tory v* is, usually, what in everyday language we call curve in the plane. Sometimes we use the
term curve for the trajectory v* even though this is not typically correct. The reason is that there
are cases of different curves ~y1, 2 with the same trajectory 7; = 5.
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Example 2.2.2. If 2, z; € C, then the parametric equation
z=(t) :f;—“zl+%zo, t € [a,b],

defines a curve -y whose trajectory v* is the linear segment [z, z1]. Its initial and final endpoints
are zo and z1, respectively, and its direction is from zy to z1. The same linear segment [z, z1] is
the trajectory of another curve ~ with parametric equation

z=(t) =tz + (1 —t)zo, t €[0,1].
Example 2.2.3. If » > 0, then the parametric equation
z="(t) = 29+ r(cost + isint), t €[0,2n],

defines a closed curve y whose trajectory v* is the circle C, (7). The direction of this curve is the
so-called positive direction of rotation around z: the counterclockwise rotation.

If we consider the curve v with parametric equation z = ~(t) = 29 + r(cos(2t) + isin(2t)),
t € [0, 2], then we get a different curve. But the trajectories of the two curves coincide: the circle
C,(r). The direction of the two curves is the same: the positive direction of rotation around z.
But the first curve goes around zg only once, while the second curve goes around z( twice.

Let~y : [a,b] — C be a curve and let z = Re~y and y = Im+y be the real and imaginary parts
of v, i.e. y(t) = =(t) + iy(t) = (x(t),y(t)) for t € [a,b]. If v is differentiable at ty € [a,d]
or, equivalently, if x, y are differentiable at to, then 7/ (tg) = z'(to) + i/ (to) = (2'(t0), ¥ (to))
is the tangent vector of the trajectory v* at its point y(to). If v'(t9) # 0, then the vector ~'(¢o)
determines the tangent line of the trajectory v* at its point (o) and the direction of v/ (¢y) is the
same as the direction of the curve. Strictly speaking, at its endpoints, v(a),y(b), the curve can
only have fangent halflines; not tangent lines. If ¢ = a and 7/(a) # 0, then the vector v'(a)
determines the fangent halfline of the trajectory at the endpoint y(a) with direction coinciding
with the direction of the curve. If tg = b and +/(b) # 0, then the vector —/(b) determines the
tangent halfline of the trajectory at the endpoint y(b) with direction opposite to the direction of the
curve. If at some ¢y € (a, b) the one-sided derivatives 7'_(to) # 0 and 7/, (tg) # 0 exist but they
are not equal, then the tangent halflines of the trajectory at its point (%) may not be opposite and
so there may be no tangent line of the trajectory at this point: one of the halflines is determined by
7 (to) and the other by —+'_(t).

We know that, if the curve 7 : [a,b] — C is continuously differentiable or smooth, i.e. if

v : [a,b] — C is continuous in [a, b], then the length of the curve, denoted I(7y), is equal to

I(y) = [P/ (1)) dt. (2.5)

Example 2.2.4. The curve v with parametric equation z = ~y(t) = f)’_;tzo + =221, t € [a,b], has

length ‘
() = [ W' @) dt = [} |32 | dt = |3=20] [V dt = |21 — 20].

Example 2.2.5. If > 0 the curve  with parametric equation z = y(t) = zg + r(cost + isint),
t € [0, 27], has length

()= [Py @) dt = [Z7 [r(—sint +icost)|dt = [ rdt = 27

The same formula (2.5) gives the length of the curve + if this is piecewise continuously differ-
entiable or piecewise smooth, i.e. when there is a subdivisiona =tg < t; < ... <tp,_1 <t, =0
of the parametric interval [a, b] so that the restriction of v in every [t;_1, ] is continuously dif-
ferentiable. (Strictly speaking, at the division points ¢; the derivative of v may not exist; the two
one-sided derivatives should exist and be finite at these points.)
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Now let v : [a,b] — C be a curve. We consider any o : [¢,d] — |[a, b] which is one-to-one
in the interval [c, d] and onto [a, b], has continuous derivative in [c, d] and has ¢/ (s) > 0 for every
€ [c,d]. Thus, o is strictly increasing in [c, d] and o(c) = a, o(d) = b. Every such o is called
change of parameter. Then o = 71 0 0 : [¢,d] — C is continuous in [c,d] and hence it is a
new curve. We say that 7, is a reparametrization of ~;: the parameter of y; is t € [a, b] and the
parameter of v2 is s € [, d]. The curves 71,72 have the same trajectory, the same endpoints and
the same direction. Since ¢’ is continuous and > 0, the two curves are simultaneously (piecewise)
smooth and, in this case, their lengths are equal:

= [ sl ds = [ i(o()llo' () ds = [ 7 (o(s)lo"(s) ds
—f i)l dt = 1)

We may define the following relation between curves: v ~ 73 if 7y9 is a reparametrization of
~1. It is not difficult to prove that this relation between curves is an equivalence relation, i.e. it
satisfies the following three properties:

Dy~

i)y ~r = 2~

(i) 1 ~ 2, 72~ 3 = 1~

Indeed: (i) Let v : [a,b] — C be any curve. We consider the change of parameter id : [a,b] —
[a, b], defined by id(t) = ¢, and then v = vy oid : [a,b] — C. Thus, v ~ ~. (ii) Let y; ~ 2.
Then 5 = 71 0 0 where o : [c, d] — [a, b] is a change of parameter. But then 0~ : [a, b] — [c, d]
is also a change of parameter and y; = 79 o o~ !. Therefore vo ~ ;. (iii) Let 41 ~ 72 and
Yo ~ 7v3. Then v = 71 oo and y3 = v2 o 7, where o : [¢,d] — [a,b] and T : [e, f] — [c,d]
are changes of parameter. But then x = o o7 : [e, f] — [a,b] is a change of parameter and
v3 =207 = (y100) 0T =~ 0 x. Therefore y; ~ 3.

It is of some value to note that if we have a curve y with parametric interval [a, b] and if
we are given an arbitrary interval [c,d], then there is a reparametrization of v with parametric
interval [c, d] instead of [a, b]. We can do this if we can find an appropriate change of parameter
o : [c,d] — [a,b]. There are many such o, but a simple one is

t=o(s) = —a—l—flcb s € [e,d].

Therefore, if for some reason (and we shall presently see that there is such a reason) we do not
want to distinguish between curves which are reparametrizations of each other, then the parametric
interval of a curve is of no particular importance: we may consider a reparametrization of a given
curve changing the given parametric interval to any other which we might prefer.

For every curve v : [a, b] — C we consider the curve =~ : [a, b] — C given by

(=) =v(a+b-1), tela,b]

Then —~ is called opposite of . The curves v and - have the same trajectory but opposite
directions. Also, the two curves are simultaneously (piecewise) smooth and, in this case, their
lengths are equal:

= [ @ldt = [ W (a+b—t)]dt == [ | (s)|ds = [} |7'(s)] ds = (7).

If the curves 71 : [a b] — Cand s : [b,¢] — C have 71(b) = 72(b), then we say that 1, y2

(in this order) are successive and then we may define the curve v1 + s : [a,c] — C by

' 7 (t), ifa<t<b
+ t) =
(71 72)() {’72(15)7 ifhb<t<c

The curve v1 + 2 is called sum of v, and ~s. If 1 and v, are (piecewise) smooth, v, + 2 is also

piecewise smooth. The trajectory (73 + ~2)* is the union of the trajectories v and ;.
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Of course, the sum of two curves can be generalized to the sum of more than two curves
provided that these are successive.

Example 2.2.6. Every polygonal line can be considered as the trajectory of a piecewise smooth
curve. This curve is the sum of successive curves each of which has as its trajectory a corresponding
linear segment of the polygonal line.

Through the operation of summation of successive curves, we may consider successive curves
as one curve and, conversely, we may consider one curve as a sum of successive curves.
The length of the sum of successive piecewise smooth curves equals the sum of their lengths:

U +72) = [ + ) @)ldt = [2 (v + 72) (©ldt + [ (3 + 72) (t)]dt

b
= [, i®ldt + f; v t)ldt = 1(71) +1(72).

Now we shall extend the notion of integral of a complex function over an interval to the notion
of integral of a complex function over a curve. Let~y : [a,b] — C be a piecewise smooth curve and
let f : v* — C be continuous in the trajectory v* = {~(¢) |t € [a,b]}. Then f o~ : [a,b] — C
is continuous in [a, b]. Thus, (f o ~)~y' is piecewise continuous in [a, b] and hence integrable over
[a, b]. We define the curvilinear integral of f over y by

S,z dz = [](fo)(t) = Iy f(v

We shall usually write
$, 1(2) dz
when 7 is closed.

We remark that whenever a curve v is mentioned with respect either to its length l(7y) or to a
curvilinear integral of a function over v we shall always assume that -y is piecewise smooth.

Example 2.2.7. Let -y be the curve with parametric equation z = y(t) = (1 —¢)zo+tz1,t € [0, 1].
The trajectory of +y is the linear segment [z, 1] having direction from z to z1. If f is continuous
in [20, z1], then the curvilinear integral [ f(2) dz is denoted f[zo . f(z)dz Le.

f[zo,zl] f(Z) dz = f,y f(Z) dz = (21 - ZO) fol f((l — t)Zo + tzl) dt.

This is the curvilinear integral of f over the linear segment 2y, z1| from z to z1.

Example 2.2.8. Let > 0 and ~y be the curve with parametric equation z = y(t) = zo + r(cost +
isint), t € [0,2n]. The trajectory of ~ is the circle C, () with the positive direction of rotation
around 2. If f is continuous in the circle C., (), then the curvilinear integral 32{ f(2) dz is denoted

fCZO(r) f(z)dz. Le.
fczo(r) fz)dz= ¢ f(z)dz = 0% f(z0 4+ r(cost + isint))r(—sint + icost) dt.

This is the curvilinear integral of f over the circle C.,(r) with the positive direction of rotation.
An important concrete instance of the previous example is the following.

Example 2.2.9. If n € Z, we know that fo% sin(nt) dt = 0. Also, fo% cos(nt) dt = 2m, if n = 0,
and fozﬂ cos(nt) dt = 0, if n # 0. Therefore, if n € Z, we get

$o. (2 = 20)" dz = JZT o (cost + isint)"r(— sint + i cost) dt
20

= gpntl fo%(cos t+isint)"(cost +isint)dt

— i [27 (cos((n+ 1)) + i sin((n + 1)t)) dt
2w, ifn=-1
o, ifn# -1
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The following propositions are easy to prove.

Proposition 2.8. [f vy is a piecewise smooth curve, f1, fa are continuous in v* and A1, 2 € C,
then

L ufi(z) + Aefalz)) dz = A1 [ f1(2) dz + As [ fo(2) dz.
Proof. An application of proposition 2.4 and of the definition of the curvilinear integral. O

We recall the notation for the uniform norm in A

[flla = supye 4 [f(a)] = sup{|f(a)||a € A}

of a bounded complex function f : A — C defined in a nonempty set A.

Proposition 2.9. If v is a piecewise smooth curve and f is continuous in v*, then
| [, f(2)dz] < sup.e |F(2)[U(Y) = (1 £]l4+1()-

Proof. If v : [a,b] — C, then

| [ f(2)dz| = | [} FOy) (8 dt| < [ 1F @)Y (D] dt < supee [F(2)] [ 1 (8)] dt
= sup.c- |F()I) = | fll4-1(3).

The first inequality uses proposition 2.7. O

Proposition 2.10. If v is a piecewise smooth curve, f,, ¢ are continuous in v* and f, — f uni-
formly in v*, then
[, fa(2)e(2) dz = [ f(2)¢(z) dz.

Proof. Because of uniform convergence, f is continuous in v*. Therefore, the existence of the
integrals f,y fn(2)p(2) dz and fv f(2)¢(z) dz is assured. Now, proposition 2.9 implies

| [, fa(2)e(2) dz— [ f(2)d(2) dz| = | [ (fu(2) = f(2))é(2) d2|
< | (fa — f)d)H’Y*l('V) <\fu—1f o QSH’y*l('V)'

Since || fn — flly+ — 0, we get that [ fu(2)¢(2) dz — [ f(2)e(z) dz. O

We may rewrite the result of proposition 2.10 in the form

lim,, 4 f,y fn(z)¢(z) dz = f,y lim,, 4 fn(z)(b(z) dz
of an interchange between the symbols lim,,_,  », and fw' This interchange under the assumption
of uniform convergence is the content of proposition 2.10.
Proposition 2.11. If vy is a piecewise smooth curve, f,, ¢ are continuous in v* and :g n=3:
uniformly in v*, then

2 F(2)9(2) dz = [ s(2)¢(2) dz.

Proof. We consider the partial sums s,, = f1 + -+ + f,, and we apply proposition 2.10 to them.
Then

Sy [ (20 dz = [T fi(2)6(2) dz = [ su(2)9(2) dz — [ 5(2)6(2) d.

Le. the series (of numbers) > fv fn(2)p(2) dz converges to (the number) fv s(2)p(z)dz. O

23



As in the case of proposition 2.10, we may rewrite the result of proposition 2.11 in the form

225, Fa(2)6(2) dz = [ 325 ful2)6(2) dz,

+oo
n=1

since 3% f,,(2) = s(z) for every z € v*. Again, this interchange between the symbols
and f7 under the assumption of uniform convergence is the content of proposition 2.11.

Proposition 2.12. If each of the piecewise smooth curves 71,2 is a reparametrization of the other
and [ is continuous in i = 5, then

fw f(z)dz = f71 f(z)d=.

Proof. Ify1 : [a,b] = Cand~s : [¢,d] — C, then there is a change of parameter o : [c, d] — [a, b]
so that v2(s) = y1(o(s)) for all s € [¢, d]. Then

I, £z dz = [T F(a(e)vs(s) ds = [ F(ra(0(s))7i(0(s))0’(5) ds
= [ Fon@)i (0 dt = [, F(z)d=

after a change of parameter in the third integral. O

At this point we observe that replacing a curve ; with a reparametrization -y, of it does not
alter certain objects related to the curve: its trajectory, its endpoints, its direction, its length, the
number of times it covers its trajectory and, more important, the curvilinear integrals of continuous
functions defined over its trajectory. Since in this course we shall use curves mostly to examine
curvilinear integrals, we conclude that there is no reason to distinguish between a curve and its
reparametrizations. Therefore, when we have a geometric object C' which we would call, in ev-
eryday language, curve in the plane, e.g. a linear segment or a circle or a polygonal line, and a
continuous function f : C' = C, we can give a meaning to

fc f(2)dz

by specifying a piecewise continuously differentiable v : [a,b] — C, i.e. a piecewise smooth
curve, with trajectory v* coinciding with C', with endpoints coinciding with the endpoints of C'
and a specific assigned direction. The use of different curves, which are reparametrizations of the
particular v we have chosen, will not alter the value of the integral. In fact we have already seen
two examples of this situation. One is the curvilinear integral ‘[[ZO:Zl] f(2) dz for which we use any
parametric equation with trajectory equal to the linear segment [z, 21| and direction from z( to
z1. The simplest such parametric equation is z = y(t) = (1 — t)zo + tz1, ¢t € [0, 1]. The second
example is the curvilinear integral szo (r) f(2) dz for which we use any parametric equation with
trajectory equal to the circle C., (r) and which covers this circle once and in the positive direction
of rotation around zy. The simplest such parametric equation is z = ~y(t) = zp + r(cost +isint),
t €0, 2m].

Proposition 2.13. Let 1, v2 be two successive piecewise smooth curves and let f be continuous
in vy U~s. Then

Y1+72

J)de = [, f(z)d=+ [, (z)d=.

Proof. Let~; : [a,b] — Cand s : [b,c] — C with 71 (b) = v2(b). Then

J

i T@ 2 = [ F (O + 2)(8) (4 ) (1)

= [P FnOW (O de+ [ FC@Ws(0) dt = [, F(2)dz + [, f(2) dz.

The second equality uses proposition 2.5. O
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Proposition 2.14. If 7y is a piecewise smooth curve and f is continuous in v, then

Jo f(z2)dz =~ [ f(z)dz

Proof. 1ty : [a,b] — C, then

S F@)dz = [ (=) ®) (=) () dt = = [7 f(y(a+b— 1) (a+b—t)dt
— [P FO)Y () ds = = [* F(A() () ds = — [, f(2) d=
after a simple change of parameter in the third integral. U

Example 2.2.10. Let « be the curve describing the linear segment [z, 21] from 2 to z;. Then
-y describes the same segment from z; to zy. Therefore, f[zo "y (2)dz = f7 f(z)dz and

Jiovz) f(2) dz = [ f(2) dz. Hence

f[zhz(ﬂ f(z)dz = — f[zo,zl] f(z)dz

Before we leave this section, we should mention three variants of the notion of the curvilinear
integral. Let v : [a, b] — C be a piecewise smooth curve and let f : 7v* — C be continuous in the

trajectory v* = {v(t) |t € [a,b]}. Ify(t) = (x(t),y(t)) = x(t) + iy(t) for every t € [a, b], we
define
L f@de =[] fo@)@dt, [ f(z)dy = [, Fr)y/ (),
[, 1) 12l = 2 FG@nl (o) e

Trivially, we have
[, fz)dz = [ f(z)do+i [, £(=)dy
We leave to the reader the easy task to show that each of the three new integrals satisfies all
properties of the original fﬁ/ f(2) dz, expressed in propositions 2.8 - 2.14. The only difference is

with the integral fv f(2) |dz| which, regarding proposition 2.14, does not change its sign when we
replace v with — . Moreover, the basic inequality in proposition 2.9 takes the more precise form:

| [ f(2)dz] < [ 1 ()] |dz] < [1£ll5-1(7)-

Indeed, observing the string of equalities/inequalities in the proof of proposition 2.9, we recognize
f7 | f(2)||dz| as the third integral from the left. It is very common with beginning students to make
the mistake: | [ f(2)dz| < [ |f(z)] dz.
We should also say that
S, 1dz] = ().

In calculus texts one usually sees the symbol ds instead of |dz| for the infinitesimal length |/ (¢)| dt
over the curve.

Exercises.

2.2.1. Let ~ be the relation of reparametrization.
(1) If Y1~ Y2, prOVe that YL~ T Y9,

(i1) If 1 ~ 9 and o1 ~ o9, prove that y; + o1~ Y2 + o9 (provided the two sums are defined).

2.2.2. Calculate fv |z| dz, where ~y is each of the following curves with initial endpoint —¢ and final
endpoint ¢.

(i) y(t) =it, t € [-1,1].

(i) y(t) = cost +isint, t € [,
(iii) y(t) = —cost + isint, t € [—
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n+l_ _n+l
22.3.(i) Ifn € Z,n > 0, prove that [ 2" dz = s —]

n+1
final endpoint of the piecewise smooth ~.
(ii) Are there polynomials py, () so that p,(2) — 1 uniformly in the circle Cp(1)? Think in terms
of curvilinear integrals over the circle Cp(1).

, Where zg, z1 are the initial and the

2.2.4. (i) Let f be continuous in the ring {2 |0 < |z| < 7o} and lim, 04 7[| f||¢y () = 0. Prove
that lim, o szo ") f(z)dz=0.
(ii) Let f be continuous in D, (R). Prove that

lim, o0+ §o, () 22 dz = 2mif(=0).

2.2.5.Let f : Q — C be continuous in the open set 2 and let [ay,, by,], [a, b] C Q for every n. If
an, — a and b, — b, prove that f[an o) £ (2) dz — f[a y f(2) dz.

2.2.6. Let f : 2 — C be continuous in the open set ) and + be a piecewise smooth curve in 2.
Prove that for every € > 0 there is a polygonal curve o in Q so that | [ f(z)dz — [ f(2)dz| <e.

2.2.7. Prove that | f; f(t)dt| = f; | f(¢)] dt if and only if there is some halfline [ with vertex 0 so
that f(t) € [ for every continuity point ¢ of f.

2.2.8.Let v : [a,b] — C be a piecewise smooth curve and f : v* — C be continuous in ~*.
Consider any subdivision A = {to,...,t,} of [a,b] and any choice = = {&;,...,&,} of inter-
mediate points {, € [tx_1,tx]. Then we say that A* = {z,...,z,}, where z;, = y(tx), is a
subdivision of the trajectory v* and that Z* = {n1,...,n,}, where ny = (&), is a choice of
intermediate points on the trajectory: 7y is between z;_1 and z; on the trajectory. We say that
Y pe1 f(zx)(me — ng—1) is the corresponding Riemann sum. If w(A*) = maxi<p<p |25 — 25—1]
is the width of the subdivision A*, then prove that

limy, Ay 0 Doey f(z0) (e — 1) = [, f(2) dz.
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Chapter 3

Holomorphic functions.

3.1 Differentiability and holomorphy.

Let f : A — C be a complex function defined in A C C and zj be an interior point of A. We
f(2)=f(z0)

say that f is differentiable at 2 if lim,_, ., —

this limit derivative of f at zo and denote it

F(z0) = L(z) = lim,_, ,, &=

— dz z—20

exists and is a complex number. We call

Example 3.1.1. The constant function c is differentiable at every point of C and its derivative is
the constant function 0. Indeed, for every zg we have

% (20) = lim, 5y =5 = lim, ., 0 = 0.
Example 3.1.2. The function z is differentiable at every point of C and its derivative is the constant
function 1: for every zy we have

dz

Example 3.1.3. Let f(z) = zZ. We shall prove that the lim,_,, %ﬁézo) = lim,_,., % does
not exist, i.e. f is not differentiable at any z.
Let z9 = x¢ + iyo. The limit of F@)=FG0) when » zo on the horizontal line containing z( is

Z2—20

(z+iyo)—(zo+iyo)
(z+1iyo)—(zo+iyo)

T—x0

limg 4, = limg_,4, m:TO =limg_,,1=1

and the limit of £&=/C0) when » — zo on the vertical line containing z is

2—20
. (zo+iy)—(zo+iyo) _ 1: —iy+iyo _ 1: 1y
limy .y, Gotiy)—(otive) = limy_yy, 5,550 = limy (1) = —1.

Z=20 does not exist.
zZ—20

Since these two limits are different, the lim,_, .

The proofs of the following four propositions are identical with the proofs of the well known
analogous propositions for real functions of a real variable and we omit them.

Proposition 3.1. If f : A — C is differentiable at the interior point zy of A C C, then f is
continuous at z.

Proposition 3.2. If f,g : A — C are differentiable at the interior point zg of A C C, then
f+a,f—g,fg: A— Care also differentiable at zy. Furthermore, if g(z) # 0 for all z € A,
thenL : A — Cis differentiable at zy. Finally,

g
(f +9)(20) = f'(20) + ¢'(20),  (f—9)'(20) = f'(20) — g'(20);
(£9)'(20) = f'(20)9(20) + f(20)9'(20), (L)' (20) = LFzplalojSiz0)aTz0),
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Proposition 3.3. If f : A — B is differentiable at the interior point zg of A C Cand g: B — C
is differentiable at the interior point wy = f(z9) of B C C, then go f : A — C is differentiable
at zy. Also,

(g0 f) (20) = ¢'(wo) f'(20) = ¢'(f(20)) [ (20).

Proposition 3.4. Let f : A — B be one-to-one from A C C onto B C Cand let f~' : B — A be
the inverse function. Let also zy be an interior point of A and wo = f(zo) be an interior point of B.
If f is differentiable at 2y and f'(z9) # 0 and f~1 is continuous at wo, then f~1 is differentiable
at wg and

(f 71 (wo) = 1/f'(20)-

Example 3.1.4. Starting with the derivatives of the constant function ¢ and of the function z and
using the algebraic rules for derivatives, we get that every polynomial function is differentiable
at every point of C and that its derivative is another polynomial function: if p(z) = ap + a1z +
asz? + -+ ay 2", then p/(2) = ay + 2a2z + - -+ + naz" L.

Example 3.1.5. Every rational function is differentiable at every point of its domain of definition
and its derivative is another rational function.

Example 3.1.6. If h(z) = (2% — 32 + 2)1 — 3(2% — 3z + 2)?, then by the chain rule we get
R'(2) = 15(22 — 32 + 2)14(22 — 3) — 6(22 — 3z + 2)(22 — 3).

Let f be a complex function defined in A C C and zg be an interior point of A. We say that
f is holomorphic or analytic at z( if there is 7 > 0 so that D, (r) C A and f is differentiable at
every point of D, (r).

The notion of holomorphy is stronger than the notion of differentiability: for a function to be
holomorphic at a point it is necessary for it to be differentiable at this point and at all nearby points.

Example 3.1.7. Every polynomial function is holomorphic at every point of C.
Example 3.1.8. Every rational function is holomorphic at every point of its domain of definition.

Example 3.1.9. Let f(z) = |2|%. We have lim,_, % = lim,_,oZ = 0 and so f is differen-
tiable at 0 with f/(0) = 0.

We take any 2o # 0 and we shall prove that the lim,_, ,, %ﬁéz‘)) = lim, ,,, 22 —|zof

z—20

does not

exist and therefore f is not differentiable at zg. Indeed, let zyp = x¢ + iyg. The limit of %ﬁém)

when 2z — zp on the horizontal line containing z( is

. lz+iyo|2—|zo+iyol® _ 1 22—x9? _ 1: _
limg_, 4, Gt =@t = limg s, o = limg_yz, (x + x0) = 220

and the limit of L& =10) when » zp on the vertical line containing zg is

Z2—20
: lzo+iy|®—|zo+ivol> _ 1 v2—yo? _ — 9
limy .y, o = oivey = WMy—o Gy—ryg = —1iMy—sye (4 + y0) = —2igo.
. . . . . 2— 2 .
Since zg # 0, these two limits are different and the lim,_, ,, % does not exist.

We conclude that f is differentiable only at O and that it is nowhere holomorphic.
The set of points at which f is holomorphic is called domain of holomorphy of f.

Proposition 3.5. If B C C is the set of the points at which the complex function f is differentiable,
then the domain of holomorphy of f is the interior of B. In particular, the domain of holomorphy
of f is an open set.

Proof. Let U be the domain of holomorphy of f. If z € U, there is > 0 so that f is differentiable
at every point of D, (r) and hence D, (r) C B. Thus z is an interior point of B, i.e. z € B°.

Conversely, let z € B°. Then there is » > 0 so that D,(r) C B, and so f is differentiable at every
point of D, (r). Therefore f is holomorphic at z, i.e. z € U. O
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Example 3.1.10. The domain of holomorphy of any polynomial function is C.
Example 3.1.11. The domain of holomorphy of any rational function is its domain of definition.

Example 3.1.12. The domain of holomorphy of both functions f(z) = z and f(z) = |z|? is the
empty set.

Let 2 C C be an open set. We say that the complex function f is holomorphic (or analytic)
in  if it is holomorphic at every point of 2 or, equivalently, if 2 is a subset of the domain of
holomorphy of f.

Clearly, the largest open set 2 in which f is holomorphic is its domain of holomorphy. It is
also clear that if f is differentiable at every point of an open set €, then f is holomorphic in ).

Let the complex function f be defined in the neighborhood Do (1) = {2 | |2| > 1} U {0} of
oo. We consider the complex function g defined in Dy(r) = {w | |w| < r} by

g(w) = f(1/w).

We say that f is differentiable or holomorphic at oo if g is differentiable or holomorphic, respec-
tively, at 0.

We observe that g(0) = f(co) and that the inverse functions w = . and = = L map each
of the neighborhoods D, (7) and Dy(r) onto the other. Now we shall see that the condition of
differentiability of f at oo, i.e. the differentiability of g at 0, can be translated into an equivalent
condition in terms of f itself.

Proposition 3.6. Let f be a complex function defined in Do (). Then f is differentiable at o if
and only if

lim, o 2(f(2) — f(x)) € C.

Proof. Letg(w) = f(2) be the function considered in the above definition. Through the change of

variable w = 1, we have % = 2(f(z) — f(c0)). Thus, the existence of lim,,_,o %

is equivalent to the existence of lim,_,~ z(f(z) — f(00)). In fact the two limits are equal. O
It is easy to see that differentiability of f at co implies continuity of f at co.

Example 3.1.13. We shall check the differentiability (and hence holomorphy) at oo of polynomial
and rational functions. We recall the notation and the results of examples 1.3.1 and 1.3.2.

A polynomial function p is continuous and complex valued at co only if it is a constant p(z) = ag
and p(co) = ap. Then it is differentiable at oo, since lim,_,~ 2(p(z) — p(c0)) = lim,_,, 0 = 0.
A rational function r(z) = fa27trt@24a0 js continuous and complex valued at o only ifn < m,
where n and m are the degrees of its numerator and denominator. If n = m, we set r(c0) = o

and, after some algebraic manipulations, we get

lim. o0 2(r(2) = 7(00)) = lims o0 2 (PEAEHES — ga) = tamibentant,

If n < m, we set r(co) = 0 and we get

anz"+---+4ay z+ag
bmz™~+--+b12+bg

bnt1

- ifn+1=m
lim, 00 2(r(2) — r(00)) = lim,00 2 = ]
0, ifn+1l<m

Exercises.

3.1.1. Check the differentiability and holomorphy of the functions Re z, Im z and |z|.
3.1.2. Let Qbeopenand f : Q@ — C. Wetake Q* = {z|Z € Q} and f* : QO — C given by

f*(z) = f(z) for every z € Q*. Prove that Q* is open and that, if f is differentiable at 2y € €,
then f* is differentiable at zg € Q*.
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3.1.3. Consider opensets U,V and f : V — U, g: U — C, h : V — C so that h is one-to-one
and h = g o f. If h is differentiable at wy € V, g is differentiable at zo = f(wo), ¢'(z0) # 0 and

f is continuous at wy, prove that f is differentiable at wy and f'(wg) = };/’((Zc?))'
3.1.4. (i) If p is a polynomial of degree n with roots 21, .. ., z,, prove
pz) _ 1 1
e~ T T
for z # z1, ..., zy. Then prove that, if the roots of p are contained in a closed halfplane, then the

roots of p’ are contained in the same halfplane. Conclude that the roots of p’ are contained in the
smallest convex polygon which contains the roots of p.

(ii) For every a and every n € N, n > 2 prove that the equation 1 4 z 4+ a2z™ = 0 has at least one
root z € Dy(2).

3.1.5. (i) Let 21, . . ., 2, be distinctand g(z) = (z—21) - - - (2 — 2y, ). If the polynomial p has degree
< n, prove

z n z
0 = Y reit
for z # z1,..., zp.
(i1) Let 21, ..., z, be distinct. Prove that for every cy, ..., c, there is a unique polynomial p of
degree < m so that p(zx) = ¢i forevery k = 1,...,n.

3.1.6. Let f have continuous derivative in a neighborhood of zg. Prove that % — f(20)

n

if 2, — 20, 2]l — zp and z], # 2! for every n.

3.2 The Cauchy-Riemann equations.

Now we shall relate the differentiability of f, as a complex function of z = = + iy, at some
interior point zg = xg + iyo of its domain A C C with the partial derivatives of u = Re f and
v = Im f, as functions of (z, y) at the same point (z¢, yo).

Theorem 3.1. Let f be a complex function defined in A C C, zy = (x0,Yyo) be an interior point
of A, and let u,v be the real and imaginary part of f. If f is differentiable at zo, then u,v have
partial derivatives with respect to x and y at (xg, yo), and

%($07y0) = %Z(‘T()uy())u %(xO)yO) = _%(x()uy())' (31)
Proof. We assume

()= f(z0) _ (20) = p + iv, v € R. (3.2)

lim, 2, ===

Since the limit of Lf{fzo) exists when z tends to zg, the limits of the same expression when z

Z—2Z
tends to zp on the horizontal line containing zy as well as on the vertical line containing zg also

exist and have the same value:

limy p, LEVIZLE000) — )y gy lim, s, 00 000) (3.3)
From the first limit in (3.3) we get lim, 4, “(’”’yo)+i”(x’y°l__i(:o’yO)_i”(mO’yO) =+ iv, and hence
%('I’hv ZUO) = hmx—ﬂto U(mvyox):g(()xmy()) = M (3 4)

%(:L‘Oa yo) = limg_z, —U(I’yoi:;((fo’yo) =1
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u(wo,y)+iv(z0,y) —u(z0,y0) =i (T0,Yo)

From the second limit in (3.3) we find lim,_,, rrymrr = p + v, and
hence
37('%07 yO) - hmy—>yo U($0,y;:z(()$o7yo) = W, (3 5)
%(5007?40) - hma:—):co u(mo,yli:z(gxo,yo) = -
Comparing (3.4) and (3.5) we get (3.1). O

The equalities (3.1) are called (system of) Cauchy-Riemann equations at the point (xg, yo).
We observe that, if f is differentiable at zg, then (3.2), (3.4) and (3.5) imply

F(20) = $%(z0, yo) + 1 5% (w0, yo) = ay 2 (0, 90) — i%@m Y0)-
The next result is the converse of theorem 3.1 but with extra assumptions.

Theorem 3.2. Let f be a complex function defined in A C C, zo = (x0, yo) be an interior point of
A and let u, v be the real and imaginary part of f. If u, v have partial derivatives with respect to x
and y at every point of some neighborhood of (x¢, yo) and if these partial derivatives are contin-
uous at (g, yo) and if they satisfy the system of C-R equations at (xq, yo), then f is differentiable
at 2.

Proof. Using the C-R equations, we define the real numbers p and v by:

=% (20, yo) = §Z(wo,yo), V= *%Z(Jﬂovyo) = 2 (20, 90). (3.6)

Now take an arbitrary ¢ > (. Since %, g—“ are continuous at (xo, yo), there is 7 > 0 so that

G2y —nl <5 |Gy +v|<g 3.7)
for every (z,y) € D(y,y)(r). We take any (z,y) € D(y, ) (7) and we write

u(z,y) — u(xo, yo) = u(z,y) — u(xo,y) + u(zo,y) — u(zo, Yo)- (3.8)

By the mean value theorem, there is 2’ between x and ¢ so that

u(x,y) — u(zo,y) = §&(«',y)(x — o) (3.9)
and 3’ between y and 1 so that
u(@o, y) — u(zo,y0) = §4(x0,4)(y — o)- (3.10)

The z’, 3" depend on z, y, but the points (2',y), (zo,y’) belong to D 4 .0\ (r). Therefore, (3.7)
implies
Tay)—pl < |F@oy) +r] < g (3.11)

Combining (3.8), (3.9) and (3.10), we find

u(z,y) — u(wo, yo) — ( (x —z0) —v(y — yo))
= (u(z,y) — u(zo,y) — plz — x0)) + (u(zo,y) — u(wo, yo) + v(y — o))
= (', y) — 1) (= — o) + (32 (w0, ¥') +v) (y — v0)

and, because of (3.11),

Q

}U(l’ay) —u(wo,%0) — (M(ﬂf —x0) —v(y — yo))‘
< |54, y) — plle — ol + |(z0,y') + vy — ol (3.12)
< S|z —mol + Sy — yol < 5/ (z — 20)? + (y — yo)?
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In the same manner, for the function v we get

[v(z,y) — v(zo,y0) — (V(z — 20) + pu(y — w0))| < S/ (@ — 30)% + (y — 10)>- (3.13)

The inequalities (3.12) and (3.13) hold at every (z,y) € Dy 4,)(7).
We observe that the expressions inside the absolute values of the left sides of (3.12) and (3.13) are,
respectively, the real and the imaginary part of the number

f(2) = f(z0) — (p+iv)(z — 20) = f(z,y) — f(zo,90) — (u+ iv)((x — x0) +i(y — y0))-
Therefore, (3.12) and (3.13) imply

| (2) = f(20) = (u+ iv)(2 = 20)| < ev/(x — 20)? + (y — y0)? = €|z — 20
for every z € D, (r) and hence
‘M

z2—20

—(u—kiu)‘ <e

for every z € D,,(r), z # z0. Thus, lim,_,, fZ)=f(z0) _ i+ iv, and f is differentiable at zq

zZ—20

with f/(z0) = p + iv. O

Example 3.2.1. The real and the imaginary parts of the function f(z) = 22 are u(x,y) = 2 — y?

and v(z,y) = 2xy. We find 2 e, y) = 2z, 2 a Lix,y) = —2y, %(w,y) = 2y and g—;(x,y) = 2z,
and we see that the partial derivatives are continuous in the whole plane and they satisfy the C-R
equations at every point Theorem 3.2 implies that f(z) = 22 is differentiable at every point and
F(z) = 4z, y) +i%%(z, y) = 2z + 12y = 2.

Example 3.2.2. We reconsider the function f(z) = Z of example 3.1.3. Its real and imaginary
parts are u(z,y) = x and v(x,y) = —y. The partial derivatives 8“( y) =1, gZ (x,y) = 0,

%(m, y) = 0 and g—Z(ar, y) = —1 do not satisfy the C-R equations at any point (z,y). Theorem
3.1 implies that f is not differentiable at any point.

Example 3.2.3. We reconsider the function f(z) = |z|? of example 3. 1 9. Its real and imaginary
parts are u(x,y) = x?+y* and v(z,y) = 0. The partial derivatives are “(x,y) = 2z, ay(ac y) =
2y, ge(z,y) = 0 and BZ (z,y) = 0 and they satisfy the C-R equatlons only at the point (0,0).
Theorern 3.1 implies that f is not differentiable at any point besides, perhaps, the point (0, 0).
Now, since the partial derivatives are continuous and satisfy the C R equations at (0, 0), theorem
3.2 implies that f is differentiable at 0 and f’(0) = %(O, 0) + Zax v(0,0) =0+140 = 0.

Example 3.2.4. We shall see that the assumption of continuity of the partial derivatives of u, v at
(0, yo) in theorem 3.2 is crucial. We consider the function

o) = Flag) = 4 Vo T@) #(0.0)

Then its real and imaginary parts are

2 if (x, 0,0
u(a,y) = [22 42 | (z,y) # (0,0) v(@,y) = 0.
0, if (z,y) = (0,0)

It is clear that 2% Se(x,y) = 0and 8“ , (2, y) = 0 and the partial derivatives of v are continuous at
every (z,vy). Moreover

Y s
Bu(y gy = { VD if (z,y) # (0,0) 91(5,y) = | Vo if (z,y) # (0,0)
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The partial derivatives of u are continuous at every (x,y) # (0,0) but they are not continuous

at (0,0). For instance, it is easy to see that the limit of %(az, y) = m when (z,y) tends
to (0,0) on the line with equation y = = does not exist. Moreover, f is not differentiable at
0, even though u,v do satisfy the C-R equations at 0. In fact it is easy to see that the limit of
f(Z)—f(0) zy

=0 (z+iy)y/ 22 +y?

The next proposition is a corollary of theorem 3.2. It is the form of theorem 3.2 in which this
is usually applied.

when 2z tends to 0 on the line with equation y = x does not exist.

Proposition 3.7. Let f be a complex function defined in the open set Q) C C and let u,v be the
real and the imaginary part of f. If u, v have partial derivatives which are continuous and which
satisfy the C-R equations at every point of S}, then f is holomorphic in ().

Proof. We take an arbitrary z € () and a neighborhood of z which is contained in 2. Theorem
3.2 implies that f is differentiable at z. Thus f is differentiable at every point of 2 and, since {2 is
open, f is holomorphic in €. O

An open and connected set €2 is called region.

Theorem 3.3. Let f be holomorphic in the region Q C C. If f'(z) = 0 for every z € Q, then f is
constant in Q.

First proof. Using ' = g—g —l—i% = % — ig—z,we find % = % = a—z = g—; = 01in ). We take
any linear segment [z, z2| in §2 and its parametric equation y(¢) = (1 — t)z; + tzo, t € [0,1]. By
the mean value theorem, there is ¢ty € (0, 1) so that

u(z) = u(z1) = (woy)(1) = (wo)(0) = 5 (t)
= 24 (y(t0))(x2 — 1) + G2 (Y(t0)) (32 — 1) = 0,

where 27 = x1 +4y1 and 29 = x3 + iy2. Thus, the values of u at the endpoints of any line segment
in Q) are equal. Now we take arbitrary 2/, 2 € €. Then there is a polygonal line inside 2 which
connects the two points 2’ and z”. The values of u at the endpoints of every line segment of the
polygonal line are equal and hence u(z’) = u(z”). Therefore u is constant in 2. Clearly, the same
is true for the function v and hence for f = u + iv.

Second proof. We take arbitrary z, w € €). Since {2 is a region, there is a piecewise smooth curve
v : [a,b] — 2 such that y(a) = z, v(b) = w. In fact we may choose v to have a polygonal line in
) as its trajectory. Then we have

) = £(z) = (f o)) = (fen)(a) = [[(f o) (&) dt = [} f'(5(D))/'(t) dt =0

because f’'(y(t)) = 0 for every ¢ € [a, b]. We conclude that f(w) = f(z) for every w, z €  and
hence f is constant in ). O

Let f be a complex function and let u, v be the real and imaginary part of f. If u, v have partial
derivatives with respect to z, y at the point zg = (¢, yo), it is trivial to prove that at the point z

we have
of _ 0 .0
or = ow T low
We define the following differential operators:

o= aEm i) e a(Emrin): (3.15)

Applying the differential operators % and % to f and using (3.14), we have at the point zg:

g2

Se i, (3.14)

o =55+ 5) + 3 (5 - %), .
9f — L(9u _ 9vy 4 i(9v 4 Ou) (3.16)
0z 2\ oz oy 2\ 0z oy /-
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From the second of equations (3.16) we see that the system of C-R equations at the point zy is
equivalent to the single equation

of _
0z 0

at zg. Moreover, if the system of C-R equations is satisfied, then the first equation (3.16) implies

af _ /
0z — 827 +28x f

at zgp. We summarize.

Proposition 3.8. If the complex function f is differentiable at z,, then %(zo) = f'(20) and

%(20) = 0. Conversely, if g and 2 6* exist in a neighborhood of the point zo and they are

continuous at zy and if %(20) = 0, then [ is differentiable at z.

Proof. Trivial. The converse is a restatement of theorem 3.2. Indeed, (3.16) implies that the
existence or the continuity of gf , gf at a point is equivalent to the existence or the continuity,
: du du du B
respectively, of 52, BZ b 8; at the point. O
Sometimes a complex function f is given to us through an expression f(x,y) as a function of
two real variables and we are interested in finding an expressmn f(2) of the function in terms of

the single complex variable z. We then write 2 = 252, y =
f(z,y) =f(z‘5?3‘f). (3.17)

In general, even after performing various algebraic simplifications we end up with an expression
in terms of both variables z and z. In order to end up with the occurence of z only, it is reasonable
to impose the condition that the derivative of f(z,y) with respect to Z vanishes. From (3.17) and
a formal chain rule we get

d

% =35k +i3)).
This is exactly the second differential operator (3.15) applied to f and we saw that the condition
% = 0 is equivalent to the system of C-R equations. We conclude that the function f(x,y) is a
function of the single variable z if and only if its real and imaginary parts satisfy the C-R equations.

Exercises.
3.2.1. Solve exercise 3.1.1 under the light of C-R equations.

3.2.2. (i) Prove that F'(x, y) = \/|zy| satisfies the C-R equations at 0 but that it is not differentiable
at 0.
(if) Prove that the function with G(z,y) =

4+ z if (z,y) # (0,0) and with G(0,0) = 0 satisfies

the C-R equations at 0, that Gl ; GO has a limit when z — 0 on every line which contains 0, but

that GG is not differentiable at 0.

3.2.3. Let f = u+ iv be a complex function and gz, gZ’ g;, gz exist in a neighborhood of 2y and

be continuous at z.
(i) If lim, .., Re =1 (z0)

. exists and is a real number, prove that f is differentiable at zg.
‘ f(z)=f(z0)
Z—20

(ii) If lim,_, ,,,
f is differentiable at z.

‘ exists and is a real number, prove that either f is differentiable at zg or

3.2.4. Let f = u + iv be holomorphic in the region 2 C C.

(i) If either w or v is constant in €2, prove that f is constant in 2.

(ii) More generally, if for some line [ it is true that f(z) € [ for every z € €, prove that f is
constant in €.

(iii) Consider (ii) with a circle C instead of a line [.
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3.2.5. This exercise juxtaposes the notion of differentiability of a function of two real variables,
which we learn in multivariable calculus, and the notion of differentiability of a function of one
complex variable, which we learn in complex analysis: to distinguish between them we call the
first R-differentiability and the second C-differentiability.

We recall from multivariable calculus that a real function u defined in A C R? is R-differentiable
at the interior point (g, yo) of A if there are a,b € R so that

u(zy)—u(zo.yo) —(a(z—z0) +b(y—y0)) _
z,y)—(z0,y0) \/(m_m0)2+(y_y0)2 ’

In this case we have that %(Jco, yo) = a and %Z(xo, yo) = b.

We also recall that a vector function f = (u,v) defined in A C R? is R-differentiable at the
interior point (x, yo) of A if its real components u and v are both R-differentiable at (xg, yo), i.e.
if there are a, b, c,d € R so that

ulx,y)—ulxo, —(a(x—2x +b o B
z,y)—(x0,y0) (z,y)—u( (Oﬁ)io)gi(yf;;p (y=yo)) _ 0,

v(zy)—v(o)—(clz—r0) +dly=30)) _ ()

M a4 (z0.90) (z—20)2+(y—y0)?

In this case we have that %Z(xo, Yo) = a, %Z(xo, yo) = b, %(xo, Yo) = G, %Z(xg, yo) = d and that

the R-derivative of f is the 2 X 2 matrix [CCL Z]

Prove that f = (u,v) = u+ v is C-differentiable at zo = (x¢, yo), i.e. that the lim,_,, %ﬁém)

exists and is a complex number, if and only if f is R-differentiable at zo = (x0,yp) and its R-

T . . . |a
derivative is an antisymmetric matrix: [ b

_ab] . In this case the C-derivative and the R-derivative
of f are related by f’(z9) = a + ib.

3.2.6. Consider the functions 2™, 2", |2|? and, using the differential operator %, examine whether
they are functions of z only or, equivalently, whether they are holomorphic.

3.2.7. Let f be a complex function. If g—i and %5 exist in a neighborhood of the point zy and are
continuous at zg, prove that

lim, 04 ﬁ fC’zo (r) f(z)dz = %(ZO)-

3.3 Conformality.

Let the complex function f be continuous in A C C and 7 : [a,b] — A be a curve. Thus the
trajectory of v is contained in the domain of definition of f. We define the function

f(y)=fovy:la,b] =C,

which is continuous in [a, b]. Then f(-y) is a curve and we call it image of -y through f.

Now we also consider an interior point z of A and we assume that f is differentiable at z and
f(z) = w, f'(z) # 0. We also take any curve v : [a,b] — A with y(a) = z. Then  has z
as its initial point and its trajectory is contained in A. We also assume that -y is differentiable at
a and that 4/(a) # 0, i.e. that v has a non-zero tangent vector at the point z. The image curve
f(y) : la,b] — Chas f(v)(a) = (fov)(a) = f(y(a)) = f(z) = w as its initial point and its
tangent vector at w is f(v)' (a) = (f o) (a) = f'(v(a))¥'(a) = f'(2)7'(a) # 0. From this
equality we have two conclusions. The first is that

[f () (@) = 1£' ()|l (a)]-
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Thus, the length of the tangent vector of f(~y) at its initial point w equals the length of the tangent
vector of + at its initial point z multiplied with the factor | f'(z)| > 0. We express this as:

[ multiplies the lengths of tangent vectors at z with the factor |f'(z)| > 0 or, in other words, f
expands the tangent vectors at z by the factor |f'(z)| > 0.

The second conclusion is that

arg f(7)'(a) = arg f'(z) + arg+/(a). (3.18)

Thus, we find the angle of the tangent vector of f(+) at its initial point w by adding the angle of
f'(z) to the angle of the tangent vector of +y at its initial point z. We express this as:

[ increases the angles of the tangent vectors at z by the angle of f'(z) or, in other words, f rotates
the tangent vectors at z by the angle of f'(z).

We observe that the expansion and the rotation of the tangent vectors at z is uniform over all
these vectors: independently of their directions and their lengths, all these tangent vectors are
expanded by the same factor | f'(2)| and they are rotated by the same angle arg f’(z). Since, any
two of these tangent vectors are rotated by the same angle, we conclude that their relative angles
remain unchanged! Indeed, let us consider two of the above curves, ; and 2. Then the angle
between their tangent vectors at z is arg 74 (a) —arg 71 (a) and the angle between the tangent vectors
of f(71) and f(vy2) at w is arg f(2)'(a) — arg f(71)'(a). From (3.18) for v; and 2 we get

arg f(72)'(a) — arg f(11)'(a) = argY3(a) — arg i (a).

Therefore, the angle between the tangent vectors of f(71) and f(72) at w is the same as the angle
between the tangent vectors of v, and - at z. We say:

f preserves the angle between tangent vectors at z.

This last property of f is called conformality of f at z and holds, as we just saw, under the
assumption that f is differentiable at z and f’(z) # 0.

Exercises.

3.3.1. Consider the holomorphic function w = f(z) = az + b with a # 0.

(1) Prove that f is one-to-one from C onto C.

(i1) Prove that f maps lines and circles onto lines and circles, respectively.

(iii) Consider two lines with equations kx + ly = m and K’z + 'y = m/. Which is the condition
for the two lines to intersect? Under this condition, find their intersection point and the angle of
the two lines at this point. Then find the equations of the images of the two lines through f and
find their intersection point and their angle at this point. Confirm the conformality of f.

3.3.2. Consider the holomorphic function w = 22.

(i) With any fixed ug, vg, consider the hyperbolas with equations 22 —y? = g and 22y = v
on the z-plane (z = = + 4y). Do they intersect and at which points? Find the angle of the two
hyperbolas at each of their common points.

(ii) With any fixed xg,y0 # 0, consider the parabolas with equations u = 42#112 — yo? and
U= — 495102 v2 + 22 on the w-plane (w = u + v). Do they intersect and at which points? Find the

angle of the two parabolas at each of their common points.

3.3.3. Let f be holomorphic in the open set U C C so that f’ is continuous in U, let v be a
piecewise smooth curve in U and I" = f(y) be the image of v through f. If the complex function
¢ is continuous in I'*, prove that

Jeo(w)dw = [ ¢(f(2)f'(2) dz.
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Chapter 4

Examples of holomorphic functions.

4.1 Linear fractional transformations.
Every rational function of the form

T(z) = 253

is called linear fractional transformation. We assume that ad — bc # 0. It is easy to show that
ad — bc # 0 if and only if the function 7T’ is not constant.

In order to have the full picture of the definition of a linear fractional transformation 7', we
have to say something about the values of 1" at the roots of the denominator and at co. There are
two cases. If ¢ = 0, then because of ad — bc # 0 we have ad # 0 and then T'(2) = 2 + 2 for all
z € C. Since § # 0, we have that T'(c0) = oo. Thus

a b :
a 2. ifzeC .
T(z):{dz+d ne if ¢ = 0. 4.1)
0, if z =00
If ¢ # 0, then the denominator has z = —% as its root, which, because of ad — bc # 0, is not a root

of the numerator. Hence 7' (—%) = 00. Also T'(00) = 2. Thus

az+b : d
o d if2eC,z#-2¢

T(z) =4 oo, ifz=-4 if ¢ # 0. (4.2)
e, if z =00

We conclude that every linear fractional transformation (l.f.t.) is a function 7" : C—C and,
even though we write T'(z) = %+ we must have in mind the full formulas (4.1) and (4.2).

cz+d’
It is very easy to see that every 1.f.t. is one-to-one from C onto C. The formula of the inverse
Lft. of T'is

T_l(z) _ dz—b

—cz+a’
The identity function id(z) = z is clearly a L.f.t. witha = d = 1, b = ¢ = 0, and we easily see

that the composition of two Lf:t. is another Lf.t. Indeed, if T(z) = 22£5 and S(z) = g,’jj:g:, then

! / a"?z—“’—&-b’ ’ ’ ’ ’
(S o T)(Z) _ dT()+b _ 24 (a’a+b'c)z+(a’ b4+ d)

T JdT(z)+d T C/Lig+d/ (da+d'c)z+(c'b+d'd)

Observe that (a’a + b'c)(db+ d'd) — (a’b+ Vd)(da+ d'c) = (a’d — V') (ad — bc) # 0.
Thus, the set of all 1.f.t. is a group with the binary operation of composition. The neutral
element of this group is the identity function.
Since a L.ft. is a rational function, it is continuous in C, and, as a particular instance of example
3.1.13, it is holomorphic in C except at the point at which it takes the value oco.
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Now we shall make a comment on an interesting relation between circles and lines. We observe
that the equations of circles and lines can be unified in the following manner: ifa, 5,7 € R, w € C,
w # 0, a® + B2 # 0 and B%|w|? > 4ary, then the equation

alz|? + BRe(wz) +7 =0
is the equation of a line, if &« = 0, and the equation of a circle, if & # 0. In fact, if @« = 0,then 8 # 0

and the equation becomes Re(wz) = —% and this is the equation of a line. If o # 0, the equation
2 2— . . . . . .
becomes |z + %w|2 = Wf;m, This is the equation of the circle with center — %w and radius

VB2 w|?—day

2|

we talle|the equation Re(wz) = cof a line, with w € C, w # 0, and ¢ € R, we may write it in the
form a|z|? + BRe(wz) + v = 0 by taking« = 0, 8 = 1 and v = —c. If we take the equation
|z — 20| = r of a circle with zg € C and r > 0, we may write it as |2|> — 2Re(Zp2) + |20]? = 2.
This becomes a|z|? + BRe(wz) +v = 0 by taking o = 1, v = [29]? — r? and: 3 = —2 and
w = zg,incase zg # 0, or § = 0 and w = 1, in case zg = 0. In all cases the choices of the
parameters satisfy the restrictions: a, 3,7 € R, w € C, w # 0, o + 4% # 0 and 2|w|? > 4ar.

This consideration of the equations of a line and a circle as special cases of one equation permits
us to unify the notions of circle and line into the single notion of generalized circle in C. If we
attach the point co to any line (and leave circles unchanged), then we are talking about generalized
circles in C. Look at exercise 1.3.2 for another interesting unification of the notions of circle and
line: generalized circles in C are the images of circles in S? through stereographic projection.

Now, an important property of every L.f.t. is that it maps generalized circles in C onto gener-
alized circles in C. To prove it we consider three special cases first.

. Conversely, every circle and every line have equations of this form. If, for instance,

Example 4.1.1. Every function 7'(z) = z + bis a Lfit. witha = 1, ¢ = 0, d = 1 and, for an
obvious reason, it is called translation by b.

Every such T is holomorphic in C, one-to-one from C onto C and satisfies T'(c0) = oc. Itis trivial
to prove that 7" maps lines in C onto lines in C and circles in C onto circles in C.

Example 4.1.2. Every function 7'(z) = az with a # 0is a Lfit. withb = ¢ =0,d = 1 and it is
called homothety with center 0.

Every such T rotates points around 0 by the fixed angle arga. Indeed, if w = T'(2) = az, then
argw = arg z + arga. Moreover, 7' multiplies distances between points by the fixed factor |al.
Indeed, if wy = T'(21) = az; and wy = T'(z2) = aze, then |w; — wa| = |al|z1 — 22|

Also T' is holomorphic in C, one-to-one from C onto C, satisfies 7(co) = oo and it is easy to
prove that 7" maps lines in C onto lines in C and circles in C onto circles in C.

Example 4.1.3. The function 7(z) = 2 isalfit. witha = d = 0,c = b = 1 and it is called
inversion with respect to the circle T = Cp(1).

The inversion T is holomorphic in C \ {0}, one-to-one from C \ {0, 00} onto C \ {0, oo} and
satisfies T'(0) = oo and T'(c0) = 0. Moreover, it is easy to show that 7" maps (i) lines in C which
do not contain 0 onto circles in C which contain 0, (ii) lines in C which contain 0 onto lines in C
which contain 0, (iii) circles in C which contain 0 onto lines in C which do not contain 0 and (iv)
circles in C which do not contain 0 onto circles in C which do not contain 0.

Lemma 4.1. Every Lft. is a composition of finitely many translations, homotheties and inversions.

Proof. LetT(z) = ‘ij_'g

If c = 0, then T(2) = o’z + 0/, where @’ = § # Oand b’ = %. If we consider the homothety
Ti(z) = a’z and the translation T5(2) = z + b/, then T' = T o T7.
If ¢ # 0, then

“(cz+d)+(b ad) +bc—ad 1

cz+d c c? z+% :

T(z) =

If we consider the translation 7 (z) = z + %, the inversion T5(z) = 1, the homothety T3(z) =
be— adz and the translation Ty(2) = 2z + %, then T' = Ty o T3 0 Ty o T1. O
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Proposition 4.1. Every l.f't. maps generalized circles in C onto generalized circles in C.
Proof. A corollary of lemma 4.1 and of the examples 4.1.1, 4.1.2 and 4.1.3. O

Proposition 4.2. Take the distinct z1, z2, 23 € C and the distinct w1, Wo, W3 € C. Then there is a
unique L.ft. T so that T'(z;) = w;j for j = 1,2, 3.

Proof- We consider the 1.f.t. .S which, depending on whether one of 21, 22, 23 is oo or not, has the

formula
20—23 z2—21

22— 2, if z1 # 00, 29 # 00, 23 # 0

2=z : _
£—=L if z3 = 00
— ) -z’
Sz) = — if zg = 00
z—23" 2=
M7 ile = 00
z—2z3

The 1.f:t. S has values: S(z1) =0, S(z2) = 1, S(z3) = oc.

There is a similar Lf.t. R with values: R(w;) = 0, R(w2) = 1, R(w3) = 0.

Then the L.ft. T = R~! o S has values: T'(21) = w1, T(22) = wa, T(23) = ws.

To prove the uniqueness of 7" with T'(z1) = w1, T'(22) = wa, T'(z3) = ws we consider the previous
£t S, R and then the 1.ft. Q = Ro T o S~ has values: Q(0) = 0, Q(1) = 1, Q(c0) = oc.
Since Q(00) = oo, we get that () has the form Q(z) = az + b with a # 0. Now from Q(0) = 0,
Q(1) = 1 we finda = 1, b = 0 and hence @ is the identity 1.f.t. id with id(z) = z. Thus
RoToS !=idandhence T = R~'oS. O

_ When we apply the previous results we should bear in mind that every three distinct points in
C belong to a unique generalized circle in C.

Example 4.1.4. The L.f.t. which maps the triple ¢, 2, 1 onto the triple 0, 1, oo is

[\
fy

[y

w— T(Z) _ 2—i % P (2+z’)z+(1—2i)'

= -1 52—5

[\

—1

N
N

The points 7, 2, 1 in the z-plane are not c/q—linear and hence belong to a circle A. The points 0, 1, 0o
belong to the line B = R U {oo} in C. Now, T maps the circle A in the z-plane onto some
generalized circle 7'(A) in the w-plane. Since A contains ¢, 2, 1, T'(A) must contain the images of
i,2,1,i.e. 0,1,00. Thus T(A) = B.
If we want to determine the circle A = C,,(r) which contains 4,2, 1, we have to find 2o, r so
that 7, 2, 1 satisfy the equation |z — 29| = r: we just solve a system of three equations in three
real unknowns: xq,yo, . But there is a second and probably easier way to find the equation of
A. Indeed, w belongs to R if and only if Imw = 0 and, using simple algebra, we see that this
is equivalent to [z — 3(1 +4)|*> = 3, z # 1. Since z = 1 is mapped onto w = oo, we have
that w belongs to B if and only if 2 belongs to the circle Cy(1 ) /2( 5/ 2). We conclude that
A = C30144)2(\/5/2).

Exercises.
4.1.1. Find L.f.t. T'sothat T'(1) = ¢, T(i) = 0, T(—1) = —i. Find T(T) and T'(D).

4.1.2. Find L.ft. T'sothat T(D) = {z| Imz > 0}, T(4) = 1,T(1) = 0,7 (a) = —1, where a € T.
Can a be an arbitrary point of T?

4.1.3.. (i) Let .Tl (2) = % and Th(z) = %. Prove that 77, T are the same function if and
only if there is A # 0 so that ay = Aai, bo = A\by, co = Ae1, do = Ads.

(ii) Prove that every 1.f.t. T' can take the form 7'(z) = % with ad — be = 1.
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4.1.4. Let A be a generalized circle of the z-plane Cand Bbea generalized circle of the w-plane
C. Then, in an obvious way, A splits C into two disjoint sets A, and A_ and, similarly, B splits C
into two disjoint sets By and B_. Now, let 7" be a 1.f.t. and let T'(A) = B. Assume that zp € A
and wo = T'(z0) € By. Prove that T(A;) = By and T(A_) = B_.

4.1.5. A point z € Cis called fixed point of the L.ft. T if T(z) = z. Ifthe L.t T is not the identity
(in which case T has infinitely many fixed points), prove that 7" has either one or two fixed points
in C. In each case, which are the images through 7" of the generalized circles which contain its
fixed points?

Apply the above to each of T'(z) = 2 + 2, T(z) =2z — 1,T(2) = ;&, T(z) = 321,

4.1.6. (i) The points a, b € C are called symmetric with respect to Cy, (1) if either a = 29, b = 00
ora = 00, b = zp or a,b € C are on the same halfline with vertex zy and |a — zo||b — 2| = r%.
Observe that either a, b coincide with one and the same point of C., (r) or a, b are on different sides
of ., (r). Givena € C \ {20, 00}, describe a geometric construction “with ruler and compass” of
its symmetric point, b € C \ {20, 0o}, with respect to C, (7). Prove that a, b are symmetric with

respect to C, (r) if and only if

(i1) The points a, b € C are called symmetric with respect to the line I=1U {o0} in C if either
a=0b=oo0ora,b e C are symmetric with respect to /. Prove that a, b are symmetric with respect
to [ ifand only if

b=z + 22 (a—7),

22—21

where 21, zo are any two distinct fixed points of the line /.

(iii) We take a L.f.t. w = T'(z) and generalized circles A in the z-plane C and B in the w-plane C.
Prove that, if 7" maps A onto B, then 7" maps symmetric points with respect to A onto symmetric
points with respect to B.

(iv) Find Lft. T so that T(Co(1)) = Ci(3), T(i) = 3+ i, T(3) = 0.

4.1.7. The Lft. w = T'(2) is called real if it maps the real line (with co) in the z-plane C onto the
real line (with co) in the w-plane C.
(i) Prove that the L.f.t. T is real if and only if there are a, b, c,d € R with ad — bc # 0 so that

T(2) = &5
(ii) If the Lf.t. T isreal and T'(2) = gzzig, with a,b,c,d € R, ad — bc # 0, we define sign T to be

the sign of ad — be. Using exercise 4.1.3(i), prove that sign 7" is well defined.
(iii) Prove that, if the 1.f.t. T is real, then 77! is real, and that, if the 1.f.t. S, T are real, then S o T
is real. Also prove that

signT~! =signT, sign(S oT) = sign S signT.

(iv) Take a real 1.f.t. T'. Prove that T" maps the upper halfplane onto the upper halfplane (and the
lower onto the lower) if and only if sign7" = +1 and that 7" maps the upper halfplane onto the
lower halfplane (and the lower onto the upper) if and only if sign 7" = —1.

4.1.8. (i) Let zp € D and |A| = 1 and consider the L.f.t.

T(z) = )\f:ziooz.
Prove that 7'(T) = T and T'(29) = 0. Find T'(D).
(ii) Let zp € D and let 7" be a 1.f.t. such that 7'(T) = T and T'(29) = 0. Prove that there is A with
[Al = 1sothat T'(z) = A==

(iii) Let a, b € D and let T’ be a Lft. such that T(T) = T and T'(a) = b. Prove that there is A with

b z—=b
[Al = 1so that ; (b%( ) = = A=

40



4.1.9. Consider Hy = {z| Imz > 0}.
(i) Let 29 € H; and |A\| = 1 and consider the 1.f.t.
T(z) = N2,
Prove that T(R U {oo}) = T and T'(zp) = 0. Find T'(H.;.).
(ii) Let zp € H and let T be a 1.f.t. such that T (R U {oc}) = T and T'(29) = 0. Prove that there
is A with [A| = 1 so that T'(z) = AZ=22

z—2z0 "

4.1.10. Consider distinct z1, 29, 23,24 € C. We define the double ratio of 21, 22, 23, z4 (in this
order) to be

.
Z1—R23 22—24 1
Laan, if 21 # 00, 29 # 00, 23 # 00, 24 # O
2724 if 21 = o0
zo—23
— Z1—% 3 —
(21,22, 23, 24) = { 2222, if 23 = 00
2224 1 —
21, if z3 = 00
z1—23 e
o if z4 = 00

(i) Prove that
(T(21),T(22), T(23), T(24)) = (21, 22, 23, 24)

for every L.f:t. T" and every distinct 21, 29, 23, 24 € C.

(i1) Prove that the distinct 21, 29, 23,24 € C belong to the same generalized circle if and only if
(21, 22, 23, 24) € R\ {0}.

(iii) If (21, 22, 23, 24) = A, find all values (depending on \) which result from this double ratio
after all rearrangements of 21, 29, 23, 24.

4.1.11. Prove that the group of all L.f.t. is simple, i.e. that its only normal subgroups are itself and
{I}, where I is the identity L.f't.

