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Chapter 1

The complex plane and the sphere of
Riemann.

1.1 The complex plane.

In R2, besides the usual vector space addition, which is defined by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

there is the operation of multiplication, defined by

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + y1x2).

Wecan easily prove thatR2 equippedwith these two binary operations is an algebraic field. The
neutral element of multiplication is (1, 0) and the inverse of (x, y) ̸= (0, 0) is

(
x

x2+y2
,− y

x2+y2

)
.

We denote C the set R2 equipped with the above addition and multiplication.
It is easy to prove that the function

R ∋ x 7→ (x, 0) ∈ C

is a one-to-one field homomorphism from R into C. This permits the identification of R with the
subset {(x, 0) |x ∈ R} of C. In other words, we may identify every x ∈ R with the corresponding
(x, 0) ∈ C and consider R as a subset of C. This is exactly the same as the identification we make
when we want to view R as the real line, the x-axis, in the two-dimensional plane identified with
R2. From now on we do not distinguish between x and (x, 0), i.e.

x = (x, 0).

We define i, the imaginary unit, to be the element (0, 1):

i = (0, 1).

Now we have

(x, 0) + i(y, 0) = (x, 0) + (0, 1)(y, 0) = (x, 0) + (0, y) = (x, y).

If we replace (x, 0) and (y, 0) with the corresponding x and y, we get

x+ iy = (x, y).

From now on we shall write the elements ofC = R2 in both forms: x+ iy and (x, y). We shall
prefer the first, x + iy, the complex form of the elements of C. We say that x + iy is a complex
number and that C is the set of complex numbers.
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Now the definitions of addition and multiplication take the forms:

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2),

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + y1x2).

In particular we have
(±i)2 = −1.

We shall prove later that, besides the polynomial equation z2+1which has as solutions the complex
numbers ±i, every polynomial equation with coefficients in C is solvable in C. In other words,
we shall prove that C is an algebraically closed field.

The usual order relation < , which makes R an ordered field, cannot be extended in C. In
fact, C cannot be equipped with any order relation so that it becomes an ordered field (with the
addition and muptiplication already defined in C). Indeed, no matter what the order relation is, we
must have that an element of the form z2 = z z is “positive” if z ̸= 0, and then we end up with
the contradiction: 1 = 12 is “positive” and −1 = i2 is also “positive”. Therefore, when we write
inequalities like z ≤ w or z < w we always accept that z, w are real numbers.

It is customary to use symbols like x, y, u, v, t, ξ, η for real numbers, and symbols like z, w,
ζ for complex numbers. For instance, we write: z = x+ iy, w = u+ iv, ζ = ξ + iη.

For every z = x+ iy = (x, y) we introduce the symbols

Re z = x, Im z = y, z = x− iy = (x,−y), |z| =
√
x2 + y2

These are called real part, imaginary part, conjugate, and absolute value (or modulus) of z,
respectively.

The useful identities

Re z = 1
2(z + z), Im z = 1

2i(z − z), z z = |z|2

are trivial to prove. We also have the trivial inequalities

|Re z| ≤ |z|, | Im z| ≤ |z|, |z| ≤ |Re z|+ | Im z|,

and the triangle inequality

||z| − |w|| ≤ |z ± w| ≤ |z|+ |w|.

The geometrical model for C is the same as for R2, i.e. the cartesian plane with two perpen-
dicular axes: every z = x + iy = (x, y) corresponds to the point of the plane with abscissa x
and ordinate y. The horizontal axis of all points x = (x, 0) is the real axis. The vertical axis of
all points iy = (0, y) is the imaginary axis. In this framework, the cartesian plane is also called
complex plane.

We recall that the cartesian equation of the general line in the plane is

ax+ by = c,

where a, b, c ∈ R, a2 + b2 ̸= 0. If we set z = x+ iy and w = a+ ib ̸= 0, then the above equation
takes the form

Re(wz) = c.

Similarly, the defining inequalities ax+ by < c and ax+ by > c of the two halfplanes on the
two sides of the line with equation ax+by = c become Re(wz) < c and Re(wz) > c, respectively.

We shall denote
[z1, z2] = {(1− t)z1 + tz2 | 0 ≤ t ≤ 1}
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the linear segment joining the points z1, z2. When we say interval we mean a linear segment on
the real line: [a, b] ⊆ R.

The euclidean distance between the points z1 = (x1, y1) and z2 = (x2, y2) is√
(x1 − x2)2 + (y1 − y2)2 = |z1 − z2|.

Therefore, the circle, the open disc, and the closed discwith center z = (x, y) and radius r > 0
take the form

Cz(r) = {w | |w − z| = r}, Dz(r) = {w | |w − z| < r}, Dz(r) = {w | |w − z| ≤ r}.

We recall the special symbols
T, D, D

for the unit circle C0(1), the unit disc D0(1) and the closed unit disc D0(1), respectively.
The real part and the imaginary part of a complex function f : A → C, where A is any

nonempty set, are the functions u = Re f : A → R and v = Im f : A → R, respectively, defined
by

u(a) = Re f(a) = 1
2(f(a) + f(a)), v(a) = Im f(a) = 1

2i(f(a)− f(a)).

Of course, we have f(a) = u(a) + iv(a) = (u(a), v(a)) for a ∈ A.
Now, C = R2 has the familiar euclidean metric space structure. We have the notions of:

interior point, boundary point, limit point, and accumulation point of a set; interior A◦, boundary
∂A, and closureA of a setA; open set, closed set, compact set, and connected set. We also have the
notions of convergence of sequences of complex numbers, and limits and continuity of functions
defined in C or taking values in C.

We only recall the following very simple properties of limits. The variable points z, wmay rep-
resent the terms of a sequence or the values of an independent variable or the values of a function,
and then we get the familiar algebraic properties of limits of sequences and of functions.

Of course, the convergence z → z0 is equivalent to |z − z0| → 0. Also, z → z0 is equivalent
to Re z → Re z0, Im z → Im z0. This can be proved by using the inequalities

|Re z − Re z0| = |Re(z − z0)| ≤ |z − z0|, | Im z − Im z0| = | Im(z − z0)| ≤ |z − z0|,

|z − z0| ≤ |Re(z − z0)|+ | Im(z − z0)| = |Re z − Re z0|+ | Im z − Im z0|.
Moreover, if z → z0 and w → w0, then z + w → z0 + w0 and zw → z0w0. Both can be proved
either by reducing them to convergence of real and imaginary parts or -preferably- by using the
triangle inequality:

|(z + w)− (z0 + w0)| = |(z − z0) + (w − w0)| ≤ |z − z0|+ |w − w0|

and
|zw − z0w0| = |(z − z0)(w − w0) + (z − z0)w0 + (w − w0)z0|

≤ |z − z0||w − w0|+ |z − z0||w0|+ |w − w0||z0|.

If z → z0 ̸= 0, we can prove that 1
z → 1

z0
using the equality |1z −

1
z0
| = |z−z0|

|z||z0| . We use the equality
|z − z0| = |z − z0| to prove that z → z0 implies z → z0. Similarly, we use the triangle inequality
||z| − |z0|| ≤ |z − z0| to prove that z → z0 implies |z| → |z0|.

We shall consider the limit z → ∞ in section 1.3 where the point∞ will be introduced.
We also mention the standard examples of polynomial functions

p(z) = anz
n + · · ·+ a1z + a0

and rational functions
r(z) = p(z)

q(z) =
anzn+···+a1z+a0
bmzm+···+b1z+b0 .

A polynomial function is continuous in C, and a rational function is also continuous in C except
at the roots of the polynomial in its denominator. Again, we shall consider the limits of p and r at
infinity, and the limits of r at the roots of its denominator in section 1.3.
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1.2 Argument and polar representation.

The trigonometric functions

sin : R → R, cos : R → R

are defined and their properties are studied in the theory of functions of a real variable. In particular,
we know that sin and cos are periodic inR, with smallest positive period 2π, i.e. sin(θ+2π) = sin θ
and cos(θ + 2π) = cos θ.

Let I be any interval of length 2π, which contains only one of its endpoints, e.g. [0, 2π) or
(−π, π]. Then we know that for every a, b ∈ R with a2 + b2 = 1 there exists a unique θ ∈ I so
that cos θ = a and sin θ = b. Equivalently, for every ζ ∈ C with |ζ| = 1 there exists a unique
θ ∈ I so that ζ = cos θ + i sin θ. Therefore, the function

cos+i sin : R → T

is periodic, with 2π as its smallest positive period, and its restriction

cos+i sin : I → T

is one-to-one and onto T. Thus, for every ζ ∈ T the equation cos θ + i sin θ = ζ has infinitely
many solutions in R, and exactly one solution in I .

Now, for every z ∈ C, z ̸= 0, we have z
|z| ∈ T, and so the equation cos θ + i sin θ = z

|z| has
infinitely many solutions in R, and exactly one solution in the interval I . The set of all solutions
in R is called argument or angle of z and it is denoted arg z, i.e.

arg z =
{
θ ∈ R

∣∣ cos θ + i sin θ = z
|z|
}
.

So we have the equivalence:

θ ∈ arg z ⇔ θ ∈ R and cos θ + i sin θ = z
|z| .

Thus, arg z has infinitely many elements and it is clear, by the 2π-periodicity of sin and cos,
that these elements form a (two-sided) arithmetical progression of step 2π. In other words, if θ is
an arbitrary element of arg z, then all elements of arg z are described by θ + k2π, k ∈ Z.

On the other hand, the unique solution of the equation cos θ + i sin θ = z
|z| in the specific

interval I = (−π, π] is called principal argument or principal angle of z and it is denoted Arg z:

θ = Arg z ⇔ −π < θ ≤ π and cos θ + i sin θ = z
|z| .

Thus, Arg z is one of the elements of arg z, the one which is contained in (−π, π].

Examples. (i) Arg 3 = 0 and arg 3 = {k2π | k ∈ Z}.
(ii) Arg(4i) = π

2 and arg(4i) = {π2 + k2π | k ∈ Z}.
(iii) Arg(−2) = π and arg(−2) = {π + k2π | k ∈ Z}.
(iv) Arg(1 + i) = π

4 and arg(1 + i) = {π4 + k2π | k ∈ Z}.
(v) Arg(−1− i

√
3) = −2π

3 and arg(−1− i
√
3) = {−2π

3 + k2π | k ∈ Z}.

We remark that we do not define argument or angle for the number 0.
Since the elements of arg z form an arithmetical progression of step 2π, is is obvious that, if

z1 ̸= 0, z2 ̸= 0, then either arg z1 = arg z2 or arg z1 ∩ arg z2 = ∅. More precisely, it is easy to see
that arg z1 = arg z2 if and only if z2z1 > 0 or, equivalently, if and only if z1, z2 belong to the same
halfline with vertex 0.

Comparing real and imaginary parts of the two sides of the following identity, we see that it is
equivalent to the well known addition formulas of sin and cos:

cos(θ1 + θ2) + i sin(θ1 + θ2) = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2).
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A direct consequence by induction is the familiar formula of de Moivre:

cos(nθ) + i sin(nθ) = (cos θ + i sin θ)n

for every n ∈ Z.

Proposition 1.1. For every nonzero z1, z2 we have

arg(z1z2) = arg z1 + arg z2.

By this we mean that the sum of any element of arg z1 and any element of arg z2 is an element
of arg(z1z2) and, conversely, any element of arg(z1z2) is the sum of an element of arg z1 and an
element of arg z2.

Proof. We take any θ1 ∈ arg z1 and any θ2 ∈ arg z2 and θ = θ1 + θ2. Then by the addition
formulas,

cos θ + i sin θ = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2) = z1
|z1|

z2
|z2| =

z1z2
|z1z2| .

Therefore, θ ∈ arg(z1z2).
Conversely, we take any θ ∈ arg(z1z2). We consider θ1 ∈ arg z1 and we define θ2 = θ−θ1. Then

cos θ2 + i sin θ2 = cos θ+i sin θ
cos θ1+i sin θ1 = z1z2

|z1z2|
/
z1
|z1| =

z2
|z2| .

Therefore, θ2 ∈ arg z2 and θ = θ1 + θ2.

We note that the equality Arg(z1z2) = Arg z1 + Arg z2 is not true in general.

Example 1.2.1. Arg(−1) + Arg(−1) = π + π = 2π, while Arg((−1)(−1)) = Arg 1 = 0.

The equalities |z1z2| = |z1||z2| and arg(z1z2) = arg z1 + arg z2 express the well known
geometric rule: when two complex numbers are multiplied, their distances from 0 are multiplied,
and their angles are added.

It is clear by now that for every z ̸= 0 we may write

z = r(cos θ + i sin θ),

where r = |z| and θ ∈ arg z. This is called a polar representation of z. There are infinitely
many polar representations of z, one for each θ ∈ arg z. The polar representation with θ = Arg z
is called principal polar representation of z.

As in the case of the argument, we do not define polar representation for the number 0.

Exercises.

1.2.1.Which are all the possible values of Arg(z1z2)− Arg z1 − Arg z2 ?

1.2.2. Prove that arg(1/z) = arg z = − arg z and arg(−z) = π+arg z, after you assign the proper
meaning to these equalities.

1.2.3. Prove the following statement for any nonzero z, z1, z2. It is true that z = z1z2 if and only
if the triangle T (0, 1, z1) with vertices 0, 1, z1 is similar to the triangle T (0, z2, z) with vertices
0, z2, z (0 corresponding to 0, 1 corresponding to z2, and z1 corresponding to z). This expresses
the geometric visualization of the operation of multiplication in C.
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1.3 Stereographic projection and the sphere of Riemann.

Let
S2 = {(ξ, η, ζ) ∈ R3 | ξ2 + η2 + ζ2 = 1}

be the unit sphere in R3. Through the usual identifications, we may consider C = R2 as the set of
points

z = x+ iy = (x, y) = (x, y, 0)

of R3.
A distinguished point of S2 is the north pole

N = (0, 0, 1).

Now we take any z = x + iy ∈ C and the line Nz in R3, which contains N and z. Clearly,
this line intersects S2 at N . We shall see that there is a second point of intersection A = (ξ, η, ζ)

of Nz and S2. That A = (ξ, η, ζ) belongs to Nz is equivalent to
−−→
NA = t

−→
Nz for some t ∈ R.

This is equivalent to

ξ − 0 = t(x− 0)

η − 0 = t(y − 0)

ζ − 1 = t(0− 1)

(1.1)

On the other hand, that A = (ξ, η, ζ) belongs to S2 is equivalent to

ξ2 + η2 + ζ2 = 1. (1.2)

That A = (ξ, η, ζ) is a common point of Nz and S2 is equivalent to (ξ, η, ζ, t) being a solution
of the system of the four equations (1.1) and (1.2). We easily solve this system and we find two
distinct solutions: the point N = (0, 0, 1), which we already know, and the point

A =
(

2x
x2+y2+1

, 2y
x2+y2+1

, x
2+y2−1
x2+y2+1

)
.

Now we consider the mapping

C ∋ z = x+ iy 7→ A = (ξ, η, ζ) =
(

2x
x2+y2+1

, 2y
x2+y2+1

, x
2+y2−1
x2+y2+1

)
∈ S2 \ {N}

from C to S2 \ {N}. We check easily that this mapping is one-to-one and onto S2 \ {N} and that
the inverse mapping is

S2 \ {N} ∋ A = (ξ, η, ζ) 7→ z = x+ iy = ξ
1−ζ + i η

1−ζ ∈ C.

The two mutually inverse mappings just defined between C and S2 \ {N} are called stereo-
graphic projections. We write

C ↔ S2 \ {N}

to denote the action of the two stereographic projections.
We shall see now that both stereographic projections are continuous. We take two points

z = x + iy and z0 = x0 + iy0 in C. Let their images, through stereographic projection, be the
points A = (ξ, η, ζ) and A0 = (ξ0, η0, ζ0) in S2 \ {N}. Using the formulas of stereographic
projection and doing trivial algebraic manipulations, we can prove that the euclidean distance in
R3 between A and A0 equals

|A−A0| =
√

(ξ − ξ0)2 + (η − η0)2 + (ζ − ζ0)2

= . . . . . . =
2
√

(x−x0)2+(y−y0)2√
x2+y2+1

√
x20+y

2
0+1

= 2|z−z0|√
|z|2+1

√
|z0|2+1

.
(1.3)
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We also take z = x+ iy in C and let its image, through stereographic projection, be A = (ξ, η, ζ)
in S2 \ {N}. We find that the euclidean distance in R3 between A and N equals

|A−N | =
√

(ξ − 0)2 + (η − 0)2 + (ζ − 1)2 = . . . . . . = 2√
x2+y2+1

= 2√
|z|2+1

. (1.4)

If z → z0, then (1.3) implies that A → A0. Conversely, assume that A → A0. Then A ̸→ N
and (1.4) shows that |z| stays bounded. Hence (1.3) implies that z → z0. We conclude that both
stereographic projections are homeomorphisms between the metric spaces C and S2 \ {N}.

We can continue the previous argument and examine the behaviour of z inCwhen its imageA
in S2 \ {N} tends to the north poleN . Indeed, (1.4) shows that A→ N if and only if |z| → +∞.
In other words, A→ N if and only if the euclidean distance of z from 0 becomes arbitrarily large.

Now, it is natural to introduce and attach to C an “ideal point”, denoted∞ and called infinity,
whose “euclidean distance” from 0 is+∞. We define the extended complex plane or the sphere
of Riemann to be

Ĉ = C ∪ {∞}.
We also extend the previously defined stereographic projections C ↔ S2 \ {N} to be the stereo-
graphic projections

Ĉ ↔ S2

which map each of ∞ ∈ Ĉ and N ∈ S2 onto the other.
Thus, both stereographic projections Ĉ ↔ S2 are bijective mappings between Ĉ and S2. We

have seen that their restrictions C ↔ S2 \ {N} are homeomorphisms between the metric spaces
C and S2 \ {N}. In order to examine the continuity properties of the extended stereographic
projections, we have to equip the sets Ĉ and S2with correspondingmetrics. Themetric on S2\{N},
i.e. the euclidean distance on R3, is also a metric on S2. But it is clear that the euclidean metric
on C cannot be extended to become a metric on Ĉ. The problem can be solved if we use the
equalities (1.3) and (1.4) to transfer the metric on S2 to a metric on Ĉ. If z, z0 ∈ C, we consider
their images A,A0 ∈ S2 \ {N} and we define the new distance between z, z0 to be equal to the
euclidean distance in R3 between A,A0 given by (1.3) in terms of z, z0. If z ∈ C and z0 = ∞,
we consider their images A ∈ S2 \ {N} and A0 = N and we define the new distance between
z, z0 to be equal to the euclidean distance in R3 between A,A0 given by (1.4) in terms of z. The
new distance between two points of C or between a point of C and∞ is called chordal distance.
In other words, we define the chordal distance χ(z1, z2) between z1, z2 in Ĉ to be the euclidean
distance in R3 between their images, through stereographic projection, in S2. I.e.

χ(z1, z2) =


2|z1−z2|√

|z1|2+1
√

|z2|2+1
, if z1, z2 ∈ C

2√
|z|2+1

, if z1 = z ∈ C, z2 = ∞ or z1 = ∞, z2 = z ∈ C

0, if z1 = z2 = ∞

Proposition 1.2. The function χ : Ĉ× Ĉ → R is a metric on Ĉ.

Proof. We must prove that chordal distance has the following basic properties:
(i) χ(z1, z2) ≥ 0 for every z1, z2 ∈ Ĉ.
(ii) If z1, z2 ∈ Ĉ, then: χ(z1, z2) = 0 if and only if z1 = z2.
(iii) χ(z1, z2) = χ(z2, z1) for every z1, z2 ∈ Ĉ.
(iv) χ(z1, z3) ≤ χ(z1, z2) + χ(z2, z3) for every z1, z2, z3 ∈ Ĉ.
The first three properties are obvious. The fourth, the triangle inequality, can be proved after many
calculations using the formula of the chordal distance. But there is a better way. If we take the
stereographic projections A1, A2, A3 in S2 of z1, z2, z3, then from the definition of the chordal
distance we have χ(zi, zj) = |Ai −Aj | and we get

χ(z1, z3) = |A1 −A3| ≤ |A1 −A2|+ |A2 −A3| = χ(z1, z2) + χ(z2, z3),

since the euclidean distance in R3 satisfies the triangle inequality.
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The metric χ on Ĉ is called chordal metric.
We thus have a second way to measure distances in the complex plane: besides the euclidean

distance |z1 − z2| we also have the chordal distance χ(z1, z2).

Proposition 1.3. Ĉ with the chordal metric and S2 with the euclidean metric ofR3 are homeomor-
phic metric spaces.

Proof. Stereographic projections are homeomorphisms between the two metric spaces. In fact
they are more than that: they are isometries. Indeed, if z1, z2 ∈ Ĉ correspond to A1, A2 ∈ S2,
then by the definition of the chordal metric we have χ(z1, z2) = |A1 − A2|. I.e. stereographic
projections preserve distances and so they are both continuous.

Proposition 1.4 describes the relation between the chordal metric and the euclidean metric in
their common domain.

Proposition 1.4. The chordal metric on C and the euclidean metric on C are equivalent.

Proof. If z, z0 ∈ C, then z → z0 with respect to the euclidean distance if and only if z → z0 with
respect to the chordal distance. To see this we consider the images A,A0 ∈ S2 \ {N} of z, z0
under stereographic projection. We have proved already that z → z0 with respect to the euclidean
distance inC if and only ifA→ A0 with respect to the euclidean distance inR3. But the euclidean
distance between A,A0 is equal to the chordal distance between z, z0. Therefore,

|z − z0| → 0 ⇔ |A−A0| → 0 ⇔ χ(z, z0) → 0.

Thus, the euclidean metric and the chordal metric on C are equivalent.

Proposition 1.5. Let z ∈ C. Then z → ∞ in Ĉ if and only if |z| → +∞.

Proof. This is obvious from χ(z,∞) = 2/
√

|z|2 + 1.

We have introduced ∞ as the ideal point towards which a variable point z on the complex
plane moves when its euclidean distance from 0 becomes arbitrarily large. It is time to mention
the difference with the ideal points ±∞ we attach to R. A variable point x on the real line moves
away from 0 in exactly two specific directions: either to the left or to the right and then we say,
respectively, that it moves towards −∞ or towards +∞. On the plane though there are no two
uniquely specified directions. A point can move away from 0 either on arbitrary halflines (i.e.
in infinitely many directions) or making an arbitrary “spiral-like movement” or in a completely
arbitrary manner. Therefore, we may only say that the point moves towards infinity.

Now let us say a few things about neighborhoods of points in Ĉ with respect to the chordal
metric. We start with the neighborhoods of∞. If we denote Nx(r) the r-neighborhood of a point
x in the general metric space, then the r-neighborhood of ∞ in the metric space (Ĉ, χ) is the set

N∞(r) = {z ∈ Ĉ |χ(z,∞) < r} = {z ∈ C | 2/
√

|z|2 + 1 < r} ∪ {∞}

=

{
{z ∈ C | |z| >

√
(4/r2)− 1} ∪ {∞}, if 0 < r ≤ 2

Ĉ, if r > 2

We observe that the “small” neighborhoods of ∞, i.e. the neighborhoods N∞(r) with 0 <
r < 2, are the complements of closed discs in C with center 0, together with ∞. To simplify
notation we make the change of variable: 1

s =
√

4
r2

− 1. If r increases in (0, 2), then s increases

in (0,+∞), and conversely. We call s-neighborhood of ∞ in Ĉ the set

D∞(s) =
{
z
∣∣ |z| > 1

s

}
∪ {∞},

i.e. the complement of the closed disc with center 0 and radius 1
s , together with ∞.
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We see that the neighborhoods of∞ in Ĉ with respect to the chordal metric are of three kinds:
the sets D∞(s) with s > 0, the set Ĉ \ {0} (the case r = 2 or, equivalently, s = +∞) and
the whole set Ĉ (the case r > 2). Since in a metric space it is the “small” neighborhoods which
actually characterize interior points, boundary points, limit points, limits of functions or sequences
etc., in the case of Ĉ and∞ we shall pay attention only to the neighborhoods of the formD∞(s).

Now the following should be clear.
(i) The point ∞ is an interior point of A ⊆ Ĉ with respect to the chordal metric if and only if A
contains, besides ∞, the complement of a closed disc in C with center 0.
(ii) The point ∞ is not a limit point of A ⊆ Ĉ with respect to the chordal metric if and only if A
is contained in a closed disc with center 0 or, equivalently, A is a bounded set in C with respect to
the euclidean metric.
(iii) If∞ /∈ A, i.e. if A ⊆ C, then we have the following equivalences: [∞ is a boundary point of
Awith respect to the chordal metric]⇔ [∞ is a limit point ofAwith respect to the chordal metric]
⇔ [∞ is an accumulation point of A with respect to the chordal metric] ⇔ [A is not bounded in
C with respect to the euclidean metric].

Now we continue with the neighborhoods with respect to the chordal metric of a point z0 ∈ C.
The r-neighborhood of z0 ∈ C in Ĉ with respect to the chordal metric is the set

Nz0(r) = {z ∈ Ĉ |χ(z, z0) < r}.

This set does not have a simple form. Depending on the exact values of z0 and r, it is an open
disc or an open halfplane or the complement of a closed disc (together with ∞). Even when
Nz0(r) is an open disc, z0 is not its euclidean center. Look at exercise 1.3.2 for details. Since
the chordal metric and the euclidean metric are equivalent in C, we have the following relation
between neighborhoods Nz0(r) with respect to the chordal metric and neighborhoods (i.e. the
familiar discs) Dz0(r) with respect to the euclidean metric: for every ϵ > 0 there is δ > 0 so that
Dz0(δ) ⊆ Nz0(ϵ) and, conversely, for every ϵ > 0 there is δ > 0 so that Nz0(δ) ⊆ Dz0(ϵ). From
this we conclude easily that z0 ∈ C is an interior point or a boundary point or a limit point of a
set A ⊆ Ĉ with respect to the chordal metric if and only if it is, respectively, an interior point or a
boundary point or a limit point of A with respect to the euclidean metric.

If A ⊆ C and we write A◦, ∂A and A for the interior, the boundary and the closure of A with
respect to the euclidean metric andA◦,χ, ∂χA andAχ for the interior, the boundary and the closure
of A with respect to the chordal metric, then we easily see that

A◦,χ = A◦, ∂χA = ∂A, Aχ = A

for bounded A ⊆ C, and

A◦,χ = A◦, ∂χA = ∂A ∪ {∞}, Aχ = A ∪ {∞}

for unbounded A ⊆ C. (Of course, when we say bounded or unbounded we mean with respect to
the euclidean metric.)

For instance, ifA ⊆ C is bounded, then it is open with respect to the chordal metric if and only
if it is open with respect to the euclidean metric, and it is closed with respect to the chordal metric
if and only if it is closed with respect to the euclidean metric. If A ⊆ C is not bounded, then again
it is open with respect to the chordal metric if and only if it is open with respect to the euclidean
metric, but, even if it is closed with respect to the euclidean metric, we have to attach ∞ to A to
make it closed with respect to the chordal metric.

Regarding compactness, we know that C is not compact either with respect to the euclidean
metric or with respect to the chordal metric. Indeed,C is not compact with respect to the euclidean
metric, because it is not bounded. And then it is not compact with respect to the chordal metric,
because the two metrics are equivalent in C. But Ĉ is compact (with respect to the chordal metric,
of course). Indeed, Ĉ is homeomorphic to S2, which is compact since it is a closed and bounded
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set in R3. Now, Ĉ is produced from C by the attachment to C of the single point∞. This situation
has a name in topology: we say that Ĉ is a one-point compactification of C.

Based on the usual algebraic rules of limits, we may extend in the standard way the algebraic
operations in the set Ĉ:

z +∞ = ∞+ z = ∞, −∞ = ∞, z −∞ = ∞− z = ∞,

z∞ = ∞ z = ∞ if z ̸= 0, ∞∞ = ∞,

1
∞ = 0, 1

0 = ∞, z
∞ = 0, ∞

z = ∞,

∞ = ∞, |∞| = +∞.

For example, the rule z0+∞ = ∞ (when z0 ∈ C) can be based on the following argument. If
z → z0 and w → ∞ in Ĉ, then |z − z0| → 0 and |w| → +∞ and then, by the triangle inequality,
|z+w| ≥ |w| − |z− z0| − |z0| → +∞. Hence z+w → ∞ in Ĉ. All other rules can be based on
similar arguments.

The following are not defined:

∞+∞, ∞−∞, 0∞, ∞ 0, ∞
∞ ,

0
0 .

They are called indeterminate forms.
For instance, regarding the case of ∞ +∞, one can easily find examples of points z, w such

that z → ∞ and w → ∞ but such that z + w has either no limit or any preassigned limit. The
same is true in all other cases.

Observe the case of 1
0 = ∞. In R the expression 1

0 is an indeterminate form, since when the
real number x is small and> 0 then 1

x is large and> 0 and hence 1
x moves towards+∞, and when

x is small and < 0 then 1
x is large and < 0 and hence 1

x moves towards −∞. But in C, when z is
small, i.e. when |z| is small (and necessarily > 0), then the distance |1z | =

1
|z| of

1
z from 0 is large

and hence 1
z moves towards ∞ in Ĉ. So we define 1

0 = ∞ in Ĉ.

Example 1.3.1. Let us consider any polynomial function p(z) = anz
n+an−1z

n−1+· · ·+a1z+a0
with an ̸= 0. The domain of definition of p is C.
For every z0 ∈ C we have

limz→z0 p(z) = p(z0),

using the algebraic rules of limits and the trivial limits: limz→z0 c = c and limz→z0 z = z0.
Therefore, p is continuous in C.
If the degree of p is ≥ 1, i.e. n ≥ 1 and an ̸= 0, we write

p(z) = zn(an + an−1
1
z + · · ·+ a0

1
zn )

and we get
limz→∞ p(z) = ∞.

Thus, if the degree of p is≥ 1, we may define p(∞) = ∞ and then p : Ĉ → Ĉ is continuous in Ĉ.
If the degree of p is 0, then the function is constant: p(z) = a0 for all z. Hence

limz→∞ p(z) = a0.

In this case we may define p(∞) = a0 and again p : Ĉ → Ĉ is continuous in Ĉ.

Example 1.3.2. Now we take a rational function r(z) = p(z)
q(z) =

anzn+···+a1z+a0
bmzm+···+b1z+b0 with an, bm ̸= 0.

The domain of definition of r is C \ {z1, . . . , zs}, where z1, . . . , zs are the roots of q.
If z0 ∈ C and q(z0) ̸= 0, then using the algebraic rules of limits, we get:

limz→z0 r(z) = r(z0).
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Therefore r is continuous in its domain of definition.
Writing r in the form

r(z) = zn−m(an + an−1
1
z + · · ·+ a0

1
zn )

/
(bm + bm−1

1
z + · · ·+ b0

1
zm ),

we can prove that

limz→∞ r(z) =


∞, if n > m
an
bn
, if n = m

0, if n < m

Finally, let z0 ∈ C and q(z0) = 0, i.e. z0 is one of the roots q. Then z − z0 divides q(z), and
there is k ≥ 1 and a polynomial q1(z) so that q(z) = (z − z0)

kq1(z) and q1(z0) ̸= 0. This means
that the multiplicity of the root z0 of q(z) is k. There is also l ≥ 0 and a polynomial p1(z) so that
p(z) = (z − z0)

lp1(z) and p1(z0) ̸= 0. Indeed, if p(z0) = 0, then l ≥ 1 is the multiplicity of z0
as a root of p(z) and, if p(z0) ̸= 0, we take l = 0 (and we say that the multiplicity of z0 as a root
of p(z) is zero) and p1(z) = p(z). So for every z different from the roots of q(z) we have

r(z) = (z − z0)
l−k p1(z)

q1(z)

and p1(z0) ̸= 0, q1(z0) ̸= 0. Now p1(z0)
q1(z0)

is neither ∞ nor 0, and hence

limz→z0 r(z) =


∞, if k > l
p1(z0)
q1(z0)

, if k = l

0, if k < l

Exactly as in the polynomial case, a rational function can be considered to be a function r : Ĉ → Ĉ
continuous in Ĉ. Indeed, as we just saw above, at every z0 ∈ Ĉ a rational function r has a specific
limit in Ĉ. Now, if z0 is in the usual domain of definition of r, then the limit of r at z0 coincides
with r(z0). Moreover, if z0 is either ∞ or a root of the denominator of r, then we define r(z0) to
be the limit of r at z0.

Example 1.3.3. The sequence ((−2)n) does not have a limit as a real sequence since its subse-
quences of the odd and the even indices have the different limits −∞ and +∞. But as a complex
sequence ((−2)n) tends to ∞, because |(−2)n| = 2n → +∞.

Example 1.3.4. Let us consider the geometric progression (zn).
If |z| < 1, then |zn − 0| = |z|n → 0 and hence zn → 0.
If |z| > 1, then |zn| = |z|n → +∞ and hence zn → ∞.
If z = 1, then zn = 1 → 1.
Finally, let |z| = 1, z ̸= 1 and assume that zn → w. Since |zn| = |z|n = 1 for every n, we find
that |w| = 1. From zn → w we have z = zn+1

zn → w
w = 1 and we arrive at a contradiction.

Thus:

zn


→ 0, if |z| < 1

→ 1, if z = 1

→ ∞, if |z| > 1

has no limit, if |z| = 1, z ̸= 1

Exercises.

1.3.1. Prove that χ(z1, z2) ≤ 2 for every z1, z2 ∈ Ĉ. When does χ(z1, z2) = 2 happen?
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1.3.2. (i) Let l be any line in C. We define l̂ = l ∪ {∞} and call it line in Ĉ. We call circle in Ĉ
every circle inC. Prove that stereographic projection maps circles in Ĉ onto circles in S2 which do
not containN (and conversely) and lines in Ĉ onto circles in S2 which containN (and conversely).
(ii) Find the images in S2 through stereographic projection of the following subsets (or collections
of subsets) of Ĉ:
(a) {z | |z| < 1}, {z | |z| = 1}, {z | |z| > 1} ∪ {∞},
(b) {z | Re z > 0}, {z | Re z = 0}, {z | Re z < 0},
(c) the collection of lines containing a fixed point ̸= ∞,
(d) the collection of circles with a fixed center,
(e) the collection of lines parallel to a fixed line,
(f) the collection of circles tangent to a fixed circle at a fixed point,
(g) the collection of circles containing two fixed points.
(iii) Let z, w ∈ Ĉ and let A,B ∈ S2 be their images through stereographic projection. If z, w are
symmetric with respect to a line l̂ in Ĉ which contains 0, which is the relative position of A,B
with respect to the image of l̂ in S2? If w = 1

z , which is the relative position of A,B in S2?
(iv) Consider a set of the form P = {z ∈ Ĉ |χ(z, z0) = r}, where z0 ∈ Ĉ and r > 0, i.e. a
“circle” with respect to the chordal metric. If z0 = ∞, prove that P is a circle in Ĉ, i.e. in C, and
find its euclidean center and its euclidean radius. If z0 ∈ C, prove that P is either a circle in Ĉ,
i.e. in C -and in this case find its euclidean center and its euclidean radius- or a line in Ĉ.
(v) If the lines l̂1, l̂2 have angle θ at their common point z ∈ C, prove that their images through
stereographic projection, i.e. two circles in S2 containing the image A of z and the north pole N ,
have the same angle θ at both A and N .

1.3.3. LetΣ be a collection of unbounded and connected subsets ofC. Prove that (
∪
A∈ΣA)∪{∞}

is a connected subset of Ĉ.
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Chapter 2

Series and curvilinear integrals.

2.1 Series of numbers.

A series of complex numbers or, simply, complex series is an expression

z1 + z2 + · · ·+ zn + · · · or
∑+∞

n=1 zn.

If all zn are real, we talk about a series of real numbers or real series. The sn = z1+ · · ·+zn are
the partial sums of the series. We say that the series converges if the sequence (sn) converges
and then the limit s of (sn) is called sum of the series and we write

∑+∞
n=1 zn = s. We say that the

series diverges if (sn) diverges. If (sn) diverges to ∞, then we say that the series diverges to∞
and that ∞ is the sum of the series and we write

∑+∞
n=1 zn = ∞.

We note that the sum of a complex series can be either a complex number or ∞. Only a real
series can have sum equal to+∞ or−∞. Therefore, when we write

∑+∞
n=1 zn = +∞ or−∞, we

accept that all zn are real and that the series diverges to +∞ or −∞ as a real series. Of course, if
a real series diverges to +∞ or −∞, then as a complex series it diverges to∞.

Example 2.1.1.We have
∑+∞

n=1 c = 0, if c = 0, and
∑+∞

n=1 c = ∞, if c ̸= 0.

Example 2.1.2. To examine the geometric series
∑+∞

n=0 z
n, we use the formula 1+z+ · · ·+zn =

1−zn+1

1−z for its partial sums, and we find that its sum is

∑+∞
n=0 z

n


= 1

1−z , if |z| < 1

= ∞, if |z| > 1 or z = 1

does not exist, if |z| = 1, z ̸= 1

The usual simple algebraic rules, which hold for real series, hold also for complex series. We
mention them without proofs. The proofs in the complex case are identical with the proofs in the
real case.

Proposition 2.1. If
∑+∞

n=1 zn converges, then zn → 0.

Proposition 2.2. Provided that the right sides of the following formulas exist and that they are not
indeterminate forms, we have∑+∞

n=1(zn +wn) =
∑+∞

n=1 zn +
∑+∞

n=1wn,
∑+∞

n=1 λzn = λ
∑+∞

n=1 zn,
∑+∞

n=1 zn =
∑+∞

n=1 zn.

Moreover, if zn = xn + iyn, then
∑+∞

n=1 zn converges if and only if
∑+∞

n=1 xn and
∑+∞

n=1 yn
converge, and ∑+∞

n=1 zn =
∑+∞

n=1 xn + i
∑+∞

n=1 yn.

13



Regarding the comparison theorems, we may say that, since these are based on order relations
which can be expressed only between real numbers, when we write

∑+∞
n=1 zn ≤

∑+∞
n=1wn as a

consequence of zn ≤ wn, we accept that all zn, wn are real and then we just apply the well known
comparison theorems for real series.

Cauchy criterion. The series
∑+∞

n=1 zn converges if and only if for every ϵ > 0 there is n0 so that
|
∑n

k=m+1 zk| = |zm+1 + · · ·+ zn| < ϵ for everym,n with n > m ≥ n0.

Proof. Let sn = z1+ · · ·+zn. The series converges if and only if (sn) converges or, equivalently,
if and only if (sn) is a Cauchy sequence. That (sn) is a Cauchy sequence means that for every
ϵ > 0 there is n0 so that |zm+1+ · · ·+ zn| = |sn− sm| < ϵ for every n,m with n > m ≥ n0.

We say that
∑+∞

n=1 zn converges absolutely if the (real) series
∑+∞

n=1 |zn| converges, i.e. if∑+∞
n=1 |zn| < +∞.

Criterion of absolute convergence. If
∑+∞

n=1 zn converges absolutely, then it converges and we
have

|
∑+∞

n=1 zn| ≤
∑+∞

n=1 |zn| < +∞.

Proof. Let
∑+∞

n=1 |zn| converge and take any ϵ > 0. From the Cauchy criterion we have that there
is n0 so that |zm+1| + · · · + |zn| < ϵ and hence |zm+1 + · · · + zn| < ϵ for every m,n with
n > m ≥ n0. The Cauchy criterion, again, implies that

∑+∞
n=1 zn converges.

Now we take the partial sums sn = z1 + · · ·+ zn and Sn = |z1|+ · · ·+ |zn|. We have |sn| ≤ Sn
for all n and then we take the limit of this as n→ +∞.

Ratio test of d’ Alembert. Let zn ̸= 0 for all n.
(i) If lim

∣∣ zn+1

zn

∣∣ < 1, then
∑+∞

n=1 zn converges absolutely.
(ii) If lim

∣∣ zn+1

zn

∣∣ > 1, then
∑+∞

n=1 zn diverges.
(iii) If lim

∣∣ zn+1

zn

∣∣ ≤ 1 ≤ lim
∣∣ zn+1

zn

∣∣, then there is no general conclusion.

Proof. (i) Take a so that lim
∣∣ zn+1

zn

∣∣ < a < 1. Then there is n0 so that
∣∣ zn+1

zn
| ≤ a for every

n ≥ n0. Now, for every n ≥ n0 we get

|zn| =
∣∣ zn
zn−1

∣∣ ∣∣ zn−1

zn−2

∣∣ · · · ∣∣ zn0+1

zn0

∣∣ |zn0 | ≤ an−n0 |zn0 | = c an,

where c = |zn0 |/an0 . Since 0 ≤ a < 1, the geometric series
∑+∞

n=1 a
n converges and, by compar-

ison,
∑+∞

n=1 |zn| also converges.
(ii) There is n0 so that

∣∣ zn+1

zn

∣∣ ≥ 1 for every n ≥ n0. Now, for every n ≥ n0 we have

|zn| ≥ |zn−1| ≥ · · · ≥ |zn0 | > 0.

This implies that zn ̸→ 0 and so
∑+∞

n=1 zn diverges.
(iii) For the series

∑+∞
n=1

1
n and

∑+∞
n=1

1
n2 we have that

∣∣1/(n+1)
1/n

∣∣ → 1 and
∣∣1/(n+1)2

1/n2

∣∣ → 1. The
first series diverges and the second converges.

Root test of Cauchy. (i) If lim n
√

|zn| < 1, then
∑+∞

n=1 zn converges absolutely.
(ii) If lim n

√
|zn| > 1, then

∑+∞
n=1 zn diverges.

(iii) If lim n
√

|zn| = 1, then there is no general conclusion.

Proof. (i) We consider any a such that lim n
√

|zn| < a < 1. Then there is n0 so that n
√

|zn| ≤ a
and hence |zn| ≤ an for every n ≥ n0. Since 0 ≤ a < 1, the geometric series

∑+∞
n=1 a

n converges
and, by comparison,

∑+∞
n=1 |zn| also converges.

(ii) We have n
√

|zn| ≥ 1 for infinitely many n. Therefore, |zn| ≥ 1 for infinitely many n and
hence zn ̸→ 0. Thus,

∑+∞
n=1 zn diverges.

(iii) For the series
∑+∞

n=1
1
n and

∑+∞
n=1

1
n2 we have n

√
|1/n| → 1 and n

√
|1/n2| → 1. The first

series diverges and the second converges.
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Applying the ratio test and the root test to specific series
∑+∞

n=1 zn, we find very often that the
limits limn→+∞

∣∣ zn+1

zn

∣∣ and limn→+∞
n
√

|zn| exist. We know (and we used it in the proofs of parts
(iii) of both tests) that in this case: lim = lim = lim.

Example 2.1.3. To the series
∑+∞

n=1
zn

n! we apply the ratio test. If z = 0, the series obviously
converges absolutely. If z ̸= 0, then

∣∣ zn+1/(n+1)!
zn/n!

∣∣ = |z|/(n + 1) → 0 < 1 and so the series
converges absolutely for every z.
Now we apply the root test. We have n

√
|zn/n!| = |z|/ n

√
n! → 0 < 1 and we arrive at the same

conclusion as before.

Example 2.1.4.We consider
∑+∞

n=1
zn

n2 and we apply the ratio test. If z = 0, the series obviously
converges absolutely. If z ̸= 0, then

∣∣ zn+1/(n+1)2

zn/n2

∣∣ → |z|. Hence, if 0 < |z| < 1, the series
converges absolutely and, if |z| > 1, the series diverges.
Now we apply the root test. We have n

√
|zn/n2| → |z|. Therefore, if |z| < 1, the series converges

absolutely and, if |z| > 1, the series diverges.
If |z| = 1, none of the two tests applies. But we observe that

∑+∞
n=1

∣∣ zn
n2

∣∣ = ∑+∞
n=1

1
n2 < +∞ in

this case, and
∑+∞

n=1
zn

n2 converges absolutely.
Conclusion:

∑+∞
n=1

zn

n2 converges absolutely if |z| ≤ 1, and diverges if |z| > 1.

Lemma 2.1. Let (an), (zn) be two sequences and let sn = z1 + · · ·+ zn for every n. Then∑n
k=m+1 akzk =

∑n
k=m+1(ak − ak+1)sk + an+1sn − am+1sm

for every n,m with n > m. This is the summation by parts formula due to Abel.

Proof. We have∑n
k=m+1 akzk =

∑n
k=m+1 ak(sk − sk−1) =

∑n
k=m+1 aksk −

∑n−1
k=m ak+1sk

=
∑n

k=m+1(ak − ak+1)sk + an+1sn − am+1sm

and the proof is complete.

Dirichlet test. Let (an), (zn) be two sequences and let sn = z1 + · · ·+ zn for every n. If (an) is
real and decreasing and an → 0 and if (sn) is bounded, then

∑+∞
n=1 anzn converges.

Proof. There isM so that |sn| ≤ M for every n. Now, let ϵ > 0. Since an → 0, there is n0 so
that 0 ≤ an <

ϵ
2M+1 for every n ≥ n0. Then lemma 2.1 implies that, if n0 ≤ m < n,∣∣∑n

k=m+1 akzk
∣∣ ≤ ∑n

k=m+1(ak − ak+1)|sk|+ an+1|sn|+ am+1|sm|
≤

∑n
k=m+1(ak − ak+1)M + an+1M + am+1M = 2am+1M < ϵ.

The criterion of Cauchy implies that
∑+∞

n=1 anzn converges.

Abel test. Let (an), (zn) be two sequences and let sn = z1 + · · · + zn for every n. If (an) is
real and decreasing and bounded below and if (sn) converges, i.e. if

∑+∞
n=1 zn converges, then∑+∞

n=1 anzn converges.

Proof. Since (an) is real and decreasing and bounded below, there is a so that an → a. We
set a′n = an − a and then (a′n) is real and decreasing and a′n → 0. We also have that (sn) is
bounded and so Dirichlet test implies that the series

∑+∞
n=1 a

′
nzn converges. Now, since

∑+∞
n=1 zn

also converges, we find that∑+∞
n=1 anzn =

∑+∞
n=1 a

′
nzn + a

∑+∞
n=1 zn

and hence
∑+∞

n=1 anzn converges.
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Example 2.1.5. If (an) is real and decreasing and an → 0, then
∑+∞

n=0 anz
n converges for every

z with |z| ≤ 1, z ̸= 1.
Indeed, for the partial sums sn = 1+ z + z2 + · · ·+ zn we have |sn| = |1−zn+1|

|1−z| ≤ 2
|1−z| and the

Dirichlet test implies the convergence of
∑+∞

n=0 anz
n.

Example 2.1.6.We consider
∑+∞

n=1
zn

n . As in example 2.1.4, the application of either the ratio
test or the root test gives that the series converges absolutely if |z| < 1, and diverges if |z| > 1.
If |z| = 1, none of the two tests applies. If z = 1, the series becomes

∑+∞
n=1

1
n and diverges. If

|z| = 1, z ̸= 1, then
∑+∞

n=1

∣∣ zn
n

∣∣ = ∑+∞
n=1

1
n = +∞, and

∑+∞
n=1

zn

n does not converge absolutely.
But the series is a particular instance of the series in the previous example and hence converges if
|z| = 1, z ̸= 1. In general, when a series is convergent but not absolutely convergent we say that
it is conditionally convergent.
Conclusion:

∑+∞
n=1

zn

n converges absolutely if |z| < 1, diverges if |z| > 1 or z = 1, and converges
conditionally if |z| = 1, z ̸= 1.

Let
∑+∞

n=0 an and
∑+∞

n=0 bn be two series. If cn = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0 for
every n ≥ 0, then the series∑+∞

n=0 cn =
∑+∞

n=0(a0bn + a1bn−1 + · · ·+ an−1b1 + anb0)

is called Cauchy product of the two series.

Proposition 2.3. If one of the series
∑+∞

n=0 an and
∑+∞

n=0 bn converges and the other converges
absolutely, then their Cauchy product

∑+∞
n=0 cn converges. Moreover, we have∑+∞

n=0 cn =
∑+∞

n=0 an
∑+∞

n=0 bn

for the sums of the three series.
If both

∑+∞
n=0 an and

∑+∞
n=0 bn converge absolutely, then their Cauchy product

∑+∞
n=0 cn converges

absolutely.

Proof. First assume that both series converge absolutely. We have

|cn| ≤ |a0||bn|+ |a1||bn−1|+ · · ·+ |an−1||b1|+ |an||b0|.

Hence, if S =
∑+∞

n=0 |an| < +∞ and T =
∑+∞

n=0 |bn| < +∞, then∑N
n=0 |cn| ≤

∑N
n=0

(∑n
k=0 |ak||bn−k|

)
=

∑N
k=0 |ak|

(∑N
n=k |bn−k|

)
≤

∑N
k=0 |ak|T ≤ ST

for every N . Thus,
∑+∞

n=0 |cn| ≤ ST < +∞ and so
∑+∞

n=0 cn converges absolutely.
Now, assume that

∑+∞
n=0 an converges absolutely, i.e. S =

∑+∞
n=0 |an| < +∞, and that

∑+∞
n=0 bn

converges and let
s =

∑+∞
n=0 an, t =

∑+∞
n=0 bn.

Moreover, let sn = a0 + · · ·+ an, tn = b0 + · · ·+ bn and un = c0 + · · ·+ cn be the partial sums
of the three series and also Sn = |a0|+ · · ·+ |an|. Then

uN =
∑N

n=0 cn =
∑N

n=0

(∑n
k=0 akbn−k

)
=

∑N
k=0 ak

(∑N
n=k bn−k

)
=

∑N
k=0 ak

(∑N−k
m=0 bm

)
=

∑N
k=0 aktN−k

and hence
sN tN − uN =

∑N
k=0 ak(tN − tN−k).

We take p = [N/2] and we get

sN tN − uN =
∑p

k=0 ak(tN − tN−k) +
∑N

k=p+1 ak(tN − tN−k). (2.1)
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If 0 ≤ k ≤ p, then N − k ≥ N − p ≥ p and hence

|tN − tN−k| ≤ supm,n≥p |tm − tn|. (2.2)

If p+ 1 ≤ k ≤ N , then

|tN − tN−k| ≤ |tN |+ |tN−k| ≤ 2 supm≥1 |tm| < +∞. (2.3)

Now, (2.1), (2.2) and (2.3) imply

|sN tN − uN | ≤
∑p

k=0 |ak||tN − tN−k|+
∑N

k=p+1 |ak||tN − tN−k|

≤ supm,n≥p |tm − tn|
∑p

k=0 |ak|+ 2 supm≥1 |tm|
∑N

k=p+1 |ak|
≤ supm,n≥p |tm − tn|S + 2 supm≥1 |tm| (S − Sp).

Now, N → +∞ implies p → +∞. Hence Sp → S and supm,n≥p |tm − tn| → 0 by the Cauchy
criterion for the convergent sequence (tn). Therefore, sN tN −uN → 0 whenN → +∞. We also
have that sN → s and tN → t and we conclude that uN → st.

Exercises.

2.1.1.Which of the following series converge?∑+∞
n=1(

1
n +

i
n2 ),

∑+∞
n=1(

n
2n + i

n3 ),
∑+∞

n=1
1+in

n2 ,
∑+∞

n=1
1

2+in ,
∑+∞

n=1
1
n+i ,

∑+∞
n=1

1
n2+in

.

2.1.2. Find the sum of the series
∑+∞

n=1 n(−1)n−1 if we consider it as a complex series and also if
we consider it as a real series.

2.1.3. (i) Apply the ratio test whenever possible:∑+∞
n=1 n

3in,
∑+∞

n=1
n!
in ,

∑+∞
n=1

(1+i)n

n! ,
∑+∞

n=1
(2i)nn!
nn ,

∑+∞
n=1

(2+i)nn!
nn ,∑+∞

n=1
enn!
nn ,

∑+∞
n=1

(n!)2

(2n)! ,
∑+∞

n=1
(4i)n(n!)2

(2n)! ,
∑+∞

n=1
(3+i)(6+i)(9+i)···(3n+i)

(3+4i)(3+8i)(3+12i)···(3+4ni) .

(ii) Apply the root test whenever possible:∑+∞
n=1 n

nin,
∑+∞

n=1(
n+i
2n−i)

n,
∑+∞

n=1(
n+i
n−i)

2n,
∑+∞

n=1
n3

(1+2i)n ,∑+∞
n=1 n

3(1− i)n,
∑+∞

n=1
(2+3i)n

nn ,
∑+∞

n=1
n+i

( n
√
n+i)n

.

2.1.4. If
∑+∞

n=1 |zn| < +∞, prove that
∑+∞

n=1 zn(cosnθ + i sinnθ) converges.

2.1.5. Let zn = xn + iyn for all n. Prove that
∑+∞

n=1 zn converges absolutely if and only if∑+∞
n=1 xn,

∑+∞
n=1 yn converge absolutely.

2.1.6. Let |an|rn ≤Mnk for all n. Prove that
∑+∞

n=1 anz
n converges for every z with |z| < r.

2.1.7. Find all z for which
∑+∞

n=1
zn

2+zn converges.

2.1.8. Let |Arg zn| ≤ θ0 <
π
2 for everyn. Prove that

∑+∞
n=1 zn converges if and only if it converges

absolutely. Prove that
∑+∞

n=1 zn = ∞ if and only if
∑+∞

n=1 |zn| = +∞.

2.1.9. Find a series
∑+∞

n=1 zn which converges and is such that
∑+∞

n=1 z
2
n diverges.

2.1.10. Check for every z the conditional convergence and the absolute convergence of the series:∑+∞
n=1

zn

n ,
∑+∞

n=2
zn

n logn ,
∑+∞

n=2
zn

n log2 n ,
∑+∞

n=1 z
n sin 1

n ,
∑+∞

n=1 z
n(1− cos 1

n).
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2.1.11. For each a > 0 find all z for which the series
∑+∞

n=1
zn

na converges.

2.1.12. (i) Let sn = z1 + · · · + zn for all n. If (an+1sn) converges and if
∑+∞

n=1(an − an+1)sn
converges, prove that

∑+∞
n=1 anzn converges. In particular: if (sn) is bounded, if an → 0 and if∑+∞

n=1 |an − an+1| < +∞, prove that
∑+∞

n=1 anzn converges.
What is the relation of all these with the tests of Dirichlet and Abel?
(ii) If the sequence (an) satisfies

∑+∞
n=1 |an+1−an| < +∞, we say that it is of bounded variation.

Prove that every sequence of bounded variation converges.
Prove that the set of all sequences of bounded variation is a linear space (over C).
Prove that every real sequence which is monotone and bounded is of bounded variation.
For every a ∈ R we define a+ = (|a|+ a)/2 and a− = (|a| − a)/2. Observe that 0 ≤ a+ ≤ |a|,
0 ≤ a− ≤ |a|, |a| = a+ + a− and a = a+ − a−.
If (an) is a real sequence, then

∑+∞
n=1 |an+1 − an| < +∞ implies

∑+∞
n=1(an+1 − an)+ < +∞

and
∑+∞

n=1(an+1 − an)− < +∞. Using this, prove that every real sequence of bounded variation
with limit 0 is the difference of two decreasing sequences with limit 0.

2.1.13. Prove that the series
∑+∞

n=1
(−1)n−1

√
n

converges but that the Cauchy product of this series
with itself does not converge.

2.2 Curvilinear integrals.

We shall first extend the notion of integral of a real function over an interval to the notion of
integral of a complex function over an interval.

Let f be a complex function defined in the interval [a, b] and let u = Re f and v = Im f be the
real and imaginary parts of f . We say that f is (Riemann) integrable over [a, b] if u, v are both
(Riemann) integrable over [a, b] and in this case we define the (Riemann) integral of f over [a, b]
to be ∫ b

a f(t) dt =
∫ b
a u(t) dt+ i

∫ b
a v(t) dt. (2.4)

Since the numbers
∫ b
a u(t) dt and

∫ b
a v(t) dt are real, we see that

Re
∫ b
a f(t) dt =

∫ b
a Re f(t) dt, Im

∫ b
a f(t) dt =

∫ b
a Im f(t) dt.

Now let us take any subdivision∆ = {t0, . . . , tn} of [a, b] and any choice Ξ = {ξ1, . . . , ξn} of
intermediate points ξk ∈ [tk−1, tk] and the corresponding Riemann sum

∑n
k=1 f(ξk)(tk − tk−1).

If w(∆) = max1≤k≤n(tk − tk−1) is the width of the subdivision ∆, then we know that

limw(∆)→0

∑n
k=1 u(ξk)(tk − tk−1) =

∫ b
a u(t) dt

limw(∆)→0

∑n
k=1 v(ξk)(tk − tk−1) =

∫ b
a v(t) dt.

Multiplying the second relation with i, adding and using (2.4), we find

limw(∆)→0

∑n
k=1 f(ξk)(tk − tk−1) =

∫ b
a f(t) dt.

Example 2.2.1. If f is piecewise continuous in [a, b], then u = Re f and v = Im f are also
piecewise continuous in [a, b]. Hence u, v are integrable, and so f is also integrable over [a, b].