4.2 The exponential function.
We define the exponential function exp : C — C by
expz = e*(cosy + isiny)
for every z = = + 1y.
Ifz € R,i.e. z = x+10, thenexp z = e*(cos 0+isin0) = e* = e*. This implies that we may
use the symbol e* instead of exp z without the danger of contradiction, in the case that z is real,

between the symbol e* as we just defined it and the symbol e* as we know it from infinitesimal
calculus. Therefore, we define

e =expz =e"(cosy + isiny)

for every z = = + 1y.
Since z = x + iy implies |e?| = |e”||cosy + isiny| = e”, we have that
|€z‘ — 6Rez

From e* = e”(cosy + isiny) and |e*| = e” we get e* = |e*|(cosy + isiny). So y is one of
the elements of arg e and hence

arge® = {Imz + k27 | k € Z}.
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We have the basic equality

eFle?2 — A1 T2

Indeed, €™ (cos y1 + i sinyy )e™2(cos yo + isinyz) = e***2(cos(y1 + y2) + i sin(y1 + y2)) from
the addition formulas of cos and sin.

If 20 — 21 = k2mi for some k € Z, then e*2 = e*1eM2™ = ¢%1(cos(k27) + i sin(k27)) = €.
Conversely, assume e*2 = e and let 29 — 21 = x + iy. Then e®(cosy + isiny) = e?27%1 =
22 = 1 and hence e¢* = 1, cosy = 1 and siny = 0. Therefore, x = 0 and y = k27 for some
k € Z. Thus, z9 — 21 = k27i with k € Z. We proved that

z2

e? =e' & 29— 21 = k2mi for some k € Z.

For all z = z + iy we have |e¢*| = ¢* > 0 and hence
e® #£0.
On the other hand, if we take any w # 0 and if we use the notation
In: (0,+00) - R

for the well known logarithmic function from infinitesimal calculus, then the solutions of the equa-
tion e* = w are described as follows:

ef=w <& z=In|w|+ iy forsome y € argw.

Indeed, if we write z = x + iy, then the equality w = e* becomes w = e*(cosy + i siny) and it
just means that its right side is one of the polar representations of w. Hence, w = €7 if and only
if e = |w| and y is a value of argw. Now, e* = |w| is equivalent to z = In |w|. Therefore, the
equation e = w has these infinitely many solutions: z = In |w|+ iy where y is any value of arg w.
All these solutions have the same real part, z = In |w|, and their imaginary parts are the elements
of arg w.

From what we said already, it is clear that the exponential function is onto C \ {0} but not
one-to-one in C. In fact the exponential function is infinity-to-one since there are infinitely many
values of z corresponding to the same value of w # 0.

Based on the equality €Y = cos 3+ sin y, we may write the polar representations of any z # 0
in an equivalent form:

z = r(cosf 4 isinf) = re',
where r = |z| and § € arg z. The second form is simpler and we shall use it extensively in the rest
of the course. For instance, we may rewrite the examples 2.2.8 and 2.2.9 as follows.

Example 4.2.1. Using the parametric equation z = y(t) = zo + re®, t € [0, 2], for the circle
C, (), we have

j;CZO () f(z)dz = fv f(z)dz = o27r f(z0 + ret)iret dt.

Example 4.2.2. If n € Z, we have f027r e dt = 2, if n = 0, and f027r emtdt = 0,ifn # 0.
Therefore, if n € Z, we get

. . ) 2mi, ifn=-1
o n — 2m m_int;.. it — spentl 2m i(n+1)t — )
fczo ) (z—20)"dz = [ re™iret dt = ir"t [["e dt {07 ifn £ 1

The real and imaginary parts of e* are u(z,y) = e* cosy and v(z,y) = e siny. Therefore,
u, v have partial derivatives %(x, y) = e* cosy, g—Z = —€%siny, % = e%siny, g—Z = e cosy,

which are continuous and satisfy the system of C-R equations in C and hence e* is holomorphic
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in C. To calculate the derivative of e* we write %(:p, y) + i%(x, y) = ePcosy + ie"siny =

e”(cosy + isiny) and hence
de* _ _z
dz

We shall now examine the mapping properties of the function w = e*. We write z = x + iy
and w = u + iv.

If z = x + iy varies on the horizontal line i, in the z-plane which intersects the y-axis at the
fixed point iy, then w = e* = e”(cosy + isiny) varies on the halfline r, in the w-plane with
vertex 0 (without 0) which forms angle y with the positive u-semiaxis. Also, if z varies on the
horizontal line h,, from left to right, i.e. when x increases from —oo to 400, then w = e* varies on
the halfline r, from 0 to oo. If y increases by Ay > 0, i.e. if the horizontal line h,, moves upward,
then the corresponding halfline , rotates in the positive direction around 0 by the angle Ay. The
two horizontal lines h,, and h, 2, are mapped onto the same halfline r, = 7,4 25.

If the point z = z + ¢y varies on the vertical line v, in the z-plane which intersects the x-axis
at the fixed point z, then w = e* = e*(cos y + ¢ sin y) varies on the circle Cy(e”), call it ¢, in the
w-plane. Also, if z moves upward on the vertical line v,, i.e. if y increases from —oo to 400, then
w = e” rotates on the circle ¢, infinitely many times in the positive direction. If y increases over
an interval of length 27, then w = e* describes the whole circle ¢, once in the positive direction.
If = increases by Az > 0, i.e. if the vertical line v, moves to the right, then the circle ¢, with
radius e” becomes the circle ¢, A, With radius et tAT — oAz
We may combine the above results. For instance, if we consider the open rectangle

M={z+iy|z <z <x2,11 <Yy < Y2}

in the z-plane with sides parallel to the two coordinate axes, then II is the intersection of the open
horizontal zone between the lines h,, and h,, and the open vertical zone between the lines v, and
Vy,. If Y2 — y1 < 2, then II is mapped onto the open “circular rectangle”

R={re?|e® <r<e®,y <6<y},

in the w-plane, which is the intersection of the angular region between the halflines r,, and 7,
and the open ring between the circles ¢, and cg,. If y2 — y1 = 2, then the “circular rectangle”
R is the open ring between the circles c;, and ¢, without its linear segment which belongs to the
halfline r,, = r,,. Of course, in this case, if 11 includes at least one of its horizontal sides, then its
image R is the whole open ring between the circles ¢, and ¢y, .

Starting from €% = cosy+isiny and e~% = cos(—y)+isin(—y) = cosy —i siny, we easily
find that cosy = 3(e™ 4+ e~%) and siny = -(e® — e~) for every y € R. Now we extend the
trigonometric functions cosine and sine from R to C by defining

cosz = (e + ), sinz = (e — e %)
for every z € C. It is clear from the holomorphy of the exponential function that cos and sin are

holomorphic in C and that

doosz - = —sinz, —d;i;z = COS 2.

It is also easy to show that cos and sin are 27-periodic.

Now we extend the tangent and the cotangent from R to C by defining
sin z eiz —e %

tanZ:COSZ :m, cotz =

cosz __ e*4e "
sin z et —e %

for every z € C. It is easy to see that the solutions of cos z = 0 are z = § + km, k € Z, and the
solutions of sin z = 0 are z = km, k € Z. Therefore, tan is defined and holomorphic in the open
set C\ {§ + k7 |k € Z} and cot is defined and holomorphic in the open set C \ {k7 |k € Z}.
Both functions are m-periodic.
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Exercises.
4.2.1. Prove that e? = €7 for all 2.
4.2.2. Prove that |e* — 1| < el?l — 1 < |z|ell.

4.2.3. Let z — oo on any halfline. Depending on the halfline, study the existence of the lime® in
C. Which characteristic of the halfline determines the existence and the value of the limit?

4.2.4. Find the images through the exponential function of:
{r+iyla<zr<bl<y<O+n}, {z+iyla<z<bi<y<O+2n},

{r+iylz<b<y<bO+rn}, {x+iy|le<d,<y<6l-+2r},
{r+iyla<z,0<y<O+7}, {r+iyla<z,0<y<6+2r}.

4.2.5. Every horizontal and every vertical line in the z-plane are perpendicular. Also, every halfline
with vertex 0 and every circle with center 0 in the w-plane are perpendicular. How do these facts
relate to the conformality of the function w = e*?

4.2.6. Prove that

(i) sin? z + cos? z = 1.

(ii) sin(z + w) = sin z cos w + cos z sinw, cos(z + w) = cos z cos w — sin z sinw.

(iii) | cos(2+iy)|* = cos? z+sinh? y, | sin(z+iy)|? = sin® z+sinh® y where sinhy = 3 (e¥—e ™).

4.2.7. Study the function w = sin z in the vertical zone {z + iy | — § < x < §} and the function
w = cos z in the vertical zone { + iy | 0 < = < 7}. Examine the images through these functions
of the various horizontal linear segments (of length 7) and the various vertical lines inside these
two vertical zones.

4.3 Branches of the logarithmic function.

In the last section we proved, for every w # 0, the equivalence
e=w < z=In|w|+ iy forsome y € argw.
For every w # 0 we consider the set
logw = {In|w| + iy |y € argw}

and we call it logarithm of w. So the elements of log w are the solutions of e = w, i.e.

ef=w < zclogw.

If we take y = Argw, then we get the particular element
Logw = In|w| 4+ i Argw

of log w and this is called principal logarithm of w.

Ifr = |w| and if § is any of the values of the argument of w, i.e. ifw = r(cos §+isinf) = re’
is any of the polar representations of w, then the values of arg w are the numbers 0 + k27, k € Z.
Hence the values of log w are the numbers Inr + i(6 + k27), k € Z.

Example 4.3.1. (i) Log 1 = 0 and log1 = {i2k7 | k € Z}.

(ii) Log(—1) = ¢m and log(—1) = {i(2k + 1)« | k € Z}.

(iii) Logi = % and logi = {i(2k + 3)7 | k € Z}.

(iv) Log(—3i) = In3 — % and log(—3i) = {In3 + i(2k — )7 | k € Z}.

(v) Log(1 4+ i) = Inv2+iZ and log(1 + i) = {Inv/2 +i(2k + )7 | k € Z}.
(vi) Log(1 — iv/3) = In2 — i% and log(1 — iv/3) = {In2 +i(2k — 3)7 | k € Z}.

0
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For any fixed w # 0 the set log w has infinitely many elements, and any two of them differ by
an integral multiple of i27r. All elements of log w have the same real part x = In |w/|, and hence they
are on the same vertical line v, with equation x = In |w/|, and the vertical differences between them
are the integral multiples of 2. Therefore, every vertical segment of the line v,,, which has length
27 and includes only one of its endpoints, contains exactly one element of log w. Moreover, every
horizontal zone, which has vertical width 27 and includes only one of its boundary lines (either the
upper or the lower one), contains exactly one element of log w for every w # 0. More precisely,
if we consider any 6y and the horizontal zone

Zpy ={x+iylby<y<bp+2r} or Zy ={zx+iy|by <y <by+2n},

then Zp, contains exactly one element of log w : the one with imaginary part y equal to the (unique)
0 € argw satisfying 0y < 0 < 0y + 2w or 0y < 6 < 6y + 27, respectively. For instance, if we
consider the special zone determined by 6y = —m which contains its upper boundary line, i.e.

Z_n=Az+iy| —m<y<m}

then, for every w # 0, the unique element of log w which is contained in this zone is the principal
logarithm Log w.

Proposition 4.3. For all wi,wy # 0 we have
log(wiwsy) = logwy + log ws.

By this we mean that the sum of any element of log wy and any element of log we is an element of
log(wywe) and, conversely, any element of log(wiws) is the sum of an element of log wy and an
element of log w.

Proof. A corollary of proposition 1.1 and of the equality In |wjws| = In|w;| + In |ws|. O

It is already clear that the exponential function w = exp z = e* from C onto C \ {0} is not
one-to-one. Therefore, there is no inverse of the exponential function. If we want to produce
some kind of inverse of the exponential function, we may take any w in the range C \ {0} of the
function and select one value of z out of the infinitely many in C which satisfy the e* = w. There
are many instances of this method at a more elementary level. Let us consider for instance the
function y = 2 from (—oo, +00) onto [0, +00), which is not one-to-one in (—oo, +00). We
take any y € [0, +00) (the range of y = 22) and find one x such that 22 = 3. There are exactly
two such z: z = /y and x = —,/y. Therefore, one might say that we have only two choices
for the inverse function: the choice # = /y for every y € [0, +00) and the choice z = —,/y
for every y € [0, 400). But this is not correct. We may choose = = ,/y for some y € [0, +00)
and v = —,/y for the remaining y € [0, +00). It is obvious that there are infinitely many such
inverse functions, depending on the particular choice we make between z = \/y and v = —,/y
for each value of y. Nevertheless, there is a criterion which reduces the number of our inverse
functions to exactly two: the criterion of continuity! We observe that the last function, with the
double formula, is not continuous. On the contrary, the function 2 = /y for every y € [0, +00)
and the function x = —,/y for every y € [0, +00) are both continuous. To prove that these are
the only continuous inverse functions is a simple exercise in real analysis. Indeed, assume that
there is some continuous inverse function z = f(y) of y = 22 defined in [0, +00) (the range of
y = z?). Le. f : [0,4+00) — R is continuous in [0, +00) and f(y)? = y for every y € [0, +00).
Let there be y1,y2 > 0 with 1 # 2 such that f(y1) = (/y1 and f(y2) = —/y2. Since [ is
continuous in the interval between 1, y2 and its values at the endpoints are opposite, there is some
y in this interval so that: f(y) = 0. This is impossible, because y > 0 and either f(y) = \/y > 0
or f(y) = —/y < 0. Therefore, there are no such 1,32 > 0 and hence we have exactly two
cases: either f(y) = /y forevery y > O or f(y) = —,/y for every y > 0. We may say that there
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are exactly two continuous branches of the square root in [0, 400): the branch z = ,/y and the
branch z = —./y.

Now let us go back to the determination of possible inverses of the exponential function.

Let A C C\ {0}. We say that the function f is a continuous branch of log in A if f is
continuous in A and for every w € A we have that f(w) is an element of log w or, equivalently,

F) —

for every w € A.
Proposition 4.4 gives many useful examples of continuous branches of the logarithm.

Proposition 4.4. Let 0y € R. We consider the set
Ag, = {re? |0 < r < 400,00 < 0 < 0 + 27}

in the w-plane (i.e. C without the halfline with vertex O which forms angle 0y with the positive
u-semiaxis, where w = u + tv) and the open horizontal zone

Zp, ={rx+1iy| —oco<x < 400,00 <y < b+ 27}

in the z-plane. We define the function f : Ag, — Zg, as follows: for every w € Ay, we take
f(w) to be the unique element of log w in the zone Zy,. Then f is continuous in Ag, and so it is a
continuous branch of log in Ag,.

Proof. Assume that f is not continuous at some w in Ag,. Then there is a sequence (wy,) in Ag, so
that w,, — wand f(wy,) 4 f(w). This implies that there is & > 0 so that | f(w,)— f(w)] > § > 0
for infinitely many n. These infinitely many n define a subsequence of (w,,). Now we ignore the
rest of the sequence (w,,) and concentrate on the specific subsequence. For simplicity we rename
the subsequence and call it (w,,) again. Therefore, we have a sequence (wy,) in Ag, such that

Wy —> W and |f(wp) — f(w)] > >0 (4.3)

for every n. We set z = f(w) € Zp, and 2z, = f(wy) € Zy, for every n. Then e* = w and
e”" = w, for every n and (4.3) becomes

e — e* and |z — 2] >0 >0 (4.4)

for every n. The real parts of the z,, are equal to In |w,,| and, since In |w,,| — In |w|, the real parts
of the z,, are bounded. Moreover, since z, € Zp,, the imaginary parts of the z, are also bounded.
Therefore, the sequence (z,,) is bounded and the Bolzano-Weierstrass theorem implies that there
is a subsequence (zy, ) so that z,, — 2’ for some 2’. Since all z,,, belong to Zy,, we see that 2’
belongs to the closed zone Zy, = {z+iy| —0o < x < 00,0y <y < O+ 27 }. Taking the limit
in (4.4), we get that e” = e* and |2’ — z| > §. Therefore, 2’ and z differ by a non-zero integral
multiple of 27, But this is impossible, because z belongs to the open zone Zy, and =’ belongs to
the closed zone Zy, .

Thus f is continuous at every w in Ay, . O

Our study of the mapping properties of the exponential function in the previous section gives
the following information about the mapping properties of the continuous branch f : Ag, — Zy,
of log, which is defined in proposition 4.4: f maps the halflines in Ap, with vertex O (without 0)
onto the horizontal lines in Zy, and the circles with center 0 (without their point on the halfline
which is excluded from Ag,) onto the vertical segments of Z,.

Choosing any real §y, we have defined a continuous branch of log in the subset Ay, of the
w-plane, whose range is the zone Zy, of the z-plane. If, instead of 6y, we consider 6y + k27 with
any k € Z, then the domain A = Ag, 4o remains the same but the range, i.e. the zone Zy, 4o,
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moves vertically by k2m. The various zones Zg, +r2- are successive and cover the whole z-plane
(except for their boundary lines with equations y = 6y + k27). We summarize:

If we exclude from the w-plane a halfline with vertex 0, then in the remaining open set A there
are infinitely many continuous branches of log defined. Each of them maps A onto some open
horizontal zone of the z-plane of width 2w. These various open zones, which correspond to the
various continuous branches of log (in the same set A), are mutually disjoint, successive and cover
the z-plane (except for their boundary lines). Of course, if we change the original halfline which
determines the set A, then the corresponding zones and the corresponding continuous branches of
log also change.

Example 4.3.2. One particular example of a continuous branch of log is defined when we choose
Op = —m. Thentheset A = {re??|0 < r < 4o00,—7 < 0 < 7} is the w-plane without
the negative u-semiaxis (where w = wu + iv) and the range of the branch is the zone Z_, =
{r+iy| — o0 < & < 400,—m < y < 7}. It is obvious that this branch is the function which
maps every w € A_, onto the principal value z = Logw of logw. l.e. we get the so-called
principal branch of log

Log: A, — Z_,.

We must keep in mind that in the same set A_, of the w-plane, besides the principal branch,
there are infinitely many other continuous branches of log defined. Each of them maps A_, in a
corresponding zone Z_ ko, With & € Z, which is Z_, moved vertically by k27. This branch
results from the principal branch Log by adding the constant k27 and its formula is Log +i2k.

Now, we introduce a slight generalization of the notion of the branch of log, i.e. we define the
notion of the branch of log g, where ¢ is a more general function than the identity g(w) = w.

Let AC Candg: A — C\{0} be continuous in A. We say that the function f is a continuous
branch of log g in A if f is continuous in A and for every w € A we have that f(w) is an element
of log g(w) or, equivalently,

for every w € A.

Example 4.3.3. Let g : A — C\ {0} be continuous in A C C. If there is a continuous branch h
of login g(A), then f = h o g is a continuous branch of log g in A.
Indeed, f = h o g is continuous in A and, since e/(*) = z for every z € g(A), we also have

ef ) — (o) — g(p)

for every w € A.

This is a standard way to produce continuous branches of log ¢ when we know continuous branches
of log in the range of g.

For instance, if g(w) = w — wp and A = C \ [, where [ is a halfline with vertex wy, then
g(A) = C\ I/, where I is the halfline with vertex 0 which is parallel to I. We know that there are
infinitely many branches of log defined in g(A) and hence there are infinitely many branches of
log(w — wp) defined in A.

Proposition 4.5. Let g : A — C\ {0} be continuous in A C C and let f be any continuous branch

of log g in A. If wq is an interior point of A and g is differentiable at wy, then f is differentiable at

wo and f'(wo) = gg/((z:(?))

in the interior of A.

. Hence, if g is holomorphic in the interior of A, then f is also holomorphic

Proof. We set zop = f(wp) and z = f(w) for every w € A. Then e* = g(wp) and ¢* = g(w).
Since f is continuous, w — wq implies z — zg. Therefore, using the derivative of the exponential
function at zg, we see that

fw)—flwo) _ _z—z gw)—g(wo) g'(wo) _ g'(wo)
w—wop - ez—ego w—wo = Tem g(wo)
when w — wy. Thus f is differentiable at wy and f/(wg) = %. O
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Therefore, if g : A — C \ {0} is holomorphic in the open set A, every continuous branch of
log g can be called holomorphic branch of log g in A.

Example 4.3.4. We have defined infinitely many continuous branches of log in the open set which
results when we exclude any halfline with vertex 0 from the w-plane. All these branches are
holomorphic branches of log. In particular the principal branch Log : A_, — Z_ is holomorphic
in A_..

Proposition 4.6. Let g : A — C\ {0} be continuous in A C C.

(i) If f1 is a continuous branch of log g in A and fo — f1 = ik27 in A, where k is a fixed integer,
then fs is also a continuous branch of log g in A.

(ii) If, morever, A is connected and f1, fo are continuous branches of log g in A, then fo — f1 =
ik2m in A, where k is a fixed integer. In particular, if’ fi(wo) = fa(wp) for some wy € A, then
fi=frin A

Proof. (i) The continuity of f; in A implies the continuity of f, in A. We also have e/1(*) = g(w)
for every w € A and hence e/2(¥) = efi(w)tik2m — ofi(w)gik2r _ g(w) for every w € A.
Therefore, f5 is a continuous branch of log g in A.

(ii) We consider the function k = - (f> — f1). Since for every w € A both fo(w) and fi(w) are
elements of log g(w), we have that k(w) is an integer. Also, since both f;, f, are continuous in A,
k is continuous in A. Now, k is a continuous real function in the connected set A, and hence it has
the intermediate value property. But since its only values are integers, it is constant in A. So there
is a fixed integer k so that = (f> — f1) = k or, equivalently, fo — f; = ik2m in A.

If fo(wp) = f1(wp) for some wy € A, then the integer k is 0 and we get that fo = f; in A. O

Thus, if we know one continuous branch of log g in the connected set A, then we find every
other possible continuous branch of log g in A by adding to the known branch an arbitrary constant
of the form ik2m with k € Z.

Example 4.3.5. Let A = A_ be the w-plane without the negative u-semiaxis (where w = u+iv).
We want to find a continuous branch of log in A having value z = 0 when w = 1.

We already know that the principal branch Log of the logarithm has value z = Logl = OQatw = 1.
Since A is connected, there is no other such continuous branch of log in A.

Now, in the same set A = A_, we want to find a continuous branch of log taking the value z = 4w
atw = 1.

Since A is connected the branch we are looking for has the form Log +ik27 for some fixed integer
k. We try w = 1 in this equality and get k = 2.

Example 4.3.6. Let A = Ay = {re?? |0 < r < +00,0 < § < 27} be the w-plane without the
positive u-semiaxis (where w = u + tv). We want to find a continuous branch of log in A taking
the value z = i(§ + 4m) at w = i.

We consider the horizontal zones in the z-plane which correspond to the set A: to each k € Z
corresponds the zone Zyyror = {x +iy| — o0 < & < +00,k27m < y < 27 + k27w }. Now we
choose the particular zone which contains the value z = i(§ + 4m). This zone corresponds to
k=2anditis Zy; = {x +iy| — oo < 2 < +00,4m < y < 67}. Then a continuous branch f
of log which maps A onto Zy is given by f(w) = Inr + 6, where r = |w| and 6 is the unique
value of arg w which is contained in the interval (47, 67). Since A is connected, there is no other
such continuous branch of log in A.

Exercises.

4.3.1. Let z # 0. Prove that the only element of exp(log z) is z and that the elements of log(exp z)
are z + k2w, k € Z.

4.3.2.Let0 < 71 < ra. Find Log(A), if A = {w|r < |w| <72} \ [-re, —r1].

48



4.3.3. Find the inverse images through the exponential function w = e? of the following sets:
{re?|1<r<3,-2<0<3}, {re?|l<r—%<0<Z}

{re|r<1,-2 <0<}, {re?|l<r<3,-m<6<m},
0 1] 3
{re |1 <r<3,0<8<2r}, {re|l<r<3,-5<0<5}

In which of these sets is the principal branch of log defined and which other continuous branches
of log are defined in these sets? Which continuous branches of log are defined in the remaining
sets? In any case write the formulas of the continuous branches of log as well as the image of each
set through the corresponding continuous branches of log.

4.3.4. Work on the following in both cases: 8y = —7 and 6y = 0.

Consider Ay,, i.e. the w-plane without the halfline with vertex 0 which forms angle 6, with the
positive u-semiaxis. Consider also 61,62 with 6y < 01 < 62 < 09 + 27 as well as r1, o with
0 <7 <re < +oo. Draw the set P = {w = ret? |r1 < r <rg,0; <6 < 6} and its images
through the various continuous branches of log in Ag,.

435.LetP = {re? |1 <r <2, -3 <9 <I} Q={w=re?|1<r<2T <6<}
We know that there is a continuous branch f of log in P and a continuous branch g of log in Q). Is
it possible for f and g to coincide in P N Q?

4.3.6. Look back at exercise 1.2.1 and find all the possible values of Log(z122) — Log z; — Log zs.

4.3.7. Prove that there is no continuous branch of log defined in any circle Cy(r) and hence in any
set A which contains such a circle.

4.3.8. Define w?® = e® 198 for every w € D1 (1), and for every z prove that
limgy o0 (1+ 2)" = €2

43.9.Let A C C\ {0}. If A is connected and if fi, fs are two different continuous branches of
log in A, prove that f1(A) N fo(A) = (. (Observe how this result is confirmed by the special case
of A being C without a halfline with vertex 0 in which case the various continuous branches of log
in A map A onto disjoint horizontal zones.)

4.3.10. Let a, b € R with a < b. Discuss the geometric meaning of the number
Arg 2=% = Im(Log 2=2)
g g

for zin Hy = {z|Imz > 0}. How does this number vary when z varies in H? Find the
geometric locus of the z in H for which Arg 2_2 = cis constant, 0 < ¢ < 7.

z—

4.4 Powers and branches of roots.
If n € N, n > 2, the function
w=2z"

is holomorphic in the z-plane C and we shall examine some mapping properties of this function.
We work with polar representations:

z=re?, w = r"e?.

If 6 € R is constant and r varies in (0, +00), i.e. if z moves on the halfline ry in the z-plane
with vertex 0 (without 0) which forms angle 6 with the positive x-semiaxis, then w = 2" moves
on the halfline 74 in the w-plane with vertex 0 (without 0) which forms angle ¢ = nf with the

49



positive u-semiaxis. Also, if z moves on the halfline ry from 0 to co, then w = z" moves on the
halfline r, from 0 to oo. If 6 increases by A > 0, i.e. if the halfline ry turns in the positive
direction by an angle A6, then the corresponding halfline r turns in the positive direction by an
angle A¢ = nAf. The two halflines 79 and r, 4 2n are mapped onto the same halfline 74 = 74427

If r € (0,400) is constant and 6 varies in ]R,Yi.e. if the point z moves on the circle Cy(r) in the
z-plane, then w = 2™ moves on the circle Cy(7") in the w-plane. Also, if z rotates once on Cy(r)
in the positive direction, i.e. if 6 increases in an interval of length 27, then w = 2" rotates n times
on Cp(r™) in the positive direction. If § increases in an interval of length 27”, then w = 2" rotates
once on Cp(r") in the positive direction. If r increases, i.e. if the circle Cp(r) expands, then the
corresponding circle Cp(r™) also expands.

In the following as well as in the whole course, we shall use the symbol {/z only to denote the
unique nonnegative n-th root of a nonnegative real number .

Ifn € N, n > 2 and if we take any polar representation w = Re’® of w # 0, then the equation
z" = w has n solutions which are described as follows:

M=w=Re® o 2= {l/}»%ei(%Jrk%w) forsome Kk =0,1,...,n — 1. 4.5)

Indeed, if we write z = re®, then the equality 2™ = w becomes "¢ = Re'® and this is
equivalent to v = R and nf = © + k2x for some k € Z. Solving for r and 0, we find the
solutions z = VR ei(%Jrk QTW), k € Z. It is trivial to see that two of these solutions are the same if
and only if the corresponding values of & differ by a multiple of n and hence there are n distinct
solutions corresponding to the values 0,1,...,n — 1 of k. We easily see that the solutions of
2" = w are the vertices of a regular n-gon inscribed in the circle Cp( V/R).

The set of the solutions of 2" = w, which appear in the right side of (4.5), is called n-th root
of w and it is denoted w= or w'/™, i.e.

wr = { VR |k =0,1,...,n -1},
where w = Re'® is any polar representation of w. Thus, we have the equivalence

n 1
Z =w = z e wn.

Of course, if w = 0, then the equation 2" = w has the unique solution z = 0 and then we

define O = {0}.

Example 4.4.1. The n-th root of 1 is called n-th root of unity.
Since 1 = 1¢%, the elements of the n-th root of unity are the numbers etk 27”, k=0,1,...,n—1.

Obviously, one of them is 1 and, if we denote ei%ﬁ by the symbol w,,, we find that the elements of
the n-th root of unity are the numbers

1,wn,w%, RN
This wy, is called principal n-th root of unity.

. 1 . .

We saw that, if w # 0, then wn has exactly n elements which are on the vertices of a regular
n-gon inscribed in the circle Cy( {/|w]|) of the z-plane. Therefore, every arc of this circle with
central angle %’r, which includes only one of its endpoints, contains exactly one of the elements of

w. Thus, every angular set in the z-plane with vertex 0 and angle %’r, which includes only one

. . . 1 . .
of its boundary halflines, contains, for every w # 0, exactly one element of w=. In particular, if
we consider any 6 and the angular set

AgO:{rew‘r>0,90<9§90+%”} or Ago:{rew‘r>0,90§0<90+2§},
then Ay, contains exactly one element of w
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Clearly, the function w = z" from C \ {0} onto C \ {0} is n-to-one and has no inverse. So
we shall define branches of an inverse of w = 2". )
Let A C C\ {0}. We say that the function f is a continuous branch of wx in A if f is

. . : 1 .
continuous in A and for every w € A we have that f(w) is an element of w= or, equivalently,

fw)" =w

for every w € A.
. . . 1
Proposition 4.7 gives many examples of continuous branches of wn.

Proposition 4.7. Let ¢pg € R. We consider the set
Ay = {56 |5> 0,00 < ¢ < ¢ + 2}

in the w-plane (i.e. C without the halfline with vertex O which forms angle ¢g with the positive
u-semiaxis, where w = u + tv) and the angular region

B¢0/n:{rei9|r>0,%<6<%+%r}

in the z-plane. We define the function f : Ay, — By, as follows: for every w € Ay, we take
f(w) to be the unique element ofw% in the angular region By ,. Then f is continuous in Ay,

1,
and so it is a continuous branch of wn in Ag,.

Proof. Assume that f is not continuous at some w in Ag,. Then there is a sequence (wy,) in Ag,
so that wy, — w and f(wg) # f(w). Then there is § > 0 so that | f(wy) — f(w)| > 6 > 0 for
infinitely many k. These infinitely many k define a subsequence of (wy). Now we ignore the rest
of the sequence (wy) and concentrate on the specific subsequence. For simplicity we rename the
subsequence and call it (wy,) again. Therefore, we have a sequence (wy,) in Ay, such that

W — W and |f(wg) — f(w)] > >0 (4.6)

for every k. We set z = f(w) € By,/n and 2 = f(wy) € By, )y, for every k. Then 2" = w and
2. = wy, for every k and (4.6) becomes

zp = 2" and |z — 2| >0 >0 (4.7)

for every k. Since |zx|™ — |z|™ and hence |zx| — |z|, we get that the sequence (z) is bounded
and the Bolzano-Weierstrass theorem implies that there is a subsequence (zg,, ) so that 2z, — 2’
for some z'. Since all 2, belong to By, /,,, We have that 2’ belongs to the closed angular region
By = {2z = re |r >0, % <6< % + 22}, Taking the limit in (4.7), we get 2™ = 2" and
2" — 2| > 4. This is impossible, because z belongs to By, /,, and 2’ belongs to By /y,.

Thus f is continuous at every w in Ag,. O

From the mapping properties of the function w = 2" we get the following for the mapping
properties of the continuous branch f : Ay, — By, of w%, which is defined in proposition 4.7.
The function f maps the halflines in Ay, with vertex 0 (without 0) onto the halflines in By, /,, with
vertex 0 (without 0) and the circular arcs in A, with center 0 onto the circular arcs in By, /,, with
center 0. )

Choosing any real ¢, we have defined a continuous branch of w= in the subset Ay, of the
w-plane, whose range is the angular region By, /,, of the z-plane. If, instead of ¢, we consider
¢o+ k27 withany k = 0,1,...,n— 1, then the set A = Ay o remains the same but the range,
i.e. the angular region By, rar)/n, rotates by an angle k%’r The n angular regions By, 4 ror)/n
withk = 0,1,...,n—1are successive and cover the z-plane (except for their n boundary halflines
with vertex 0). We summarize:
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If we exclude from the w-plane any halfline with vertex 0, then in the remaining open set A there

1
are n continuous branches of wr defined. Each of them maps A onto some open angular region

. ot . . .
of the z-plane with vertex 0 and angle <*. These various angular regions, which correspond

to the various continuous branches of w (in the same set A), are mutually disjoint, successive
and cover the z-plane (except for their boundary halflines). Of course, if we change the original
halfline which determines the set A, then the corresponding angular regions and the corresponding
branches of wn also change.

. 1
Example 4.4.2. We get a concrete example of a continuous branch of w=» when we take ¢g = —.
Then the set A_, = {se¢'®|s > 0,—7 < ¢ < 7} is the w-plane without the negative u-semiaxis

(where w = u + iv) and the range of the continuous branch of wh is the angular region B_ ./, =
{re?|r >0,—T < § < Z}. The value of this branch at every w € A_ is given by

i &
z= {se'n,
where w = se’? is the polar representation of w with —7 < ¢ < . Clearly,

n Z-Argw Log w
z=/|wle' »n =e n .

On the same set A_, of the w-plane, besides the above continuous branch of w%, we may de-
fine 1 continuous branches of w . Each of them maps A_, onto a corresponding angular region
B(_ryk2m)m With k = 0,1,...,n — 1, which results by rotating B_,/,, in the positive direction
by the angle k%ﬂ This branch results from the original branch by multiplication by the constant

27

e*% and its value at every w € A_ is given by

" (L4 2r
z= Yseathar),
where w = se’? is the polar representation of w with —7 < ¢ < 7.

Now we introduce a generalization of the notion of continuous branch of wr. We define the
notion of continuous branch of g% , where g is a more general function than g(w) = w.

Let AC Candg: A — C\{0} be continuous in A. We say that the function f is a continuous
branch of g% in A if f is continuous in A and for every w € A we have that f(w) is an element
of g(w)% or, equivalently,

for every w € A.

Example 4.4.3. Let g : A — C\ {0} be continuous in A C C. If there is a continuous branch i
of wr in g(A), then f = h o g is a continuous branch ofg% in A.

Indeed, f = h o g is continuous in A and, since h(z)" = z for every z € g(A), we have that
f(w)™ = h(g(w))™ = g(w) for every w € A.

Example 4.4.4.Let g : A — C\ {0} be continuous in A C C. If there is a continuous branch h

oflogg in A, then f = en " is a continuous branch of g% in A.
Indeed, f = e is continuous in A and, since (@)
f(w)* = M) = g(w) for every w € A.

This is a standard way to produce continuous branches of g% when we know continuous branches
of log g.

= g(w) for every w € A, we get that

Proposition 4.8. Let g : A — C\ {0} be continuous in A C C and f be any continuous branch

of g% in A. If wg is an interior point of A and g is differentiable at wy, then f is differentiable

at wo and f'(wo) = %

holomorphic in the interior of A.

. Hence, if g is holomorphic in the interior of A, then f is also
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Proof. We set 29 = f(wp) and z = f(w) for every w € A. Then zj = g(wp) and 2" = g(w).
Since f is continuous, w — wq implies z — zg. Therefore, using the derivative of the exponential
function at zg, we see that

fw)=fwo) _ z=z0 g(w)=g(wo) _, g'(wo) _ ¢'(wo)f(wo)

w—wo T2z w—wo nzg_l ng(wo)
when w — wy. Thus f is differentiable at wy and f/(wg) = %. 0

Therefore, if g : A — C \ {0} is holomorphic in the open set A, every continuous branch of
g% can be called holomorphic branch ofg% in A.

Example 4.4.5. We have defined n distinct continuous branches of w= in the open set A which
results when we exclude any halfline with vertex 0 from the w-plane. All these branches are
holomorphic branches of wr in A.

Proposition 4.9. Let g : A — C\ {0} be continuous in A C C. Let also w, = e’ be the
principal n-th root of unity.

1
() If f1 is a continuous branch of g» in A and % =wlin A wherek =0,1,...,n — 1 is fixed,
then fs is also a continuous branch of g% in A.
(ii) If, moreover, A is connected and f, fo are continuous branches of g% in A, then % = whin
A, where k = 0,1,...,n — 1is fixed. In particular, if f1(wo) = fa(wg) for some wy € A, then

fi=frin A

Proof. (i) The continuity of f; in A implies the continuity of f5 in A. We also have f1(w)" = g(w)
for every w € A and hence fo(w)"” = f1(w)"(WF)" = g(w)(w)* = g(w) for every w € A.

Thus, f> is a continuous branch of g% in A.
f2(w))n _ gw) —

(i) For each w € A the numbers f2(w), f1(w) are elements of g(w)%. Hence (7 )" = g(w)
f2

and so % : A — {1,wy,...,w" '} Now, the function 7, is continuous in A and A is connected,
hence the set 42 (A) is also connected. Since 42(A) C {1,wy,...,w" 1}, the set %(A) contains

f1 f
only one point. l.e. % is constant in A and hence % = wﬁ in A, where kK = 0,1,...,n— 1is

fixed.
In case fo(wp) = f1(wp), then the integer & is 1 and we get fo = f; in A. O

1
Thus, if we know one continuous branch of g« in the connected set A, then we can find every
1
other of the n possible continuous branches of g» in A by multiplying the known branch with any
constant n-th root of unity.

Example 4.4.6. Let A_, = {s¢’|s > 0,—m < ¢ < 7} be the w-plane without the negative
u-semiaxis (where w = u + tv). We want to find a continuous branch of the square root w? in
A_ taking the value z = 1 atw = 1.

From the example 4.4.2 we already know the continuous branch of the square root which maps
A_ onto the angular region B_ /5 = {re|r >0,—Z < 0 < I}, ie. onto the right halfplane
of the z-plane: the value of this branch at every w € A_ is given by

¢

z=/se'z2,

where w = se'? is the polar representation of w with —7 < ¢ < . Since A_ is connected, there
is no other continuous branch of the square root in A_ taking the value z = 1 at w = 1.

Example 4.4.7. Consider A_, = {se’’|s > 0,—7 < ¢ < 7} again. Now we want to find a

. 1. .
continuous branch of the square root w2 in A taking the value z = —1l at w = 1.
In the previous example we found one continuous branch of the square root in A. Since A is
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connected, there are exactly two continuous branches of the square root in A. We consider the
_ . ;2m : ..

principal square root of 1, i.e. wy = e'2 = '™ = —1. (Trivial: the square roots of 1 are the

solutions of z2 = 1, i.e. the numbers 1, —1.) Then the value of the second continuous branch of

the square root at every w € A_ is given by

¢ i@
2 =1/5€"2wy = —/5€"2,

where w = se'? is the polar representation of w with —m < ¢ < . This branch of the square root
is the opposite of the branch in example 4.4.6 and maps A, onto the angular region B(_r125)/2 =
Brjp = {re?|r>0,7 <0< 31}, ie. onto the left halfplane of the z-plane.

Exercises.

4.4.1. Describe the sets

(~D3 (FD3, (D s i (R (B ()

4.4.2. (i) Find the elements of log(i?) and of 2 log i and observe that the two sets are different.
(i1) Prove that for every w # 0 and every n € N the sets log(w%) and % log w are equal.

4.4.3. If w # 0, prove that w = {e% | ¢ € logw}.

4.4.4.Let w # 0 and z be any of the elements of ww. Prove that the elements of w™ are the

n—1

numbers z, 2wy, 2W2, . .., 2wW"

4.4.5. The set C* = C \ {0} is a group under multiplication. Let n € N, n > 2.

(i) Prove that the n-th root of unity, i.e. the set {1, wy,,w?,...,w" 1}, is a subgroup of C*.

(i) Let z = w* be any of the elements of the n-th root of unity and (z) = {2 |m € Z} be
the group generated by z. Prove that z is a generator of {1, w,,w?,...,w" !} or, equivalently,
(z) = {1,wp,w2,...,w" '} if and only if ged{k,n} = 1.

(iii) Prove that {1, w,,w?,...,w" 1} has no subgroups other than {1} and itself if and only if n
is a prime number.

4.4.6. Look at exercise 3.3.2. Consider the curves on the z-plane with equations 22 — y? = o and
2xy = (. If the two curves intersect at a point (g, yo), find in two ways their angle at this point.

. . 1. . .
4.4.7. Prove that there is no continuous branch of w= in any circle Cy(r) and hence in any set A
which contains such a circle.

4.4.8. Consider the sets:

{re? |0 <r < +o00,-F <0<}, {re0<r <400, -7 < b <7},

{re? |0 <r <+4o00,0<f <2}, {re?|0<r<-+o00,% <6<}

In each of these sets write the formulas of the continuous branches of the square root, of the cube
root and of the sixth root.

4.4.9. (i) Considering a holomorphic branch of (w + 1)% in C\ (—o0,—1] and a holomorphic
branch of (w — 1)% in C \ [1,+00), prove that there is a holomorphic branch of (w? — 1)% in
Q=C\ ((—o0, -1 U[1, +00)).

(ii) Considering a holomorphic branch of (w + 1)% in C\ (—o0, —1] and a holomorphic branch of
(w— 1)% in C\ (—oo0, 1], prove that there is a holomorphic branch of (w? — 1)% inQ) =C\[-1,1].
(This is not as trivial as (i).)

(iii) Prove that there is no continuous branch of (w? — 1)% in any circle which surrounds one of
the points 1 but not the other.
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4.4.10. Prove that we can define a holomorphic branch f of (1 — w)% +(1+ w)% in the region
A which results when we exclude from C two non-intersecting halflines, one with vertex +1 and
another with vertex —1. Prove that every such f satisfies f(w)* — 4f(w)? + 4w? = 0 for every
w € A. How many such branches f exist in A?

4.4.11. (i) Let w # 0 and a € Z. Prove that {e®* | z € logw} has only one element, namely w®.
(i1) Generalizing (i), let w # 0 and a & Z. We define

w® ={e" |z € logw}

and this set may have more than one elements. When does w® have finitely many elements and
when does it have infinitely many elements?

(iii) Describe the sets (ié\/g)%, z%, 20 iV2 and draw their elements.

(iv) Prove that the elements of w®t? are also elements of w®w?, and that the elements of w® are
also elements of (w®)?.

(v) Let f be a continuous branch of login A C C\ {0}. Prove that g = e/ is a continuous branch

ag(wo)
wo

(vi) Prove that there is a unique holomorphic branch f of (1 — w)* = €'°¢(1=%) in D so that
f(0) = 1. Then prove that there are ¢1,c2 > 0 so that ¢; < |f(w)| < ¢ for every w € D. Find
the best such cq, cs.

of w” in A and that g is differentiable at every interior point wq of A and ¢'(wg) =

4.4.12. We define
arccosw = {z| cosz =w}, arcsinw = {z|sinz =w}, arctanw = {z|tanz = w}.

(i) Prove that the three sets are non-empty, except in the case of arctan(=:).

(i1) Express arccos, arcsin and arctan in terms of log.

(iii) It should be clear from exercise 4.2.7 that sin is one-to-one from {z +iy| — § < 2z < §}
onto = C\ ((—oo0, —1]U[1, +00)). Prove that the inverse function gy is a continuous branch of
arcsin in €2, i.e. go is continuous in €2 and sin go(w) = w for every w € Q. Describe all continuous
branches g of arcsin in {2 and prove that they are holomorphic in €2 with

g'(w) = m

for every w € €, where at the denominator appears a specific holomorphic branch of (1 — w2)%
in §2 (see exercise 4.4.9).
(iv) From exercise 4.2.7 again, it is clear that cos is one-to-one from {z + iy |0 < = < 7} onto
1 = C\((—o0, —1]U[1, +00)). Prove that the inverse function h is a continuous branch of arccos
in Q, i.e. hg is continuous in 2 and cos ho(w) = w for every w € ). Describe all continuous
branches h of arccos in §2 and prove that they are holomorphic in €2 with

W (w) = _m
for every w € (2, where at the denominator appears a specific holomorphic branch of (1 — w2)%
in (2.
(v) Prove that tan is one-to-one from {z+iy | =5 <z < F}ontoU = C\{iv|v < —lorl < v}.
Prove that the inverse function kg is a continuous branch of arctan in U, i.e. kg is continuous in U
and tan ko(w) = w for every w € U. Describe all continuous branches & of arctan in U and prove

that they are holomorphic in U with

K(w) = gz
for every w € U.

1
wl/2

4.4.13. Considering appropriate continuous branches of w%, evaluate fv dw for both curves

Yi(t) = e, t € [0, 7], and yo(t) = e, t € [0, 7.
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4.5 Functions defined by curvilinear integrals.

4.5.1 Indefinite integrals.

Let the complex functions f, F' be defined in the region 2 C C. We say that F' is a primitive
of fin Qif F'(z) = f(z) forevery z € Q.

Proposition 4.10. Let the complex function f be continuous in the region ) C C. Then the fol-
lowing are equivalent.

(i) 567 f(2)dz = 0 for every closed piecewise smooth curve y in §).

(ii) f71 f(z)dz = fvz f(2) dz for every two piecewise smooth curves 1,72 in ) with the same
endpoints.

(iii) There is a primitive of f in ().

Proof. (iii) = (i) Let F' be any primitive of f in 2. We take an arbitrary piecewise smooth curve
v« [a,b] = Q with y(a) = v(b). Then

. f(z)dz = § F'(2)dz = [} F'(v(t))y () dt = [ (F o)'(t) dt
= (Foy)(b) = (Fo7)(a) = F(v(b)) = F(v(a)) = 0.

(i) = (i1) Assume that the piecewise smooth curves 71, 2 in {2 have the same endpoints. Then the

piecewise smooth curve v = v; + (—2) is a closed curve in € and then

fﬂﬂf(z) dz—L2 f(z)dz = f% f(z)dz—i—L72 f(z)dz = fvf(z) dz = 0.

(i1) = (iii) We consider an arbitrary fixed zg € 2. Then for every z € 2 there is at least one
piecewise smooth curve «y in {2 with initial point zy and final point z. We define the function
F:Q—Cby

F(z) = [, f(Q)dC. 48)

This formula defines F'(z) uniquely, since the value of the curvilinear integral depends only on the
point z and not on the particular piecewise smooth curve v which we use to join zj to z.

Now we shall prove that F' is a primitive of f in £2. We take an arbitrary z € {2 and a disc
D,(r) C Q. We also take a piecewise smooth curve v in {2 with initial point zy and final point
z. Then the value of F'(z) is given by (4.8). Now we consider any w € D,(r) and the curve

5 + [z, w]. This curve is in §2, it is piecewise smooth and has initial point zy and final point w.
Therefore,

Flw) = |

yHzw

Q) C = [ () d + fy F(C)dC. 4.9)
From (4.8) and (4.9) we get
F(w) = F(z) = f(2)(w—=2) = [,y F(QdC— F(2) [,y dC = [i, i (F(O) = F()) dC. (4.10)

Now, since f is continuous, for every € > 0 there is § > 0 so that | f({) — f(z)| < e for every
¢ € Qwith |( — 2| < 4. Taking w € D,(r) with |w — z| < § we automatically have | — z| <
for every ¢ € [z, w] and (4.10) implies

[F(w) = F(z) = f(2)(w = 2)[ < e|w —z|.

M—f{z)‘ < eforevery wwith0 < |[w—z| < dandhence F'(z) = f(z). O

Therefore, Py

Let the complex function f be continuous in the region 2 C C. If either one of the equivalent
conditions (i), (ii) of proposition 4.10 is satisfied, then as we saw in the proof of (ii) = (iii) of
proposition 4.10, we may choose a fixed point zy € € and define F'(z) = f7 f(¢) d¢ for every
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z € ), where 7 is an arbitrary piecewise smooth curve in €2 with initial point 2y and final point z.
Now, any function F' of the form

P(2) = [, F(Q) dC +c.

where -y is any piecewise smooth curve in {2 with fixed (but otherwise arbitrary) initial point zg € €2
and final point z € {2 and where c is an arbitrary constant, is called indefinite integral of f in €.

The crucial condition for the existence of an indefinite integral is (ii) (or its equivalent (i))
of proposition 4.10. As soon as this is satisfied, then by changing the base point zg € €2 or the
constant ¢ we get different indefinite integrals F'.

In the proof of proposition 4.10 we saw that every indefinite integral of f is a primitive of f.
The converse is also true. Indeed, let F be any primitive of f in the region €, i.e. let F'(2) = f(z)
for every z € (). Proposition 4.10 implies that condition (ii) is satisfied and, if we take any
piecewise smooth curve v : [a,b] — € with initial point a fixed zp € € and final point z € €,
then

Q) dC = [ F(Q)d¢ = [} F'(v()y' (1) dt = [} (For)(t)dt
= (Fo)(b) = (Fo9)(a) = F(2) — F(z0).

Thus, F' has the form F'(z) = fv f(¢) d¢ + F(zp) and hence it is an indefinite integral of f in 2.

We summarize. Let the complex function f be continuous in the region Q0 C C. Then the
notion of primitive of f in §2 coincides with the notion of indefinite integral of f in Q). Moreover,
the existence of a primitive or, equivalently, of an indefinite integral of f in ) is equivalent to the
validity of condition (ii) (or (i)) of proposition 4.10.

Regarding the number of possible primitives of f in {2 we may easily see that, if there is at
least one primitive F' of f in €2, then all others are of the form F' + ¢ for an arbitrary constant c.
Indeed, it is obvious that ' + ¢ is a primitive of f in {2. Conversely, if G is a primitive of f in 2,
then we have (G — F)'(2) = G'(2) — F'(z) = f(2) — f(z) = 0 for every z € Q. Now, theorem
3.3 implies that G — F' is a constant in €.

Since it is useful for calculations of curvilinear integrals, we state relation (4.11) as a separate
proposition.

(4.11)

Proposition 4.11. Let F' be a primitive of the continuous function f in the region 2 C C. Then
for every piecewise smooth curve v in ) with initial endpoint z, and final endpoint zo we have

f7 f(z)dz = F(z) — F(z).

Example 4.5.1. Every polynomial function p(z) = ag + a1z + -+ + a,2" has the primitive
aopz + “—2122 4+ ;“T’jlz”“ in C. Therefore, we have

¢, p(2)dz=0

for every closed piecewise smooth curve ~.
In particular,
$.(z—2)"dz=0 ifneZn=0,

for every closed piecewise smooth curve y. A very special case of this, with the circle C, (1), we
saw in examples 2.2.9 and 4.2.2.

Example 4.5.2. The exponential function e has the primitive e* in C. Hence
ﬁy e*dz=0

for every closed piecewise smooth curve +.
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Example 4.53.1f n € N, n > 2, the function W has the primitive ~ =) G=m)T in
C\ {20}. Therefore,
fv%dz:() ifneN,n>2,

(z—20)"™

for every closed piecewise smooth curve v in C\ {zp}. A very special case of this, with the circle
C, (1), we saw in examples 2.2.9 and 4.2.2.

Example 4.5.4. The function ﬁ (the case n = 1 of the previous example) has no primitive in
C\ {20} or even in any open ring D, (r1,72) = {z |1 < |z — 20| < r2}.

Indeed, if ﬁ had a primitive in D (1, 2), then we would have ﬁy ﬁ dz = 0 for every closed
piecewise smooth curve v in D, (r1,72). Now, if we take a radius r so that r; < r < r9 and the

curve v : [0,27] — D,, (r1,72) with parametric equation v(t) = zq + re®, then we have

1 1 2r 1 -4 :
f’Y z—20 dz = szo(T) z—20 dz = fO rett Tzen dt = 2mi 7& 0.

In fact, we did exactly the same calculation in example 4.2.2.
The following result is important.

Theorem 4.1. Let g : Q) — C \ {0} be holomorphic in the region Q2 C C and let g’ be continuous
in Q). Then a holomorphic branch of log g exists in Q) if and only if

9= 5., _
ﬁ/ o 42 =0

for every closed piecewise smooth curve ~y in €.

Proof. Assume that there is a holomorphic branch of log g in €2, i.e. there is F' holomorphic in
Q so that ef'(?) = g(2) for every z € Q. Then F'(z)ef*) = ¢/(z) for every z € Q and hence

F'(2) = 5;/((5)) for every 2z € Q. Therefore, F' is a primitive of% in Q2 and thus, ¢, g;’((zz)) dz = 0 for
every closed piecewise smooth curve « in €.

Conversely, assume §7 *‘"ql ((ZZ)) dz = 0 for every closed piecewise smooth curve y in 2. Then %/ has
a primitive, say F, in Q. Now, we have - (g(z)e ') = ¢/(2)e F*) — g(2)F'(2)e F*) = 0
for every z € . This implies that, for some constant ¢, we have g(z)e™ " (2) = ¢ for every z € Q.
Since ¢ # 0, there is a constant d so that e? = ¢ and we finally get that e/’ (*)¥¢ = ¢(2) for every
z € ). Now the function F' + d is a holomorphic branch of log ¢ in (2. O

In the next chapter we shall prove that for every holomorphic g the derivative ¢’ is automat-
ically continuous. Therefore, a posteriori, the assumption in theorem 4.1 that ¢’ is continuous is
unnecessary.

Example 4.5.5. If the region Q2 C C\ {2} contains a circle C,(r), then there is no holomorphic
branch of log(z — z) in Q. In fact, example 4.5.4 shows that §,, ) L _dz+#£0.
20

Z—20

Example 4.5.6. Let g :  — C\ {0} be holomorphic in the region 2 C C, let ¢ be continuous in
Q and suppose that there is a halfline with vertex 0 so that g(2) C C \ .
We know that a holomorphic branch of log exists in C \ [ and now example 4.3.3 says that a

holomorphic branch of log g exists in {2. From theorem 4.1 we also get that §7 gg/ ((ZZ)) dz = 0 for
every closed piecewise smooth curve «y in €.
4.5.2 Integrals with parameter.

Lemma 4.2. Let n € N and v be any piecewise smooth curve. If the complex function ¢ is contin-
uous in the trajectory v*, we define

f(z) = f’y (C(b_(?)n ¢
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for every z & v*. Then f is holomorphic in the open set C \ v* and

= n’f n+1 dC

Sfor every z ¢ ~*.

Proof. We take any z € (C\fy Since C \ 7* is open, thereisc5 > 0 sothat D,(J) C C\ ~*. We
consider the smaller circle D, ( ) and we have |[¢ —w| > 2 5 forevery ¢ € y*andeveryw € D, ( ).
Now for every w € D, ( ) we get

1 1
HE) [ MO ge= [ (ST EAT n )6 de. (412)

To simplify the notation, we temporarily set a = ( — w and b = ( — z, and, to estimate the
parenthesis in (4.12), we use the algebraic identity

1
o n 1 2 n—1 n
G — g = (0—a) (G + g o S T )

1
- —

We have that |a| > § and |b| > § for every ¢ € v* and w € D,(3) and hence

1

11
|25 | < 1b— al (o e )

< 24+ (n—1)+n n22n+2 (4.13)
< fw— \W lw — 2| "5
Now, (4.12) and (4.13) imply
2on+2
|0 [ 2 | < fw — 2 52 @l 1)
for every w € DZ(%). Therefore, lim,,_s, % =nf, = ¢(<n —1 d(¢ and f is differentiable at
zwith /(2) = n [ ik dC. O

Observe that lemma 4.2 justifies the change of order of the operations of integration and dif-
ferentiation with respect to the parameter z:

F(2) = f(2) = 4 [, &9md¢ = [, (&) d¢ = n [, 250 dC.

Proposition 4.12. Let v be any piecewise smooth curve and the complex function ¢ be continuous
in the trajectory v*. Then the function f(z fﬂ/ f Cz d( is infinitely many times differentiable in
the open set C \ v* and

f(n —pnl f n+1
Sor every z & ~*.

Proof. Successive applications of lemma 4.2. O
Exercises.

4.5.1. Let f, g be holomorphic in the region  C C and let f’ ¢’ be continuous in Q.
@ If]f(2)

curve v in €.
(i) If | f(2) — g(2)| < |g(2)] for every 2 € Q, prove that § L Z) dz=¢ % g
piecewise smooth curve -y in €.

for every closed

45.2. Let ybe a piecewise smooth curve and the complex function ¢ be continuous in v*. We

know that the function f(z f7 ? CZ) d( is holomorphic in C \ v*. Prove that f is holomorphic
at oo.
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4.5.3. Let the complex function ¢ be continuous in R and let f +oo (|)‘| dt < 4o00. Prove that the
function f(z f oo ¢(t) dt is holomorphic in C \ R.

4.5.4. Let the complex function ¢ be continuous in R and [ 72 |p(t)|eM dt < +oo for every
M > 0. Prove that the function f(z) = [~ 0 (t)e!* dt is holomorphic in C.

4.5.5. Find the domains of holomorphy of the following functions of z:

1 tz +o0 +oo 52
fo 1+tz at, [2, iz dt, o 11152 dt, fo e” dt.

4.6 Functions defined by power series.

Every series of the form

:7,_0% an(Z — Zo)” =ag + al(z — 20) —+ a2(z — 20)2 + -

is called power series with center z( and coefficients a,,. The R € [0, +00] defined by

_ 1

 Iim R Jan|

is called radius of convergence of the power series. (Of course we understand that R = 0 if
lim {/|a,| = 400 and R = +o0 if lim {/|a,| = 0.)

Proposition 4.13. Let ,0 %0 an(z — 20)™ be a power series with radius of convergence R.
If R = 0, then the series converges only at zy. If R > 0, then:
(i) The power series converges absolutely at every z € D (R).
(ii) The power series diverges at every z & D, (R).
(iii) The power series converges uniformly in every closed disc D, (r) withr < R.
(iv) The sum
8(2)_ :L- Oan('z_zo) ) ZEDZO(R)v

is holomorphic in D, (R). The derivative of s in D,,(R) is the sum of the power series which
results from Zn 20 an(z — 20)" by formal termwise differentiation. I.e.

§(z) = +°‘i nan(z — z0)" 1, z € D, (R).

Proof. If z = zy, then the power series consists only of its constant term ag and hence converges.
If 2 # 2o, then by the definition of R we get lim {/]a,,(z — 20)"| = lim ¥/|a,| |z — 20| = %.
The root test of Cauchy for general series implies that the power series converges absolutely if
|z — 20| < R and diverges if |z — 29| > R and this is the content of (i) and (ii).

(iii) Let 0 < r < R. We take any R’ with 7 < R’ < R. Then lim {/|a,| < 7 and so there is
ng so that {/]a,| < 4 for every n > ng. Then for every z € D (r) we have |a,(z — 20)"| =
|an| |z — 20| < (457)" for every n > ng. Since 77 < 1, we have :L“O%( )" < 400 and the test
of Weierstrass 1mp11es that the power series Zn o an(z —20)" converges uniformly in Dzo( ).
(iv) Besides >_."%0 a,, (2 — 20)™, we also consider the power series 37 na,(z — 20)" L. The
second power series results from the first by formal termwise differentiation. We shall prove that
the second series converges at every z € D, (R) and that its sum is the derivative of the sum of
the first series at every z € D, (R).

We have lim ¢/|na,| = lim {/n (‘/W = lim {L/m and the radius of convergence of the series
S nay(z — 20)" is also R. Thus, Y7 na,(z — 2)" ! converges at every z € D, (R). We
define

s(z) = :O% an(z — 20)", t(z) = Hxi nan(z — 20)" 1, z € D, (R).
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Now at every z, w € D, (R) we have
s(w) = 5(2) = 3025 an((w — 20)" — (2 — 20)")-
For simplicity, we shall set temporarily a = z — zg and b = w — zp and then we have

(wu)] z(Z) t(z) =30 a, (0" 0" 2a + -+ ba" 2 4 a1 — pa™ ) (4.14)
= (w—2) Y025 an (0" + 20" Ba+ -+ (n—2)ba" " + (n — 1)a""?), ‘

Wefix z € D, (R)and 6 = M > 0. Wealsoset Ry = |z—zp|+d = R—6. Ifw € D,(9),
then |b| < R; and |a| < R; and (4.14) implies

[ — 2] < o — 2 I 0 an | R
Since lim {/|n%a,R}| = % < 1, the last sum is a finite number independent of w € D, ().
Therefore, lim,,_, s(wu)) z( 2) — ¢(z) and s is differentiable at » with s'(z) = t(2). O

If R is the radius of convergence of 3,720 a,,(z — 20)", then the open disc D, (R) is called
disc of convergence of the power series.

We saw that, if 0 < R < 400, the sum s of the power series is a holomorphic function in
D,,(R). In fact the derivative s’ is the sum of the power series we get by formal termwise dif-
ferentiation of the original power series. We saw that the differentiated power series has the same
disc of convergence as the original series and hence we may repeat our arguments: the function
s" is holomorphic in D, (R) and its derivative, i.e. the second derivative of s, is the sum of the
power series which we get by a second formal termwise differentiation of the original power series.
We conclude that the function s is infinitely many times differentiable in the disc of convergence
D, (R) and

sB(2) =S nn—1) -+ (n— k4 an(z — 20)" ", z € D, (R).

Example 4.6.1. For the power series 31> 1 2= we get lim {/|1/n| = 1, and hence R = 1. The
disc of convergence is D. If s is the functlon defined by the power series in D, then

I(2) = L5 = 1

for every z € D. We observe that — Log(1 — z) is defined and is holomorphic in D. Its derivative
is - and its value at 0 is 0. Since the functions s(z) and — Log(1 — z) have the same derivative
in the region D and the same value at 0, we conclude that

toe 2l — _Log(l - 2)

n=1 n
for every z € . We shall come back to this identity when we study the Taylor series of the
function — Log(1 — 2) in D.

Example 4.6.2. For >_7°] Z; we get lim {/|1/n?| = 1, and hence R = 1. The disc of conver-
gence is D.

Example 4.6.3. For ;:O% Z we have lim {/|1/n!| = 0 and hence R = +oc. The disc of con-
vergence is C. If s is the functlon defined by the power series in C, then

n—1 n
s'(2) = 233 (Dl = w0 = s(2)
for every z. Now we have that d%(e_zs(z)) = —e *s(z) + e *s'(z) = 0 for every z. Since the

value of e ?s(z) at 0 is 1, we find that e~ *s(z) = 1 for every z and thus

+oo 2™z
nZOH_6
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for every z. We shall reprove this identity later, when we study the Taylor series of the function
€”. On the other hand, since the series Z:C’% iL r and Z+°° “’, converge absolutely, proposition
2.3 implies that

P =Y o Ay S e = S (Yo g nnkl;'): nco (Lo (1) 20" ™F)
—Z z+nw)"_e+w_
z+w'

This provides us with a second proof of the identity e*e” = e

Example 4.6.4. For "7 n!2" we have lim {/n! = +o0, and hence R = 0. The power series
converges only at 0.

Every series of the form

-1
>l an(z—20)" =+ (z z0)3 * (z 20)2 + 5 Z— zo

is called power series of second type with center z; and coefficients a,,. The R € [0, +o0]

defined by o
R =1lim {/|a_n]

is called radius of convergence of the power series.

The usual power series of the form Zn 20 an(z — 20)" are also called power series of first type,
to distinguish them from the power series of second type.

We observe that a power series of second type has no meaning at 2y, in the same way that any
power series of first type (with a,, # 0 for at least one n > 1) has no meaning at co. On the other
hand, if z = oo, then a power series of second type becomes » " 10 = 0 and hence converges
with sum 0.

From now on in these notes we shall use the notations

D (R, +00) = {z| R < |z — 20|},  Dz(R,+00) = {z|R < |2 — 2]}
for the open and the closed unbounded ring with center 2y and internal radius R. We also use
D.y(Ri, Re) = {z|R1 < |z — 20| < Ra},  Dx(R1,R2) = {z| R1 < |z — 2| < Ry}

to denote the open and the closed bounded ring with center zq, internal radius R; and external
radius Rs.

Proposition 4.14. Let Zﬁzo_l an(z — 20)™ be a power series of second type with radius of con-
vergence R.
If R = 400, then the series converges only at co. If R < 400, then
(i) The power series converges absolutely at every z € D, (R, +00) U {oc0}.
(ii) The power series diverges at every z ¢ D, (R, +00).
(iii) The power series converges uniformly in every D, (r, +00) U {oo} withr > R.
(iv) The sum
s(z) = " an(z — 20)", 2 € Dy (R, +00) U {oo},

o

is holomorphic in D,,(R,+00) U {oo}. The derivative of s in D, (R, +00) U {oo} is the sum of
the power series which results from Zﬁjo_l an(z — z0)™ by formal termwise differentiation. I.e.