The following propositions are analogous to similar well known propositions about integrals of
real functions and can be proved easily by the reader. One should decompose every complex func-
tion into its real and imaginary parts and use the analogous properties for real functions together
with (2.4).
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Proposition 2.4. Let f1, f2 be integrable over [a, b] and λ1, λ2 ∈ C. Then λ1f1+λ2f2 is integrable
over [a, b] and ∫ b

a (λ1f1(t) + λ2f2(t)) dt = λ1
∫ b
a f1(t) dt+ λ2

∫ b
a f2(t) dt.

Proposition 2.5. Let a < b < c. If f is integrable over [a, b] and over [b, c], then f is integrable
over [a, c] and ∫ c

a f(t) dt =
∫ b
a f(t) dt+

∫ c
b f(t) dt.

Proposition 2.6. If f1, f2 are integrable over [a, b], then f1f2 is integrable over [a, b].

The proof of the next proposition is not entirely trivial.

Proposition 2.7. If f is integrable over [a, b], then |f | is integrable over [a, b] and∣∣ ∫ b
a f(t) dt

∣∣ ≤ ∫ b
a |f(t)| dt.

Proof. Let u = Re f , v = Im f . Then u, v are integrable over [a, b] hence |f | =
√
u2 + v2 is

integrable over [a, b]. Now we have two cases.
If
∫ b
a f(t) dt = 0, then |

∫ b
a f(t) dt| ≤

∫ b
a |f(t)| dt is clearly true.

If
∫ b
a f(t) dt ̸= 0, then we take any element θ of the argument of the number

∫ b
a f(t) dt and we set

z = cos θ + i sin θ. Now, ∣∣ ∫ b
a f(t) dt

∣∣ = z
∫ b
a f(t) dt =

∫ b
a (z f(t)) dt.

The left side of this equality is real and hence its right side is also real and thus equal to its real
part! Hence∣∣ ∫ b

a f(t) dt
∣∣ = Re

∫ b
a (z f(t)) dt =

∫ b
a Re(z f(t)) dt ≤

∫ b
a |z f(t)| dt =

∫ b
a |f(t)| dt

since Re(z f(t)) ≤ |z f(t)| for every t ∈ [a, b].

We recall that every continuous complex function γ : [a, b] → C, where [a, b] is any interval,
is called curve in the complex plane.

The set of the values of a curve γ, i.e. the set γ∗ = {γ(t) | t ∈ [a, b]} ⊆ C is the trajectory of
the curve and it is a compact and connected subset ofC, since γ is continuous and [a, b] is compact
and connected. The points γ(a) and γ(b) are the endpoints, the initial and the final endpoint,
respectively, of the curve.

The variable t ∈ [a, b] is the parameter and [a, b] is the parametric interval of the curve. When
the parameter t increases in [a, b], the variable point γ(t) moves on the trajectory γ∗ in a definite
direction (from the initial to the final endpoint) which is the so-called direction of the curve. To
be more precise, the sense of direction is understood as follows: if a ≤ t1 < t2 ≤ b, then we say
that γ(t1) is before γ(t2) and that γ(t2) is after γ(t1) in the trajectory.

Finally,
z = γ(t), t ∈ [a, b],

is the so-called parametric equation of the curve γ.
If the endpoints of the curve γ coincide, i.e. γ(a) = γ(b), then we say that the curve is closed.
If γ(t) ∈ A for all t ∈ [a, b], i.e. if γ∗ ⊆ A, then we say that the curve is in A.
The term curve for the continuous function γ is justified by the fact that the shape of its trajec-

tory γ∗ is, usually, what in everyday language we call curve in the plane. Sometimes we use the
term curve for the trajectory γ∗ even though this is not typically correct. The reason is that there
are cases of different curves γ1, γ2 with the same trajectory γ∗1 = γ∗2 .
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Example 2.2.2. If z0, z1 ∈ C, then the parametric equation

z = γ(t) = t−a
b−az1 +

b−t
b−az0, t ∈ [a, b],

defines a curve γ whose trajectory γ∗ is the linear segment [z0, z1]. Its initial and final endpoints
are z0 and z1, respectively, and its direction is from z0 to z1. The same linear segment [z0, z1] is
the trajectory of another curve γ with parametric equation

z = γ(t) = tz1 + (1− t)z0, t ∈ [0, 1].

Example 2.2.3. If r > 0, then the parametric equation

z = γ(t) = z0 + r(cos t+ i sin t), t ∈ [0, 2π],

defines a closed curve γ whose trajectory γ∗ is the circle Cz0(r). The direction of this curve is the
so-called positive direction of rotation around z0: the counterclockwise rotation.
If we consider the curve γ with parametric equation z = γ(t) = z0 + r(cos(2t) + i sin(2t)),
t ∈ [0, 2π], then we get a different curve. But the trajectories of the two curves coincide: the circle
Cz0(r). The direction of the two curves is the same: the positive direction of rotation around z0.
But the first curve goes around z0 only once, while the second curve goes around z0 twice.

Let γ : [a, b] → C be a curve and let x = Re γ and y = Im γ be the real and imaginary parts
of γ, i.e. γ(t) = x(t) + iy(t) = (x(t), y(t)) for t ∈ [a, b]. If γ is differentiable at t0 ∈ [a, b]
or, equivalently, if x, y are differentiable at t0, then γ′(t0) = x′(t0) + iy′(t0) = (x′(t0), y

′(t0))
is the tangent vector of the trajectory γ∗ at its point γ(t0). If γ′(t0) ̸= 0, then the vector γ′(t0)
determines the tangent line of the trajectory γ∗ at its point γ(t0) and the direction of γ′(t0) is the
same as the direction of the curve. Strictly speaking, at its endpoints, γ(a), γ(b), the curve can
only have tangent halflines; not tangent lines. If t0 = a and γ′(a) ̸= 0, then the vector γ′(a)
determines the tangent halfline of the trajectory at the endpoint γ(a) with direction coinciding
with the direction of the curve. If t0 = b and γ′(b) ̸= 0, then the vector −γ′(b) determines the
tangent halfline of the trajectory at the endpoint γ(b) with direction opposite to the direction of the
curve. If at some t0 ∈ (a, b) the one-sided derivatives γ′−(t0) ̸= 0 and γ′+(t0) ̸= 0 exist but they
are not equal, then the tangent halflines of the trajectory at its point γ(t0) may not be opposite and
so there may be no tangent line of the trajectory at this point: one of the halflines is determined by
γ′+(t0) and the other by −γ′−(t0).

We know that, if the curve γ : [a, b] → C is continuously differentiable or smooth, i.e. if
γ′ : [a, b] → C is continuous in [a, b], then the length of the curve, denoted l(γ), is equal to

l(γ) =
∫ b
a |γ

′(t)| dt. (2.5)

Example 2.2.4. The curve γ with parametric equation z = γ(t) = b−t
b−az0 +

t−a
b−az1, t ∈ [a, b], has

length
l(γ) =

∫ b
a |γ

′(t)| dt =
∫ b
a

∣∣ z1−z0
b−a

∣∣ dt = ∣∣ z1−z0
b−a

∣∣ ∫ b
a dt = |z1 − z0|.

Example 2.2.5. If r > 0 the curve γ with parametric equation z = γ(t) = z0 + r(cos t+ i sin t),
t ∈ [0, 2π], has length

l(γ) =
∫ b
a |γ

′(t)| dt =
∫ 2π
0 |r(− sin t+ i cos t)| dt =

∫ 2π
0 r dt = 2πr.

The same formula (2.5) gives the length of the curve γ if this is piecewise continuously differ-
entiable or piecewise smooth, i.e. when there is a subdivision a = t0 < t1 < . . . < tn−1 < tn = b
of the parametric interval [a, b] so that the restriction of γ in every [tk−1, tk] is continuously dif-
ferentiable. (Strictly speaking, at the division points tk the derivative of γ may not exist; the two
one-sided derivatives should exist and be finite at these points.)
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Now let γ1 : [a, b] → C be a curve. We consider any σ : [c, d] → [a, b] which is one-to-one
in the interval [c, d] and onto [a, b], has continuous derivative in [c, d] and has σ′(s) > 0 for every
s ∈ [c, d]. Thus, σ is strictly increasing in [c, d] and σ(c) = a, σ(d) = b. Every such σ is called
change of parameter. Then γ2 = γ1 ◦ σ : [c, d] → C is continuous in [c, d] and hence it is a
new curve. We say that γ2 is a reparametrization of γ1: the parameter of γ1 is t ∈ [a, b] and the
parameter of γ2 is s ∈ [c, d]. The curves γ1, γ2 have the same trajectory, the same endpoints and
the same direction. Since σ′ is continuous and> 0, the two curves are simultaneously (piecewise)
smooth and, in this case, their lengths are equal:

l(γ2) =
∫ d
c |γ′2(s)| ds =

∫ d
c |γ′1(σ(s))||σ′(s)| ds =

∫ d
c |γ′1(σ(s))|σ′(s) ds

=
∫ b
a |γ

′
1(t)| dt = l(γ1).

We may define the following relation between curves: γ1 ∼ γ2 if γ2 is a reparametrization of
γ1. It is not difficult to prove that this relation between curves is an equivalence relation, i.e. it
satisfies the following three properties:
(i) γ ∼ γ.
(ii) γ1 ∼ γ2 ⇒ γ2 ∼ γ1.
(iii) γ1 ∼ γ2, γ2 ∼ γ3 ⇒ γ1 ∼ γ3.
Indeed: (i) Let γ : [a, b] → C be any curve. We consider the change of parameter id : [a, b] →
[a, b], defined by id(t) = t, and then γ = γ ◦ id : [a, b] → C. Thus, γ ∼ γ. (ii) Let γ1 ∼ γ2.
Then γ2 = γ1 ◦ σ where σ : [c, d] → [a, b] is a change of parameter. But then σ−1 : [a, b] → [c, d]
is also a change of parameter and γ1 = γ2 ◦ σ−1. Therefore γ2 ∼ γ1. (iii) Let γ1 ∼ γ2 and
γ2 ∼ γ3. Then γ2 = γ1 ◦ σ and γ3 = γ2 ◦ τ , where σ : [c, d] → [a, b] and τ : [e, f ] → [c, d]
are changes of parameter. But then χ = σ ◦ τ : [e, f ] → [a, b] is a change of parameter and
γ3 = γ2 ◦ τ = (γ1 ◦ σ) ◦ τ = γ1 ◦ χ. Therefore γ1 ∼ γ3.

It is of some value to note that if we have a curve γ with parametric interval [a, b] and if
we are given an arbitrary interval [c, d], then there is a reparametrization of γ with parametric
interval [c, d] instead of [a, b]. We can do this if we can find an appropriate change of parameter
σ : [c, d] → [a, b]. There are many such σ, but a simple one is

t = σ(s) = d−s
d−c a+

s−c
d−c b, s ∈ [c, d].

Therefore, if for some reason (and we shall presently see that there is such a reason) we do not
want to distinguish between curves which are reparametrizations of each other, then the parametric
interval of a curve is of no particular importance: we may consider a reparametrization of a given
curve changing the given parametric interval to any other which we might prefer.

For every curve γ : [a, b] → C we consider the curve ¬ γ : [a, b] → C given by

(¬ γ)(t) = γ(a+ b− t), t ∈ [a, b].

Then ¬ γ is called opposite of γ. The curves γ and ¬ γ have the same trajectory but opposite
directions. Also, the two curves are simultaneously (piecewise) smooth and, in this case, their
lengths are equal:

l(¬ γ) =
∫ b
a |(¬ γ)

′(t)| dt =
∫ b
a |γ

′(a+ b− t)| dt = −
∫ a
b |γ′(s)| ds =

∫ b
a |γ

′(s)| ds = l(γ).

If the curves γ1 : [a, b] → C and γ2 : [b, c] → C have γ1(b) = γ2(b), then we say that γ1, γ2
(in this order) are successive and then we may define the curve γ1

·
+ γ2 : [a, c] → C by

(γ1
·
+ γ2)(t) =

{
γ1(t), if a ≤ t ≤ b

γ2(t), if b ≤ t ≤ c

The curve γ1
·
+ γ2 is called sum of γ1 and γ2. If γ1 and γ2 are (piecewise) smooth, γ1

·
+ γ2 is also

piecewise smooth. The trajectory (γ1
·
+ γ2)

∗ is the union of the trajectories γ∗1 and γ∗2 .
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Of course, the sum of two curves can be generalized to the sum of more than two curves
provided that these are successive.

Example 2.2.6. Every polygonal line can be considered as the trajectory of a piecewise smooth
curve. This curve is the sum of successive curves each of which has as its trajectory a corresponding
linear segment of the polygonal line.

Through the operation of summation of successive curves, we may consider successive curves
as one curve and, conversely, we may consider one curve as a sum of successive curves.

The length of the sum of successive piecewise smooth curves equals the sum of their lengths:

l(γ1
·
+ γ2) =

∫ c
a |(γ1

·
+ γ2)

′(t)|dt =
∫ b
a |(γ1

·
+ γ2)

′(t)|dt+
∫ c
b |(γ1

·
+ γ2)

′(t)|dt

=
∫ b
a |γ

′
1(t)|dt+

∫ c
b |γ

′
2(t)|dt = l(γ1) + l(γ2).

Now we shall extend the notion of integral of a complex function over an interval to the notion
of integral of a complex function over a curve. Let γ : [a, b] → C be a piecewise smooth curve and
let f : γ∗ → C be continuous in the trajectory γ∗ = {γ(t) | t ∈ [a, b]}. Then f ◦ γ : [a, b] → C
is continuous in [a, b]. Thus, (f ◦ γ)γ′ is piecewise continuous in [a, b] and hence integrable over
[a, b]. We define the curvilinear integral of f over γ by∫

γ f(z) dz =
∫ b
a (f ◦ γ)(t)γ′(t) dt =

∫ b
a f(γ(t))γ

′(t) dt.

We shall usually write ∮
γ f(z) dz

when γ is closed.
We remark that whenever a curve γ is mentioned with respect either to its length l(γ) or to a

curvilinear integral of a function over γ we shall always assume that γ is piecewise smooth.

Example 2.2.7. Let γ be the curve with parametric equation z = γ(t) = (1− t)z0+ tz1, t ∈ [0, 1].
The trajectory of γ is the linear segment [z0, z1] having direction from z0 to z1. If f is continuous
in [z0, z1], then the curvilinear integral

∫
γ f(z) dz is denoted

∫
[z0,z1]

f(z) dz. I.e.∫
[z0,z1]

f(z) dz =
∫
γ f(z) dz = (z1 − z0)

∫ 1
0 f((1− t)z0 + tz1) dt.

This is the curvilinear integral of f over the linear segment [z0, z1] from z0 to z1.

Example 2.2.8. Let r > 0 and γ be the curve with parametric equation z = γ(t) = z0 + r(cos t+
i sin t), t ∈ [0, 2π]. The trajectory of γ is the circle Cz0(r) with the positive direction of rotation
around z0. If f is continuous in the circleCz0(r), then the curvilinear integral

∮
γ f(z) dz is denoted∮

Cz0 (r)
f(z) dz. I.e.∮
Cz0 (r)

f(z) dz =
∮
γ f(z) dz =

∫ 2π
0 f

(
z0 + r(cos t+ i sin t)

)
r(− sin t+ i cos t) dt.

This is the curvilinear integral of f over the circle Cz0(r) with the positive direction of rotation.

An important concrete instance of the previous example is the following.

Example 2.2.9. If n ∈ Z, we know that
∫ 2π
0 sin(nt) dt = 0. Also,

∫ 2π
0 cos(nt) dt = 2π, if n = 0,

and
∫ 2π
0 cos(nt) dt = 0, if n ̸= 0. Therefore, if n ∈ Z, we get∮

Cz0(r)
(z − z0)

n dz =
∫ 2π
0 rn(cos t+ i sin t)nr(− sin t+ i cos t) dt

= irn+1
∫ 2π
0 (cos t+ i sin t)n(cos t+ i sin t) dt

= irn+1
∫ 2π
0

(
cos((n+ 1)t) + i sin((n+ 1)t)

)
dt

=

{
2πi, if n = −1

0, if n ̸= −1

22



The following propositions are easy to prove.

Proposition 2.8. If γ is a piecewise smooth curve, f1, f2 are continuous in γ∗ and λ1, λ2 ∈ C,
then ∫

γ(λ1f1(z) + λ2f2(z)) dz = λ1
∫
γ f1(z) dz + λ2

∫
γ f2(z) dz.

Proof. An application of proposition 2.4 and of the definition of the curvilinear integral.

We recall the notation for the uniform norm in A

∥f∥A = supa∈A |f(a)| = sup{|f(a)| | a ∈ A}

of a bounded complex function f : A→ C defined in a nonempty set A.

Proposition 2.9. If γ is a piecewise smooth curve and f is continuous in γ∗, then∣∣ ∫
γ f(z) dz

∣∣ ≤ supz∈γ∗ |f(z)|l(γ) = ∥f∥γ∗ l(γ).

Proof. If γ : [a, b] → C, then∣∣ ∫
γ f(z) dz

∣∣ = ∣∣ ∫ b
a f(γ(t))γ

′(t) dt
∣∣ ≤ ∫ b

a |f(γ(t))||γ
′(t)| dt ≤ supz∈γ∗ |f(z)|

∫ b
a |γ

′(t)| dt

= supz∈γ∗ |f(z)|l(γ) = ∥f∥γ∗ l(γ).

The first inequality uses proposition 2.7.

Proposition 2.10. If γ is a piecewise smooth curve, fn, ϕ are continuous in γ∗ and fn → f uni-
formly in γ∗, then ∫

γ fn(z)ϕ(z) dz →
∫
γ f(z)ϕ(z) dz.

Proof. Because of uniform convergence, f is continuous in γ∗. Therefore, the existence of the
integrals

∫
γ fn(z)ϕ(z) dz and

∫
γ f(z)ϕ(z) dz is assured. Now, proposition 2.9 implies∣∣ ∫

γ fn(z)ϕ(z) dz−
∫
γ f(z)ϕ(z) dz

∣∣ = ∣∣ ∫
γ(fn(z)− f(z))ϕ(z) dz

∣∣
≤ ∥(fn − f)ϕ∥γ∗ l(γ) ≤ ∥fn − f∥γ∗∥ϕ∥γ∗ l(γ).

Since ∥fn − f∥γ∗ → 0, we get that
∫
γ fn(z)ϕ(z) dz →

∫
γ f(z)ϕ(z) dz.

We may rewrite the result of proposition 2.10 in the form

limn→+∞
∫
γ fn(z)ϕ(z) dz =

∫
γ limn→+∞ fn(z)ϕ(z) dz

of an interchange between the symbols limn→+∞ and
∫
γ . This interchange under the assumption

of uniform convergence is the content of proposition 2.10.

Proposition 2.11. If γ is a piecewise smooth curve, fn, ϕ are continuous in γ∗ and
∑+∞

n=1 fn = s
uniformly in γ∗, then ∑+∞

n=1

∫
γ fn(z)ϕ(z) dz =

∫
γ s(z)ϕ(z) dz.

Proof. We consider the partial sums sn = f1 + · · · + fn and we apply proposition 2.10 to them.
Then∑n

k=1

∫
γ fk(z)ϕ(z) dz =

∫
γ

∑n
k=1 fk(z)ϕ(z) dz =

∫
γ sn(z)ϕ(z) dz →

∫
γ s(z)ϕ(z) dz.

I.e. the series (of numbers)
∑+∞

n=1

∫
γ fn(z)ϕ(z) dz converges to (the number)

∫
γ s(z)ϕ(z) dz.
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As in the case of proposition 2.10, we may rewrite the result of proposition 2.11 in the form∑+∞
n=1

∫
γ fn(z)ϕ(z) dz =

∫
γ

∑+∞
n=1 fn(z)ϕ(z) dz,

since
∑+∞

n=1 fn(z) = s(z) for every z ∈ γ∗. Again, this interchange between the symbols
∑+∞

n=1

and
∫
γ under the assumption of uniform convergence is the content of proposition 2.11.

Proposition 2.12. If each of the piecewise smooth curves γ1, γ2 is a reparametrization of the other
and f is continuous in γ∗1 = γ∗2 , then∫

γ2
f(z) dz =

∫
γ1
f(z) dz.

Proof. If γ1 : [a, b] → C and γ2 : [c, d] → C, then there is a change of parameter σ : [c, d] → [a, b]
so that γ2(s) = γ1(σ(s)) for all s ∈ [c, d]. Then∫

γ2
f(z) dz =

∫ d
c f(γ2(s))γ

′
2(s) ds =

∫ d
c f(γ1(σ(s)))γ

′
1(σ(s))σ

′(s) ds

=
∫ b
a f(γ1(t))γ

′
1(t) dt =

∫
γ1
f(z) dz

after a change of parameter in the third integral.

At this point we observe that replacing a curve γ1 with a reparametrization γ2 of it does not
alter certain objects related to the curve: its trajectory, its endpoints, its direction, its length, the
number of times it covers its trajectory and, more important, the curvilinear integrals of continuous
functions defined over its trajectory. Since in this course we shall use curves mostly to examine
curvilinear integrals, we conclude that there is no reason to distinguish between a curve and its
reparametrizations. Therefore, when we have a geometric object C which we would call, in ev-
eryday language, curve in the plane, e.g. a linear segment or a circle or a polygonal line, and a
continuous function f : C → C, we can give a meaning to∫

C f(z) dz

by specifying a piecewise continuously differentiable γ : [a, b] → C, i.e. a piecewise smooth
curve, with trajectory γ∗ coinciding with C, with endpoints coinciding with the endpoints of C
and a specific assigned direction. The use of different curves, which are reparametrizations of the
particular γ we have chosen, will not alter the value of the integral. In fact we have already seen
two examples of this situation. One is the curvilinear integral

∫
[z0,z1]

f(z) dz for which we use any
parametric equation with trajectory equal to the linear segment [z0, z1] and direction from z0 to
z1. The simplest such parametric equation is z = γ(t) = (1 − t)z0 + tz1, t ∈ [0, 1]. The second
example is the curvilinear integral

∮
Cz0 (r)

f(z) dz for which we use any parametric equation with
trajectory equal to the circle Cz0(r) and which covers this circle once and in the positive direction
of rotation around z0. The simplest such parametric equation is z = γ(t) = z0+ r(cos t+ i sin t),
t ∈ [0, 2π].

Proposition 2.13. Let γ1, γ2 be two successive piecewise smooth curves and let f be continuous
in γ∗1 ∪ γ∗2 . Then ∫

γ1
·
+γ2

f(z) dz =
∫
γ1
f(z) dz +

∫
γ2
f(z) dz.

Proof. Let γ1 : [a, b] → C and γ2 : [b, c] → C with γ1(b) = γ2(b). Then∫
γ1

·
+γ2

f(z) dz =
∫ c
a f

(
(γ1

·
+ γ2)(t)

)
(γ1

·
+ γ2)

′(t) dt

=
∫ b
a f(γ1(t))γ

′
1(t) dt+

∫ c
b f(γ2(t))γ

′
2(t) dt =

∫
γ1
f(z) dz +

∫
γ2
f(z) dz.

The second equality uses proposition 2.5.
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Proposition 2.14. If γ is a piecewise smooth curve and f is continuous in γ∗, then∫
¬ γ f(z) dz = −

∫
γ f(z) dz.

Proof. If γ : [a, b] → C, then∫
¬ γ f(z) dz =

∫ b
a f((¬ γ)(t))(¬ γ)

′(t) dt = −
∫ b
a f(γ(a+ b− t))γ′(a+ b− t) dt

=
∫ a
b f(γ(s))γ

′(s) ds = −
∫ b
a f(γ(s))γ

′(s) ds = −
∫
γ f(z) dz.

after a simple change of parameter in the third integral.

Example 2.2.10. Let γ be the curve describing the linear segment [z0, z1] from z0 to z1. Then
¬ γ describes the same segment from z1 to z0. Therefore,

∫
[z0,z1]

f(z) dz =
∫
γ f(z) dz and∫

[z1,z0]
f(z) dz =

∫
¬ γ f(z) dz. Hence∫

[z1,z0]
f(z) dz = −

∫
[z0,z1]

f(z) dz.

Before we leave this section, we should mention three variants of the notion of the curvilinear
integral. Let γ : [a, b] → C be a piecewise smooth curve and let f : γ∗ → C be continuous in the
trajectory γ∗ = {γ(t) | t ∈ [a, b]}. If γ(t) = (x(t), y(t)) = x(t) + iy(t) for every t ∈ [a, b], we
define ∫

γ f(z) dx =
∫ b
a f(γ(t))x

′(t) dt,
∫
γ f(z) dy =

∫ b
a f(γ(t))y

′(t) dt,∫
γ f(z) |dz| =

∫ b
a f(γ(t))|γ

′(t)| dt.

Trivially, we have ∫
γ f(z) dz =

∫
γ f(z) dx+ i

∫
γ f(z) dy.

We leave to the reader the easy task to show that each of the three new integrals satisfies all
properties of the original

∫
γ f(z) dz, expressed in propositions 2.8 - 2.14. The only difference is

with the integral
∫
γ f(z) |dz| which, regarding proposition 2.14, does not change its sign when we

replace γ with ¬ γ. Moreover, the basic inequality in proposition 2.9 takes the more precise form:∣∣ ∫
γ f(z) dz

∣∣ ≤ ∫
γ |f(z)| |dz| ≤ ∥f∥γ∗ l(γ).

Indeed, observing the string of equalities/inequalities in the proof of proposition 2.9, we recognize∫
γ |f(z)| |dz| as the third integral from the left. It is very common with beginning students to make
the mistake: |

∫
γ f(z) dz| ≤

∫
γ |f(z)| dz.

We should also say that ∫
γ |dz| = l(γ).

In calculus texts one usually sees the symbol ds instead of |dz| for the infinitesimal length |γ′(t)| dt
over the curve.

Exercises.

2.2.1. Let ∼ be the relation of reparametrization.
(i) If γ1 ∼ γ2, prove that ¬ γ1 ∼ ¬ γ2.
(ii) If γ1 ∼ γ2 and σ1 ∼ σ2, prove that γ1

·
+ σ1 ∼ γ2

·
+ σ2 (provided the two sums are defined).

2.2.2. Calculate
∫
γ |z| dz, where γ is each of the following curves with initial endpoint−i and final

endpoint i.
(i) γ(t) = it, t ∈ [−1, 1].
(ii) γ(t) = cos t+ i sin t, t ∈ [−π

2 ,
π
2 ].

(iii) γ(t) = − cos t+ i sin t, t ∈ [−π
2 ,

π
2 ].
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2.2.3. (i) If n ∈ Z, n ≥ 0, prove that
∫
γ z

n dz =
zn+1
1 −zn+1

0
n+1 , where z0, z1 are the initial and the

final endpoint of the piecewise smooth γ.
(ii) Are there polynomials pn(z) so that pn(z) → 1

z uniformly in the circle C0(1)? Think in terms
of curvilinear integrals over the circle C0(1).

2.2.4. (i) Let f be continuous in the ring {z | 0 < |z| < r0} and limr→0+ r∥f∥C0(r) = 0. Prove
that limr→0+

∮
Cz0 (r)

f(z) dz = 0.
(ii) Let f be continuous in Dz0(R). Prove that

limr→0+

∮
Cz0 (r)

f(z)
z−z0 dz = 2πif(z0).

2.2.5. Let f : Ω → C be continuous in the open set Ω and let [an, bn], [a, b] ⊆ Ω for every n. If
an → a and bn → b, prove that

∫
[an,bn]

f(z) dz →
∫
[a,b] f(z) dz.

2.2.6. Let f : Ω → C be continuous in the open set Ω and γ be a piecewise smooth curve in Ω.
Prove that for every ϵ > 0 there is a polygonal curve σ in Ω so that |

∫
σ f(z) dz−

∫
γ f(z) dz| < ϵ.

2.2.7. Prove that |
∫ b
a f(t) dt| =

∫ b
a |f(t)| dt if and only if there is some halfline l with vertex 0 so

that f(t) ∈ l for every continuity point t of f .

2.2.8. Let γ : [a, b] → C be a piecewise smooth curve and f : γ∗ → C be continuous in γ∗.
Consider any subdivision ∆ = {t0, . . . , tn} of [a, b] and any choice Ξ = {ξ1, . . . , ξn} of inter-
mediate points ξk ∈ [tk−1, tk]. Then we say that ∆∗ = {z0, . . . , zn}, where zk = γ(tk), is a
subdivision of the trajectory γ∗ and that Ξ∗ = {η1, . . . , ηn}, where ηk = γ(ξk), is a choice of
intermediate points on the trajectory: ηk is between zk−1 and zk on the trajectory. We say that∑n

k=1 f(zk)(ηk − ηk−1) is the corresponding Riemann sum. If w(∆∗) = max1≤k≤n |zk − zk−1|
is the width of the subdivision ∆∗, then prove that

limw(∆∗)→0

∑n
k=1 f(zk)(ηk − ηk−1) =

∫
γ f(z) dz.
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Chapter 3

Holomorphic functions.