§(2) = " nan(z — 2)" 1, z € D,y (R, +00) U {o0}.

—00

Proof. The easiest way is to reduce a power series of second type to a power series of first type
with the simple change of variable w = Z_lzo. Then the power series 3.2 " a,,(z — z)" takes
the form

n=-—1 -n +
oo GpwT" = X a—pmuw™
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of a power series of first type with center 0. We also observe that z varies in the unbounded ring

D, (R, +00) if and only if w varies in the punctured disc Do(%) \ {0}. Also, z varies in the
unbounded ring D (r, +00) if and only if w varies in the punctured disc Do(2) \ {0}. Now
we can use everything we know about the series 22:1 a_pmw™ from proposition 4.13 to get the
corresponding results about the series >."2. " a,(z — 20)". For example, the differentiability of
Zﬁjo_l an(z — z0)" results from the differentiability of >, a_,,w™ and the differentiability
of the function w = . We leave all the details to the reader. We shall only say a few things

zZ—Z0

about the differentiability of s(z) = Z’i&?l an(z — zp)™ at oo, using again the transformed power
series s (w) = >t a_,w™. Since 5(c0) = 0 and 5.(0) = 0, we have

lim, 00 2(8(2) — s(00)) = lim, 00 25(2) = limy—o(1 + zow) # =s,(0) =a_1.

Therefore, s is differentiable at oo ]

If R is the radius of convergence of 3."Z " a,,(z — 20)", then the open ring D, (R, +0c) is
called ring of convergence of the power series. In fact the series converges in D, (R, +00)U{cc},
which is an open set in C with respect to the chordal metric.

If0 < R < 400, we saw that the sum s of the power series is a holomorphic function in
D.,(R,+c0) U {cco}. In fact the derivative s’ is the sum of the power series we get by formal
termwise differentiation of the original power series. The differentiated power series converges
in the same set D, (R, +00) U {oo}. Therefore, we may repeat our arguments: the function s’ is
holomorphic in D, (R, +00) U {oo} and its derivative, i.e. the second derivative of s, is the sum
of the power series which we get by a second formal termwise differentiation of the original power
series. We conclude that the function s(z) is infinitely many times differentiable in D, (R, +00)U
{o0} and

sW(2) =" n(n— 1) (n—k+Dan(z — 20)" %, 2 € D, (R, +00) U {o0}.

o0

Example 4.6.5. >" 2 =3 Lo converges in Dy(1, +00) U {oo} = C\D.

m=1 mz™

Example 4.6.6. Z"__l 2, =3 % 1 converges in Dy(1, +00) U {oo} = C\D.
Example 4.6.7. >"7 ! (fZ)! = Sotee L converges in Do(0, +00) U {oo} = C \ {0}.
Example 4.6.8. Zﬁ;ﬁl(—n)!z” =St :}n converges only at co.

Finally, we consider a series of the form

Sl an(z —z)" =+

7 + O+a0+a1(z—zo)+a2(z—zo)2+---

(z zo) 2

which consists of a power series of first type and a power series of second type. We assume
that a,, # O for at least one n < 0 and for at least one n > 0. Then the original series is
called power series of third type with center zy and coefficients a,,. The radius of convergence
Ry of 27_1271 an(z — 20)" and the radius of convergence Ry of >7°% a, (2 — 20)" are called
radii of convergence of our power series. We say that >- "% a,,(z — 29)™ converges at z if both
" lan(z — 20)" and 3% a, (2 — 29)™ converge at z, and we say that Y7 a,,(z — )"

diverges at z in all other cases.

A power series of third type with center zp has no meaning at the points 2y and co.

A power series of third type is a combination of a power series of first type and a power series
of second type. Therefore, we expect that the properties of a power series of this new type are a
combination of properties of power series of the two previous types. Indeed, the next result is a
direct combination of propositions 4.13 and 4.14 and we omit the proof.
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Proposition 4.15. Let Zf§ an(z — 20)™ be a power series of third type with radii of convergence
Ry, Ro.
If Ry < Ry, then the series diverges at every z, except in the case ) < Ry = Rp = R < 400 and
then it may converge only at some z € C,,(R). If R1 < Ro, then
(i) The power series converges absolutely at every z € D, (R1, Ra).
(ii) The power series diverges at every z ¢ D, (R, Ra).
(iii) The power series converges uniformly in every EZO (ri,7m9) with Ry <11 < 19 < Ro.
(iv) The sum
s(2) = "% an(z — 20)", z € D, (R1, Ra),

is holomorphic in D, (R1, Rz). The derivative of s in D, (R1, Ra) is the sum of the power series
which results from 3" % a,,(z — 2z0)" by formal termwise differentiation. Ie.

§(z) = ng nan(z — 20)" 1, z € D, (R1, R9).

If Ry < Ra, then D, (R1, R2) is called ring of convergence of Zf§ an(z — z0)™ and the
function s defined by the power series is infinitely many times differentiable in D, (R, R2).

Example 4.6.9. We consider 3" " 2-2" 41 —|— o Len

—_— n . .
Then Y™ 12" . has radius of convergence % and 1 + +E° L 2™ has radius of convergence
(CO—"Y 2 n=1n

1. Therefore, Do(1, 1) is the ring of convergence of 3" " 227 41 4 31 2"
Exercises.

4.6.1. Find the discs of convergence of the following power series:

400 400 1 .n +oo 1 .n +oo Inn . n
oo 2" n=17n5% " n=1n"% " n=1"""%"
400 1.1 n +oo n! _n +oo (nD)2 _p oo (n))? n
PORIER L L AN DA EA n=1"pn % > n=0 (2n)I* -

4.6.2. Find the rings of convergence of the following power series:

n=-—1 nSZn n=—1 1 _n n=—1 1 _n anfl 3”2’", anfl 1 n

—oo ’ —0 nZf —00 2mF s —00 —00 (—n)!n"z :

4.6.3. Find the ring of convergence and the sum of "7 ! (—1)"2" + S22 (£ ) H12m,

4.6.4. (i) Using the geometric series Z:ﬁ% 2", write é as a power series with disc of convergence
Dy(1) and as power series with ring of convergence Dy (1, +00).

(i1) Write m as a power series with disc of convergence Dy(3), as a power series with ring
of convergence Dy(3,4), and as a power series with ring of convergence Dy (4, +00).

4.6.5. If m € N, using the geometric series Z+_0 2", write ﬁ as a power series Zn 0 anz",
and determine its disc of convergence.

4.6.6. Find the radius of convergence of

+ (a+1)--(a+n—1)b(b+1)---(b+n—1)
1 +Z OO e 12 ancréc—l—l) (c+n—1)n z",

where ¢ # 0,—1,—2, .... This power series is called hypergeometric series with parameters
a, b, c. Prove that the function w = F'(z;a, b, ¢), which is defined by the hypergeometric series in
its disc of convergence, is a solution of the differential equation

2(1—2)w" + (c— (a+b+1)2)w —abw = 0.
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4.6.7. (i) Prove that, if two power series of the type > "% ay, (= — o)™ with positive radii of con-
vergence define the same function in the intersection of their discs of convergence (with common
center 2p), then the two series coincide, i.e. they have the same coefficients a,,.

(ii) Prove a result analogous to (i) for two power series of the type Eﬁ;_l an(z — z0)™.

4.6.8. Let0<R<+oo

(i) If Y- % an(z — 20)™ converges absolutely for some z € C,(R), prove that it converges

absolutely for every z € D,,(R).

(i) If 3~ 720 an(z — 20)™ converges for some z € C.,(R), prove that it converges absolutely for

every z € D, (R).

4.6.9. Let R', R and R be the radii of convergence of Y725 a/, (2 — z0)™, 3720 al’ (2 — 29)™ and
Foo(al, + al)(z — 20)", respectively. If R’ # R”, prove that R = mm{R’ R"}. If R = R,

prove that R > R = R".

4.6.10. Let ¢,, = agb, + a1bp—1 + - -+ 4+ an—1b1 + anbg for every n > 0. If the power series
e an(z - zo) and Y29 b, (2 — 29)™ converge in the disc D, (R), prove that the power
series Y20 ¢n (2 — 20)™ also converges in D, (R) and that

w20 enlz = 20)" = 225 an(z — 20)" 2025 ba(z — 20)"

for every z € D, (R).

4.6.11. Let R be the radius of convergence of an(z — 20)™. If 0 < R < +o00, find the radii

of convergence of 32 nFa, (2 — z0)", 1 n'an(z —2)"and 3% oz — 20)".

4.6.12. Let k € N, k > 2. Find the  for which Y% ZT converges.

4.6.13. Find the z for which > 2™ converges.

2

4.6.14. Let 0 < b < 1. Find the ring of convergence of 37> " 2.

TL_*OO

4.6.15.1f 5(2) = 3720 an(z — 20)™ for every z € D, (R) and |a1| > > n|a,|r" ! for some
r with 0 < r < R, prove that s is one-to-one in D, (r). Conclude that, if a; # 0 and r > 0 is
small enough, then s is one-to-one in D, (7).

432 2.32 3n 2.37
4.6.16. Consider the power series = T — —+ 5 — %5+ ++5-—*—+--. Prove that the
radius of convergence of this power series is 1 and that the set of z € Cjy(1) for which the power
series converges as well as the set of z € Cy(1) for which the power series diverges are both dense
in Co(l)

4.6.17. (i) Let s(z) = "% a,2" for every z € Dy(R). Use the summation by parts formula of
lemma 2.1 to prove that, if the series converges for some ¢ € Cy(R), then the series Zn o anr"C"
converges uniformly as a series of functions of 7 in the interval [0, 1]. Apply this to prove that in
this case we have that lim,_,;_ s(r¢) = s(¢).

(i1) Use the series in example 4.6.1 to prove that

20 L cos(nf) = —In (2sin §), 29 Lsin(ng) = =3¢

for every 6 € (0, 2m).
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Chapter 5

Local behaviour and basic properties of
holomorphic functions.

5.1 The theorem of Cauchy for triangles.

Let A be a closed triangular region. We write fa A J(2) dz to denote the curvilinear integral over
a piecewise smooth curve ~ with trajectory v* = A which describes the triangle 0A once and in
the positive direction. For instance, if 21, 29, 22 are the vertices of the triangle in the order which
agrees with the positive direction of OA, then a valid curve is v = [z1, 22| + [22, 23] + [23, 21].
Hence,

$on f(2)dz = f[zmﬂ f(z)dz + f[ZQ,z;;] f(z)dz + f[Za,zﬂ f(z)dz.

Of course there are analogous statements for integrals fa r f(2) dz, when R is a closed rectan-
gular region or, more generally, a closed convex polygonal region.

The theorem of Cauchy-Goursat. If f is holomorphic in an open set ) which contains the closed
triangular region A, then

$on f(2)dz = 0.

Proof. We write I = ¢, \ f(z) dz, and we have to show that I = 0.

Let A = A(z, 22, 23) be the given closed triangular region with vertices z1, z2, z3 written in the
order which agrees with the positive direction of 9A. We take the points ws, w1, we, which are the
midpoints of the linear segments [z1, z2], [22, 23], [23, 21], respectively. Then the closed triangular
region A(z1, 22, z3) splits into the four closed triangular regions

AW = Az, w3, wa), AP = A(ws, 29,w1), A®) = A(wy, z3,ws), AY = A(ws,wy, ws)
and we define the corresponding curvilinear integrals:

IV = ¢ o f(2)dz, ID =§, 0 f(2)dz, IO = §, s f(z)dz, I® = ¢, f(2)d

We analyse each of the four integrals into three integrals over the three linear segments of the
corresponding triangle, we add the resulting twelve integrals and we observe the cancellations
which occur between integrals over pairs of linear segments with opposite directions. We end
up with six integrals over six successive linear segments which add up to give the three linear
segments of the original triangle JA. The result is

I=10 4 71® 416 4 1@,

This implies
1 < 11O+ 1] + 1O+ 1)
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and hence |17)] > 1 1 || for at least one j. Now we take the corresponding closed triangular region
AY) and, for s1mphcity, we denote it A;. We also denote I; the corresponding integral 7(). We
have proved that there is a closed triangular region A; contained in the original A such that, if
I = $,5 f(2)dzand 1 = §,, f(2)dz, then || > 1|I|. We also observe that diam A; =

5 diam A. We may continue 1nduct1vely and produce a sequence of closed triangular regions A,
and the corresponding sequence of curvilinear integrals

I, = faAn f(z)dz

so that:

(i) [ L] > 2111,

(iii) diam A, = 5 diam A.

Now, (i), (iii) imply that there is a (unique) point z contained in all A,,. In particular, z € A
and hence f is differentiable at z. If we take an arbitrary ¢ > 0, then there is 4 > 0 so that
]f f(z) — f'(2)| < e forevery ¢ with 0 < | — z| < 4. Thus,

1) = £(2) = F/(2)(¢ = 2)| < €l — 2] (5.1)

for every ¢ with | — z| < J. Because of (iii), there is some large n so that diam A,, < ¢§. Since
z € A, and diam A, < 4, we get | — z| < diam A,, < § for every ¢ € 0A,, C A,, and now
(5.1) and (iii) imply

Q) = f(2) = F1(2)(C = 2)| S €l¢ — 2| < e diam A, = 5 diam A
for every ¢ € 0A,,. Therefore,
| $on, (F(Q) = f(2) = F1(2)(C — 2))dC| < 5= diam AL(OA,) < 3 (diam A)2. (5.2)
Since f(2) + f'(2)(¢ — 2) is a polynomial function of ¢, we get
$on, (F(2) + F/(2)(C = 2))d¢ = 0
from example 4.5.1, and (5.2) becomes
] = [ $yn, F(C) dC| < 35(diam A)2.

Finally, (ii) implies
7] < 3¢(diam A)?

and since € > 0 is arbitrary, we conclude that I = 0. O

5.2 Primitives and the theorem of Cauchy in convex regions.

Proposition 5.1. If f is holomorphic in the convex region §), then f has a primitive in ().

Proof. We fix zp € €. Then for every z € () the linear segment [z, z] is contained in 2 and we
define F'(z) = f[ZO’Z] f(¢) d¢. We shall prove that F is a primitive of f in 2. We take arbitrary
z,w € ) and consider the closed triangular region A with vertices zg, z, w. Since €2 is convex, A
is contained in 2 and the Cauchy-Goursat theorem implies ¢, f(z) dz =0, i.e.

f[W] FQC+ J oy QA+ fy ) F(C) A =0,
Therefore F'(w) f[z ) £ (¢) d¢ and hence
Flw) — F(2) — f(2)(w 2) = f[w} FQC— F) [y dC = f(FQ) — F)d. (53)
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Since f is continuous, for every e > 0 there is § > 0 so that | f({) — f(2)| < € for every ¢ € Q
with |( — z| < §. Taking w € Q with |w — z| < ¢§ we automatically have |( — z| < J for every
¢ € [z,w] and (5.3) implies

[F(w) = F(z) = f(z)(w = 2)| < e|w — 2|

F(w)—F(2)

Therefore, — f(2)| < eforevery wwith0 < |w—z| < §and hence F'(z) = f(z). O

The theorem of Cauchy in convex regions. If f is holomorphic in the convex region ), then

£, 4(z)dz =0
for every closed piecewise smooth curve ~y in €.
Proof. Direct from propositions 4.10 and 5.1. O

Now we shall decribe a very useful technique to handle curvilinear integrals of holomorphic
functions. Every closed piecewise smooth curve v we shall refer to will be visually simple, for
instance a circle or a triangle or a rectangle, and we shall be able to distinguish between the points
inside ~y and the points outside v. We assume that + surrounds every point inside it once and in
the positive direction and that it does not surround the points outside it. The points inside v form
the region inside ~ and the points outside v form the region outside . Then +* is the common
boundary of the region inside y and the region outside y. We shall concentrate on two characteristic
cases.

First case. Let f be holomorphic in the open set €2 and let v be a closed piecewise smooth curve
in 2. We want to evaluate ¢ f(z) dz.

If €2 is convex, then 557 f(z)dz = 0. So let us assume that €2 is not convex. To continue, we
assume that the region inside ~y, call it D, is contained in {2, and hence f is holomorphic in D
as well as in 9D = ~*. Now our technique is the following. We split D into specific disjoint
open sets F1, ..., Fy, so that their boundaries OF1, .. ., 0F,, are trajectories of closed piecewise
smooth curves o1, ..., 0, so that D = E{ U --- U E,, and, finally, so that, when we analyse in
an appropriate way each of o1, ..., oy, in successive subcurves and drop those subcurves which
appear as pairs of opposite curves, the remaining subcurves can be summed up to give the original
curve y. The result is:

§f)dz=§, f(2)dz+---+§,  [(2)dz

In fact we applied this technique in the proof of the theorem of Cauchy-Goursat.

Now, if the various F1, ..., E,, can be chosen so that each E1,..., F,, is contained in a corre-
sponding convex open subset of €2, then we conclude that

fﬁ/f(z)dz:fglf(z)dz—l—---+f0mf(z)dz:0+--'+0:0.

Second case. Let f be holomorphic in the open set 2 and let~y, vy, . . ., 7, be n+1 closed piecewise
smooth curves in . We want torelate ¢ f(z)dz, § f(2)dz,.... ¢, f(2)dz.

We assume that the regions inside 71, ..., 7, are disjoint and that they are all contained in the
region inside . Let us call D the intermediate region, i.e. the set consisting of the points which
are inside v and outside every 71, . . ., ¥y, 1.€. the intersection of the region inside  and the regions
ouside v1, . .., vn. We further assume that D is a subset of 2, and hence f is holomorphic in D as
well as in 0D = v* U~ U---U~;. Now, here is the technique. We split D into specific disjoint
open sets Fy, ..., Fyp, so that their boundaries OF1, . . . ,OFE,, are trajectories of closed piecewise
smooth curves o1, ...,0,, so that E = E; U ---U E,, and, finally, so that, when we analyse in
an appropriate way each of oy, ..., o, in successive subcurves and drop those subcurves which
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appear as pairs of opposite curves, the remaining subcurves can be summed up to give v as well
as the opposites of v, . . ., ¥,. The result is:

g f(2)de—§ f(z)dz—--—¢ [f(z)dz=§, f(z)de+---+§, [(z)dz

If the various E1, . .., E,, can be chosen so that each F1, . .., E,, is contained in a corresponding
convex open subset of Q, then ¢ f(2)dz+---+ ¢, f(2)dz=0+--+0=0and hence

$f(2)de=4¢ flz)dz+--+ ¢ [f(z)dz

Corollary 5.1. Let C,C,...,C, be n + 1 circles and let D, D1, ..., D, be the corresponding
open discs. Assume that Dy, ..., D,, are disjoint and that they are all contained in D. Consider
also the closed region M = D\ (D1 U---U D). If f : Q — C is holomorphic in an open set
which contains M, then

o f(2)dz = fo, f(2)dz+ -+ §¢, f(2)dz.

Instead of circles we may consider rectangles or triangles or any combination of the three shapes.

Exercises.

5.2.1. Let R be the closed piecewise smooth curve which is the sum of the linear segment [0, R],
the arc of the circle Cy(R) from R to Re'i in the positive direction and the linear segment
[Re'T,0]. Also, let o be the curve wich describes only the above arc from R to Re'7.

(i) Prove that fUR e dz — 0 when R — +oc.

(ii) Using R appropriately together with the formula f0+°° e dt = ?, prove the formulas for
the so-called Fresnel integrals:

+o0

S sin(2?) dx = [, cos(x (22) dx = Y2

2v2°

5.2.2. Let y, R > 0 and vg 4 be the closed piecewise smooth curve which is the sum of the linear
segments [—R, R, [R, R+ iy], [R + iy, —R + iy] and [-R + iy, —R)].
(i) If y > 0 is constant, prove that f[RRHy} e=* dz — 0 and f[iRHyﬁR]
R — 4o0.

(i1) Using yg y appropriately, prove that fj;o e~ (@+)? gz does not depend on y € [0, +00).

(iii) Using the formula f0+°° e~ dy = @, prove that

= e~ cos(2zy) do = /e ™V

for every y > 0 (and hence for every y < 0 also). This identity is very important in harmonic
analysis.

e~ dz — 0 when

5.3 Cauchy’s formulas for circles and infinite differentiability.

Cauchy’s formula for circles. If' f is holomorphic in an open set ) containing the closed disc
D..(R), then

f(Z 27r7, fCZO (R) ¢ (O dC
forevery z € D, (R).

Proof. Let z € D, (R). We consider any open disc D (r) withr < R — |z — 2g|. Then D, (r) C

D, (R) and the function C(O is holomorphic in the open set © \ {z} which contains the closed
region between the circles C,(r) and C,, (R). Corollary 5.1 implies

$o. (DL dC = §
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Now, we have fo 1 —d¢ = f i L_ire™ dt = 2mi and hence

Sy BL dC - 2mif (2) = f () DL ac. (5.5)

We take € > 0. Since f is continuous at z, there is § > 0 so that | f({) — f(z)| < e forevery ( €
with | — z| < §. Therefore, if r < §, (5.5) implies

‘fc(r _CdC 2mif(z)| < € 2mr = 27e.

Since ¢ is arbitrary, we conclude that

lim, o . () £ d¢ = 2mif(=).

Now, letting r — 0 in (5.4), we get §, () JC”Q d¢ = 2mif(z2). O

A particular instance of the formula of Cauchy is when z = z, the center of the circle C',, (R).
Using the parametric equation ¢ = zg + Re', t € [0, 27], we get

F(z0) = o= o7 f(20 + Re™) dt
and this is called mean value property of the holomorphic function f.

Cauchy’s formula for derivatives and circles. If f is holomorphic in an open set ) containing
the closed disc D, (R), then [ is infinitely many times differentiable at every z € D, (R) and

f 27rz fCZO "*1 dC

forevery z € D, (R) and every n € N.

Proof. Proposition 4.12 says that ﬁ fCZO( R) g d( is an infinitely many times differentiable
function of z in the disc D, (R). On the other hand, Cauchy’s formula says that this function
coincides with the function f in the same disc. Therefore f is infinitely many times differentiable
in D, (R). Moreover, the derivatives of f are the same as the derivatives of 2m fc

and these are given by the formulas in proposition 4.12.

Example 5.3.1. Let n € N. Then
f zO(R) n dg - O

for every z ¢ D,,(R). To see this we observe that the circle C,,(R) is contained in a slightly
larger open disc D, (R’) which does not contain z: it is enough to take R < R’ < |z — zp|. Then
the disc D, (R') is a convex region and (R ) is a holomorphic function of ¢ in D,,(R’). Now
the result is an application of the theorem of Cauchy in convex regions.

On the other hand, for every z € D,,(R) we have

2mi, ifn=1
S ’ ’
fCZO(R) (C—=2) ¢ 0, ifn>2

This is a simple application of Cauchy’s formula (for a function and its derivatives) to the constant
function 1. The special case z = zg we have already seen in examples 2.2.9 and 4.2.2 and the
general case (for n > 2) in example 4.5.3.

Theorem 5.1. If f is holomorphic in the open set (), then f is infinitely many times differentiable
in €.
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Proof. Let zg € 2. We take a closed disc D,,(R) C  and then f is infinitely many times
differentiable in D, (R) and hence at z. O

It is time to recall the remark after theorem 4.1. The assumption of continuity of the derivative
in theorem 4.1 is superfluous. The same we may say for the hypothesis in example 4.5.6 and in
exercises 3.3.3 and 4.5.1.

Cauchy’s estimates. If f is holomorphic in an open set containing the closed disc D ,,(R) and if
|f(Q)] < M forevery ¢ € C,(R), then

£ (z0)] < "5

for everyn € N.

Proof. Direct application of Cauchy’s formulas. O
Exercises.

5.3.1. Evaluate fco(r) z(z;iti) dz for0 < r < 2andfor2 < r < 4+o00.

5.3.2. If n € N, evaluate
fco(l) < dz, fOQW %89 sin(nf — sin ) d, fo% c0s0 cos(nf — sin ) df.

5.3.3. If n € N, evaluate

$oo) T 4% Fopy S dz o) S dz fouy

2

5.3.4. Let f be holomorphic in Cand let | f(z)| < A4 M |z|" for every z. Prove that f("+1)(2) = 0
for every z and that f is a polynomial function of degree < n.

5.3.5. Let the complex function f be continuous in D, (R) and holomorphic in D.,(R). Prove
that f(2) = 2= j?cz f [ ~ d( for every z € D,y (R).

5.3.6. Let f be holomorphic in an open set containing the closed disc D, (R) and let 0 < r < R.
If |f(2)| < M for every z € C,,(R), find an upper bound for || in D, (r), which depends
only on n,r, R, M and not on f or z.

5.3.7. Let f be holomorphic in D, (R). If |f(z)] < m for every z € D, (R), find the

smallest possible upper bound for | f(™) ()|, which depends only on n, R and not on f or z.

5.3.8. Let f be holomorphic in D with [ [} | f(2)| dzdy < +o0 (z = x + iy). Prove that

_1ff]D)1zw dxdy (z =x+1y)

for every w € D.

5.3.9. Let f be holomorphic in D, (R).
(1) Using the mean value property, prove that

WRQ ffD 2) dxdy (z =x+1iy).
(1) If 1 < p < 400, prove that
1f)P < w2 [fp, (p [fG)IPdedy (2 =2 +iy).
20 (R)

5.3.10. Prove that
2rln|al, iffa] >1

2|1 — ae®| do = :
0, ifjla| <1
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5.4 Morera’s theorem.

Theorem 5.1 and proposition 4.10 imply the following corollary. If the complex function f is
continuous in the region ) C C and if fv f(2)dz = 0 for every closed piecewise smooth curve ~y
in Q, then f is holomorphic in §). Indeed, since fv f(2) dz = 0 for every closed piecewise smooth
curve vy in €2, we get that f has a primitive, say F', in €. This means that F/ = f in 2 and hence F’
is holomorphic in §2. Therefore, F' is infinitely many times differentiable in €2 and then f is also
infinitely many times differentiable in 2. In particular, f is holomorphic in £2.

The next theorem proves the same result with weaker assumptions.

The theorem of Morera. If the complex function f is continuous in the open set 0 C C and if
fa A f(2) dz = 0 for every closed triangular region A in Q, then [ is holomorphic in Q.

Proof. Let zg € §2. We consider a disc D,,(R) C . This disc is a convex set and we have that
$a f(2) dz = 0 for every closed triangular region A in D, (R). Then the proof of proposition 5.1
applies, and we get that f has a primitive, say F, in D, (R). This means that F' = fin D, (R) and
hence F is holomorphic in D, (R). Therefore, F is infinitely many times differentiable in D, (R)
and f is also infinitely many times differentiable in D (R). In particular, f is holomorphic in
D, (R) and hence at z. O

Exercises.

5.4.1. If the complex function f is continuous in the open set €2 and holomorphic in Q \ [, where [
is a line, prove that f is holomorphic in €.

5.5 Liouville’s theorem. The fundamental theorem of algebra.

The theorem of Liouville. If f is holomorphic and bounded in C, then f is constant in C.

Proof. There is M > 0 so that |f(z)| < M for every z. We take any 2 and apply Cauchy’s
estimate for n = 1 with an arbitrary circle C,(R) and we find that | f'(z9)] < 7. Letting
R — 400, we get f'(z9) = 0. Since 2 is arbitrary, we conclude that f is constant. 0

Fundamental theorem of algebra. Every polynomial of degree > 1 has at least one root in C.

Proof. Let p be a polynomial of degree > 1 and assume that p has no root in C.

We consider the function f = %, which is holomorphic in C, and we see easily that it is also
bounded in C. Indeed, since lim,_, o, p(z) = oo, we have lim,_,~, f(z) = 0, and hence there is
R > 0sothat | f(z)| < 1 for every z with |z| > R. Since |f] is continuous in the compact disc
Do(R), there is M’ > 0so that | f(2)| < M’ for every z with |z| < R. Taking M = max{M’, 1},
we have that | f(z)| < M for every z and hence f is bounded.

Liouville’s theorem implies that f and hence p is constant and we arrive at a contradiction. O

Having proved that a polynomial p has a root z1, we may prove in a purely algebraic way that
z — z1 is a factor of p, i.e. there is a polynomial p; so that p(z) = (z — z1)p1(2) for every z.
Continuing inductively, we conclude that, if n > 1 is the degree of p, there are 21, .. ., z, so that

p(z) =clz—21)- (2 — 2n) for every z
where c is a constant. Thus, every polynomial p of degree n > 1 has exactly n roots in C.
Exercises.

5.5.1.1If f : C — C is holomorphic in C and Re f is bounded in C, prove that f is constant in C.
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5.5.2. We say that z, w are symmetric with respect to T if either z = 0, w = oo or z = co,w = 0

1
orz,w € C, z==.

Let p, g be two polynomials with no common root and so that |p(z)| = |¢(z)| for every z € T.
Prove that, if a € C\ {0} is a root of p of multiplicity &, then b = % is a root of ¢ of multiplicity
k and conversely. L.e. the roots of p and the roots of ¢ form pairs of points symmetric with respect

to T. (In particular, p and ¢ have the same degree.)

5.6 Taylor series and Laurent series.

Proposition 5.2. Let [ be holomorphic in the open set Q, zy € ) and let D, (R) be the largest
disc with center zo which is contained in ). Then there is a unique power series Z:ﬁ% an(z—20)"
so that

F(2) = 2,20 an(z — 20)"

Jor every z € D, (R). The coefficients are given by

() (4
an = d nE o) = 27 szO (r) (g—J;E)C))ﬁH dg

for0<r <R

Proof. Wetake z € D,,(R), and then |z — zp| < R. If |z — 29| < 7 < R, then z € D,,(r) and,
according to the formula of Cauchy, we have

= 57 $o., () Lol (5.6)
Now for every ¢ € C,,(r) we have }Z 2| = @ < 1 and hence
1 1 _ 1 L _ 1y zmayn
—z = (C—20)—(2—20) = C—201_ Z jg T (—zp £4n=0\(—29

The test of Weierstrass 1mphes that Z (2 20) converges, as a series of functions of {, uni-
=" = = (= ZO‘)" for every ¢ € Cyy(r) and Y12 (IZ TZO‘) < +o00.

formly in C,, (7).
So from (5.6) we have that

f(2) = 2020 2 oo r W d¢ (= — 20)". (5.7)

Now, we observe that the radius  has been chosen to satisfy the inequality |z — zp| < r < R and

so the integrals 5+ 57 J. ey d( depend a priori on z. But there are two reasons that these

f(©)
(< zO)n+l
integrals actually do not depend on the value of 7 in the interval (0, R) and hence on z. The first
reason is that from the formulas of Cauchy we get

1) (o)
257 $., ) e 4 = T

when 0 < r < R. The second reason is that % is holomorphic in D, (R) \ {20}, and

because of corollary 5.1, we have

J(¢ _ J(¢
27rz fCZO(rl ((z(ﬁ d¢ = 27” fczo(TQ Wd(

when 0 < 71 < 72 < R. We conclude from (5.7) that f(z) = Y20 an(z — 20)" for every

(n) (2
z € Dzo(R)a where a,, = ! nS o) — %m j;czo(r) %d( for0 < r < R.
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Regarding uniqueness, assume that f(2) = >0 b, (2 — 20)" for every z € D, (R). Then, if
0 < r < R, the series Z:j’) bn(z — 2z9)™ converges uniformly in C,(r) and we get

2miay = fC r = ZO k+1 d¢ = fozo (r) C= Zo)k+1 Z"’OO bn (¢ — 2z0)" dC

= +°°b fC (€ — 20)"*F1d¢ = 2miby,.

The last equality uses the calculation in example 4.2.2. O

The power series provided by proposition 5.2 is called Taylor series of f in the disc D, (R),
the largest open disc with center zg which is contained in the domain of holomorphy of f.

Example 5.6.1. The function f(z) = 7L is holomorphic in C \ {1} and the largest open disc
with center 0 which is contained in C \ {1} is Do(1). To find the Taylor series of f in Dy(1) we
1™(0)

n!
n > 0 and the Taylor series of f is >./°9 2" Le. = Y% 2n for every z € Do(1). Of
course, this is already known.

calculate the derivatives f(")(z) = # for every n > 0. Thus, a, = = 1 for every

Example 5.6.2. The function f(2) = = = € H)l(z
and the largest open disc with center 0 which is contained in C \ {7, —i} is Dy(1). To find the
Taylor series of f in Dy(1) we calculate the derivatives of f. We write f(z) = — (- + ZJ%Z)
and get

— is holomorphic in the open set C \ {i,—i}

F(2) = =g (=Bmer + (= 1)" riymer)

for every n > 0. Hence an = f™MO 1 (Epn

for every n > 0. Thus, a, = 0, if n is

n! 2
odd, and a, = & = (-1 )3, if n is even. So the Taylor series of f is 320 (—1)F22F. Le.
1+1z2 = 3125 (=1)k22k for every z € Dp(1).

Z+OO P

n=0

replace z with —z2 and find T + — = :{2%(—1)"22". From the moment that we have found some
power series which coincides with our function in Dg(1), then, because of uniqueness, this is the
Taylor series of our function.

Example 5.6.3. The exponential function f(z) = e* is holomorphic in C and the largest open disc
with center 0 which is contained in C is Dy(+00) = C. The derivatives of f are (") (z) = ¢* for

. . (n)
every n > 0 and the coefficients of the Taylor series of f are a,, = ! n,(o) = % for every n > 0.
Thus, the Taylor series of f is Zo% 1,z and we have
=N b

for every z. We have proven this identity differently in example 4.6.3.

Example 5.6.4. The function f(z) = cos z is holomorphic in C and the largest open disc with
center 0 which is contained in C is Dg(400) = C. The derivatives of f are f(")(z) = (—1)% cos z
for even n and f(")(z) = (—1) "3" sin z for odd n. Therefore, the coefficients of the Taylor series

() (o 1% (n) .
are a,, = / n( ) — % for even n and a,, = fT!(O) = 0 for odd n. Thus, the Taylor series of
k
fis Ek:ﬂ (%)! * and we have
2k:
Cos 2z = Zk 0 (2k
for every z. In the same manner we can prove that
Nt (DR opq
sinz = ) ;) “mroqr?
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for every z.
Another way to find the Taylor series of cos and sin is through the definitions of the two functions
and the Taylor series of e®. For instance:

_ eifqemi® _ 1Nx~H00 1yn y 1NFoo 1 coyn _ xotoo it(14+(=D™) n
COSz = 5  — 3 n=0 m(ZZ) + b n=0 m( ZZ) - n=0 2771!2

— yotoo ik ok gnoo (ZDF ok

= 2k=0 (2k)! = 2uk=0 @R -

The power series we found coincides with the function cos in the largest open disc with center
0 which is contained in the domain of holomorphy of cos and, because of uniqueness, this is the
Taylor series of cos.

Example 5.6.5. The function f(z) = — Log(1 — 2) is defined and holomorphic in C \ [1, +00).

The largest disc with center 0 in C \ [1, +00) is ID. The derivatives of f are f(")(z) = ((11;1% for
every n > 1. Thus, ap = 0 and a,, = % = % for every n > 1 and the Taylor series of f is
+oo 2"
=. lLe.
n=1 n

—Log(l —2) =Y

n=1"n

for every z € D. We found the same result in example 4.6.1.

Proposition 5.3. Let f be holomorphic in the open set S and let D,,(R1, R2) be a largest open
ring with center zy which is contained in ). Then there is a unique power series ng an(z—20)"
so that

fz) = XT% an(z — 20)"
Sorevery z € D, (R1, R2). The coefficients are given by
_ 1 f(©)
an = 55 SECZO (r) (C=zo)»F1 dC
for Ry <r < Ra.

Proof. We take z € D, (R1, R2), and then Ry < |z — 29| < Ra. We choose any 71, r2 so that
Ry <r; <|z— 2| <ry <Ry Thenz € D, (r,r2) and

f(2) =35 fczo(rz) ]ccg ¢ — 55 fczo(m) jcc(fz) dg. (5.8)

To prove (5.8), we consider an open disc D, (r) with r < min{rs — |z — 20|, |z — 20| — r1}. Then

D.(r) C D,,(r1,72) and we apply corollary 5.1 to % which is a holomorphic function of ¢ in

D, (Ri,R2) \ {z}. We get

f(©) Q) 4, _ 1)
fczo(m) 4z — fczo (r) c—2 42 = fcz(r) e dC.

Now as in the proof of Cauchy’s formula for circles, we have

lim, o f. () £53 dC = 2mif (2)

and the proof of (5.8) is complete.
For every ¢ € C.,(r2) we have

1 1 1 1 1 “+o0o (z—zo )n7

—z = (¢—20)—(2—20) = (—20 1_% = C—=20 n=0\({—zg

because ‘2:—28‘ = % < 1. Similarly, for every ¢ € C,,(r1) we have
1 1 _ 1 1 _ 1 +00(C*20)n
(—z = ((—z0)—(z—20) = 2z—201_%=20 = z—zp £&«n=0\z—29
Z*ZO
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because |C = ’ = ‘Z ZO‘ < 1. Exactly as in the proof of proposition 5.2, we see that these two

series of functlons converge uniformly and (5.8) implies

f(z) = Z?ﬁ% % fczo (ra) @L d¢ (= z0)"
n 0 27r7, f)gC - zo)n dC (Z_Z(l))nJrl .

In the last series we change n + 1 to —n and get
f(z) = Z:S()) ﬁ szo(rg) % d¢ (z — z)"

o (5.9)
T s Fo i) % d¢ (z — zo)™

Now, % is holomorphic in D, (R, R2) and another application of corollary 5.1 implies

that © ©

f(<€ _ (€

$0-o(r) Tr0 T U6 = Sy (ra) @0t

for Ry < r; < rg < Ra. Therefore the coefficients of both series in (5.9) do not depend on
the values of r1, 7o, and we replace both radii with any r with R < r < Ry. We conclude that
f(2) = "% a,(z — 20)" for every 2 € D, (R1, Rz), where a,, = o~ szo ) % d¢ for
Ri <r < Rs.
Regarding uniqueness, assume that f(z) = 3. % b,,(z — )" for every z € D, (Ry, R2). We
take any r with Ry < r < Rp, and then ng bn(z — 29)" converges uniformly in C., (7). Then

2miay = 550 L) z(o)k“ ¢ = fC’zO =20 k+1 S b (¢ — 20)" dC
= Zﬁ bn b1y (C = 20)"F 71 dC = 2miby

and we get that b, = ay, for every k. ]

The power series given by proposition 5.3 is called Laurent series of f in D, (R;, R2), a
largest open ring with center 2y which is contained in the domain of holomorphy of f .

Example 5.6.6. The function f(z) = L is holomorphic in C\ {0}. The ring Dy (0, = C\{0}
is the largest open ring with center 0 Wthh is contained in C \ {0}. To find the Laurent series of
f in Do(0, +00) we evaluate the coefficients a,,. We take any r with 0 < r < 400, and then we
have

1/¢
n 27rz fC@(r ) ¢ntl ¢ = 27rz fCO('r §"+2 dg
for every n. If n # —1, then a,, = 0 and, if n = —1, then a_; = 1. Therefore, the Laurent series

of fin Dy(0,400) is 37 a,z" = 2z~! and hence we have the obvious identity 2 = 2~ for
every z € Dy(0, +00).

In the following examples we shall use the uniqueness of the Laurent series to find the Laurent
series of certain functions without evaluating integrals: we find in an indirect way a power series
which coincides with the function in a specific ring and then, because of uniqueness, this is the
Laurent series of the function in the ring.

Example 5.6.7. The function f(z) = {2 is holomorphic in the open set C \ {1}. We have seen
that the largest open disc with center 0 which is contained in C \ {1} is Dy(1) and that the Taylor
series of f in this disc is Y129 2"

Another largest open ring with center 0 which is contained in C \ {1} is Dy (1, +00). To find the
Laurent series of f in this ring, we may evaluate the coefficients a,, using their formulas with the
integrals. But we can do something simpler. If z € Dy(1, +00), then E‘ < 1 and hence

1 1 1 _ _1xtoo _ n=—1 _n
1—z =  z1-L =~z nO()*_ —o0o % -
z
Because of uniqueness, the Laurent series of f in Dy(1, +00) is — ﬁjofl "
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Example 5.6.8. The function f(z) = m is holomorphic in C \ {1,2}. There is a largest

open disc and two largest open rings with center 0 which are contained in C\ {1, 2} : the disc Dy(1)
and the rings Dg(1,2) and Dy(2,+0o0). To find the corresponding Taylor and Laurent series we
write f as a sum of simple fractions: f(z) = 15 — -

If 2 € Dy(1), then |2| < 1 and |4| < 1, and hence

z—2 z—1°
F2) = =31t + 15 = —5 a0 (3)" + 2020 2" = Ya S (1 — ger )2

Therefore, the Taylor series of f in Do(1) is 312 (1 — ﬁ)z”
If 2 € Do(1,2), then |1| < 1and |5| < 1, and hence

=—1
F@) =5k — Itr = 3 TG - TR = - T - O e 2
z

Therefore, the Laurent series of f in Dg(1,2) is — Zﬁ;_l 2" — :chx(a] 2,11“ "

If 2 € Dy(2,+00), then |1| < 1and |2| < 1, and hence

f@) =1 — i = 1 ) - L R = N (e - D)
z z

Therefore, the Laurent series of f in Dy(2, +00) is E’i;_Q(Qn% —1)2".

Example 5.6.9. The function f(z) = e: is holomorphic in C \ {0}. Then Dy(0, +o00) = C\ {0}
is the only largest open ring with center 0 which is contained in C\ {0}. We find the Laurent series
of f in Dy(0, +00) using the Taylor series of e# in C. In the identity e* = 372 L 2" we replace

1 n=0 n!
2z with 3 and we find
1

ez =S =1 (_1 2"+ 1

—o0 n)!
1

for every z # 0. Therefore, the Laurent series of f in Dy(0, +00) is " = n),z + 1

Exercises.

5.6.1. Let 0 < |a| < |b|. Find the three Laurent series with center 0, the two Laurent series with

center a and the two Laurent series with center b of the function m.

5.6.2. Find the Taylor series of ﬁ with center any a € R.

5.6.3. Find the Taylor series with center 1 of the holomorphic branch of 22 with value 1 at 1.

5.6.4. Let f be holomorphic in D, (R) and let 3,20 a,,(z — 20)" be the Taylor series of .
(i) Prove that, if 0 < r < R, then

2
% 0W|f(zo+7“€ )|2dt Z+ 0|an‘2 2n

(i) If | f (2)| < M for every z € D,,(R), prove that >7°% |a,,|2R?" < M2
(iii) If g is also holomorphic in D, (R) with Taylor series Z+°° bn(z — 20)", prove that, if 0 <
r < R, then

% 0% f(zo + rett) mdt = :O% anbpr?™.
5.6.5. Let f be holomorphic in D,, (R, R2). Prove that there are functions fi, fo so that f5 is
holomorphic in D, (R2) and f; is holomorphic in D, (R, +00)U{occ} and so that f = f1+ f2 in
D, (R1, R2). Prove that, if f is bounded in D, (R, R2), then fi, f2 are bounded in D, (R1, R2).

5.6.6. Let f be holomorphic in Dy(R, +0o0). Prove that f is holomorphic also at oo if and only if
the Laurent series of f in Dy(R, +00) is of the form Zﬁ;_l anz" +ag. Observe that f(o0) = ag.
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5.6.7. Prove that

1 _ +oo Eagk 2k
cosz L+ Zk:l (2k)!z

for |z] < 5» where the numbers Eyy, satisfy the recursive relations
Eon = (32" ) Bon—a 4 (5" ) Bana — - + (=1)" 1 (3) B2 + (-1)" = 0.
Evaluate F», F4, Eg, Eg. The numbers Ey;. are called Euler constants.

5.6.8. Let f be holomorphic in the horizontal zone Q = {z + iy | A < y < B} and periodic with
period 1,1i.e. f(z+ 1) = f(z) for every z € Q2.
(i) Prove that there are ¢, so that

f(Z) _ Etz Cn€27rinz

for every z € Q) and find formulas for the coefficients c,,.
(ii) Prove that the series in (i) converges uniformly in every smaller zone {z + iy |a < y < b}
with A <a <b<B.

5.6.9. (i) Prove that
w 1 _1\n
es(z=32) — bo(w) + Z:{g by (w) (z" 4+ &0 )

Zn

for every z # 0, where
by (w) = L [T cos(nt — wsint) dt

for n € Np.
(i1) If m, n € Ny, prove that

Lf p!(n+p)!
2wt JCp(1) zmtntl

(224£1)™ ds — GEDPOE2D ey — 4 2p,p € Ny
0, otherwise

(iii) The function b, (w) is called Bessel function of the first kind. Find the Taylor series of b,, (w)
with center 0.

5.6.10. f : I — C is called real analytic in the open interval I in R if for every ¢y € I there are
¢ > 0anda, € C,n € Ny, so that (tg — e,tg +¢) C Tand f(t) = S0 a(t — o)™ for every
te (to— e to+e).

Prove that, if f is real analytic in I, then there is an open set {2 C C so that I C €2 and so that f
can be extended as a function f : 2 — C holomorphic in €.

5.7 Roots and the principle of identity.

Let f be holomorphic in the open set 2 and zy € §2. We consider the largest open disc D, (R)
which is contained in €2 and the Taylor series of f in this disc. Then

f(z)= ;2‘6 an(z —20)" = ag + a1(z — z0) +as(z — 29)% + -+~

for every z € D, (R).
We assume that zj is a root of f or, equivalently, that ag = 0 and we distinguish between two
cases.

First case: a, = 0 for every n.

Then, obviously, f(z) = 0 for every z € D, (R), i.e. f isidentically 0 in D, (R). Because of
the formulas for a,, the condition a,, = 0 for every n is equivalent to f (n) (z0) = 0 for every n.

Second case: a,, # 0 for at least one n.
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We consider the smallest n > 1 with a,, # 0 and let thisbe N. l.e. ag =a1 = ... =any_1 =0
and ay # 0. This is equivalent to

Flzo) = fW(z0) = ... = fN V() =0, fM(z) #£0.

Then we have
F(2) = (2= 200N 3020 angn(z — 20)"

for every z € D,,(R). The power series Y725 an (2 — 20)" converges in the disc D, (R) and
defines a function g holomorphic in D, (R). Then

f(z) = (2 — 20)"g(2)

for every z € D, (R), and thus g(z) = L&) for every z € D.,(R) \ {z0}. We observe that

(z—20)

G f Z)) ~ 18 a holomorphic function in 2\ {zp} and not only in D, (R) \ {z0}. Therefore, we may
consider g as defined in 2 \ {zo} with the same formula: g(z) = G f Z)) ~. We also recall that g
is defined, through its power series, at zo and it is holomorphic in D, (R) C €. In fact its value
at zop is g(z0) = any = % Thus, the formula of g, as a function holomorphic in €2, can be
written:

(Z{(ZZO>)N, ifz € Q\ {2}

g(Z) = f(N)(ZO) .
ay = —xr >, ifz =2z

Since g(zp) = an # 0 and since g is continuous at zy, there is  with 0 < r < R so that g(z) # 0
for every z € D, (r), and hence f(z) # 0 for every z € D, (r) \ {z0}.

Let f be holomorphic in the open set Q, zp € Q and "+ a,,(z — 20)" be the Taylor series
of f at z5. Then we have three cases. If a,, = 0 for every n, then we say that zj is a root of f of
infinite multiplicity. Ifap = a1 = ... = ay_1 = 0 and ay # 0 for some N > 1, then we say
that 2 is a root of f of multiplicity N. Finally, if f(z9) = ag # 0, we say that zy is a root of f of
multiplicity 0.

We saw that, if zg is a root of f of infinite multiplicity, then f is identically O in the largest
disc with center zy which is contained in the domain of holomorphy of f. If zg is a root of f of
finite multiplicity, then there is some disc D, () which contains no other root of f besides zp and
hence we say that the root z( is isolated. Moreover, if the multiplicity of zg is IV, then the function

g(z) = (Z{Z)))N , which is holomorphic in 2\ {29}, can be defined at 2 as g(z9) = ay = %

and then it is holomorphic in . In other words, we can factorize (z — z9)" from f(z), i.e. we can
write f(2) = (z — 20)"¥ g(2) with a function g holomorphic in §). This is a striking generalization
of the analogous factorization for polynomials: is 2 is a root of the polynomial p(z) of multiplicity
N, then we can write p(z) = (z — 29)" q(2), where ¢(z) is another polynomial.

Example 5.7.1. The function e’ —1is holomorphic in C and its Taylor series with center 0 is

+oo 1 _3n
n—1 a1 2°"". Therefore,

3
e 1 = g3y t> 7'23(n—1) — 5

1 3 +00 1 3n
n=1 n! n=0 (n+1)!

2 = 3g(2)

1
(n+1)!

morphic in C with g(0) = 1 # 0, hence 0 is a root of =" — 1 of multiplicity 3.

for every z, where g is the function defined by the power series Z:{i% 23", Now g is holo-

Lemma 5.1. If f is holomorphic in the region Q) and if zg € Q) is a root of f of infinite multiplicity,
then f is identically 0 in Q.

Proof. f is identically 0 in some disc with center zy. We define

B = {z € Q] f is identically 0 in some disc with center z}
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and the complementary set C' = Q \ B. Obviously, BUC = Q and B # ), since zy € B.

If z € B, then f is identically 0 in some disc D,(r), and if we take any w € D,(r), then f
is identically 0 in some small disc D, (") € D,(r). Thus every w € D,(r) belongs to B, i.e.
D, (r) C B and z is not a limit point of C..

Now, let z € C. Then f is identically 0 in no disc with center z, and hence z is not a root of infinite
multiplicity of f. Therefore, there is a disc D, (r) in which the only possible root of f is its center
z. Then this disc contains no w € B and z is not a limit point of B.

Thus, none of B, C contains a limit point of the other. Since B # (), we must have C' = 0,
otherwise B, C would form a decomposition of 2. Hence {2 = B and f is identically 0 in 2. [

Principle of identity. If f is holomorphic in the region ) and if the roots of f have an accumulation
point in S, then f is identically 0 in €.

Proof. Suppose that there is a sequence (z,) of roots of f so that z,, — z with z € Q and z,, # z
for every n. Since f is continuous at z and z, — z, we have 0 = f(z,) — f(z) and hence
f(z) = 0. If z is a root of finite multiplicity of f, then there would be some disc D, (r) in which
the only root of f is its center z. This is wrong, since D,(r) contains, after some index, all roots
zn, and these are different from 2. Therefore, 2 is a root of infinite multiplicity of f, and lemma
5.1 implies that f is identically 0 in €2. U

Lemma 5.1 and the principle of identity can be stated for a non-connected open set 2. Then
the result of lemma 5.1 holds in the connected component of €2 which contains the root of infinite
multiplicity zo and the result of the principle of identity holds in the connected component of €2
which contains the accumulation point of the roots of f.

Instead of speaking only about the roots of f, i.e. the solutions of the equation f(z) = 0, we
may state our results for the solutions of the equation f(z) = w for any fixed w. The results are
the same as before. We just consider the function g(z) = f(z) — w, and then the solutions of
f(2) = w are the same as the roots of g. For instance, if z( is a solution of f(z) = w of infinite
multiplicity, then f is constant w in some disc D, (R) and, if 2 is a solution of f(z) = w of finite
multiplicity N, then in some disc D, (r) the function f takes the value w only at the center z.
Then lemma 5.1 says that, if f is holomorphic in the region €2 and z( is a solution of f(z) = w
of infinite multiplicity, then f is constant w in 2. And the principle of identity says that, if f is
holomorphic in the region €2 and the solutions of f(z) = w have an accumulation point in €2, then
f is constant w in 2.

The principle of identity has another equivalent form.

Principle of identity. If f is holomorphic in the region ) and if some compact K C () contains
infinitely many roots of f, then f is identically 0 in ().

Proof. Let us assume the previous principle of identity and let us suppose that some compact
K C Q contains infinitely many roots of f. Then there is a sequence (z,,) of roots of f in K with
distinct terms. Since K is compact, there is a subsequence (z,, ) so that z,, — z for some z € K.
But then 2z € (2 is an accumulation point of roots of f and hence f is identically 0 in €.

Conversely, let us assume the present form of the principle of identity and let us suppose that the
roots of f have an accumulation point in 2. Then there is a sequence (z,) of roots of f so that
zn, — z with z € Q and z, # z for every n. Then the set {z,, |n € N} U {z} is a compact C Q

and contains infinitely many roots of f. So f is identically O in §2. U
Example 5.7.2. Assume that there is f holomorphic in C so that f (%) = 47 foreveryn € N.
We write f(1) = 113 T and compare the functions f(z) and ﬁ Both are holomorphic in C\{—1}

and their difference f(z) — -=— has roots at the points = which have 0 as their accumulation point.
d their difft 4 has roots at the points = which have 0 as th lation point

Since 0 € C\ {—1} and C \ {—1} is connected, we have that f(z) — Tiz is identically O in this

set, i.e. f(z) = 1J1rz for every z # —1. Since we assume that f is holomorphic at —1, we get

lim,_,_; l—iz = lim,—,_1 f(2) = f(—1) and we arrive at a contradiction.
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Example 5.7.3. Assume that there is some f holomorphic in C \ {0} so that f(z) = /x for every
x € (0,400) or even for every x in some subinterval (a, b) of (0, +00).

We consider the continuous branch g of 2% in the region 2 = C\ (—o0, 0] which has value 1 at
z = 1. The function g is given by

9(z) = Vre's,
where z = re? is the polar representation of z € Q with —7 < 6 < 7. So f(z) = /z = g(z) for

every x € (a,b). Hence f — g is holomorphic in the region 2 and has roots at all points of (a, b).
We conclude that f — g is identically 0 in 2. Le.

f(z) = re's,

where z = re? is the polar representation of z € Q with —7 < # < . Since f is holomorphic in
C\ {0}, it is continuous at every point of (—oc, 0), e.g. at —1.

We take points z = e’ converging to —1 from the upper halfplane. This means that  — 1 and
0 — m—. Then we have

f(=1) =1limy sy psr Vre'z =e'z =i

Now we take points z = re'® converging to —1 from the lower halfplane. This means that r — 1

and @ — —7+. Then we have

[4

f(=1) =limy gy ry relz = e i3

2 = —7q.
We arrive at a contradiction.
Exercises.

5.7.1. Let f be holomorphic in the disc D, (R) and let z be a root of multiplicity N > 1 of f. If
F'is a primitive of f in D, (R) and F'(29) = wg, which is the multiplicity of z( as a solution of
F(z) = wy?

5.7.2. Is there any f holomorphic in C which satisfies one of the following?
(i) f(£) = (1) forevery n € N.

(ii) f(%) = w for every n € N.

(iii) f(i) = f(ﬁ) = % for every k € N.

5.7.3. Is there any f holomorphic in C \ {0} so that f(z) = |z| forevery x € R\ {0}?

5.7.4. Let f, g be holomorphic in the region 2 and 0 € . If f, g have no root in 2 and if
P2/ f(E) =9 (2)/g(2) for every n € N, what do you conclude about f, g?

5.7.5. Let f, g be holomorphic in the region €. If fg = 0 in (2, prove that either f = 0 in Q) or
g=0in Q.

5.7.6. Let f, g be holomorphic in the region . If f g is holomorphic in €2, prove that either g = 0
in Q or f is constant in €.

5.7.7. (i) Let the region £ be symmetric with respect to R, i.e. Z € Q for every z € Q. If Q # 0,
prove that Q N R # (). Let also f be holomorphic in €2 and assume that f(z) € R for every
z € QNR. Prove that f(z) = f(z) for every z € Q.

(ii) Let the region 2 C C \ {0} be symmetric with respect to T, i.e. % € Q forevery z € Q. If
Q # (0, prove that QN'T # (). Let also f be holomorphic in 2 and assume that f(z) € T for every

z € QNT. Prove that f(1) = % for every z € Q.

(iii) Let f be holomorphic in C and let f(z) € T for every z € T. Prove that there is ¢ € T and
n € Ny so that f(z) = cz" for every z.

82



5.7.8. Many of the results of this section hold also for the point co.

(i) Let © C C be an open set containing some ring Do(R, +0o0) and let f be holomorphic in
QU {oo}. Then, according to exercice 5.6.6, the Laurent series of f in Dy(R, +00) is of the form
S =1 a,2" 4 ag and also f(o0) = ao.

If a,, = 0 for every n < 0, we say that co is a root of f of multiplicity +o0, and in this case prove

that f is identically 0 in the connected component of 2 which contains Dy (R, +00).

Ifag=a_1 =... =a_ny1 = 0and a_x # 0, we say that co is a root of f of multiplicity N,
and in this case prove that oo is an isolated root of f, i.e. there is some 7 > R so that f has no root
in Dy(r, +00).

Of course, if ag # 0, we say that oo is a root of f of multiplicity 0.

If 0o is an accumulation point of roots of f, prove that f is identically 0 in the connected component
of Q which contains Dy (R, +00).

Prove that co is a root of f of multiplicity IV if and only if 0 is a root of g of multiplicity IV, where
g is defined by g(w) = f().

(i) Let r = g be a rational function and let n be the degree of the polynomial p and m be the
degree of the polynomial q. If n < m, prove that co is a root of  of multiplicity m — n.

5.8 [Isolated singularities.

We say that zg is an isolated singularity of f if there is some disc D, (R) so that f is holo-
morphic in D, (R) \ {z0}. Then f has a Laurent series in D,, (0, R) = D,,(R) \ {z0}. Le.

f(2) =3 % an(z — 2)"

forevery z € D, (R) \ {z0}.

Now we have three cases. If a,, = 0 for every n < 0, then we say that 2y is a removable
singularity of f. If a,, # O for at least one n < 0 and there are only finitely many n < 0 such that
an # 0, then we say that zg is a pole of f. Finally, if a,, # 0 for infinitely many n < 0, then we
say that zg is an essential singularity of f.

Let us start with the case of a removable singularity zg. Then

F(z) = 2320 an(z — 20)"

forevery z € D,,(R)\{20}. The power series 370 a(z — 29)™ converges atevery z € D, (R)

and defines a holomorphic function in D,,(R) with value ag at zp. The function f may not be

defined at zp or it may be defined at zo with a value f(zp) either equal to ag or not equal to ay.

Now, in any case, we define (or redefine) f at zg to be f(z9) = ag. Then we have f(z) =
o8 an(z — 20)" for every z € D, (R) and f becomes holomorphic in D, (R).

We summarize. If zg € 2 is a removable singularity of f, then f can be defined (or redefined)
appropriately at zg so that it becomes holomorphic in a disc with center zy. The Laurent series
of f at zy reduces to a power series of first type and this power series is the Taylor series of the
(extended) f in a disc with center z.

Here is a useful test to decide if an isolated singularity is removable without calculating the
Laurent series of the function.

Riemann’s criterion. Let zg be an isolated singularity of f. If
lim,_,.,(z — 20) f(2) = 0,
then zg is a removable singularity of f.

Proof. Let f(z) = "% a,(z — 20)" for every z € D, (R) \ {20}. We take any ¢ > 0 and then
there is 6 > 0 so that |z — z|| f(2)| < e forevery z € D,,(R) with 0 < |z — 20| < §. Now, we
consider any r with 0 < » < min{d, R, 1} and any n < 0. Then we have

1 | e .
lanl = |55 fo, ) T | < gt 2ar = er Tl = el <
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Since € > 0 is arbitrary, we get a,, = 0 for every n < 0 and 2 is a removable singularity of f. [

In the case of an isolated singularity zo for f, sometimes we know that the lim,_, ., f(z) exists
and it is finite or that f is bounded close to zp. In both cases we have that lim,_, ., (z —20) f(2) = 0
is satisfied and we conclude that 2 is a removable singularity of f.

Example 5.8.1. The function f(z) = % is holomorphic in C\ {2}. Since lim,_,2 f(z) =1
the point 2 is a removable singularity of f. If we define f(2) = 1, then f, now defined in C, is
holomorphic in C. In fact, the extended f is the simple function z — 1 in C.

Now we consider the case of a pole 2o of f. Let 3.7 a,,(z — 20)" be the Laurent series of f
in the ring D, (R) \ {20} and then there is a largest m > 1 so that a_,,, # 0. Let IV be this largest
m. Then we say that zg is a pole of f of order N or of multiplicity N and we have

f(z) = (Za Zé\I)N -+ Za__zlo + :Lro% an(z — Zo)

forevery z € D, (R) \ {20} with a_y # 0. We may write this as
f(z) = G—z)™ Zn 0 an—N(z — 20)"

for every z € D, (R) \ {20}. Since the power series "¢ a,,_ n (2 — 20)" converges in the disc
D, (R), it defines a function g holomorphic in D, (R) and we have

1) = 2

forevery z € D, (R) \ {z0}. Observe that g(zp) = a_n # 0.
It is easy to prove the converse. Suppose there is a g holomorphic in some disc D, (R) so that

g(z0) # 0and f(z) = (zf(;o))N forevery z € D, (R)\ {z0}. Let 3_F2% by (2 — 20)™ be the Taylor

series of g and then we have

f(z) = (z_bfo)N +- Z;Nzé + 32 b (2 — 20)"

for z € D,,(R) \ {#0}. The last power series is the Laurent series of f in D, (R) \ {20} and since
bo = g(20) # 0, we have that 2 is a pole of f of order V.

Here are some more comments. Since g(zg) # 0 and g is continuous at z, we have that
g does not vanish at any point of some disc D, (r) with 0 < r < R. Then h(z) = ﬁ is
holomorphic in D, (r) and (z) = (2 — 20)Vh(z) for every z € D, (r) \ {z0}. Therefore, 2o
is a removable singularity of <. Moreover, if we define % to take the value O at zg, then we have
%(z) = (z—20)Vh(z) for every z € D, (r) and, since h(zp) # 0, then 2 is a root of the extended
% of multiplicity N. It is easy to prove in a similar way the converse, and we conclude that zg is a

pole of f of order N if and only ifit is a root of% of mutiplicity N.

Example 5.8.2. Many times we meet functions of the form f = %, where p, ¢ are holomorphic in
a neighborhood of zy. For instance, if p, ¢ are polynomials, then f is a rational function.

Let zg be a root of p and ¢ of multiplicity M > 0 and N > 0, respectively. In this case we saw
that there are holomorphic functions p; and ¢; in a neighborhood D, (R) of 2 so that

p(z) = (2 = 20)"p1(2),  a(2) = (2 = 20) V@1 (2)

for every z € D, (R) and also p;(z0) # 0 and ¢1(z0) # 0. (Of course we consider the case that
none of p, ¢ is identically 0.) Then there is r with 0 < r < R so that p;(z) # 0 and ¢1(z) # 0 for
every z € D, (r), and then we have

flz) = p(z) _ (z — z0)M— Npi(z) _

M—-N
0z = )

(z =20 9(2)
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for every z € D, (r) \ {70}, where the function g = p L is holomorphic in D, (r) and g(z¢) =

Z i jg # 0. Now we have two cases. If M > N, then zp is a removable singularity of f, and f

(after we extend it appropriately at zp) is holomorphic at zy and zg is a root of f of multiplicity
M — N.If M < N, then zq is a pole of order N — M of f.

Here are some concrete instances of this example.

Example 5.8.3. The function f(z) = 2 (_3Z)+ 2 s holomorphlc inC\ {2}.

Since 22 — 32 + 2 = (2 — 2)(z — 1), we have f(z) = 2=
is holomorphic in C and g(2) = 1 # 0. Therefore, 2 is a pole of f of order 1.

Example 5.8.4. The function f(z) =
The Taylor series of e* — 1 with center 0 is z + 5; 22 + 3; 2% + - -. Hence €* — 1 = zg(z) with
g(z) =1+ % Z+ % 22+ ... . The function g is holomorphic in C and g(0) = 1 # 0 and we have
f(z) = @ for z # 0. Therefore, 0 is a pole off of order 2.

(2)=2—-1

Example 5.8.5. The function cotz = 5~
The points km, k € Z, are isolated s1ngu1ar1t1es of cot z and we shall prove that they are all poles
of order 1. We fix k € Z. The Taylor series of sin z with center k7 results from the Taylor series
of sin z with center 0, as follows

sin z = sin((z — kx) + k) = cos kwsin(z — kn) = (—1)*sin(z — kn)

= (—1)*((z = km) — Rz —km)P 4 ---) = (DF(z — k) — Gl (2 — k)P +

Therefore, sinz = (z — km)qi(z) for every z, where the function ¢; is holomorphic in C with
q1(km) = (—=1)*. Hence,

cosz _ 9(2)
(z—km)q1(z) — z—km

cotz =

with g(z) = ;"(SZ) and ¢ is holomorphic in the disc Dy (7) and g(kw) = qcf(slf;f) = 1. Therefore,
km is a pole of cot z of order 1.

(Observe that Dy, () is the largest open disc with center k7 which is contained in the domain of
holomorphy of g because it is the largest open disc with center k7 which does not contain any root
of g1. This is true because ¢1(z) = ;ﬂ“kzﬂ vanishes at every 7 with [ € Z, 1 # k.)

The Laurent series of cot z in Dy (0, 7) is

+ ¢ (km) + 1 9" (km)(z — km) +

cotz = = ]m

For the determination of poles there is a criterion similar to the criterion of Riemann for re-
movable singularities.

Proposition 5.4. Let zy be an isolated singularity of f. Then zy is a pole of f if and only if
lim,_,., f(z) = oo.

Proof. There is a disc D, (R) so that f is holomorphic in D, (R) \ {z0}.
If 2 is a pole of order IV of f, then we saw that there is a function g holomorphic in D, (R) so that

g(20) #0and f(z) = (Zf(;)),v for every z € D, (R) \ {20}. This implies lim,_,,, f(z) = oc.
Conversely, let lim,_,., f(z) = oo. Then there is  with 0 < r» < R so that f(z) # 0 for ev-

ery z € D, (r) \ {20} and then the function h = % is holomorphic in D, (r) \ {z0}. Since
lim,_,., h(z) = lim,_,,, ﬁ = 0, the criterion of Riemann implies that z is a removable sin-
gularity of h. Therefore, we may define h appropriately at zy so that it becomes holomorphic in
D, (r): we set h(zp) = lim,—,,, h(z) = 0. It is clear that 2 is the only root of (the extended)
hin D, (r) and, if N is the multiplicity of this root, then h(z) = (z — 20)"V h1(z) where h; is
holomorphic in D, (r) and has no root in D, (r). Thus, the function g = 1 is holomorphic in

D, (r) and, clearly, has no root in D, (). Now we have altogether that f(z ) = 9 for every

(z—20)N

z € D,y (r) \ {20} with g(z0) # 0, and so zy is a pole of f of order V. O
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There is one more test for the case of a pole which also determines the exact order of the pole.

Proposition 5.5. Let zg be an isolated singularity of f. Then zq is a pole of f of order N > 1 if
and only if the lim,_, , (z — 20)" f(2) exists and it is finite and # 0.

Proof. 1f 2z is a pole of f of order NV, then we repeat the beginning of the proof of proposition 5.4
and we get that lim, ., (z — 20)" f(2) = lim,_,, g(2) = g(20) # 0.

Conversely, let lim,_,,,(z — 29)" f(2) be finite and # 0. Riemann’s criterion implies that the
function g(2) = (z—20)" f(z), which is holomorphic in some ring D, (R)\ {20}, can be extended
at zo by setting g(z9) = lim,_,,, g(z) = lim,,,,(z — 20)N f(2) # 0, and the extended g is
holomorphic in D, (R). Therefore, there is a g holomorphic in D, (R) with g(z9) # 0 so that
F(z) = —29_ forevery z € D, (R) \ {0} and 2 is a pole of f of order N. O

(z—20)N

Finally, for the case of an essential singularity we have the following result.

Proposition 5.6. Let zg be an isolated singularity of f. Then zg is an essential singularity of f if
and only if the lim,_, ., f(z) does not exist.

Proof. By the criterion of Riemann, zj is a removable singularity if and only if the lim,_, ., f(2)
exists and it is finite. Proposition 5.4 says that zj is a pole if and only if lim,_,,, f(2) = co. O

Example 5.8.6. In example 5.6.9 we saw that Zﬁ;_l (_ln)! 2" + 1 is the Laurent series of e in

Dy(0, +00). Hence 0 is an essential singularity of ex.

Therefore, the lim,_,q e% does not exist. We can see this without proving first that 0 is an essential
singularity of e%. In fact, proving that the lim,_, ex does not exist is another way to see that
0 is an essential singularity of ex. Indeed, if z = x tends to O on the positive x-semiaxis, then
|e§| = er — 400, and hence ez — o0o. If 2 =  tends to 0 on the negative x-semiaxis, then
|e§| —er — 0, and hence ex — 0. Thus, the lim,_,q e= does not exist.

Let 2o be an isolated singularity of f and let Zfz an(z — zo)™ be the Laurent series of f in

the ring D, (0, R) = D,,(R) \ {20}. Then Zﬁ;ﬁl an(z — 2p)" is called the singular part of the
Laurent series of f or, simply, the singular part of f at zy. Also, Zi% an(z — 2z9)" is called the
regular part of the Laurent series of f or, simply, the regular part of f at zg.

We have seen that in the case of a removable singularity zg the singular part of f at z is zero
and the Laurent series of f at zg consists only of its regular part. In the case of a pole zy of f of
order IV the singular part at zq is a finite sum of the form 25:1 (Zci;zg)n with a_pn # 0. In this
case the singular part is a rational function whose denominator is (z — z9)". In the case of an
essential singularity zg the singular part at zy has infinitely many terms.

If we subtract from f its singular part at its singularity zg, then we get

F2) = S5 an(z — 20)" = 5% an(z — 20)",

which is a power series of first type and hence converges in the disc D, (R), including the center

2o. Therefore, 2o is a removable singularity of the function F(z) = f(z) — 3."2 " an(z — 20)"

and if we define F' to have value F'(zg) = ag at 2, then this function is holomorphic in D, (R).
We shall now establish the well known analysis of a rational function into a sum of simple

fractions.

Proposition 5.7. Let v = £ be a rational function. We assume that the polynomials p, q have no
common roots (and hence no common factors), that the degree of p is n, the degree of q is m and

that z1, . . ., zx are the roots of q with corresponding multiplicities my, ..., mg. Then
1 1
r(z) = pi(s=) + -+ or(=5) +pol2),
where py, . . ., D, are polynomials without constant terms and of degrees my, . . . , my, respectively,

and py is either the null polynomial, if n < m, or a polynomial of degree n — m, if n > m.
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Proof. We saw in example 5.8. 2 that each z; is a pole of  of degree m;. Then the singular part
of r at z; has the form Z )l with a_p,; # 0. This can be written

mj a—r . 1
I=1 (z—20)! _pj(z_zj)7

where p; is the polynomial p;(z) = >, a_;2! without constant term and of degree m;.
We subtract from r all its singular parts at 2y, . .., zx and we form the function

po(2) =7(2) = (m(Z5) + - +pel(=5).

This function is a rational function defined in C \ {z1, ..., 2z} and its only possible poles are the
points 21, ..., 2. We observe, though, that every z; is a removable singularity of 7(z) — p; (i)
and that each ofpl(z z1) (e - ), besides pi(—= ) is holomorphic at z;. Thus, every z;

is a removable singularity of pg. In other words, the ratlonal function pg has no poles and hence it
is a polynomial. Now, we have the identity

T(Z) :pl(z—lzl) +- erk(z—lzk) +p0(2)

and we consider two cases. If n < m, then lim,_,, 7(z) = 0 and, since lim,_, p](—) =0
J

for every j, we have that lim,_,o, po(z) = 0. Thus, py is the null polynomial. If n > m, then
r(z)

¢ = lim, o 2n= is a complex number # 0. Since lim, pj( )/z” ™ = ( for every j, we
have that lim,_, o f SSZ,,)I = ¢ # 0. Thus the polynomial py has degree n —m. ]
Exercises.

5.8.1. Is 0 an isolated singularity of m(1 72 ?

5.8.2. Find the isolated (non-removable) singularities of:

1 1 ef—1 ef—1 22 1 1 z 1/z 1
22452467 (22-1)2> z z3 7 sinz’  singz? tan z, sinZz’ € terr, o

Which of the singularities are poles and what is their order?

5.8.3. Find the initial four terms of the Laurent series at 0 of the functions:

z 1

1
cotz, snz’ snls’ e—1°

5.8.4. Prove that an isolated singularity of f cannot be a pole of e/ .

5.8.5. Let zg be an isolated singularity of f, which is not constant in any neighborhood of zy. If
there is s € R so that lim,_,,, |z — 20|*|f(2)| € [0,400], prove that z; is either a removable
singularity or a pole of f and that there is m € Z so that

=0, ifs >m
lim,_,, |z — 20/°|f(2)| { = +o0, ifs<m
€ (0,400), ifs=m

5.8.6. Let f be holomorphic in C \ {0} so that lim,_ X = 0 and lim, 0 £ = 0. What
et f be holomorphic in C \ {0} so tha 1mﬁ0\/> and lim,_, BN a

do you conclude about f?

5.8.7. Let f be holomorphic in D, (R) \ {20} and let either Re f or Im f be bounded either from
above or from below in D, (R) \ {z0}. Prove that z is a removable singularity of f.

5.8.8. Let f be holomorphic in Dy(R) \ {20}, where R > 1 and |zo| = 1, and let z be a pole of
fIf f(2) = 32020 an2™ is the Taylor series of f in Do(1), prove that T = 2.
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5.8.9. Let €2 be a region so that every point of {2 is either a point of holomorphy or an isolated
singularity of f. If the roots of f have an accumulation point in {2, which is not an essential
singularity of f, prove that f is identically 0 in €2.

5.8.10. (i) Let zy be an essential singularity of f and let w € C. Prove that for every r > 0 the
function +1— is not bounded in D (r) \ {20}.

(ii) Prove the Casorati-Weierstrass theorem. If z is an essential singularity of f, then for every
w there is a sequence (z,) with z, — 2 and z,, # 2 for every n so that f(z,) — w.

1
e?—1

1 1 1 + k—1 B 2k—1
F1 =z 27T Zk;.cl)(_l) (gkk)gz

ez

5.8.11. (i) Prove that every 2k, k € Z, is a pole of of order 1.

(ii) Prove that

for |z| < 2m, where the numbers By, satisfy the recursive relations

k -1~ 1B,
‘(2&1)! - 2(*211@)1 201 4(21,()1(2)1@721/“)’! =0

for k£ > 1. Evaluate By, By, B3. The numbers B;, are called Bernoulli constants.

5.8.12. Look at exercises 5.6.6 and 5.7.8. We shall extend what we said in this section to the case
of the point co.

(i) We say that oo is an isolated singularity of f if f is holomorphic in some ring Dy (R, +00). Let
ng anz" be the Laurent series of f in this ring. If a,, = 0 for every n > 1, then we say that co
is a removable singularity of f. If a,, # O for at least one n > 1 and for only finitely many n > 1,
then we say that oo is a pole of f. Finally, if a,, # 0 for infinitely many n > 1, then we say that

oo is an essential singularity of f.
f(z) 0.

> =

Prove that oo is a removable singularity of f if and only if lim,_,
Prove that oo is a pole of f if and only if lim,_, o f(z) = co.

Let co be a pole of f and let NV be the largest n > 1 with a,, # 0. Then we say that co is a pole
of f of order N. Prove that co is a pole of f of order IV if and only if there is a g holomorphic in
Do(R,+00) U {oo} so that g(oc) # 0 and f(z) = 2V g(z) for every z € Dy(R, +00). Moreover,
prove that oo is a pole of f of order N if'and only if the lim,_, % exists and it is finite and # 0.
Prove that oo is an essential singularity of f if and only if the lim,_,, f(z) does not exist.

(i) Let r = % be a rational function and let n be the degree of the polynomial p and m be the
degree of the polynomial g. Prove that co is a removable singularity of » if m > n and that it is a
pole of r of order n — m if n > m. In particular, a polynomial p of degree n > 1 has a pole of
order n at co.

(ii1) What kind of an isolated singularity is co for the following functions?

1

Z"

e?, ei, zQe%, sinz, sin %, 2% sin
(iv) What kind of an isolated singularity is oo for any holomorphic branch of (22 — 1)% in the
region C \ [—1, 1]? (For the existence of such a branch look at exercise 4.4.9.)

. . . 1
(v) Is 0o an isolated singularity of - or of tan 2?

5.9 Maximum principle.

Maximum principle. Let f be holomorphic in the region Q@ C C and M = sup,.q | f(2)|. If there
is zo € Q2 so that |f(z0)| = M, then f is constant in ).

Proof. We take any z € ) for which | f(z)| = M. We consider an open disc D, (R) C 2 and any
1 21

rwith 0 < r < R. The mean value property of f says that f(z) = 5= [ f(z 4 re') dt. Since
|f(z +ref)| < M for every t € [0,27], we have

M= f()| =& [T fz+ret)dt| < L 2

5= Jo " | f(z+ret)| dt < M.
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Hence, 5- OQW |f(z + reit)|dt = M and, since |f(z + re')| is a continuous function of ¢, we

get |f(z + ret)| = M for every t € [0,27]. Now, r is arbitrary in the interval (0, R) and we
find that | f(z + reit)| = M for every t € [0,27] and every r € (0, R). So we get |f(w)| = M
for every w € D,(R). We proved that, if | f(z)| = M for a z € (2, then this equality holds in a
neighborhood of z. Now we define

B={:€Q|[f()| =M}, C={zcQ|lf(z) <M}

and it is clear that B U C' = Q.

If z € B, then |f(z)| = M and hence the same is true at every point in a neighborhood of z.
Therefore z is not a limit point of C'. Moreover, if z € C then |f(z)| < M and, by the continuity
of f, the same is true in a neighborhood of z. Hence z is not a limit point of B.

If both B and C' are non-empty, then they form a decomposition of (2. But €2 is connected and,
since zp € B, we get that C' = (). Therefore, |f(z)| = M for every z € Q.

Now we shall prove that f is constant in 2. If M = 0, then clearly f = 0in 2. So let us assume
that M > 0. If uw and v are the real and the imaginary part of f, then u? + v? is constant M? in

and hence u% + v% =0and u‘g—z + U«% = 0 in Q2. Using the C-R equations, we get

Ou ov __ ou v __
u%+v%—0, v%—u%—o

in Q. Viewing this as a system with unknowns %= g—;, we see that its determinant is u? + v? =
M? > 0, and we find that ‘3—; = 0and % = 0 in Q. Therefore, ' = g—g + z’% =0inQ and so f
is constant in the region 2. d

That was a first version of the maximum principle. There is a second version. In this second
version the region € is a subset of C, but when we consider Q or 90 we shall think of them as
subsets of C. In other words, if Q is unbounded, then we assume that  and 9 contain the point
oo. This assumption holds until the end of this subsection, including the exercises.

Maximum principle. Let f be holomorphic in the region Q and continuous in Q). Then either f is
constant in Q or | f| has a maximum value in ), say M, attained at a point of 9Q and | f(2)| < M
for every z € Q). In every case, | f| has a maximum value in Q which is attained at a point of 95).
In other words we have

max, g |f(2)| = maxcean [ f(C)[-

Proof. If f is constant in ©, then |f| is also constant, say M, in 2. Then, obviously, M is the
maximum value of | f| and it is attained (everywhere and hence) at every point of Of2.

Now we assume that f is not constant in . This implies easily that f is not constant in {2 either.
Now, | f| is continuous in the compact set 2 and hence attains its maximum value, say M, at some
point zg € €. Le. we have |f(z0)| = M and |f(z)| < M for every z € Q.

If any such zy belongs to €2, then the previous maximum principle implies that f is constant in €2
and we arrive at a contradiction. We conclude that zop € 9 and |f(z)| < M forevery z € Q. O

The second version of the maximum principle is usually applied in the simplified form:

Let f be holomorphic in the region §) and continuous in Q. If | f ()| < M for every ¢ € 99, then
|f(2)| < M for every z € .

Besides the maximum principle, we have the minimum principle. It is stated in two versions
which can be found in exercise 5.9.1. Here we state a usefull simplified form:

Let f be holomorphic in the region Q0 and continuous in Q so that f(z) # 0 for every z € Q. If
|f(C)| = m for every ¢ € 0%, then | f(2)| > m for every z € SL.

The proof is a trivial application of the previous simplified form of the maximum principle to the
function % which is holomorphic in € and continuous in 2.
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Exercises.

5.9.1. (i) Let f be holomorphic in the region 2 C C so that f(z) # 0 for every z € Q and
m = inf,eq | f(z)|. If there is zg € §2 so that | f(zp)| = m, then f is constant in Q2.

(i) Let f be holomorphic in the region 2 and continuous in  so that f(z) # 0 for every z € Q.
Then either f is constant in Q or | f| has a minimum value in £, say m, attained at a point of 92
and | f(z)| > m for every z € Q. In every case, | f| has a minimum value in 2 which is attained at
a point of 9. In other words we have min__g | f(2)| = min¢eaq | f(C)].

Both (i) and (ii) are called minimum principle.

5.9.2. Let f be holomorphic in D and continuous in D so that |f(z)| > 1 for every z € T and
f(0) = 1. Does f have a root in D?

5.9.3. Let f be holomorphic in the region €2 and lim,_,¢ f(z) = 0 for every ¢ € 0f2. Prove that f
is constant 0 in 2.

5.9.4. Let f be holomorphic in the region Q2 C C and K = sup, . Re f(z). If there is 29 € 2 so
that Re f(z9) = K, prove that f is constant in .

5.9.5. Prove the fundamental theorem of algebra using the maximum principle.

5.9.6. Let fy,, f be holomorphic in the region {2 and continuous in Q. If f,, — f uniformly in 09,
prove that f,, — f uniformly in €.

5.9.7. Let R be a square region with center ;. Let f be holomorphic in R and continuous in R. If
| f(2)] < m for every z in one of the four sides of R and | f(z)| < M for every z in the other three
sides of R, prove that | f(z0)| < V'mM3.

598.Let 2 = {z +iy| — 5 <y < F}and f(2) = e®". Then f is holomorphic in 2 and
continuous in 2 = {z +iy| — § <y < T}. Provethat | f(x —iT)| = [f(x +iF)| = 1 for every
x € R and that lim,_, ; , f(z) = 4+00. Does this contradict the maximum principle?

5.9.9. Let f be holomorphic in the region €2 and continuous in 2.
(i) If | f| is constant in OS2, prove that either f has at least one root in 2 or f is constant in (2.
(i) If Re f or Im f is constant in OS2, prove that f is constant in (2.

5.9.10. (i) Let zp € D, |A\| = 1 and
T(z) = 2=2

1—20z

for z € D. This Lf.t. appears in exercise 4.1.8 and we know that 7" is holomorphic in D and
continuous in D, and that 7'(z) € D for every z € D, and T'(z) € T for every z € T.
Now let z1,..., 2, € Dand |\| = 1 and

B(Z) = )‘HZ:I 1Z:zi:z

for = € D. Then B is holomorphic in D and continuous in D. Prove that B(z) € D for every
z € D, and that B(z) € T for every z € T.

Every function B of this form is called (finite) Blaschke product.

(i) Prove the converse of (i). Le. let f be holomorphic in I and continuous in D and let f(z) € D
forevery z € D and f(z) € T for every z € T. If f is non-constant, prove that there is n € N and
21,..., 2, € Dand X with [\| = 1 so that f(z) = A[[}_; £=2£ for every z € D.

ZKZ

5.9.11. Let f be holomorphic in the region 2 so that limsupg,-,_, |f(2)| < M forevery ¢ € 99.
Prove that | f(z)| < M for every z € Q. Moreover, if | f(z)| = M for at least one z € (2, prove
that f is constant in 2.
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5.9.12. Let the complex function f be holomorphic in the region {2 and continuous in Q. IfU is
an open set so that U C (2, prove that max,coy | f(2)| < max,csq | f(z)|. If equality holds, prove
that f is constant in Q.

5.9.13. Let f be holomorphic in Dy(R1, R2) and a € R. Prove that |z|*| f(z)| has no maximum
value in Do( Ry, R2), exceptifa € Z and there is cso that f(z) = cz~% forevery z € Do(R1, R2).

5.9.14. Let f, g be holomorphic in C and |f(z)| < |g(z)| for every z. Prove that there is x so that
f(2) = ug(z) for every z.

5.9.15. Let f be holomorphic in D. Prove that there is a sequence (z,,) in D so that |z,| — 1 and
(f(2n)) is bounded.

5.9.16. (i) Let f be holomorphic and non-constant in the region 2 C C. For every p > 0 prove
that

{zeQ[lf(D) <pinQ={zeQ|f(2)| < u}.

(ii) Let p be a polynomial of degree n > 1. Prove that for every > 0 the set {z | [p(z)| < p} has
at most n connected components and each of them contains at least one root of p. How do these
connected components behave when p — 0+ and when p — +00?

5.9.17. The three circles theorem of Hadamard. Let f be holomorphic in D, (R, R2) and let

M(T) = maXzec,, (r) |f(Z)|

for Ry < r < Rg. Prove that In M (r) is a convex function of In7 in (R;, Rg). L.e. prove that,
ifRy <ri <rg < RoandInr = (1 —t)lnry + tlnry for 0 < ¢ < 1, then InM(r) <
(1 —t)InM(ry) 4+ tIn M (rz). Another way to express this is:

Inro—Inr Inr—Inry

M(T) S M(rl)lnrg—]nrl M(rQ)]nrz—lnrl

when R; <r; <7 <r9 < Rs.

5.9.18. The three lines theorem. Let f be holomorphic and bounded in the vertical zone K =
{z+iy| X1 <z < Xa} and let

M(x) = supyeg | f(z + iy)]

for X1 < & < Xs. Prove that In M (z) is a convex function of x in (X7, X2). Le. prove that, if
Xi <z <wzp < Xoandz = (1 —t)xy +tzgfor0 <t <1, thenlnM(z) < (1—t)InM(z1)+
tIn M (z2). Another way to express this is:

To—T T—xq

M(x) < M(z1)=2==1 M (rg)=2—=1

when X1 < 21 <2 < 9 < Xo.

5.9.19. The Phragmén-Lindelof theorem. Let f, ¢ be holomorphic in the region (2 and let ¢ be
bounded in  and have no rootin Q. Letalso AN B =@ and AU B = 99. If

(i) limos ;¢ | f(2)| < M for every ¢ € A and

(i) limgs. ¢ | f(2)||¢(2)|¢ < M for every ¢ € B and every € > 0,

then prove that |f(z)| < M for every z € Q. If, moreover, f is non-constant in 2, prove that
|f(2)] < M for every z € Q.
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5.10 The open mapping theorem.

Open mapping theorem. If f is holomorphic and not constant in the region ), then f(U) is open
for every open U C €.

Proof. Let U C Q be open. We shall prove that f(U) is also open, i.e. that every wy € f(U) is
an interior point of f(U).

Since wy € f(U) there is some zy € U so that f(zp) = wg. Since U is open, there is 7 > 0 so that
D,,(r) C U. Since f is non-constant in 2, the solution 2 of the equation f(z) = wy is isolated.
Therefore, we may take r small enough so that f(z) = wg has no solution in D, (r) except zo.
Thus, f(¢) # wo for every ¢ € C,(r) and by the continuity of | f — wo| we get that there is some
€ > 0 so that | f(¢) — wo| > € for every ¢ € C,,(r). Now, we consider any w ¢ f(D,,(r)) and
we have that

[£(Q) = wl = |£(¢) — wo| — [wo —w| > €= |wo — w]|

for every ¢ € O, (r). But the function f — w is holomorphic in D, (r) and continuous in D, (r)
and also f(z) —w # 0 forevery z € D, (r). Therefore, by (the simplified form of) the minimum
principle at the end of section 5.9, we get

|wo — w| = [f(20) —w| = €= |wo — wl.
Thus |wo — w| > § and we have proved that any w ¢ f(D.,(r)) satisfies |wg — w| > §. This
implies that every w € Dy, (5) belongs to f(D.,(r)). Hence Dy (5) € f(Dz(r)) € f(U) and
so wy is an interior point of f(U). O

Exercises.

5.10.1. Prove the first maximum principle using the open mapping theorem.

5.11 Local mapping properties.

Proposition 5.8. Let [ be holomorphic in the open set Q and let zg € Q with f'(29) # 0. Then
there is an open set U C ) containing zo so that W = f(U) is an open set containing wy = f(2o)
and so that the function f : U — W is one-to-one. Moreover, the function f~' : W — U is
holomorphic in W.

| for every

Proof. Since f’ is continuous, there is » > 0 so that |f’ ( ) — (=0 "(20)
| > 0 and hence

2 € Day(r). This implies [f'(2)| = [f'(20)| — /() — f'(20)
f'(z) # 0 for every z € D, (r). Furthermore,

|f(22) = f(21) = f'(20) (22 = 21)| = | [, ., (F'(2) = f'(20)) d2| < 3122 — 21]| f' (20)]
for every z1,22 € D, (r

£ (22) = f(21)] = |f"(20) (22 — 21)| = | f(22) = F(21) = [/ (20) (22 — 21)| > 3|22 — 1]/ (20)| > O

)-

)
for every z1, 29 € D, (r) with z1 # 2.
Now we take U = D, (r). From the open mapping theorem we have that the set W = f(U)
is open. We have proved that f/ # 0 in U and that f : U — W is one-to-one and onto and so
the inverse mapping f~! : W — U is defined. Now it is easy to see that this inverse mapping is
continuous in . Indeed let w € W. Then there is (a unique) z € U so that f(z) = w. We take
any € > 0 small enough so that D,(e) C U. Then the set f(D(¢)) is open and contains w. Hence
there is & > 0 so that D,,(§) C f(D.(¢)). Then for every w’ € D,,(d) the (unique) 2’ € U which
satisfies f(2’) = w' is contained in D, (¢). This says that for every w’ € W with |w’ —w| < § we
have |f~Y(w’) — f~Y(w)| = |2/ — z| < € and the function f~! : W — U is continuous at every
w € W. Now, proposition 3.4 implies that f~! : W — U is holomorphic in . O

This implies
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Theorem 5.2. Let f be holomorphic in the region §) and let zy € Q and wy = f(zp). Let zo be
a solution of f(z) = wo of multiplicity N. Then there is an open set U C ) containing zy so
that W = f(U) is an open set containing wy = f(20) and so that the function f : U — W is
N-to-one.

Proof. We know that there is a disc D, (R) and a function g holomorphic in D, (R) so that

f(2) —wo = (2 = 20)"g(2)

for every z € D, (R) and g(z9) # 0. By the continuity of g we have that there is » < R so
that g(z) # 0 for every z € D, (r). Then the function % is holomorphic in D, (r) and the

g;’((ZZ)) dz = 0 for every closed curve 7 in

D, (r). Now, theorem 4.1 implies that there is a holomorphic branch of log g in D, (r) and then
example 4.4.4 says that there is a holomorphic branch of ¢*/" in D, (r). Le. there is a function ¢
holomorphic in D, (r) so that ¢(z)" = g(z) forevery z € D, (r). Now we consider the function
h(z) = (2 — 2z0)¢(z). This is holomorphic in D, (r) and we have that

theorem of Cauchy in convex regions implies that ﬁ/

f(2) —wo = h(z)"

for every z € D,,(r). Moreover, h/(z9) = ¢(z9) # 0. Proposition 5.8, applied to h, implies
that there is an open set Uy C D, (r) containing 2o so that W, = h(Up) is an open set containing
h(zp) = 0 and so that the function h : Uy — W) is one-to-one. Now, we consider a disc Dy(rg) C
Wy and the open set U = h~(Dy(rg)) C Up. Then h : U — Dy(rp) is holomorphic in U, onto
Dy(r0) and one-to-one in UU. Moreover, we have that f(z) —wy = h(z)" for every z € U. Since
the N-th power w = ¢V maps the disc Dy(rg) onto the disc Do(r’) and in an N-to-one manner,
we conclude that f : U — W is N-to-one, where W is the disc Dy, (r{¥). O

In the proof of theorem 5.2 if we take any linear segment [wp, w] in the disc Dy, (rd’), where

w is a point of the circle Cy, (rév ), then, through the mapping w = wq + ¢V, this linear segment
corresponds to N linear segments [0, z1], ..., [0, zn] in the disc Do(rg), where z1, ...,z are N
points on the circle Cy(rp). These N linear segments form N successive angles at 0 all equal to
QW“. Now the one-to-one function h~! : Dy(rg) — U maps these linear segments onto N curves
1, -.,yn With common initial endpoint zy and N corresponding final endpoints on OU. Since
h'(z0) # 0, the conformality of h at 2z implies that 1, . .., yx form N successive angles at 2 all
equal to QW“ The N successive “angular” regions Uy, . .., Uy in U between the curves v1, ..., vn
are mapped by h onto the corresponding succesive angular regions A1, ..., Ay in Dy(rp) between
the linear segments [0, 1], ..., [0, zx] and these are then mapped by the mapping w = wg + ¢V
onto the same region B = Dy, (rd’) \ [wo, w]. We conclude that f, which is the composition of
the two mappings, maps each of Uy, ..., Uy in U onto B and in an one-to-one manner.

Exercises.

5.11.1. Let f be holomorphic in Dy(R), f'(0) # 0 and n € N. Prove that there is 7 > 0 and there
is g holomorphic in Dy(r) so that f(z") = f(0) 4+ g(z)™ for every z € Dy(r).

5.11.2. Let 1, Q5 be two regions, let f : 2y — Q9 and g : 29 — C be non-constant functions
andleth =go f.

(i) If f, h are holomorphic in £21, is g holomorphic in {25?

(ii) If g, h are holomorphic in €25, {21, respectively, is f holomorphic in 4 ?

5.11.3. If f is holomorphic and one-to-one in C, prove that there are a # 0 and b so that f(z) =
az + b for every z.
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5.12 Uniform convergence in compact sets and holomorphy.

The theorem of Weierstrass. Let every f, be holomorphic in the open set Q@ C C. If f, — f
uniformly in every compact subset of ), then f is also holomorphic in Q) and for every k € N we

have that f,(Lk) — ) uniformly in every compact subset of .

Proof. We take any 2o € . Then there is a closed disc D.,(R) contained in € and for every n
we have

L2 a¢ (5.10)

for every z € D,,(R). Since C,(R) is a compact subset of €2, we have that f,, — f uniformly in
C, (R). We also have that f,,(z) — f(z) forevery z € D,,(R). Hence

2m §Czo

f(Z 271'2 j;C’ o(R) C z dC (5.11)

for every z € D,,(R). The right side of this equality is a holomorphic function of z in D, (R)
and so the left side, f(z), is also holomorphic in D, (R). Thus, f is holomorphic at every zy € §2.
Now, from the variants of (5.10) and (5.11) for derivatives, we have for every z € D, (%) that

n ”f” f” z
19() = 1O = 155 fo oy TEE Al < 5 e 20 R

2k+1k'

= ||fn fHCZO(R)

Hence,

(k) _ 2k+1k'
| fn ®lip., r/2) 1fn = fllow, m)

and so fék) — f*) uniformly in D, (5).

We proved that every z € 2 has a neighborhood D, () in which fék) converges uniformly to f.
Now, if K C ) is compact, there are z1,...,z, € K sothat K C D, (r,,)U---U D, (rs,).
Since fék) — %) uniformly in each D, (rz,), we conclude that fék) — f®) uniformly in K. O

The theorem of Hurwitz. Let every f,, be holomorphic in the region Q) C Cand f,, — f uniformly
in every compact subset of Q. If f,(z) # 0 for every n and every z € €, then either f(z) # 0 for
every z € Qor f(z) =0 for every z € Q.

First proof. The theorem of Weierstrass implies that f is holomorphic in 2. We assume that f is
not identically 0 in 2 and we shall prove that f(z) # 0 for every z € .

We take any zg € 2. Even if f(z9) = 0, we know that zj is an isolated root of f and hence there
is 7 > 0 so that f(¢) # 0 for every ¢ € C,,(r). By the continuity of f we get that there is some
§ > 0so that | f(¢)| > 6 for every ¢ € C.,(r). Now, we have that f,, — f uniformly in D, (r)
and so there is n so that

[fal2) = f(2)] < § (5.12)
for every z € D, (r). Therefore

(Ol = 1FO = [fa(Q) = (O] 26 -3 =3

forevery ¢ € C,(r). Since f, is holomorphic in D, (r) and continuous in D, (r)and f,(z) # 0
for every z € D, (r), by the minimum principle we have that | f,,(z)| > %‘s forevery z € D, (7).
This and (5.12) imply

g
2

[NIST

F(2) = ()] = [ fal2) = f(2)] = F -

for every z € D, (r). Thus there is no root of f in the disc D, (). In particular, f(z9) # 0.
Second proof. We follow the first proof up to the point that we get | f({)| > 0 forevery ¢ € C,, (7).
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Now, we have that f,, — f uniformly in C,(r) and the theorem of Weierstrass implies that also
f!, = f" uniformly in C,,(r). Therefore, }C—Z — fT/ uniformly in C,, () and hence

o fo (C) y d¢ — o fo f(g

By the argument principle, the left side is equal to the number of roots of f,, in the disc D, (r) and
hence it is equal to 0. Thus, the right side is also equal to 0 and, by the argument principle again,
there is no root of f in the disc D, (r). In particular, f(zo) # 0. O

We now recall some definitions for collections of complex functions defined in a subset of a
general metric space: here our metric space will be C.

Let A C C and F be a collection of complex functions defined in the set A. We say that F
is bounded at some z € A if there is M so that | f(z)| < M for every f € F. We say that F is
equicontinuous at some z € A if for every ¢ > 0 there is § > 0 so that | f(w) — f(z)| < € for
every w € A with |w — z| < § and for every f € F.

We observe that if F is equicontinuous at some z € A, then every f € F is continuous at z
and that the § which corresponds to € in the definition of continuity at z does not depend on the
particular f,1i.e. d is uniform over f € F.

Let A C C and F be a collection of functions defined in the set A. We say that F is locally
bounded at some z € A if there are 6 > 0 and M so that |f(w)| < M for every w € A with
|lw — z| < 0 and for every f € F.

The theorem of Montel. Let 2 C C be open and F be a collection of holomorphic functions in
Q. Then the following are equivalent:

(i) For every sequence (fy) in F there is a subsequence ( fy, ) and a function f holomorphic in
so that f,, — f uniformly in every compact subset of ().

(ii) F is locally bounded at every z € ).

Proof. (1) = (ii) Assume that F is not locally bounded at some z € €2. Then for every n € N there
is z, € Qand f,, € F with
|z — 2| < %, | fn(zn)| > n.

Now, there is a subsequence ( f,,, ) of (f,) and a function f holomorphic in 2 so that f,, — f
uniformly in every compact subset of €. Since z, — =z, theset K = {z,|n € N} U{z}isa
compact subset of {2 and hence f,,, — f uniformly in K. Moreover, the continuity of f implies
that f(zy,,) — f(z). But then

ank - f”K > ’fnk(znk) - f(znk)| > ‘fnk(znk)’ - |f(znk)’ — +00

and we arrive at a contradiction.

Another course goes as follows. By the Arzela-Ascoli theorem, (i) implies that  is bounded and
equicontinuous at every z € ). This easily implies that F is locally bounded at every z € €.
Indeed, there is M so that |f(z)| < M for every f € F. Moreover, there is § > 0 so that
|f(w) — f(2)] <1 forevery w € Awith |w— z| < ¢ and for every f € F. Hence

[f ()] < [f(2)]+ [flw) = f(z)] < M +1

for every w € A with |w — z| < 6 and for every f € F. So F is locally bounded at every z € Q.
(i) = (i) By the Arzela-Ascoli theorem and by the theorem of Weierstrass it is enough to prove
that F is bounded and equicontinuous at every z € ().

It is clear that local boundedness of F at every z € €2 implies that F is bounded at every z € €.
Now we take any z € ) and then there is 7 > 0 and M so that | f(z)| < M for every z € D,(r)
and every f € F. Thus, for every w € D.(5) and every f € F we have

‘f/ ‘27” sz(r ) (¢— w)2 dd = 27r 1"/2)2 2mr = 45'\/['
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This implies that for every w € D (5) and every f € F we have
) = £ = | [ £ dC| < 4L s — .

Hence, for every € > 0 we may take 6 = min{ 7, 5} and then for every z € D.(§) and every
f e F we get
Fw) = F(2)] € W jw — 2] < M5 < c.

Thus, F is equicontinuous at z. O
Exercises.

5.12.1. Prove that > ">°

o Jrln)g converges uniformly in every compact subset of C \ Z.

2n

5.12.2. Prove that ) ") 2n+1

converges uniformly in every compact subset of C \ T.

5.12.3. Prove that " converges uniformly in every compact subsetof {z | Rez > —

n=0 (z+l)

5.12.4. We define tz = e*I"? for every z € C and every ¢t > 0.

(i) Prove that ") -L converges absolutely for every z in {z | Re z > 1} and diverges for every
zin{z| Rez < 1}

(i) Let § > 0. Prove that Yt L converges uniformly in {z | Rez > 1+ 6}

The function ¢ : {z| Rez > 1} — C with

((2) =200 &

for every z with Re z > 1 is the famous { function of Riemann and it is connected with one of the
most difficult unsolved problems of mathematics.
(iii) Prove that

((a) == 55
for every z with Re z > 1.

5.12.5. Let (f,,) be a sequence of functions holomorphic in the region 2 C C which is locally
bounded at every z € ). If every f,, has no roots in Q and f,,(z9) — 0 for some 2y € €, prove
that f,, — 0 uniformly in every compact subset of €.

5.12.6. Let (f,,) be a sequence of functions holomorphic in the region 2 C C which is locally
bounded at every z € Q and let E C 2 have an accumulation point in Q. If lim,,, {» fr(2) isa
complex number for every z € E, prove that ( f,,) converges to some function uniformly in every
compact subset of (2.

5.12.7. Let (f,,) be a sequence of functions holomorphic in the open set 2 C C. If limy,—, o fn(2)
is a complex number for every z € (2, use the theorem of Baire to prove that there is an open set
H C Q which is dense in € and so that (f,,) converges to some function uniformly in every
compact subset of H.

5.12.8. Let 2 C C be aregion and ( f,,) be a sequence of functions holomorphic in €2 with Re f,, >
0 in 2 for every n.

(i) If (f1.(20)) is bounded for some zy € €2, prove that there is a subsequence ( f,,, ) which converges
to some function uniformly in every compact subset of €.

(ii) If (fn(20)) is unbounded for some zy € €2, prove that there is a subsequence (f,, ) so that
fn,, — oo uniformly in every compact subset of (2.

5.12.9. Let f,,, f be holomorphic in D, (R) and f, — f uniformly in every compact subset of
Do(R). If fn(2) = D200 agn(z — 20)F and f(2) = 32425 ar(z — 20)" are the corresponding
Taylor series, prove that ay, ,, — a;, for every k.
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5.12.10. Let F be a collection of functions holomorphic in D, (R). We denote a(f) = ! (k,lszo)
the k-th Taylor coefficient of each f € F. Prove that the following are equivalent:

(i) For every sequence (f,) in  there is a subsequence ( f,,;) which converges to some function
uniformly in every compact subset of D, (R).

(i) There are M, so that lim /M, < % and |ag(f)| < My for every k and every f € F.

5.12.11. A theorem of Montel. Let —0co < a < 29 < b < 400 and f be bounded and holomor-
phic in the vertical zone
Q={z=zx+1iy|la<z<by>0}.

If limy_, oo f(x0 + iy) = A € C, prove that for every e > 0 we have

5.12.12. Let Q C Cbeopen, M > 0,1 < p < 400, and F be the collection of all functions f
holomorphic in €2 with

[folf )P dedy <M (z=z+1iy).
Using exercise 5.3.9, prove that F is locally bounded at every z € ().

5.12.13. Let F be a collection of holomorphic functions in the open set {2 C C with the property:
for every sequence (f,,) in F there is a subsequence (f,, ) which converges to some function
uniformly in every compact subset of (2. Prove that the collection 7/ = {f’| f € F} has the same
property. Is the converse true?

5.12.14. Let 2 C C be open, D, (1) C €, f,, f be holomorphic in  and f,, — f uniformly in
C,(r). If f has no root in C,,(r) and has exactly k roots in D,,(r), prove that every f,, after
some value of the index n, has exactly & roots in D, (7).

5.12.15. Let (f,,) be a sequence of holomorphic functions in the region 2 C C so that f,, — f
uniformly in every compact subset of 2. If every f, has at most & roots in €2, prove that either f
has also at most k roots in €2 or that f is identically 0 in 2.

5.12.16. Let f,,, f be holomorphic in the open set €2 C C and f,, — f uniformly in every compact
subset of {2. Prove that

{z€ Q| f(z) =0} =N (Ui {z € Q1 fr(2) = 0}).
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Chapter 6

Global behaviour of holomorphic
functions.

6.1 Index of a closed curve with respect to a point.

6.1.1 The piecewise smooth case

Let AC C,andg: A — C\{0} be continuous in A. We say that the function & is a continuous
branch of arg g in A if & is continuous in A and for every w € A we have that h(w) is an element
of arg g(w) or, equivalently,

g(w) = |g(w)[e")
for every w € A.
We recall the notion of a continuous branch of log g. We say that f is a continuous branch of
log g if f is continuous in A and f(w) is an element of log g(w) or, equivalently,

/) = g(w)

for every w € A.

Proposition 6.1. Let A C Cand g : A — C\ {0} be continuous in A. Then there is a one-to-one
correspondence between continuous branches of log g and continuous branches of arg g in A.

Proof. 1If h is a continuous branch of arg g in A, then the function
f=1Inlg|+ih (6.1)

is a continuous branch of log g in A. Indeed, e/(*) = el lg(w)lgih(w) — |g(w)|e?M®) = g(w) for
every w € A and f is continuous in A.

Conversely, if f is a continuous branch of log g in A, then h, defined through (6.1), is a continuous
branch of arg g in A. Indeed, |g(w)|e?®) = |g(w)|ef @ e=M9(w)] = g(w) for every w € A and
h is continuous in A. O]

In other words, relation (6.1) says that, if we have a continuous branch f of log g in A, then the
imaginary part i of f is a continuous branch of arg g in A. Conversely, if we have a continuous
branch h of arg g in A, then the function f with imaginary part 4 and real part In |g| is a continuous
branch of log g in A.

The next result is analogous to proposition 4.6 and their proofs are almost identical.

Proposition 6.2. Let g : A — C\ {0} be continuous in A C C.

(i) If hy is a continuous branch of arg g in A and ho — h1 = k2w in A, where k is a fixed integer,
then hs is also a continuous branch of arg g in A.

(ii) If, moreover, A is connected and h, hy are continuous branches of arg g in A, then ho — hy =
k27 in A, where k is a fixed integer. In particular, if hi(wg) = ha(wq) for some wy € A, then
hl = h2 in A.
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Now we consider a piecewise smooth curve - (not necessarily closed). Then there is a succes-
sion of points a = tg < t; < --- < t,—1 < t, = bso that~ is continuously differentiable in every
[tk—1,tx]. We consider an arbitrary fixed z ¢ +* and we define

£t = [1 5% ds

for ¢t € [a,b]. Then f is continuous in [a, b] and differentiable at every point of continuity of W'Y_/Z.
So in every (t_1,t;) we have L ((v(t) — 2)eF 1) = 4/ (£)e ™1V — (y(t) — 2) f'(t)e I = 0.
Thus, (v(t) — z)e~® is constant in each (t_, t;) with a constant value which a priori depends
on k, but since this function is continuous in [a, b], it is constant in [a, b]. Hence there is ¢ € C so
that (y(t) — z)e /() = ¢ for every t € [a, b]. Since ¢ # 0, there is d € C so that e? = ¢, and thus
efW+d — ~(t) — 2 for every t € [a,b]. Now we redefine f by adding to it the constant d, i.e. we

write

Ft) = [T 228 gs 4 d (6.2)

a y(s)—z
for every t € [a, b] and we have
e’ = y(t) — 2

for every ¢ € [a, b]. In other words, the function f is a continuous branch of log(y — z) in [a, b].
Now, the real part of f is In |y — z| and, if we denote h the imaginary part of f, i.e.

h(t) =1m [y L ds +Imd (6.3)

for every t € [a, b], then h is a continuous branch of arg(y — z) in [a, b]. Loosely speaking, h(t) is

a continuously varying angle of the continuously varying vector z (¢ ;, as this vector turns around
its fixed base point z following its variable tip -y(¢) which moves over the trajectory of the curve
~ from its initial point y(a) towards its final point v(b). This is the reason why the expression

b A 1
h(b) = h(a) = Im [} ) ds = Tm [ -1 dC,
a consequence of (6.3), is called total increment of argument or total increment of angle over
the curve v with respect to z.
Let us consider the important special case of a closed curve v, i.e. when v(b) = 7(a). This
implies y(b) — z = y(a) — z, and hence

Re f(b) =In|y(b) — z| = In|y(a) — z| = Re f(a). (6.4)

It also implies that h(b) — h(a) is an integer multiple of 27: indeed, both i(b), h(a) are values of
arg(y(b) — z) = arg(v(a) — z). Then the integer

n(y; z) = MO (6:5)

™

is called rotation number or index of ~ with respect to zg. It represents the number of complete
( %

rotations of the continuously varying vector z y(t) as ~y(t) moves over the trajectory of the curve
from its initial point towards its final point.

If we recall that h is the imaginary part of f, then (6.2), (6.4) and (6.5) give

oy Lob A _ 1 1
Let «y be a closed piecewise smooth curve and z ¢ v*. We say that -y surrounds z if

n(vy;z) # 0.
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Example 6.1.1. We take n € Z and the closed curve « with parametric equation y(t) = zo +re™™,

t € [0,27]. It is visually clear that, if n # 0 and ¢ increases in the interval [0, 27], then ~(t)
describes |n| times the circle C, (7) in the positive direction, if n > 0, and in the negative direction,
if n < 0. In the case n = 0, then 7(¢) is constant and describes |n| = 0 times the circle C, (r).
All these agree with the result of the calculation:

. _ 1 1 _ 1 r2m_1 o oint g1
n(v; 20) = 55 N dC =55 Jo some Tine’™ dt = n.
The next three propositions are trivial consequences of (6.6) and of basic properties of curvi-

linear integrals.

Proposition 6.3. Let 1, v2 be closed piecewise smooth curves with the same endpoints and z ¢ -7,

z ¢~ Thenvy; + o i defined and it is also a closed piecewise smooth curve and z ¢ (1 + v2)*
and

n(y1 + 723 2) = n(y15 2) + n(7e; 2).

Proposition 6.4. Let 71,2 be closed piecewise smooth curves with z & ~5, z ¢ 73, so that each
is a reparametrization of the other. Then

n(v2; 2) = n(y1; 2).

Proposition 6.5. Let v be a closed piecewise smooth curve and z ¢ ~*. Then
n(=7v;z) = —n(y; 2).

Let B be a bounded set and A = C \ B. We know that A is equal to the union of its distinct
(and hence mutually disjoint) connected components. Since B is bounded, it is contained in some
disc Do(R). Then the connected ring Dy(R, 4+0oc) is contained in A and hence it is contained
in (exactly) one of the connected components, call it M, of A. All other connected components
of A are disjoint from M and so they are contained in Dg(R). Therefore, M is the unbounded
connected component of A and all other connected components of A are bounded.

In particular if v is a curve, then the open set C \ v* has one unbounded connected component
and all its other connected components are bounded.

Proposition 6.6. Let v be a closed piecewise smooth curve. Then the integer-valued function
n(7; z) is constant in every connected component of the open set C \ ~*. We also have that
n(vy; z) = 0 for every z in the unbounded connected component of C \ ~v*.

Proof. Proposition 4.12 implies that n(v; z), as given by (6.6), is a holomorphic function of z in
C \ v*. Now, let Q be any connected component of C \ v*. The function n(~; z) is continuous
and integer valued in €2 and, since n(; z) has the intermediate value property in €2, it has to be
constant in €.

Finally, let 2 be the unbounded connected component of C \ v*. We shall prove that n(vy; z) =0

for every z € Q. If v* C Dy(R), then (6.6) for |z| > R implies |n(v;2)| < %é\(z)}% Thus,

lim,_,~ n(7; z) = 0 and since n(; z) is constant in £2, it has to be equal to 0 in €2. O

Proposition 6.6 says that if z1, 25 are in the same connected component of the complement of
the trajectory of the closed piecewise smooth curve vy, then the number of complete rotations of -y
around z1 is equal to the number of complete rotations of v around zo.

Example 6.1.2. We consider the same closed curve as in example 6.1.1.

We have seen that n(~v; z9g) = n. Since v* = C,(r), the complement of v* has two connected
components: the disc D, () and the unbounded ring D, (r, +00). Thus, n(v; z) = n(y; 20) = n
when z € D, (r). Also, n(v; z) = 0 when z € D, (r, +00).
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Proposition 6.7. Let Q2 be a region and z ¢ Q. A holomorphic branch of log({ — z) (as a function
of ¢) exists in Q if and only if n(~y; z) = 0 for every closed piecewise smooth curve vy in ).

Proof. A direct consequence of theorem 4.1 applied to g(¢) = ¢ — z. O

Example 6.1.3. We consider the region Q2 = C\ [, where [ is any halfline with vertex z. We know
that a holomorphic branch of log({ — z) exists in {2 and hence n(; z) = 0 for every closed curve
~1in 2. This is geometrically obvious: since vy is in €, it does not intersect the halfline | with vertex
z, and hence it cannot make any complete rotation around z.

Cauchy’s formula for derivatives and closed curves in convex regions. If f is holomorphic in
the convex region ) and vy is a closed piecewise smooth curve in §, then for all n € Ny we have

n(7; z)f(")(z) = QLﬂ—'z 3% n+1 /e

Sforevery z € Q\ ~v*.

Proof. The function F'({) = % is holomorphic in 2\ {z}. Since z is aroot of f({) — f(2),

the singularity z of F is removable. So we define F'at z as F'(z) = lim¢_,, ( f (2) = f'(z) and
then F' becomes holomorphic in €2. Now we apply the theorem of Cauchy in convex regions and
get

§ L e = ¢ P(Q)d¢ =0

for every z € 2\ v*. This implies
271'1, f’y( de f )27rz f'YC de f( ) ( Z) (67)

for every z € 2\ 7*. This is the result of the statement in the case n = 0.

Now, if z € Q \ 4%, then z is contained in one connected component of C \ v* and, since all
connected components of C \ v* are open, there is a small disc D, (r) which is contained in one
connected component of C \ v*. Therefore, the index n(y; w) is a constant function of w in D (r),
i.e. n(vy;w) = n(v; z) forevery w € D, (r). This implies that all derivatives of n(;w) vanish at
z and so when we differentiate (6.7) we get 7 SE»Y % d¢ = fM)(2)n(y;z) forn>1. O

A particular instance of the last result is Cauchy’s formula for derivatives and circles. Indeed,
when the curve ~ describes the circle C, (R) once in the positive direction we have n(y; z) = 1
for all z € D,,(R). We originally proved the result in the case of a circle, using corollary 5.1.
We now have a “new” proof using that z is a removable singularity of w We have also
introduced the notion of the index of a closed curve. This new proof together with the introduction
of the notion of index allows us to generalize the case of a circle to the case of a more general
closed piecewise smooth curve. There is still a restriction in the sense that the curve has to be
contained in a convex region in which the function is holomorphic. This is because our proof is
based on Cauchy’s theorem in convex regions. In this chapter we shall replace this restriction on
the region with a restriction on the curve.

6.1.2 The general case

In the general case of a curve ~y, which is not necessarily piecewise smooth, the notions of total
increment of argument over «y and of index of v cannot be based on integrals of the form f,y Ciz d¢
any more.

Proposition 6.8. Let g1, 92 : A — C\ {0} be continuous in A C C.
(i) If f1, fo are continuous branches of log g1, log gs in A, then f1 + fo is a continuous branch of

log(g192) in A.
(ii) If h1, ho are continuous branches of arg g1, arg gs in A, then hy + hs is a continuous branch

of arg(g1g2) in A.
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Proof. (i) f1 + fo is continuous in A and also e/1(W)+F2(w) = ch(wlefo(w) — g (1)gy(w) for
every w € A.
(ii) Just as in (i). O

Proposition 6.9 is the first existence result of this section.

Proposition 6.9. Let g : [a,b] — C \ {0} be continuous in the interval [a,b]. Then there is a
continuous branch of log g and a continuous branch of arg g in [a, b].

Proof. It is enough to prove the existence of a continuous branch of log g.

Since g is continuous in [a, b], there is € > 0 so that |g(t)| > € for every t € [a,b]. Now, g is
also uniformly continuous in [a, b] and hence there is § > 0 so that |g(t') — g(t")| < e for every
t',t" € [a,b] with [t' — t"| < §. We take successive points a = tg < t1 < ... < tp_1 <t, =b
sothatty —tp_1 < 6 forevery k = 1,...,n. Then, forevery k = 1,...,n we have

{9(t) [t € [te-1,tul} € Dy, (e)-

Since [g(tx)| > e, the disc Dy, )(€) does not contain 0 and hence a continuous branch of log is
defined in this disc. Then example 4.3.3 implies that there is a continuous branch, say f;, of log g
in [tkfl, tk].

Now, f1 is a continuous branch of log g in [to, t1] and f5 is a continuous branch of log g in [¢1, to].
Then fa(t1) — fi(t1) = m2mi for some m € Z. We replace the function fs with the function
fo — m2mi and the new function f5 is also a continuous branch of log g in [t1, to] with fa(t1) =
fi(t1). Working with the (new) function f» and the function f3 which is a continuous branch
of log g in [t2, t3], we see as before that f5(te) — fa(t2) = [2mi for some [ € Z. We replace the
function f3 with the function f3 — 277 and the new function f3 is also a continuous branch of log ¢
in [to, t3] with f3(ta) = fa(t2). We continue inductively and finally we end up with continuous
branches fj of logg in [tx_1,tx] for every k = 1,...,n so that fx(tx) = fr+1(tx) for every
k =1,...,n — 1. Therefore, the function f : [a,b] — C, which is defined to be equal to f in
the corresponding interval [tx_1, tx], is continuous in [a, b]. Moreover, f is a continuous branch of
log g in every [tx_1, tx] and hence in [a, b]. O

We consider any curve v : [a,b] — Cand z ¢ ~*. Then the functiony—=z : [a,b] — C\ {0} is
continuous in [a, b] and, according to proposition 6.9, there is a continuous branch f of log(vy — 2)
and a continuous branch h of arg(y — z) in [a, b] related by

f=In|y—z| +ih. (6.8)

Then the functions f + k27i and h + k27, where k is an arbitrary, but constant, integer, are
also continuous branches of log(y — z) and arg(y — 2) in [a, b]. Moreover, since [a, ] is connected,
these are all the continuous branches of log(y — z) and arg(y — z) in [a, b].

Now, let h be any continuous branch of arg(y — z) in [a, b]. We observe that the expression
h(b) — h(a) is independent of the particular choice of h. Indeed, if h; is another continuous branch
of arg(y — z) in [a, b], then there is a constant integer k so that hy = h + k27 in [a, b] and then we
have hy(b) — hi(a) = (h(b) + k27) — (h(a) + k27) = h(b) — h(a). The expression

Aarg(y - 2) = h(b) — h(a)

is called total increment of argument or total increment of angle over the curve + with respect
to z.

Observe that in the previous subsection, i.e. when « is piecewise smooth, we had a specific
construction of a continuous branch h of arg(y — z) in [a, b] and A arg(~y — z) was given by means
of a curvilinear integral: Im f7 Ciz dc.

Now, assume that ~ is closed, i.e. 7(b) = 7y(a). This implies v(b) — z = v(a) — z, and hence
In|y(b) — z| = In|y(a) — z|. It also implies that h(b) and h(a) differ by some integer multiple of
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27, since both h(b), h(a) are values of arg(~(b) — z) = arg(v(a) — z). Therefore the expresion
Aarg(y — z) = h(b) — h(a) is an integer multiple of 27. Then the integer

n(y;z) = S22

is called rotation number or index of  with respect to z.

Again, we remark that when the closed curve - is piecewise smooth we have from the previous
subsection an expression of n(+y, z), namely (6.6), by means of a curvilinear integral.
Proposition 6.10. Let 71, y2 be closed curves with the same endpoints and z ¢ 3, z & 5. Then
N1 + 2 is defined and it is also a closed curve and z ¢ (m + v2)* and

n(y1 + 723 2) = n(y1; 2) + n(79; 2).

Proof. Let vy, : [a,b] — C and 75 : [b,c] — C be the two curves and hy : [a,b] — R and
hy : [b,c] — R be continuous branches of arg(y; — z) and arg(72 — z). We may redefine ho
by adding to it an appropriate integer multiple of 27 so that ho(b) = hq(b). Then the function

h : [a,c] — R which equals h; in [a, b] and hg in [b, c] is a continuous branch of log( (1 + V2) —2)
in [a, c]. Therefore, h(c) — h(a) = h(c) — h(b) + h(b) — h(a) = ha(c) — ha(b) + h1(b) — h1(a)
and hence n(vy1 + y2; 2) = n(v1; 2) + n(y2; 2). O

Proposition 6.11. Let 1, 2 be closed curves with z ¢ ~{, z ¢ ~3, so that each is a reparametriza-
tion of the other. Then

n(v2; 2) = n(71; 2).

Proof. Let~; : [a,b] — Cand s : [¢,d] — C be the two curves and o : [¢,d] — [a,b] be the

change of parameter so that v2 = =, o 0. If h is a continuous branch of arg(~; — z) in [a, b], then
h o o is a continuous branch of arg(y, — 2) in [c, d]. Indeed, from e(!) = Ij& 8:; for every
t € [a, b] we get e(7(9)) = \1188;:; = |3§Ez§:i| for every s € [c, d].

So from h(o(d)) — h(o(c)) = h(b) — h(a) we get n(y2; z) = n(71; 2). O

Proposition 6.12. Let v be a closed curve and z ¢ ~*. Then
n(=7;2) = —n(7;2).
Proof. Letvy,—7 : [a,b] — C be the two curves. Then =~ (t) = y(a + b —t) forevery ¢ € [a, b].

If h is a continuous branch of arg(y — z) in [a, b], then the function k(t) = h(a + b —t)isa
ih(t) — (t)==

continuous branch of arg(—y — z) in [a, b]. Indeed, from e

[v(t)—zl
ik ih(atb— (atb=t)—z _ —y(t)—=z
get etk(t) = gihlatb—1) — g(a—l—b—t)—z\ = |ﬂz(t)_z| for every t € [a, b].

So from k(b) — k(a) = h(a) — h(b) we get n(—; z) = —n(y; 2). O

for every t € [a, b] we

Proposition 6.13. Let A C C and z ¢ A. If a continuous branch of log(¢ — z) (as a_function of ()
exists in A then n(7y; z) = 0 for every closed curve v in A.

Proof. Let ¢(¢) be a continuous branch of log(¢ — z) in A and v : [a,b] — A be a closed curve
with z ¢ ~*. Then h = ¢ o~y is a continuous branch of log(y — z) in [a, b]. Indeed, for every

t € [a,b] we have e"(t) = £i¢(7(1)) — %

Now, 7(b) = (a) implies A(b) = ¢(v(b)) = ¢(y(a)) = h(a) and n(y; ) = "M — 0. O

Example 6.1.4. We consider the set A = C \ [, where [ is any halfline with vertex z. We know
that a continuous branch of log(¢ — z) exists in A and hence n(y; z) = 0 for every closed curve 7y
in A.
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Proposition 6.14. Let v1,7s : [a,b] — C be closed curves such that |y1(t) — v2(t)| < |y2(t) — 2|
for every t € [a,b]. Then
n(y1;2) = n(y2; 2).

Proof. From |y1(t) —7v2(t)| < |y2(t) — z| forevery t € [a, b] we easily getthat z ¢ 77 and z & 3.
We also have

1(t)—z
vi(t)*z N 1’ <1

forevery t € [a, b]. Now, we apply again the argument of example 4.3.3. We consider the function
g : la,b] — D1(1) with g(¢) = 3;83 for every t € [a,b]. Let q be a continuous branch of log
in D1(1). Then f = q o g is a continuous branch of log g in [a, b]. Since the curves 71, y2 are
closed, we have that g(b) = g(a) and hence f(b) = q(g(b)) = q(g(a)) = f(a). According to
(6.8), the imaginary part h of f is a continuous branch of arg g in [a, b] and from f(b) = f(a) we
get h(b) = h(a).

Now let iy be a continuous branch of arg(y2 — z) in [a, b]. Since, y1 — z = (72 — 2)g in [a, ],
proposition 6.8 implies that h; = hy + h is a continuous branch of arg(y; — 2) in [a, b]. Therefore,
hi(b) —hi(a) = ha(b) —ha(a)+h(b) — h(a) = ha(b) — ha(a) and hence n(y1;2) = n(y2;2) O

For every closed curve y with z ¢ 7* we may consider the translated closed curve v, = v — 2
with O ¢ ~Z. It is obvious that n(7; z) = n(v,;0).

Proposition 6.15. Let 7y be a closed curve. Then the integer-valued function n(~y; z) is constant in
every connected component of the open set C \ v*. We also have that n(v; z) = 0 for every z in
the unbounded connected component of C \ ~*.

Proof. Let~ : [a,b] — C be the curve and let z ¢ ~v*. Then there is some disc D, (r) contained
in C\ v* and hence |w — z| < r < |y(t) — z| for every t € [a, b] and every w € D, ().

We take any w € D, (r) and we consider the translated curves v, = v — z and 7, = v — w. Then
we have that |y,,(t) — v:(t)| = |w — z| < |y2(t)| for every t € [a, b] and proposition 6.14 implies
that n(v; w) = n(yw; 0) = n(72;0) = n(y; 2).

We just proved that the function n(y; z) is locally constant in C \ v*. Of course, this implies that
n(v; z) is continuous in C \ v*. Now, let €2 be a connected component of C \ v*. Since n(v; z) is
continuous and integer-valued in the connected set €2, it is constant in €.

Now, let  be the unbounded connected component of C \ v*. We take a disc Do(R) which
contains v*. As we saw in the previous subsection, the connected ring Dy (R, +00) is contained in
Q. We take any z € Dy(R,+o0) (and hence z € ) and then obviously there is a halfline [ with
vertex 2z which does not intersect the disc Do(R) and hence it does not intersect v* either. From
example 6.1.4 we have that n(~; z) = 0. Therefore n(v, z) = 0 for every z € Q. O

Exercises.

6.1.1. (i) Consider closed curves 1, 2 and z not on their trajectories. Assume that there are succes-

sive points wgl), - ,wg), w&zl = wgl) of 4] and successive points w§2), o 7w£12)’ wfﬁl = w?)
of 75 and curves 071, ...,0,,0,41 = 01 so that every o; goes from w]m to w]@) and so that, for
each j = 1,...,n, the part of v; between w(.l), wj(i)l, the part of ~» between w§2),w](-i_)l, o; and

oj+1 are all in a convex subregion D; of C \ {z}. Prove that n(v1; 2) = n(v2; 2).

(ii) Take a point z and two halflines [, m with vertex z. Let A € [, A # zand B € m, B # z.
Consider any curve y; from A to B in one of the two angular regions defined by [, m and any
curve 9 from B to A in the second angular region defined by I, m. Consider the closed curve

v =71 + 72. Prove that n(vy; z) = 1.

6.1.2. If 1,2 are closed curves in C \ {0} then ;75 is a closed curve in C \ {0}. Prove that
Aarg(y1y2) = Aargy, + Aargye.
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6.1.3. Let ' C C be closed and connected, +1 € F and Q@ = C \ F. Prove that there is a
holomorphic branch of log 21 in €. Prove also that there is a holomorphic branch of (2% — 1)1/
in (2.

6.2 Homotopy.

Letv0,71 : [a,b] — Cbe two curves. We say that -y; is homotopic to 7 if there is a continuous
function F' : [a,b] x [0,1] — C so that F'(t,0) = vo(¢t) and F'(¢,1) = ~1(t) for every ¢t € [a, b].
The function F' is called a homotopy from g to ;.

For each s € [0, 1] the function s : [a, b] — C, given by

’Ys(t) = F(t7 S)

for ¢ € [a, b], is continuous and hence it is a curve. We shall call it intermediate curve between 7
and 7.

Since [a, b] x [0, 1] is compact, the homotopy F' is uniformly continuous. Thus for every e > 0
thereis § > O sothat |F(t,s') — F(t",s")| < ewhen /(t' — t")2 + (s — s”)2 < 4. Therefore, if
|s" — §"| < & then we have |vy (t) — 5 (t)| < € forevery t € [a,b], i.e. the curves vy and ~y,~ are
uniformly close. We see that when s increases in |0, 1] the curves ~ys form a continuously varying
family of curves, starting with ~yy and ending with ;. To be more precise, we have a mapping

[0,1] 3 s = s € C([a, b]),
which is continuous from [0, 1] with the euclidean distance to C'([a, b]) with the uniform distance:

| =" <6 = e = vsrllay = maxeeqap) [ye (8) —vsr (8] < e

If all curves , are closed, i.e. if F'(a,s) = F (b, s) for every s € [0, 1], then we say that F' is
a homotopy with closed intermediate curves. If all curves 7, have the same initial endpoint and
the same final endpoint, i.e. if F'(a, s) is constant and F'(b, s) is constant for s € [0, 1], then we
say that F' is a homotopy with fixed endpoints.

If all curves , are in the same set A, then we say that F' is a homotopy in A.