3.1 Differentiability and holomorphy.

Let f : A → C be a complex function defined in A ⊆ C and z0 be an interior point of A. We
say that f is differentiable at z0 if limz→z0

f(z)−f(z0)
z−z0 exists and is a complex number. We call

this limit derivative of f at z0 and denote it

f ′(z0) =
df
dz (z0) = limz→z0

f(z)−f(z0)
z−z0 .

Example 3.1.1. The constant function c is differentiable at every point of C and its derivative is
the constant function 0. Indeed, for every z0 we have

dc
dz (z0) = limz→z0

c−c
z−z0 = limz→z0 0 = 0.

Example 3.1.2. The function z is differentiable at every point ofC and its derivative is the constant
function 1: for every z0 we have

dz
dz (z0) = limz→z0

z−z0
z−z0 = limz→z0 1 = 1.

Example 3.1.3. Let f(z) = z. We shall prove that the limz→z0
f(z)−f(z0)

z−z0 = limz→z0
z−z0
z−z0 does

not exist, i.e. f is not differentiable at any z0.
Let z0 = x0 + iy0. The limit of f(z)−f(z0)z−z0 when z → z0 on the horizontal line containing z0 is

limx→x0
(x+iy0)−(x0+iy0)
(x+iy0)−(x0+iy0)

= limx→x0
x−x0
x−x0 = limx→x0 1 = 1

and the limit of f(z)−f(z0)z−z0 when z → z0 on the vertical line containing z0 is

limy→y0
(x0+iy)−(x0+iy0)
(x0+iy)−(x0+iy0)

= limy→y0
−iy+iy0
iy−iy0 = limy→y0(−1) = −1.

Since these two limits are different, the limz→z0
z−z0
z−z0 does not exist.

The proofs of the following four propositions are identical with the proofs of the well known
analogous propositions for real functions of a real variable and we omit them.

Proposition 3.1. If f : A → C is differentiable at the interior point z0 of A ⊆ C, then f is
continuous at z0.

Proposition 3.2. If f, g : A → C are differentiable at the interior point z0 of A ⊆ C, then
f + g, f − g, fg : A → C are also differentiable at z0. Furthermore, if g(z) ̸= 0 for all z ∈ A,
then f

g : A→ C is differentiable at z0. Finally,

(f + g)′(z0) = f ′(z0) + g′(z0), (f − g)′(z0) = f ′(z0)− g′(z0),

(fg)′(z0) = f ′(z0)g(z0) + f(z0)g
′(z0), (fg )

′(z0) =
f ′(z0)g(z0)−f(z0)g′(z0)

g2(z0)
.
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Proposition 3.3. If f : A → B is differentiable at the interior point z0 of A ⊆ C and g : B → C
is differentiable at the interior point w0 = f(z0) of B ⊆ C, then g ◦ f : A → C is differentiable
at z0. Also,

(g ◦ f)′(z0) = g′(w0)f
′(z0) = g′(f(z0))f

′(z0).

Proposition 3.4. Let f : A→ B be one-to-one from A ⊆ C onto B ⊆ C and let f−1 : B → A be
the inverse function. Let also z0 be an interior point ofA andw0 = f(z0) be an interior point ofB.
If f is differentiable at z0 and f ′(z0) ̸= 0 and f−1 is continuous at w0, then f−1 is differentiable
at w0 and

(f−1)′(w0) = 1/f ′(z0).

Example 3.1.4. Starting with the derivatives of the constant function c and of the function z and
using the algebraic rules for derivatives, we get that every polynomial function is differentiable
at every point of C and that its derivative is another polynomial function: if p(z) = a0 + a1z +
a2z

2 + · · ·+ anz
n, then p′(z) = a1 + 2a2z + · · ·+ nanz

n−1.

Example 3.1.5. Every rational function is differentiable at every point of its domain of definition
and its derivative is another rational function.

Example 3.1.6. If h(z) = (z2 − 3z + 2)15 − 3(z2 − 3z + 2)2, then by the chain rule we get
h′(z) = 15(z2 − 3z + 2)14(2z − 3)− 6(z2 − 3z + 2)(2z − 3).

Let f be a complex function defined in A ⊆ C and z0 be an interior point of A. We say that
f is holomorphic or analytic at z0 if there is r > 0 so that Dz0(r) ⊆ A and f is differentiable at
every point of Dz0(r).

The notion of holomorphy is stronger than the notion of differentiability: for a function to be
holomorphic at a point it is necessary for it to be differentiable at this point and at all nearby points.

Example 3.1.7. Every polynomial function is holomorphic at every point of C.

Example 3.1.8. Every rational function is holomorphic at every point of its domain of definition.

Example 3.1.9. Let f(z) = |z|2. We have limz→0
f(z)−f(0)

z−0 = limz→0 z = 0 and so f is differen-
tiable at 0 with f ′(0) = 0.
We take any z0 ̸= 0 and we shall prove that the limz→z0

f(z)−f(z0)
z−z0 = limz→z0

|z|2−|z0|2
z−z0 does not

exist and therefore f is not differentiable at z0. Indeed, let z0 = x0 + iy0. The limit of f(z)−f(z0)z−z0
when z → z0 on the horizontal line containing z0 is

limx→x0
|x+iy0|2−|x0+iy0|2
(x+iy0)−(x0+iy0)

= limx→x0
x2−x02
x−x0 = limx→x0(x+ x0) = 2x0

and the limit of f(z)−f(z0)z−z0 when z → z0 on the vertical line containing z0 is

limy→y0
|x0+iy|2−|x0+iy0|2
(x0+iy)−(x0+iy0)

= limy→y0
y2−y02
iy−iy0 = −i limy→y0(y + y0) = −2iy0.

Since z0 ̸= 0, these two limits are different and the limz→z0
|z|2−|z0|2
z−z0 does not exist.

We conclude that f is differentiable only at 0 and that it is nowhere holomorphic.

The set of points at which f is holomorphic is called domain of holomorphy of f .

Proposition 3.5. IfB ⊆ C is the set of the points at which the complex function f is differentiable,
then the domain of holomorphy of f is the interior of B. In particular, the domain of holomorphy
of f is an open set.

Proof. LetU be the domain of holomorphy of f . If z ∈ U , there is r > 0 so that f is differentiable
at every point of Dz(r) and hence Dz(r) ⊆ B. Thus z is an interior point of B, i.e. z ∈ B◦.
Conversely, let z ∈ B◦. Then there is r > 0 so thatDz(r) ⊆ B, and so f is differentiable at every
point of Dz(r). Therefore f is holomorphic at z, i.e. z ∈ U .
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Example 3.1.10. The domain of holomorphy of any polynomial function is C.

Example 3.1.11. The domain of holomorphy of any rational function is its domain of definition.

Example 3.1.12. The domain of holomorphy of both functions f(z) = z and f(z) = |z|2 is the
empty set.

Let Ω ⊆ C be an open set. We say that the complex function f is holomorphic (or analytic)
in Ω if it is holomorphic at every point of Ω or, equivalently, if Ω is a subset of the domain of
holomorphy of f .

Clearly, the largest open set Ω in which f is holomorphic is its domain of holomorphy. It is
also clear that if f is differentiable at every point of an open set Ω, then f is holomorphic in Ω.

Let the complex function f be defined in the neighborhoodD∞(r) = {z | |z| > 1
r} ∪ {∞} of

∞. We consider the complex function g defined in D0(r) = {w | |w| < r} by

g(w) = f(1/w).

We say that f is differentiable or holomorphic at ∞ if g is differentiable or holomorphic, respec-
tively, at 0.

We observe that g(0) = f(∞) and that the inverse functions w = 1
z and z = 1

w map each
of the neighborhoods D∞(r) and D0(r) onto the other. Now we shall see that the condition of
differentiability of f at ∞, i.e. the differentiability of g at 0, can be translated into an equivalent
condition in terms of f itself.

Proposition 3.6. Let f be a complex function defined in D∞(r). Then f is differentiable at ∞ if
and only if

limz→∞ z(f(z)− f(∞)) ∈ C.

Proof. Let g(w) = f(1z ) be the function considered in the above definition. Through the change of
variable w = 1

z , we have
g(w)−g(0)
w−0 = z(f(z)− f(∞)). Thus, the existence of limw→0

g(w)−g(0)
w−0

is equivalent to the existence of limz→∞ z(f(z)− f(∞)). In fact the two limits are equal.

It is easy to see that differentiability of f at ∞ implies continuity of f at ∞.

Example 3.1.13.We shall check the differentiability (and hence holomorphy) at∞ of polynomial
and rational functions. We recall the notation and the results of examples 1.3.1 and 1.3.2.
A polynomial function p is continuous and complex valued at∞ only if it is a constant p(z) = a0
and p(∞) = a0. Then it is differentiable at∞, since limz→∞ z(p(z)− p(∞)) = limz→∞ 0 = 0.
A rational function r(z) = anzn+···+a1z+a0

bmzm+···+b1z+b0 is continuous and complex valued at∞ only if n ≤ m,
where n and m are the degrees of its numerator and denominator. If n = m, we set r(∞) = an

bn
and, after some algebraic manipulations, we get

limz→∞ z(r(z)− r(∞)) = limz→∞ z
(
anzn+···+a1z+a0
bnzn+···+b1z+b0 − an

bn

)
= an−1bn−anbn−1

b2n
.

If n < m, we set r(∞) = 0 and we get

limz→∞ z(r(z)− r(∞)) = limz→∞ z anzn+···+a1z+a0
bmzm+···+b1z+b0 =

{
an
bn+1

, if n+ 1 = m

0, if n+ 1 < m

Exercises.

3.1.1. Check the differentiability and holomorphy of the functions Re z, Im z and |z|.

3.1.2. Let Ω be open and f : Ω → C. We take Ω∗ = {z | z ∈ Ω} and f∗ : Ω∗ → C given by
f∗(z) = f(z) for every z ∈ Ω∗. Prove that Ω∗ is open and that, if f is differentiable at z0 ∈ Ω,
then f∗ is differentiable at z0 ∈ Ω∗.
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3.1.3. Consider open sets U, V and f : V → U , g : U → C, h : V → C so that h is one-to-one
and h = g ◦ f . If h is differentiable at w0 ∈ V , g is differentiable at z0 = f(w0), g′(z0) ̸= 0 and
f is continuous at w0, prove that f is differentiable at w0 and f ′(w0) =

h′(w0)
g′(z0)

.

3.1.4. (i) If p is a polynomial of degree n with roots z1, . . . , zn, prove

p′(z)
p(z) = 1

z−z1 + · · ·+ 1
z−zn

for z ̸= z1, . . . , zn. Then prove that, if the roots of p are contained in a closed halfplane, then the
roots of p′ are contained in the same halfplane. Conclude that the roots of p′ are contained in the
smallest convex polygon which contains the roots of p.
(ii) For every a and every n ∈ N, n ≥ 2 prove that the equation 1 + z + azn = 0 has at least one
root z ∈ D0(2).

3.1.5. (i) Let z1, . . . , zn be distinct and q(z) = (z−z1) · · · (z−zn). If the polynomial p has degree
< n, prove

p(z)
q(z) =

∑n
k=1

p(zk)
q′(zk)(z−zk)

for z ̸= z1, . . . , zn.
(ii) Let z1, . . . , zn be distinct. Prove that for every c1, . . . , cn there is a unique polynomial p of
degree < n so that p(zk) = ck for every k = 1, . . . , n.

3.1.6. Let f have continuous derivative in a neighborhood of z0. Prove that f(z
′
n)−f(z′′n)
z′n−z′′n

→ f ′(z0)

if z′n → z0, z′′n → z0 and z′n ̸= z′′n for every n.

3.2 The Cauchy-Riemann equations.

Now we shall relate the differentiability of f , as a complex function of z = x + iy, at some
interior point z0 = x0 + iy0 of its domain A ⊆ C with the partial derivatives of u = Re f and
v = Im f , as functions of (x, y) at the same point (x0, y0).

Theorem 3.1. Let f be a complex function defined in A ⊆ C, z0 = (x0, y0) be an interior point
of A, and let u, v be the real and imaginary part of f . If f is differentiable at z0, then u, v have
partial derivatives with respect to x and y at (x0, y0), and

∂u
∂x(x0, y0) =

∂v
∂y (x0, y0),

∂u
∂y (x0, y0) = − ∂v

∂x(x0, y0). (3.1)

Proof. We assume

limz→z0
f(z)−f(z0)

z−z0 = f ′(z0) = µ+ iν, µ, ν ∈ R. (3.2)

Since the limit of f(z)−f(z0)z−z0 exists when z tends to z0, the limits of the same expression when z
tends to z0 on the horizontal line containing z0 as well as on the vertical line containing z0 also
exist and have the same value:

limx→x0
f(x,y0)−f(x0,y0)

x−x0 = µ+ iν, limy→y0
f(x0,y)−f(x0,y0)

iy−iy0 = µ+ iν. (3.3)

From the first limit in (3.3) we get limx→x0
u(x,y0)+iv(x,y0)−u(x0,y0)−iv(x0,y0)

x−x0 = µ+ iν, and hence

∂u
∂x(x0, y0) = limx→x0

u(x,y0)−u(x0,y0)
x−x0 = µ,

∂v
∂x(x0, y0) = limx→x0

v(x,y0)−v(x0,y0)
x−x0 = ν.

(3.4)
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From the second limit in (3.3) we find limy→y0
u(x0,y)+iv(x0,y)−u(x0,y0)−iv(x0,y0)

iy−iy0 = µ + iν, and
hence

∂v
∂y (x0, y0) = limy→y0

v(x0,y)−v(x0,y0)
y−y0 = µ,

∂u
∂y (x0, y0) = limx→x0

u(x0,y)−u(x0,y0)
y−y0 = −ν.

(3.5)

Comparing (3.4) and (3.5) we get (3.1).

The equalities (3.1) are called (system of) Cauchy-Riemann equations at the point (x0, y0).
We observe that, if f is differentiable at z0, then (3.2), (3.4) and (3.5) imply

f ′(z0) =
∂u
∂x(x0, y0) + i ∂v∂x(x0, y0) =

∂v
∂y (x0, y0)− i∂u∂y (x0, y0).

The next result is the converse of theorem 3.1 but with extra assumptions.

Theorem 3.2. Let f be a complex function defined in A ⊆ C, z0 = (x0, y0) be an interior point of
A and let u, v be the real and imaginary part of f . If u, v have partial derivatives with respect to x
and y at every point of some neighborhood of (x0, y0) and if these partial derivatives are contin-
uous at (x0, y0) and if they satisfy the system of C-R equations at (x0, y0), then f is differentiable
at z0.

Proof. Using the C-R equations, we define the real numbers µ and ν by:

µ = ∂u
∂x(x0, y0) =

∂v
∂y (x0, y0), ν = −∂u

∂y (x0, y0) =
∂v
∂x(x0, y0). (3.6)

Now take an arbitrary ϵ > 0. Since ∂u
∂x ,

∂u
∂y are continuous at (x0, y0), there is r > 0 so that∣∣∂u

∂x(x, y)− µ
∣∣ < ϵ

4 ,
∣∣∂u
∂y (x, y) + ν

∣∣ < ϵ
4 (3.7)

for every (x, y) ∈ D(x0,y0)(r). We take any (x, y) ∈ D(x0,y0)(r) and we write

u(x, y)− u(x0, y0) = u(x, y)− u(x0, y) + u(x0, y)− u(x0, y0). (3.8)

By the mean value theorem, there is x′ between x and x0 so that

u(x, y)− u(x0, y) =
∂u
∂x(x

′, y)(x− x0) (3.9)

and y′ between y and y0 so that

u(x0, y)− u(x0, y0) =
∂u
∂y (x0, y

′)(y − y0). (3.10)

The x′, y′ depend on x, y, but the points (x′, y), (x0, y′) belong to D(x0,y0)(r). Therefore, (3.7)
implies ∣∣∂u

∂x(x
′, y)− µ

∣∣ < ϵ
4 ,

∣∣∂u
∂y (x0, y

′) + ν
∣∣ < ϵ

4 . (3.11)

Combining (3.8), (3.9) and (3.10), we find

u(x, y)− u(x0, y0)−
(
µ(x− x0)− ν(y − y0)

)
=

(
u(x, y)− u(x0, y)− µ(x− x0)

)
+

(
u(x0, y)− u(x0, y0) + ν(y − y0)

)
=

(
∂u
∂x(x

′, y)− µ
)
(x− x0) +

(
∂u
∂y (x0, y

′) + ν
)
(y − y0)

and, because of (3.11),∣∣u(x, y)− u(x0, y0)−
(
µ(x− x0)− ν(y − y0)

)∣∣
≤

∣∣∂u
∂x(x

′, y)− µ
∣∣|x− x0|+

∣∣∂u
∂y (x0, y

′) + ν
∣∣|y − y0|

< ϵ
4 |x− x0|+ ϵ

4 |y − y0| < ϵ
2

√
(x− x0)2 + (y − y0)2.

(3.12)
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In the same manner, for the function v we get∣∣v(x, y)− v(x0, y0)−
(
ν(x− x0) + µ(y − y0)

)∣∣ < ϵ
2

√
(x− x0)2 + (y − y0)2. (3.13)

The inequalities (3.12) and (3.13) hold at every (x, y) ∈ D(x0,y0)(r).
We observe that the expressions inside the absolute values of the left sides of (3.12) and (3.13) are,
respectively, the real and the imaginary part of the number

f(z)− f(z0)− (µ+ iν)(z − z0) = f(x, y)− f(x0, y0)− (µ+ iν)
(
(x− x0) + i(y − y0)

)
.

Therefore, (3.12) and (3.13) imply

|f(z)− f(z0)− (µ+ iν)(z − z0)| < ϵ
√

(x− x0)2 + (y − y0)2 = ϵ|z − z0|

for every z ∈ Dz0(r) and hence ∣∣f(z)−f(z0)
z−z0 − (µ+ iν)

∣∣ < ϵ

for every z ∈ Dz0(r), z ̸= z0. Thus, limz→z0
f(z)−f(z0)

z−z0 = µ + iν, and f is differentiable at z0
with f ′(z0) = µ+ iν.

Example 3.2.1. The real and the imaginary parts of the function f(z) = z2 are u(x, y) = x2 − y2

and v(x, y) = 2xy. We find ∂u
∂x(x, y) = 2x, ∂u∂y (x, y) = −2y, ∂v∂x(x, y) = 2y and ∂v

∂y (x, y) = 2x,
and we see that the partial derivatives are continuous in the whole plane and they satisfy the C-R
equations at every point. Theorem 3.2 implies that f(z) = z2 is differentiable at every point and
f ′(z) = ∂u

∂x(x, y) + i ∂v∂x(x, y) = 2x+ i2y = 2z.

Example 3.2.2.We reconsider the function f(z) = z of example 3.1.3. Its real and imaginary
parts are u(x, y) = x and v(x, y) = −y. The partial derivatives ∂u

∂x(x, y) = 1, ∂u∂y (x, y) = 0,
∂v
∂x(x, y) = 0 and ∂v

∂y (x, y) = −1 do not satisfy the C-R equations at any point (x, y). Theorem
3.1 implies that f is not differentiable at any point.

Example 3.2.3.We reconsider the function f(z) = |z|2 of example 3.1.9. Its real and imaginary
parts are u(x, y) = x2+y2 and v(x, y) = 0. The partial derivatives are ∂u∂x(x, y) = 2x, ∂u∂y (x, y) =
2y, ∂v∂x(x, y) = 0 and ∂v

∂y (x, y) = 0 and they satisfy the C-R equations only at the point (0, 0).
Theorem 3.1 implies that f is not differentiable at any point besides, perhaps, the point (0, 0).
Now, since the partial derivatives are continuous and satisfy the C-R equations at (0, 0), theorem
3.2 implies that f is differentiable at 0 and f ′(0) = ∂u

∂x(0, 0) + i ∂v∂x(0, 0) = 0 + i0 = 0.

Example 3.2.4.We shall see that the assumption of continuity of the partial derivatives of u, v at
(x0, y0) in theorem 3.2 is crucial. We consider the function

f(z) = f(x, y) =


xy√
x2+y2

, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)

Then its real and imaginary parts are

u(x, y) =


xy√
x2+y2

, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)
v(x, y) = 0.

It is clear that ∂v∂x(x, y) = 0 and ∂v
∂y (x, y) = 0 and the partial derivatives of v are continuous at

every (x, y). Moreover,

∂u
∂x(x, y) =


y3√

(x2+y2)3
, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)

∂u
∂y (x, y) =


x3√

(x2+y2)3
, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)
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The partial derivatives of u are continuous at every (x, y) ̸= (0, 0) but they are not continuous
at (0, 0). For instance, it is easy to see that the limit of ∂u∂x(x, y) =

y3√
(x2+y2)3

when (x, y) tends

to (0, 0) on the line with equation y = x does not exist. Moreover, f is not differentiable at
0, even though u, v do satisfy the C-R equations at 0. In fact it is easy to see that the limit of
f(z)−f(0)

z−0 = xy

(x+iy)
√
x2+y2

when z tends to 0 on the line with equation y = x does not exist.

The next proposition is a corollary of theorem 3.2. It is the form of theorem 3.2 in which this
is usually applied.

Proposition 3.7. Let f be a complex function defined in the open set Ω ⊆ C and let u, v be the
real and the imaginary part of f . If u, v have partial derivatives which are continuous and which
satisfy the C-R equations at every point of Ω, then f is holomorphic in Ω.

Proof. We take an arbitrary z ∈ Ω and a neighborhood of z which is contained in Ω. Theorem
3.2 implies that f is differentiable at z. Thus f is differentiable at every point of Ω and, since Ω is
open, f is holomorphic in Ω.

An open and connected set Ω is called region.

Theorem 3.3. Let f be holomorphic in the region Ω ⊆ C. If f ′(z) = 0 for every z ∈ Ω, then f is
constant in Ω.

First proof. Using f ′ = ∂u
∂x + i ∂v∂x = ∂v

∂y − i∂u∂y , we find
∂u
∂x = ∂v

∂x = ∂v
∂y = ∂u

∂y = 0 in Ω. We take
any linear segment [z1, z2] in Ω and its parametric equation γ(t) = (1− t)z1 + tz2, t ∈ [0, 1]. By
the mean value theorem, there is t0 ∈ (0, 1) so that

u(z2)− u(z1) = (u ◦ γ)(1)− (u ◦ γ)(0) = d(u◦γ)
dt (t0)

= ∂u
∂x(γ(t0))(x2 − x1) +

∂u
∂y (γ(t0))(y2 − y1) = 0,

where z1 = x1+ iy1 and z2 = x2+ iy2. Thus, the values of u at the endpoints of any line segment
in Ω are equal. Now we take arbitrary z′, z′′ ∈ Ω. Then there is a polygonal line inside Ω which
connects the two points z′ and z′′. The values of u at the endpoints of every line segment of the
polygonal line are equal and hence u(z′) = u(z′′). Therefore u is constant in Ω. Clearly, the same
is true for the function v and hence for f = u+ iv.
Second proof. We take arbitrary z, w ∈ Ω. Since Ω is a region, there is a piecewise smooth curve
γ : [a, b] → Ω such that γ(a) = z, γ(b) = w. In fact we may choose γ to have a polygonal line in
Ω as its trajectory. Then we have

f(w)− f(z) = (f ◦ γ)(b)− (f ◦ γ)(a) =
∫ b
a (f ◦ γ)′(t) dt =

∫ b
a f

′(γ(t))γ′(t) dt = 0

because f ′(γ(t)) = 0 for every t ∈ [a, b]. We conclude that f(w) = f(z) for every w, z ∈ Ω and
hence f is constant in Ω.

Let f be a complex function and let u, v be the real and imaginary part of f . If u, v have partial
derivatives with respect to x, y at the point z0 = (x0, y0), it is trivial to prove that at the point z0
we have

∂f
∂x = ∂u

∂x + i ∂v∂x ,
∂f
∂y = ∂u

∂y + i∂v∂y . (3.14)

We define the following differential operators:
∂
∂z = 1

2

(
∂
∂x − i ∂∂y

)
, ∂

∂z = 1
2

(
∂
∂x + i ∂∂y

)
. (3.15)

Applying the differential operators ∂
∂z and ∂

∂z to f and using (3.14), we have at the point z0:

∂f
∂z = 1

2

(
∂u
∂x + ∂v

∂y

)
+ i

2

(
∂v
∂x − ∂u

∂y

)
,

∂f
∂z = 1

2

(
∂u
∂x − ∂v

∂y

)
+ i

2

(
∂v
∂x + ∂u

∂y

)
.

(3.16)
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From the second of equations (3.16) we see that the system of C-R equations at the point z0 is
equivalent to the single equation

∂f
∂z = 0

at z0. Moreover, if the system of C-R equations is satisfied, then the first equation (3.16) implies

∂f
∂z = ∂u

∂x + i ∂v∂x = f ′

at z0. We summarize.

Proposition 3.8. If the complex function f is differentiable at z0, then ∂f
∂z (z0) = f ′(z0) and

∂f
∂z (z0) = 0. Conversely, if ∂f

∂z and ∂f
∂z exist in a neighborhood of the point z0 and they are

continuous at z0 and if ∂f∂z (z0) = 0, then f is differentiable at z0.

Proof. Trivial. The converse is a restatement of theorem 3.2. Indeed, (3.16) implies that the
existence or the continuity of ∂f

∂z ,
∂f
∂z at a point is equivalent to the existence or the continuity,

respectively, of ∂u∂x ,
∂u
∂y ,

∂v
∂x ,

∂v
∂y at the point.

Sometimes a complex function f is given to us through an expression f(x, y) as a function of
two real variables and we are interested in finding an expression f(z) of the function in terms of
the single complex variable z. We then write x = z+z

2 , y = z−z
2i and hence

f(x, y) = f
(
z+z
2 , z−z2i

)
. (3.17)

In general, even after performing various algebraic simplifications we end up with an expression
in terms of both variables z and z. In order to end up with the occurence of z only, it is reasonable
to impose the condition that the derivative of f(x, y) with respect to z vanishes. From (3.17) and
a formal chain rule we get

∂f
∂z = 1

2

(∂f
∂x + i∂f∂y

)
.

This is exactly the second differential operator (3.15) applied to f and we saw that the condition
∂f
∂z = 0 is equivalent to the system of C-R equations. We conclude that the function f(x, y) is a
function of the single variable z if and only if its real and imaginary parts satisfy the C-R equations.

Exercises.

3.2.1. Solve exercise 3.1.1 under the light of C-R equations.

3.2.2. (i) Prove thatF (x, y) =
√

|xy| satisfies the C-R equations at 0 but that it is not differentiable
at 0.
(ii) Prove that the function with G(x, y) = x2y

x4+y2
if (x, y) ̸= (0, 0) and with G(0, 0) = 0 satisfies

the C-R equations at 0, that G(z)−G(0)
z−0 has a limit when z → 0 on every line which contains 0, but

that G is not differentiable at 0.

3.2.3. Let f = u+ iv be a complex function and ∂u
∂x ,

∂u
∂y ,

∂v
∂x ,

∂v
∂y exist in a neighborhood of z0 and

be continuous at z0.
(i) If limz→z0 Re

f(z)−f(z0)
z−z0 exists and is a real number, prove that f is differentiable at z0.

(ii) If limz→z0

∣∣f(z)−f(z0)
z−z0

∣∣ exists and is a real number, prove that either f is differentiable at z0 or
f is differentiable at z0.

3.2.4. Let f = u+ iv be holomorphic in the region Ω ⊆ C.
(i) If either u or v is constant in Ω, prove that f is constant in Ω.
(ii) More generally, if for some line l it is true that f(z) ∈ l for every z ∈ Ω, prove that f is
constant in Ω.
(iii) Consider (ii) with a circle C instead of a line l.
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3.2.5. This exercise juxtaposes the notion of differentiability of a function of two real variables,
which we learn in multivariable calculus, and the notion of differentiability of a function of one
complex variable, which we learn in complex analysis: to distinguish between them we call the
first R-differentiability and the second C-differentiability.
We recall from multivariable calculus that a real function u defined in A ⊆ R2 is R-differentiable
at the interior point (x0, y0) of A if there are a, b ∈ R so that

lim(x,y)→(x0,y0)
u(x,y)−u(x0,y0)−(a(x−x0)+b(y−y0))√

(x−x0)2+(y−y0)2
= 0.

In this case we have that ∂u∂x(x0, y0) = a and ∂u
∂y (x0, y0) = b.