We may define a relation between curves in a set A: we write g = -y if there is a homotopy
in A from g to ~y;. It is easy to see that this is an equivalence relation:
(i) Every curve 7 : [a, b] — A is homotopic to itself through the homotopy F : [a,b] x [0,1] — A
given by F'(t,s) = ~(t).
(i) If F' : [a,b] x]0, 1] — Aisahomotopy from vy to~y;,i.e. if F(¢,0) = yo(t) and F'(¢,1) = v1(¢)
fort € [a, b, then the function G : [a, b] x [0, 1] — A givenby G(t, s) = F(t,1—s) is ahomotopy
from ~y; to yo. In fact G is continuous and G(¢,0) = 71 (¢) and G(t, 1) = 7o(t) for ¢ € [a, b].
(iii) If ' : [a, b] x [0,1] — A is a homotopy from g to 1, i.e. if F'(¢,0) = vo(t) and F'(¢,1) =
~1(t) fort € [a,b],andif G : [a,b] x [0, 1] — A is ahomotopy from v; to yo, i.e. if G(¢,0) = 1 (t)
and G(t,1) = y(t) for t € [a,b], then H : [a,b] x [0,1] — A, given by

H(t )_ F(t’28)7 te[a,b],Se[Oaé]
S) = G(t,2s—1), te€a,b],sec[s5,1]

is a homotopy from 7 to 2. Indeed, H is continuous and H (¢,0) = ~(¢) and H(t,1) = 2(t)
fort € [a, b)].

Furthermore, the previous argument shows that the relation of homotopy with closed interme-
diate curves and the relation of homotopy with fixed endpoints are both equivalence relations.

DO

Example 6.2.1. If the set A is convex, every two curves in A are homotopic in A. Indeed, let
0,71 : |a, b] — Abetwo curves in A. Since yo(t),v1(t) € A and A is convex, the linear segment
[v0(t),v1(t)] is contained in A. Now, if we define F' : [a,b] x [0,1] — C by

F(t,s) = (1—s)v(t) + sm(?),
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then F' is continuous and all its values are in A. Moreover, F'(¢,0) = 7o(t) and F'(t,1) = y1(t)
fort € [a, b]. Therefore, F' is a homotopy in A from vq to ;. It is easy to see that, if vy and ; are
closed, then all intermediate curves are closed. Also, if 7y and ; have the same initial endpoint
and the same final endpoint, then all intermediate curves have the same initial endpoint and the
same final endpoint.

Proposition 6.16. Let f be holomorphic in the open set (2.
(i) If vo,v1 are piecewise smooth curves in ) with the same initial endpoint and the same final
endpoint and if there is a homotopy in (), with fixed endpoints, between o and 1, then

fo F(2)dz = [ f(z)d=

(i) If vo, 11 are closed piecewise smooth curves in ) and if there is a homotopy in (), with closed
intermediate curves, between ~y and 71, then

§,f(z)dz=§. f(2)dz

Proof. Let F' : [a,b] x [0,1] — € be the homotopy in §2 from 7 to ;.

Then the subset F'(]a, b] x [0, 1]) of §2 is compact and hence there is € > 0 so that |z — w| > € for
every z € F'([a,b] x [0, 1]) and every w € Q°.

Moreover, since F' is uniformly continuous, there is 6 > 0 so that |F(t',s") — F(t",s")| < eif
[t/ —t"| < dand|s — s"| <.

Now, we take intermediate points a = tg < t1 < ... <tp,_1 <tp,=band0 =5y < s1 < ... <
Sm—1 < S$m = lsothatty —tp_1 < d and s; — s;_1 < 0 for all k and [. Then every rectangle
[trk—1,tk] X [s51-1, 51] is mapped by F'in the disc Dp(;, , 5, ,)(€) which is contained in €. Since f
is holomorphic in this disc, its curvilinear integral over any closed curve in this disc is equal to 0.
Now we denote g j and 71 j the restrictions of vy and 71 in [t;_1,t;]. We also denote oy, the
linear segment [F'(t;—1,s;), F'(tg,s;)] fork=1,...,nandl = 1,...,m — 1. Finally, we denote
pr, the linear segment [F'(ty, s;—1), F(t, ;)] fork =0,...,nand [l = 1,...,m. Then for every
k=1,...,n wehave

f%kfz z—f f(z)d f dz—f f(z
fak,z1 zdz—faklfz fkll d’z_fpsz fori=2,....m—1
f%ml zdz—f%kfz =/ dz—f fz)d=.
Adding these m equalities and then adding for k¥ = 1,...,n and considering cancellations, we
find
f% f(z)dz — f’Yl f(z)dz=>", fpo,l f(z)dz—=>", fpn,l f(z)d=. (6.9)

(1) Since all intermediate curves have the same initial endpoint and the same final endpoint, we see
that all linear segments pg; and p,, ; are single point sets and hence all integrals in the right side of
(6.9) are equal to 0. Thus, f% f(z)dz = f% f(z)dz

(ii) Since all intermediate curves are closed, we have F'(a,s) = F(b,s) for every s € [0,1].
Therefore, for each [ the linear segments pg; and p,,; coincide and again the right side of (6.9) is
equal to 0. Thus, § f(z)dz= ¢  f(z)dz. O

Proposition 6.17. Let ~y, 1 be two closed curves in C\ {z}. If there is a homotopy in C\ {z},
with closed intermediate curves, between ~y and 1, then

n(0; 2) = n(71; 2).

Proof. First case: the two curves are piecewise continuous.
Then we just apply proposition 6.16(ii) to f(¢) =
Second case: the two curves are not necessarily piecewise continuous.
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Let F': [a, b] x [0, 1] — C\{z} be ahomotopy with closed intermediate curves, between o and ;.
Since F' is continuous and [a, b] x [0, 1] is compact and F’ does not take the value z, there is € > 0
so that | F'(t,s) — z| > eforevery t € [a,b] and s € [0, 1]. Also, since F' is uniformly continuous,
there is § > 0 so that |s' — s”| < § implies |vg () — s~ (t)| < € for every t € [a, b], where ~; is
the intermediate curve corresponding to s € [0, 1]. Then |yy (t) — s (t)| < |ys7 () — 2| for every
t € [a, b] and proposition 6.14 implies that n(~yy; z) = n(vs; z). Now we take successive points

0=s50 <51 <...<8p-1 <8, =1sothatsg —sp_1 <6 foreveryk =1,...,n. Then we
have n(vs,_,; 2) = n(7s,;2) forevery k = 1,...,n and hence n(vo; 2) = n(y1; 2). O
Exercises.

6.2.1. Let A be arcwise connected and 71 (t) = z1 and y2(t) = 22 be two constant curves in A. If
a curve -y is homotopic in A to 1, prove that «y is homotopic in A to v».

6.2.2. If 7y is a closed curve in C \ {0}, prove that « is homotopic in C \ {0} to a closed curve
whose trajectory is contained in the circle T.

6.2.3. (i) Let f be continuous in Do(R). We define v(t) = f(Re®) for every t € [0,27]. Prove
that, if n(y; w) # 0, then w € f(Dy(R)). Le. {w | w is surrounded by v} C f(Dy(R)).
(i1) Using the result of (i), prove the fundamental theorem of algebra.

6.2.4. Let p € A and let M,,(A) be the set of all closed curves in A with both of their endpoints at

p. If 31,72 € M,(A), then clearly 71 + 75 € M,(A). Also, if v € M,(A), then = € M,(A).
(i) Prove that the relation of homotopy in A with closed intermediate curves and fixed endpoints
(= p) is an equivalence relation in M,,(A). The set of all equivalence classes is denoted H,,(A) =

{1y € Mp(A)}

(ii) If v, v1, 72 € Mp(A), we define [y1] + [2] = [11 + 72| and —[7] = [—7]. Prove that these
are well-defined and that 7{,(A) with these operations is a group, whose neutral element is [7,],
where 7, is the constant curve p.

(iii) If A is arcwise connected, prove that for every p,q € A the groups #,(A) and H,(A) are
isomorphic. In this case we write H(A). (See exercise 6.2.1.)

(iv) Prove that #(C) = {0}, H(C \ {0}) = Z, H(T) = Z.

6.2.5. Let 21, 22, 23, w1, w2, w3 be distinct points. Is it possible to join every z;, with every w; with
simple curves 7;; whose trajectories are mutually disjoint?

6.3 Combinatorial results for curves and square nets.

Lemma 6.1. Let ¥ = {o1,...,0,} be a set of curves (not necessarily closed) and let A =
{a1,...,am} be the set of their endpoints (m < 2n). We assume that for every point of A the
number of the curves in X that arrive at this point is the same as the number of the curves in ¥ that
leave from this point. Then we can partition X into subsets Y1, . . ., X, so that each X consists of
successive curves and the sum ; of the curves in ¥; is a closed curve.

Proof. We describe an algorithm for the partitioning of 3.

We start with o1. The final endpoint of o7 is the initial endpoint of at least one curve in 2. If the
final endpoint of o; coincides with its initial endpoint, then o is closed and we stop the process. If
this is not the case, then, renumbering if necessary the curves oo, . . . , 0, we may assume that the
final endpoint of o coincides with the initial endpoint of o5. If the final endpoint of o5 coincides
with the initial endpoint of o1, then the sum of 01, 02 is a closed curve and we stop the process. If
the final endpoint of o9 coincides with its initial endpoint, then o5 is a closed curve and we stop
the process. If the final endpoint of o2 is not the initial point of either o1 or o3, then renumbering
if necessary the curves o3, ..., 0,, we may assume that the final endpoint of o9 coincides with
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the initial endpoint of o3. Then, exactly as before, we examine whether the final endpoint of o3
coincides with the initial endpoint of o1 or of o3 or of o3. Then, respectively, the sum of o1, 02, 03
or the sum of o9, 03 or o3 by itself is a closed curve and we stop the process. If the final endpoint
of o3 is not the initial endpoint of either o; or o9 or o3, then renumbering if necessary the curves
04,...,0n, we may assume that the final endpoint of o3 coincides with the initial endpoint of
o4. Now, it is clear that this process will eventually stop, because we have only finitely many
curves. Therefore, we shall eventually find successive curves o1,09,...,05_1,0r (1 < k <
n) so that the final endpoint of o), coincides with the initial endpoint of one of the same curves
01,09,...,0_1,0%. Let the final endpoint of o, coincide with the initial endpoint of o; for some
Iwith 1 < < k. Then the sum of 6y, 0711, ..., 0%_1, 0 is a closed curve and we stop the process.
Now we set
¥ =A{o1, 0041, ,0k-1,0k}

and call v, the closed curve which is the sum of 0y, 0741, ...,0k—1, 0k. Then we drop the curves
of X1 from X, i.e. we consider the set

E/:Z\Zl = {01,...,0'1_170'k+1,...,0'”}.

Each endpoint of the curves in X’ is one of the points of A = {ay, ..., an}, say it is a;. Then the
number of the curves in X that arrive at a; is the same as the number of the curves in X that leave
from a;. But the curves 0y, 0741, ...,0,_1, 0} are successive and hence if one of them arrives at
a; then the next one leaves from a;. Therefore, the remaining curves, i.e. those in >, have the
same property: the number of the curves in X’ that arrive at a; is the same as the number of the
curves in ¥’ that leave from a;. Thus ¥’ has the same property as the original X.

Now we continue our algorithm with Y. We find a subset X5 of ¥/ which consists of successive
curves and we call ~» the closed curve which is the sum of the curves in >5. Then we drop the
curves of Xy from Y, i.e. we consider the set

YW=\ =%\ (3 UX).
We go on until we exhaust the original X.. O

Lemma 6.2. We take any 6 > 0 and two perpendicular lines. For each of them we consider all its
parallel lines at distances equal to integer multiples of §. The result is a net of closed square regions
of sidelength § which cover the plane and have disjoint interiors. We choose any of those closed
square regions, say Q1, . . . , Q. We consider the closed boundary curves Q)+, . . . , 0Q; with their
positive direction. Each of them is the sum of four corresponding linear segments, considered as
curves with the same direction. We drop the linear segments (with necessarily opposite directions)

which are common to any two neighboring square regions from among the Q1,...,Q; and we
consider the set ¥ = {01, . ..,0,} of all the remaining linear segments, i.e. those which belong to
only one of Q1, ..., Q. Then we can partition 3 into subsets X1, . .., ¥y, so that each X consists

of successive linear segments and the sum ; of the linear segments in ¥; is a closed curve.

Proof- 1t is enough to prove that 3 has the property described in lemma 6.1, i.e. that for every
point of intersection a of our lines the number of the curves in X that arrive at a is the same as
the number of the curves in X that leave from a. This can be done easily, considering cases for
the number, 0 or 1 or 2 or 3 or 4, of the squares among ()1, . . ., ; which have a as one of their
corners. O

6.4 The theorem of Cauchy in general open sets.

Let o1, ..., 0, be any curves (not necessarily closed) and k1, .. ., k,, be any integers (not nec-
essarily non-negative). Then we say that the curves o1, ..., 0, considered k1, ..., k, times, re-
spectively, form a chain Y. The integer k; is called multiplicity of the corresponding o; in the
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chain X. If every o is closed, then X is called closed chain or cycle. If every o is in a set A, then
we say that X is in A.

If a curve o is not among the curves which constitute a chain 3, we may include it among
those curves by assigning multiplicity 0 to ¢. And now we may introduce the algebraic structure
of a module in the set of all chains in the following manner. If ¥’ and X" are two chains, we
may assume that they are formed by the same collection o1, . .., 0, of curves. If k7, ..., k!, and

1,...,kl are the corresponding multiplicities in the chains 3’ and ¥, then we define ¥’ + X" to
be the chain which consists of 1, . . . , o, with multiplicities k] + &7, ..., k), + k/!. Moreover, if k
is an integer and X is a chain formed by the curves o1, . . . , 0, with multiplicities k1, . . ., k;, then
we define £X to be the chain formed by o7, ..., 0, with multiplicities k&1, ..., kk,. It is very
easy to show that, under this addition of chains and this multiplication of chains and integers, the
set of chains is a Z-module. The opposite — of a chain ¥ is (—1)3 and the neutral element of
addition is the chain which contains no curve (or any curves all with multiplicities 0).

If 3 is a chain formed by the curves o1, . . . , o, with multiplicities k1, . . . , k,, we immediately
see that, under the above definitions of addition and multiplication, we have ¥ = kjo1+- - -+kpop,.
Here we consider each o as a chain consisting of only one curve with multiplicity 1.

It is obvious that if ¥/, ¥ are cycles and &/, k” are integers then k'Y + k”Y" is a cycle.
Therefore the set of cycles is a Z-submodule of the Z-module of all chains.

Now we consider a chain X formed by the piecewise smooth curves o1, . . . , o, with multiplic-
ities k1, ..., k, and a continuous ¢ : o] U --- U o, — C. We define the curvilinear integral of
¢ over X by

Js #(2) dz = ?:1 k; faj ¢(2) dz
If 3 is a cycle, we may use the notation
$e 0(2) dz.

It is easy to show that

s 902) 2 = K iy 021 + K s 002

This says that integration “respects” the linear structure of the Z-module of chains.
If 3 is a cycle formed by the closed curves o1, . . . , 0, with multiplicities k1, . . . , k,, and z does
not belong to o7 U - - - U o, we define the rotation number or index of ¥ with respect to z by

n(%;z) = 22:1 kin(oj; z).

We may say that n(3; z) is the total number of rotations around z of the closed curves forming
3, taking into account their multiplicities.
Again, it is easy to show that

n(E'S + K'Y 2) = E'n(Y; 2) + K'n(2; 2)

for every z which does not belong to the trajectories of the curves forming the cycles >’ and ¥,
and this says that the index “respects” the linear structure of the Z-module of cycles.

Combining the last two definitions, we easily see that the index of a cycle consisting of closed
piecewise smooth curves is given by the same integral form which gives the index of a closed
piecewise smooth curve:

(Z Z 27r1j;E§ z C

Indeed, n(%; 2) = Z?Zl kin(cj;z) = Z?Zl k; 2%” - CEZ 2m fz = dc.

Now we state a basic definition.

Let X be a cycle in the open set {2. We say that 3 is null-homologous in 2 if n(X; z) = 0 for
every z € Q°.
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In other words, a cycle X in (2 is null-homologous in €2 if the total number of rotations of the
curves forming 3, taking into account their multiplicities, around every point of the complement
of {2 is zero.

It is easy to see that if the cycles X/, X" are null-homologous in 2 and &/, k” are integers then
the cycle £'YX' + k'3 is null-homologous in 2. Thus, the set Cy(2) of all cycles which are null-
homologous in €2 is a Z-submodule of the Z-module C(£2) of all cycles in €. Hence we may form
the quotient Z-module

H(Q) =C(Q)/Co(Q).

The elements of #((2) are the classes [X] of all cycles X in 2, i.e. 3 € C(£2), described as
X] = {S+ 3| ¥ € Co()}.

Now we introduce an equivalence relation among the cycles in €). We say that the cycles
31, 2o are homologous in €2 and we write 31 ~ Y if 31 — 3o is null-homologous in €2 i.e. if
Y1 — Yo € Co(R2). Of course this means that n(X; — X9;2) = 0 or equivalently n(Xq;2) =
n(Xa; z) for every z € Q€. If O is the zero-cycle, then clearly ¥ is null-homologous in €2 if and
only if ¥ ~ O. Another way to describe the elements [X] of H(£2) is

[E]={Z€C() | =T ()} ={2 €C(Q)|X ~ X}
The algebraic operations in the quotient Z-module H(€2) are as follows:
ET+ET=[E+%", kX =[k3].

We shall not go further into this algebraic point of view, since it does not have much to offer
in our study of complex analysis. We shall keep in mind, though, the definition and notation of
¥’ 4+ ¥ and kY and from time to time we shall feel free to make certain mild algebraic comments.

Proposition 6.18. Let ) be an open set and K C §) be compact. Then there are closed piecewise
smooth curves 1, .. .,v in Q \ K so that for every f holomorphic in Q2 we have

F) =58 & ¢, K (6.10)

forevery z € K, and

0= 55 ¢ Hdc. 6.11)
for every z € Q°.

Proof. There is 6 > 0 so that |z — w| > 26 for every z € K and every w € Q€. For this § > 0
we consider the net of closed square regions of lemma 6.2 and we take all closed square regions
Q1,...,Q; of the net which intersect K. Each Q,,, intersects K and its diameter is equal to v/26.
Therefore, the distance of every point of Q,, from K is < 1/24. Since /26 < 26, we see that
Q. 1s contained in 2. Thus, all 1, ..., (); are contained in ). As in lemma 6.2, we consider the
set ¥ = {o1,...,0,} of all boundary linear segments of @1, ..., Q; which belong to only one
of Q1,...,Q and we partition 3 into subsets 31, ..., >} so that each ¥; consists of successive
linear segments and the sum +; of the linear segments in ¥; is a closed curve.

Now consider any of the linear segments o1, . . ., 0, say ;. Then o belongs to one of Q1, . .., @y,
say Qm. Since (), is contained in €2, we have that o is also contained in ). If o; intersects K,
then both closed square regions of our net which lie on the two sides of ¢ intersect K and hence
both are among )1, ..., ;. This is impossible because o; belongs to only one of Q1,...,Q;.
Therefore, o; does not intersect K and hence it is contained in € \ K. Finally, since each of
Y1, ..., is the sum of certain of the oy, ..., 0y, we get that all 7, ...,y arein Q \ K.

Now we take any z € K. Then z belongs to one of @1, ..., Q;, say Q. Let us assume that z is
an interior point of (),,. Since the closed square region ()., is contained in €2, there is a slightly

111



larger open square region @’ which is also contained in Q. Now f is holomorphic in the convex
region Q' and Cauchy’s formula in section 6.1 says that

F(2) = 55 $3g,, L, (6.12)

because the index of 0Q),, with respect to z is equal to 1. Now we take any closed square region
Qp with p # m. Then z is not contained in ), and again we may find an open square region

Q' slightly larger than @, which is contained in €2 and which does not contain z. Then (C) isa
holomorphic function of ¢ in the convex region Q" and hence
_ 1 Q)
0=5- fan — d¢ (6.13)
for p # m. We add (6.12) and (6.13) for all values of p and we get
!
F(2) = St 55 o, L dC (6.14)

Now we split the integral over each J(@),, in four integrals over the boundary linear segments of
0Q, and we get 4 integrals. If a linear segment belongs to two neighboring closed square regions,
then it appears twice among the integrals, with opposite directions, and hence the two integrals
cancel. Therefore, the remaining integrals will be only over the boundary linear segments which
belong to exactly one of Q1, ..., Qy, i.e. the linear segments of the set ¥ = {o1,...,0,}. Thus
(6.14) becomes

f(Z) = ZO’EE 2t f f(f dC

The subsets X1, . . ., X, form a partition of 3 and hence

f(Z):Z] IZUEE 27rzfo'C z

Finally, since vy; is the sum of the successive linear segments o € X5, we end up with (6.10).
Now let 2 be a boundary point of @Q,,,. Then we may consider a variable point 2’ in the interior of
Q. so that 2’ — 2. We have proved (6.10) for 2/, i.e.

B | f(Q)
f(z’) - Z]:l o7 Vi C—=' dC

Proposition 4.12 implies the continuity of the right side as a function of 2’. Therefore, taking the
limit as 2’ — 2, we end up again with (6.10).

Now we consider any z € Q€. Then z does not belong to any of Q1, ..., Q; and so we get (6.13)
for all values of p. Adding we find (6.14) with f(z) replaced by 0. Now, following the same steps
as before (splitting each 0@, in four linear segments etc.), we end up with (6.11). O

Lemma 6.3. Let 7y be a piecewise smooth curve, K be a compact set so that K Nv* = () and f be
a complex function continuous in ~v*. Then for every € there are points (o, (1, . - -y Gn—1,Cm of YV*
so that

‘ ’y( de Zlml]glgz( Cl 1)‘ <e
forevery z € K.

Proof. Since K N~* = (), there is some p > 0 so that
(—zl=p (6.15)

for every ( € v* and every z € K.
We have that 7 : [a,b] — ~* and f : v* — C are continuous and hence f o vy : [a,b] — C is also
continuous. Therefore, there is M > 0 so that

[f(y(E)| <M (6.16)
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for every ¢ € [a, b] and also there is 6 > 0 so that

() =1 < sty 1)) = Fv(")] < 5855 (6.17)

for every t',t" € [a, b] with [t/ — "] < 4.

Now we take succesive points a = tg < t1 < ... < tjp—1 < ty, = bsothatt; — ;1 < 9 for
every [ = 1,...,m. Then (6.15), (6.16) and (6.17) imply that for every ¢ € [t;_1,¢;] and every
z € K we have

fO®) f('y(tz))‘ < ‘f(v(t GI)) |+ ‘f “/(tz _ “/(tz )|
t)—z  At)—z1 = 1@ y(t)—z
) —f )] \f(v(tz))lh() (tm
S 7y M 3 e 7y e (6.18)

Mp2e €

< atp T Bt = )
The points (; = (t;) are in v* and by (6.18) we finally get
|/ 5 g de > ]gcl(gz) - G| = | X tz . (78)@2) - ];Ezl(f’)) )Y () dt|
<DL 1ftl L \fﬁ)(tz f,EZ(f”ZHW )| dt
<Y wh (lde
e} Jo Iy | ) dt =€

forevery z € K. O

The actual points (g, (1, - - -, Gn-1, ¢m of 7v*, which were constructed in the proof of lemma
6.3, are obviously successive in the direction of v from ~y(a) towards v(b). The actual content of
lemma 6.3 is the approximation of curvilinear integrals by Riemann sums in a concrete situation.
For the more general picture (but with no parameter z) look at exercise 2.2.8.

Proposition 6.19. Let Q2 be an open set, K C ) be compact and f be holomorphic in ). Then for
every € > 0 there is a function g which is a linear combination of functions (of z) of the form Z%C

with ( € Q\ K so that ||f — g||x < e

Proof. We consider the closed piecewise smooth curves 71, ..., in 2 \ K which are provided
by proposition 6.18. If f is holomorphic in €2, then (6.10) holds for every z € K. Lemma 6.3 for
€= ﬁ implies that in each 'y;»‘ there are points Cj0, (515 - - -5 Cjm;—1,Gjm; SO that

U 19 g - 211¢§le(§]1 Cu-1)] < 2

for every z € K. Now, the points (j; (1 < j < k,1 <1 <mj)arein 2\ K and we have

|2mif(2) = Yh_y S 14%2«” Ga-1)|
|Zj 1( 'yJC de Zl lc%lz(c]l_g]l 1))‘

<Z] 1|3€7 f_OdC Zl lg‘f”z(cjl_cjl 1)‘
323-:1%:27%

for every z € K. So if we denote aj; = —f(;;rj%l) (¢ji — Cji—1), we have that

a
1f(z) =2 = 121 1z]g;l|§6

a;

forevery z € K. Now the function g(z) = Zj Dy
(of 2) of the form = w1th§€Q\KandHf g||K<e O

1s a linear combination of functions
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Lemma 6.4. Let Q) C C be open, R > 0, § > 0. Then
K ={2z€Q||z| <R,|z—w| >0 forevery w € Q°}

is a compact subset of ().

Proof. Ttis clear that K C ). Also K is bounded since K C Dg(R).

Now, let z,, € K for all n and z,, — z. From |z,| < R for all n we get |z| < R. Also, for every
w € QF, from |z, — w| > 0 for all n we get |z — w| > J. Therefore, z € K and hence K is
closed. O

The theorem of Cauchy in general open sets. If f is holomorphic in the open set ) and if the
cycle 3, consisting of closed piecewise smooth curves, is null-homologous in <), then

fz f(z)dz =
First proof. Let the cycle X consist of the closed piecewise smooth curves oy, . .., o, with mul-
tiplicities k1, ..., k. Since o} U --- U o, is a compact subset of €2, there is § > 0 so that every

point of o U --- U o7, has a distance > 20 from ¢ and there is R > 0 so that o7 U --- U 0, is
contained in the closed disc Do(R). We consider the set

K={2€Q||z| <R,|z —w| > 26 forevery w € Q}.

Lemma 6.4 says that K is a compact subset of 2. Moreover, o7 U ---U o, C K.

Now, take any ¢ in Q \ K. Then either ( ¢ Dg(R) or the distance of ¢ from Q€ is < 24. If
¢ & Do(R), then, since ¥ is in Do(R), we have that n(3; ) = 0. If the distance of ¢ from Q€ is
< 20, then there is w € Q° so that | — w| < 2J. Then every point of the linear segment [(, w]
has distance < 24 from w and hence from Q€. Thus [(, w] is not contained in K which implies
that [(, w] is in the complement of 07, ..., o7;. Since [(, w] is connected and it is contained in the
complement of every o} we have that n(0;; () = n(o;;w) forevery j = 1,...,n. Therefore,

n(E;¢) =27 kjn(o: Q) = 27 kjn(ojiw) = n(S;w) =0

because w € ¢ and X is null-homologous in 2. With this compact set K we form the closed
curves 71, ..., in © \ K, which are described in proposition 6.18. According to proposition

6.18 we have
() leQmﬁylgz

for every z € o] U --- U o},. Hence

SEE z)dz =3 ?—1k‘f f(2) dZ:Z?:1kjfaj(Zl 12}rz§w g(cz ) c
Zl 1§’7l( 32711'1 a-ziiﬁdz) f(C)d<
SR b (S0 k(o)) £(Q) d
= Y, §, n(Z () de.
Finally, when ¢ belongs to any of 77, ..., ; then ( belongs to Q2 \ K and so n(3;¢) = 0. Now
(6.19) implies ¢ f(z) dz = 0.
Second proof- We start with the same compact K C (2 as in the first proof and we observe, exactly
as before, that n(3; () = 0 for every ¢ € Q\ K. Now, proposition 6.19 implies that, for every

€ > 0, there is a function g which is a linear combination of functions (of 2) of the form = Wlth
¢ €Q\ K andso that || f — g||x <e. Let

9(z) = ) 2

(6.19)
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with (1,...,(n € Q\ K. Then we get
552 g(2)dz=3" fz Z%Cl dz =" a2min(%;¢) =0

Now we apply proposition 6.19 with ¢ = % and we get a sequence (g, ) of functions, of the same

type as the g we just considered, so that g, — f uniformly in K. Since X is in K, we have

that fz gn(2) dz — g f(2) dz and, finally, since ¢, gn(2) dz = 0 for every n, we conclude that

$ f(2)dz = 0. [
b

It is interesting to see that the assumption of our last result is at the same time a special case
of it. Indeed, if we take any w € )€, then the function f(z) =
theorem of Cauchy implies that fz dz = 0. But this says that n(E w) = 0. In other words,
we have the following situation. The assumptlon that ¥ is null-homologous in (2 is equivalent to
the validity of the theorem of Cauchy for the very particular holomorphic functions of the form
f(z) = . Therefore the real content of the theorem of Cauchy is that the
validity of 552 z) dz = 0 for the special holomorphic functions in Q) of the form f(z) = z_l — for
every w € Q° lmplles its validity for every function f which is holomorphic in €.

Example 6.4.1. Let v be any closed piecewise smooth curve in the convex region 2 and let w € Q°.
Then w is contained in the unbounded connected component of C \ v* and proposition 6.6 implies
that n(~;w) = 0. Hence + is null-homologous in 2. Now the theorem of Cauchy for general
open sets says that j;v f(z)dz = 0 for every f holomorphic in Q2. We conclude that the theorem
of Cauchy for convex regions is a corrolary of the theorem of Cauchy for general open sets.

Example 6.4.2. We consider the open set D, (R1, R2) with 0 < R; < Ry < +00. We consider
the closed curve v which describes the circle C,, (r), with R; < r < Rs, once and in the positive
direction. This curve is not null-homologous in D, (R, R2). Indeed, 2 is in the complement of
D.,(R1, R2) and n(v; 20) = 5 foz () =% ZO dz = 1. So we do not expect that f f(z)dz=0

is true for every f which is holomorphic in D, (R, R2). In fact, this is certainly not true for
f(Z) = le Zo(RlvRQ)'

Example 6.4.3. We consider the same open set D, (R, R2) as in the previous example and an
arbitrary closed piecewise smooth curve v in D, (R1, R2). We shall see how we can evaluate
ﬁy f(2) dz with a minimum of effort for any f holomorphic in D,, (R, R2). It is clear that, de-
pending on the specific curve ~, it may be difficult to evaluate the integral using a parametric
equation of .

Let us assume that the shape of the trajectory and the direction of v allow us to count the number
of rotations of 7y around zo, i.e. we assume that we know the integer k = n(~; 2¢).

Since D, (R;) is one of the two connected components of the complement of D, (R1, Rz), we
have that n(v; 2) = k for every z € D,,(R1). On the other hand, we have that n(vy;2) = 0
for every z in the unbounded connected component of the complement of D, (R;, R2), which
is D,,(Ra,+00). Now we take a closed piecewise smooth curve 77 in D, (R1, R2) such that
the ﬁn f(2) dz may be much easier to evaluate than the original fv f(2)dz. For instance, we

may consider 71 to describe the circle C, (r) with Ry < r < R» once and in the positive direc-
tion. In this case we have that n(y1;2) = 1 for every z € D,,(R1) and n(y1;2) = 0 for every
z € D,y (Rg,+00). Now we form the cycle ¥ = 1+ + (—k) 1 and we have

n(¥;z) = 1n(y; 2) + (k) n(y1;2) = k+ (=k) =0
for every z € D, (R;) and also

n(X;z) =1n(y;2) + (k) n(y1;2) =0+0=0
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for every 2 € D, (Rz,+0o0). Therefore, 3 is null-homologous in D, (R, R2) and the theorem
of Cauchy implies

O—fz dz—lff )dz + (— f’}/lf

and hence
fv f(z)dz=k fﬁn f(z)dz =k 3§Czo(r) f(z)d=.
We see that the evaluation of f,y f(2) dz has been reduced to the evaluation of the possibly much
simpler integral §, o f (z) dz and the evaluation of the index n(~; zp).
20
We shall generalize this technique in the following sections and chapters.

Now we generalize Cauchy’s formulas for derivatives.

Cauchy’s formula for derivatives and closed curves in general open sets. If f is holomorphic in
the open set () and if the cycle 3., consisting of closed piecewise smooth curves, is null-homologous
in Q) then for all n € Ny we have

n(3;2) f(2) = 7% f (Ll dC
for every z € Q which does not belong to the trajectory of any closed curve forming ..

Proof. The function F'({) = HO-1) ) f(z) is holomorphic in 2\ {z}. Since z is aroot of f({) — f(2),
of. p

the singularity z of F' is removable. So we may define F'at z as F'(z) = lim¢_, , (CT = f'(2)
and then F' becomes holomorphic in {2. Now we apply the theorem of Cauchy in general open sets
and get

fo 1B ¢ = fo POy dc =0,
which implies
271'23%)( de f 27rz§2(1zd< f()( )

for every z € ) which does not belong to the trajectory of any closed curve forming ¥. This is
the result of the statement in the case n = 0. For derivatives of order n > 1 we differentiate both
sides of the last formula, just as in the proof of the same theorem in convex sets, using the fact that
the index of X is constant in a neighborhood of z. O

Exercises.

6.4.1. Let f be holomorphic in D\ {0}. If the closed piecewise smooth curve v is in D \ {0} and
n(7;0) = 0, evaluate § f(2) dz

6.4.2. Let f be holomorphic in C and f(1) = 6, f( ) = 10. Prove that, if ~ is any closed
piecewise smooth curve in C \ {—1,1}, then 5 9%

P dz can take every integral value.

6.4.3. Let f(2) = (1 4+ %)e” for z # 0. Find all the values of a so that fv f(2)dz = 0 for every

z
closed piecewise smooth curve v in C \ {0}.

6.4.4. (i) Find all possible values of 3@7 z;:i dz, where -y is an arbitrary closed piecewise smooth
curve in C \ {0, 1}.

(ii) Find all possible values of f,y z;:; dz, where + is an arbitrary piecewise smooth curve in C \
{0, 1} with initial endpoint —i and final endpoint i.

6.4.5. Find all possible values of fv —5>= dz, where + is an arbitrary closed piecewise smooth
curve in C \ {0, 7}.

6.4.6. Let f be holomorphic in the open set €2 and v be a closed piecewise smooth curve null-
homologous in 2. Let also n(; zg) # 0.

(i) If A is the connected component of C \ v* which contains zg, prove that A C Q2 and 9A C ~*.
(i) If | f(¢)| < 1 for every ¢ € v, prove that | f(zp)| < 1.
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6.5 The residue theorem.

Let 2o be an isolated singularity of f and let

S an(z — 2)"

be the Laurent series of f in the ring D, (R) \ {20}. Then the coefficient a_; is called residue of
f at zg and we denote

Res(f;20) = a—1 = 5 szo(r) f(¢)d¢
for0 < r < R.

Example 6.5.1. If z; is a removable singularity of f, then a,, = 0 for every n < 0 and in particular
Res(f;29) = 0.

Example 6.5.2. Every function of the form f(z) = —L— with N > 2 has residue 0 at z.

(z—20)N
Example 6.5.3. If zg is a pole of f of order N > 1, then we can find “easily” the residue of f at zg.
Indeed, there is a function g holomorphic in a disc D, (R) so that g(z9) # 0 and f(z) = —9G)

(z—20)N

for every z € D, (R) \ {20}. From the Taylor series >_,/20 by, (2 — 20)" of g we see that

g™V (20)

Res(f;20) = by-1 = Ve
For instance, if N = 1, then Res(f; 29) = g(z0) and, if N = 2, then Res(f; z9) = ¢(20)-

Example 6.5.4. We consider a power series of the form

ﬁ;fl an(z — 20)"

and we assume that its radius of convergence is 0, i.e. that it converges in the ring D, (0, +00).
If f is the holomorphic function defined by the power series in D, (0, +00), then

ﬁ fq f(() ¢ = n(’}’; ZO)a—l = n(»y; ZO) Res(f; ZO)

for every closed piecewise smooth curve v in C \ {zp}. Indeed, since the power series converges
uniformly in the compact set v* which is contained in its ring of convergence, we have

oL §, F(Q)dC = Y i (¢ — )" dC = %2 §, A dC = n(: 20) Res(f; z),

where, for n < —2 we used the result of example 4.5.3. Of course, this result holds for a general
cycle ¥ which consists of closed piecewise smooth curves v in C \ {z}.

The residue theorem is a generalization of the last example.

The residue theorem. Let f be holomorphic, except for isolated singularities, in the open set §)
and ¥ be a cycle which is null-homologous in ) and so that no isolated singularity of f is in the
trajectory of any of the closed curves forming 3. Then n(X;z) # 0 for at most finitely many
isolated singularities z of f. Moreover, if 3 consists of closed piecewise smooth curves, then

% fE f(C) dC = Zz sing. offn(z; Z) Res(f; Z),

where the sum, extended over all isolated singularities of f in (), is finite.
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First proof. Exactly as in the proof of the theorem of Cauchy in general open sets, we see that
there is a compact set K’ C Q2 so that n(3; z) = 0 for every z € Q\ K. Now, since all singularities
of f are isolated, there can be only finitely many of them in K. Let 21, ..., z, be the singularities
of f in K. Then every other singularity z of f isin Q \ K and hence n(X;z) = 0.
We define the integers

p1=n(Z;21),. .., pn = n(Z; 2n)

and then
Zz sing. of f TL(Z7 Z) RGS(f; Z) = ZZ:l Dk Res(f; Zk)'
Therefore, it is enough to prove

sty F(C)dC = S5, pi Res(f; 2k). (6.20)
Since every 21, ..., 2, is an isolated singularity, there are disjoint closed discs Ezk (rg) for k =
1,...,n so that each of them contains no singularity of f except its center. We denote =y the

closed curve which describes the circle C, () once and in the positive direction. We consider
the cycle

Y =24 (—p) o+ (=)
and the open set

Q' =Q\ {7 € Q| 2 singularity of f}.
Clearly, f is holomorphic in 2" and we shall prove that the cycle ¥’ is null-homologous in €', i.e.
n(X;z) = 0 forevery z ¢ Q. If z ¢ , then either z ¢ Q or z = z1,..., 2, or 2 is any other
isolated singularity of f in .
If z ¢ Q orif z is any isolated singularity of f in Q different from 21, ..., z,, then n(X; z) = 0
and n(vyx; z) = 0 for every k. Therefore

n(Xz) = n(Z;2) — pin(n;2) = = pan(mi 2) = 0.
If z = 2y, for some ko, then n(3;2) = n(X; 2k,) = pPr, and n(Vk,; 2) = n(Viys 2k,) = 1 and
n(vk; 2) = n(yk; 2k,) = 0 for every k # ko. Therefore
n(X;z) = n(%;2) —pin(v;z) — - — Pan(n; 2) = Pry — Pho = 0.
Thus, Y’ is null-homologous in €. Since f is holomorphic in ', the theorem of Cauchy implies
$ss f(¢) d¢ = 0. Hence
$o F(Q dC = Sy pi §, F(C)dC = 278 S i Res(f; 1)

and we proved (6.20).

Second proof. We follow the first proof up to the point where we considered the isolated singular-
ities z1, ..., zp of f. Le. n(X; z) = 0 for every isolated singularity of f different from 21, ..., z,.
Now, we consider the corresponding singular parts s1, ..., s, of f at z1,..., z,. Then we know
from section 5.8 that f — s, is holomorphic at z; and also that s is holomorphic in C \ {zx}.
Hence the function

g=f—s1—...— sy
is holomorphic in €2 except at the isolated singularities of f which are different from z1, ..., z,.
We consider the open set

Q" =0\ {z € Q|2 is asingularity of f,z # 21,..., 2}

and then g is holomorphic in ”. Also, ¥ is null-homologous in £2”. Therefore, the theorem of
Cauchy implies that 2%” $9(¢) d¢ = 0 and hence

o b F(OdC = 0701 ok e s1(C) dC = 7 n(; i) Res(sk; 21)
= 1 n(Z; z) Res(f; z),

where for the second equality we used the result of example 6.5.4. O
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Exercises.

6.5.1. Find the singular parts as well as the residues of

1 —1 1
€%+ el/z) cos;l

1
22452467 (22-1)2° tan z

' sinz? '’ sin?z’ ef—1
at their isolated singularities.

6.5.2.If f = gh, where g is holomorphic at zg and h has a pole of order 1 at 2y, prove that
Res(f;20) = g(z0) Res(h; 20).

6.5.3. Let f = where g, h are holomorphic in a neighborhood of zy. Assume that 2 is a root of
h of multlpllclty N and not a root of ¢g. Then zg is a pole of f of order V.

(i) If N = 1, prove that Res(f; z9) = h,((ioo))

(i) 1T = 2, prove that Res(f; 20) = SCo! Go) 2o o)

6.5.4.1f 21, ..., 2, € Do(R) are distinct and f is holomorphic in an open set containing Do(R)
and p(z) = (2 — 2z1) - - - (2 — zp), prove that

f(z) — o (L) f(zn)
fCo m dZ = QWZ(p,(le) + .+ p/(zn))'

6.5.5.1fn € N, evaluate ¢, (n) tan(mz) dz.

6.5.6. Let r = % be a rational function with degq > degp + 2. If 21, ..., 2, are the distinct roots
of ¢, prove that Y, Res(r; z;) = 0. What is the value of ), Res(r; z;) if deg ¢ = degp+1?

6.5.7. 1f f(z) = e**(1/?), prove that Res(f;0) = Y% wriatryr-

6.5.8. (i) Prove that there is m > 0 so that | sin(7z)| > m and |tan(7z)| > m for every z € OR,,
where R,, is the square region with corners at the points £ (n + %) +i(n+ %), n € N.
(ii) Let f be holomorphic in Dy(R,+o0) for some R > 0 and let lim,_,, zf(z) be a complex
number. Prove that

1My s o0 $op, sy dz =0, limy oo fp w22 dz =0,
(iii) Let f be holomorphic in C except for poles 21, . .., zy ¢ Zandletlim,_,~ 2z f(2) be a complex
number. Prove that

limy, o0 Sp_, F(k) = =7 SO0, Res (2255 2)),

limy, yoo SR, (= 1)FF(R) = =7 S Res (L2 2)).
(iv) If w ¢ Z, prove that

1y 15 n 1 _
—w + Zk—foo( —w E) = limy,— 400 Zszn k—w — _%'
(v) If w ¢ Z, prove that
400 1 2
k=—oc0 (k—w) sin? (rw)
and then that
oo 1 _ 2
n=1k2 = 6"
(vi) If @ > 0, prove that
o 7'ra_;'_6 Ta - 1 T 1
S e =k t E R, TS e = e — Lot
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6.6 Evaluation of integrals.

The residue theorem is a powerful tool for the evaluation of integrals, because it reduces this
evaluation to the location of the isolated sinularities of the function to be integrated and to the
evaluation of the corresponding residues. Let us see some characteristic examples.

Example 6.6.1. Evaluation off+ (x) dx, wherer = ’q’ is a rational function, deg q > degp+2,
q has no real roots and the coefficients of p, q are real numbers.
Letp(x) = apz™+- - - +a1x + ag, with a,, # 0, and g(x) = by z™ + - - +b1x+b0,withb #0,

and m > n + 2. Then r is continuous in R and the generalized integral f +oo (x) dx converges.
To see this, we observe that lim,_,, 2™ "r(z) = “” . Hence, if c = % 0, there is Ry > 0 so
that

& < [2mmr(2)] < 2 (6.21)

when |z| > Ry. Now, since m — n > 2, we get

f:;jo Ir(z)| dz < QCf:£° Ix\*}"” dx < +o0o, f r)|de < ch

Thus, the integrals [ :OOO x) dx, f Ro x) dx converge absolutely and so they converge. More-

over, 7 is continuous in [— Ro, Ry and so the integral f x) dz also converges.

We consider the roots of ¢ in the upper halfplane and 1et them be z1,..., 2y, where M < m.
We take any R > Ry so that z1, ..., z)s are contained in the disc Dy(R). We apply the residue
theorem with r = £ which is holomorphic in C except for the roots of ¢ and with the closed curve
~r which is the sum of the linear segment [— R, R|, with parametric equation z = z, x € [—R, R,
and of the curve op, with parametric equation z = Re®, t € [0, 7], which describes the upper
semicircle of Cy(R) from R to —R. The trajectory of i contains no isolated singularity of r.

Since g rotates around each of 21, . .., 27 once and in the positive direction, the residue theorem
implies

— o r(z) dz = Res(r; zl) + -+ Res(r; zp).
Wehave that § r(2)dz = [|_p g 7(2)dz + [, 7(2) dz and hence

ff’Rr(a:) dr = f[—R,R] r(z)dz = 2mi(Res(r; 21) + - + Res(r; 2n)) — [, 7(2) d.

Since R > Ry, (6.21) and m > n + 2 imply

’fch dz}<Rmn7rR—>O

when R — +o0, and we conclude that

[ r(x) do = 2mi(Res(r; 21) + - - - + Res(r; 2a1)).

Thus, to evaluate f oo () dx we only need to find the residues of r at the poles z1, ..., zps of r
in the upper halfplane
Example 6.6.2. Evaluation of pv f oo (z) dx, where r = g is a rational function, degq =

degp + 1, q has no real root and the coeﬁ“ cients of p, q are real numbers.

Let p(z) = apa™ + - -+ + a1 + ag, with a,, # 0, and q( ) = bp12™ o+ bix + by, with
bna1 # 0. It easy to see that the generahzed integral f (x) dz does not converge. Indeed, we

recall the estimate (6.21), i.e. |r(z)| > 2|z| when |z| > Ro Therefore for real z = x we have that

[r(z)| > 5= when z > Ry. Now, r has constant sign in [Ry, +00) and hence

| [ r(a) de| = [ r(@)] da > § [ L do = 4o,
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Thus, fR x) dx = 400 or —oo and, similarly, [~ 1 (2) dz = +00 or —o0
Since the generahzed integral diverges, we examine its principal value, i.e.

pv f+°° )dr = limp_, | oo f (x)dx.

It is easy to see that r(z) — baL % is a rational function whose denominator has degree two units

larger than the degree of its numerator. According to the previous example, there is Ry > 0 so that

an 1 C
‘T(Z) — bn+1 > § W (622)
when |z| > Ry. As in the previous example, we consider the roots z1, ..., zps of ¢ in the upper

halfplane and we take R > Ry so that z1, ..., z)s are contained in Dy(R). We apply the residue
theorem with r = g and the same closed curve v and we get

L § r(z)dz =Res(r;z1) + --- + Res(r; 2p1).

2wt Jygr

Now, ¢ r(z)dz = f[—R,R] r(z)dz + [, r(z)dz and hence

f_RR r(z) dx = 2mi(Res(r; z1) + - - - + Res(r; zpr)) — IGR (r(z2) — 52 1) dy — an_ 1 s,

bnt1 2 bnt1 Jor 2

The last term is

an 1 __ _an T 1 » it _
brn+t1 fUR z dz T bpta fO Rett iRe™ dt

Since R > Ry, we have from (6.22) that

|f0R(’I“(Z oy 2) dz’ < —7TR—> 0

when R — 400 and we finally get

pv f+°° )dx = 2mi(Res(r; z1) + - - - + Res(r; zpy)) —im b,ﬁy

Example 6.6.3. Evaluation of pv f+ (z) dx, where r = % is a rational function, degq >
degp + 1, the real roots of q have multiplicity 1 and the coeﬁ‘cients of p, q are real numbers.

Letp(x) = apz™+- - -+ a1z + ag, with a,, # 0, and g(x) = by,z™ + - - - + byx + by, with b, # 0,
and m > n 4+ 1. We assume that the real roots of ¢ are x1,...,zxy with 1 < ... < xy and that
these are not roots of p. We take eg > 0 so that the intervals [331 —€o, x1+€0), .- ., [T N—€0, TN +€0]
around the real roots of ¢ are disjoint. In order for f too () dx to converge, the generalized inte-

grals r(z) dx and ff:“o (x) dz must converge for every xy. This is not correct. Indeed,

(zi‘fg()]k(z) = g’“(x), where g is a polynomial with g;(z;) # 0 and where

gr = L is a rational function holomorphic at . Since lim.—z, gr(2) = gx(zx) # 0, there

-Z’k €0

we write 7(z) =

is e with 0 < €, < € so that |gx(2)| > 3 |gk(zy)| for every z with |z — x| < €. Hence,
r(z)| > 3 |]‘72’“(2’“)|| for every z with 0 < |z — x| < €. The function r has constant sign in
(g, ) + €] Therefore,

’ xk—I—ek dm} CCk;"rfk: r(z)| dz > |9k(33k | ka‘“k Jxk dr = +00

Tl +E€k

and the generalized integral f r(z) dx does not converge. Similarly, f;:—% r(z) dx does not

converge either. This is why we examine the principal value of fj;o r(x)dzx, i.e.

pv [T r(z) do = limpo oo emsor ([ “r(x) da + [ () do -

-+ ijfjv 116 x)dx + f zytel (z) dx) = limp—tooe—0+ I(R, €).
(6.23)
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We evaluate I (R, €) using a variant of the curve yp of the previous examples: the curve yg ¢, which
is the sum of the linear segments [— R, 1 —¢€|, [z1+€,20—¢€], ..., [tn_1+€, 2N —€], [y +€, R],
of the curve o g, which describes the upper semicircle of Cy(R) from R to — R, and of the curves
Ole,---,0N,, Where each oy, ¢ describes the upper semicircle of the corresponding C;, (€) from
x) — € to ), + €. We just take R large enough and € small enough so that the curve g . rotates
once and in the positive direction around each of the roots z1, . .., zjs of ¢ in the upper halfplane.
Then g ¢ rotates no times around each of the remaining roots of ¢g. The residue theorem implies
that
fm’( r(z)dz = 2mi(Res(r; 21) + - - - + Res(r; 2p1))

and hence
I(R,¢) = 2mi(Res(r; z1) + - - - + Res(r; ZM)) - fUR r(z)dz
= Jow.. r(z)dz — — f
Now, x, is a pole of r of order 1 and r can be written r(z) = Zf—’;k + fx(2) for z # zy in a disc
with center x, where fj, is holomorphic at 23 and ¢, = Res(r;zy). Since fj is bounded in a

disc with center zy, there is M), > 0 and €, > 0 so that |f(2)| < M, for |z — x| < €). Thus,
0 < € < €, implies | f%e fr(z) dz| < Myme and hence lime_,o fo_he fr(2) dz = 0. Therefore,

(6.24)

f%e r(z)dz = ¢ fak — :vk dz + f z)dz 625
= —micy + fok fr(2) dz — —Ticy '
when € — 04. The limit of f z) dz when R — 400 has been evaluated in the previous two
examples:
0, ifm>n+2
li dz = - 6.26
mps o0 [, () d2 {m s ifm =t 1 (6:26)
Now, (6.23), (6.24), (6.25) and (6.26) imply
pv fj;o r(z) de = 2mi(Res(r; 21) + - - - + Res(r; zar))
0, ifm>n+2

+ mi(Res(r; 1) + - - + Res(r;xn)) — {

y an 1 _
I ifm=n+1

Example 6.6.4. Evaluation 0ff+ (z)cos z dz, f+oo (x) sinz dx (or of their principal values),
where v = £ is a rational function, degq > degp + 1, the real roots of q (if they exist) have
multiplicily 1 and the coefficients of p, q are real numbers.

Since the coefficients of p, q are real, we have that (x) € R for every = € R which is not a root

of q. Hence,
[ r(x)cosadr = Re [T r(z)e dx, [ r(x)sinede = Im [0 7(2)ei® da

and we evaluate [7°° r(2)e™® dx (or its principal value).

The method of evaluation has been described already in the previous three examples. We use either
the curve v or the curve 7 . and we evaluate the residues of r(z)eiz at the roots of q.

We shall concentrate on the important specific generalized integral

f+00 sinx f—i—OOOO % dar.

(Equality holds because S22 is even.) We shall evaluate pv fj;o % dx instead of fj;o Sme dz.
Observe that e— = E+i M diverges at 0 because its real part “>* diverges at 0. The imaginary
pa

rt Sig‘” converges at0 and in fact, if we define 2 at 0 to have value lim,_o % =1, then it
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becomes continuous at 0.

The function % is holomorphic in C except for a pole at 0 of order 1. We consider the closed
curve yg . which is the sum of the linear segments [—R, —¢| and [e, R], of the curve o, which
describes the upper semicircle of Cy(R) from R to —R, and of the curve o, which describes the
upper semicircle of Cp(e) from —e to €. Then g does not rotate around the pole 0 of % The

. . . iz
residue theorem implies fm £~ dz = 0 and hence
€

—€ el R etz o P etz
rdrt [ de=— [, Tdz— [, S dz (6.27)
Now,
. . it
e _[meiRe . it __ ;2 [T _—Rsint+iRcost
fO'R ~dz = [ S iRedt =i [ e dt
and

| [, Sde| < [ e Rointar =2 [T/2 emReint g < 9 [/ =5t gy

6.28
= 51— e ®) =0 (6:28)

when R — +o00. For the second inequality we used the well known inequality sint > % for

0 <t < 5. From the Laurent series of % at 0 we see that % = % + h(z) for z # 0, where

h is holomorphic in C. Now, h is bounded in a neighborhood of 0, i.e. there is M > 0 so that
|h(2)| < 1 when |z] < 1. Hence, for ¢ < 1 we have |er h(z)dz| < Mme — 0 when € — 0+.
Therefore

fae % dz = fae %dz + fae h(z)dz
= —mi+ [, h(z)dz — —mi
when ¢ — 0+. From (6.27), (6.28) and (6.29):

(6.29)

—€ eia)

+00 i . R otz .
pv ffoo 67 dr = 11m€%0+7Rﬁ+00 ( —R =z dx + fe 67 dl’) = m.
Since 52 js odd and 2 is even, we get =5 T dr + fR € do = 2 fR sinz 7. and hence
x T ’ g —R =z e T - € x

+00 sinz 1 R sinx _m
fo = dr = lime 04 R—+00 fe = dr = 9-

Example 6.6.5. We shall evaluate [ 2, da.

We consider the holomorphic branch of the logarithm, which we shall denote log 2, in the open
region 2 = C \ {iy |y < 0} and which takes the value 0 at 1. This branch is given by

logz = Inr +if

log z

2244
log z
2244
log 2 iy In2 :

have that g(2) = &5 is holomorphic in  with g(2i) = § — 4= i. Moreover, Res(zlgi’z; 2i) =

g(2i) = § — II}TQ i. Now we consider the closed curve vg . of the previous example. We take R
large enough and e small enough so that g . rotates once and in the positive direction around the
pole 2:. From the residue theorem we have that

for z = re? with r > 0 and -5 <0< 37” The function is holomorphic in €2 except for

_ (ogz)/(=+2i) _ g(z)
z2—21 z—21

the point 2¢ which is a pole of order 1. Indeed, we write and we

2

log z o . logz .o\ _ mIn2 T
§’YR,5 g dz = 2miRes( 557 20) = "5 + 7.

Taking real parts of both sides, we find
2fR Inx dr = mln2 _Reng log z dz—Ref log z dz

€ x244 2 2244 O 2244 :
Now,
log z In R+7 log z Ine+m
‘ faR 2214 dz‘ < g TR—=0, ‘ fae 2214 dz‘ < e me—0
when R — +o00 and ¢ — 0+. Hence

+© Inz 1 R Inx _ wln2
fo 22+4 dr = hme—>0+,R—>+oo f€ 22+4 dr = s

123



+00x
x

Example 6.6.6. We shall evaluate dm when 0 < a < 1.

We write 22 instead of z:

+oo ga—l +oo g2a—1 _ +o0o
0 ¥l dr =2 [ 2241 dz =2 [

withb =2a —1land -1 < b < 1.
We consider the holomorphic branch log z of the previous example in the same region 2. The

function h(z) = €®1°2% is holomorphic in  and, if 2 = = > 0, we have h(z) = e®"® = b,

The function :Z(i)l is holomorphic in 2 except for a pole at ¢ of order 1. Indeed, we write hQ(i)l =
. . br

W = M and we have that g(z) = Z(—fl) is holomorphic in © with g(i) = % e

bm
Moreover, Res|( iy +)1 ;i) = g(i) = “5—. Now we consider the same closed curve g, of the

previous example The residue theorem implies

bw

f'm hQ(i)l dz = 2mi Res(ZQ(JF)17 i) =me2 ",

and hence

- R b br h
(i) [F Ede=med = [ Z2(+)1d [ 22@1 dz.

Now

}fURZ2+1d‘<R2 ﬂ—R_>0 ‘fa’ Z2+1d’< 27T€—>O

when R — +o00 and € — 0+. Hence

T ebmiqy] T sinarm”

br
+o0 ga—l +00 2me 2 °

+00x

We shall evaluate dx in a different way.
We consider the holomorphlc branch of the logarithm, which we shall denote log z again, in the
(different) region 2 = C \ {z |« > 0} and which takes the value ¢7 at —1. This branch is given
by

logz = Inr 46

for 2 = r¢ withr > 0and 0 < @ < 2. The function h(z) = e(@®~11°22 is holomorphic in €2,

and hence hsrl) is holomorphic in €2 except at the point —1 which is a pole of order 1. Indeed, we
have Res( Zsrl), —1) = h(—1) = el® D™ We also consider the closed curve yg . s which is the

sum of the curve o g, which describes the arc of Cy(R) from Re™ to Re’(>™—9) in the positive

direction, of the curve o 5, which describes the arc of Cyy(€) from €e'2™=9) to ee™ in the negative
direction, of the linear segment [ee??, Re'] and of the linear segment [Re?(>™—%) ¢e(27=9)]_ The
residue theorem implies that

f«, h(z) dz = 271 RCS( hiz). ) = 271'16(“ Dmi

R,e,s 2+1 2410
and hence
h(z) h(z)
f[eeus Reid] z+1 dz + fRez(Qﬂ' 8) eei(2m—8)] Z1 dz
_ a—1)mi h(z) h(z)
= Irjele—Dmi _ foR,a 1 dz — fae,é Tt dz.
Now, | /5, ; z+1 ! dz | < QﬂR and | f Z+1 ) dz | < 2“ . Therefore
’ fee“s ,Reid) z+1 dZ + \/’Rel(27T 8) eei(2m—0)] zsrl) dz — 2miel®!) ﬂ—l‘ < 27r R—1 + Qﬂ—e . (6.30)
We have
f h(z za6f
[eeid, Reid) z+1 Te’5+1
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Keeping ¢ and R fixed, we take the limit when § — 0+. Clearly, e’ — 1. Also, reu? = Wll

uniformly in [e, R] and hence

Jiceis sy 2 dz — [T dr (6.31)
when § — 04. We also have

za(27r ) f dr.

h(z)
f[Rei(zw—a)’Eei(zw—a)] erZl dz re 16+1
Keeping € and R fixed, we take the limit when § — 0+. Exactly as with (6.31), we get

ra— 1
f[Rei(Qw—5>7€ei(2w—5)} Z(H) dz — — l2aﬂf T dr (6.32)

when § — 0+. From (6.30), (6.31) and (6.32) we get

(1 — ei2em) [Pt dr — 2mielo—1mi| < 20RL et

Finally, we let ¢ — 0+ and R — o0 and we conclude that

+o0 g4 R pa—1 dr = oriela—bmi o

0 T+1 dx - hm€—)0+ R—+o00 f 1 — T 1_ef2am — sinarm”

Example 6.6.7. Evaluation of fO r(cos@,sin ) df, where r(s,t) is a rational function of two
variables.
We parametrize Co(1) with z = €%, § € [0, 2], and we have cos 6 = (z+ 1), sinf = (2 — 1)

z
and % = je" = iz. Hence

fo% r(cos,sinf) df = 1 fCo 21y 1 gy

2z ’ 212 z

The function s(z) = r(ZZJZ“l, Z2;1) is a rational function of z. We apply the residue theorem

after we evaluate the residues of s at its poles in the disc Dy(1).

Exercises.
6.6.1. Evaluate
+;° w7 A, fjozo WM dz, fj;o m dx, _Jr;o 1_’(:% dx,
v [ Hhde, v [T atmda, pv [ 5SS da,
fjt;o % d.ﬂ?, ft;o mz S—Tlx d.l‘ pv j;o r((;()?s—fl) d.ilf,

2 o 20
Jo Tawmar @ (0<a <), [ tegraz 40 (0 <a<1),

ST L ag (ja| > 1), [ e da (|a] < 1),

a+sin® 0 243242
+oo  Inz +00 Inz +oo In(1+x2)
0 ($2+1)($2+4) dx? fo CE2+1 d 0 rlta d:]j (0 <a< 2),
+00  cosz +oo 1 +o0 2
—00 efte”? dz, 0 x348 dz, 0 274+16 dr, 0 2+C059 de.
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6.7 The argument principle. The theorem of Rouché.

A function f is called meromorphic in the open set € if it is holomorphic in €2 except at certain
points in €2 which are poles of f.
Let f be meromorphic in the open set €2. If w € C, we shall denote A,, the set of solutions of
f(z) =w,ie.
Ay ={z€ Q] f(z) = w}.

If f is not constant in any connected component of 2, then the solutions of f(z) = w are isolated
points.

Also, letting f have the value oo at each of its poles in {2, so that f becomes continuous at its
poles considered as a function from €2 to C, we denote A, the set of solutions of f(z) = oo, i.e.

A ={2€ Q]| f(z) =0} ={z € Q| zisapoleof f}.

The argument principle. Let w € C. We assume that f is meromorphic in the open set ) and that
it is not constant in any connected component of (). Also let 3. be a cycle, which consists of closed
plecewise smooth curves and which is null-homologous in €, so that no element of A, U A is in
the trajectory of any of the closed curves forming .. Then n(X; z) # 0 for at most finitely many
elements of A, U Aso and so the sums

Dozen, ME2)m(z),  Yoiea, n(352)m(z),
where m(z) is the corresponding multiplicity of z € A,, U A, are finite. Moreover,
n(f(D)w) = 55 fo o dC = S, (S 2)m(z) = Lca n(Bi2)m(z).  (6.33)

Furthermore, even if the closed curves which form % are not necessarily piecewise smooth, then
the left and the right side of (6.33) are still equal.

Proof. At first we assume that the closed curves forming 3 are all piecewise continuous.

We apply the residue theorem to the function f{—/w The isolated singularities of this function are
the elements of A, U A.

If m(z) is the multiplicity of z € A,,, then there is a g holomorphic in some neighborhood D, ()
of z so that f(¢) —w = (¢ — 2)™*)g(¢) when ¢ € D, (r) and also g(z) # 0. Since g(z) # 0, we
may assume that r is small enough so that g(¢) # 0 when ¢ € D, (r). Therefore

f{é)(é_)w _ TCnEZZ) 4+ 20
when ¢ € D,(r)\ {z}. Since %/ is holomorphic in D, (), we have that z is a pole of fji—/w of order
1 with residue m(z).

If m(z) is the order of z € A, there is a g holomorphic in some neighborhood D, () of z so that
f(Q)—w= % when ¢ € D,(r) and also g(z) # 0. Since g(z) # 0, we may assume that
7 is small enough so that g(¢) # 0 when ( € D,(r). Hence

£ =m) g
FO-w = <=z T 90

when ¢ € D,(r)\ {z}. Since %l is holomorphic in D, (r), we have that z is a pole of f{—/w of order
1 with residue —m(z).

Now, the residue theorem implies the second equality in (6.33). The first equality is a matter of
a simple change of variable. If { = ~(¢), t € [a,], is the parametric equation of any curve 7
forming ¥, then the parametric equation of f () is n = f(y(t)), t € [a, b], and hence:

Jw) = = b LY () gy — 1
n(f(0);w) = 555 $() 77w I = 57 Ja % dt = 553 4, f(C)(—)w dg.
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The rest is simple if we recall that ¥ = nyy; + - - + ngye and f(2) =ni f(y1) + -+ ne f ().
Now we assume that the curves v which form ¥ are not necessarily piecewise smooth.

We consider any of the closed curves which form ¥ with parametric equation ¢ = (), t € [a, ],
and the corresponding f(7) with parametric equation n = f(y(t)), t € [a,b]. The set A, U A
has no accumulation point in €2. Thus, the set A,, U Ao, U Q¢ is closed and we also have that it is
disjoint from ~*. Therefore, there is ¢; > 0 so that

[y(t) — 2] > 2€ (6.34)
for every t € [a,b] and every z € A, U Ax U Q°. We consider the set
K ={z||z —v(t)| < ¢ foratleastone ¢ € [a,b]}

and we easily see that K is a compact subset of 2\ (A,, U A ) and hence f is continuous in K.
Also, we have f(z) # w forevery z € K and ~* is a subset of K and hence there is e > 0 so that

[f(y(t) —w| > e2 (6.35)
for every ¢ € [a, b]. Since f is continuous in K, there is §; with 0 < 01 < ¢; so that

1f(2") = F(Z")] < e2 (6.36)
for every 2/, 2 € K with |2/ — 2”| < 61. Finally, there is § > 0 so that

(') = (") < & (6.37)

for every ¢/, t" € [a,b] with |t/ — t"| < 4.

Now we take successive points ¢ = tg < t1 < ... < tp—1 < t, = bsothatt; —t;_1 < J for
every k and we consider the polygonal curve o : [a,b] — C consisting of the successive linear
segments [Y(tx—1),v(tx)]. It is easy to see that we have

lo(t) =) <o < e (6.38)

for every t € [a, b]. Indeed, if ¢ € [t;_1, tx], then, because of (6.37), we have

o (1) = ()] = | (G275 (t-1) + ==y () — (D)

_ t—tg—
< 5 (i) = () + g () — ()]

tp—t ot 50 5, <
< tk*tkqdl T tk*tkfl(sl =01 < €1

Now, (6.34), (6.38) imply
lo(t) =v(B)] < |[v(t) — 2|

forevery t € [a,b] and every z € A,, U Ax. Proposition 6.14 implies n(~; z) = n(o; z) for every
z € Ay U Ay and hence

>ea, P 2)m(z) =3 ca (i z) m(z)

(6.39)
= ZzeAw n(o;z)m(z) — Zzero n(o;z) m(z).

Also, (6.38) implies o(t) € K for every t € [a, b] and, because of (6.36),

[f(e(8) = F(y(B)] < e2

for every t € [a, b]. But then (6.35) implies
[F(a(t)) = fF(y ()] < |f(v(2)) — wl
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for every ¢ € [a, b]. Proposition 6.14 again implies

n(f(7);w) = n(f(o);w). (6.40)

Since the curve o is piecewise smooth, we have from the first part of the proof that
n(f(o);w) =", ca, nlo;2)m(2) =3 . ca_nlo;2) m(z). (6.41)
Now, (6.39), (6.40) and (6.41) imply the equality of the left and the right side of (6.33) for each ~
forming 3 and the proof is finished by addition over all such ~. U

The geometric content of the argument principle is described as follows. The number of ro-
tations of f(X) around w is equal to the total number of rotations of Y. around the solutions of
f(2) = w minus the total number of rotations of ¥ around the poles of f. When we count the
solutions of f(z) = w and the poles of f we take into account their multiplicities. We count m(z)
points at every point z € A,, U Ay, which has multiplicity m(z).

If f has no poles in €2, i.e. if f is holomorphic in €2, then the argument principle says that the
number of rotations of f(X) around w is equal to the total number of rotations of ¥ around the
solutions of f(z) = w. In fact, if ¥ is such that for every z not in the trajectories of the curves
forming ¥ we have either n(X;2z) = 1 or n(X;z) = 0, then the number of rotations of f(X)
around w is equal to the number of solutions of f(z) = w which are surrounded by X.

The theorem of Rouché. Let w € C. We assume that f, g are holomorphic in the open set () and
that they are not constant in any connected component of ). We also consider 3. to be a cycle
which is null-homologous in Q. If | f () — g(¢)| < |g9(¢) — w| for every C in the trajectories of the
closed curves forming %, then

Sen, , (2 my(2) = Yoen,, n(S:2) my(2),

where my(z) and my(z) are the corresponding multiplicities and Ay, y = {z € Q| f(z) = w},
Apg={2€Qg(z) = w}

Proof. We observe that the condition | f(¢) — ¢g(¢)| < |g(¢) — w| for every ( in the trajectories of
the closed curves forming X implies that no element of A,, y U A, 4 is in these trajectories. The

function h = f:—g is holomorphic in €2 except for the elements of A, 4, which are either poles or
removable singularities of h. From (6.33) we have

n(h(X);0) = 2 ea,, M5 2) ma(2) = Xo.ca, 755 2) ma(2). (6.42)

If z € Ay ¢ \ Aw,g, then z € Agp and mp(2) = my(2). Similarly, if 2 € Ay, 4\ Ay, f, then
z € A and mp(2) = mgy(z). Finally, if z € A,y N Ay g, then we have three cases. If
my(z) > mg(z),then z € Ag p, and mp(2) = mys(2) —mg(2). if my(2) < mg(2),thenz € A p,
and myp,(2) = mg(2) — my(2). f my(z) = mgy(2), then z & Ay, U Ao p, and my(2) = 0. All
these imply

Dseng, MEi2) mn(2)— Y ea, n(E;2) mu(2)
=D cen,  (E2)myp(z) = X ocn, , M2 2) my(2)

and from (6.42) we get
Sen,  n(Z52)mp(2) = Yoean n(S:2) my(z) = n(h(£);0).

Now, our hypothesis says that |h(z) — 1| < 1 for every z in the trajectories of the curves forming
Y. Therefore, the cycle h(X) is in the disc D1 (1) and hence n(h(X);0) = 0. O
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Example 6.7.1. We shall find the number of roots of f(z) = 2" — 22° + 623 — 2+ 1inD.
We consider g(z) = 62 and we have

f(2) = g(2)| = |27 = 22° — 2+ 1| <[]+ 202 + [2] + 1 =5 < 6]z = [9(2)]

for every z € T. Now we apply the theorem of Rouché with w = 0 and ¥ consisting of only the
curve y which describes T once and in the positive direction. We have n(v; z) = 1 forevery z € D
and n(7; z) = 0 for every z ¢ D. The only solution of g(z) = 0 in D is z = 0 with multiplicity
mg(0) = 3. Therefore

Zzer,g n(vy; 2) mg(z) = Zzer,grﬂD) mg(z) = 3.
Moreover,
ZZEA()J TL(’)/7 Z) mf(Z) = ZZGA()’fﬂD mf(Z)
Now the theorem of Rouché implies that ) Ag_yD M #(%) = 3 and hence f has three roots in I.

Exercises.

6.7.1. Let f be holomorphic in D, (R), let 0 < r < R and assume that there is no solution of
f(z) =win Cy(r). If k € N, describe the content of

1 f'(z) Kk
o szo (r) (Z)Z_w Z¥dz.
6.7.2. Let f be holomorphic in D and continuous in D and let | f(z)| < 1 for every z € T. Prove
that the equation f(z) = 2" has exactly n solutions in D.

6.7.3. Find the number of roots of
(i) 2* — 62 + 3 in Dy(1,2).
(i) 2* + 822 + 322 + 82 + 3in {z| Rez > 0}.

6.74.Letz1,...,zp, € Dand |A|=1.InC\ {%, . %} we consider the function

B(2) = M= 125
We know from exercise 5.9.10 that B(z) € D for every z € D and that B(z) € T for every z € T.
(i) Find the index with respect to 0 of the curve with parametric equation w = B(e®), t € [0, 27].

(ii) Prove that for every w € D the equation B(z) = w has exactly n solutions and all of them are
in D.

6.7.5. Prove that the set of all meromorphic functions in the region {2 is an algebraic field.

6.7.6. Let f be holomorphic in the open set 2. We assume that « is a closed piecewise smooth
curve in €2, that C \ v* has only one bounded connected component U and that n(vy; z) = 1 for
every z € U. We also assume that C \ f()* has only one bounded connected component V' and
that n(f(y);w) = N forevery w € V.

() If f(2) & f(y)* forevery z € U, prove that f is N-to-one from U onto V.

(i) If moreover N = 1, we may consider the inverse function f~! : V' — U. Prove that

F7H ) = 5 f, 1 &

for every w € V.

6.7.7. Let f(2) = > 20 an2" for » € D and let ¥ C D be compact with 0 € F. If m is the
number of roots of f in F', prove that min,cor | f(2)| < |ao| + |ai| + -+ + |am]|.

6.7.8. Let f be holomorphic in D and continuous in ID. Assume that the restriction of f in T is
one-to-one and hence the curve v(t) = f(e%), t € [0, 27], is closed and simple. Using Jordan’s
theorem, prove that f is one-to-one in D) and that it maps D onto the interior region of . Also
prove that + has the positive direction.
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Chapter 7

Simply connected regions and the
theorem of Riemann.

7.1 Conformal equivalence.

If Q C Cis aregion and f is holomorphic and not constant in {2, then by the open mapping
theorem f(£2) is also a region.

Proposition 7.1. Let f be holomorphic and one-to-one in the region QQ C C. Then f(Q) is also a
region, f'(2) # 0 for every z € Q and f~1 is holomorphic in f ().

Proof. 1If f'(z9) = 0 for some z € (, then theorem 5.2 implies that there is N' > 2 so that f is
N-to-one in some open set U C ) containing 9. Hence f’(z) # 0 for every z € Q.

Now let wy € f(€2) and consider the unique zy € €2 so that f(zp) = wp. Then proposition 5.8
implies that there are two open sets, U C Q and W C f(Q2) with 29 € U and wg € W so that
f~1: W — U is holomorphic. Thus f~! is holomorphic at every wy € f(Q). O

Let f be holomorphic and one-to-one in the region 2 C C. Since f(z) # 0 for every z € Q
and due to the discussion in section 3.3, we say that f is a conformal mapping of €.

Two regions 21, 2o C C are called conformally equivalent if there is f : 1 — €5 holo-
morphic and one-to-one from {2; onto €2s.

If f : O — Qo is holomorphic and one-to-one from € onto Oy, then f~! : Qg — € is
also holomorphic and one-to-one from {25 onto €2;. It is easy to see that conformal equivalence
between regions in C is an equivalence relation.

The Schwarz lemma. Let f : D — D be holomorphic in D and f(0) = 0. Then

) 1(2)| < |2| for every 2 € D,

(i) |//(0)] < 1

If equality holds in (i) for at least one z € D\ {0} or in (ii), then there is a constant ¢ with |c| = 1
so that f(z) = cz for every z € D.

Proof. Since f(0) = 0, the function @ has a removable singularity at 0 and we may define the
function g by
o) = {f() ifz€D,z#0
1(0), ifz=0

Then g is holomorphic in .
We take any z € D and we take any r so that |z| < r < 1. By the maximum principle we have

’g<z)| S maXCGCO(T‘) ‘g(C)’ = maXCECO(r) 7"ﬂ(ﬁ)| S

=3 =
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Hence, |g(z)| < 2 and since this is true for every r with [2| < r < 1, we conclude that |g(z)| < 1.
Of course this implies (i) and (ii).

Now, assume that equality holds in (i) for at least one z € D\ {0} orin (ii). Then |g(z)| = 1 for at
least one z € D and the maximum principle implies that ¢ is a constant ¢ in D with |¢| = 1. Hence
f(2) = cz for every z € D. O

Example 7.1.1. Let zp € D and |\| = 1. We consider the function 7" : C — C given by

2—20 ; 1

/\1752, 1fz€(C,z7é%
T(z) =} oo, ifz:%
A if 2=

_%’

Then 7 is a linear fractional transformation and hence it is one-to-one from C onto C and holo-
morphic in C \ {%} The inverse function 7! : C — C is given by

w—wo : 1
By, fweCw# =

~1 _ P |
T (w) =} oo, ifw=

—w%, ifw = oo
where ;1 = % and wy = —Azp. Since |u| = 1 and wy € D, the inverse function 7! is of the same
formasT.
For simplicity, we shall follow the same practice as with all L.f.t. and we shall only write

T(2) = A 2%,
understanding that T(%) = oo and T'(c0) = —% whenever this is needed.

We easily see that
T(D)=D, T(T)=T.

Indeed,

_ 2 _ 1 _ lz==0®> _ 14|z[Pz0l2=|z[2=|20® _ (1=|2[*)(1—|20]?)
1-|T(z)]" =1 M2 M—% 2|2 = T =m0

which implies that |T'(z)| < 1if |z| < 1, that |T'(z)| = 1if |2| = 1 and that |T'(z)| > 1if |z| > 1.
Thus, T(D) C D, T(T) € Tand 7(C \ D) C C\ D. But, since T is onto C, all these inclusions
are equalities.
Another simple property of 7" is

T(z9) = 0.

We also have

T'(z) = A ALzl

1207

for every z # % Thus, T"(z9) = —*— and hence

1—|z0]?
ArgT'(z9) = Arg \.
If we restrict T in D we see that 7" is a conformal mapping of D onto D.

All functions T are called Mobius transformations.

The next proposition describes all conformal mappings of D onto D: they are just the Mobius
transformations.

Proposition 7.2. Let zo € D and 0y € (—m,7w|. Then the function T : D — D given by

T(Z) _ eieo zZ—20

1-zg 2z
for every z € D is a conformal mapping of D onto . Moreover, T is the unique conformal
mapping of D onto D satisfying

T(20) =0, ArgT'(29) = bp.

132



Proof. From the discussion in example 7.1.1 we have all properties of the function 7". So we only
need to prove the uniqueness of 7'.

Let S be another conformal mapping of D onto D satisfying S(z9) = 0 and Arg S’(zg) = 6o.
Then the function f = SoT~! : D — D is holomorphic in D and satisfies f(0) = 0 and
1(0) = ggzg% > 0. By the Schwarz lemma we get | f/(0)| < 1.

But also the function g = T o S~ : D — D is holomorphic in D and satisfies g(0) = 0 and
¢'(0) > 0. Again, by the Schwarz lemma we get |¢'(0)| < 1.

Now, the functions f and g are mutually inverse and hence ¢'(0) = f'%o) Therefore, |f/(0)] =

|¢’(0)| = 1 and the Schwarz lemma implies that there is some ¢ with |¢| = 1 so that f(w) = cw
for every w € D. Now, ¢ = f/(0) > 0 implies ¢ = 1. Hence, f(w) = w for every w € D and
finally S(z) = T'(z) for every z € D. O

Exercises.

7.1.1. Let T, S be two Mobius transformations. Prove that S o T' is a Mébius transformation.

7.1.2. Let f be a conformal mapping of the region 2 C C onto D with f(z¢) = 0 for some 2y € 2
and let g :  — D be holomorphic in © with g(zy) = 0. Prove that |¢'(z0)| < |f/(z0)|. What can
you conclude if |¢'(20)| = | f/(20)]?

7.1.3. Let f D — D be holomorphic in D. Prove that:

(1) 1f j‘le 21)‘ = ’1Z1;2Z;1 ‘ for every 21,22 € D.

(i) |f Z)|2 < 1o ‘Z|2 for every z € D.
Prove that, if equality holds in (i) for at least one pair of 21, zo € D with 21 # 25 orin (ii) for at least
one z € D, then f is a Mdbius transformation and then equalities in (i) and (ii) hold identically.

7.1.4. (See exercise 7.1.3.) For every piecewise smooth curve v : [a, b] — D we define the hyper-
bolic length of v by

() = [ T dt.

(i) If f : D — Dis holomorphic in D, and ~y is a piecewise smooth curve in D, prove that I, (f (7)) <
In(7y). If, moreover, f is a Mobius transformation, prove that I, (f (7)) = I5(7y)-

(1) If 21, z2 € D and 21 # 23, prove that among all piecewise smooth curves in D with endpoints
z1 and zo the one with the smallest hyperbolic length is the arc of the circle which contains 21, 2o
and which is orthogonal to T. This smallest hyperbolic length is called hyperbeolic distance of
21, 2z and it is equal to

1 1+ 121:22
—29Zz

dh(zl, 2’2) = 5 ln 7217121
1- 1-2527

Prove that dy, is a metric in D, the so-called hyperbolic metric, which is equivalent to the euclidean
metric in .

(iii) Consider sequences (z},) and (z/!) in D so that 2], — ( for some ¢ € T and so that dj(z},, z//) <
M for every n. Prove that 2!/ — (.

7.1.5. (See exercise 7.1.4.) Let f : D — I be holomorphic in D. Prove that dj(f(z1), f(22)) <
dp(z1, z2) for all z1, 29 € D. If, moreover, equality dy(f(z1), f(22)) = dp(z1,22) for at least
one pair of 21,29 € D with z; # 29, prove that f is a Mdbius transformation and then equality
dn(f(z1), f(22)) = dp(21, 22) holds for all 21, zo € D.

7.1.6. Find all f : D — I holomorphic in D with f(0) = 1 and f/(0) = 2

7.1.7. Prove that for every M, N with0 < M < N thereis P = P(M, N) < N with this property:
if f is holomorphic in D,,(R) with |f(z0)| < M and |f(z)| < N for every z € D,,(R), then
|f(2)| < P forevery z € D, (%).

7.1.8. Let f : D — D be holomorphic in D with f(0) = 0 and |f'(0)| < 1. For every n we define
fn=fofo---ofof.Provethat f,(z) — O for every z € D.

n times
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7.2 Simply connected regions and the theorem of Riemann.

Let 2 be aregion in C. We say that 2 is topologically simply connected if C \  is connected.
We say that €2 is homologically simply connected if n(~y; z) = 0 for every closed curve +y in €2
and every z € )¢, We say that ) is homotopically simply connected if for every closed curve ~y
in € there is a homotopy with closed intermediate curves in €2 from  to a constant curve.

Example 7.2.1. The region Q = D, (R, R2) with 0 < R} < Ry < 400 is not simply connected
in any of the three senses.

The set C \ = D.,(R;) U D., (Ry, +00) U {o0} has two connected components.

If Ry < r < Ra, the closed curve ~y in §2 which describes the circle C,(r) once in the positive
direction has n(~; zg) = 1.

For the same closed curve + in €2 there is no homotopy with closed intermediate curves in {2 from
~ to a constant curve. Indeed, if there was such a homotopy from ~ to a constant curve v, then
proposition 6.17 would imply that n(v; z9) = n(v1; z0) = 0, which is wrong.

If 2 is a region, its complement C \ €2 in the sphere of Riemann is compact with respect to the
chordal metric. Therefore, the connected components of C \  are all compact sets with respect
to the chordal metric. One of them contains the point co. Every other connected component is
a compact subset of C either with respect to the chordal metric or with respect to the euclidean
metric, since the two metrics are equivalent in C. Hence, all connected components of C \ Q,
besides the one which contains oo, are closed and bounded subsets of C. We continue with some
mathematically imprecise thoughts, which may help the understanding of the three notions of sim-
ple connectedness. In visually simple cases of regions (2, like the one in example 7.2.1, the closed
and bounded components of the complement of €2 appear as “holes” of €2. Thus, naively speaking,
aregion €2 is topologically simply connected if it has no “holes”. On the other hand, the region (2
is homologically simply connected if no closed curve in €2 surrounds any point in the complement
of Q. If Q has a “hole” then, naively speaking again, one can find a closed curve surrounding
the “hole”, exactly as in example 7.2.1, and then €2 is not homologically simply connected. In the
same case and naively speaking again, a closed curve surrounding a “hole” of €2 cannot be shrunk
continuously to a point (i.e. to a constant curve) so that all intermediate closed curves are in €:
it seems that some intermediate curves must intersect the “hole”. Thus, €2 is not homotopically
simply connected.

Example 7.2.2. A set A C C is called star-shaped if there is a specific zp € A so that [2p,2] C A
for every z € A. The point 2 is called center of A.
Now, let €2 be any open star-shaped set and let 2y be a center of {2. We consider any z € )¢ and
the halfline [, with vertex z which is opposite to the halfine with vertex z going through z. Then
L, C Q° and hence I, = 1.U{oo} C C\ Q. Therefore, C\ Qis the union of the connected subsets
lZ, z € Q°, of C all of which have oo as a common point. Thus C \ Q is connected. We conclude
that every open star-shaped set is topologically simply connected.
If v is a closed curve in Q and z € QF, then v is in C \ [, where [, is the halfline of the previous
paragraph. Hence n(v;z) = 0. Therefore every open star-shaped set is homologically simply
connected.
Finally, if v : [a,b] — € is a closed curve in (2, then the function F' : [a, ] x [0, 1] — € defined
by

F(t,s) = (1 —s)vy(t) + sz

is a homotopy with closed intermediate curves in 2 from ~ to the constant curve zy. Therefore
every open star-shaped set is homotopically simply connected.

Example 7.2.3. The region 2 = C\ (Do(1) U (—o0, —1]) is not star-shaped but it is topologically
simply connected. Indeed, C \ Q = Dy (1) U (—o0, —1] U {oo} is connected.
Moreover, if v is a closed curve in €, then Q¢ = D(1)U(—o0, —1] is connected and it is contained
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in the connected component of C \ v*. Hence n(y;z) = 0 for every z € Q°. Therefore, € is
homologically simply connected.

Finally, lety : [a, b] — € be a closed curve in §2. Then the function F' : [a, b] x [0, 1] — © defined
by

F(t,s) = (1 —s)y(t) + 25&3'

is a homotopy with closed intermediate curves in € from ~y to the closed curve v; : [a,b] —
QNCy(2) given by v (t) = WE g‘ Now we consider the function G : [a, b] x [0,1] — QN Cp(2)
defined by

G(t,s) = 9e(1=5) Arg(v(t))

Then G is a homotopy with closed intermediate curves in €2 from ~; to the constant curve 2. Hence
there is a homotopy with closed intermediate curves in €2 from -y to the constant curve 2 and we
conclude that €2 is homotopically simply connected.

Proposition 7.3. Let 2 be a region in C.

(i) Q is topologically simply connected if and only if it is homologically simply connected.

(i) If Q) is homotopically simply connected then it is topologically and homologically simply con-
nected.

Proof. (1) Assume that 2 is topologically simply connected. Let v be any closed curve in €2 and
let U be the unbounded connected component of C\ v*. Then it is easy to see that U U {oo} is a
connected component of C \ 7*. Since v* C 2, we have C \ QccC \ and hence the connected
set C \ Q is contained in only one connected component of C \ v*. Since C \  contains oo, we
conclude that C \ ©Q C UU{oo}. Therefore 2¢ C U. Since n(v; z) = 0 for every z € U, we have
n(v; z) = 0 for every z € Q°.

Now, assume that €2 is homologically simply connected and, to arrive at a contradiction, assume
that {2 is not topologically simply connected. Then C \ € is not connected and so there is a decom-
position B, C of C \ €. Let co € C (the case oo € B is the same). Then oo is not a limit point of
B and hence B is a bounded subset of C. Since C \ Q is closed, both B, C' are closed and hence
B is a compact subset of C. The complement of ' = Q U B is the closed set C' and hence €' is
open. Now we apply proposition 6.18 to the open set €', to the compact subset B of ' and to the
constant function f(z) = 1, and we get that there are closed curves 71, ...,y in Q' \ B = Q so
that

L=mn(y;2) + -+ n(w;2)

for every z € B. We fix any zg € B and then for at least one of the closed curves 71, . .., V%, say
7, in £ we have that n(y;; 20) # 0. Therefore (2 is not homologically simply connected and we
arrived at a contradiction.

(i) Assume that €2 is homotopically simply connected and let «v be any closed curve in 2 and
z € Q°. Then there is a homotopy with closed intermediate curves in 2 and hence in C\ {z} from
-y to a constant curve 7 in 2. Proposition 6.17 implies that n(vy; z) = n(v1;z) = 0. Thus, Q is
homologically simply connected. U

Later on, at the end of this section, we shall prove that topological and homological simple con-
nectedness imply homotopical simple connectedness and thus all senses of simple connectedness
are equivalent.

The theorem of Cauchy in simply connected regions. If f is holomorphic in the region Q) C C
which is simply connected in any of the three senses, then for every cycle ¥ in Q which consists of
closed piecewise smooth curves we have

fzf(z)dz =

Proof. Immediate from the theorem of Cauchy in general open sets and proposition 7.3. O
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In the same manner we have versions of Cauchy’s formulas for derivatives of any order, of
the residue theorem, of the argument principle and of the theorem of Rouché for regions €2 which
are simply connected in any of the three senses. In all these cases we do not have to assume that
the cycles ¥ in € are null-homologous in 2: every cycle in a simply connected 2 is automatically
null-homologous in 2. In this respect it might be desirable to recall the algebraic facts mentioned
at the beginning of section 6.4. If the region €2 is simply connected in any of the three senses, then
the Z-module C(€2) of all cycles in 2 is identical to its Z-submodule Cy(€2) of all cycles which are
null-homologous in 2. Therefore the quotient Z-module #H(€2) is trivial:

H(2) = C(Q)/Co(Q) = {[O]},
where O is the zero cycle in 2. Le. H(2) consists only of its zero element.

Proposition 7.4. Let the region Q) C C be simply connected in any of the three senses. Then
(i) every f holomorphic in ) has a primitive in ).
(ii) for every g : Q — C\ {0} there is a holomorphic branch of log g in ).

Proof. (i) An application of proposition 4.10 and the theorem of Cauchy in simply connected
regions.
(ii) An application of theorem 4.1 and the theorem of Cauchy in simply connected regions. O

Proposition 7.5. Let the regions 21,y C C be conformally equivalent.

(1) If Q1 is topologically or homologically simply connected, then Qs is also topologically or ho-
mologically simply connected.

(ii) If Uy is homotopically simply connected, then Qs is also homotopically simply connected.

Proof. Let f: Q1 — o be holomorphic and one-to-one from €2; onto €2s.
(i) Consider any closed piecewise smooth curve 7y in {25 and any wp € 5. Consider also the
closed piecewise smooth curve f~1(v) in ;. Then, after a simple change of variables, we have

. _ 1 1 _ 1 f'(z _
n(y;w0) = gk §, ot dw = g $p-10) 7o 42 =0

by the theorem of Cauchy in the topologically or homologically simply connected region 2.
Therefore, €25 is homologically (and hence also topologically) simply connected.

(i) Let 7y : [a,b] — € be any closed curve in Q. Then f~1(v) : [a,b] — € is a closed curve
in ©;. Since € is homotopically simply connected, there is a homotopy F : [a,b] x [0,1] — O
with closed intermediate curves so that

F(t,0)=f71(0) = [T (1), F(t,1) =z

for every t € [a,b]. Then f o F : [a,b] x [0,1] — Qg is a homotopy with closed intermediate
curves so that

(fo F)(t,0) =~(t), (feoF)1)= f(20)

for every ¢ € [a, b]. Therefore, -y is homotopic with closed intermediate curves to a constant curve
n QQ. ]

The theorem of Riemann. Let ) ; C be a region which is simply connected in any of the three
senses, zo € Q and 0y € (—m, ww|. Then there is a unique conformal mapping f of Q2 onto D with

f(Z()) = 0, Arg f/(Zo) = (90.

Proof. Step 1. We take any a € Q€. Since the function z — a is holomorphic in €2 and has no
root in €, proposition 7.4 implies that there is a holomorphic branch g of log(z — a) in €. Le.

g : 2 — C is holomorphic in €2 and
eI = 2 —q
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for every z € €.

Now, g is one-to-one in 2. Indeed, if g(z1) = g(22), then e9(x1) = ¢9(2) and hence 2, = 25.

We consider w), = g(zo) +27i and then we have w}, ¢ g(Q). Indeed, if w), € g(Q2), then there are
zn € Q2 sothat g(z,) — w6. Hence z,, — a = e9(zn) s Wy = e9(20) — 2o — a and thus z, — 2.
But then g(z,) — g(z0) which implies w(, = g(zp) and we arrive at a contradiction.

Since w, ¢ g(§2), there is g > 0 so that |g(z) — w{| > r( for every z € Q.

We consider the function x : {2 — D given by

T0

x(2) = g(z)—wy

for every z € 2. Then y is holomorphic and one-to-one in 2. In particular, x’(2) # 0.
Now we consider the Mobius transformation R : D — D given by

_ IX(20)l _i6y w—x(20)
R(w) — X'(20) e 1—x(z0) w
for every w € . (Look again at example 7.1.1 and at proposition 7.2 for the properties of Mobius
transformations. They appear many times in this proof.) Then the function

h=Rox:Q—D

is holomorphic and one-to-one in 2 and satisfies h(zp) = R(x(z0)) = 0 and

'(20)]e®
B (20) = R'(x(20))X'(20) = htElers
and hence Arg h/(zg) = 6.
Step 2. We consider the set

F ={h|h:Q — D,h is holomorphic and one-to-one in 2, h(z9) = 0, Arg h'(29) = 0o }.
The result of step 1 implies that F is a non-empty subset of H(2). We also define

a = sup,er |1 (20)]-

Since, h/(29) # 0 for every h € F, we have that & > 0 (but & = 400 is not excluded a priori).
There is a sequence (h,,) in F so that |h,(z0)| — «. For every h € F we have that |h(z)| < 1
for every z € ) and hence F is obviously locally bounded in 2. Montel’s theorem implies that
there is a subsequence (h,, ) such that h,, — f uniformly in every compact subset of €2 for
some f holomorphic in Q. Obviously, we have 0 = hy, (20) — f(20) and so f(z9) = 0. The
theorem of Weierstrass implies that h;zk — f” uniformly in every compact subset of 2. Hence,
hy,, (20) = f'(20) and thus | f'(20)| = a (hence v < +-00) and Arg f'(20) = 6o. Since f’(z0) # 0,
we have that f is not constant in 2. Now, for every z € 2 we have |h,,, (z)| < 1 for every nj, and
hence |f(2)| < 1. If |f(2)| = 1 for some z € (2, the maximum principle implies that f is constant
in ) and we just saw that this is wrong. Therefore, f : Q — . Next, we take any z1, zo € €2 with
21 # zp. Since hy, (22) — f(z2), we get that hy,, — hy, (22) = f — f(22) uniformly in every
compact subset of {2 and hence in every compact subset of Q2 \ {z2}. Each h,,, is one-to-one in
and so hy, — hp, (22) hasnorootin \ {22}. Since f — f(22) is not identically 0 in Q \ {22}, the
theorem of Hurwitz implies that f — f(z¢) has no root in Q \ {z2}. Thus f(z1) — f(z2) # 0 and
we conclude that f is one-to-one in €2.

We proved that there is f € F with | f'(20)| = a.

Step 3. Assume that there is some b € D\ f(2).

We consider the Mobius transformation 7' : D — D given by



for every w € D, and then the function
p=Tof:Q—D.

Then ¢ is holomorphic and one-to-one in 2. Since f(z) # b for every z € €, we have that
#(2) # 0 forevery z € Q. But Q is simply connected in any of the three senses, and so proposition
7.4 implies that there is a holomorphic branch of log ¢ and hence a holomorphic branch 1) of ¢*/?
in €. Le. there is ¥ : 2 — ID which is holomorphic in §2 and satisfies

for every z € €. It is easy to see that v/ is one-to-one in {2, because ¢ is one-to-one in ).
Now we consider the Mobius transformation .S : D — D given by

S(w) = %/E;gg‘ et 111;1(63)1)1; for every w € D

and then the function
h=8So0vy:Q—D.

Then h is holomorphic and one-to-one in §2. We also see easily that A(zg) = S(1(z0)) = 0 and
"(20)]et®
W (20) = ' (v(20))¥'(20) = H=EAS

and hence Argh/(z9) = 0y. Thus, h € F.
Now we have altogether that f, ¢, 9, h: Q — D, that T, S : D — D and that

¢p=Tof, h=S5oy, ¢=Foy,

where F' : D — D is given by F(w) = w? for every w. All these functions, except F, are
one-to-one. We consider now the holomorphic function ® : D — D, given by

d=T'oFoS!

and then we have

f=®oh.
Now, ®(0) = (T"to FoS™H(0) = (T~ o F)(¢(20)) = T~ (¢(20)) = f(20) = 0 and
[f'(20)| = |2 (A(=0)) || (20)] = |27(0)]|1'(20)]. (7.1)

Then the Schwartz lemma implies that |®’(0)| < 1.

If |®'(0)| = 1, then there is ¢ with |¢| = 1 so that ®(z) = cz for every z € D. This implies that
F(w) = T(cS(w)) for every w € D. This is wrong because the right side is one-to-one in D. We
conclude that |®'(0)| < 1 and (7.1) implies that

|1 (20)] > | f'(20)] = a.

This contradicts the definition of « and the fact that h € F. Therefore, there isno b € D\ f(Q)
and hence f is onto D.

We proved the existence of a function f : 2 — I which is conformal from €2 onto D and which
satisfies f(z9) = 0 and Arg f'(29) = 0.

Step 4. To prove the uniqueness of f, we repeat the argument in the proof of proposition 7.2.
Let f1, fo : © — D be conformal from 2 onto D with f1(z0) = f2(20) = 0 and Arg f{(z0) =
Arg fé(Z()) = (90.

Then the function f = fy o f{* : D — D is holomorphic in I and satisfies f(0) = 0 and

1(0) = ;éggg > (0. By the Schwarz lemma we get | f/(0)] < 1.
1
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The function g = f1 0 f, ' : D — D is also holomorphic in D and satisfies g(0) = 0 and
g (0) = L(z0) - g, Again, by the Schwarz lemma we get |¢’(0)| < 1.

2(20)
But the functions f and g are mutually inverse and hence ¢'(0) = %. Therefore, |f/(0)| =

|¢’(0)| = 1 and the Schwarz lemma implies that there is some ¢ with |¢| = 1 so that f(w) = cw
for every w € D. Now, ¢ = f'(0) > 0 implies ¢ = 1. Hence, f(w) = w for every w € D and
finally f2(2) = fi(2) for every z € D. O

Proposition 7.6. Let Q) C C be a region. If () is topologically or homologically simply connected,
then it is also homotopically simply connected.

Proof. 1f Q = C, then () is obviously homotopically simply connected. If €2 ; C, then, by
the theorem of Riemann, 2 is conformally equivalent to ID. Since D is homotopically simply
connected, proposition 7.5 implies that €2 is also homotopically simply connected. O

We just proved that all three senses of simple connectedness are equivalent. From now on, we
shall use the term simply connected for a region without having to distinguish between the three
senses.

Proposition 7.7. Every simply connected region () g C is conformally equivalent with D. The
simply connected region C is conformally equivalent only with itself.

Proof. The first part is a simple application of the theorem of Riemann.

If C is conformally equivalent with some simply connected region 2 ;Cé C, then, by the first part,
C is conformally equivalent with D. Thus, there is a holomorphic f : C — I which is one-to-one
in C. But Liouville’s theorem implies that f is constant and we arrive at a contradiction. U

Exercises.

7.2.1. We know that there is no holomorphic f : C — D which is one-to-one in C. Find some
f : C — D which is one-to-one and onto so that f and ! are both continuous.

7.2.2. Are the regions Dy (1,3)\[1, 3] and C\ ((—o00, —2]U[—3, 3]U[2, +00)) simply connected?
Which are the possible values of j;v(z + %) dz, where 7 is a closed piecewise smooth curve (i) in
the first set? (ii) in the second set?

7.2.3. Let f be holomorphic in the simply connected region €2 except for isolated singularities in
). Prove that (i) and (ii) are equivalent:

6] e$ I for every closed piecewise smooth curve « in {2 whose trajectory contains no
isolated singularity of f.

(ii) Res(f; z) € Z for every isolated singularity z of f in .

If f satisfies (i), (ii) and it is holomorphic at zy € €, define F(z) = ey O gor every z € (Q,
where + is any piecewise smooth curve in €} from zg to z and whose trajectory contains no isolated
singularity of f.

Prove that F' is well-defined and holomorphic in €2 except for the isolated singularities of f.
Prove that every point in {2 is either a point of holomorphy or a pole of F' if and only if all isolated
singularities of f in ) are simple poles of f.

7.24.LetHy = {z| Imz > 0}, 29 € Hy, 6y € (—m,x]. Find the unique conformal mapping f
of H; onto D with f(z9) = 0 and Arg f'(z0) = 6.

7.2.5. Find a conformal mapping of {z| Rez > 0,Im z > 0} onto D.

7.2.6. (i) Find a conformal mapping between two angular regions.

(i1) Find a conformal mapping between an angular region and an open zone.

(iii) Find a conformal mapping between an angular region and the intersection of two open discs
or the intersection of an open disc and an open halfplane.
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7.2.7. (i) Find a conformal mapping f of C \ [~1, 1] onto I, with f(c0) = 0.
(i) Let 0 < a < 7 and 7 be the arc of T with endpoints e~** and . Find a conformal mapping
fof C\ 7 onto D, with f(c0) = 0.

7.2.8. Find a conformal mapping of [—1, 1] x [—1, 1] onto Dy(1).
7.2.9. Prove that there is no conformal mapping of D onto D \ {0}.

7.2.10. Let H, = {z| Imz > 0} and let f : H; — H. be holomorphic in H . Prove that:
(i) ‘ f(zl)*f(ZQ) ‘ < ‘ Z1—22

| for every 21, 22 € HL.

21—22
(i) IL{I fz)| < & forevery z € Hy.
Prove that if equality holds in (i) for at least one pair of 21, zo € H with 21 = z9 or in (ii) for
at least one z € H, then there is zg € H and A with |A| = 1 so that £ (2)—¢ = A 222 for every

fz )H
z € H, and then equalities in (i) and (ii) hold identically.

7211 Let Hy = {z|Imz > 0} and let f : H} — D be holomorphic in H with f(i) =

Prove that | f(z)| < |l+z| for every z € H; and | f/(i)| < 3.

7.2.12. Let 2 C C be a simply connected region, 2y € €) and f, g be conformal mappings of (2
onto D with f(z9) = g(z0) for some zy € Q. Find a relation between f, g.

7.2.13. Let Q1, Q2 C C be two regions and f be a conformal mapping of Q1 onto Qs. If (z,) is in
Q and z, — z € 0, prove that every limit point of (f(z,,)) belongs to 9. Is it necessary for
(f(zn)) to converge?

7.2.14. (i) Let f,g : D — € be holomorphic in D so that f is one-to-one in D and onto 2. If
f£(0) = g(0), prove that g(Do(r)) C f(Dy(r)) for every r with 0 < r < 1.

(i) Let Q2 = {w = u+iv | —1 < u < 1}. Find the conformal mapping f of D onto 2 with f(0) =
and f/(0) > 0. If g : D — Q is holomorphic in D with g(0) = 0, prove that [g(z)| < 21n }ftl
for every z € D.

7.2.15. Let g C be a simply connected region, zg € €2 and let F be the collection of all holo-
morphic f :  — D with f(29) = 0 and which are one-to-one in Q2. We fix a € Q, a # zp and we
define m = supc x| f(a)|. Prove that there is fo € F so that |fo(a)| = m and that such a fj is a
conformal mapping of €2 onto D.

7.2.16. Let 2 g C be a simply connected region so that Z € () for every z € €. Let 2y €
QN R and let f be the conformal mapping of 2 onto D with f(z9) = 0 and f’(29) > 0. Let

={z€ Q|Imz >0}, Q2 ={z€ Q|Imz < 0}, Dy = {z € D|Imz > 0} and
D_ = {z € D| Imz < 0}. Prove that f(Q4) =D, f(Q_) =D_and f(QNR) = (—1,1).

7.3 Multiply connected regions.

The region 2 C C is called m-tuply connected if C \ 2 has exactly m connected components.

If the region 2 C C is m-tuply connected and A, ..., A, are the connected components of
C &Q, then one of these components, say A,,, contains co. Since A1, ..., A,, are closed subsets
of C \ Q (with respect to the chordal metric), they are compact. Thus, Ay, ..., A,,—1 are compact
subsets of C (either with respect to the chordal metric or with respect to the euclidean metric).

Example 7.3.1. Let the closed discs D, (r1),..., D, _,(Tm_1) be disjoint and contained in the
open disc D,,(Rp). Then the region DZO(RO) \ (D2 (r1) U+ UD,,,_,(rm-1)) is m-tuply
connected. Some (or all) of the inner discs may reduce to single points.

Example 7.3.2. The region C\ {2} is doubly connected. The region C\ [a, b] is doubly connected.
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Proposition 7.8. Let m > 2 and 2 C C be an m-tuply connected region and let Ay, ..., Ay
be the connected components of C \ Q which do not contain co. Then:

(i) There are cycles 31, . .., X1 in Q) so that for every k = 1,...,m—1we have: n(Xx,z) =1
Sforevery z € Ay, and n(Xy; z) = 0 for every z € Q° \ Ay.

(ii) Let 31, ..., %m—1 be any cycles in §) as in (i) and take any z;, € A fork =1,...,m — 1.
Then for every f holomorphic in Q) and every cycle 3. in Q) we have

I [(2)dz =n(S521) by [(2)dz+ - +n(Ss2ma1) b flz)d2 (7.2)

Proof. (i) We take any of the connected components Ay, ..., Ap,_1, say Ay, and the set Q =
QU Ag. Then Y CCandC\Q = A U---UAp_1UAg U--- A, is a closed subset of
C (with respect to the chordal metric) and hence €’ is an open subset of C (either with respect
to the chordal metric or with respect to the euclidean metric). Now we apply proposition 6.18 to
the open set ', to the compact A C € and to the constant function f(2) = 1, and we get a
cycle X in Q' \ Ar = Q such that n(3y; z) = 1 for every z € Ay and n(3; z) = 0 for every
PSS (Q,)C = Q)¢ \ Ap..
(i1) We concider any cycle X in €2 and the integers

pr = n(X; zx), k=1,...,m—1.
Now we define the cycle ¥ = p1X1 + -+ + pm_1Xm_1 and we get

n(X; z) = n(X'; 2)
for every z € Q°. Indeed, if z € A forany k = 1,...,m — 1 then
n(X;2) =pin(E;2) + -+ pre1in(Sme1;2) = pr = n(Z; 21) = n(S; 2)

since z, z; belong to the connected set A; which is in the complement of all the trajectories of the
closed curves forming ¥ in 2. Also, if z € A,, then

n(¥2) = pin(S152) + -+ pno1n(Bm-1;2) = 0 = n(3; 2).

Thus, n(X — ¥';2) = 0 for every z € Q¢ i.e. ¥ — X' is null-homologous in 2. So, if f is
holomorphic in 2 then §, ., f(2) dz = 0 and hence

I [(2)dz =g, f(z)de=p1 g f(2)de+ - +pmdy | f(2)dz
and this is (7.2). O

In the course of the proof of proposition 7.8 we saw that for every cycle ¥ in {2 there are
integers p1, ..., Ppm—1 S0 that ¥ — (p131 + -+ - + pm—12m,—1) is null-homologous in €, i.e. ¥ —
(mX1 4+ Pm—12m—1) € Co(R2). This says that in H(Q2) = C(2)/Co(2) we have

] =[mE1+ -+ pn—1Zm—1] = p1 X1+ P [Em—]-

In other words, the elements [X1], . . ., [2,,—1] of H(£2) produce the Z-module #(£2). On the other
hand, if for some integers py, . .., pm—1 We have

D1 [21} + o4 pmfl[szl] = [0]7

the zero element of 4 (2), then [p1 X1+ - -+pm—1Xm—1] = [O] and hence p1 X1+ - -+ pp—12m—1
is null-homologous in €2. This implies that

pin(X1;2) + -+ ppo1n(Em-1;2) =0
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for every z € Q°. If z € Ay forany k = 1,...,m — 1, then n(X;;2) = 0 for j # k and
n(Xg;z) = 1. Therefore, the last formula reduces to pr = 0. This means that the elements
[X1], ..., [Em—1] of H(Q) are linearly independent and we conclude that they form a basis of
H(S2). Hence

dimH(Q) =m — 1.

We say that the elements [Z1], . . ., [¥,,—1] form a homology basis of 7{(£2) and that the cycles
>1,...,2m—1 form a homology basis in €.

The above complement the case of a simply connected region €2, where m = 1 and H(Q)) =
{[O]} and hence dim H(Q2) = 0.

Exercises.

7.3.1. Let © C C be an m-tuply connected region and let Ay, ..., A;,—1 be the connected compo-
nents of C \ © which do not contain co. We take any z;, € Ay fork = 1,...,m — 1. Prove that
for every f holomorphic in €2 which has no roots in €2 there are ny,...,n,—1 € Ny so that there
f(2)

- (z—2z1)™ - (2—2m—1)

is a holomorphic branch in 2 of log g, where g(z)

= for every z € ().

7.3.2. Let y be a closed curve. Prove that every bounded connected component of C\ v* is a simply
connected region and that the unbounded connected component of C \ ~* is a doubly connected
region.

7.3.3. Let 2 C C be a simply connected region and z1,...,2,-1 € ). Prove that the region
Q\{z1,...,2m-1} is m-tuply connected and find a homology basis of cycles in this region.

'1.3.4. Let Q C C be a doubly connected region and let A;, Ao be the connected components of
C\ Q. If f is holomorphic in 2, prove that there are f1, fo so that f = f; + fo in 2, and f; is
holomorphic in 2 U A; and f5 is holomorphic in 2 U As.
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Chapter 8

Isolated singularities and roots.

8.1 Isolated singularities in the complex plane.

Let us generalize slightly the argument at the end of section 5.8. We consider a function f in
C with a finite number of isolated singularities z1, . . ., z,, and holomorphic in the rest of C. The
singular part of f at z; has the form

k=—1 + i
si(2) = Y ainlz —2p)F = IS ik

and converges in C \ {#;}. We consider the function

h(z) = f(2) = (s1(2) + -~ + sn(2))-

Then h is holomorphic in the set C \ {z1, ..., 2z, } and its only possible singularities are the points
21,...,2n. We observe that every z; is a removable singularity of f(z) — s;(2) and that all terms
51(2),...,sn(2), besides s;(z), are holomorphic at z;. Therefore, every z; is a removable singu-

larity of the function h. So the function h has no isolated singularities and hence it is holomorphic
in C. Now, we have the identity

f(z) =s1(2) + -+ sn(2) + h(2),

which gives the general form of a holomorphic function in C with the exception of finitely many
isolated singularities.

We shall generalize this to the case of a holomorphic function f in C with the exception of
infinitely many isolated singularities. In this case, i.e. if the terms of the sequence (z,) are the
distinct isolated singularities of f in C, it is necessary that z,, — oo. In the opposite case there
would be a subsequence of (z,,) converging to some z € C and then this z would be a non-isolated
singularity of f.

We may obviously try to form the infinite sum :{2 sn(2), but this is doomed to failure in
the general case since there is no guarantee that this series converges. The next theorem shows that
we may subtract a suitable “correction term” from each s,,(z) so as to make the series convergent.

The theorem of Mittag-Leffler. Let the terms of the sequence (z,,) be distinct with z, — oco. For
each z, we consider a power series of the form s, (z) = Z]i:o.?l ani(z — 2n)k, which converges

inC\ {zn}.

(i) Then there are polynomials q,, so that the series of functions

:ﬁ(sn —qn)

has the property: for every compact set K there is ng so that Z:i%o 4+1(8n — qn) converges

uniformly in K.
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(ii) If the polynomials qy, satisfy (i), then the function F = 3"t (s, — qn) is holomorphic in C,
with the exception of the terms of (zy,), and its singular part at each zy, is s,. Moreover, the most
general holomorphic function in C, with the exception of the terms of (zy), and whose singular
part at each zy is Sy, is of the form

J=F+h=3,2(sn—an) +h,
where h is an arbitrary function holomorphic in C. We also have that
fr=020s0 —an) + 1.

Proof. (i) If z,, = 0, we just take g, = 0. If z,, # 0, then the function s,, is holomorphic in the
disc Dy(|zy|) and so its Taylor series at 0 converges to it uniformly in the smaller disc Do (|zy,|/2).
Hence there is a partial sum g, of this Taylor series, i.e. a polynomial, so that

15 = @nll Do(12n)/2) < 37
Now let K be any compact set. Since K is bounded, there is R > 0 so that K C Dy(R). Since
zn, — 00, there is ng so that |z,| > 2R and hence K C Dy (|z,|/2) for every n > ng + 1. Thus
[sn — anllx < llsn — qﬂHDo(lzn\/z) < 2%

—+00

for every n > mno+ 1. The test of Weierstrass implies that > _ (Sn — qn) converges uniformly

n=ng+1
in K.
(ii) We assume that the polynomials ¢, satisfy (i) and we take any z € C. Since {z} is compact,
there is ng so that E;Z‘;OH (sn(2) — gn(2)) converges. So if z is not equal to any of 21, . . . , Zn,,

then the sum $"7% (s,,(2) — gn(2)) is finite and we define the function F' : C\ {2, |n € N} — C
by
F=5""(s, — qn).

n=1

If z is not equal to any of the terms of (z,,), then, because of z,, — oo, there is a closed disc D, (r)
which contains no term of (z,,). Then there is ng so that ::f;m +1(8n — gn) converges uniformly
in D, (r) and so it defines a function holomorphic in D, (r). But the finite sum >_"'° ; (s, — gp) is
also holomorphic in D, (r) and hence F' is holomorphic in D, (7). Moreover, by the uniform con-
vergence of ZISLO +1(8n —qn) in D (), we have that the series of the derivatives also converges
uniformly in D, (r) and hence

F'(2) = Yp21(s0(2) = a4(2)).

This equality holds at every z which is not equal to any of the terms of {z,,}.

If z = 2, for some k, then there is a closed disc D, (r) which contains only the term zj, of (2y,).
Then there is ng so that :{3’10 +1(Pn — @n) converges uniformly in D, (r) and so it defines a
function holomorphic in D, (r). Butthe finitesum > "% , (s,,—gy,) is holomorphic in D, (r)\{zx}
with singular part sy at z;. So F has the singular part sy, at zj.

We conclude that F' is holomorphic in C with the exception of the terms of (z,,) and that its singular
part at each z, is s,.

Now let us consider an arbitrary holomorphic function f in C with the exception of the terms of
(zn,) and whose singular part at each z,, is s,,. Then the function h = f — F' is holomorphic in C
and hence f = F + h. O

The theorem of Mittag-Leffler describes the most general holomorphic function in C with the
exception of preassigned isolated singularities and corresponding preassigned singular parts. In
fact, the actual theorem of Mittag-Leffler is restricted to the case of meromorphic functions, i.e. to
the case that all isolated singularities are poles.
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Example 8.1.1. We consider the function m, which is meromorphic in C. Its poles are the

integers n € Z. Since sin(7z) = 7z — ”zfg + - - is the Taylor series of sin(7z) at 0 we have, for
each n € Z, that

sin(mz) = (—1)"sin(mz — ) = (—1)r(z —n) — CWTE® 4o (- n)g(2)

where g is holomorphic in C with g(n) = (—1)"x. So the function h = é is holomorphic at n
with h(n) = (—71)" and

1 _ hx _ D W (n) + h”z(!n) (z—n)+--

sin(7z) z—n w(z—n)

in a neighborhood of n. This says that n is a pole of order 1 of ﬁ and the singular part at n is

S”<z) = ﬂg(zl)n)

Now we take n # 0 and we write the Taylor series of (( Dl wy at 0:

R L S At L3 GO\ L SO U
m(z—n) =~ nw  l—z/n T nm nin n3m

(-t

We consider the polynomial g, to be the constant term of this Taylor series, i.e. gn(2) = “—=

If n = 0, we just take ¢, = 0.
Now we examine the uniform convergence of the series

ZnGZ(Sn(z) - q”('z)) = % + %ZnGZ\{O}(_l)n(zin + %)

If K is a compact set, then there is R so that K C Dy(R). Now, if ng + 1 > 2R and z € K, then
for every n with [n| > ng + 1 we have that [z — n| > |n| — |2| > |n| — R > @ and hence

D"+ Dl = e < 2

z—n n [n|lz—n| — n?

By the test of Weierstrass, ZneZ,lnlznoH (—1)"(zin + %) converges uniformly in K.
Now the theorem of Mittag-Leffler implies that

sin(lm) = S+ ey (D" (G + 1) +h(2), (8.1)

where h is holomorphic in C. We shall determine the function h.
Again, based on the theorem of Mittag-Leffler, we differentiate the last series to get

_1 n _1 n
s = mr tr Taeno) o H () =1 Taen (o ). 82)
The function 7;;‘;5((:5) is 2-periodic and it is easy to prove that % Y onez (( 1))2 is also 2-periodic.
Indeed,
1 n _ 1 . 1 7L+2 . 1 )n
ZnGZ (242 )n ZTLEZ (z(T ZTLEZ (z—n) ZHGZ

Therefore, 1/ is 2-periodic.
We restrict now our investigation in a period-zone A = {z +iy| — 1 < z < 1}. Again, it is easy

M — 0 when z — oo in A. Indeed, if z = x + iy and |z| < 1, then we have

to prove that 2 (r2)

cos(wz) | sinh?(wy)+cos?(rx) sinh? (7y)+1
’sin2(7rz)  (sinh?(7y)+-sin? (7z))2 < sinh? (7y) —0 (8.3)

when |y| — +occ. The same is true for ), % To see this we take € > 0 and then there is

ngo so that

Z 1 < £
n€Z,|n|>no+1 (jn|—1)2 2"
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Ifz€ A,ie. ifz =2 +idyand |z| <1,then |z —n| > |r — n| > |n| — 1 and hence

1 1 €
‘ZnEZJn\ZnoJrl (z— n)Z‘ - nEZ,|n|2no+1 [z—n]|? < ZneZ,|n|2n0+1 (Jn]—1)2 <3 (8.4)
Since 72 — 0 when z — oo, there is yg > 0 so that
(z—nm)
pos el <s (8.5)
EZ |n|<n0 (z n)2 2 °

when z = x 4+ iy and |z| < 1, |y| > yo. From (8.4) and (8.5) we get

‘ ZnEZ (z_ln;;‘ = |Zn€Z [n|<no z_lnn ‘ + ‘ ZHEZ |n|>no+1 (z n)z‘ <3 + 7 =

when z = x + iy and |z| < 1, |y| > yo. Therefore

ez (o = 0 (8:6)

when z — oo in A. From (8.2), (8.3) and (8.6) we conclude that h/(z) — 0 when z — oo in A.
This implies that 4’ is bounded in the period-zone A and since /'’ is 2-periodic we have that i/ is
bounded in C. By the theorem of Liouville, &’ is constant in C. But since h’(z) — 0 when z — oo
in A, we get that B’ = 0 in C. This implies that / is constant in C.

Now we go back to (8.1) and we observe that the terms —* ) and % are odd functions. The same

sin(mz
is true for Znez\{o}(*l)n( L+ 1) Indeed,

zZ—n

ZnEZ\{O}(_l)n(ﬁ + %) == ZnEZ\{O}(_l)n(z-il-n o %
= = Ynenoy (D (2
== Yenoy V" (G 4

Hence h is an odd constant function and this implies that » = 0 in C. So we end up with the
identity

n z oo (—1)™
sm(lﬂz) P ZnEZ\{O}( DML+ 1) =2 +Z30% 2(2_212

from which, by differentiation, we get (8.2) (with i/ = 0), i.e.

cos(mz) __
sm2(7rz - 7T2 EWEZ
In exactly the same manner we can prove the identity

cos(mz)

1 1 1 1 1 2 + 1
cot(m2) = Gimsy = 7z + 7 Lnenfoy (2w T7) = 75 T F 2nst 7o (8.7)

from which, by differentiation, we get

1 1 1
sin?(7z) @2 £<n€ZL (z—n)?"
Exercises.

8.1.1. Using (8.7) and the Laurent series of cot(7z) at 0, find the values of

n=1 n2> n=1 ni»

+oo 1 + 1 Z 1
nt n=1 né-

8.1.2. Express ), . m in closed form.
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8.2 Infinite products.

Let (z,) be a sequence in C. The expression

n23 %
is called infinite product of the 21, 2o, .... We consider three cases.
First case. z, # 0 for every n.
We denote p,, = 2z - - - 2, the n-th partial product of the z1, z2,.... If p, — p for some p € (@,
we write
w210 =P
and we say that p is the product of the 21, 22,.... If p # 0 and p # oo, we say that the infinite

product converges to p. If p = 0 or p = co, we say that the infinite product diverges to 0 or to co,
respectively. If the sequence (p,,) does not have a limit, we say that the infinite product diverges.

Example 8.2.1. Let 2, = 1 + % for every n. Then

pn:(1+%)...(1+%):%%...LLﬂ_n_i_l

n—1

Hence p,, — oo and so H A+ ) oco. In this case the infinite product diverges to oo.
Since all p,, are real, we may also say that p,, — +o0o and that the infinite product diverges to +oc.

Example 8.2.2. Let z,, =1 — for every n. Then

n+1
pm (=] (1 g = 33 oom = b
Sop, — 0and [[/25(1 — TH) = 0. In this case the infinite product diverges to 0.
Example 8.2.3. Let z,, = 1 — w2 +1) for every n. Then
pn:u—;z)---(l—m):75’3%---‘”*%"*” e = 2

Therefore p, — % and so H:{g( . In this case the infinite product converges to 5

wrp) =

Second case. There is m so that z,, # 0 for every n > m + 1 and z, = 0 for at least one n < m.

If the infinite product Hn mi1 #n diverges, we say that the infinite product H:{i‘i zn diverges.

Now let [T 41 2n = p for some p’ € C. Ifp' # 0 and p/ # 0o, then [T 41 Zn cOnNverges

to p/, and we say that [ >} z, converges to p = ([["; 2,)p’ = 0p' = 0. If p’ = 0, then
:Oomﬂ 2, diverges to 0, and we say that H:ﬁ 2, diverges to p = (Hnm:1 zn)O =00=0.If

p' = oo, then Hn a1 2n diverges to oo, and we say that H:i’i zp, diverges.

Third case. There are infinitely many n so that z, = 0.

Then we say that H 1 #n diverges.

Therefore, in any case, the infinite product H:g zn, converges if and only if there is m so that
zn # 0 for every n > m + 1 and the partial products zp,11 - - - 2z, converge (as n — +00) to
some complex number # 0. Moreover, if H:{i’i zp, converges, its value is equal to 0 if and only if
zn, = 0 for at least one n.

Proposition 8.1. If H:{i’i zn, converges, then z, — 1.

Proof. There is m so that z,, # 0 for every n > m + 1 and Hn a1 Zn = p’ where p’ # 0, co.

Then zy,41 - - 2, — P, a8 n — 400, and thus z,, = 2?1117221? — p, =1. 0
m n
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From now on we shall use the symbol
’:i.i (1+an)

for the infinite product. According to the previous discussion, convergence of the infinite product
implies that a,, — 0.
There are three simple inequalities which play some role in the study of infinite products. The
first two are:
l+ar++ap, <(1+ay) - (1+a,) <enttom (8.8)

when 0 < aq, ..., a,. The left inequality is easily proved by induction and the right inequality is
based on the well known 1 + = < e*. The third inequality is:

l—ay = —an < (1—ap)---(1— ay) (8.9)
when 0 < ay,...,a, < 1. This is proved also by induction.

Lemma 8.1. Let a,, > 0 for every n. Then [, ~ 1(1 + ay) converges if and only lfz
converges.

Proof. Wesetp, = (1+ai)---(1+ ay) for every n. Then the sequence (p,,) is increasing and
we have p, > 1 for every n. Then p = lim,,_, {» Py, exists and 1 < p < +o00. We also denote

s = :{i’i an and we have 0 < s < 4-00. Taking the limit in (8.8) we find 1 + s < p < e®. Thus,
p < +oo ifand only if s < +oc. O

Example 8.2.4. [T/ (1 + 1) = +o0, because 2] = +oc.

n=1 n
23(1 + %) converges, because Z*OO 1 < too.

We say that the infinite product > (1 4 ay,) converges absolutely if the infinite product
21(1 + |an|) converges or, equlvalently, if the series 3" |a,,| converges.

Criterion of absolute convergence. I [ [ 2 (1 + ay,) converges absolutely, then it converges.
Proof. Since 32 |an| < +oc, we have that a,, — 0 and so at most finitely many a,, are equal
to —1.
We denote

pn=004a1)--(1+an),  Po=1+]ar])-- (1+[an]).

Then, if n < m, we have

Pm = pul = | Ty (1 + ak) — T[Ty (1 + ax))|
= | [Thi (U + a) (TTHs 1 (1 + ag) — 1)
= [Ty 1+ al| TTis 1 (L4 ar) — 1 (8.10)
< et (U + lag]) (TThm sy (1 + faxl) — 1)
= [Ipo, (1 + far]) = Tz (1 + |ag|) = P — Pa.

Since [ 2] (1 4 |an|) converges, we have that (P,) is a Cauchy sequence. So the last inequality
1mphes that (pn) is also a Cauchy sequence and hence converges.

Now we have two cases.

Let 3% |a,| < 1. Then

[l = Tliey 11+ ak] > Thiy (U= Jawl) > 1= 305 la] > 1= 37502 Jax| > 0,

where for the second inequality we use (8.9). This implies | limy,—, yoo | > 1 — Z 1 lak| > 0.
Therefore hmnﬁ%O pn 7 0 and hence +°° A+ an) converges

Now let Z ]an] > 1. Then there is m so that Z i1 lan] < 1 and from the first case we
have that []" % ., (1 4 a,) converges. Hence [, > (1 + a,,) also converges. O
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From now on we consider infinite products of functions.

Proposition 8.2. Let a,, : A — C be bounded functions in A andlet 3" > |a,| converge uniformly
in A. Then T[> (1 + a,,) converges uniformly in A.

Proof. Since 3 |a,,(2)| converges for every z € A, we have that [[7>S (1 +a,(2)) converges
absolutely and so it converges for every z € A. We definep: A — C by

p(2) = [[Z (1 + an(2))

for every z € A. The uniform convergence of "% |a,| in A implies that there is M so that
o lan(2)| < M for every z € A.
We set

pa(2) = [Tioi (L ar(2)), Sal(2) = Xy lar(2)l, S(2) = X202 law(2)].
We apply (8.10) and we get

[P (2) = pa(2)] < TTemy (1 + law(2)) (TT7 410 (1 + lar(2)]) — 1)
forn < mand z € A. We apply the right side of (8.8) and then we let m — +o0 to find

p(2) — pu(2)] < eSn(2) (es(z)—Sn(z) _ 1) <eM (es(z)—sn(z) _ 1) — M (G\S(z)—Sn(ZN _ 1)

for every n and z € A. Therefore, ||p — pulla < eM (eHS_S"”A — 1) for every n. Since S,, — S
uniformly in A, we have that p,, — p uniformly in A. O

Now we state the analogue of the theorem of Weierstrass for the uniform convergence of series
of holomorphic functions in compact sets.

Theorem 8.1. Let (a,,) be a sequence of holomorphic functzons in the region ), so that 325 |ay|
converges uniformly in every compact subset of ). Then Hn: (1 + ay,) converges umformly in
every compact subset of () and it defines a function

D= 7—’1—3(1 + an)v
which is holomorphic in Q. Moreover, p(z) = 0 if and only if a,(z) = —1 for at least one n.

Finally, if none of the a,, is identically —1 in (), we have that

/

B =3 8.11)

at every point in Q) which is not aroot of p. The series in (8.11) has the property: for every compact
K C Q there is ng so that

e n0+1 1+a converges uniformly in K.

Proof. Of course, proposition 8.2 implies that H > (1 + ay) converges uniformly in every com-
pact subset of Q. Every p, = [[,_,(1+ag) is holomorphic in Q2. Since p, — p uniformly in every
compact subset of €, the theorem of Weierstrass implies that p is holomorphic in 2. Moreover,
for every z € Q we have p(2) = [[7>] (1 + a,()) and, since the product converges, we have that
p(z) = 0if and only if a,(z) = —1 for at least one n.

Now, let us assume that none of the a,, is identically —1 in 2. Then every root of the function
1 + a, is isolated and hence the set of the roots of 1 + a,, is countable. From the first part of
the theorem we have that the set of the roots of p is also countable and hence p is not identically
0 in €. In particular, the roots of p are isolated and if we take any compact K C € then there

are only finitely many roots, say z1, ..., 2m, of p in K. Now, by the convergence of the infinite
product, for each j = 1,...,m, there is n; so that a,(z;) # —1 for every n > n; + 1. If we
set ng = max{ni, ..., n,}, then we have that a,(z;) # —1 for every n > ng + 1 and for every

150



j =1,...,m. Moreover, since p has no root in K other than z1, ..., z,,, we have that a,,(z) # —1
for every n > ng + 1 and for every z € K.
+oo

Now we consider the infinite product ¢ = [[,Z (1 + a,) and the partial products g, =

[Ti—ngs1(1 + ax). Of course, we have that ¢, — ¢ uniformly in K and also ¢;, — ¢’ uni-
formly in K. We also have that ¢ has no root in K and so there is § > 0 so that |¢(z)| > ¢ for

every z € K. These imply that Z—IZ — %’ uniformly in K. On the other hand, it is trivial to show
that

! a/

qn _ n k
qn - zk):no-‘rl 1+ap
and so

/

¢ _ Ntoo a,
q n=no+1 1+an (812)

uniformly in K. At last, from p, = [[;2,(1 + ax) ¢, and from p = [[}2, (1 + ax) ¢, we also get

’ / / / / /
P _ 0 ol qn P _ o o q
Pn Zk:l 1+ag + qn’ p Zk:l 1+ay + q (813)

at every point in K which is not a root of p. From (8.12) and (8.13) we get (8.11) atevery z € K
which is not a root of p. Since K is an arbitrary compact subset of €2, we conclude that (8.11) holds
at every point in {2 which is not a root of p. O

Exercises.

8.2.1. Recall from the proof of the argument principle, that the roots of p are simple poles of %.
What are the corresponding residues? Now prove that (8.11) holds also at the roots of p.

8.2.2. Prove theorem 8.1 under the assumption of the uniform convergence of [/ (1 + a,,) in
every compact subset of 2. Do not assume that ZZS& |ay| converges uniformly in every compact
subset of (2.

8.3 Holomorphic functions in the complex plane.
We know that every non-zero polynomial of degree n can be written as

p(2) =clz —21)™ - (2 — )™

where 21, . .., 2z are the distinct roots of p and my, ..., my are the corresponding multiplicities.
In particular, m; + - - - + my = n.

Let f be a non-zero function holomorphic in the region €2 and let 21, . . ., 2, be all the roots of
f in Q with corresponding multiplicities m1, . .., my. We know that we can factorize (z — z1)™
from f, i.e. that f(2) = (2 — 21)"™g(z) for every z € (2, where g is holomorphic in  with
g(z1) # 0. Now g has roots 2, . . ., z, with corresponding multiplicities ma, . .., m,,. Similarly,
9(2) = (2 — 22)™2h(z) for every z € 2, where h is holomorphic in Q with h(z1) # 0, h(z2) # 0.
Now h hasroots z3, . . ., 2z, with corresponding multiplicities ms, . . . , m,,. Continuing inductively,
we get that

F2) = (z = 2)™ - (2 — )™ F(2)

for every z € (), where F' is holomorphic and has no roots in €. If we do not want to show the
multiplicities of the roots except for the (possible) root at 0 we may simply write

f(z) =2"(z = 21) -+ (2 = z0) F(2),

where m > 0 is the multiplicity of the root 0 and z1, ..., z, are the remaining (not necessarily
distinct) non-zero roots of f in 2.