We also recall that a vector function f = (u, v) defined in A ⊆ R2 is R-differentiable at the
interior point (x0, y0) of A if its real components u and v are both R-differentiable at (x0, y0), i.e.
if there are a, b, c, d ∈ R so that

lim(x,y)→(x0,y0)
u(x,y)−u(x0,y0)−(a(x−x0)+b(y−y0))√

(x−x0)2+(y−y0)2
= 0,

lim(x,y)→(x0,y0)
v(x,y)−v(x0,y0)−(c(x−x0)+d(y−y0))√

(x−x0)2+(y−y0)2
= 0.

In this case we have that ∂u∂x(x0, y0) = a, ∂u∂y (x0, y0) = b, ∂v∂x(x0, y0) = c, ∂v∂y (x0, y0) = d and that

the R-derivative of f is the 2× 2 matrix
[
a b
c d

]
.

Prove that f = (u, v) = u+ iv isC-differentiable at z0 = (x0, y0), i.e. that the limz→z0
f(z)−f(z0)

z−z0
exists and is a complex number, if and only if f is R-differentiable at z0 = (x0, y0) and its R-

derivative is an antisymmetric matrix:
[
a −b
b a

]
. In this case theC-derivative and theR-derivative

of f are related by f ′(z0) = a+ ib.

3.2.6. Consider the functions zn, zn, |z|2 and, using the differential operator ∂
∂z , examine whether

they are functions of z only or, equivalently, whether they are holomorphic.

3.2.7. Let f be a complex function. If ∂f∂x and ∂f
∂y exist in a neighborhood of the point z0 and are

continuous at z0, prove that

limr→0+
1

2πir2

∮
Cz0(r)

f(z) dz = ∂f
∂z (z0).

3.3 Conformality.

Let the complex function f be continuous in A ⊆ C and γ : [a, b] → A be a curve. Thus the
trajectory of γ is contained in the domain of definition of f . We define the function

f(γ) = f ◦ γ : [a, b] → C,

which is continuous in [a, b]. Then f(γ) is a curve and we call it image of γ through f .
Now we also consider an interior point z of A and we assume that f is differentiable at z and

f(z) = w, f ′(z) ̸= 0. We also take any curve γ : [a, b] → A with γ(a) = z. Then γ has z
as its initial point and its trajectory is contained in A. We also assume that γ is differentiable at
a and that γ′(a) ̸= 0, i.e. that γ has a non-zero tangent vector at the point z. The image curve
f(γ) : [a, b] → C has f(γ)(a) = (f ◦ γ)(a) = f(γ(a)) = f(z) = w as its initial point and its
tangent vector at w is f(γ)′(a) = (f ◦ γ)′(a) = f ′(γ(a))γ′(a) = f ′(z)γ′(a) ̸= 0. From this
equality we have two conclusions. The first is that

|f(γ)′(a)| = |f ′(z)||γ′(a)|.
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Thus, the length of the tangent vector of f(γ) at its initial point w equals the length of the tangent
vector of γ at its initial point z multiplied with the factor |f ′(z)| > 0. We express this as:
f multiplies the lengths of tangent vectors at z with the factor |f ′(z)| > 0 or, in other words, f
expands the tangent vectors at z by the factor |f ′(z)| > 0.
The second conclusion is that

arg f(γ)′(a) = arg f ′(z) + arg γ′(a). (3.18)

Thus, we find the angle of the tangent vector of f(γ) at its initial point w by adding the angle of
f ′(z) to the angle of the tangent vector of γ at its initial point z. We express this as:
f increases the angles of the tangent vectors at z by the angle of f ′(z) or, in other words, f rotates
the tangent vectors at z by the angle of f ′(z).

We observe that the expansion and the rotation of the tangent vectors at z is uniform over all
these vectors: independently of their directions and their lengths, all these tangent vectors are
expanded by the same factor |f ′(z)| and they are rotated by the same angle arg f ′(z). Since, any
two of these tangent vectors are rotated by the same angle, we conclude that their relative angles
remain unchanged! Indeed, let us consider two of the above curves, γ1 and γ2. Then the angle
between their tangent vectors at z is arg γ′2(a)−arg γ′1(a) and the angle between the tangent vectors
of f(γ1) and f(γ2) at w is arg f(γ2)′(a)− arg f(γ1)′(a). From (3.18) for γ1 and γ2 we get

arg f(γ2)′(a)− arg f(γ1)′(a) = arg γ′2(a)− arg γ′1(a).

Therefore, the angle between the tangent vectors of f(γ1) and f(γ2) at w is the same as the angle
between the tangent vectors of γ1 and γ2 at z. We say:
f preserves the angle between tangent vectors at z.

This last property of f is called conformality of f at z and holds, as we just saw, under the
assumption that f is differentiable at z and f ′(z) ̸= 0.

Exercises.

3.3.1. Consider the holomorphic function w = f(z) = az + b with a ̸= 0.
(i) Prove that f is one-to-one from C onto C.
(ii) Prove that f maps lines and circles onto lines and circles, respectively.
(iii) Consider two lines with equations kx+ ly = m and k′x+ l′y = m′. Which is the condition
for the two lines to intersect? Under this condition, find their intersection point and the angle of
the two lines at this point. Then find the equations of the images of the two lines through f and
find their intersection point and their angle at this point. Confirm the conformality of f .

3.3.2. Consider the holomorphic function w = z2.
(i) With any fixed u0, v0, consider the hyperbolas with equations x2 − y2 = u0 and 2xy = v0
on the z-plane (z = x + iy). Do they intersect and at which points? Find the angle of the two
hyperbolas at each of their common points.
(ii) With any fixed x0, y0 ̸= 0, consider the parabolas with equations u = 1

4y02
v2 − y0

2 and
u = − 1

4x02
v2+x0

2 on the w-plane (w = u+ iv). Do they intersect and at which points? Find the
angle of the two parabolas at each of their common points.

3.3.3. Let f be holomorphic in the open set U ⊆ C so that f ′ is continuous in U , let γ be a
piecewise smooth curve in U and Γ = f(γ) be the image of γ through f . If the complex function
ϕ is continuous in Γ∗, prove that∫

Γ ϕ(w) dw =
∫
γ ϕ(f(z))f

′(z) dz.
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Chapter 4

Examples of holomorphic functions.

4.1 Linear fractional transformations.

Every rational function of the form

T (z) = az+b
cz+d

is called linear fractional transformation. We assume that ad − bc ̸= 0. It is easy to show that
ad− bc ̸= 0 if and only if the function T is not constant.

In order to have the full picture of the definition of a linear fractional transformation T , we
have to say something about the values of T at the roots of the denominator and at ∞. There are
two cases. If c = 0, then because of ad− bc ̸= 0 we have ad ̸= 0 and then T (z) = a

dz +
b
d for all

z ∈ C. Since a
d ̸= 0, we have that T (∞) = ∞. Thus

T (z) =

{
a
dz +

b
d , if z ∈ C

∞, if z = ∞
if c = 0. (4.1)

If c ̸= 0, then the denominator has z = −d
c as its root, which, because of ad− bc ̸= 0, is not a root

of the numerator. Hence T (−d
c ) = ∞. Also T (∞) = a

c . Thus

T (z) =


az+b
cz+d , if z ∈ C, z ̸= −d

c

∞, if z = −d
c

a
c , if z = ∞

if c ̸= 0. (4.2)

We conclude that every linear fractional transformation (l.f.t.) is a function T : Ĉ → Ĉ and,
even though we write T (z) = az+b

cz+d , we must have in mind the full formulas (4.1) and (4.2).
It is very easy to see that every l.f.t. is one-to-one from Ĉ onto Ĉ. The formula of the inverse

l.f.t. of T is
T−1(z) = dz−b

−cz+a .

The identity function id(z) = z is clearly a l.f.t. with a = d = 1, b = c = 0, and we easily see
that the composition of two l.f.t. is another l.f.t. Indeed, if T (z) = az+b

cz+d and S(z) = a′z+b′

c′z+d′ , then

(S ◦ T )(z) = a′T (z)+b′

c′T (z)+d′ =
a′ az+b

cz+d
+b′

c′ az+b
cz+d

+d′
= (a′a+b′c)z+(a′b+b′d)

(c′a+d′c)z+(c′b+d′d) .

Observe that (a′a+ b′c)(c′b+ d′d)− (a′b+ b′d)(c′a+ d′c) = (a′d′ − b′c′)(ad− bc) ̸= 0.
Thus, the set of all l.f.t. is a group with the binary operation of composition. The neutral

element of this group is the identity function.
Since a l.f.t. is a rational function, it is continuous in Ĉ, and, as a particular instance of example

3.1.13, it is holomorphic in Ĉ except at the point at which it takes the value∞.
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Nowwe shall make a comment on an interesting relation between circles and lines. We observe
that the equations of circles and lines can be unified in the followingmanner: ifα, β, γ ∈ R,w ∈ C,
w ̸= 0, α2 + β2 ̸= 0 and β2|w|2 > 4αγ, then the equation

α|z|2 + β Re(wz) + γ = 0

is the equation of a line, ifα = 0, and the equation of a circle, ifα ̸= 0. In fact, ifα = 0, then β ̸= 0
and the equation becomes Re(wz) = − γ

β and this is the equation of a line. If α ̸= 0, the equation

becomes |z+ β
2αw|

2 = β2|w|2−4αγ
4α2 . This is the equation of the circle with center− β

2αw and radius√
β2|w|2−4αγ

2|α| . Conversely, every circle and every line have equations of this form. If, for instance,
we take the equation Re(wz) = c of a line, with w ∈ C, w ̸= 0, and c ∈ R, we may write it in the
form α|z|2 + β Re(wz) + γ = 0 by taking α = 0, β = 1 and γ = −c. If we take the equation
|z − z0| = r of a circle with z0 ∈ C and r > 0, we may write it as |z|2 − 2Re(z0z) + |z0|2 = r2.
This becomes α|z|2 + β Re(wz) + γ = 0 by taking α = 1, γ = |z0|2 − r2 and: β = −2 and
w = z0, in case z0 ̸= 0, or β = 0 and w = 1, in case z0 = 0. In all cases the choices of the
parameters satisfy the restrictions: α, β, γ ∈ R, w ∈ C, w ̸= 0, α2 + β2 ̸= 0 and β2|w|2 > 4αγ.

This consideration of the equations of a line and a circle as special cases of one equation permits
us to unify the notions of circle and line into the single notion of generalized circle in C. If we
attach the point∞ to any line (and leave circles unchanged), then we are talking about generalized
circles in Ĉ. Look at exercise 1.3.2 for another interesting unification of the notions of circle and
line: generalized circles in Ĉ are the images of circles in S2 through stereographic projection.

Now, an important property of every l.f.t. is that it maps generalized circles in Ĉ onto gener-
alized circles in Ĉ. To prove it we consider three special cases first.

Example 4.1.1. Every function T (z) = z + b is a l.f.t. with a = 1, c = 0, d = 1 and, for an
obvious reason, it is called translation by b.
Every such T is holomorphic inC, one-to-one fromC ontoC and satisfies T (∞) = ∞. It is trivial
to prove that T maps lines in Ĉ onto lines in Ĉ and circles in C onto circles in C.

Example 4.1.2. Every function T (z) = az with a ̸= 0 is a l.f.t. with b = c = 0, d = 1 and it is
called homothety with center 0.
Every such T rotates points around 0 by the fixed angle arg a. Indeed, if w = T (z) = az, then
argw = arg z + arg a. Moreover, T multiplies distances between points by the fixed factor |a|.
Indeed, if w1 = T (z1) = az1 and w2 = T (z2) = az2, then |w1 − w2| = |a||z1 − z2|.
Also T is holomorphic in C, one-to-one from C onto C, satisfies T (∞) = ∞ and it is easy to
prove that T maps lines in Ĉ onto lines in Ĉ and circles in C onto circles in C.

Example 4.1.3. The function T (z) = 1
z is a l.f.t. with a = d = 0, c = b = 1 and it is called

inversion with respect to the circle T = C0(1).
The inversion T is holomorphic in Ĉ \ {0}, one-to-one from Ĉ \ {0,∞} onto Ĉ \ {0,∞} and
satisfies T (0) = ∞ and T (∞) = 0. Moreover, it is easy to show that T maps (i) lines in Ĉ which
do not contain 0 onto circles in C which contain 0, (ii) lines in Ĉ which contain 0 onto lines in Ĉ
which contain 0, (iii) circles in C which contain 0 onto lines in Ĉ which do not contain 0 and (iv)
circles in C which do not contain 0 onto circles in C which do not contain 0.

Lemma 4.1. Every l.f.t. is a composition of finitely many translations, homotheties and inversions.

Proof. Let T (z) = az+b
cz+d .

If c = 0, then T (z) = a′z + b′, where a′ = a
d ̸= 0 and b′ = b

d . If we consider the homothety
T1(z) = a′z and the translation T2(z) = z + b′, then T = T2 ◦ T1.
If c ̸= 0, then

T (z) =
a
c
(cz+d)+(b−ad

c
)

cz+d = a
c +

bc−ad
c2

1
z+ d

c

.

If we consider the translation T1(z) = z + d
c , the inversion T2(z) = 1

z , the homothety T3(z) =
bc−ad
c2

z and the translation T4(z) = z + a
c , then T = T4 ◦ T3 ◦ T2 ◦ T1.
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Proposition 4.1. Every l.f.t. maps generalized circles in Ĉ onto generalized circles in Ĉ.

Proof. A corollary of lemma 4.1 and of the examples 4.1.1, 4.1.2 and 4.1.3.

Proposition 4.2. Take the distinct z1, z2, z3 ∈ Ĉ and the distinct w1, w2, w3 ∈ Ĉ. Then there is a
unique l.f.t. T so that T (zj) = wj for j = 1, 2, 3.

Proof. We consider the l.f.t. S which, depending on whether one of z1, z2, z3 is∞ or not, has the
formula

S(z) =


z2−z3
z2−z1

z−z1
z−z3 , if z1 ̸= ∞, z2 ̸= ∞, z3 ̸= ∞

z−z1
z2−z1 , if z3 = ∞
z−z1
z−z3 , if z2 = ∞
z2−z3
z−z3 , if z1 = ∞

The l.f.t. S has values: S(z1) = 0, S(z2) = 1, S(z3) = ∞.
There is a similar l.f.t. R with values: R(w1) = 0, R(w2) = 1, R(w3) = ∞.
Then the l.f.t. T = R−1 ◦ S has values: T (z1) = w1, T (z2) = w2, T (z3) = w3.
To prove the uniqueness ofT withT (z1) = w1, T (z2) = w2, T (z3) = w3we consider the previous
l.f.t S,R and then the l.f.t. Q = R ◦ T ◦ S−1 has values: Q(0) = 0, Q(1) = 1, Q(∞) = ∞.
Since Q(∞) = ∞, we get that Q has the form Q(z) = az + b with a ̸= 0. Now from Q(0) = 0,
Q(1) = 1 we find a = 1, b = 0 and hence Q is the identity l.f.t. id with id(z) = z. Thus
R ◦ T ◦ S−1 = id and hence T = R−1 ◦ S.

When we apply the previous results we should bear in mind that every three distinct points in
Ĉ belong to a unique generalized circle in Ĉ.

Example 4.1.4. The l.f.t. which maps the triple i, 2, 1 onto the triple 0, 1,∞ is

w = T (z) = 2−1
2−i

z−i
z−1 = 2+i

5
z−i
z−1 = (2+i)z+(1−2i)

5z−5 .

The points i, 2, 1 in the z-plane are not co-linear and hence belong to a circleA. The points 0, 1,∞
belong to the line B = R ∪ {∞} in Ĉ. Now, T maps the circle A in the z-plane onto some
generalized circle T (A) in the w-plane. Since A contains i, 2, 1, T (A)must contain the images of
i, 2, 1, i.e. 0, 1,∞. Thus T (A) = B.
If we want to determine the circle A = Cz0(r) which contains i, 2, 1, we have to find z0, r so
that i, 2, 1 satisfy the equation |z − z0| = r: we just solve a system of three equations in three
real unknowns: x0, y0, r. But there is a second and probably easier way to find the equation of
A. Indeed, w belongs to R if and only if Imw = 0 and, using simple algebra, we see that this
is equivalent to |z − 3

2(1 + i)|2 = 5
2 , z ̸= 1. Since z = 1 is mapped onto w = ∞, we have

that w belongs to B if and only if z belongs to the circle C3(1+i)/2

(√
5/2

)
. We conclude that

A = C3(1+i)/2

(√
5/2

)
.

Exercises.

4.1.1. Find l.f.t. T so that T (1) = i, T (i) = 0, T (−1) = −i. Find T (T) and T (D).

4.1.2. Find l.f.t. T so that T (D) = {z | Im z > 0}, T (i) = 1, T (1) = 0, T (a) = −1, where a ∈ T.
Can a be an arbitrary point of T?

4.1.3. (i) Let T1(z) = a1z+b1
c1z+d1

and T2(z) = a2z+b2
c2z+d2

. Prove that T1, T2 are the same function if and
only if there is λ ̸= 0 so that a2 = λa1, b2 = λb1, c2 = λc1, d2 = λd1.
(ii) Prove that every l.f.t. T can take the form T (z) = az+b

cz+d with ad− bc = 1.
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4.1.4. Let A be a generalized circle of the z-plane Ĉ and B be a generalized circle of the w-plane
Ĉ. Then, in an obvious way,A splits Ĉ into two disjoint setsA+ andA− and, similarly,B splits Ĉ
into two disjoint sets B+ and B−. Now, let T be a l.f.t. and let T (A) = B. Assume that z0 ∈ A+

and w0 = T (z0) ∈ B+. Prove that T (A+) = B+ and T (A−) = B−.

4.1.5. A point z ∈ Ĉ is called fixed point of the l.f.t. T if T (z) = z. If the l.f.t. T is not the identity
(in which case T has infinitely many fixed points), prove that T has either one or two fixed points
in Ĉ. In each case, which are the images through T of the generalized circles which contain its
fixed points?
Apply the above to each of T (z) = z + 2, T (z) = 2z − 1, T (z) = z−1

z+1 , T (z) =
3z−4
z−1 .

4.1.6. (i) The points a, b ∈ Ĉ are called symmetric with respect to Cz0(r) if either a = z0, b = ∞
or a = ∞, b = z0 or a, b ∈ C are on the same halfline with vertex z0 and |a − z0||b − z0| = r2.
Observe that either a, b coincide with one and the same point ofCz0(r) or a, b are on different sides
of Cz0(r). Given a ∈ Ĉ \ {z0,∞}, describe a geometric construction “with ruler and compass” of
its symmetric point, b ∈ Ĉ \ {z0,∞}, with respect to Cz0(r). Prove that a, b are symmetric with
respect to Cz0(r) if and only if

b = z0 +
r2

a−z0 .

(ii) The points a, b ∈ Ĉ are called symmetric with respect to the line l̂ = l ∪ {∞} in Ĉ if either
a = b = ∞ or a, b ∈ C are symmetric with respect to l. Prove that a, b are symmetric with respect
to l̂ if and only if

b = z1 +
z2−z1
z2−z1 (a− z1),

where z1, z2 are any two distinct fixed points of the line l.
(iii) We take a l.f.t. w = T (z) and generalized circles A in the z-plane Ĉ and B in the w-plane Ĉ.
Prove that, if T maps A onto B, then T maps symmetric points with respect to A onto symmetric
points with respect to B.
(iv) Find l.f.t. T so that T (C0(1)) = Ci(3), T (i) = 3 + i, T (12) = 0.

4.1.7. The l.f.t. w = T (z) is called real if it maps the real line (with∞) in the z-plane Ĉ onto the
real line (with∞) in the w-plane Ĉ.
(i) Prove that the l.f.t. T is real if and only if there are a, b, c, d ∈ R with ad − bc ̸= 0 so that
T (z) = az+b

cz+d .
(ii) If the l.f.t. T is real and T (z) = az+b

cz+d , with a, b, c, d ∈ R, ad− bc ̸= 0, we define signT to be
the sign of ad− bc. Using exercise 4.1.3(i), prove that signT is well defined.
(iii) Prove that, if the l.f.t. T is real, then T−1 is real, and that, if the l.f.t. S, T are real, then S ◦ T
is real. Also prove that

signT−1 = signT, sign(S ◦ T ) = signS signT.

(iv) Take a real l.f.t. T . Prove that T maps the upper halfplane onto the upper halfplane (and the
lower onto the lower) if and only if signT = +1 and that T maps the upper halfplane onto the
lower halfplane (and the lower onto the upper) if and only if signT = −1.

4.1.8. (i) Let z0 ∈ D and |λ| = 1 and consider the l.f.t.

T (z) = λ z−z0
1−z0z .

Prove that T (T) = T and T (z0) = 0. Find T (D).
(ii) Let z0 ∈ D and let T be a l.f.t. such that T (T) = T and T (z0) = 0. Prove that there is λ with
|λ| = 1 so that T (z) = λ z−z0

1−z0z .
(iii) Let a, b ∈ D and let T be a l.f.t. such that T (T) = T and T (a) = b. Prove that there is λ with
|λ| = 1 so that T (z)−b

1−bT (z) = λ z−b
1−az .

40



4.1.9. Consider H+ = {z | Im z > 0}.
(i) Let z0 ∈ H+ and |λ| = 1 and consider the l.f.t.

T (z) = λ z−z0z−z0 .

Prove that T (R ∪ {∞}) = T and T (z0) = 0. Find T (H+).
(ii) Let z0 ∈ H+ and let T be a l.f.t. such that T (R ∪ {∞}) = T and T (z0) = 0. Prove that there
is λ with |λ| = 1 so that T (z) = λ z−z0z−z0 .

4.1.10. Consider distinct z1, z2, z3, z4 ∈ Ĉ. We define the double ratio of z1, z2, z3, z4 (in this
order) to be

(z1, z2, z3, z4) =



z1−z3
z1−z4

z2−z4
z2−z3 , if z1 ̸= ∞, z2 ̸= ∞, z3 ̸= ∞, z4 ̸= ∞

z2−z4
z2−z3 , if z1 = ∞
z1−z3
z1−z4 , if z2 = ∞
z2−z4
z1−z4 , if z3 = ∞
z1−z3
z2−z3 , if z4 = ∞

(i) Prove that
(T (z1), T (z2), T (z3), T (z4)) = (z1, z2, z3, z4)

for every l.f.t. T and every distinct z1, z2, z3, z4 ∈ Ĉ.
(ii) Prove that the distinct z1, z2, z3, z4 ∈ Ĉ belong to the same generalized circle if and only if
(z1, z2, z3, z4) ∈ R \ {0}.
(iii) If (z1, z2, z3, z4) = λ, find all values (depending on λ) which result from this double ratio
after all rearrangements of z1, z2, z3, z4.

4.1.11. Prove that the group of all l.f.t. is simple, i.e. that its only normal subgroups are itself and
{I}, where I is the identity l.f.t.

4.2 The exponential function.

We define the exponential function exp : C → C by

exp z = ex(cos y + i sin y)

for every z = x+ iy.
If z ∈ R, i.e. z = x+i0, then exp z = ex(cos 0+i sin 0) = ex = ez . This implies that we may

use the symbol ez instead of exp z without the danger of contradiction, in the case that z is real,
between the symbol ez as we just defined it and the symbol ez as we know it from infinitesimal
calculus. Therefore, we define

ez = exp z = ex(cos y + i sin y)

for every z = x+ iy.
Since z = x+ iy implies |ez| = |ex|| cos y + i sin y| = ex, we have that

|ez| = eRe z.

From ez = ex(cos y + i sin y) and |ez| = ex we get ez = |ez|(cos y + i sin y). So y is one of
the elements of arg ez and hence

arg ez = {Im z + k2π | k ∈ Z}.
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We have the basic equality
ez1ez2 = ez1+z2 .

Indeed, ex1(cos y1 + i sin y1)ex2(cos y2 + i sin y2) = ex1+x2(cos(y1 + y2) + i sin(y1 + y2)) from
the addition formulas of cos and sin.

If z2 − z1 = k2πi for some k ∈ Z, then ez2 = ez1ek2πi = ez1(cos(k2π) + i sin(k2π)) = ez1 .
Conversely, assume ez2 = ez1 and let z2 − z1 = x + iy. Then ex(cos y + i sin y) = ez2−z1 =
ez2
ez1 = 1 and hence ex = 1, cos y = 1 and sin y = 0. Therefore, x = 0 and y = k2π for some
k ∈ Z. Thus, z2 − z1 = k2πi with k ∈ Z. We proved that

ez2 = ez1 ⇔ z2 − z1 = k2πi for some k ∈ Z.

For all z = x+ iy we have |ez| = ex > 0 and hence

ez ̸= 0.

On the other hand, if we take any w ̸= 0 and if we use the notation

ln : (0,+∞) → R

for the well known logarithmic function from infinitesimal calculus, then the solutions of the equa-
tion ez = w are described as follows:

ez = w ⇔ z = ln |w|+ iy for some y ∈ argw.

Indeed, if we write z = x+ iy, then the equality w = ez becomes w = ex(cos y + i sin y) and it
just means that its right side is one of the polar representations of w. Hence, w = ez if and only
if ex = |w| and y is a value of argw. Now, ex = |w| is equivalent to x = ln |w|. Therefore, the
equation ez = w has these infinitely many solutions: z = ln |w|+iy where y is any value of argw.
All these solutions have the same real part, x = ln |w|, and their imaginary parts are the elements
of argw.

From what we said already, it is clear that the exponential function is onto C \ {0} but not
one-to-one in C. In fact the exponential function is infinity-to-one since there are infinitely many
values of z corresponding to the same value of w ̸= 0.

Based on the equality eiy = cos y+i sin y, we may write the polar representations of any z ̸= 0
in an equivalent form:

z = r(cos θ + i sin θ) = reiθ,

where r = |z| and θ ∈ arg z. The second form is simpler and we shall use it extensively in the rest
of the course. For instance, we may rewrite the examples 2.2.8 and 2.2.9 as follows.

Example 4.2.1. Using the parametric equation z = γ(t) = z0 + reit, t ∈ [0, 2π], for the circle
Cz0(r), we have ∮

Cz0 (r)
f(z) dz =

∮
γ f(z) dz =

∫ 2π
0 f(z0 + reit)ireit dt.

Example 4.2.2. If n ∈ Z, we have
∫ 2π
0 eint dt = 2π, if n = 0, and

∫ 2π
0 eint dt = 0, if n ̸= 0.

Therefore, if n ∈ Z, we get

∮
Cz0 (r)

(z − z0)
n dz =

∫ 2π
0 rneintireit dt = irn+1

∫ 2π
0 ei(n+1)t dt =

{
2πi, if n = −1

0, if n ̸= −1

The real and imaginary parts of ez are u(x, y) = ex cos y and v(x, y) = ex sin y. Therefore,
u, v have partial derivatives ∂u

∂x(x, y) = ex cos y, ∂u∂y = −ex sin y, ∂v∂x = ex sin y, ∂v∂y = ex cos y,
which are continuous and satisfy the system of C-R equations in C and hence ez is holomorphic
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in C. To calculate the derivative of ez we write ∂u
∂x(x, y) + i ∂v∂x(x, y) = ex cos y + iex sin y =

ex(cos y + i sin y) and hence
d ez

dz = ez.

We shall now examine the mapping properties of the function w = ez . We write z = x + iy
and w = u+ iv.

If z = x+ iy varies on the horizontal line hy in the z-plane which intersects the y-axis at the
fixed point iy, then w = ez = ex(cos y + i sin y) varies on the halfline ry in the w-plane with
vertex 0 (without 0) which forms angle y with the positive u-semiaxis. Also, if z varies on the
horizontal line hy from left to right, i.e. when x increases from−∞ to+∞, thenw = ez varies on
the halfline ry from 0 to∞. If y increases by∆y > 0, i.e. if the horizontal line hy moves upward,
then the corresponding halfline ry rotates in the positive direction around 0 by the angle ∆y. The
two horizontal lines hy and hy+2π are mapped onto the same halfline ry = ry+2π.

If the point z = x+ iy varies on the vertical line vx in the z-plane which intersects the x-axis
at the fixed point x, then w = ez = ex(cos y+ i sin y) varies on the circle C0(e

x), call it cx, in the
w-plane. Also, if z moves upward on the vertical line vx, i.e. if y increases from−∞ to+∞, then
w = ez rotates on the circle cx infinitely many times in the positive direction. If y increases over
an interval of length 2π, then w = ez describes the whole circle cx once in the positive direction.
If x increases by ∆x > 0, i.e. if the vertical line vx moves to the right, then the circle cx with
radius ex becomes the circle cx+∆x with radius ex+∆x = exe∆x.