The question now is to generalize this situation in case f has infinitely many roots 0, z1, 29, . . ..
In this case the corresponding infinite product 2" (z — z1)(z — z2) - - - may not converge.
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To prepare for what will follow, we rewrite the last identity in the form

fz) =21 = 2) (1= 2)F(2),

where the new F' is the previous F' multiplied by the non-zero number (—1)"z; - - - z,,. We also
note that if the region is simply connected, e¢.g. if @ = D or 2 = C, then, since F' has no roots in
Q, there is a holomorphic branch g of F' in €2. So the last identity becomes

f(Z) :zm(l—i)...(l_ i)eg(z)

for every z € (2, where g is holomorphic in 2. This is the most general form of a holomorphic
function in the simply connected region €2 with finitely many preassigned roots (and no other roots).
In the following discussion we shall concentrate only in the case {2 = C.

Lemma 8.2. We have |e* — 1| < £ |z| for every z with |z| < 1.

Proof. Since 2°=1 < k! when k > 1, we get

e =1 = | I3 1l < I B = 1o SI B < Bl S e = o < 31
when |z| < 1. O
We set
po(z) =1—z, pm(z) = (1 — z)ez+§+"'+% when m > 1.

Lemma 8.3. For every m > 0 we have
3|z m+1
[Pm(2) — 1] < HT
when |z| < 1.

Proof. Form = 0 we have |po(z) — 1| = |z| < 3]z|.
Now let m > 1. If |z| < 3, then by the Taylor series of Log(1 — z) in the disc Dy(1) we get

2 m—+1 k
|Log(l —2) +z+ % + -+ 20| = | )2 m+1%}<2k m+1|T§TrIL+IZ z|
I S ] i
= G ) S AT
If |z| < 1, then 22 L <1 Thuys, lemma 8.2 implies
2 mt1 (m+1)2 1
1 2m 8 2 m+1 3 m-+1
|pm(2’) - 1’ |6L0g —2)+tz+5% + +E- 1| < 8 |;|_"_1 < |§J+1
for |2| < 3. O

The following is a theorem of Weierstrass.

Theorem 8.2. Let (z,) be a sequence of non-zero numbers so that z, — .
(i) Then there are integers my, > 0 so that

+oo 1 (i)mn"l‘l
n=1 mp+1\|z,|

< 400

for every R > 0.
(ii) If the integers m,, satisfy (i) then the function
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is holomorphic in C and its only roots are the terms of (z,). The multiplicity of each zj as a
root of F is the same as the number of its appearances as a term of (z,). Moreover, the most
general holomorphic function in C, whose only roots, besides 0, are the terms of (z,) and so that
the multiplicity of each zy, as a root of f is the same as the number of its appearances as a term of
(zn), is of the form

1 z

f(z) = 2med() H+ 1P mn(%) = 2me9) T3 (1—%)6% +a(5) %n(%)mn7

n=1

where m > 0 and g is an arbitrary function holomorphic in C. We also have that

f/( ) _ + mp—1
T =2+ (2) + 00 (o At )

n=1

zZ5

at every z which is not a root of f.

Proof. (i) We may consider m,, = n and then, since z,, — oo, for every R > 0 there is ng so that
|zn| > 2R for every n > ng + 1. This implies that

+oo 1 R \n+1 400

n=ng+1 rﬂ(@) S n=ng+1 (n+1)2n+1 < +00.
(1) Let the integers m,, satisfy (i). We consider any compact X C C, and then there is R > 0 so

that K C Do(R). As in (i), there is ng so that |z,| > 2R for every n > ng + 1. Now lemma 8.3
implies that for every z € K we have

i)m"+1 < +o0.

P () =1 = i (g

By the test of Weierstrass, the series 3% | Pm,,(£) — 1| converges uniformly in K. Since this
is true for an arbitrary compact K C C, theorem 8.1 implies that the infinite product defines a
function

holomorphic in C. The roots of F" are the roots of p,,,, , i.e. the terms of (z,,). Also, the multiplicity

of each z, as a root of F is the same as the number of its appearances as a term of (z, ). Theorem
8.1 also implies that

2Mmn— 1

F'(z) _ +o00 (
F(z) — n=1
at every z which is not a root of F.
Now let f be any holomorphic function in C, whose only roots, besides 0, are the terms of (z,,) and
so that the multiplicity of each z; as aroot of f is the same as the number of'its appearances as a term

of (25,). Let m > 0 be the multiplicity of 0 as a root of f. Then the function ,f % () j is holomorphic

in C and has no roots. So there is some function g holomorphic in C so that / (Z() y = e9(?) for
every z. Finally, from f(z) = 2e9) F(z) we easily get that

(z) _m F'(z

i =2+ d )+
and the proof is complete. O]

The functions pp,, (Z ) appearing in the product expansion of f and of F' in theorem 8.2 are
called primary factors of Weierstrass.

There is an important special case of theorem 8.2. It is the case when all integers m,, > 0 can
be taken to be equal to the same integer A > 0. This means that

—+o00
n=1 Tz \h+1 < +o00.
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If this is true for some integer h > 0 and we consider the smallest such h, called genus of the
sequence of roots (zy,), then the most general holomorphic function f in C, whose only roots,
besides 0, are the terms of (zy,,) and so that the multiplicity of each zj, as a root of f is the same as
the number of its appearances as a term of (zy,), is of the form

f(Z) _ Zmeg(z) 2—2 ph(zi) _ Zmeg(z) H:z (1 - i)ei-‘r%(ﬁ)%}--..-}%(i)h’
where m > 0 and g is an arbitrary function holomorphic in C.

Example 8.3.1. The function sin(7z) is holomorphic in C and its roots are the integers n € Z.
Each root is of multiplicity 1. For the non-zero roots we have that

2 _nez\ {0} |le| =400, Y nen\o} ﬁ < Fo0.
Thus, we may use h = 1 in order to apply theorem 8.2 and we get that
sin(z) = zed() [Thez oy (1—2)en

for some g holomorphic in C. We also have that

7 cos(mz) 1

e = = T9(2) + Xnezygoy (2 +3)-

Now, (8.7) implies that ¢’(z) = 0 for every z and so g is constant in C. Then €9 is a constant, say

¢, and then we have that ()

= =cllieno (1= 3)en

for every z. Both sides of this equality are holomorphic in C and setting z = 0 to it we get ¢ = 7.
Therefore,

. 2z 2
sin(mz) = 72 [[e (0} (1= 2)en =7z ][5 (1 - %). (8.14)
This is the formula of Wallis.

8.4 Euler’s gamma function.

Lemma 8.4. The limit
v = lim (1+%+~-+%—lnn)

n——+oo

exists and 0 < v < 1. The constant -y is the so-called Euler’s constant.

Proof. We have
f 1 rk+1 1 dt k—l—lldt k—‘rlldt_l
=S mmdt< )i gdt< [T pdt=g

and hence
g <InE < (8.15)

We observe that
L4 gt h s 1) = S (- )

is the n-th partial sum of the series

+00 (; _lnk+1).

k=1 \k k

Now (8.15) says that this series has positive terms and that it is dominated by Z;ﬁ‘i (% — %) =1
So the limit v of the partial sums 1 + % + .4 % —1In(n+ 1) existsand 0 < v < 1. O

154



As in example 8.3.1, we use the sequence z,, = —n, n € N, to apply theorem 8.2, and we form
the function

z

fz) =2 T2 (14 2)e .
This function is holomorphic in C and has simple roots at the points 0, —1, —2, —3, .. ..
Definition. We define the function

-1 — -1 =z
P(z) = g =2l PILS (L+2) e

This is Euler’s gamma function.

It is clear that the gamma function is meromorphic in C. It has simple poles at the points
0,—1,—2,—3,... and it is otherwise holomorphic in C. It is also clear that the gamma function
has no roots in C and that I"(1) = 1.

If we restrict the gamma function in C \ (—o0, 0], then we have a holomorphic function which
does not vanish in a simply connected region, and so there is a holomorphic branch of the logarithm
of the gamma function in this region. We shall denote

logT’

this branch of the logarithm and we may uniquely determine it by setting logI'(1) = Log1 = 0.
Now, it is clear from the defining formula of the gamma function that I'(x) > 0 for every = > 0.
And then it is obvious, by the uniqueness of branches of logarithms in connected sets, that

logT'(xz) = In(T'(x))
for all z € (0, +00).
Proposition 8.3.
D(e) =, lim sty e

This is the formula of Gauss for the gamma function.

Proof. By the definition of I'(z) we have

F(Z) = lim 2_1@_(22:1 %_lnn)znzzl (1 + %)71622:1% = lim n®n!

=400 n—s+oo 2(z+1)~(Fn)"

O

Proposition 8.4. The gamma function satisfies the functional equation

L(z+1) =2I'(2).
Proof. By the formula of Gauss,
I(z+1)= lim (z+1)(z122+)-1-7-1(!z+1+n) =z lim z(z+{L)z--7-l(!z+n) i = 2L (2).

O

Proposition 8.5.

I'(n)=(n—-1)!

for every integer n € N.

Proof. Since I'(1) = 1, the result is implied by the functional equation and a trivial induction. [J
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Proposition 8.6.
Fz)IT(1—2) ==~

sin(7z) *
Proof. We use the functional equation to write
[(z)F(1 = 2) = T'(2)(=2)I'(-2)
= LN (14 ) en () () et I (1= ) e

= s

_ -1 =
=z HnGZ\{O} (1 B ﬁ) e n= sin(rz)

For the last equality we used the formula (8.14) of Wallis. O
Now substituting z = % in the last equality we get
OB

Proposition 8.7.
D(2)[(z + %) = V727227 (22).

This is the duplication formula.

Proof. By the formula of Gauss,

1\ . zZp! z+% 1
LTz +3) = lim soryiem erhe - Grim)

— (2n)2% (2n)! 92042221, ()2
- n~1>rJIrloo (22)(22+1)(224+2)(22+3)---(22+2n) (2n)!(2z4+2n+1)

22n+272zn%(n!)2

=122 lim_ Goymeian -
On the other hand,
1 1
_ 1) _ .  mZal . 22n+1,73 (n!)2
Vr=T(3) = ngr-&l-loo sGHD-(G+n) ngrfoo @n)l(2n+1) -
These two equalities imply the duplication formula. O

Proposition 8.8.

I'(z) _ 1 oo (1 1 I'(z)\/ _ oo 1

I'(z) — VT 2T L=t (z+n B ﬁ)’ (F(z) ) — Zun=0 (z4n)2"
Proof. We use theorem 8.2 of Weierstrass to calculate 1;((;)) = — J;/ ((ZZ)) and then we differentiate
the resulting series termwise, due to its uniform convergence in compact sets. O

1;((5)) )/ are the logarithmic derivatives

Of course, if we restrict in C \ (—o0, 0] then ?/((j)) and (
(logI')" and (logT")".

The following proposition states some results for the restriction of the gamma function in
(0, +00). Some of them have been already proved.

Proposition 8.9. (i) I'(x) > 0 for every x € (0, +00).
(ii) limy 04 I'(z) = +o00 and lim,_, 1 o I'(x) = 400.
(iii) T(x + 1) = aT'(z) for every x € (0, +00).

(iv) T'(n) = (n — 1)! for every n € N.

(v) log' = InT is convex in (0, +00).

i) T'(z)T"(z) > (I'(x))? for every x € (0, +00).
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Proof. Only (ii), (v) and (vi) need to be proved.
(if) We know that 0 is a pole of I" and that I'(x) > 0 for « > 0. This implies that lim,_,o; I'(z) =
+00. A second proof uses (iii):

lim I'(z) = lim T(z+1) lim 2 =T(1)(+00) = +o0.

r—0+ r—0+ r—0+

Now, if n = [z], then 1 <2 —n + 1 < 2 and since I is continuous and positive in [0, 1], there is
0 > 0sothat I'(x — n + 1) > 4. Then (iii) implies

MNz)=(z-1)(z—=2)---(z—n+1)(z—n+1)> (n—-1)(n—2)---10 = (n—1)!1§d = +o0

when z — +4o00.
(v) Proposition 8.8 implies

(LogT)"(x) = (F/(x))/ = :i?) W >0

for every = > 0.

(vi) We just observe that
T (z)\/ ['(z)I (2)— (T (x))?
(Log F)”(w) — ( F((a:))) — (x) (%()x))(? ()
and the inequality to be proved is equivalent to the convexity of LogT. O

Now we consider the so called Euler’s second integral:
S let dt.

When we write t2~1 with ¢ > 0, we mean t*~1 = e(#=1)nt,

At first we consider the case when z = z is real and > 0.

If > 1, then t*~!e~* as a function of ¢ is continuous in [0, +00). So fol t*le~tdtis a
common integral. On the other hand f1+°° t*~le~t dt converges. To see this we consider n € N

so thatn > x. Then e! = Y25 %k, implies ! > % for ¢t > 0 and hence
0< [t tetat <nl [[t*= "= 1dt < +oc.

Therefore f0+°° t*~le~t dt converges.
If0 < x < 1, then t* !¢t as a function of ¢ is continuous in (0, +o00). The integral
1+O° t*~le~t dt is still convergent. Regarding fol t*~le~t dt we see that

0< [t lemtdt < [ t* 1 dt < +o0.

Therefore f0+°° t*~le~t dt is convergent again.
In the case when 2z is complex with Re z > 0, we see that

S e dt = [T ReE e dt < oo
and so f0+oo t*~Le~t dt converges and
| [ e—tetdt| < [F0tRes—tet dt.
Now we are going to see that the function

F(z)= 0+°O t*~le~tdt
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is holomorphic in the right half-plane {z |0 < Re z}. At first we consider the integral
Fsr(z) = f(SR e tdt

when 0 < 6 < 1 < R < +o0, and we leave it as an exercise to the reader to prove that Fjs  is
holomorphic in {z |0 < Re z} and, in fact, that it is holomorphic in all of C, with derivatives

Fyp(z) = [t tet " ¢ dt.

We now prove that

lim F§R =F
§—0+,R—+0c0

uniformly in every compact subset of {z|0 < Rez}. In fact, since every compact subset of
{#|0 < Rez} is contained in some vertical zone of the form {z|a < Rez < b}, 0 < a < b,
we shall prove that the convergence is uniform in every such zone. Indeed, for every z with
a < Rez < bwe get

|Fsr(z) — F(2)] < f05 tRez—le=t gt 4 [T Rez=le—t gy < f05 toletdt + [t et dt.

Thus
8 a1 - N
IEs.8 — Fll{z)a<re sty < Jo t9 et dt + [ " te™tdt — 0

when § — 0+ and R — +o00.
The uniform convergence of the holomorphic functions Fj5 r to I’ in every compact subset of
{z]0 < Re z} implies that F is also holomorphic in {z |0 < Re z} and also that

FO(2) = [ =" Te~ In" t dt

for all z with Re z > 0.
It easy to prove the functional equation

F(z+1)=2z2F(2)

i.e. the same functional equation that the gamma function satisfies. Indeed, by a simple integration
by parts we get

Fz4+1) = [Ftetdt = — [t (e ) dt = [Tt e tdt = 2 [Tt e t dt
= 2F(2).

Since F'(1) = f0+oo e~tdt = 1, induction shows that F'(n) = (n — 1)! for every n € N.

With the help of the functional equation, F', which is holomorphic in {z|0 < Rez}, can
be extended as a meromorphic function in all of C, having simple poles only at the integers
0,—1,—-2,-3,.... To do this we consider any n € N and the function

Fon(?) = Syt

in the half-plane {z | —n < Re z}. This function is holomorphic in {z | —n < Re z} except at the
points 0, —1,...,—(n—1). Since F'(n), F(n—1),...,F(1) # 0, the points 0, —1, ..., —(n—1)
are simple poles of F_,,. If 0 < Re z, we get F__,,(z) = F'(z) because of the functional equation
satisfied by F'. Thus, F__,, is an extension of F'in {z| —n < Re z} and we trivially see that F_,,
satisfies the functional equation F_,,(z + 1) = zF_,,(z) forall z € {z| —n < Re z}.
Now, if we take any m,n € N with n < m, then the functions F_,, and F_,, are the same in

the intersection of their domains of definition {z| —n < Rez} and {z| — m < Rez}. This
intersection is the smallest of the two half-planes, i.e. {z | —n < Rez}. To see that F_,, and F_,,
F(z+n)

are the same in {z | —n < Re z}, we either use their defining relations F_,,(z) = T tnsT)
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and F_,,(2) = % together with the functional equation F'(z + 1) = zF(z), or we
think that both functions coincide with F' in {2 |0 < Re z} and then use the principle of identity.
Finally, since all the half-planes {z| — n < Rez}, n € N, cover C, we conclude that all the
functions F_,,, n € N, determine a single function F_ ., defined in C \ {0, —1,—2,...}. Indeed,

forany z # 0, —1, —2, ... we take any n € N so that —n < Re z and we set
F_(2) = F_,(2).

The value F_,,(z) does not depend upon the specific n € N satisfying —n < Rez. In fact, if
n,m € N are such that —n < Re z and —m < Re z, then we have shown that F__,,(z) = F_,,(2).
Thus F_ is well defined in C \ {0, —1,—-2,...}.
Of course we have that F__, = F'in {z|0 < Rez}and F_, = F_, in{z| —n < Rez} for
every n € N. Therefore, ', is holomorphic in C except at the points 0, —1, —2, ... which are
simple poles of it. Since F_, extends F', we shall denote it by the same symbol F'. We easily see
that it satisfies the functional equation F'(z 4+ 1) = zF'(z) in its domain of definition.

Now we shall prove some results for the restriction of £ in (0, +0c) which are analogous to
results for the restriction of the gamma function I in (0, 4+00).

Proposition 8.10. (i) F'(x) > 0 for every x € (0, +00).
(ii) lim, 04 F(z) = 400 and lim,_, 4« F(z) = 400.
(iii) F(x 4+ 1) = xF(x) for every x € (0, +00).

(iv) F(n) = (n — 1)! for everyn € N.

(v) In F is convex in (0, 400).

i) F(x)F"(z) > (F'(x))? for every x € (0, 4+00).

Proof. (i) Trivial.
(ii) Let z > 0. Then

F(z)> [yt tetdt > e [jt7dt = L — 400

when z — 0+.
Now let x > 1. Then

F(x) > f;oo tr=le~tqt > 271 f;oo e tdt =2""1e 2 5 400

when z — +4o00.
(iii)-(iv) They have been proved.
(v)-(vi) For every = € (0,400) and every a € R we get

a*F"(z) + 2aF'(x) + F(z) = [ t* (alnt + 1)%e~tdt > 0.

This implies that F”(z) F(x) > (F'(x))? and so (In F')"(x) > 0 for every x > 0.
The inequality F”(x) F(x) > (F'(x))? can also be proved by the Schwarz inequality for integrals:

(F'())2 = ([t e tintdt)” = ([T e 2t"2 e 2 Intdt)’
< foroertentdt [Pt e tIn? tdt = F(x)F"(x).
O

Our next task is to prove that the functions I' and F' are the same function. Below we give
three proofs. The first is the simplest.

Proposition 8.11.
I(z) = 0+O° t*~le tdt

forevery z€C, z#0,—-1,-2,-3,....
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First proof. Due the principle of identity, it is enough to prove I'(z) = F'(x) for x € (0, +00).
The functional equation for F' implies that

InF(z+n+1)=InF(z)+Inz+In(x+1)+---+1In(x +n)
for every x > 0 and n € N. Differentiating this twice, we get
(InF)"(z+n+1) = (InF)'(z) — & — ﬁ ----- W

Since (In F)"(z +n + 1) > 0, we have that

+_|_ 1

(InF)"(@) > 35 + 3 (@tn)?

z+1)2

for every > 0 and n € N. Letting n — 400 we get
(InF)"(z) > (InT)"(x)

for every z > 0.

Therefore, the function h = In F' — InT" is convex in (0, +00). But we also have that F'(n) =
I'(n) = (n — 1)!, and hence h(n) = 0, for every n € N. Now it is trivial for the reader to prove
that A(x) = 0 for every z > 1. So F(z) = I'(xz) for x > 1 and then the functional equation
implies the same for 0 < =z < 1.

Second proof. As in the first proof, we shall prove that I'(z) = F(z) for x € (0, +00).

Succesive integrations by parts give the formula

and so it is enough to prove that

lim fo tr— 1( ) dt = +Oot"”*16*tdt.

n—-+4o0o

We have )
1= D)t <prlemum = le! (8.16)

foreveryt > 0O andn € N.
Now take € > 0. Then there is a > 0 so that

[Forletar < <. (8.17)

Now (1 — £)" — t*~1e~" uniformly in [0, a]. Indeed, for n > 2a and t € [0, a] we have that
L < Landso

’tx—l(l _ %)” _ t:v—le—t} — tm—l’enln(l—(t/n)) _ —t‘ — 1, —t(l _ t+nln(1—(t/n)))
x+1

n

< t:c—le—t(l —t /n) < T 1 —tt2 < o
Therefore ;' t*~1(1 — L)"dt — [ ¢*~'e" dt. Thus there is ng so that
| Jotm (1= L) dt — [ e temtdt] < §
for every n > ng. This last relation together with (8.16) and (8.17) imply

| [t =1 (1— )" dt — [Tt dt|
<| [yt (1 - 5) dt — [yt teTtdt| 4+ [yt (1= L) dt + [t e dt
< |t (1=t dt — [ tetdt| + [yt et dt + [t e dt
<stgti=c
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for every n > ny.
Third proof. We shall prove a rather crude estimate of I'(z) when z = z + iy, 0 < x < 1.
At first we use (8.15) to get

35

n 1 n k. _
Dkemil kS Dkemp Ny =In
Also

1 +oo 1 1
il 1 2 S <¥2 m+1k1t2dt S mdt =1
Now we consider 0 < z < 1 and |y| > 1, and then we take m = [2]y|] € N. Then we have

k 24,2
Zk m-i-l(erk)?er ):ZZ m—i—lQl_i_ZZ m+1xl:_2y <2.%'11’1 x;y

<2zln+1+ 'y‘

This implies
(o ) < S (S0 (my2eirlf < i
On the other hand,
24,2 24 2., 24,2 my 2
(z%+y )((x+1)1;.1./n32 (z+m)°+y?) <1+ !y|)2((1+m,:;!ly‘) ) <1+ |y‘)2€2(1+m+|yl)

< (1 + Jyl)Ze* ol
Multiplying the last two inequalities we get
[HEEDA | < (14 [y H

n?n!

and letting n — +o00 we conclude that

o S (L4 ez,
We observe that, if 0 < z < 1 and |y| > 1, then
|[F(2)| = Gl < fFogwetar < [Tz tdt+ " #2etdt < [ dt+ [ tetdt < 2.

Now we consider the function

h(z) = 13-

Since the poles of F' and I' are simple and coincide, h is holomorphic in C. Also, since both F’
and I satisfy the same functional equation, we get that h(z + 1) = h(z) for every z, i.e. that h is
1-periodic. Now the estimates we have got for | F'(z)| and ‘F( 7 imply that

[h(2)] < e(1+ [y)es ¥

for every z = = + ¢y with 0 < z < 1, where c is a constant.
Since h is 1-periodic, we may define the function

2miz

g(w) = h(z), where w = e
Then ¢ is holomorphic in C \ {0}. From the last estimate of |h(z)| we easily get that
lg(w)] < e(1+ 5z gp)lwl =, if Jw] <1,

lg(w)] < (1 + 5= In|w|)|w]®, if |w| > 1,
where a = 8 3 and hence 0 < @ < 1. From the first relation we get lim,,_,o wg(w) = 0 and,
by the criterion of Riemann, g can be considered holomorphic at 0. Moreover, if we consider the
function p(z) = g(1), then from the second relation we have that [p(z)| < ¢(1 + 5 ln )]z\ a
for |z| < 1. The same argument as before shows that p can also be considered holomorphlc at 0.
In particular, p is bounded near 0 and so g is bounded near co. By the theorem of Liouville, we

conclude that g is constant and of course this implies that i = % is constant. Since h(1) = 1 we
finally get that ' =T.. O
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Lemma 8.5. We consider the 1-periodic functions in R:
F(t)=t—[t]-3, Gt)=5(t—[tht—[t]-1)
Then for every twice continuously differentiable function f in [0, n] we have

Zk Of f F(t) f(o)‘gf(”) + j‘on f/(t)F(t) dt — f(0)+f(n) +f(n fO f// G(t) dt

Proof. In every interval [k — 1, k], k € Z, we have that F’'(¢t) = 1 and G'(t) = F(t). Integration
by parts implies

PEZIEIR) _ fF peydt = [ FOF@)dt= [F f(0)G(t) dt

from which we get

k) — [ ) de = —LEDTI® kR ae = - LEUEIW ke Gy a.

Now we add these relations for k£ = 1, ..., n, and then we add f(0) to both sides of the resulting

equality. O
Now we shall prove a famous asymptotic formula.
When we write f(z) ~ g(z) as z — 0o we mean that lim,_,, g((g =1

Theorem 8.3. Let 0 < 6 < mand Gs ={z|z#0,—7m+ 0 < Argz <7 — 6}. Then
[(z) ~ V2me 272 as z — oo in Gy.

This is Stirling’s asymptotlc formula

When we write z2* 2 we mean z° -3 = = ez~ )LOgZ,

Proof. We apply lemma 8.5 to the function f(¢) = Log(z + t) and we get

S p—oLog(z + k) — [ Log(z +t)dt = %Og(zm + [y (zG+32 dt.

Now, Log(z + t) is the derivative of (z 4+ t) Log(z + t) — ¢ and so we have

Sr_oLog(z + k) — (2 +n)Log(z +n) + n+ zLogz = Log”LOg(H" + J 54—32 dt.

Thus

Sh_oLog(z+ k)= (2+n+3)Log(z+n)— (+ — 3) Logz —n+ [ (Gﬁ dt.

We write the same formula for z = 1:
G(t
Sh_oLog(l+k)=(n+ )Log(l—l—n)—n—l—f” 1+t;2 dt.
Taking exponentials of both equalities we find
2(z+1)---(z4+n)=(2+ n)z+n+%z_z+%e_”el"(z),

m+1)!=(mn+ 1)”+%e*”61"(1),

where I,(z) = [, (SS%Q dt.

We divide the last two equalities and we easily find

)n+ 26 n(l) In(Z)‘
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The left side of this equality has limit I'(z) when n — +o00. Moreover, (-%~)* — 1 and

+z
(Zii)”+2 — e!=% when n — +oo. Finally, we observe that —1 < G(t) < 0 for every .

8
This implies that the integral I(z) = 0+°° (3532 dt converges absolutely:

1(z) < Jo™ |(z = 2 dt < § i e 4t < 400

for every z in C \ (—o0, 0]. We conclude that

T(z) = o127 5 o I()=1(2) — =273 o—1(2)
for every z in C \ (—00, 0], where ¢ = ¢! */(1) is a constant.
Now we shall prove that I(z) — 0 when z — oo in G5. We write z = |z|e? with § = Arg z and
we assume that z € Gg,i.e. —m+ 9 < 0 <7 — §. Then

I < L s dt =g 0™ du

|z+t]2 ele—ﬁ-u\?

du§8||f du

= 8|z| f u2+2uc059+1 uZ— 2ucos5+1

— 1 _ 1 oo 1
- 8| | f (u— 0056 24gin2 8 du = 8|z J—cosd u2+sin? s du

1 o0 1 +o0
< 8lz] J—0 u2+sm Jdu 8|z|sind J—oo u2+1 du
= 8|z|sin5'

So we get that
SUP.ey 2>r H(2)| < srgms
and we conclude that I(z) — 0 uniformly as z — oo in Gs.
We have got that I'(z) ~ ce 2% ~Zasz— ooin (s and the only thing that remains to be proved

is that ¢ = +/27.

We shall use the duplication formula
L(2)[(z + 3) = V721727 (22)
with z = x — +00. We then have that
ce~ T 2ce T2 (z+3)" ~ \/7?21*2%6*25’3(21’)%_%
and this easily implies that ¢ = v/27. O
Since n! = I'(n + 1), Stirling’s asymptotic formula implies that
nl ~ V2re "t

when n — +o00.

8.5 Riemann’s zeta function.
Definition. We define the function
()= Lt=1+L+L+L+

When we write n* we mean n* = e*nn,

The function ( is called Riemann’s zeta function.

163



If Rez > 1, then the series defining the zeta function converges absolutely. Indeed, if x =

Re z > 1, then
—+00
n=1

1

nz

_ oo 1
- n=1 n=

< +00.

Now we can easily see that the series converges uniformly in every half-plane of the form
{z|a < Rez} with a > 1 and hence in every compact subset of the half-plane {z |1 < Rez}.
Indeed, this is a corollary of the test of Weierstrass: if Rez > a > 1, then n—lz < n—la, and

:{i‘j n—la < +o0. Since every % is holomorphic, we conclude that ¢ is holomorphic in the half-
plane {z|1 < Re z}.
The following result connects the zeta function to number theory.
Letp; < p2 <...<p, <... betheincreasing sequence of the prime numbers. We consider

the infinite product
+o0 1
n=1 (1 B ﬁ) :

Since the sequence of the prime numbers is only part of the sequence of all natural numbers, the
previous arguments show that the series E:{i‘i L | converges uniformly in every compact subset

P
of {#|1 < Re z}. Now theorem 8.1 implies that the infinite product
+ 1

defines a function holomorphic in {z |1 < Re z}.
Proposition 8.12. For every z with Re z > 1 we have
_ 17+ 1)1
=TS (-4
Proof. LetRez > 1. We observe that
1 +o0 1 + 1 1
C(’2)(1 - 27) = ng n? ng 2n)7 ZnGN,QI/h nz*
Next
1 1 1 1 1
C(z)(l - 27) (1 - ?T) = ZnEN,Ql/n nz ZneN,Ql/n (Bn)z — ZnGN,QI/n,SI/n nz "

So we see that
C(Z)(l - %) T (1 - %) = ZHEN,pll/nw-,PNW niz

for every V.

Now, if 1 < n < pn41, then n is divisible by at least one of py, ..., py and so the last series does
not include the term n% Therefore the first term of this series is 1 and the next term is P?\;1+1 . This
implies

‘C(z)(l_%)(l_%)_l‘g :l_z;?NHn%

+oo

forz = Rez > 1. Since py4+1 — +00, we get n—py 1 n% — 0 when N — +o0. This finishes

the proof. O

A corollary of proposition 8.12 is that ¢ has no root in the half-plane {z |1 < Re z}.
The next result relates the gamma function and the zeta function.
We consider the generalized integral

too 21
fO et—1 dt

for Re z > 1. The integral converges absolutely: if t = Re z > 1 we have

Jo
0

n
where we use any n € N, n > x, and hence e! — 1 > %,

tzfl
et—1

|dt = [} 5T dt+ [ L dt = [ "2 dt 4 n! [T dE < oo,

0 et—1 et—1
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Proposition 8.13. For every z with Re z > 1 we have

C()D(2) =[5 5% dt.

et—1

Proof. LetRez > 1. For every n € N we have
L(z) = [, e s Lds = n? [[F¥ e "> L dt.

Therefore

+ + - + + — + z-1
C(2)(z) => 020 Jo Te Mt de = [T (a2 e M)t de = [T L dt.
To justify the interchange of the sum and the integral we take any NV € N and we set
Ay =% P ez at, By = [ (S e M) dt.

Then we have

+ r
’AN‘ = |anN+1 %
when N — +o00. Also

<P 217 — 0

+ —Nttz 1 + —Ntta: 1
IBy| = [, e dt| < [T e —dt
1/V/N ¢—Ntgz—1 ~Ntgo—1
:f/ o1 dt+f U e dt
1/\/7 tiv 1 _\/> tT— 1
< —dt+e f/\ﬁ L dt

”‘ﬁt“ “Ldt e VN [P E a0

et

when N — +o00. Combining these two limits with the interchange of the sum of the first N terms
and the integral, we get

T et dt — [T (o el dt = Ay — By — 0
when N — +o00. Since the left side does not depend upon NV, it is equal to 0. O

We consider the principal branch Log of the logarithm defined in the region C \ (—oo, 0] by
Log¢ =1Inr+i0 for ¢ =re? with — 7 < 6 < 7.
We also define
Log, ¢ = In(—() +im, Log_( =In(—() —im for ¢ € (—00,0)
It is clear that

lim Log(re®) = Log, (—7), lim Log(re?) = Log_(—r) (8.18)

0—m— 0——m+

uniformly in (0, 400).
Now we consider the parametric equation y_(¢) = —t, t € (—o00,0], and the parametric
equation 4 (t) = t, t € [0, +00). Then we take the curvilinear integral

(2=1) Log_ (—¢) o(z—1) Logy (—C)
fw < eS—1 dC+f’y eS—1 dC

where Re z > 1.
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The curve «_ describes the positive z-axis [0, +00) in the direction from +o0o to 0, and then
the curve -y describes the same positive xz-axis [0, +00) in the direction from 0 back to +oco. Now
we calculate

(s—1) Log_ () (2—1) Logy (~0)
f77 e g — dC + f'er e s dC

0 —t z—1_—im(z—1) +00 tz—l im(z—1)
== f—oo (1) e*i—l dt + fO ;‘,,1 dt
o +o0 tz—le—in(z—1) +o0 tz—1lgim(z—1)
== o dt+ [ o1 dt (8.19)

= (@) — gminlen) [ £ g

+oo 71
0 et—1 dt

= —2isin(72)((2)T(2)

= —2isin(mz)

forRez > 1.

We now take any r with 0 < r < 27 and we consider the parametric equation 7" (¢) = —t,
t € (—o0,—r], the parametric equation v, (t) = ¢, t € [r,400), and the parametric equation
o"(0) = re®, 0 < 6 < 2m. The curve 7" describes the half-line [r, +-00) in the direction from
+00 to r, then the curve o” describes the circle Cy(r) in the positive direction from r back to ,
and then the curve 7/, describes the half-line [r, 4-00) in the direction from 7 back to +oc.

And now we consider the curvilinear integral

e(z—1)Log_(—¢) (1) Logy (—0)

(=1 Log(~0)
L(2) = [ S A+ foy ) T+ [y ey dC

_ (2—1) Log(—¢) .. 400 21
= §CO(T) GT dC — Sll'l(ﬂ'Z) T dt

s €

The second equality above is implied by the same calculation as the one in (8.19).
We observe that I,.(z) is defined for every z. Now the restriction Rez > 1 is not needed
because the curve defining I,.(z) does not approach the point ¢ = 0 which is a root of e¢ — 1.

Proposition 8.14. Let 0 < r < 27. Then I,.(z) is holomorphic as a function of z in C. Moreover
((z) = —% I'(1—2)I(z) (8.20)
for every z with Rez > 1.

Proof. We leave it as an exercise to the reader to prove that, when r is fixed in (0, 27), the function
I,.(z) is holomorphic as a function of z in C.

Now we shall first prove that I,.(z) is constant as a function of 7 in (0, 27). If we take ry, 72 with
0 <71 < ry < 2w then it is clear that

(z—1) Log(—¢) (z—1)Log_ (—¢)
Iny(2) = Iy (2) = $ep (o) S ey A6 = [yrime 7 —dC

e(2—1) Log(—¢) e(z=1) Log (=¢)

— Seo) e A = [y S dC

. (2—1) Log(—¢)
=lims o §, g dC,
where 72 (t) = —t, t € [—ry,—r1] and 7" () = t, t € [r1,r2] and where ¢;, ,, 5 is the

closed curve which describes the arc of the circle C'(0, r2) from roe™ to rgei(Qﬂ_‘s) in the positive
direction, and then the linear segment from 'I”2€i(2ﬂ-_6) to ei(zﬂ_‘s), and then the arc of the circle
C(0,7r1) from ry e(2m=0) 1 r1e% in the negative direction, and then the linear segment from r; etd
to ro€?. The above limit as § — 0+ holds because of (8.18). Now we have

e=Dlog(—0)
fc & ——d(=0

T1,79,8 es—1
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because the closed curve ¢, , 5 is in C \ [0,400) and includes no singularity of the function

% which is meromorphic in C \ [0, +o0). Thus [,,(z) — I,,(2) = 0 and so I,(z) is

constant as a function of r in (0, 27).
Now it is easy to see that, if Re z > 1, then

. e(zfl)L(’g(*C) .
lim, j;Co(r) g dC=0

o . | |
Indeed, from the limit lim o e<g1 = 1 we get that le\(l > 3 when r = |(] is close to 0. Now if
z = x + iy with x > 1, then
| foucr S dg| < fyT T g < dmemllrt 0

when r — 0+.
Therefore, if Re z > 1, then

(= 1) Log_ (~) (2= 1) Logy (—Q)

lim, 04 Ir(2) = f»y_ e dC+ f»H o dC

We finally use (8.19), that I,-(z) is constant as a function of 7 in (0, 27) and also that I'(2)['(1—2) =
, and we finish the proof. O

s
sin(7rz)

From the second formula for I, (z) we see immediately that

e(n=1) Log(=) n— n-1
I:(0) = $oy0 izt 46 = ()" fy ) =7 & (8.21)

for every n € Z.

Formula (8.20) holds for Re z > 1. On the other hand its right side is holomorphic in all of
C except perhaps at the points 1,2, 3, ..., which are simple poles of the function I'(1 — z). But
at the points 2, 3, ... the function ( is holomorphic. Therefore, these points must be roots of the
function Z,.. (In fact, we shall see this in a more straightforward manner in a minute.) So the only
possible singularity of the right side of (8.20) in C is the point 1. Now

I:(1) = $op ) sy A6 = 2,

since ¢ = 0 is a simple pole of the function ﬁ with residue 1. Recalling that 0 is a simple pole
of I' with residue 1, we conclude that the point 1 is a simple pole of the right side of (8.20) with
residue 1.

Now we use (8.20) to extend the zeta function of Riemann to all of C, and then ¢ becomes a
meromorphic function in C with only one pole, i.e. the point 1 with residue 1. In other words, the

function

C(Z) - zil

is holomorphic in C.
From (8.21) we have that
I.(n) = (=1)"'2mia_,, (8.22)

where Zi;z ayC" is the Laurent expansion of the function 6471—1 at the point 0. Since 0 is a simple
eC—1°

have already seen to be true. If we calculate the first terms of the Laurent expansion of ec%l we
get

pole of we get that a,, = 0 for every n < —2 and hence [,,(n) = 0 for all n > 2. This we

1 _1_1.,¢ +o0  sn
<1—¢ 2t Tt n=2 anC"

So from (8.20) and (8.22) we get



We may also observe very easily that the function c 1= ¢ + is odd and hence a,, = 0 for every
evenn € N. Le.

1 _ 1 2k:+1
o= ¢at 12+ 200 agnad

Then, again from (8.20) and (8.22) we have
((~2k) =0

for every k € N.

We just saw that the points —2, —4, —6, . .. are roots of (. These are the so-called trivial roots
of the zeta function.

If we look at exercise 5.8.11 we see that ag_; = (—1)F! (QB,;“)!, where B, are the Bernoulli
constants. Thus, from (8.20) and (8.22),

C(—(2k — 1)) = (—=1)* 5k

for every k € N.

Proposition 8.15. The zeta function satisfies the functional equation

¢(z) = 27"~ Lsin FEL(1 — 2)¢(1 — 2).

Proof. We go back to the proof of proposition 8.14 and we consider 0 < r; < 27 and 2n7m <

r9 < 2(n + 1) for an arbitrary n € N. Now, if 0 < § < 5, the closed curve ¢, ., 5 includes the

poles +2kmi, 1 < k < n, of the function DO These poles are simple with corresponding
eS—1

residues (F2kmi)*~ 1. So,if 0 < 6 < Z, then

g LU0 e = omi S ((2kmi)* L A (~2kmi) L),

T1,72,0 et—1

Taking the limit as 6 — 0+, we find
Iy (2) — Iy (2) = 2mi Yo p_y ((2kmi)* =1 + (—2kmi)*~1).
We consider Re z > 1, we set r = r9 and we take the limit as r; — 0+, to find

I.(2) = —2isin(72)¢(2)T(2) + 2mi 2;; 1 (ki) + (—ka')zfl)

= —2isin(72)((2)T'(2) + 4misin &2 3710 (2km)*~ (8.23)

when 2nm < r < 2(n + 1)7.

We observe that I,.(z) is holomorphic in C and that sin(7z)((z)I'(z) is also holomorphic in C.
Indeed, the simple poles of ((2)I'(2), i.e. the points 0, —1, —2, ..., are roots of sin(7z). So both
sides of (8.23) are holomorphic in C and this implies that (8.23) holds not only for Re z > 1 but
for every z.

Now we assume that Re z < 0. Then

limy, oo Do py (2km)* ™1 = 0% (2km)* 1 = (27)*71¢(1 — 2).

We write the defining formula of I,.(z2):

7521

(z—1) Log( 400
:fCo( gD Loe(=0) ———— d¢ — 2isin(nz) [

L

and we take r = (2n + 1).

Since f+°° é

hmn_>+oo f+oo t 11 dt = 0.
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If we restrict ﬁ in its period-zone A = {z| — 7 < Imz < 7} we see that ﬁ tends to 1 or
to 0 as z — oo in A. So if we exclude a small disc Dy(d) from the period zone, then there is a
constant ¢ so that ﬁ < ¢ forevery z € A\ Dy(9). Of course this extends to all period-zones
and, since the circle Cy(r) (with 7 = (2n + 1)m) does not intersect any of the discs Dayr;(9) if
we select § sufficiently small, we get that ﬁ < ¢5 for every ¢ € Cy(r) and for every n. This,
with z = = + ¢y and = < 0, implies that

o(z—1) Log(—¢)

’ j;CO(T) eC—1 df‘ < csrte™vl —

when n — +00.
Now taking the limit in (8.23) as n — +o0, we find

0 = —2isin(mz)((2)I'(2) + 2i(2m)* sin ¢ (1 — 2)

for Re z < 0. Since both terms of the last sum are holomorphic in C, the last equality holds for
every z. Now we finish the proof using the I'(2)['(1 — z) = —F O

sin(rz) *

Since I has no roots and ¢ has no root in the half-plane {z | 1 < Re z}, an immediate corollary
of the functional equation in proposition 8.15 is that ¢ has no roots in the half-plane {z | Re z < 0}
besides the trivial roots —2, —4, —6, . . .. Therefore,

All possible roots of the zeta function, besides its trivial roots, are contained in the verical zone
{z|0 <Rez < 1}.

It has been proved that there are infinitely many non-trivial roots of the zeta function and the
famous Riemann Hypothesis states that all non-trivial roots of the zeta function lie on the vertical
line with equation Re z = % The Riemann Hypothesis remains unsolved and all known roots of

1

the zeta function satisfy the Re z = 5.

Exercises.

8.5.1. Prove that the series >/ L does not converge when Re z = 1, and that it has bounded
partial sums whenRez = 1, z # 1.
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Chapter 9

Metric spaces.

9.1 Metrics, neighborhoods, open sets, closed sets.

Let X be a non-empty set. We call metric on X every function d : X x X — R with the
following properties:
(i) d(z,y) > 0 for every z,y € X.
(ii) For every 2,y € X: d(x,y) = 0 ifand only if x = y.
(iii) d(z,y) = d(y, x) forevery z,y € X.
(iv) d(z,y) < d(z,z) + d(z,y) for every x,y,z € X.
We say that the pair (X, d) is a metric space or that “the set X is equipped with the metric d” or
we just say “the set X with the metric d”. The value of d(x, y) is called distance between z, y.
A metric space consists of two things: a non-empty set X and a metric d : X x X — R which
measures distances between the elements of X. When we have a non-empty set X we may talk
about the metric space X only when there is a preassigned specific metric d on the set X.

Example 9.1.1. The cartesian product R? = R x - - - x R with d > 2 factors is the set of all ordered

d-tuples (1, . .., z4) of real numbers. Using orthogonal axes, we identify R? with a plane and R?
with the space. If d = 1, we consider R! = R and we identify R! with a line.
If for every x = (x1,...,24) we denote

x| = (23 + - +23)1/2,

then the euclidean distance between x = (1, ...,74),y = (y1,...,%q) € R%is

=yl = (@1 —y)? + -+ (wa — ya)) ">,
It is well known that the function d : R? x R? — R, defined by d(x,y) = |x — y|, satisfies all
properties of a metric and it is called euclidean metric on R,

In everything that follows we shall consider R equipped with the euclidean metric. In case we
want to use a different metric on R? we shall state this explicitly and we shall give a description
of the specific metric to be used.

Let (X, d) be a metric space. If z € X, r > 0, we call r-neighborhood of = or neighborhood
with center x and radius r the set

Ny(r) ={y € X |d(y,z) <r}.
It is obvious that every r-neighborhood contains at least its center.

Example 9.1.2. In R? (with the euclidean metric) Ny () is usually denoted Dy(r) and it is the
open disc with center x and radius r: Dy(r) = {y| |y — x| < r}. The corresponding closed disc is
Dx(r) = {y||y — x| < r} and the corresponding circle is Cx(r) = {y ||y — x| = r}.

In particular, the open disc, the closed disc and the circle with center 0 and radius 1 are denoted D,
D and T, respectively.

171



Example 9.1.3. In R (with the euclidean metric) Ny (r) is usually denoted By (r) and it is the d-
dimensional open ball with center x and radius r: By(r) = {y ||y — x| < r}. The corresponding
d-dimensional closed ball is Bx(r) = {y ||y —x| < r} and the corresponding (d — 1)-dimensional
sphereis Sx(r) = {y||y — x| = r}.

The closed ball with center 0 and radius 1 is usually denoted B¢ and the sphere with center 0 and
radius 1 is usually denoted S?~1.

Thus, B! = [~1,1] and S® = {—1,1}. Also, B> = Dand S' = T.

Proposition 9.1. Let (X, d) be a metric space and x,y € X, x # y. Then there is r > 0 so that
Nz (r) NV Ny(r) = 0.
Proof. Taker = £ d(z,y) > 0. If 2 € Ny(r) N Ny(r),ie. d(z,2) < rand d(z,y) < r, then
2r = d(z,y) < d(z,2) +d(z,y) =d(z,2) +d(z,y) <r +r=2r
and we arrive at a contradiction. Therefore N (1) N Ny (r) = 0. O

Now we define some basic notions for a metric space (X,d). Let A C X and x € X. We
say that z is an interior point of A if some neighborhood of x is contained in A. We say that x is
a boundary point of A if every neighborhood of x intersects both A and A°. We say that x is a
limit point of A if every neighborhood of x intersects A. We say that « is an accumulation point
of A if every neighborhood of x intersects A at a point different from x. We also define

A° = {z € X |z is an interior point of A},
0A = {z € X |z is a boundary point of A},
A ={z € X |z is alimit point of A}.

The sets A°, OA and A are called interior, boundary and closure of A, respectively.
If A C X, the complement of A with respect to X is denoted A°.

Proposition 9.2. Let (X, d) be a metric space and A C X. Then
(i) 0A = J(A°).

(ii) A° C A C A

(iii) A\ A° = OA.

(iv) A° = A\ 0A.

v) A= AUOA.

Proof. (i) From the definition of a boundary point it is clear that the boundary points of A are the
same as the boundary points of A°. In other words, the sets A and O( A¢) have the same elements.
(i) If x € A°, then there is a neighborhood of x which is contained in A and hence x € A. Also,
if x € A, then every neighborhood of z intersects A and hence z € A.

(iii) Let z € A\ A°. Since z € A, every neighborhood of x intersects A. Since x ¢ A°, there
is no neighborhood of x which is contained in A and so every neighborhood of x intersects A°.
Therefore, x € 0A. Conversely, let z € JA. Then every neighborhood of x intersects A and hence
x € A. Also every neighborhood of x intersects A¢ which means that there is no neighborhood of
o which is contained in A and hence z ¢ A°. Thusz € A\ A°.

(iv) and (v) are straightforward corollaries of (ii) and (iii). O

Example 9.1.4. We consider R? and a relatively simple curve I which divides the plane in three
subsets: the set A; of the points on one side of I', the set Ao of points on the other side of " and
the set of points of I'. For instance I' can be a circle or an ellipse or a line or a closed polygonal
line (the circumference of a rectangle, for instance). Just looking at these shapes on the plane, we
understand that A = Ay, A; = I' and A} = A; UT'. We have analogous results for A5 and also
[°=0,0l =TandT =T.
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Example 9.1.5. Let I be a relatively simple surface in R? which divides the space in the set A; of
the points on one side of I, the set Ay of points on the other side of I' and the set of points of I'.
For instance I' can be a plane or a spherical surface or the surface of a parallelopiped. Then, as in
the last example, A} = Ay, 04; =T and Ay = A; UT. There are similar results for A5 and also
[°=(,0l =TandT =T.

Let (X, d) be a metric space and A C X . We say that A is open if it consists only of'its interior
points. We say that A is closed if it contains all its limit points.

In other words, A is open if and only if A = A°, and A is closed if and only if A = A. Itis
clear from proposition 9.2 that a set is open if and only if it contains none of its boundary points
and that a set is closed if and only if it contains all its boundary points.

Example 9.1.6. In examples 9.1.4 and 9.1.5 the sets A, As are open and the sets A; UT", AU T
and I" are closed.

Proposition 9.3. Let (X, d) be a metric space. Every r-neighborhood is open.

Proof. Letx € X, r > 0. We take any y € N,(r) and we shall prove that there is s > 0 so that
Ny(s) € Ng(r), i.e. that y is an interior point of N, (r). This will imply that N, (r) is open.
We have d(y,z) < r and we take

s=r—d(y,x) > 0.

If w € Ny(s), then
d(w, z) < d(w,y) +d(y,z) <s+d(y,z) =r

and thus w € N,(r). Therefore Ny (s) C N(r). O

Proposition 9.4. Let (X, d) be a metric space and A C X. Then A is closed if and only if A€ is
open.

Proof. Since A and A€ have the same boundary points, we have the following successive equiva-
lent statements: [A is closed] < [A contains all boundary points of A] < [ A contains all boundary
points of A¢] < [ A€ contains no boundary point of A€] < [A€ is open]. O

The complement of the complement of a set is the set itself and hence: A is open if and only if
A€ is closed.

Proposition 9.5. Let (X, d) be a metric space and A C X. Then A° is the largest open set
contained in A and A is the smallest closed set containing A.

Proof. (i) Let z € A°. Then there is 7 > 0 so that N,(r) C A. We take any y € N,(r). Since
N, (r) is open, there is some s > 0 so that Ny(s) € N,(r) and hence Ny(s) C A. Therefore
y € A°. We see that N, (r) C A° and so z is an interior point of A°. Thus, every point of A° is
an interior point of A° and hence A° is an open set contained in A.

Now let B be an open set contained in A. If z € B, then there is 7 > 0 so that N,(r) C B C A
and hence x € A°. Therefore B C A°.

(ii) Let = be a limit point of A. We take any r > 0 and then N, (7) intersects A. Lety € N,(r)NA.
Since N, (r) is open, there is some s > 0 so that Ny, (s) C N,(r). Since y € A, N,(s) intersects
A and hence N, (r) also intersects A. Therefore, every N, (r) intersects A and so x € A. We see
that every limit point of A belongs to A and thus A is a closed set containing A.

Finally, let B be a closed set containing A. If z € A, then every N, (r) intersects A and hence
intersects B. Therefore « € B and, since B is closed, z € B. Thus A C B. ]
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Proposition 9.6. Let (X, d) be a metric space.

(i) The union of any open subsets of X is open.

(ii) The intersection of finitely many open subsets of X is open.
(iii) The intersection of any closed subsets of X is closed.

(iv) The union of finitely many closed subsets of X is closed.

Proof. (i) If z belongs to the union U of certain open sets, then x belongs to one of these sets, say
A. Since A is open, there is 7 > 0 so that N,(r) C A C U. Therefore every point of U is an
interior point of U and then U is open.

(i) Let F = A1 N --- N A,, where Ay, is open for every k. If z € F, then x € Ay for every k.
Thus, there are 71, ..., 7, > 0 so that N, (r;) C Ay for every k. We take

r=min{ry,...,r,} > 0.

Then

for every k and hence N, (r) C F. Therefore every point of F is an interior point of F' and then
Fis open.

(ii1) and (iv) are immediate consequences of (i) and (ii), of proposition 9.4 and of the laws of de
Morgan: ((A)¢=(J A and (| A)¢ =) A°. O

Let X be a non-empty set and d;, do be metrics on X. We say that the two metrics are equiv-
alent if the metric spaces (X, d1) and (X, d2) have the same open sets: every A which is open in
(X, dy) is also open in (X, d2) and conversely.

Proposition 9.4 says that the closed sets in any netric space are the complements of the open
sets. Therefore, the metrics d1, dy on X are equivalent if and only if the metric spaces (X, dy) and
(X, d2) have the same closed sets.

Proposition 9.7. Let X be non-empty and dy, dy be metrics on X. We denote N (r) and N (r)
the neighborhoods of x in the metric spaces (X, dy) and (X, d2), respectively. The following are
equivalent.

(i) d1, do are equivalent.

(ii) For every x € X and every € > 0 there is § > 0 so that N3 (§) C N%2(e) and, conversely,
for every x € X and every € > 0 there is § > 0 so that N32(§) C N1 (e).

Proof. (i) = (ii) Let z € X and € > 0. The neighborhood N (¢) is open in the metric space
(X,ds). Since (X,d;) and (X, ds) have the same open sets, NZ2(¢) is also open in (X, d;).
Because € N (e), there is § > 0 so that N91(§) C€ N2 (e). The converse is similar.

(if) = (i) Let A be open in (X, d;). We shall prove that A is also open in (X, d2).

We take any = € A. Since A is open in (X, dy ), there is € > 0 so that N1 (¢) C A. Then there is
§ > 0o that N92(§) C N2 () and thus N92(§) C A. Therefore every element of A is an interior
point of A in (X, dz2) and so A is open in (X, d2). The converse is similar. O

Exercises.

9.1.1. (i) We define three functions d : R x R — R by

d(z,y) = (x—y)*, dlx,y) =le -y dlz,y) = 155

Which of these d is a metric on R?

(ii) For every x = (21, 22),y = (y1,92) in B2 we set d(x,y) = ({21 — y1)? + 4(x2 — 92)°)
d a metric on R??

(iii) Let d(x,y) = |21 — 1| for every x = (1, 22, 73),y = (y1,y2,y3) in R3. Is d a metric on R3?

1/2. Is

174



9.1.2. Which of the following are open or closed subsets of R?
N, Q {1/nlneN}, {0}u{l/n|neN}, [0,1)U{l+1/n|nec N}
Find their interiors, their closures and their boundaries.
9.1.3. Which of the following are open or closed subsets of R??
{(z1,22) |1 > 0}, {(21,0)|a <z1 <b}, {(z1,0)|a <z <b}, {(x1,22)]|x122 <1},
{(z1,22) |w122 > 1}, {(1/n,0)[n e N}, [0,1] x ({0} U{1/n|n € N}).
Find their interiors, their closures and their boundaries.

9.1.4. Which of the following are open or closed subsets of R3?
{(x1,22,23) |z1 >0}, {(21,0,0)|a <z1 <b}, {(21,0,0)]a <x; <b},

{(z1,22,0)[a <21 < bc<ap < d}, {(w1,22,23)| 2] + 23 < 23}.
Find their interiors, their closures and their boundaries.

9.15.Letx -y = x1y1 + - - + xqyq be the usual euclidean inner product in R?. Leta € RY,
a#0anda € R. ThesetI' = {x € R%|a-x = a} is a hyperplane of R%. The open halfspaces
of R? determined by I are A} = {x € R%|a-x > a}and A2 = {x € R?|a-x < a} and the
corresponding closed halfspaces are B; = {x € R?|a-x > a} and By = {x € R%|a-x < a}.
Find the interiors, the closures and the boundaries of I', Ay, Ao, B and Bs.

9.1.6. In R%, the general open or closed orthogonal parallelepiped with edges parallel to the coor-
dinate axes is (a1, b1) X -+ X (ag, bg) or [a1,b1] X - -+ X [agq, by], respectively. Prove that the first
set is open and the second is closed.

9.1.7. Let (X, d) be a metric space.

(i) Prove that both X and () are open and closed subsets of X.

(i) If A C X, prove that 0 A is closed.

(iii) Prove that every finite subset of X is closed.

(iv)If A C B C X, prove that A° C B° and A C B.

(v)If A C X isopen and B C X is closed, prove that A \ B is open and B \ A is closed.

9.1.8. Let (X, d) be a metric space and A, B C X be closed and disjoint. Prove that there are
U,V C X open and disjoint sothat A C U and B C V.

9.1.9. Let (X, d) be a metric space, A C X and z € X. We define the distance of « from A to be
d(z,A) = inf{d(z,y) |y € A}. Prove that:

() d(x, A) = d(x, A).

(i) d(z,A) =0 & z € A

(111) ‘d(l‘l, A) — d(xg, A)‘ S d((L‘l, {L'Q).

9.1.10. Let X be any non-empty set and d : X x X — R be the function defined by d(z,z) = 1
for every x € X and by d(z,y) = 0 for every z,y € X with z # y.

(i) Prove that d is a metric on X . This metric is called discrete metric.

(ii) Prove that every A C X (with the discrete metric) is open and closed. Prove that A° = A = A
and A = () for every A C X.

9.1.11. Let (X, d) be a metric space. We define d’ : X x X — Rby d'(z,y) = d(d:]c(il’)yll. Prove

that d’ is a metric on X and that d, d’ are equivalent.

9.1.12. Let X be non-empty, d1, ds be equivalent metrics on X and A C X. Prove that in both
metric spaces, (X, d1) and (X, d3), A has the same interior points, the same boundary points and
the same limit points.
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9.2 Limits and continuity of functions.

Let (X, d) and (Y, p) be metric spaces, A C X, f: A = Y, xp € X be an accumulation point
of A and yy € Y. We say that g is a limit of f at z(, and denote

Yo = hmx—)xo f(x)v

if for every € > 0 there is 6 > 0 so that f(x) € Ny,(€) for every x € Ny (d) N A, z # x¢
or, equivalently, if for every € > 0 there is § > 0 so that p(f(z),y0) < € for every x € A with
0 < d(z,xp) <.

This definition of the limit of a function is the direct generalization of the well known definition
in case both metric spaces (X, d) and (Y, p) are the euclidean space R.

Proposition 9.8. Let (X, d) and (Y, p) be metric spaces, A C X, f: A — Y and 9 € X be an
accumulation point of A. If f has a limit at x, then this limit is unique.

Proof. Let

where y(, yj € Y. We assume y(, # y(, and then proposition 9.1 implies that there is € > 0 so that
Ny (€) N Ny (e) = 0.

Then there is § > 0 so that f(z) € N,/ (¢) and f(x) € Ny () for every x € Ny, (6) N A, z # o,

and we arrive at a contradiction. O

Proposition 9.8 allows us to talk about the limit of a function at a point.

Let (X,d) and (Y, p) be metric spaces, A C X, f : A — Y and zp € A. We say that
f is continuous at x if for every ¢ > 0 there is § > 0 so that f(x) € Ny (e) for every
x € Ny (6) N A or, equivalently, if for every e > 0 there is § > 0 so that p(f(x), f(x0)) < € for
every x € A with d(z, xo) < .

If o € A is not an accumulation point of A, i.e. if it is an isolated point of A, then we may
easily see that f is automatically continuous at xy. On the other hand, if g € A is an accumulation
point of A, then f is continuous at z if and only if lim, ., f(z) = f(zo).

Let (X, d) and (Y, p) be metric spaces, A C X and f : A — Y. We say that f is continuous
in A if it is continuous at every point of A.

Proposition 9.9. Let (X, d), (Y, p) and (Z,T) be metric spaces, A C X, B C Y, g € A,
f:A— Bandg: B — Z. If f is continuous at xo and g is continuous at yo = f(xq), then
go f: A— Zis continuous at x.

Proof. We take € > 0 and then there is ¢’ > 0 so that

7(9(),9(yo)) <€ 9.1
for every y € B with p(y,yo) < ¢’. Then there is § > 0 so that
p(f(2),y0) = p(f (), f(20)) < &' (9.2)

for every x € A with d(x, zp) < §. From (9.2) and from (9.1) with y = f(x) we get that
T(9(f()), g(f(20))) <€

for every x € A with d(x, ) < d. Thusgo f : A — Z is continuous at x. O

Proposition 9.10. Let (X, d) be a metric space, A C X, xg € A, f,g: A — R be continuous at
xo and \, 1 € R. Then:

DA +ug: A—Rand fg: A— R are continuous at x.

(i) If B={x € A|g(x) # 0} and g(zo) # 0, then % : B — R is continuous at x.
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Proof. (i) We take any € > 0 and then there is § > 0 so that

|f(z) — f(zo)] < W l9(z) — g(z0)| < W
for every x € A with d(x,zo) < d. This implies that

|(Af(z) + pg(x)) — (Af(z0) + pg(zo))| < IAIf(@) — f(zo)| + |ullg(z) — g(xo)]
< o + lappm <z t3=¢

for every x € A with d(x, ) < ¢ and hence A\f + pug : A — R is continuous at z.
We then take any € > 0 and we set

5 2
e =min {(§)"*, sprGor stEorn ) > O
Then there is § > 0 so that
|f(z) = f(zo)| < €1, |g(x) — g(z0)] < €1

for every x € A with d(z, zg) < d. This implies that

|f(x)g(x) = f(z0)g(x0)| < |f(2) — f(z0)llg(x) — g(x0)| + | f(x0)|lg(z) — g(x0)]
+ lg(zo)[| f () — f(x0)]
<e’+|f(zo)ler + lg(xo)let < §+ 5+ 5=¢

for every x € A with d(x, () < ¢ and hence fg : A — R is continuous at x.
(i1) We take any € > 0 and then there is § > 0 so that

2
lg(z) — g(z0)| < min { lg(wo) \’ 9(9020) }
for every x € A with d(z, zg) < 0. This implies that

9(2)| = lg(wo) + (g(z) — g(z0))| = lg(wo)| — lg(x) — g(wo)| > |g(x0)| — 12E = lsoll

and hence lg(x)—g(0)] lg(z)—g(x0)|
1 1 | _ lg(= zo 2|g(z)—g(xo
| g(x) mo)‘ = @l = gy <€
for every x € B with d(z, xg) < 0. Therefore : B — R is continuous at . O

The proof of proposition 9.11 is almost identical to the previous proof.

Proposition 9.11. Let (X, d) be a metric space, A C X, f,g: A — R, 9 € X be an accumula-
tion point of A, limg_,z, f(z) = yo € R limg_y5, g(x) = 20 € Rand A\, € R. Then:

(i) limg 20 (A f 4+ 11g) = Ayo + pzo and limy_ 5, fg = Yyoz0.

(ii) If z9 # 0, then x¢ is an accumulation point of B = {x € A|g(x) # 0} and lim,_, ﬁ =1

20

Combining propositions 9.9 and 9.10 and starting from very simple examples of continuous
functions, we can produce more complicated ones.

Example 9.2.1. In RY we define the k-projection 7, : RY — R by 74 (x) = x, for every x =
(x1,...,2q4). Every 7 is continuous, since

|7 (x) = Tk (y)] < [x =]

for every x,y € R? Therefore, if g : R — R is continuous, then f : R? — R defined by
f(x) = g(xy) for every x = (z1,...,x4) is continuous, since f = g o 7.
Thus, polynomial functions

b
p(x1y. .. aq) = Az§ -2l 4+ Babt bt 4
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where all exponents are non-negative integers, all coefficients are real numbers and the sum is
finite, are continuous functions. Rational functions, i.e. quotients of polynomial functions, are
also continuous (except at the points where their denominator vanishes) as well as functions which
are simple combinations of exponential or trigonometric or other simple continuous functions of
the coordinates.

Proposition 9.12. Let (X, d) and (Y, p) be metric spaces, A C X and f : A — Y. Then the
following are equivalent.

(i) f is continuous in A.

(ii) For every open W C Y there is an open U C X so that f =1 (W) = U N A.

(iii) For every closed F C Y there is a closed G C X so that f~1(F) = G N A.

Proof. (i) = (ii) Letz € f~Y(W), i.e. f(z) € W. Since W is open, there is ¢, > 0 so that
Ny(z)(ex) € W. Since f is continuous, there is J,, > 0 so that

f(y) € Ny(ezx) C W,
and hence y € f~1(W), for every y € N,(5,) N A. Therefore,
N.(6,)NAC f~HW).