We may combine the above results. For instance, if we consider the open rectangle

Π = {x+ iy |x1 < x < x2, y1 < y < y2}

in the z-plane with sides parallel to the two coordinate axes, then Π is the intersection of the open
horizontal zone between the lines hy1 and hy2 and the open vertical zone between the lines vx1 and
vy2 . If y2 − y1 < 2π, then Π is mapped onto the open “circular rectangle”

R = {reiθ | ex1 < r < ex2 , y1 < θ < y2},

in the w-plane, which is the intersection of the angular region between the halflines ry1 and ry2
and the open ring between the circles cx1 and cx2 . If y2 − y1 = 2π, then the “circular rectangle”
R is the open ring between the circles cx1 and cx2 without its linear segment which belongs to the
halfline ry1 = ry2 . Of course, in this case, if Π includes at least one of its horizontal sides, then its
image R is the whole open ring between the circles cx1 and cx2 .

Starting from eiy = cos y+i sin y and e−iy = cos(−y)+i sin(−y) = cos y−i sin y, we easily
find that cos y = 1

2(e
iy + e−iy) and sin y = 1

2i(e
iy − e−iy) for every y ∈ R. Now we extend the

trigonometric functions cosine and sine from R to C by defining

cos z = 1
2(e

iz + e−iz), sin z = 1
2i(e

iz − e−iz)

for every z ∈ C. It is clear from the holomorphy of the exponential function that cos and sin are
holomorphic in C and that

d cos z
dz = − sin z, d sin z

dz = cos z.

It is also easy to show that cos and sin are 2π-periodic.
Now we extend the tangent and the cotangent from R to C by defining

tan z = sin z
cos z = eiz−e−iz

eiz+e−iz , cot z = cos z
sin z = eiz+e−iz

eiz−e−iz

for every z ∈ C. It is easy to see that the solutions of cos z = 0 are z = π
2 + kπ, k ∈ Z, and the

solutions of sin z = 0 are z = kπ, k ∈ Z. Therefore, tan is defined and holomorphic in the open
set C \ {π2 + kπ | k ∈ Z} and cot is defined and holomorphic in the open set C \ {kπ | k ∈ Z}.
Both functions are π-periodic.
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Exercises.

4.2.1. Prove that ez = ez for all z.

4.2.2. Prove that |ez − 1| ≤ e|z| − 1 ≤ |z|e|z|.

4.2.3. Let z → ∞ on any halfline. Depending on the halfline, study the existence of the lim ez in
Ĉ. Which characteristic of the halfline determines the existence and the value of the limit?

4.2.4. Find the images through the exponential function of:

{x+ iy | a < x < b, θ < y < θ + π}, {x+ iy | a < x < b, θ < y < θ + 2π},

{x+ iy |x < b, θ < y < θ + π}, {x+ iy |x < b, θ < y < θ + 2π},

{x+ iy | a < x, θ < y < θ + π}, {x+ iy | a < x, θ < y < θ + 2π}.

4.2.5. Every horizontal and every vertical line in the z-plane are perpendicular. Also, every halfline
with vertex 0 and every circle with center 0 in the w-plane are perpendicular. How do these facts
relate to the conformality of the function w = ez?

4.2.6. Prove that
(i) sin2 z + cos2 z = 1.
(ii) sin(z + w) = sin z cosw + cos z sinw, cos(z + w) = cos z cosw − sin z sinw.
(iii) | cos(x+iy)|2 = cos2 x+sinh2 y, | sin(x+iy)|2 = sin2 x+sinh2 ywhere sinh y = 1

2(e
y−e−y).

4.2.7. Study the function w = sin z in the vertical zone {x+ iy | − π
2 < x < π

2 } and the function
w = cos z in the vertical zone {x+ iy | 0 < x < π}. Examine the images through these functions
of the various horizontal linear segments (of length π) and the various vertical lines inside these
two vertical zones.

4.3 Branches of the logarithmic function.

In the last section we proved, for every w ̸= 0, the equivalence

ez = w ⇔ z = ln |w|+ iy for some y ∈ argw.

For every w ̸= 0 we consider the set

logw = {ln |w|+ iy | y ∈ argw}

and we call it logarithm of w. So the elements of logw are the solutions of ez = w, i.e.

ez = w ⇔ z ∈ logw.

If we take y = Argw, then we get the particular element

Logw = ln |w|+ iArgw

of logw and this is called principal logarithm of w.
If r = |w| and if θ is any of the values of the argument ofw, i.e. ifw = r(cos θ+i sin θ) = reiθ

is any of the polar representations of w, then the values of argw are the numbers θ + k2π, k ∈ Z.
Hence the values of logw are the numbers ln r + i(θ + k2π), k ∈ Z.

Example 4.3.1. (i) Log 1 = 0 and log 1 = {i2kπ | k ∈ Z}.
(ii) Log(−1) = iπ and log(−1) = {i(2k + 1)π | k ∈ Z}.
(iii) Log i = iπ2 and log i = {i(2k + 1

2)π | k ∈ Z}.
(iv) Log(−3i) = ln 3− iπ2 and log(−3i) = {ln 3 + i(2k − 1

2)π | k ∈ Z}.
(v) Log(1 + i) = ln

√
2 + iπ4 and log(1 + i) = {ln

√
2 + i(2k + 1

4)π | k ∈ Z}.
(vi) Log(1− i

√
3) = ln 2− iπ3 and log(1− i

√
3) = {ln 2 + i(2k − 1

3)π | k ∈ Z}.
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For any fixed w ̸= 0 the set logw has infinitely many elements, and any two of them differ by
an integral multiple of i2π. All elements of logw have the same real part x = ln |w|, and hence they
are on the same vertical line vx with equation x = ln |w|, and the vertical differences between them
are the integral multiples of 2π. Therefore, every vertical segment of the line vx, which has length
2π and includes only one of its endpoints, contains exactly one element of logw. Moreover, every
horizontal zone, which has vertical width 2π and includes only one of its boundary lines (either the
upper or the lower one), contains exactly one element of logw for every w ̸= 0. More precisely,
if we consider any θ0 and the horizontal zone

Zθ0 = {x+ iy | θ0 < y ≤ θ0 + 2π} or Zθ0 = {x+ iy | θ0 ≤ y < θ0 + 2π},

thenZθ0 contains exactly one element of logw : the one with imaginary part y equal to the (unique)
θ ∈ argw satisfying θ0 < θ ≤ θ0 + 2π or θ0 ≤ θ < θ0 + 2π, respectively. For instance, if we
consider the special zone determined by θ0 = −π which contains its upper boundary line, i.e.

Z−π = {x+ iy | − π < y ≤ π},

then, for every w ̸= 0, the unique element of logw which is contained in this zone is the principal
logarithm Logw.

Proposition 4.3. For all w1, w2 ̸= 0 we have

log(w1w2) = logw1 + logw2.

By this we mean that the sum of any element of logw1 and any element of logw2 is an element of
log(w1w2) and, conversely, any element of log(w1w2) is the sum of an element of logw1 and an
element of logw2.

Proof. A corollary of proposition 1.1 and of the equality ln |w1w2| = ln |w1|+ ln |w2|.

It is already clear that the exponential function w = exp z = ez from C onto C \ {0} is not
one-to-one. Therefore, there is no inverse of the exponential function. If we want to produce
some kind of inverse of the exponential function, we may take any w in the range C \ {0} of the
function and select one value of z out of the infinitely many in C which satisfy the ez = w. There
are many instances of this method at a more elementary level. Let us consider for instance the
function y = x2 from (−∞,+∞) onto [0,+∞), which is not one-to-one in (−∞,+∞). We
take any y ∈ [0,+∞) (the range of y = x2) and find one x such that x2 = y. There are exactly
two such x: x =

√
y and x = −√

y. Therefore, one might say that we have only two choices
for the inverse function: the choice x =

√
y for every y ∈ [0,+∞) and the choice x = −√

y
for every y ∈ [0,+∞). But this is not correct. We may choose x =

√
y for some y ∈ [0,+∞)

and x = −√
y for the remaining y ∈ [0,+∞). It is obvious that there are infinitely many such

inverse functions, depending on the particular choice we make between x =
√
y and x = −√

y
for each value of y. Nevertheless, there is a criterion which reduces the number of our inverse
functions to exactly two: the criterion of continuity! We observe that the last function, with the
double formula, is not continuous. On the contrary, the function x =

√
y for every y ∈ [0,+∞)

and the function x = −√
y for every y ∈ [0,+∞) are both continuous. To prove that these are

the only continuous inverse functions is a simple exercise in real analysis. Indeed, assume that
there is some continuous inverse function x = f(y) of y = x2 defined in [0,+∞) (the range of
y = x2). I.e. f : [0,+∞) → R is continuous in [0,+∞) and f(y)2 = y for every y ∈ [0,+∞).
Let there be y1, y2 > 0 with y1 ̸= y2 such that f(y1) =

√
y1 and f(y2) = −√

y2. Since f is
continuous in the interval between y1, y2 and its values at the endpoints are opposite, there is some
y in this interval so that: f(y) = 0. This is impossible, because y > 0 and either f(y) = √

y > 0
or f(y) = −√

y < 0. Therefore, there are no such y1, y2 > 0 and hence we have exactly two
cases: either f(y) = √

y for every y ≥ 0 or f(y) = −√
y for every y ≥ 0. We may say that there
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are exactly two continuous branches of the square root in [0,+∞): the branch x =
√
y and the

branch x = −√
y.

Now let us go back to the determination of possible inverses of the exponential function.
Let A ⊆ C \ {0}. We say that the function f is a continuous branch of log in A if f is

continuous in A and for every w ∈ A we have that f(w) is an element of logw or, equivalently,

ef(w) = w

for every w ∈ A.
Proposition 4.4 gives many useful examples of continuous branches of the logarithm.

Proposition 4.4. Let θ0 ∈ R. We consider the set

Aθ0 = {reiθ | 0 < r < +∞, θ0 < θ < θ0 + 2π}

in the w-plane (i.e. C without the halfline with vertex 0 which forms angle θ0 with the positive
u-semiaxis, where w = u+ iv) and the open horizontal zone

Zθ0 = {x+ iy | −∞ < x < +∞, θ0 < y < θ0 + 2π}

in the z-plane. We define the function f : Aθ0 → Zθ0 as follows: for every w ∈ Aθ0 we take
f(w) to be the unique element of logw in the zone Zθ0 . Then f is continuous in Aθ0 and so it is a
continuous branch of log in Aθ0 .

Proof. Assume that f is not continuous at somew inAθ0 . Then there is a sequence (wn) inAθ0 so
thatwn → w and f(wn) ̸→ f(w). This implies that there is δ > 0 so that |f(wn)−f(w)| ≥ δ > 0
for infinitely many n. These infinitely many n define a subsequence of (wn). Now we ignore the
rest of the sequence (wn) and concentrate on the specific subsequence. For simplicity we rename
the subsequence and call it (wn) again. Therefore, we have a sequence (wn) in Aθ0 such that

wn → w and |f(wn)− f(w)| ≥ δ > 0 (4.3)

for every n. We set z = f(w) ∈ Zθ0 and zn = f(wn) ∈ Zθ0 for every n. Then ez = w and
ezn = wn for every n and (4.3) becomes

ezn → ez and |zn − z| ≥ δ > 0 (4.4)

for every n. The real parts of the zn are equal to ln |wn| and, since ln |wn| → ln |w|, the real parts
of the zn are bounded. Moreover, since zn ∈ Zθ0 , the imaginary parts of the zn are also bounded.
Therefore, the sequence (zn) is bounded and the Bolzano-Weierstrass theorem implies that there
is a subsequence (znk

) so that znk
→ z′ for some z′. Since all znk

belong to Zθ0 , we see that z′
belongs to the closed zone Zθ0 = {x+ iy | −∞ < x < +∞, θ0 ≤ y ≤ θ0+2π}. Taking the limit
in (4.4), we get that ez′ = ez and |z′ − z| ≥ δ. Therefore, z′ and z differ by a non-zero integral
multiple of i2π. But this is impossible, because z belongs to the open zone Zθ0 and z′ belongs to
the closed zone Zθ0 .
Thus f is continuous at every w in Aθ0 .

Our study of the mapping properties of the exponential function in the previous section gives
the following information about the mapping properties of the continuous branch f : Aθ0 → Zθ0
of log, which is defined in proposition 4.4: f maps the halflines in Aθ0 with vertex 0 (without 0)
onto the horizontal lines in Zθ0 and the circles with center 0 (without their point on the halfline
which is excluded from Aθ0) onto the vertical segments of Zθ0 .

Choosing any real θ0, we have defined a continuous branch of log in the subset Aθ0 of the
w-plane, whose range is the zone Zθ0 of the z-plane. If, instead of θ0, we consider θ0 + k2π with
any k ∈ Z, then the domain A = Aθ0+k2π remains the same but the range, i.e. the zone Zθ0+k2π,
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moves vertically by k2π. The various zones Zθ0+k2π are successive and cover the whole z-plane
(except for their boundary lines with equations y = θ0 + k2π). We summarize:
If we exclude from the w-plane a halfline with vertex 0, then in the remaining open set A there
are infinitely many continuous branches of log defined. Each of them maps A onto some open
horizontal zone of the z-plane of width 2π. These various open zones, which correspond to the
various continuous branches of log (in the same setA), are mutually disjoint, successive and cover
the z-plane (except for their boundary lines). Of course, if we change the original halfline which
determines the setA, then the corresponding zones and the corresponding continuous branches of
log also change.

Example 4.3.2. One particular example of a continuous branch of log is defined when we choose
θ0 = −π. Then the set A−π = {reiθ | 0 < r < +∞,−π < θ < π} is the w-plane without
the negative u-semiaxis (where w = u + iv) and the range of the branch is the zone Z−π =
{x + iy | − ∞ < x < +∞,−π < y < π}. It is obvious that this branch is the function which
maps every w ∈ A−π onto the principal value z = Logw of logw. I.e. we get the so-called
principal branch of log

Log : A−π → Z−π.

We must keep in mind that in the same set A−π of the w-plane, besides the principal branch,
there are infinitely many other continuous branches of log defined. Each of them maps A−π in a
corresponding zone Z−π+k2π, with k ∈ Z, which is Z−π moved vertically by k2π. This branch
results from the principal branch Log by adding the constant ik2π and its formula is Log+i2kπ.

Now, we introduce a slight generalization of the notion of the branch of log, i.e. we define the
notion of the branch of log g, where g is a more general function than the identity g(w) = w.

LetA ⊆ C and g : A→ C\{0} be continuous inA. We say that the function f is a continuous
branch of log g in A if f is continuous in A and for every w ∈ A we have that f(w) is an element
of log g(w) or, equivalently,

ef(w) = g(w)

for every w ∈ A.

Example 4.3.3. Let g : A → C \ {0} be continuous in A ⊆ C. If there is a continuous branch h
of log in g(A), then f = h ◦ g is a continuous branch of log g in A.
Indeed, f = h ◦ g is continuous in A and, since eh(z) = z for every z ∈ g(A), we also have

ef(w) = eh(g(w)) = g(w)

for every w ∈ A.
This is a standard way to produce continuous branches of log g when we know continuous branches
of log in the range of g.
For instance, if g(w) = w − w0 and A = C \ l, where l is a halfline with vertex w0, then
g(A) = C \ l′, where l′ is the halfline with vertex 0 which is parallel to l. We know that there are
infinitely many branches of log defined in g(A) and hence there are infinitely many branches of
log(w − w0) defined in A.

Proposition 4.5. Let g : A→ C\{0} be continuous inA ⊆ C and let f be any continuous branch
of log g inA. If w0 is an interior point ofA and g is differentiable at w0, then f is differentiable at
w0 and f ′(w0) =

g′(w0)
g(w0)

. Hence, if g is holomorphic in the interior ofA, then f is also holomorphic
in the interior of A.

Proof. We set z0 = f(w0) and z = f(w) for every w ∈ A. Then ez0 = g(w0) and ez = g(w).
Since f is continuous, w → w0 implies z → z0. Therefore, using the derivative of the exponential
function at z0, we see that

f(w)−f(w0)
w−w0

= z−z0
ez−ez0

g(w)−g(w0)
w−w0

→ g′(w0)
ez0 = g′(w0)

g(w0)

when w → w0. Thus f is differentiable at w0 and f ′(w0) =
g′(w0)
g(w0)

.
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Therefore, if g : A → C \ {0} is holomorphic in the open set A, every continuous branch of
log g can be called holomorphic branch of log g in A.

Example 4.3.4.We have defined infinitely many continuous branches of log in the open set which
results when we exclude any halfline with vertex 0 from the w-plane. All these branches are
holomorphic branches of log. In particular the principal branch Log : A−π → Z−π is holomorphic
in A−π.

Proposition 4.6. Let g : A→ C \ {0} be continuous in A ⊆ C.
(i) If f1 is a continuous branch of log g in A and f2 − f1 = ik2π in A, where k is a fixed integer,
then f2 is also a continuous branch of log g in A.
(ii) If, morever, A is connected and f1, f2 are continuous branches of log g in A, then f2 − f1 =
ik2π in A, where k is a fixed integer. In particular, if f1(w0) = f2(w0) for some w0 ∈ A, then
f1 = f2 in A.

Proof. (i) The continuity of f1 inA implies the continuity of f2 inA. We also have ef1(w) = g(w)
for every w ∈ A and hence ef2(w) = ef1(w)+ik2π = ef1(w)eik2π = g(w) for every w ∈ A.
Therefore, f2 is a continuous branch of log g in A.
(ii) We consider the function k = 1

i2π (f2 − f1). Since for every w ∈ A both f2(w) and f1(w) are
elements of log g(w), we have that k(w) is an integer. Also, since both f1, f2 are continuous in A,
k is continuous in A. Now, k is a continuous real function in the connected set A, and hence it has
the intermediate value property. But since its only values are integers, it is constant in A. So there
is a fixed integer k so that 1

i2π (f2 − f1) = k or, equivalently, f2 − f1 = ik2π in A.
If f2(w0) = f1(w0) for some w0 ∈ A, then the integer k is 0 and we get that f2 = f1 in A.

Thus, if we know one continuous branch of log g in the connected set A, then we find every
other possible continuous branch of log g inA by adding to the known branch an arbitrary constant
of the form ik2π with k ∈ Z.

Example 4.3.5. LetA = A−π be thew-plane without the negative u-semiaxis (wherew = u+iv).
We want to find a continuous branch of log in A having value z = 0 when w = 1.
We already know that the principal branch Log of the logarithm has value z = Log 1 = 0 atw = 1.
Since A is connected, there is no other such continuous branch of log in A.
Now, in the same setA = A−π wewant to find a continuous branch of log taking the value z = i4π
at w = 1.
SinceA is connected the branch we are looking for has the form Log+ik2π for some fixed integer
k. We try w = 1 in this equality and get k = 2.

Example 4.3.6. Let A = A0 = {reiθ | 0 < r < +∞, 0 < θ < 2π} be the w-plane without the
positive u-semiaxis (where w = u+ iv). We want to find a continuous branch of log in A taking
the value z = i(π2 + 4π) at w = i.
We consider the horizontal zones in the z-plane which correspond to the set A: to each k ∈ Z
corresponds the zone Z0+k2π = {x + iy | − ∞ < x < +∞, k2π < y < 2π + k2π}. Now we
choose the particular zone which contains the value z = i(π2 + 4π). This zone corresponds to
k = 2 and it is Z4π = {x + iy | − ∞ < x < +∞, 4π < y < 6π}. Then a continuous branch f
of log which maps A onto Z4π is given by f(w) = ln r + iθ, where r = |w| and θ is the unique
value of argw which is contained in the interval (4π, 6π). Since A is connected, there is no other
such continuous branch of log in A.

Exercises.

4.3.1. Let z ̸= 0. Prove that the only element of exp(log z) is z and that the elements of log(exp z)
are z + k2πi, k ∈ Z.

4.3.2. Let 0 < r1 < r2. Find Log(A), if A = {w | r1 ≤ |w| ≤ r2} \ [−r2,−r1].
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4.3.3. Find the inverse images through the exponential function w = ez of the following sets:

{reiθ | 1 < r < 3,−π
2 < θ < π

2 }, {reiθ | 1 < r,−π
2 < θ < π

2 },

{reiθ | r < 1,−π
2 < θ < π

2 }, {reiθ | 1 < r < 3,−π < θ < π},

{reiθ | 1 < r < 3, 0 < θ < 2π}, {reiθ | 1 < r < 3,−π
2 < θ < 3π

2 }.

In which of these sets is the principal branch of log defined and which other continuous branches
of log are defined in these sets? Which continuous branches of log are defined in the remaining
sets? In any case write the formulas of the continuous branches of log as well as the image of each
set through the corresponding continuous branches of log.

4.3.4.Work on the following in both cases: θ0 = −π and θ0 = 0.
Consider Aθ0 , i.e. the w-plane without the halfline with vertex 0 which forms angle θ0 with the
positive u-semiaxis. Consider also θ1, θ2 with θ0 < θ1 < θ2 < θ0 + 2π as well as r1, r2 with
0 < r1 < r2 < +∞. Draw the set P = {w = reiθ | r1 < r < r2, θ1 < θ < θ2} and its images
through the various continuous branches of log in Aθ0 .

4.3.5. Let P = {reiθ | 1 < r < 2,−3π
4 < θ < 3π

4 }, Q = {w = reiθ | 1 < r < 2, π4 < θ < 7π
4 }.

We know that there is a continuous branch f of log in P and a continuous branch g of log inQ. Is
it possible for f and g to coincide in P ∩Q?

4.3.6. Look back at exercise 1.2.1 and find all the possible values of Log(z1z2)−Log z1−Log z2.

4.3.7. Prove that there is no continuous branch of log defined in any circle C0(r) and hence in any
set A which contains such a circle.

4.3.8. Define wa = ea Logw for every w ∈ D1(1), and for every z prove that

limx→+∞
(
1 + z

x

)x
= ez.

4.3.9. Let A ⊆ C \ {0}. If A is connected and if f1, f2 are two different continuous branches of
log in A, prove that f1(A)∩ f2(A) = ∅. (Observe how this result is confirmed by the special case
ofA being C without a halfline with vertex 0 in which case the various continuous branches of log
in A map A onto disjoint horizontal zones.)

4.3.10. Let a, b ∈ R with a < b. Discuss the geometric meaning of the number

Arg z−b
z−a = Im(Log z−b

z−a)

for z in H+ = {z | Im z > 0}. How does this number vary when z varies in H+? Find the
geometric locus of the z in H+ for which Arg z−b

z−a = c is constant, 0 ≤ c ≤ π.

4.4 Powers and branches of roots.

If n ∈ N, n ≥ 2, the function
w = zn

is holomorphic in the z-plane C and we shall examine some mapping properties of this function.
We work with polar representations:

z = reiθ, w = rneinθ.

If θ ∈ R is constant and r varies in (0,+∞), i.e. if z moves on the halfline rθ in the z-plane
with vertex 0 (without 0) which forms angle θ with the positive x-semiaxis, then w = zn moves
on the halfline rϕ in the w-plane with vertex 0 (without 0) which forms angle ϕ = nθ with the
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positive u-semiaxis. Also, if z moves on the halfline rθ from 0 to ∞, then w = zn moves on the
halfline rϕ from 0 to ∞. If θ increases by ∆θ > 0, i.e. if the halfline rθ turns in the positive
direction by an angle ∆θ, then the corresponding halfline rϕ turns in the positive direction by an
angle∆ϕ = n∆θ. The two halflines rθ and rθ+ 2π

n
are mapped onto the same halfline rϕ = rϕ+2π.

If r ∈ (0,+∞) is constant and θ varies inR, i.e. if the point z moves on the circleC0(r) in the
z-plane, then w = zn moves on the circle C0(r

n) in the w-plane. Also, if z rotates once on C0(r)
in the positive direction, i.e. if θ increases in an interval of length 2π, then w = zn rotates n times
on C0(r

n) in the positive direction. If θ increases in an interval of length 2π
n , then w = zn rotates

once on C0(r
n) in the positive direction. If r increases, i.e. if the circle C0(r) expands, then the

corresponding circle C0(r
n) also expands.

In the following as well as in the whole course, we shall use the symbol n
√
x only to denote the

unique nonnegative n-th root of a nonnegative real number x.
If n ∈ N, n ≥ 2 and if we take any polar representationw = ReiΘ ofw ̸= 0, then the equation

zn = w has n solutions which are described as follows:

zn = w = ReiΘ ⇔ z =
n
√
Rei(

Θ
n
+k 2π

n
) for some k = 0, 1, . . . , n− 1. (4.5)

Indeed, if we write z = reiθ, then the equality zn = w becomes rneinθ = ReiΘ and this is
equivalent to rn = R and nθ = Θ + k2π for some k ∈ Z. Solving for r and θ, we find the
solutions z = n

√
Rei(

Θ
n
+k 2π

n
), k ∈ Z. It is trivial to see that two of these solutions are the same if

and only if the corresponding values of k differ by a multiple of n and hence there are n distinct
solutions corresponding to the values 0, 1, . . . , n − 1 of k. We easily see that the solutions of
zn = w are the vertices of a regular n-gon inscribed in the circle C0(

n
√
R).

The set of the solutions of zn = w, which appear in the right side of (4.5), is called n-th root
of w and it is denoted w

1
n or w1/n, i.e.

w
1
n =

{ n
√
Rei(

Θ
n
+k 2π

n
)
∣∣ k = 0, 1, . . . , n− 1

}
,

where w = ReiΘ is any polar representation of w. Thus, we have the equivalence

zn = w ⇔ z ∈ w
1
n .

Of course, if w = 0, then the equation zn = w has the unique solution z = 0 and then we
define 0

1
n = {0}.

Example 4.4.1. The n-th root of 1 is called n-th root of unity.
Since 1 = 1ei0, the elements of the n-th root of unity are the numbers eik

2π
n , k = 0, 1, . . . , n− 1.

Obviously, one of them is 1 and, if we denote ei
2π
n by the symbol ωn, we find that the elements of

the n-th root of unity are the numbers

1, ωn, ω
2
n, . . . , ω

n−1
n .

This ωn is called principal n-th root of unity.

We saw that, if w ̸= 0, then w
1
n has exactly n elements which are on the vertices of a regular

n-gon inscribed in the circle C0(
n
√

|w|) of the z-plane. Therefore, every arc of this circle with
central angle 2π

n , which includes only one of its endpoints, contains exactly one of the elements of
w

1
n . Thus, every angular set in the z-plane with vertex 0 and angle 2π

n , which includes only one
of its boundary halflines, contains, for every w ̸= 0, exactly one element of w

1
n . In particular, if

we consider any θ0 and the angular set

Aθ0 =
{
reiθ

∣∣ r > 0, θ0 < θ ≤ θ0 +
2π
n

}
or Aθ0 =

{
reiθ

∣∣ r > 0, θ0 ≤ θ < θ0 +
2π
n

}
,

then Aθ0 contains exactly one element of w
1
n .
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Clearly, the function w = zn from C \ {0} onto C \ {0} is n-to-one and has no inverse. So
we shall define branches of an inverse of w = zn.

Let A ⊆ C \ {0}. We say that the function f is a continuous branch of w
1
n in A if f is

continuous in A and for every w ∈ A we have that f(w) is an element of w
1
n or, equivalently,

f(w)n = w

for every w ∈ A.
Proposition 4.7 gives many examples of continuous branches of w

1
n .

Proposition 4.7. Let ϕ0 ∈ R. We consider the set

Aϕ0 = {seiϕ | s > 0, ϕ0 < ϕ < ϕ0 + 2π}

in the w-plane (i.e. C without the halfline with vertex 0 which forms angle ϕ0 with the positive
u-semiaxis, where w = u+ iv) and the angular region

Bϕ0/n =
{
reiθ

∣∣ r > 0, ϕ0n < θ < ϕ0
n + 2π

n

}
in the z-plane. We define the function f : Aϕ0 → Bϕ0/n as follows: for every w ∈ Aϕ0 we take
f(w) to be the unique element of w

1
n in the angular region Bϕ0/n. Then f is continuous in Aϕ0

and so it is a continuous branch of w
1
n in Aϕ0 .

Proof. Assume that f is not continuous at some w in Aϕ0 . Then there is a sequence (wk) in Aϕ0
so that wk → w and f(wk) ̸→ f(w). Then there is δ > 0 so that |f(wk) − f(w)| ≥ δ > 0 for
infinitely many k. These infinitely many k define a subsequence of (wk). Now we ignore the rest
of the sequence (wk) and concentrate on the specific subsequence. For simplicity we rename the
subsequence and call it (wk) again. Therefore, we have a sequence (wk) in Aϕ0 such that

wk → w and |f(wk)− f(w)| ≥ δ > 0 (4.6)

for every k. We set z = f(w) ∈ Bϕ0/n and zk = f(wk) ∈ Bϕ0/n for every k. Then zn = w and
znk = wk for every k and (4.6) becomes

znk → zn and |zk − z| ≥ δ > 0 (4.7)

for every k. Since |zk|n → |z|n and hence |zk| → |z|, we get that the sequence (zk) is bounded
and the Bolzano-Weierstrass theorem implies that there is a subsequence (zkm) so that zkm → z′

for some z′. Since all zkm belong to Bϕ0/n, we have that z
′ belongs to the closed angular region

Bϕ0/n = {z = reiθ | r ≥ 0, ϕ0n ≤ θ ≤ ϕ0
n + 2π

n }. Taking the limit in (4.7), we get z′n = zn and
|z′ − z| ≥ δ. This is impossible, because z belongs to Bϕ0/n and z′ belongs to Bϕ0/n.
Thus f is continuous at every w in Aϕ0 .

From the mapping properties of the function w = zn we get the following for the mapping
properties of the continuous branch f : Aϕ0 → Bϕ0/n of w

1
n , which is defined in proposition 4.7.

The function f maps the halflines inAϕ0 with vertex 0 (without 0) onto the halflines inBϕ0/n with
vertex 0 (without 0) and the circular arcs in Aϕ0 with center 0 onto the circular arcs in Bϕ0/n with
center 0.

Choosing any real ϕ0, we have defined a continuous branch of w
1
n in the subset Aϕ0 of the

w-plane, whose range is the angular region Bϕ0/n of the z-plane. If, instead of ϕ0, we consider
ϕ0+k2π with any k = 0, 1, . . . , n−1, then the setA = Aϕ0+k2π remains the same but the range,
i.e. the angular region B(ϕ0+k2π)/n, rotates by an angle k 2π

n . The n angular regions B(ϕ0+k2π)/n

with k = 0, 1, . . . , n−1 are successive and cover the z-plane (except for their n boundary halflines
with vertex 0). We summarize:
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If we exclude from the w-plane any halfline with vertex 0, then in the remaining open set A there
are n continuous branches of w

1
n defined. Each of them maps A onto some open angular region

of the z-plane with vertex 0 and angle 2π
n . These various angular regions, which correspond

to the various continuous branches of w
1
n (in the same set A), are mutually disjoint, successive

and cover the z-plane (except for their boundary halflines). Of course, if we change the original
halfline which determines the setA, then the corresponding angular regions and the corresponding
branches of w

1
n also change.

Example 4.4.2.We get a concrete example of a continuous branch ofw
1
n when we take ϕ0 = −π.

Then the set A−π = {seiϕ | s > 0,−π < ϕ < π} is the w-plane without the negative u-semiaxis
(where w = u+ iv) and the range of the continuous branch of w

1
n is the angular region B−π/n =

{reiθ | r > 0,−π
n < θ < π

n}. The value of this branch at every w ∈ A−π is given by

z = n
√
s ei

ϕ
n ,

where w = seiϕ is the polar representation of w with −π < ϕ < π. Clearly,

z = n
√

|w| ei
Argw
n = e

Logw
n .

On the same set A−π of the w-plane, besides the above continuous branch of w
1
n , we may de-

fine n continuous branches of w
1
n . Each of them maps A−π onto a corresponding angular region

B(−π+k2π)/n with k = 0, 1, . . . , n − 1, which results by rotating B−π/n in the positive direction
by the angle k 2π

n . This branch results from the original branch by multiplication by the constant
eik

2π
n and its value at every w ∈ A−π is given by

z = n
√
s ei(

ϕ
n
+k 2π

n
),

where w = seiϕ is the polar representation of w with −π < ϕ < π.

Now we introduce a generalization of the notion of continuous branch of w
1
n . We define the

notion of continuous branch of g
1
n , where g is a more general function than g(w) = w.

LetA ⊆ C and g : A→ C\{0} be continuous inA. We say that the function f is a continuous
branch of g

1
n in A if f is continuous in A and for every w ∈ A we have that f(w) is an element

of g(w)
1
n or, equivalently,

f(w)n = g(w)

for every w ∈ A.

Example 4.4.3. Let g : A → C \ {0} be continuous in A ⊆ C. If there is a continuous branch h
of w

1
n in g(A), then f = h ◦ g is a continuous branch of g

1
n in A.

Indeed, f = h ◦ g is continuous in A and, since h(z)n = z for every z ∈ g(A), we have that
f(w)n = h(g(w))n = g(w) for every w ∈ A.

Example 4.4.4. Let g : A → C \ {0} be continuous in A ⊆ C. If there is a continuous branch h
of log g in A, then f = e

1
n
h is a continuous branch of g

1
n in A.

Indeed, f = e
1
n
h is continuous in A and, since eh(w) = g(w) for every w ∈ A, we get that

f(w)n = eh(w) = g(w) for every w ∈ A.
This is a standard way to produce continuous branches of g

1
n when we know continuous branches

of log g.

Proposition 4.8. Let g : A → C \ {0} be continuous in A ⊆ C and f be any continuous branch
of g

1
n in A. If w0 is an interior point of A and g is differentiable at w0, then f is differentiable

at w0 and f ′(w0) = g′(w0)f(w0)
ng(w0)

. Hence, if g is holomorphic in the interior of A, then f is also
holomorphic in the interior of A.
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Proof. We set z0 = f(w0) and z = f(w) for every w ∈ A. Then zn0 = g(w0) and zn = g(w).
Since f is continuous, w → w0 implies z → z0. Therefore, using the derivative of the exponential
function at z0, we see that

f(w)−f(w0)
w−w0

= z−z0
zn−zn0

g(w)−g(w0)
w−w0

→ g′(w0)

nzn−1
0

= g′(w0)f(w0)
ng(w0)

when w → w0. Thus f is differentiable at w0 and f ′(w0) =
g′(w0)f(w0)
ng(w0)

.

Therefore, if g : A → C \ {0} is holomorphic in the open set A, every continuous branch of
g

1
n can be called holomorphic branch of g

1
n in A.

Example 4.4.5.We have defined n distinct continuous branches of w
1
n in the open set A which

results when we exclude any halfline with vertex 0 from the w-plane. All these branches are
holomorphic branches of w

1
n in A.

Proposition 4.9. Let g : A → C \ {0} be continuous in A ⊆ C. Let also ωn = ei
2π
n be the

principal n-th root of unity.
(i) If f1 is a continuous branch of g

1
n in A and f2

f1
= ωkn in A, where k = 0, 1, . . . , n− 1 is fixed,

then f2 is also a continuous branch of g
1
n in A.

(ii) If, moreover, A is connected and f1, f2 are continuous branches of g
1
n in A, then f2

f1
= ωkn in

A, where k = 0, 1, . . . , n − 1 is fixed. In particular, if f1(w0) = f2(w0) for some w0 ∈ A, then
f1 = f2 in A.

Proof. (i) The continuity of f1 inA implies the continuity of f2 inA. We also have f1(w)n = g(w)
for every w ∈ A and hence f2(w)n = f1(w)

n(ωkn)
n = g(w)(ωnn)

k = g(w) for every w ∈ A.
Thus, f2 is a continuous branch of g

1
n in A.

(ii) For eachw ∈ A the numbers f2(w), f1(w) are elements of g(w)
1
n . Hence (f2(w)f1(w)

)n = g(w)
g(w) = 1

and so f2
f1

: A→ {1, ωn, . . . , ωn−1
n }. Now, the function f2

f1
is continuous in A and A is connected,

hence the set f2f1 (A) is also connected. Since f2
f1
(A) ⊆ {1, ωn, . . . , ωn−1

n }, the set f2f1 (A) contains
only one point. I.e. f2

f1
is constant in A and hence f2

f1
= ωkn in A, where k = 0, 1, . . . , n − 1 is

fixed.
In case f2(w0) = f1(w0), then the integer k is 1 and we get f2 = f1 in A.

Thus, if we know one continuous branch of g
1
n in the connected set A, then we can find every

other of the n possible continuous branches of g
1
n in A by multiplying the known branch with any

constant n-th root of unity.

Example 4.4.6. Let A−π = {seiϕ | s > 0,−π < ϕ < π} be the w-plane without the negative
u-semiaxis (where w = u + iv). We want to find a continuous branch of the square root w

1
2 in

A−π taking the value z = 1 at w = 1.
From the example 4.4.2 we already know the continuous branch of the square root which maps
A−π onto the angular region B−π/2 = {reiθ | r > 0,−π

2 < θ < π
2 }, i.e. onto the right halfplane

of the z-plane: the value of this branch at every w ∈ A−π is given by

z =
√
s ei

ϕ
2 ,

where w = seiϕ is the polar representation of w with−π < ϕ < π. SinceA−π is connected, there
is no other continuous branch of the square root in A−π taking the value z = 1 at w = 1.

Example 4.4.7. Consider A−π = {seiϕ | s > 0,−π < ϕ < π} again. Now we want to find a
continuous branch of the square root w

1
2 in A taking the value z = −1 at w = 1.

In the previous example we found one continuous branch of the square root in A. Since A is
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connected, there are exactly two continuous branches of the square root in A. We consider the
principal square root of 1, i.e. ω2 = ei

2π
2 = eiπ = −1. (Trivial: the square roots of 1 are the

solutions of z2 = 1, i.e. the numbers 1,−1.) Then the value of the second continuous branch of
the square root at every w ∈ A−π is given by

z =
√
s ei

ϕ
2 ω2 = −

√
s ei

ϕ
2 ,

where w = seiϕ is the polar representation of w with−π < ϕ < π. This branch of the square root
is the opposite of the branch in example 4.4.6 andmapsA−π onto the angular regionB(−π+2π)/2 =

Bπ/2 = {reiθ | r > 0, π2 < θ < 3π
2 }, i.e. onto the left halfplane of the z-plane.

Exercises.

4.4.1. Describe the sets

(−1)
1
2 , (−1)

1
3 , (−1)

1
4 , i

1
2 , i

1
3 , i

1
4 , (1−i

√
3

2 )
1
2 , (1−i

√
3

2 )
1
3 , (1−i

√
3

2 )
1
4 .

4.4.2. (i) Find the elements of log(i2) and of 2 log i and observe that the two sets are different.
(ii) Prove that for every w ̸= 0 and every n ∈ N the sets log(w

1
n ) and 1

n logw are equal.

4.4.3. If w ̸= 0, prove that w
1
n = {e

ζ
n | ζ ∈ logw}.

4.4.4. Let w ̸= 0 and z be any of the elements of w
1
n . Prove that the elements of w

1
n are the

numbers z, zωn, zω2
n, . . . , zω

n−1
n .

4.4.5. The set C∗ = C \ {0} is a group under multiplication. Let n ∈ N, n ≥ 2.
(i) Prove that the n-th root of unity, i.e. the set {1, ωn, ω2

n, . . . , ω
n−1
n }, is a subgroup of C∗.

(ii) Let z = ωkn be any of the elements of the n-th root of unity and ⟨z⟩ = {zm |m ∈ Z} be
the group generated by z. Prove that z is a generator of {1, ωn, ω2

n, . . . , ω
n−1
n } or, equivalently,

⟨z⟩ = {1, ωn, ω2
n, . . . , ω

n−1
n } if and only if gcd{k, n} = 1.

(iii) Prove that {1, ωn, ω2
n, . . . , ω

n−1
n } has no subgroups other than {1} and itself if and only if n

is a prime number.

4.4.6. Look at exercise 3.3.2. Consider the curves on the z-plane with equations x2 − y2 = α and
2xy = β. If the two curves intersect at a point (x0, y0), find in two ways their angle at this point.

4.4.7. Prove that there is no continuous branch of w
1
n in any circle C0(r) and hence in any set A

which contains such a circle.

4.4.8. Consider the sets:

{reiθ | 0 < r < +∞,−π
2 < θ < 3π

2 }, {reiθ | 0 < r < +∞,−π < θ < π},

{reiθ | 0 < r < +∞, 0 < θ < 2π}, {reiθ | 0 < r < +∞, π2 < θ < 5π
2 }.

In each of these sets write the formulas of the continuous branches of the square root, of the cube
root and of the sixth root.

4.4.9. (i) Considering a holomorphic branch of (w + 1)
1
2 in C \ (−∞,−1] and a holomorphic

branch of (w − 1)
1
2 in C \ [1,+∞), prove that there is a holomorphic branch of (w2 − 1)

1
2 in

Ω = C \ ((−∞,−1] ∪ [1,+∞)).
(ii) Considering a holomorphic branch of (w+1)

1
2 in C \ (−∞,−1] and a holomorphic branch of

(w−1)
1
2 inC\(−∞, 1], prove that there is a holomorphic branch of (w2−1)

1
2 inΩ′ = C\[−1, 1].

(This is not as trivial as (i).)
(iii) Prove that there is no continuous branch of (w2 − 1)

1
2 in any circle which surrounds one of

the points ±1 but not the other.
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4.4.10. Prove that we can define a holomorphic branch f of (1 − w)
1
2 + (1 + w)

1
2 in the region

A which results when we exclude from C two non-intersecting halflines, one with vertex +1 and
another with vertex −1. Prove that every such f satisfies f(w)4 − 4f(w)2 + 4w2 = 0 for every
w ∈ A. How many such branches f exist in A?

4.4.11. (i) Let w ̸= 0 and a ∈ Z. Prove that {eaz | z ∈ logw} has only one element, namely wa.
(ii) Generalizing (i), let w ̸= 0 and a ̸∈ Z. We define

wa = {eaz | z ∈ logw}

and this set may have more than one elements. When does wa have finitely many elements and
when does it have infinitely many elements?
(iii) Describe the sets (1−i

√
3

2 )
1
2 , i

1
4 , 2i, i

√
2 and draw their elements.

(iv) Prove that the elements of wa+b are also elements of wawb, and that the elements of wab are
also elements of (wa)b.
(v) Let f be a continuous branch of log inA ⊆ C\{0}. Prove that g = eaf is a continuous branch
of wa in A and that g is differentiable at every interior point w0 of A and g′(w0) =

ag(w0)
w0

.
(vi) Prove that there is a unique holomorphic branch f of (1 − w)i = ei log(1−w) in D so that
f(0) = 1. Then prove that there are c1, c2 > 0 so that c1 < |f(w)| < c2 for every w ∈ D. Find
the best such c1, c2.

4.4.12.We define

arccosw = {z | cos z = w}, arcsinw = {z | sin z = w}, arctanw = {z | tan z = w}.

(i) Prove that the three sets are non-empty, except in the case of arctan(±i).
(ii) Express arccos, arcsin and arctan in terms of log.
(iii) It should be clear from exercise 4.2.7 that sin is one-to-one from {x + iy | − π

2 < x < π
2 }

onto Ω = C \ ((−∞,−1]∪ [1,+∞)). Prove that the inverse function g0 is a continuous branch of
arcsin inΩ, i.e. g0 is continuous inΩ and sin g0(w) = w for everyw ∈ Ω. Describe all continuous
branches g of arcsin in Ω and prove that they are holomorphic in Ω with

g′(w) = 1
(1−w2)1/2

for every w ∈ Ω, where at the denominator appears a specific holomorphic branch of (1 − w2)
1
2

in Ω (see exercise 4.4.9).
(iv) From exercise 4.2.7 again, it is clear that cos is one-to-one from {x + iy | 0 < x < π} onto
Ω = C\((−∞,−1]∪[1,+∞)). Prove that the inverse function h0 is a continuous branch of arccos
in Ω, i.e. h0 is continuous in Ω and cosh0(w) = w for every w ∈ Ω. Describe all continuous
branches h of arccos in Ω and prove that they are holomorphic in Ω with

h′(w) = − 1
(1−w2)1/2

for every w ∈ Ω, where at the denominator appears a specific holomorphic branch of (1 − w2)
1
2

in Ω.
(v) Prove that tan is one-to-one from {x+iy | − π

2 < x < π
2 } ontoU = C\{iv | v ≤ −1 or 1 ≤ v}.

Prove that the inverse function k0 is a continuous branch of arctan in U , i.e. k0 is continuous in U
and tan k0(w) = w for every w ∈ U . Describe all continuous branches k of arctan in U and prove
that they are holomorphic in U with

k′(w) = 1
1+w2

for every w ∈ U .

4.4.13. Considering appropriate continuous branches of w
1
2 , evaluate

∫
γ

1
w1/2 dw for both curves

γ1(t) = eit, t ∈ [0, π], and γ2(t) = e−it, t ∈ [0, π].
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4.5 Functions defined by curvilinear integrals.

4.5.1 Indefinite integrals.

Let the complex functions f, F be defined in the region Ω ⊆ C. We say that F is a primitive
of f in Ω if F ′(z) = f(z) for every z ∈ Ω.

Proposition 4.10. Let the complex function f be continuous in the region Ω ⊆ C. Then the fol-
lowing are equivalent.
(i)

∮
γ f(z) dz = 0 for every closed piecewise smooth curve γ in Ω.

(ii)
∫
γ1
f(z) dz =

∫
γ2
f(z) dz for every two piecewise smooth curves γ1, γ2 in Ω with the same

endpoints.
(iii) There is a primitive of f in Ω.

Proof. (iii)⇒ (i) Let F be any primitive of f in Ω. We take an arbitrary piecewise smooth curve
γ : [a, b] → Ω with γ(a) = γ(b). Then∮

γ f(z) dz =
∮
γ F

′(z) dz =
∫ b
a F

′(γ(t))γ′(t) dt =
∫ b
a (F ◦ γ)′(t) dt

= (F ◦ γ)(b)− (F ◦ γ)(a) = F (γ(b))− F (γ(a)) = 0.

(i)⇒ (ii) Assume that the piecewise smooth curves γ1, γ2 in Ω have the same endpoints. Then the
piecewise smooth curve γ = γ1

·
+ (¬ γ2) is a closed curve in Ω and then∫

γ1
f(z) dz −

∫
γ2
f(z) dz =

∫
γ1
f(z) dz +

∫
¬ γ2 f(z) dz =

∮
γ f(z) dz = 0.

(ii)⇒ (iii) We consider an arbitrary fixed z0 ∈ Ω. Then for every z ∈ Ω there is at least one
piecewise smooth curve γ in Ω with initial point z0 and final point z. We define the function
F : Ω → C by

F (z) =
∫
γ f(ζ) dζ. (4.8)

This formula defines F (z) uniquely, since the value of the curvilinear integral depends only on the
point z and not on the particular piecewise smooth curve γ which we use to join z0 to z.
Now we shall prove that F is a primitive of f in Ω. We take an arbitrary z ∈ Ω and a disc
Dz(r) ⊆ Ω. We also take a piecewise smooth curve γ in Ω with initial point z0 and final point
z. Then the value of F (z) is given by (4.8). Now we consider any w ∈ Dz(r) and the curve
γ

·
+ [z, w]. This curve is in Ω, it is piecewise smooth and has initial point z0 and final point w.

Therefore,
F (w) =

∫
γ

·
+[z,w]

f(ζ) dζ =
∫
γ f(ζ) dζ +

∫
[z,w] f(ζ) dζ. (4.9)

From (4.8) and (4.9) we get

F (w)−F (z)− f(z)(w− z) =
∫
[z,w] f(ζ) dζ − f(z)

∫
[z,w] dζ =

∫
[z,w](f(ζ)− f(z)) dζ. (4.10)

Now, since f is continuous, for every ϵ > 0 there is δ > 0 so that |f(ζ) − f(z)| < ϵ for every
ζ ∈ Ω with |ζ − z| < δ. Taking w ∈ Dz(r) with |w − z| < δ we automatically have |ζ − z| < δ
for every ζ ∈ [z, w] and (4.10) implies

|F (w)− F (z)− f(z)(w − z)| ≤ ϵ|w − z|.

Therefore,
∣∣F (w)−F (z)

w−z −f(z)
∣∣ ≤ ϵ for everyw with 0 < |w−z| < δ and henceF ′(z) = f(z).

Let the complex function f be continuous in the region Ω ⊆ C. If either one of the equivalent
conditions (i), (ii) of proposition 4.10 is satisfied, then as we saw in the proof of (ii)⇒ (iii) of
proposition 4.10, we may choose a fixed point z0 ∈ Ω and define F (z) =

∫
γ f(ζ) dζ for every
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z ∈ Ω, where γ is an arbitrary piecewise smooth curve in Ω with initial point z0 and final point z.
Now, any function F of the form

F (z) =
∫
γ f(ζ) dζ + c,

where γ is any piecewise smooth curve inΩwith fixed (but otherwise arbitrary) initial point z0 ∈ Ω
and final point z ∈ Ω and where c is an arbitrary constant, is called indefinite integral of f in Ω.

The crucial condition for the existence of an indefinite integral is (ii) (or its equivalent (i))
of proposition 4.10. As soon as this is satisfied, then by changing the base point z0 ∈ Ω or the
constant c we get different indefinite integrals F .

In the proof of proposition 4.10 we saw that every indefinite integral of f is a primitive of f .
The converse is also true. Indeed, let F be any primitive of f in the regionΩ, i.e. let F ′(z) = f(z)
for every z ∈ Ω. Proposition 4.10 implies that condition (ii) is satisfied and, if we take any
piecewise smooth curve γ : [a, b] → Ω with initial point a fixed z0 ∈ Ω and final point z ∈ Ω,
then ∫

γ f(ζ) dζ =
∫
γ F

′(ζ) dζ =
∫ b
a F

′(γ(t))γ′(t) dt =
∫ b
a (F ◦ γ)′(t) dt

= (F ◦ γ)(b)− (F ◦ γ)(a) = F (z)− F (z0).
(4.11)

Thus, F has the form F (z) =
∫
γ f(ζ) dζ + F (z0) and hence it is an indefinite integral of f in Ω.

We summarize. Let the complex function f be continuous in the region Ω ⊆ C. Then the
notion of primitive of f in Ω coincides with the notion of indefinite integral of f in Ω. Moreover,
the existence of a primitive or, equivalently, of an indefinite integral of f in Ω is equivalent to the
validity of condition (ii) (or (i)) of proposition 4.10.

Regarding the number of possible primitives of f in Ω we may easily see that, if there is at
least one primitive F of f in Ω, then all others are of the form F + c for an arbitrary constant c.
Indeed, it is obvious that F + c is a primitive of f in Ω. Conversely, if G is a primitive of f in Ω,
then we have (G− F )′(z) = G′(z)− F ′(z) = f(z)− f(z) = 0 for every z ∈ Ω. Now, theorem
3.3 implies that G− F is a constant in Ω.

Since it is useful for calculations of curvilinear integrals, we state relation (4.11) as a separate
proposition.

Proposition 4.11. Let F be a primitive of the continuous function f in the region Ω ⊆ C. Then
for every piecewise smooth curve γ in Ω with initial endpoint z1 and final endpoint z2 we have∫

γ f(z) dz = F (z2)− F (z1).

Example 4.5.1. Every polynomial function p(z) = a0 + a1z + · · · + anz
n has the primitive

a0z +
a1
2 z

2 + · · ·+ an
n+1z

n+1 in C. Therefore, we have∮
γ p(z) dz = 0

for every closed piecewise smooth curve γ.
In particular, ∮

γ(z − z0)
n dz = 0 if n ∈ Z, n ≥ 0,

for every closed piecewise smooth curve γ. A very special case of this, with the circle Cz0(r), we
saw in examples 2.2.9 and 4.2.2.

Example 4.5.2. The exponential function ez has the primitive ez in C. Hence∮
γ e

z dz = 0

for every closed piecewise smooth curve γ.
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Example 4.5.3. If n ∈ N, n ≥ 2, the function 1
(z−z0)n has the primitive − 1

(n−1)(z−z0)n−1 in
C \ {z0}. Therefore, ∮

γ
1

(z−z0)n dz = 0 if n ∈ N, n ≥ 2,

for every closed piecewise smooth curve γ in C \ {z0}. A very special case of this, with the circle
Cz0(r), we saw in examples 2.2.9 and 4.2.2.

Example 4.5.4. The function 1
z−z0 (the case n = 1 of the previous example) has no primitive in

C \ {z0} or even in any open ring Dz0(r1, r2) = {z | r1 < |z − z0| < r2}.
Indeed, if 1

z−z0 had a primitive inDz0(r1, r2), then we would have
∮
γ

1
z−z0 dz = 0 for every closed

piecewise smooth curve γ in Dz0(r1, r2). Now, if we take a radius r so that r1 < r < r2 and the
curve γ : [0, 2π] → Dz0(r1, r2) with parametric equation γ(t) = z0 + reit, then we have∮

γ
1

z−z0 dz =
∮
Cz0 (r)

1
z−z0 dz =

∫ 2π
0

1
reit

rieit dt = 2πi ̸= 0.

In fact, we did exactly the same calculation in example 4.2.2.

The following result is important.

Theorem 4.1. Let g : Ω → C \ {0} be holomorphic in the region Ω ⊆ C and let g′ be continuous
in Ω. Then a holomorphic branch of log g exists in Ω if and only if∮

γ
g′(z)
g(z) dz = 0

for every closed piecewise smooth curve γ in Ω.

Proof. Assume that there is a holomorphic branch of log g in Ω, i.e. there is F holomorphic in
Ω so that eF (z) = g(z) for every z ∈ Ω. Then F ′(z)eF (z) = g′(z) for every z ∈ Ω and hence
F ′(z) = g′(z)

g(z) for every z ∈ Ω. Therefore, F is a primitive of g
′

g in Ω and thus,
∮
γ
g′(z)
g(z) dz = 0 for

every closed piecewise smooth curve γ in Ω.
Conversely, assume

∮
γ
g′(z)
g(z) dz = 0 for every closed piecewise smooth curve γ in Ω. Then g′

g has
a primitive, say F , in Ω. Now, we have d

dz (g(z)e
−F (z)) = g′(z)e−F (z) − g(z)F ′(z)e−F (z) = 0

for every z ∈ Ω. This implies that, for some constant c, we have g(z)e−F (z) = c for every z ∈ Ω.
Since c ̸= 0, there is a constant d so that ed = c and we finally get that eF (z)+d = g(z) for every
z ∈ Ω. Now the function F + d is a holomorphic branch of log g in Ω.

In the next chapter we shall prove that for every holomorphic g the derivative g′ is automat-
ically continuous. Therefore, a posteriori, the assumption in theorem 4.1 that g′ is continuous is
unnecessary.

Example 4.5.5. If the region Ω ⊆ C \ {z0} contains a circle Cz0(r), then there is no holomorphic
branch of log(z − z0) in Ω. In fact, example 4.5.4 shows that

∮
Cz0 (r)

1
z−z0 dz ̸= 0.

Example 4.5.6. Let g : Ω → C \ {0} be holomorphic in the region Ω ⊆ C, let g′ be continuous in
Ω and suppose that there is a halfline with vertex 0 so that g(Ω) ⊆ C \ l.
We know that a holomorphic branch of log exists in C \ l and now example 4.3.3 says that a
holomorphic branch of log g exists in Ω. From theorem 4.1 we also get that

∮
γ
g′(z)
g(z) dz = 0 for

every closed piecewise smooth curve γ in Ω.

4.5.2 Integrals with parameter.

Lemma 4.2. Let n ∈ N and γ be any piecewise smooth curve. If the complex function ϕ is contin-
uous in the trajectory γ∗, we define

f(z) =
∫
γ

ϕ(ζ)
(ζ−z)n dζ
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for every z /∈ γ∗. Then f is holomorphic in the open set C \ γ∗ and

f ′(z) = n
∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ

for every z /∈ γ∗.

Proof. We take any z ∈ C \ γ∗. Since C \ γ∗ is open, there is δ > 0 so thatDz(δ) ⊆ C \ γ∗. We
consider the smaller circleDz(

δ
2) and we have |ζ−w| ≥

δ
2 for every ζ ∈ γ∗ and everyw ∈ Dz(

δ
2).

Now for every w ∈ Dz(
δ
2) we get

f(w)−f(z)
w−z − n

∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ =

∫
γ

( 1
(ζ−w)n

− 1
(ζ−z)n

w−z − n
(ζ−z)n+1

)
ϕ(ζ) dζ. (4.12)

To simplify the notation, we temporarily set a = ζ − w and b = ζ − z, and, to estimate the
parenthesis in (4.12), we use the algebraic identity

1
an

− 1
bn

b−a − n
bn+1 = (b− a)

(
1

anb2
+ 2

an−1b3
+ · · ·+ n−1

a2bn
+ n

abn+1

)
.

We have that |a| ≥ δ
2 and |b| ≥ δ

2 for every ζ ∈ γ∗ and w ∈ Dz(
δ
2) and hence∣∣ 1

an
− 1

bn

b−a − n
bn+1

∣∣ ≤ |b− a|
(

1
|a|n|b|2 + · · ·+ n

|a||b|n+1

)
≤ |w − z|1+2+···+(n−1)+n

(δ/2)n+2 ≤ |w − z| n22n+2

δn+2 .
(4.13)

Now, (4.12) and (4.13) imply∣∣f(w)−f(z)
w−z − n

∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ

∣∣ ≤ |w − z| n22n+2

δn+2 ∥ϕ∥γ∗ l(γ)

for every w ∈ Dz(
δ
2). Therefore, limw→z

f(w)−f(z)
w−z = n

∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ and f is differentiable at

z with f ′(z) = n
∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ.