Now we consider the set
U= Uxef—l(W) Nw(éﬂc)

Then U is a union of open sets and so it is open. We also have

On the other hand it is clear that for every x € f~1(W) we have x € N,(5;) N A and hence
x € UNA. Thus, f~}(W) CUnN A.
(ii) = (i) Take any zo € A and any € > 0. Then Ny(,)(€) is open in Y and so there is an open
U C X so that

F7 (Nyao) (€) =UN A

Then xy € U N A and, since U is open, there is § > 0 so that N,,(6) C U. Now, for every
x € Npy(0) N Awehave z € UN Aand hence € [~ (Nyyg)(€)) ie. f(x) € Ny (e).
Therefore, f is continuous at every xg € A.

The equivalence (i) < (iii) is a consequence of the equivalence (i) < (ii) and of the general identity
fTHWe) = (FH (W) n A. O

The metric spaces (X, d) and (Y, p) are called homeomorphic if there is f : X — Y which
is one-to-one in X and onto Y and so that f is continuous in X and f~! : Y — X is continuous
inY.

It is trivial to prove that the relation of homeomorphism between metric spaces is an equiva-
lence relation. It is also trivial to see, based for instance on proposition 9.7, that, if d; and ds are
two metrics on the non-empty set X, then the two metrics are equivalent if and only if the identity
function between (X, d;) and (X, d2) is a homeomorphism.

Exercises.

9.2.1. Prove that {x € R\ {0} | e~ ¥ + sin|x| > 0} is an open subset of R<.
Is {x € R%\ {0} | |x| — [x|> < 3} a closed subset of R%?

9.2.2. Consider metric spaces (X, d), (Y, p) and A C X, B C Y and a continuous f : A — Y.
(i) If A, B are open, prove that f~!(B) is open.
(i) If A, B are closed, prove that f ~!(B) is closed.
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9.2.3.Let X, Y be non-empty sets, A C X, zp € Aand f : A — Y. Let dy, d2 be equivalent
metrics on X and p1, p2 be equivalent metrics on Y. Prove that f is continuous at xg with respect
to dy and p; if and only if it is continuous at xg with respect to ds and po.

9.2.4. Let (X, d) be a non-empty set with the discrete metric (exercise 9.1.10), (Y, p) be any metric
space, A C X and f : A — Y. Prove that f is continuous in A.

9.3 Sequences.

The next definition is the generalization of the analogous definition in the euclidean space R.
Let (X, d) be a metric space, z € X and let (z,,) be a sequence in X. We say that (x,)
converges to  in (X, d) or that z is a limit of (z,,) in (X, d), and denote

Tp — X or limy, 400 T, = T,

if for every € > 0 there is ng so that 2, € N, (€) for every n > nyg or, equivalently, if for every
€ > 0 there is ng so that d(z,, x) < € for every n > ny.
It is clear that x,, — z in the metric space (X, d) if and only if d(x,,z) — 0 in R.

Proposition 9.13. Let (X, d) be a metric space and let (x,,) be a sequence in X. If (xy,) has a
limit, then this limit is unique.

Proof. Let x,, — 2’ and x,, — 2" and assume that 2’ # z”. We know that there is € > 0 so that
N,(€) N Nyv(e) = 0. Then there is ng so that z,, € N,/ (¢) and x,, € N, (€) for every n > ng
and this is impossible. ]

Because of proposition 9.13, we can talk about the limit of a sequence.
The next proposition reduces convergence in the euclidean space R? to convergence in R.

Proposition 9.14. Let x,, = (zp1,...,%nd) € R? for every n and x = (x1,...,24) € RL The
following are equivalent.

(i) X, = x in R

(ii) Ty ), — xp in R forevery k =1,...,d.

Proof. (i) = (ii) A consequence of |z, ;, — x| < |x, — X|.
(ii) = (i) A consequence of [x,, — X| < |zp1 — 21| + -+ + |Tpg — 24 O

We shall now see the close relation between the notion of convergence of sequences and certain
notions we have encountered already: the notion of limit point, the notion of closed set (and,
indirectly, of open set) and, finally, the notions of the limit and continuity of a function.

Proposition 9.15. Let (X, d) be a metric space, A C X and x € X. Then x is a limit point of A
if and only if there is a sequence (x,,) in A so that x,, — x.

Proof. Let x be a limit point of A. We take any n € N and then IV, ( %) contains at least one point
of A, i.e. there is z,, € A so that d(z,, ) < % Thus, the sequence (z,,) is in A and z,, — .
Conversely, let (x,,) be a sequence in A so that 2, — z. We take any € > 0 and then there is ng

so that ;,, € N, (e) for every n > ng. Thus N, (¢€) intersects A and so x is a limit point of A. [

Example 9.3.1. Let us prove that the closure of the open ball By, (r) in R? is the corresponding
closed ball By, (7).

Assume that x is a limit point of By, (). Then there is a sequence (X;,) in By, () so that x,, — X,
i.e. [x, — x| — 0. Then from

Hxn—x()] — ]X—XOH < |xp — X|
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we find [x, — Xo| = [x — X¢l. Since [x,, — xo| < r for every n, we get [x — x| < r and so
X € By, (r). Thus, By, (r) € Bxy(r).
Conversely, take x € By, (), i.e. [x — Xo| < r. For each n € N we consider

Xn:%XO"i_(l_%)X'

Then
xn —xo| = (1= 1)x — x| < 7

and hence x,, € By, (r) for every n. Also, x,, — x and so x € By, (r). Thus, By, (r) C By, (7).

Proposition 9.16. Let (X, d) be a metric space and A C X. The following are equivalent.
(i) A is closed.
(ii) Every x, which is the limit of a sequence in A, belongs to A.

Proof. (i) = (ii) Take any x which is the limit of a sequence in A. Proposition 9.15 implies that
x is a limit point of A and, since A is closed, x € A.

(i1) = (i) Take any limit point = of A. Proposition 9.15 implies that there is a sequence in A with
limit  and hence x belongs to A. Thus A contains all its limit points and so it is closed. O

Propositions 9.17 and 9.18 are generalizations of analogous propositions for R.

Proposition 9.17. Let (X, d) and (Y, p) be metric spaces, A C X, zg € Aand f : A — Y. The
following are equivalent.

(i) f is continuous at xy.

(ii) For every (xy,) in A with x,, — xo we have f(x,) — f(x0).

Proof. (i) = (ii) Take (x,) in A with z,, — 9. We take any € > 0 and then there is 0 > 0 so that

p(f(x), fzo)) <€ (9.3)
for every x € A with d(x,zg) < d. Then there is ng so that
d(xp, o) < 6 (9.4)
for every n > ng. Now (9.4) and (9.3) with x = x,, imply that for every n > ng we have

p(f(xn), f(xo)) <e.

Therefore f(x,) — f(x0).
(i1) = (i) Assume that f is not continuous at xo. Then there is € > 0 so that for every § > 0 there
is z € A such that

d(z,z0) <0, p(f(2), f(x0)) > €
Hence for every n € N there is z,, € A with
d(xn,20) < 5, p(f(2n), f(z0)) = €.
Then (x,,) is in A and z,, — xo but f(x,) /4 f(z¢) and we arrived at a contradiction. O
The proof of proposition 9.18 is almost identical to the proof of proposition 9.17.

Proposition 9.18. Let (X, d) and (Y, p) be metric spaces, A C X, xo be an accumulation point of
Ay €Yand f : A—Y. The following are equivalent.

(i) limg 4, f(2) = yo.
(ii) For every () in A\ {zo} with x,, — xo we have f(zy) — yo.

Let (X, d) be a metric space and (z,) be a sequence in X. We say that (z,,) is a Cauchy
sequence if for every € > 0 there is ng so that d(z,, x,,) < € for every n,m > ny.
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Proposition 9.19. Let (X, d) be a metric space and (x,,) be a sequence in X. If (x,,) converges
to some element of X, then it is a Cauchy sequence.

Proof. Letx,, — x. If € > 0, then there is ng so that d(z,,, z) < § for every n > ng. Therefore,
d(Zn, Tm) < d(Tp, ) + d(Tm, 7)) < §+§5 =€
for every n, m > ng and so (z,,) is a Cauchy sequence. O

Let (X, d) be a metric space and A C X. We say that A is complete if every Cauchy sequence
in A converges to some element of A.

Proposition 9.20. Let X be non-empty and let dy, do be metrics on X. The following are equiva-
lent.

(i) The metrics di, do are equivalent.

(ii) The metric spaces (X, dy) and (X, d3) have the same convergent sequences.

Proof. (i) = (ii) Let z,, — = in (X, d;). We shall prove that z,, — x also in (X, d2).

Let € > 0. Proposition 9.7 implies that there is § > 0 so that N1 (§) € N22(e). Since x,, — =
in (X,d1), there is ng so that z,, € N91(§), and hence z,, € N2 (¢), for every n > ng. Thus
xn, — xin (X, da).

The converse is similar.

(ii) = (i) Let A C X be closed in (X, d;). We shall see that A is closed also in (X, da).

We assume that (x,,) is in A and 2, — « in (X, d2). Then z,, — z also in (X, d;) and, since A
is closed in (X, d1), we get x € A. Thus A is closed in (X, d2).

The converse is similar. O

Exercises.

9.3.1. Let x,, — x and y,, — y in (X, d). Prove that d(zy, y,) — d(z,y) in R.

9.3.2. Let (X, d) be a metric space, A C X and € X. Prove that z is a boundary point of A if
and only if there are sequences (z/,) in A and (/) in A° so that 2}, — = and 2 — .

9.3.3. We consider sequences (x,,) and (y,) in R? and ()\,,) in R. Ifx, — X, y,, — y in R% and
An — Ain R, prove that x,, + y,, = x + y and A\, x,, — Ax in R? and that x,, - y,, — x - y in R.

9.3.4. Using sequences, prove that {2 | n € N} is not a closed subset of R while {0}U{2 | n € N}
is a closed subset of R.

9.3.5. Using sequences, prove that closed balls, hyperplanes and closed halfspaces in R? are closed
subsets of R?.

9.3.6. Let (X, d) be a non-empty set with the discrete metric (exercise 9.1.10). Prove that a se-
quence () in X converges if and only if it is constant after some value of its index n.

9.4 Compactness.

Let X be non-empty, M C X and let X be a collection of subsets of X. We say that 3 is a
covering of M if M C |J 5 A. If, moreover, X is finite, we say that it is a finite covering of
M. Now, if ¥ and X’ are coverings of M such that ¥/ C ¥, then we say that X is larger than %’/
and that 2’ is smaller than X.

Let (X, d) be a metric space and M C X. If X is a covering of M and all A € ¥ are open
sets, then X is called open covering of M. We say that M is compact if for every open covering
Y. of M there is a finite covering ./ of M which is smaller than 3.
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Example 9.4.1. Let (X, d) be a metric space and M = {z1,...,2,} C X. We take any open
covering ¥ of M. Then every x; € M belongs to some Ay € X andhence M C A; U---U A,.
Thus, 3’ = {A4,..., A,} is a finite covering of M with ¥’ C ¥.. Hence M is compact.

Let (X, d) be a metric space and M C X. We say that M is bounded if there is g € X and
r > 0so that M C Ny, (r).

Example 9.4.2. A set M in R? is bounded if and only if it is contained in some orthogonal paral-
lelopiped with edges parallel to the coordinate axes.

Proposition 9.21. Let (X, d) be a metric space and M C X. If M is compact, then it is bounded
and closed.

Proof. We take any x¢ € X and we consider the collection
Y ={Ngy(n)|n e N}.

Then X is an open covering of M, and so there is a covering X of M which is smaller than X, i.e.
there are nq,...,ny so that

M C Nxo(nl) U---u Nmo(nN).

If r = max{ni,...,ny}, then M C N, (r) and so M is bounded.
Now we take any zg € M¢. We consider the sets

A, ={z € X|d(z,x9) > 1}

and the collection ¥ = {4,,|n € N}. Then ¥ is an open covering of M, and hence there is a
finite covering X’ of M which is smaller than X. Le. there are nq,...,ny so that

MCA, U---UA,,.

If n = max{ni,...,ny}, then we have M C A,, and hence Nxo(%) C Mc¢. We proved that
every xg € M€ is an interior point of M¢. Thus M€ is open and so M is closed. O

Proposition 9.22. Let (X, d) be a metric space and N C M C X. If M is compact and N is
closed, then N is compact.

Proof. We take any open covering > of N. Then
¥ ={N}uUux

is an open covering of M. Since M is compact, there is a finite covering 3} of M which is smaller
than ;. Le. there are Ay,..., A, € Xysothat M C Ay U---UA,.

If N¢isoneof Ay,..., A,,say N¢ = A,,,then N C AjU---UA,_1andso X = {Ay,...,Ap_1}
is a finite covering of /N which is smaller than .

If N¢isnotone of Ay,..., Ay, thenX = {A;q,..., A,} is a finite covering of N which is smaller
than 3.

In any case there is a finite covering of /N which is smaller than 3. O

Proposition 9.23. Let (X, d) be a metric space and M, N C X so that M "N = (. If M is
compact and N is closed, then there is € > 0 so that d(x,y) > € for every x € M andy € N.

Proof. Forevery x € M we have € N€ and, since N°€ is open, there is ¢, > 0 so that

Ny (e;) € N€
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and hence N, (e;) NN = (). This implies

for every x € M and y € N. The collection {N.(% )|z € M} is an open covering of M and,
since M is compact, there are x1,...,x, € M so that

M C Ny (51U UNg, (%).

We set
e=min {3, ..., %} >0.

Ifx € M,thereisk =1,...,nsothatx € ka(e%’“) and (9.5) implies that for every y € N we
have
d(z,y) > d(y,zp) — d(2,3) > €0, — 3 = G > e

Therefore, d(x,y) > e forevery z € M andy € N. O

The next theorem is a generalization of the well known result for sequences of nested closed
and bounded intervales in R: if [a1,b1] 2 [ag,b2] 2 ... D [an,by] D ..., then there is x which
belongs to every [ay, b,| and if, moreover, b, — a, — 0, then this x is unique.

Let (X, d) be a metric space and M C X. We define the diameter of M to be

diam M = sup{d(z,y) | z,y € M}.

Theorem 9.1. Let (X, d) be a metric space and K1, K», . .. be a sequence of non-empty compact
subsets of X so that K,+1 C K, for every n. Then there is some element which belongs to all
K. If, moreover, diam K, — 0, then the common element of all K,, is unique.

Proof. We assume that
T K, = 0.

n=1

Then the collection 3 = { K¢ | n € N} is an open covering of K. Since K is compact, there are
ni,...,ny so that
KiCK; U---UK .

We take n = max{nj,...,ny}, and then K; C K¢. This is wrong, because K,, C K; and
K, # 0.
Now, let diam K,, — 0. If z, y belong to all K,,, then

0 <d(z,y) < diam K,
for every n and hence d(z,y) = 0. O
The important theorem 9.2 describes the notion of compactness in terms of sequences.

Theorem 9.2. Let (X, d) be a metric space and M C X. The following are equivalent.
(i) M is compact.
(ii) Every sequence in M has at least one subsequence which converges to an element of M.

Proof. (i) = (ii) We take an arbitrary sequence (x,,) in M.
Assume that for every x € M there is a neighborhood N, (e,) of &, which contains only finitely
many terms of (x,,). Then ¥ = {N,(e;) |z € M} is an open covering of M and hence there are
Yi,--.,YN € M so that

M C Ny1(6y1) U---u NyN(eyN)‘

Each of these neighborhoods contains only finitely many terms of (). Therefore, M also contains
only finitely many terms of (x,,) and we arrive at a contradiction.
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Therefore there is zp € M so that for every ¢ > 0 the neighborhood N, (¢) contains infinitely
many terms of (z,,). Thus, there is ny > 1 so that x,,, € N,,(1). Then there is no > n; so that
Tny € Nio(3). We continue inductively and we find a subsequence (y,,, ) of () so that

Tny, € Nwo(%)

or, equivalently, d(x, ,zo) < % for every k. Therefore x,, — zo.
(i) = (i) Step 1. Let € > 0. Then there are x1, ..., x, € M so that

M C Ny (e)U---UNy, (e).

Assume that this is not true. We take any x; € M. Then M & N,, (¢) and so there is z3 € M with
xo & Ny, (€). Then M € Ny, (€) U Ny, (€) and so there is z3 € M with 3 & N, (€) U Ny, (e).
Then M € Ny, (€)UNg,(€)UNy, (€) and so there is x4 € M withzy & Ny, (€)UNg, (€)UNy,(€).
We continue inductively and we see that there is a sequence (x,,) in M so that d(x;,, x,,,) > € for
every n,m with n # m. But this does not allow the existence of a convergent subsequence of
() and we arrive at a contradiction.

Step 2. We take any open covering 3 of M. Then there is ¢ > 0 so that for every z € M the
neighborhood N, (¢) is contained in some A € X.

Assume that there is no € > 0 with this property. Le. for every e > 0 there is x € M so that N, (e)
is not contained in any A € X. Thus, for every n € N there is 2, € M so that N, (2) is not
contained in any A € ¥. Now, there is a subsequence (zy, ) of (x,) so that z,,, — z( for some
xo € M. Then zp € Ap for some Ay € 3. Since Ay is open, there is § > 0 so that N, (d) C Ao.
We take ny, large enough so that

NS,

d(zp,,x0) < %, L <

Nk

Then for every z € Ny, ( L) we have

ni

d(z,z0) < d(x,xy,) + d(xn,, z0) < nik + d(zp,, x0) < % =4

(][
_l._

and hence N, (é) C Nyo(0) € Ap. We arrive at a contradiction, because Ny, (i) is not
contained in any A € X.
Step 3. We take an arbitrary open covering > of M. According to step 2, there is € > 0 so that
for every € M we have that N, (e) is contained in some A € ¥. According to step 1, there are
T1,...,Tn € M so that

M C Ny (e)U...UNy, (e).

Now let N, (¢) C Ay € X foreach k =1,...,n. Then
M C Ny (€)U---UN,, () CAU---UA,
and hence ¥’ = {A44,..., A, } is a finite covering of M which is smaller than 3. O

Proposition 9.24. Every closed orthogonal parallelopiped in R¢ with edges parallel to the coor-
dinate axes is compact.

Proof. Let M = [a1,b1] X - -+ X [ag, bg]. We consider an arbitrary open covering ¥ of M and we
assume that there is no finite covering >’ of M which is smaller than X.

We split every edge [ay, bg] in the two subintervals [ay, %] and [%, bi]. This induces a
splitting of M in 27 orthogonal parallelopipeds, each of which has dimensions equal to one half of
the dimensions of M. We observe that for at least one of these parallelopipeds, call it M7, there is
no finite covering which is smaller than 3. Otherwise, for each of these parallelopipeds there would
exist a finite covering which is smaller than 32, and hence the (finite) union of these finite coverings
would be a finite covering of M which is smaller than 3. Similarly, we split M; in 2¢ orthogonal
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parallelopipeds for at least one of which, call it Ma, there is no finite covering smaller than 3. We
continue inductively and we end up with a sequence (M;) of orthogonal parallelopipeds with the
following properties:

(i) For every [ there is no finite covering of M; which is smaller than 3.

()M DM, D...2M;_1 2 M;D.... This means that, if

My = lagy,bya] x - x [aga, bydl,
then for every k = 1,...,d we have
ap <arp <ok Sapk <o S b b <o < by < by

iii) Forevery k =1,...,dand [ > 1 we have by, — a; ) = b’“ja’f and hence
Ty ; ; 2

bl,k —ak — 0.

(iv) For every [ > 1 we have diam M; = di%M and hence
diam M; — 0.
From (ii) we have that for every k = 1, ..., d the sequence(q, 1) is increasing and bounded above

and that the sequence (b; ;) is decreasing and bounded below and hence both sequences converge
to two limits which, because of (iii), coincide. We set

xp = limy oo ap g = limy o Oy -

Then x = (x1,...,x4) belongs to every M;. Since ¥ is a covering of M, there is some Ay € X
so that x € Ag. Now, Ay is open and hence there is ¢y > 0 so that

Nx(eo) C Ap.
Now, (iv) implies that there is [ so that
diam M, < eg.
Then, since x € M;,, for every y € M;, we have
ly — x| < diam M;, < €p

and hence y € Ny(ep). Thus
Mlo g NX(GU) g AO

and so X' = { A} is a finite covering of M;, which is smaller than 3 and we arrive at a contradic-
tion with (i). O

Bolzano-Weierstrass theorem. Every bounded sequence in R has at least one convergent sub-
sequence.

Proof. If (x,,) is any bounded sequence in RY, then there is a closed orthogonal parallelopiped M
with edges parallel to the coordinate axes so that (x,,) is in M. Now, M is compact and hence
there is a subsequence of (x,,) which converges (to an element of M). O

The next theorem is the most useful result for the determination of compact subsets of R%.

Theorem 9.3. Let M C R%. Then M is compact if and only if it bounded and closed.
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First proof. Because of proposition 9.21, we have to prove only one direction.

Let M be closed and bounded. We take any (x,,) in M. Since M is bounded, (x,,) is also bounded
and the Bolzano-Weierstrass theorem implies that there is a subsequence (xy,, ) so thatx,,, — x for
some x € R% Since M is closed and (x,, ) is in M, we have that x € M. Hence every sequence
in M has a subsequence which converges to an element of M and theorem 9.2 implies that M is
compact.

Second proof. Again, proposition 9.21 proves one direction.

Since M is bounded, there is a closed orthogonal parallelopiped N with edges parallel to the
coordinate axes so that M C N. Proposition 9.24 implies that N is compact and, since M is
closed, proposition 9.22 implies that M is compact. O

Example 9.4.3. Every closed ball is a compact subset of R,

Theorem 9.3 says that the converse of proposition 9.21 is true in R%. This is not the case though
in an arbitrary metric space.

Theorem 9.4. The metric space R? is complete.

Proof. Let (x,,) be a Cauchy sequence in R%. Then we easily see that (x,,) is bounded. Indeed,
there is ng so that |x,, — x,,| < 1 for every n, m > ng. This implies that |x,, — X,,,| < 1 for every
n > ng and hence |x,| < |Xp,| 4 1 for every n > ng. Therefore,

Xl < max{[x1}, - [Xng—t s [Xng + 1}

for every n. Then the Bolzano-Weierstrass theorem implies that there is a subsequence (xy,, ) so
that x,,, — x for some x. Now, we have that |x; — x,,, | — 0, because (x,,) is a Cauchy sequence,
and hence

X — X| < [Xk — Xny | + [Xn, —X| = 0.

Therefore, x;, — X. ]

Proposition 9.25. Let (X, d) and (Y, p) be metric spaces, M C X and f : M — Y. If f is
continuous in M and M is compact, then f(M) is compact.

Proof. Let T be an open covering of f(M). Proposition 9.12 implies that for every B € T there
is an open Ap C X so that
fH(B)=Apn M. (9.6)

Since f(M) C Uper B, we have

M C Uper F71(B) € Uper 4B,

i.e. the collection ¥ = {Ap | B € T} is an open covering of M. Since M is compact, there are
Bi,...,B, €T so that
MgABlLJ---UABn.

This and (9.6) imply
M C (Ag,U---UAg )N M = (A, "M)U---U(Ap, " M) = f1(B)U---UfYB,),

and hence
f(M)C ByU---UB,.

Therefore { B1, ..., By} is a finite covering of f(A/) which is smaller than T'. O

Proposition 9.26. Every non-empty compact subset of R has a maximal and a minimal element.

186



Proof. Let M C R be non-empty and compact. Since M is non-empty and bounded, v = sup M
is in R. Then for every € > 0 there is x € M so that u — € < x < u. Therefore u is a limit point
of M and, since M is closed, u € M. So u is the maximal element of M.

The proof for the existence of a minimal element is similar. O

Proposition 9.27 generalizes the familiar analogous proposition for continuous f : [a, b] — R.

Proposition 9.27. Let (X, d) be a metric space, M C X and f : M — R. If f is continuous on
M and M is compact, then f is bounded and has a maximum and a minimum value.

Proof. Proposition 9.25 implies that f(M) C R is compact. Now proposition 9.26 says that f (M)
is bounded and has a maximal and a minimal element. O

Let (X, d) and (Y, p) be metric spaces, A C X and f : A — Y. We say that f is uniformly
continuous in A if for every € > 0 there is § > 0 so that p(f(2'), f(2")) < e forevery 2/, 2" € A
with d(z/,2") < 0.

Theorem 9.5. Let (X, d) and (Y, p) be metric spaces, M C X and f : M — Y. If f is continuous
in M and M is compact, then f is uniformly continuous in M.

Proof. Let € > 0. Since f is continuous in M, for every x € M there is §,, > 0 so that

p(f(y), f(x)) < 9.7

[NelleY

for every y € M with d(y, z) < 0.
The collection {N, (% )|« € M} is an open covering of M and, since M is compact, there are
X1, ...,Tyn € M so that
5 5un
We define
0l >0
and we take any 2/, 2" € M with d(2/,2") < §. Because of (9.8), there is k = 1,...,n so that
/ 53%
x' € Ng, (=5*) and hence

. Oz
(5:m1n{71,...,

d(a',zr) < 5907’“ < Oz,

This implies that
d(a",2) < d(a”,2') + d(a',zy) < 5+ %5 < 0,

and from (9.7) we have
p(f(@), f(@")) < p(f(a"), f@r) + p(f(2"), f(zk)) <

We proved that for every 2/, 2" € M with d(2/,2”) < § we have p(f(z), f(2”)) < €. Therefore,
f is uniformly continuous in M. O

Exercises.

9.4.1. Prove that {(z1,22) |21 > 0,20 > 0,21 + o < 1} is a compact subset of R? and that
{(z1,22,73) | 112 + 22? < 23 < 1} is a compact subset of R3,

9.4.2. (i) Consider the subset A = {(x1, x2) | 23 + 23 < 1} of R%. Does the function f(x1,z2) =
€172 have a maximum and a minimum value in A?

(ii) Consider the subset A = {(x1, 22, 73) |23 + 23 + 12 < 1, 23| < 2} of R3. Does the function
f(z1, 22, 23) = €*11%3 sin(z122) have a maximum and a minimum value in A?
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9.4.3. (i) Let f : R? — R such that f(x) — 0 when |x| — +oc. This means, by definition, that
for every ¢ > 0 there is R > 0 so that | f(x)| < e for every x € R with [x| > R.

If there is X € R so that f(x0) > 0, prove that f has a maximum value.

(ii) Prove that f : R2 — R with f(z1,22) = x1e %1% has a maximum and a minimum value
and find them.

9.4.4. Let (X, d) be a metric space, z € X, (x,) be a sequence in X so that z,, # x for every n
and z,, — x. Prove that {x,, |n € N} is not compact and that {z} U {z,, | n € N} is compact.

9.4.5. Let (X, d) be a metric space and M, ..., M, C X.If My, ..., M, are compact, prove that
My U---U M, is compact.

9.4.6. Let (X, d) be a metric space and A, B C X. If A is compact and B is closed, prove that
AN B is compact.

9.4.7. Let (X, d) be a metric space, zp € X and M, N be non-empty compact subsets of X .
(i) Prove that there are 2/, ¢y’ € M so that d(2/,y') = diam M.

(ii) Prove that there is 2’ € M so that d(xg, 2') = inf{d(zo,x) |z € M}.

(iii) Prove that there are 2’ € M and y’ € N so that d(2/,y') = inf{d(z,y) | € M,y € N}.

9.4.8. Let xo € R%, M C R be non-empty and closed and N C R¢ be non-empty and compact.
(i) Prove that there is X" € M so that [xg — X'| = inf{|xg — x| |x € M}.
(ii) Prove that there are X’ € M andy’ € N so that [x' —y/| = inf{|x —y||x € M,y € N}.

9.4.9. Let M be a bounded subset of R, Prove that M and M are compact.
9.4.10. Let (X, d) be a metric space and M C X. Prove that diam M = diam M.

9.4.11. Let (X, d) be a metric space and M C X. We say that M is totally bounded if for every
€ > 0 there are z1,...,x, € M sothat M C N, () U---UDN, (€).
Prove that M C X is compact if and only if it is complete and totally bounded.

9.4.12. Let (X, d) and (Y, p) be metric spaces, A C X and f : A — Y. Assume that A is compact,
Y is complete and f is continuous in A. Prove that there is a continuous F' : A — Y sothat F' = f
in A if and only if f is uniformly continuous in A.

9.4.13. Let (X, d) be a non-empty set with the discrete metric (exercise 9.1.10). Prove that M C X
is compact if and only if it is a finite set.

9.5 Connectedness.

Let (X, d) be a metric space and A C X. We say that B, C' form a decomposition of A if (i)
BUC = A, (ii) B # 0, C # 0, (iii) none of B, C contains a limit point of the other.
It is clear that (iii) is equivalent to B N C = () and B N C = () taken together.

Example 9.5.1. In R? we consider the closed discs B = D )(1), C' = D(3¢)(1) and their union
A= BUC. ltis clear that B, C form a decomposition of A.

If we consider the open discs B = D (1), C' = D(30)(1) and A = B U C, then the discs B, C
are tangent but, again, they form a decomposition of A.

If we take the closed disc B = D q)(1), the open disc C' = D5 (1) and A = B U C, then the
discs B, C are tangent and they do not form a decomposition of A. Indeed, B contains the limit
point (1,0) of C.

Let (X, d) be a metric space and A C X. We say that A is connected if there is no decompo-
sition of A, i.e. there is no pair of sets B, C with the above mentioned properties (i)-(iii).
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Example 9.5.2. The first two sets A of example 9.5.1 are not connected since each of them admits
a specific decomposition. But we cannot decide at this moment if the third set A of example 9.5.1
is connected or not. We know that the specific B, C' related to this A do not form a decomposition
of A. To decide that A is connected we must prove that, not only the specific pair, but an arbitrary
pair does not form a decomposition of A.

Example 9.5.3. It is obvious that () as well as any {x} is a connected set.

Lemma 9.1. Let (X, d) be a metric space and A, B,C C X with BN C = () and assume that
none of B, C contains a limit point of the other. If A is connected and A C B U C, then either
ACBorACC.

Proof. We define
Bi=AnB, Ci=AnC.

Clearly, By UCy = Aand By NCy = .

Now let x € By. Then z € B, and z is not a limit point of C'. Then there is > 0 so that
N,(r)NC = () and, since C; C C, we get N (r) N C7 = ). Thus x is not a limit point of C;. We
conclude that By does not contain any limit point of C'y. Similarly, C; does not contain any limit
point of Bj.

If By # () and C # (), then By, Cy form a decomposition of A and this contradicts the connect-
edness of A. Hence, either By = () or C'; = () and thus either A C C or A C B, respectively []

Proposition 9.28. Let (X, d) be a metric space and ¥ be a collection of connected subsets of X
all of which have a common point. Then |J 4x, A is connected.

Proof. We set
U=Usex4

and we shall prove that U is connected. Let 2y be the common point of all A € 3.

We assume that U is not connected. Then there are B, C' which form a decomposition of U.
Since x¢ € U, we have x¢ € B or xy € C. Assume that zy € B (the proof'is the same if g € C').
For every A € ¥ we have A C U and hence A C B U C'. According to lemma 9.1, every A € ¥
is contained either in B or in C. But if any A € ¥ is contained in C, it cannot contain xy which is
in B. Therefore every A € X is contained in B and hence U C B. This implies that C' = () and
we arrived at a contradiction. O

Proposition 9.29. Let (X, d) be a metric space and A,D C X sothat A C D C A If Ais
connected, then D is connected.

Proof. Let D not be connected. Then there are B, C' which form a decomposition of D. Since
A C D,wehave A C BUC. Lemma 9.1 implies that A C Bor A C C. Let A C B. (The
proofis similar if A C C'.) Now, every point of D is a limit point of A and hence a limit point of
B (since A C B). Therefore no point of D belongs to C' (since C' does not contain limit points of
B) and this is wrong since C' # (). O

Proposition 9.30. Let (X, d), (Y, p) be metric spaces, A C X and f : A — Y. If f is continuous
in A and A is connected, then f(A) is connected.

Proof. Assume that f(A) is not connected. Then there are B’, C’ which form a decomposition of
f(A). We consider the inverse images of B’, C’ in A, i.e. the sets

B=f"(B)={zcA|f(x)e B}, C=fC)={zecA|f(x)eC}.

Itisclearthat BUC = A, B # (), C # (.
Now, let B contain a limit point b of C. Then there is a sequence (cy,) in C' so that ¢,, — b. Since
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f is continuous at b, we get f(c,) — f(b). The sequence (f(cy,)) is in C’ and thus f(b) is a limit
point of C’. But f(b) € B’ and we arrive at a contradiction, because B’ does not contain any limit
point of C’. Hence B does not contain any limit point of C'. Similarly, C' does not contain a limit
point of B. Thus, B, C form a decomposition of A and this is wrong since A is connected. O

Let (X, d) be a metric space, z,y € X and r > 0. Every finite set {29, ...,2,} € X with

20 =, 2, =yandd(zx_1, 2;) < rforevery k = 1,...,nis called r-succession of points which
joins x, y. If, moreover, z; € A for every k = 0, ..., n, we say that the r-succession of points is
in A.

Theorem 9.6. Let (X, d) be a metric space and K be a compact subset of X. Then K is connected
if and only if for every x,y € K and every r > 0 there is an r-succession of points in K which
joins x,y.

Proof. Assume K is connected. We take any x,y € K and any r > 0 and let there be no r-
succession of points in K which joins x, y. We define the sets

B = {b € K |there is an r-succession of points in K which joins x, b},

C = {c € K |there is no r-succession of points in K which joins z, c}.

Itis clear that BUC = K, B # () (since x € B) and C # () (since y € O).

Assume that B contains a limit point b of C'. Then (since b € B) there is an r-succession of points
in K which joins z, b and, also, (since b is a limit point of C) there is ¢ € C so that d(b,c) < r.
If to the r-succession of points of K which joins x, b we attach ¢ (as a final point after b), then we
get an r-succession of points in K which joins z, ¢. This is wrong since ¢ € C. Hence B does not
contain any limit point of C.

Now assume that C' contains a limit point ¢ of B. Then (since c is a limit point of B) there is b € B
so that d(b,c) < r and (since b € B) there is an r-succession of points in K which joins x, b. If
to the r-succession of points in K which joins z, b we attach c¢ (as a final point after b), then we
get an r-succession of points in K which joins x, c. This is wrong since ¢ € C. Hence C' does not
contain any limit point of B.

We conclude that B, C' form a decomposition of K and this is wrong since K is connected.
Therefore there is an r-succession of points in K which joins x, y.

Conversely, assume that for every x,y € K and every r > 0 there is an r-succession of points in
K which joins z, y.

We assume that K is not connected. Then there are B, C' which form a decomposition of K.

Let « be a limit point of B. Since B C K, «x is a limit point of K and, since K is closed, we get
x € K. Now, x ¢ C (because C' does not contain any limit point of B) and we get that z € B.
Thus B contains all its limit points and it is closed. Finally, since B C K and K is compact, B is
also compact. Similarly C'is also compact.

Now B, C' are compact and disjoint and proposition 9.23 implies that there is > 0 so that

d(b,c) >r

foreveryb € Bandc € C. Since B # (), C # (), we consider ¥’ € Band ¢’ € C. Thenitis easy to
see that there is no r-succession of points in K which joins ¥’, ¢/, and we arrive at a contradiction.
Indeed, assume that there is an r-succession {zo, ..., 2, } in K so that zy = ¥, 2z, = ¢’ and

d(zg—1,2K) <T

forevery k =1,...,n. Since zg € B, z, € C, itis clear that there is k so that z;,_ € B, 2z, € C.
Then d(z;_1, 2x) < r contradicts that we have d(b,c¢) > r forevery b € B, c € C. O

Proposition 9.31. 4 set I C R is connected if and only if it is an interval.
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Proof. Let I be connected. If I is not an interval, there are x1,xo € I and z ¢ I sothatx; < x <
x9. Then the sets
B=IN(-o0,z), C=1IN(x,+00)

form a decomposition of I and we have a contradiction. Thus I is an interval.

Conversely, let I be an interval. If I has only one element, then it is connected. If I = [a, b] with
a < b, then [a, b] is compact and if we take any x,y in [a, b] and any r > 0, it is clear that we
can find an r-succession of points in [a, b] which joins  and y. Thus [a, b] is connected. If [ is an
interval of any other type, we can find a sequence of intervals I,, = [ay,, b,] which increase and their
union is I. Then each I, is connected and proposition 9.28 implies that [ is also connected. [

Now we have the following corollary of propositions 9.30 and 9.31.

Proposition 9.32. Let (X, d) be a metric space, A C X and f : A — R be continuous on A. If A
is connected, then f has the intermediate value property in A.

Proof. f(A) is a connected subset of R and hence it is an interval. Not let u;, ug be values of f
in A, i.e. uj, us belong to the interval f(A). Then every u with u; < u < ug also belongs to the
interval f(A). Le. every number between the values u1, us of f in Aisalsoavalue of fin A. [

A special case of proposition 9.32 is the well known intermediate value theorem which says
that if f : I — R is continuous in the interval I C R, then it has the intermediate value property
in .

Let (X, d) be a metric space, I C R be an interval and y : I — X be continuous on /. We say
that -y is a curve in (X, d). The set

v =) ={y() |t eI}

is called trajectory of the curve . If v* C A C X, we say that the curve ~y is in A.

Propositions 9.30 and 9.31 imply that the trajectory of any curve in (X, d) is a connected subset
of X. Also, if the interval I (the domain of definition of the curve) is closed and bounded (hence
compact), then proposition 9.25 implies that the trajectory of the curve is a compact subset of X .

Example 9.5.4. Every linear segment [x,y] in R is the trajectory of the curve v : [a,b] — R?
given by

i
bl
_l_

|+

L

y(t) = L y

s]

fora <t <hb.
A polygonal line consisting of two successive linear segments, i.e. [x,y] U [y, z], is also the trajec-
tory of a curve: we may take a < b < ¢ and the continuous v : [a, c] — R? given by

t) = -
(U P S

C

{;;—;x+;§—gy, ifa<t<b
b
Y+

In a similar manner we may see that a general polygonal line consisting of n successive linear
segments is the trajectory of a curve.

Let (X, d) be a metric space and A C X. We say that A is arcwise connected if for every two
points of A there is a curve in A which joins these two points.

Proposition 9.33. Let (X, d) be a metric space and A C X. If A is arcwise connected, then it is
connected.

Proof. We fix any xg € A. For every x € A there is a curve 7y, in A which joins zg and . Then
vy C A and hence

U:L‘EA ’Y; C A.
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Conversely, since every x € A is contained in the trajectory 7, we have that

AC UxeA ’7;'
Therefore A = (J,c4 Vs Now, every ; is connected and since all +}; have the point zq in
common, we conclude that A is connected. ]

Example 9.5.5. Every ring is a connected subset of R2.

Example 9.5.6. Every convex set A C R? is arcwise connected and hence connected. Indeed if
we take any two points in A the linear segment which joins them is contained in A. For instance,
balls and orthogonal parallelopipeds are connected subsets of R

Example 9.5.7. A set A C R is called star-shaped if there is a specific point Xy € A so that
for every x € A the linear segment [xg, X] is contained in A. Every such Xy is called center of the
star-shaped set A. The center of the star-shaped set A may not be unique, but this does not mean
that every point of A is a center of it.

It is clear that a star-shaped A is arcwise connected and hence connected. Indeed, every two points
of A can be joined with a polygonal line in A consisting of two successive linear segments: one
segment from one of the points to the center xg and the other segment from Xg to the second point.

Example 9.5.8. The set A = D (1) U D(5(1) in example 9.5.1 is connected, since it is star-
shaped with center 1.

Theorem 9.7. Let A be an open subset of R%. Then A is connected if and only if it is arcwise
connected.

Proof. 1f A is arcwise connected, proposition 9.33 implies that it is connected.
Conversely, let A be connected. We take x,y € A and we assume that there is no polygonal line
in A which joins x,y. We define the sets

B = {b € A|there is a polygonal line in A which joins x, b},
C = {c € A|there is no polygonal line in A which joins x, c}.

It is clear that BUC = A, B # () (since x € B) and C # () (since y € C).

We assume that B contains some limit point b of C. Then (since b € B) there is a polygonal line
in A which joins x,b. Since A is open, there is r > 0 so that N,(r) C A and (since b is a limit
point of C') there is ¢ € Ny(r) N C. If to the polygonal line in A which joins x, b we attach (as last)
the linear segment [b, c] (which is contained in Ny (r) and hence in A), we get a polygonal line in
A which joins x, c¢. This is wrong, since ¢ € C. Thus B does not contain any limit point of C.
Now we assume that C' contains a limit point ¢ of B. Since A is open, there is 7 > 0 so that
N¢(r) € A. Then (since ¢ is a limit point of B) there is b € N(r) N B. As before, (since b € B)
there is a polygonal line in A which joins x, b and, if to this we attach the linear segment b, c]
(which is contained in N, (r) and hence in A), we get a polygonal line in A which joins x, c. This
is wrong, since ¢ € C. Thus C does not contain any limit point of B.

We conclude that B, C' form a decomposition of A and we arrive at a contradiction because A is
connected.

Therefore, there is a polygonal line in A which joins x, y. O

Let (X, d) be a metric space and A C X. We say that C' C A is a connected component of
A if C' is connected and has the following property: if C C C’ C A and C’ is connected, then
C = (C’. In other words, C' is a connected component of A if it is a connected subset of A and
there is no strictly larger connected subset of A.

Let us see a characteristic property of connected components. Let C be a connected component
of A and let B be any connected subset of A so that C' N B # (). Then C' U B is connected (being
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the union of connected sets with a common point) and C' C C'U B C A. Since C'is a connected
component of A, we get C'U B = C' and hence B C C. In oher words, a connected component of
A swallows every connected subset of A intersecting it.

Let Cy, Co be distinct connected components of A and assume that C; N Cy # 0. Since Cy
is a connected subset of A and intersects the connected component Cs of A, we get C7 C (.
Symmetrically, Co C (' and hence C; = (. We arrive at a contradiction and we conclude that
C1 N Cy = (. Thus, different connected components of A are disjoint.

Proposition 9.34. Let (X, d) be a metric space and A C X. Then A is the union of its (mutually
disjoint) connected components.

Proof. We shall prove that every point of A belongs to a connected component of A. We take
x € A and define C, to be the union of all connected subsets B of A which contain x. (Such a set

is {z}.) Le.
C, = U{B | B is connected C A and = € B}.

Now C, is a subset of A and contains x. It is also connected, since it is the union of connected
sets B with z as a common point. If C;, € C’ C A and C’ is connected, then C” is one of the
connected subsets B of A which contain x and hence C' C C,.. Thus C, = C’. Therefore C,, is a
connected component of A and contains . O

It is obvious that A is connected if and only if A is the only connected component of A.

Example 9.5.9. In R? we consider the discs B = D 0)(1) and C' = D(3y(1) and the set A =
BUC. The discs B, C are connected subsets of A. Lemma 9.1 implies that any connected subset
of A is contained either in B or in C. lLe. there is no connected subset of A strictly larger than
either B or C. Therefore the discs B and C' are the connected components of A.

Example 9.5.10. We take Z C R and any n € Z.
Then {n} is a connected set. Let {n} C C' C Z and C’ # {n}. Then

C'={n}u (C"\{n})

and it is clear that the sets {n} and C"\ {n} form a decomposition of C’. Thus C” is not connected
and hence {n} is a connected component of Z.
Therefore Z has infinitely many connected components, each of them being a singleton.

Proposition 9.35. Let (X, d) be a metric space and A C X. If A is closed, then every connected
component of A is closed.

Proof. Let C be a connected component of A. Since C' C A and A is closed, we get C C C C A.
Proposition 9.29 implies that C' is connected and, since C'is a connected component of A, we get
that C' = C'. Therefore C is closed. O

Proposition 9.36. Let A be an open subset of R%. Every connected component of A is open.

Proof. Let C be a connected component of A and x € C. Then x € A and, since A is open, there
is 7 > 0 so that Ny(r) C A. Since Nx(r) is a connected subset of A and intersects the connected
component C' of A, we see that Nx(r) C C. Thus x is an interior point of C'. O

Propositions 9.34 and 9.36 imply that every open subset of R is the union of disjoint open
connected sets.

Exercises.
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9.5.1. Say which of the following subsets of R? are connected and find their connected components.
(i) The complement of a circle.

(i1) The complement of a linear segment.

(iii) The complement of a closed triangular line.

Also:

{0 eN}, {(0,00}U{(},0)[n €N}, [(0,0),(1,0)] UUZZI0, ), (1, )],
SxeR x| =141}, {(@,y) |2,y € Q).
9.5.2. Prove that the following subsets of R? are connected:
{(z,sinz) |z € R} ,{(z,sind)|0<z<1}, {(z,sinl)[0<z<1}U[0,-1),(0,1)]

9.5.3. (i) Find a simple example of two connected sets in R? whose intersection is not connected.
(i) Find a simple example of a connected set A in R? so that JA is not connected.
(iii) Find a simple example of a connected set A in R? so that A° is not connected.

9.5.4. Letd > 2,U C R%be aconnected opensetand ai, . ..,a, € U. Provethat U\ {a1,...,a,}
is connected and open.

9.5.5. Consider a hyperplane L in R and the two open halfspaces of R? which are determined by
L. If a curve ~ in R? joins a point of one halfspace and a point of the other halfspace, prove that
the trajectory of y intersects L.

9.5.6. Let (X, d) be a metric space, A,, C X be connected and A,, N A,, 1 # 0 for every n. Prove
that J;2] A, is connected.

9.5.7. Let B C R%. If Bis open and closed prove that either B = () or B = RH.

9.5.8. Let (X, d) be a metric space and A C X.

(1) If A is closed, prove that A is connected if and only if there are no closed B, C so that BUC = A,
BnC=0,B#0,C#0.

(ii) If A is open, prove that A is connected if and only if there are no open B, C' so that BUC' = A,
BnC=0,B#0,C#0.

9.5.9. Let (X, d) be a metric space and A C X be connected (not necessarily compact). Prove that
for every r > 0 and every z, y € A there is an r-succession of points in A which joins x, y.

9.5.10. Let (X, d) be a metric space and A C X. Prove that A is connected if and only if the only
continuous functions f : A — R with f(A) C Z are the constant functions.

9.5.11. Let A C R? be open and connected and let every point of B C A be an isolated point of
B. Prove that A \ B is connected.

9.5.12. Let (X, d) be a metric space.

(i) Let A,, € X be compact so that A,,11 C A, for every n € N and so that every two points of
A, can be joined by some %—succession of points in A,,. Prove that ﬂzg A, is connected.

(i) Let F* C X be compact and let z, y € F belong to different connected components of F'. Prove

that there is a decomposition B, C of F'sothatx € Bandy € C.

9.5.13. Let (X, d) be a metric space. We say that (X, d) is locally connected if for every z € X
and every r > 0 there is an open connected U so that x € U C N(r).

Prove that (X, d) is locally connected if and only if for every open A C X all the connected
components of A are open.

9.5.14. Let (X, d) be a metric space. We say that (X, d) is locally arcwise connected if for every
x € X and every r > 0 there is an open arcwise connected U so that z € U C Ny(r).

If (X, d) is locally arcwise connected and A C X is open, prove that A is connected if and only if
it is arcwise connected.

9.5.15. Let (X, d) be a non-empty set with the discrete metric (exercise 9.1.10). Prove that M C X
is connected if and only if it has at most one element.
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9.6 Uniform convergence.

In the following we consider only complex functions, although most of the results can be stated
for functions taking values in the euclidean space R? or even in a more general metric space.
Let A be any non-empty set and B(A) be the set of all bounded functions f : A — C, i.e.

B(A)={f|f:A— Cisbounded }.
For each f € B(A) we define the uniform norm of f in A to be the non-negative real number

[flla = sup{|f(2)| |2 € A} = sup,eq [f(2)].

Proposition 9.37. Let f, g € B(A) and X € C. Then:
(i) || flla = O0ifand only if f(z) = 0 for every x € A.
(@) | f + glla < Iflla + lglla-

(iii) [[Aflla = [Al[|.f]] -

@) [[fglla < [l fllallglla-

Proof. (i) is obvious.
(ii) For every x € A we have

[f (@) + g(2)] < [f(2)] + lg(@)] < [1flla+ llglla

and hence || f + glla < || f[|a + llg]la-
(iii) If A = 0, then according to (i), both sides of || A f|| 4 = |A||| f]| 4 are equal to 0. Now let A # 0.
For every x € A we have

IAf ()] = AILf ()] < AL a-

Hence || Af||a < |||l f]|4. Applying this to Af and 1, we get the opposite inequality.
(iv) For every x € A we have

[f(@)g(@)] = [f(2)llg(=)] < [[f]lallglla-

Thus, [[fglla < [[fllallglla- =

For every f,g € B(A) we define their uniform distance in A to be the non-negative real
number

If = glla = sup{[f(z) — g(x)[ |z € A} = sup,c 4 |f () — g(x)].
The function d4 : B(A) x B(A) — R given by

da(f,g) =If —glla

is called uniform metric in A or metric of uniform convergence in A.
Proposition 9.38 justifies the term “metric” we used for the function d 4.

Proposition 9.38. The function dy : B(A) x B(A) — R is a metric on B(A).

Proof. We check the four basic properties of a metric.

(1) da(f,g9) = |If — glla > 0 is obvious.

(i) If da(f,g) = || f — g]la = 0 then proposition 9.37 implies that f(z) = g(x) for every z € A
and hence f = g.

(iii) da(f,9) = If — glla = lg = flla = da(g, f).

(iv) We have
da(f,9) =IIf —gla=II(f =)+ (h—g)lla < |f —hlla+ |k —glla = da(f, h) +da(h,g)
from proposition 9.37. O
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Thus B(A), equipped with the uniform metric d 4, becomes a metric space. It is called metric
space of uniform convergence in A.

Let (f,) be a sequence in B(A) and f € B(A). We say that f,, converges to f uniformly in
Aif f,, — f with respect to the metric of uniform convergence in A4, i.e. if

da(fo, [) = fn = flla = 0.

Hence f,, converges to f uniformly in A if for every e > 0 there is ng so that || f, — f||a < € for
every n > 0 or, equivalently, if for every € > 0 there is ng so that |f,,(x) — f(z)| < € for every
x € Aandevery n > 0.

If f,, — f uniformly in A, then for every z € A we have

|fn(@) = f@)] < || fn = flla—0

and hence f,(x) — f(z) for every x € A. Therefore, uniform convergence of (f,) to f in A
implies pointwise convergence of (f,,) to f in A.

Proposition 9.39. Let \, u € C and f, — f and g, — g uniformly in A.

(i) If B C A, then f,, — f uniformly in B.

(i) Afn + pgn — Af + pg and frg9, — fg uniformly in A.

(iii) If% € B(A), then i € B(A) after some value of the index n and g% — ; uniformly in A.

Proof. (i) We have

1fn = FllB = supyep [fa(z) = f(2)] < supyeq|fu(z) = f@)] = [[fo = flla-

Therefore, || fr, — f|la — 0 implies || f,, — f|[z — O.
(i1) From proposition 9.37 we have

[Afn + 1gn) = (A + pg)lla < (Ml fn = Flla+[ulllgn —glla

and hence ||(Afn, + pgn) — (Af + pg)|la — 0.
Also,

[ fngn — folla < fn = fllallgn — glla + [ fllallgn — glla + llgllall f = flla

and so || fngn — fglla — 0.
(iii) We have ﬁ < M, and hence |g(z)| > 4, for every z € A. Then there is ng so that

lgn — glla < 557 for every n > ng. Hence

190 (@)] = 19(2)| = |gn(z) — 9(2)| > & — 557 = 557

for every x € A and every n > ng. Therefore, m < 2M for every x € A and every n > ny.
This implies that gin € B(A) for every n > ny.
Moreover,

7t~ 7ol = Eeme <2M%l9 — glla
for every x € A and every n > ng. Thus, gin — %HA < 2M?||gn — gl|a for every n > ng and
henceHgin—éHA—)O. 0

Theorem 9.8. The metric space B(A) with the metric of uniform convergence in A is complete.

Proof. Let (fy,) be a Cauchy sequence in B(A) with the metric of uniform convergence in A. This
means that for every e > 0 there is ng so that || f,, — fim|la < € for every n,m > ng. In other
words, we have that for every ¢ > 0 there is ng so that

’fn(z) - fm(m)’ <e (9-9)
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for every x € A and every n, m > ng. Now, (9.9) implies that for every fixed z € A the sequence
(fn(x)) is a Cauchy sequence in C and hence it converges to some number. We define

f(x) = hmn—H—oo fn(x)

for every x € A, and we get a function f : A — R. Taking the limit as m — +oo in (9.9), we
conclude that for every € > 0 there is ng so that

[fn(@) — fz)| <€ (9.10)

for every z € A and every n > ng. Now we see that f is bounded in A, i.e. that f € B(A).
Indeed, (9.10) with n = ng implies that

[F (@) < [ frg () = f(2)] + | fro (2)] < €+ [| frol 2

for every x € A. Moreover, (9.10) says that for every € > 0 there is ng so that || f, — f]|a < € for
every n > ng. Therefore, (f,,) converges to f in the metric space B(A). O

Proposition 9.40. Let (X, d) be a metric space, A C X and f, f,, € B(A) for everyn € N. Let
frn — f uniformly in A and let x € A. If every f, is continuous at x, then f is continuous at x. In
particular, if every f, is continuous in A, then f is continuous in A.

Proof. Take any € > 0. Then there is ng so that || f, — f[|a < § for every n > ng and hence

[frno — flla < 5.

Since f,, is continuous at z, there is § > 0 so that

’fno(y) - fno(x)‘ < %

for every y € A with |y — x| < §. So for every y € A with |y — z| < § we have

[f () = F@)| < 1Y) = Fno W) + [fno (¥) = Fro (2)] + [ fno (2) — £ ()]
<l fno = Flla+ 1fno () = fro (@) + [[frg = flla< 5+ 5+5=¢

and f is continuous at . O

Let (X, d) be a metric space and A C X. We denote BC(A) the set of all bounded and
continuous functions f : A — C, i.e.

BC(A) ={f|f:A— C isbounded and continuous }.
We denote C'(A) the set of all continuous functions f : A — C, i.e.
C(A)={f|f:A— C is continuous }.

It is obvious that BC'(A) C B(A). If A is a compact subset of X, then every continuous
function f : A — C is bounded and so, in this case, we have BC(A) = C(A).

Proposition 9.41. Let (X, d) be a metric space and A C X. The set BC(A) is closed in B(A)
with respect to the uniform metric.

Proof. This is a corollary of proposition 9.40. O
Theorem 9.9. Let (X, d) be a metric space and A C X. The subset BC(A) of B(A) with the

metric of uniform convergence in A is complete.
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Proof. Let (fy,) be a Cauchy sequence in BC'(A). Theorem 9.8 implies that there is f € B(A)
so that f, — f uniformly in A. Proposition 9.40 implies that f is continuous in A and hence
f € BC(A). O

From the notion of uniform convergence of a sequence of functions we move to the notion of
uniform convergence of a series of functions (through the sequence of partial sums).

Let f, : A — C for every n. We consider the partial sums s,, : A — C, where s,(z) =
fi(x) + -+ fu(x) forevery x € A. Letalso s : A — C. We say that the series of functions

:{i’j » converges to its sum s uniformly in A if the sequence of functions (s,,) converges to

the function s uniformly in A.

As in the case of a sequence of functions, we have that, if :{3 n, converges to its sum s
uniformly in A, then "% f,,(x) = s(x) for every x € A, ie. 3 f,, converges to its sum s
pointwise in A.

Proposition 9.42. Let (X, d) be a metric space, A C X and f, € B(A) for every n € N. Let
;Lirg n converge to its sum s uniformly in A and let x € A. If every f,, is continuous at x, then

s is continuous at x. In particular, if every f, is continuous in A, then s is continuous in A.

Proof- We consider the partial sums s, = fi; + --- + f,. Then every s, is continuous at x and
proposition 9.40 implies that s is continuous at x. O

Finally, we have a basic criterion for uniform convergence of a series of functions.

Weierstrass test. Let | f,,(z)| < M, for every n and every x € A. If the series (of non-negative
terms) Z 1 M, converges, i.e. if "> M, < +oc, then Z _1 fn converges uniformly in A.

Proof. For every v € A we have
w21 | Fa(@)] < 32020 My < o0

and so Z:i’j n(x) converges (as a series of complex numbers). Therefore, we may define the
function s : A — C with
s(@) = Xn21 ful2)

for every x € A. Now we consider the partial sums s, = f1 + - -- + f, and then for every x € A
we have

|sn(2) z)| = }Zk =n+1 fr(x )‘ <Zk n+1‘f’€< ’<Zk nt1 M

Since this is true for every x € A, we get
[0 = slla < 3025 My — 0

when n — +oo because 7> M,, < +oco. Therefore, (s,) converges to s uniformly in A and
hence Z — fn converges to 1ts sum s uniformly in A. O

Let (X, d) be ametric space, A C X and F be a family of complex functions defined in A. We
say that F is bounded at some = € A if there is M so that | f(z)| < M for every f € F. We say
that F is equicontinuous at some x € A if for every e > 0 thereis § > 0 so that | f(y) — f(x)| < €
for every y € A with d(y, z) < 6 and for every f € F.

It is obvious that equicontinuity of F at x implies continuity of every f € F at . In fact the §
which corresponds to € in the definition of continuity at  does not depend on the particular f: it
is uniform over f € F.

Proposition 9.43. Let (X, d) be a metric space, A C X and (f,) be a sequence of continuous
functions in A. If f,, — f uniformly in every compact subset of A, then f is continuous in A.
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Proof. Take any x € A and a sequence (z,) in A with z,,, — z. Then
K ={xp |m e N} U {x}

is a compact subset of A and hence f,, — f uniformly in K. Since every f, is continuous in K,
we have that f is also continuous in K. Thus, f(z,,) — f(x) and so f is continuous at x. O

Let (X, d) be a metric space and A C X. We say that B C A is dense in A if A C B, i.e. if
for every x € A and every r > 0 there is y € B so that d(y, z) < r. We say that A is separable
if there is a countable B C A which is dense in A.

The theorem of Arzela-Ascoli. Let (X, d) be a metric space, let A C X be separable, and let F
be a collection of continuous functions in A. Then the following are equivalent:

(i) For every sequence (fy,) in F there is a subsequence (fy, ) and a function f continuous in A
so that f,, — f uniformly in every compact subset of A.

(ii) F is equicontinuous and bounded at every x € A.

Proof. (i) = (ii) Assume that F is not bounded at some = € A. Then there is a sequence (f,,) in
F so that |f,,(z)| — +oo. Now, there is a subsequence ( f,,, ) and a function f so that f,, — f
uniformly in every compact subset of A. One such compact set is {} and we get f,,, (z) = f(z),
arriving at a contradiction.

Now assume that F is not equicontinuous at some x € A. Then there is ¢ > 0 so that for every
n € N there is x,, € A and f,, € F so that

d(l‘n,l‘) < %7 ’fn(lin) - fn(x)‘ 2 €.

Now there is a subsequence (f,,) of (f,,) and a function f so that f,,, — f uniformly in every
compact subset of A. Proposition 9.43 implies that f is continuous at . Since x,, — z, the set
K = {xy, | k € N} U {z} is a compact subset of A and so f,,, — f uniformly in K. Now

€ < [ fue(@ny,) = fr (@) < Vi (@) = F(@n )| + [ f (@) = F(2)] + | F(2) = foy (2)]
< o = flle + [f (ny) = F@)+ 1 = Flixe-

for every k. We arrive at a contradiction because || f,, — f||x — 0 and f(zy,) — f(z).
(ii) = (i) Let ( f,,) be a sequence in F. We know that there is a countable B C A which is dense
in A. Let

B = {ym | m € N}.

The set {f,(y1) |n € N} C C is bounded. So there is a subsequence (f1,,) of (f,) such that
(f1,n(y1)) is a Cauchy sequence in C. Similarly, the set { f1 ,,(y2) |» € N} C C is bounded. So
there is a subsequence ( f2,,) of (f1,) such that (f2,(y2)) is a Cauchy sequence in C. Similarly,
the set { f2,(y3) |n € N} C C is bounded. So there is a subsequence (f3,,) of (f2,,) so that
(f3.n(y3)) is a Cauchy sequence in C. We continue inductively and we find

fir fiz A3z - fin
feq  foe fosz .. fom

fm,l fm,2 fm,3 fm,n

so that (a) the sequence in every row is a subsequence of the sequence in the previous row and
hence of the original sequence (f;,) and (b) ( fim,n(ym)) is a Cauchy sequence in C for every m.
Now we consider the diagonal sequence ( fy ). For every m, (fy.r) is, after the value m of the
index n, a subsequence of ( f,, ) and hence (fy, »(ym)) is a Cauchy sequence in C. Also, (fy, )
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is a subsequence of (f},).
Now we take any compact K C A and any € > 0. We know that F is equicontinuous at every .
So for every x € K there is §, > 0 so that

1f(#) = f@)] < § (9.11)

foreveryt € Awithd(t,x) < é, andevery f € F. Since K is compact, thereare x1,...,zy € K
so that
K C U, Nuy (62)

Since B is dense in A, for every kK = 1,..., N there is some
Ymy, € BN Nﬂvk((sxk)

Since ( fr,n(Ym, )) is a Cauchy sequence in C for every k =1, ..., N, there is ng so that

’fn’,n’ (ymk) - fn”,n” (ymk)’ < % (912)

for every n/,n” > ng and every k = 1,..., N. Now we take any x € K. Then there is some
k=1,...,N sothatz € Ny, (0, ). Then

d(z,xr) < 0zpy  AYmys Th) < Ogy- (9.13)
Now, (9.11) (for x = x), (9.12) and (9.13) imply that for every n’,n” > ng we have
|fn’,n’(x) - fn”,n”(x” < |fn’,n’(x) - fn’,n’($k)| + |fn’,n’(xk) - fn’,n/(ymk)|
+ |fn’,n’(ymk) - fn”,n”(ymk)| + |fn”,n”(ymk) - fn”,n”(xk”

+ |fn”,n”(xk) - fn”,n”(x”
<EtiHiti4i=e

Thus, for every n’, n” > ng we have
an/,n’ - fn”,n”HK <€

and so (fyn) is a Cauchy sequence in C'(K) for every compact K C A. Now, theorem 9.9,
applied to K, implies that ( f,, ,,) converges uniformly in K to some function continuous in K (the
limit function depends on K), for every compact K C A. In particular, if K = {z}, we get that
(fnn(z)) converges to some number in C and then we define

for every x € A. Since (f,, ) converges uniformly in K to some function, say fx, it converges
also pointwise in K to fx. Butsince (f, ) converges pointwise in A to f, we get that fxr = f in
K, and we proved that ( f,, ) converges to f uniformly in every compact subset of A.

Finally, proposition 9.43 says that f is continuous in A. O

Exercises.

9.6.1. Let (X, d) be a metric space and A C X.
(1) We define the collection of functions

B.(A)={f|f:A— C,f isbounded in every compact K C A}.

Prove that C'(A) C B.(A).
(ii) We say that L = (K}) is an exhausting sequence of compact sets for A if every K, is
compact, K C K1 C A for every k and, finally, for every compact K C A there is some k so
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that K C K.

If (K},) is an exhausting sequence of compact sets for A, prove that | > K} = A.

(iii) Let F/ C R? be closed. Prove that there is an exhausting sequence of compact sets for F.
(iv) Let Q C R? be open, 6 > 0, R > 0 and

K={xeQ||x|<R,|x—y|>d forevery y € Q}.

Prove that K is a compact subset of €.

Prove that there is an exhausting sequence of compact sets for 2.

(v) If € = (K}%) is an exhausting sequence of compact sets for A, then we define the function
dax : Be(A) x Bc(A) — R by

+oo 1 NIf-glx
dax(f,9) =302 3% TTrgles

Prove that d 4 x is a metric on B.(A).

If f, fn € Bc(A) for every n € N, prove that da x(fn, f) — 0 if and only if f,, — f uniformly
in every compact subset of A. Because of this result, the metric d 4 x is called metric of uniform
convergence in the compact subsets of A.

If K' = (K],) and K" = (K]) are two exhausting sequences of compact sets for A, prove that the
corresponding metrics d 4 xv and d4 x» on B.(A) are equivalent.

If we consider B.(A) as a metric space with the metric d4 x of uniform convergence in the compact
subsets of A, prove that C'(A) is a closed subset of B.(A).

9.6.2. Let (X, d) be a metric space, A C X and F be a family of complex functions defined in A.
We say that F is equicontinuous in A if for every e > 0 there is 6 > 0 so that | f(2) — f(2”)| < €
for every 2/, 2" € A with d(2/,2") < ¢ and for every f € F.

If A is compact and F is equicontinuous at every € A, prove that F is equicontinuous in A.

9.6.3. Let (X, d) be a metric space. If A C X is a countable union of compact sets, prove that A
is separable.

9.6.4. Let (X, d) be a metric space and A C A’ C X. If A’ is separable, prove that A is separable.

9.6.5. Prove that Q¢ is dense in R¢ and hence R is separable. Now, exercise 9.6.4 implies that
every subset of R? is separable.
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