Observe that lemma 4.2 justifies the change of order of the operations of integration and dif-
ferentiation with respect to the parameter z:

f ′(z) = d
dzf(z) =

d
dz

∫
γ

ϕ(ζ)
(ζ−z)n dζ =

∫
γ
d
dz

( ϕ(ζ)
(ζ−z)n

)
dζ = n

∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ.

Proposition 4.12. Let γ be any piecewise smooth curve and the complex function ϕ be continuous
in the trajectory γ∗. Then the function f(z) =

∫
γ
ϕ(ζ)
ζ−z dζ is infinitely many times differentiable in

the open set C \ γ∗ and
f (n)(z) = n!

∫
γ

ϕ(ζ)
(ζ−z)n+1 dζ

for every z /∈ γ∗.

Proof. Successive applications of lemma 4.2.

Exercises.

4.5.1. Let f, g be holomorphic in the region Ω ⊆ C and let f ′, g′ be continuous in Ω.
(i) If |f(z)−1| < 1 for every z ∈ Ω, prove that

∮
γ
f ′(z)
f(z) dz = 0 for every closed piecewise smooth

curve γ in Ω.
(ii) If |f(z)− g(z)| < |g(z)| for every z ∈ Ω, prove that

∮
γ
f ′(z)
f(z) dz =

∮
γ
g′(z)
g(z) dz for every closed

piecewise smooth curve γ in Ω.

4.5.2. Let γ be a piecewise smooth curve and the complex function ϕ be continuous in γ∗. We
know that the function f(z) =

∫
γ
ϕ(ζ)
ζ−z dζ is holomorphic in C \ γ∗. Prove that f is holomorphic

at ∞.
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4.5.3. Let the complex function ϕ be continuous in R and let
∫ +∞
−∞

|ϕ(t)|
1+|t| dt < +∞. Prove that the

function f(z) =
∫ +∞
−∞

ϕ(t)
t−z dt is holomorphic in C \ R.

4.5.4. Let the complex function ϕ be continuous in R and
∫ +∞
−∞ |ϕ(t)|eM |t| dt < +∞ for every

M > 0. Prove that the function f(z) =
∫ +∞
−∞ ϕ(t)etz dt is holomorphic in C.

4.5.5. Find the domains of holomorphy of the following functions of z:∫ 1
0

1
1+tz dt,

∫ 1
−1

etz

1+t2
dt,

∫ +∞
0

etz

1+t2
dt,

∫ +∞
0 e−tz

2
dt.

4.6 Functions defined by power series.

Every series of the form∑+∞
n=0 an(z − z0)

n = a0 + a1(z − z0) + a2(z − z0)
2 + · · ·

is called power series with center z0 and coefficients an. The R ∈ [0,+∞] defined by

R = 1

lim n
√

|an|

is called radius of convergence of the power series. (Of course we understand that R = 0 if
lim n

√
|an| = +∞ and R = +∞ if lim n

√
|an| = 0.)

Proposition 4.13. Let
∑+∞

n=0 an(z − z0)
n be a power series with radius of convergence R.

If R = 0, then the series converges only at z0. If R > 0, then:
(i) The power series converges absolutely at every z ∈ Dz0(R).
(ii) The power series diverges at every z ̸∈ Dz0(R).
(iii) The power series converges uniformly in every closed disc Dz0(r) with r < R.
(iv) The sum

s(z) =
∑+∞

n=0 an(z − z0)
n, z ∈ Dz0(R),

is holomorphic in Dz0(R). The derivative of s in Dz0(R) is the sum of the power series which
results from

∑+∞
n=0 an(z − z0)

n by formal termwise differentiation. I.e.

s′(z) =
∑+∞

n=1 nan(z − z0)
n−1, z ∈ Dz0(R).

Proof. If z = z0, then the power series consists only of its constant term a0 and hence converges.
If z ̸= z0, then by the definition of R we get lim n

√
|an(z − z0)n| = lim n

√
|an| |z − z0| = |z−z0|

R .
The root test of Cauchy for general series implies that the power series converges absolutely if
|z − z0| < R and diverges if |z − z0| > R and this is the content of (i) and (ii).
(iii) Let 0 < r < R. We take any R′ with r < R′ < R. Then lim n

√
|an| < 1

R′ and so there is
n0 so that n

√
|an| ≤ 1

R′ for every n ≥ n0. Then for every z ∈ Dz0(r) we have |an(z − z0)
n| =

|an| |z − z0|n ≤ ( rR′ )n for every n ≥ n0. Since r
R′ < 1, we have

∑+∞
n=0(

r
R′ )n < +∞ and the test

of Weierstrass implies that the power series
∑+∞

n=0 an(z − z0)
n converges uniformly in Dz0(r).

(iv) Besides
∑+∞

n=0 an(z − z0)
n, we also consider the power series

∑+∞
n=1 nan(z − z0)

n−1. The
second power series results from the first by formal termwise differentiation. We shall prove that
the second series converges at every z ∈ Dz0(R) and that its sum is the derivative of the sum of
the first series at every z ∈ Dz0(R).
We have lim n

√
|nan| = lim n

√
n n
√

|an| = lim n
√
|an| and the radius of convergence of the series∑+∞

n=1 nan(z− z0)
n is also R. Thus,

∑+∞
n=1 nan(z− z0)

n−1 converges at every z ∈ Dz0(R). We
define

s(z) =
∑+∞

n=0 an(z − z0)
n, t(z) =

∑+∞
n=1 nan(z − z0)

n−1, z ∈ Dz0(R).
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Now at every z, w ∈ Dz0(R) we have

s(w)− s(z) =
∑+∞

n=0 an((w − z0)
n − (z − z0)

n).

For simplicity, we shall set temporarily a = z − z0 and b = w − z0 and then we have

s(w)−s(z)
w−z − t(z) =

∑+∞
n=2 an(b

n−1 + bn−2a+ · · ·+ ban−2 + an−1 − nan−1)

= (w − z)
∑+∞

n=2 an(b
n−2 + 2bn−3a+ · · ·+ (n− 2)ban−3 + (n− 1)an−2).

(4.14)

We fix z ∈ Dz0(R) and δ =
R−|z−z0|

2 > 0. We also setR1 = |z−z0|+δ = R−δ. Ifw ∈ Dz(δ),
then |b| ≤ R1 and |a| ≤ R1 and (4.14) implies∣∣ s(w)−s(z)

w−z − t(z)
∣∣ ≤ |w − z|

∑+∞
n=2 n

2|an|Rn−2
1 .

Since lim n
√

|n2anRn1 | =
R1
R < 1, the last sum is a finite number independent of w ∈ Dz(δ).

Therefore, limw→z
s(w)−s(z)
w−z = t(z) and s is differentiable at z with s′(z) = t(z).

If R is the radius of convergence of
∑+∞

n=0 an(z − z0)
n, then the open disc Dz0(R) is called

disc of convergence of the power series.
We saw that, if 0 < R ≤ +∞, the sum s of the power series is a holomorphic function in

Dz0(R). In fact the derivative s′ is the sum of the power series we get by formal termwise dif-
ferentiation of the original power series. We saw that the differentiated power series has the same
disc of convergence as the original series and hence we may repeat our arguments: the function
s′ is holomorphic in Dz0(R) and its derivative, i.e. the second derivative of s, is the sum of the
power series which we get by a second formal termwise differentiation of the original power series.
We conclude that the function s is infinitely many times differentiable in the disc of convergence
Dz0(R) and

s(k)(z) =
∑+∞

n=k n(n− 1) · · · (n− k + 1)an(z − z0)
n−k, z ∈ Dz0(R).

Example 4.6.1. For the power series
∑+∞

n=1
zn

n we get lim n
√
|1/n| = 1, and hence R = 1. The

disc of convergence is D. If s is the function defined by the power series in D, then

s′(z) =
∑+∞

n=1 z
n−1 = 1

1−z

for every z ∈ D. We observe that −Log(1− z) is defined and is holomorphic in D. Its derivative
is 1

1−z and its value at 0 is 0. Since the functions s(z) and −Log(1− z) have the same derivative
in the region D and the same value at 0, we conclude that∑+∞

n=1
zn

n = −Log(1− z)

for every z ∈ D. We shall come back to this identity when we study the Taylor series of the
function −Log(1− z) in D.

Example 4.6.2. For
∑+∞

n=1
zn

n2 we get lim n
√

|1/n2| = 1, and hence R = 1. The disc of conver-
gence is D.

Example 4.6.3. For
∑+∞

n=0
zn

n! we have lim
n
√

|1/n!| = 0 and hence R = +∞. The disc of con-
vergence is C. If s is the function defined by the power series in C, then

s′(z) =
∑+∞

n=1
zn−1

(n−1)! =
∑+∞

n=0
zn

n! = s(z)

for every z. Now we have that d
dz (e

−zs(z)) = −e−zs(z) + e−zs′(z) = 0 for every z. Since the
value of e−zs(z) at 0 is 1, we find that e−zs(z) = 1 for every z and thus∑+∞

n=0
zn

n! = ez
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for every z. We shall reprove this identity later, when we study the Taylor series of the function
ez . On the other hand, since the series

∑+∞
n=0

zn

n! and
∑+∞

n=0
wn

n! converge absolutely, proposition
2.3 implies that

ezew =
∑+∞

n=0
zn

n!

∑+∞
n=0

wn

n! =
∑+∞

n=0

(∑n
k=0

zk

k!
wn−k

(n−k)!
)
=

∑+∞
n=0

1
n!

(∑n
k=0

(
n
k

)
zkwn−k

)
=

∑+∞
n=0

(z+w)n

n! = ez+w.

This provides us with a second proof of the identity ezew = ez+w.

Example 4.6.4. For
∑+∞

n=1 n!z
n we have lim n

√
n! = +∞, and hence R = 0. The power series

converges only at 0.

Every series of the form∑n=−1
−∞ an(z − z0)

n = · · ·+ a−3

(z−z0)3 + a−2

(z−z0)2 + a−1

z−z0

is called power series of second type with center z0 and coefficients an. The R ∈ [0,+∞]
defined by

R = lim m
√
|a−m|

is called radius of convergence of the power series.
The usual power series of the form

∑+∞
n=0 an(z−z0)n are also called power series of first type,

to distinguish them from the power series of second type.
We observe that a power series of second type has no meaning at z0, in the same way that any

power series of first type (with an ̸= 0 for at least one n ≥ 1) has no meaning at ∞. On the other
hand, if z = ∞, then a power series of second type becomes

∑n=−1
−∞ 0 = 0 and hence converges

with sum 0.
From now on in these notes we shall use the notations

Dz0(R,+∞) = {z |R < |z − z0|}, Dz0(R,+∞) = {z |R ≤ |z − z0|}

for the open and the closed unbounded ring with center z0 and internal radius R. We also use

Dz0(R1, R2) = {z |R1 < |z − z0| < R2}, Dz0(R1, R2) = {z |R1 ≤ |z − z0| ≤ R2}

to denote the open and the closed bounded ring with center z0, internal radius R1 and external
radius R2.

Proposition 4.14. Let
∑n=−1

−∞ an(z − z0)
n be a power series of second type with radius of con-

vergence R.
If R = +∞, then the series converges only at ∞. If R < +∞, then
(i) The power series converges absolutely at every z ∈ Dz0(R,+∞) ∪ {∞}.
(ii) The power series diverges at every z ̸∈ Dz0(R,+∞).
(iii) The power series converges uniformly in every Dz0(r,+∞) ∪ {∞} with r > R.
(iv) The sum

s(z) =
∑n=−1

−∞ an(z − z0)
n, z ∈ Dz0(R,+∞) ∪ {∞},

is holomorphic in Dz0(R,+∞) ∪ {∞}. The derivative of s in Dz0(R,+∞) ∪ {∞} is the sum of
the power series which results from

∑n=−1
−∞ an(z − z0)

n by formal termwise differentiation. I.e.

s′(z) =
∑n=−1

−∞ nan(z − z0)
n−1, z ∈ Dz0(R,+∞) ∪ {∞}.

Proof. The easiest way is to reduce a power series of second type to a power series of first type
with the simple change of variable w = 1

z−z0 . Then the power series
∑n=−1

−∞ an(z − z0)
n takes

the form ∑n=−1
−∞ anw

−n =
∑+∞

m=1 a−mw
m

62



of a power series of first type with center 0. We also observe that z varies in the unbounded ring
Dz0(R,+∞) if and only if w varies in the punctured disc D0(

1
R) \ {0}. Also, z varies in the

unbounded ring Dz0(r,+∞) if and only if w varies in the punctured disc D0(
1
r ) \ {0}. Now

we can use everything we know about the series
∑+∞

m=1 a−mw
m from proposition 4.13 to get the

corresponding results about the series
∑n=−1

−∞ an(z − z0)
n. For example, the differentiability of∑n=−1

−∞ an(z − z0)
n results from the differentiability of

∑+∞
m=1 a−mw

m and the differentiability
of the function w = 1

z−z0 . We leave all the details to the reader. We shall only say a few things
about the differentiability of s(z) =

∑n=−1
−∞ an(z−z0)n at∞, using again the transformed power

series s∗(w) =
∑+∞

m=1 a−mw
m. Since s(∞) = 0 and s∗(0) = 0, we have

limz→∞ z(s(z)− s(∞)) = limz→∞ zs(z) = limw→0(1 + z0w)
s∗(w)
w = s′∗(0) = a−1.

Therefore, s is differentiable at∞

If R is the radius of convergence of
∑n=−1

−∞ an(z − z0)
n, then the open ring Dz0(R,+∞) is

called ring of convergence of the power series. In fact the series converges inDz0(R,+∞)∪{∞},
which is an open set in Ĉ with respect to the chordal metric.

If 0 ≤ R < +∞, we saw that the sum s of the power series is a holomorphic function in
Dz0(R,+∞) ∪ {∞}. In fact the derivative s′ is the sum of the power series we get by formal
termwise differentiation of the original power series. The differentiated power series converges
in the same set Dz0(R,+∞) ∪ {∞}. Therefore, we may repeat our arguments: the function s′ is
holomorphic in Dz0(R,+∞) ∪ {∞} and its derivative, i.e. the second derivative of s, is the sum
of the power series which we get by a second formal termwise differentiation of the original power
series. We conclude that the function s(z) is infinitely many times differentiable inDz0(R,+∞)∪
{∞} and

s(k)(z) =
∑n=−1

−∞ n(n− 1) · · · (n− k + 1)an(z − z0)
n−k, z ∈ Dz0(R,+∞) ∪ {∞}.

Example 4.6.5.
∑n=−1

−∞
zn

−n =
∑+∞

m=1
1

mzm converges in D0(1,+∞) ∪ {∞} = Ĉ \ D.

Example 4.6.6.
∑n=−1

−∞
zn

n2 =
∑+∞

m=1
1

m2zm
converges in D0(1,+∞) ∪ {∞} = Ĉ \ D.

Example 4.6.7.
∑n=−1

−∞
zn

(−n)! =
∑+∞

m=1
1

m!zm converges in D0(0,+∞) ∪ {∞} = Ĉ \ {0}.

Example 4.6.8.
∑n=−1

−∞ (−n)!zn =
∑+∞

m=1
m!
zm converges only at ∞.

Finally, we consider a series of the form∑+∞
−∞ an(z − z0)

n = · · ·+ a−2

(z−z0)2 + a−1

z−z0 + a0 + a1(z − z0) + a2(z − z0)
2 + · · ·

which consists of a power series of first type and a power series of second type. We assume
that an ̸= 0 for at least one n < 0 and for at least one n > 0. Then the original series is
called power series of third type with center z0 and coefficients an. The radius of convergence
R1 of

∑n=−1
−∞ an(z − z0)

n and the radius of convergence R2 of
∑+∞

n=0 an(z − z0)
n are called

radii of convergence of our power series. We say that
∑+∞

−∞ an(z − z0)
n converges at z if both∑n=−1

−∞ an(z − z0)
n and

∑+∞
n=0 an(z − z0)

n converge at z, and we say that
∑+∞

−∞ an(z − z0)
n

diverges at z in all other cases.
A power series of third type with center z0 has no meaning at the points z0 and ∞.
A power series of third type is a combination of a power series of first type and a power series

of second type. Therefore, we expect that the properties of a power series of this new type are a
combination of properties of power series of the two previous types. Indeed, the next result is a
direct combination of propositions 4.13 and 4.14 and we omit the proof.
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Proposition 4.15. Let
∑+∞

−∞ an(z− z0)n be a power series of third type with radii of convergence
R1, R2.
If R2 ≤ R1, then the series diverges at every z, except in the case 0 < R1 = R2 = R < +∞ and
then it may converge only at some z ∈ Cz0(R). If R1 < R2, then
(i) The power series converges absolutely at every z ∈ Dz0(R1, R2).
(ii) The power series diverges at every z ̸∈ Dz0(R1, R2).
(iii) The power series converges uniformly in every Dz0(r1, r2) with R1 < r1 < r2 < R2.
(iv) The sum

s(z) =
∑+∞

−∞ an(z − z0)
n, z ∈ Dz0(R1, R2),

is holomorphic inDz0(R1, R2). The derivative of s inDz0(R1, R2) is the sum of the power series
which results from

∑+∞
−∞ an(z − z0)

n by formal termwise differentiation. I.e.

s′(z) =
∑+∞

−∞ nan(z − z0)
n−1, z ∈ Dz0(R1, R2).

If R1 < R2, then Dz0(R1, R2) is called ring of convergence of
∑+∞

−∞ an(z − z0)
n and the

function s defined by the power series is infinitely many times differentiable inDz0(R1, R2).

Example 4.6.9.We consider
∑n=−1

−∞
2n

−nz
n + 1 +

∑+∞
n=1

1
n2 z

n.
Then

∑n=−1
−∞

2n

−nz
n has radius of convergence 1

2 and 1 +
∑+∞

n=1
1
n2 z

n has radius of convergence
1. Therefore, D0(

1
2 , 1) is the ring of convergence of

∑n=−1
−∞

2n

−nz
n + 1 +

∑+∞
n=1

1
n2 z

n.

Exercises.

4.6.1. Find the discs of convergence of the following power series:∑+∞
n=0 n

13zn,
∑+∞

n=1
1
n5 z

n,
∑+∞

n=1
1
nn zn,

∑+∞
n=1 n

lnnzn,∑+∞
n=1 ln

n n zn,
∑+∞

n=1
n!
nn zn,

∑+∞
n=1

(n!)2

nn zn,
∑+∞

n=0
(n!)2

(2n)!z
n.

4.6.2. Find the rings of convergence of the following power series:∑n=−1
−∞ n3zn,

∑n=−1
−∞

1
n2 z

n,
∑n=−1

−∞
1
2n z

n,
∑n=−1

−∞ 3nzn,
∑n=−1

−∞
1

(−n)!nn z
n.

4.6.3. Find the ring of convergence and the sum of
∑n=−1

−∞ (−1)nzn +
∑+∞

n=1(
1
2i)

n+1zn.

4.6.4. (i) Using the geometric series
∑+∞

n=0 z
n, write 1

1−z as a power series with disc of convergence
D0(1) and as power series with ring of convergence D0(1,+∞).
(ii) Write 1

(z−3)(z−4) as a power series with disc of convergenceD0(3), as a power series with ring
of convergence D0(3, 4), and as a power series with ring of convergence D0(4,+∞).

4.6.5. Ifm ∈ N, using the geometric series
∑+∞

n=0 z
n, write 1

(1−z)m as a power series
∑+∞

n=0 anz
n,

and determine its disc of convergence.

4.6.6. Find the radius of convergence of

1 +
∑+∞

n=1
a(a+1)···(a+n−1)b(b+1)···(b+n−1)

1·2···n·c(c+1)···(c+n−1) zn,

where c ̸= 0,−1,−2, . . . . This power series is called hypergeometric series with parameters
a, b, c. Prove that the function w = F (z; a, b, c), which is defined by the hypergeometric series in
its disc of convergence, is a solution of the differential equation

z(1− z)w′′ + (c− (a+ b+ 1)z)w′ − abw = 0.
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4.6.7. (i) Prove that, if two power series of the type
∑+∞

n=0 an(z − z0)
n with positive radii of con-

vergence define the same function in the intersection of their discs of convergence (with common
center z0), then the two series coincide, i.e. they have the same coefficients an.
(ii) Prove a result analogous to (i) for two power series of the type

∑n=−1
−∞ an(z − z0)

n.

4.6.8. Let 0 < R < +∞.
(i) If

∑+∞
n=0 an(z − z0)

n converges absolutely for some z ∈ Cz0(R), prove that it converges
absolutely for every z ∈ Dz0(R).
(ii) If

∑+∞
n=0 an(z − z0)

n converges for some z ∈ Cz0(R), prove that it converges absolutely for
every z ∈ Dz0(R).

4.6.9. LetR′, R′′ andR be the radii of convergence of
∑+∞

n=0 a
′
n(z− z0)n,

∑+∞
n=0 a

′′
n(z− z0)n and∑+∞

n=0(a
′
n + a′′n)(z − z0)

n, respectively. If R′ ̸= R′′, prove that R = min{R′, R′′}. If R′ = R′′,
prove that R ≥ R′ = R′′.

4.6.10. Let cn = a0bn + a1bn−1 + · · · + an−1b1 + anb0 for every n ≥ 0. If the power series∑+∞
n=0 an(z − z0)

n and
∑+∞

n=0 bn(z − z0)
n converge in the disc Dz0(R), prove that the power

series
∑+∞

n=0 cn(z − z0)
n also converges in Dz0(R) and that∑+∞

n=0 cn(z − z0)
n =

∑+∞
n=0 an(z − z0)

n
∑+∞

n=0 bn(z − z0)
n

for every z ∈ Dz0(R).

4.6.11. Let R be the radius of convergence of
∑+∞

n=1 an(z − z0)
n. If 0 < R < +∞, find the radii

of convergence of
∑+∞

n=1 n
kan(z − z0)

n,
∑+∞

n=1 n!an(z − z0)
n and

∑+∞
n=1

an
n! (z − z0)

n.

4.6.12. Let k ∈ N, k ≥ 2. Find the z for which
∑+∞

n=1
zkn

n converges.

4.6.13. Find the z for which
∑+∞

n=1 z
n! converges.

4.6.14. Let 0 < b < 1. Find the ring of convergence of
∑+∞

n=−∞ bn
2
zn.

4.6.15. If s(z) =
∑+∞

n=0 an(z− z0)
n for every z ∈ Dz0(R) and |a1| ≥

∑+∞
n=2 n|an|rn−1 for some

r with 0 < r ≤ R, prove that s is one-to-one in Dz0(r). Conclude that, if a1 ̸= 0 and r > 0 is
small enough, then s is one-to-one in Dz0(r).

4.6.16. Consider the power series z31 − z2·3

1 + z3
2

2 − z2·3
2

2 + · · ·++ z3
n

n − z2·3
n

n + · · · . Prove that the
radius of convergence of this power series is 1 and that the set of z ∈ C0(1) for which the power
series converges as well as the set of z ∈ C0(1) for which the power series diverges are both dense
in C0(1).

4.6.17. (i) Let s(z) =
∑+∞

n=0 anz
n for every z ∈ D0(R). Use the summation by parts formula of

lemma 2.1 to prove that, if the series converges for some ζ ∈ C0(R), then the series
∑+∞

n=0 anr
nζn

converges uniformly as a series of functions of r in the interval [0, 1]. Apply this to prove that in
this case we have that limr→1− s(rζ) = s(ζ).
(ii) Use the series in example 4.6.1 to prove that∑+∞

n=1
1
n cos(nθ) = − ln

(
2 sin θ

2

)
,

∑+∞
n=1

1
n sin(nθ) =

π−θ
2

for every θ ∈ (0, 2π).
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Chapter 5

Local behaviour and basic properties of
holomorphic functions.

5.1 The theorem of Cauchy for triangles.

Let∆ be a closed triangular region. Wewrite
∮
∂∆ f(z) dz to denote the curvilinear integral over

a piecewise smooth curve γ with trajectory γ∗ = ∂∆ which describes the triangle ∂∆ once and in
the positive direction. For instance, if z1, z2, z2 are the vertices of the triangle in the order which
agrees with the positive direction of ∂∆, then a valid curve is γ = [z1, z2]

·
+ [z2, z3]

·
+ [z3, z1].

Hence, ∮
∂∆ f(z) dz =

∫
[z1,z2]

f(z) dz +
∫
[z2,z3]

f(z) dz +
∫
[z3,z1]

f(z) dz.

Of course there are analogous statements for integrals
∮
∂R f(z) dz, when R is a closed rectan-

gular region or, more generally, a closed convex polygonal region.

The theorem of Cauchy-Goursat. If f is holomorphic in an open setΩ which contains the closed
triangular region ∆, then ∮

∂∆ f(z) dz = 0.

Proof. We write I =
∮
∂∆ f(z) dz, and we have to show that I = 0.

Let ∆ = ∆(z1, z2, z3) be the given closed triangular region with vertices z1, z2, z3 written in the
order which agrees with the positive direction of ∂∆. We take the pointsw3, w1, w2, which are the
midpoints of the linear segments [z1, z2], [z2, z3], [z3, z1], respectively. Then the closed triangular
region ∆(z1, z2, z3) splits into the four closed triangular regions

∆(1) = ∆(z1, w3, w2), ∆(2) = ∆(w3, z2, w1), ∆(3) = ∆(w1, z3, w2), ∆(4) = ∆(w3, w1, w2)

and we define the corresponding curvilinear integrals:

I(1) =
∮
∂∆(1) f(z) dz, I(2) =

∮
∂∆(2) f(z) dz, I(3) =

∮
∂∆(3) f(z) dz, I(4) =

∮
∂∆(4) f(z) dz.

We analyse each of the four integrals into three integrals over the three linear segments of the
corresponding triangle, we add the resulting twelve integrals and we observe the cancellations
which occur between integrals over pairs of linear segments with opposite directions. We end
up with six integrals over six successive linear segments which add up to give the three linear
segments of the original triangle ∂∆. The result is

I = I(1) + I(2) + I(3) + I(4).

This implies
|I| ≤ |I(1)|+ |I(2)|+ |I(3)|+ |I(4)|
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and hence |I(j)| ≥ 1
4 |I| for at least one j. Now we take the corresponding closed triangular region

∆(j) and, for simplicity, we denote it ∆1. We also denote I1 the corresponding integral I(j). We
have proved that there is a closed triangular region ∆1 contained in the original ∆ such that, if
I =

∮
∂∆ f(z) dz and I1 =

∮
∂∆1

f(z) dz, then |I1| ≥ 1
4 |I|. We also observe that diam∆1 =

1
2 diam∆. We may continue inductively and produce a sequence of closed triangular regions ∆n

and the corresponding sequence of curvilinear integrals

In =
∮
∂∆n

f(z) dz

so that:
(i)∆ ⊇ ∆1 ⊇ · · · ⊇ ∆n ⊇ ∆n+1 ⊇ · · · ,
(ii) |In| ≥ 1

4n |I|,
(iii) diam∆n = 1

2n diam∆.
Now, (i), (iii) imply that there is a (unique) point z contained in all ∆n. In particular, z ∈ ∆
and hence f is differentiable at z. If we take an arbitrary ϵ > 0, then there is δ > 0 so that
|f(ζ)−f(z)ζ−z − f ′(z)| < ϵ for every ζ with 0 < |ζ − z| < δ. Thus,

|f(ζ)− f(z)− f ′(z)(ζ − z)| ≤ ϵ|ζ − z| (5.1)

for every ζ with |ζ − z| < δ. Because of (iii), there is some large n so that diam∆n < δ. Since
z ∈ ∆n and diam∆n < δ, we get |ζ − z| ≤ diam∆n < δ for every ζ ∈ ∂∆n ⊆ ∆n and now
(5.1) and (iii) imply

|f(ζ)− f(z)− f ′(z)(ζ − z)| ≤ ϵ|ζ − z| ≤ ϵ diam∆n = ϵ
2n diam∆

for every ζ ∈ ∂∆n. Therefore,∣∣ ∮
∂∆n

(f(ζ)− f(z)− f ′(z)(ζ − z)) dζ
∣∣ ≤ ϵ

2n diam∆ l(∂∆n) ≤ 3ϵ
4n (diam∆)2. (5.2)

Since f(z) + f ′(z)(ζ − z) is a polynomial function of ζ, we get∮
∂∆n

(f(z) + f ′(z)(ζ − z)) dζ = 0

from example 4.5.1, and (5.2) becomes

|In| = |
∮
∂∆n

f(ζ) dζ| ≤ 3ϵ
4n (diam∆)2.

Finally, (ii) implies
|I| ≤ 3ϵ(diam∆)2

and since ϵ > 0 is arbitrary, we conclude that I = 0.

5.2 Primitives and the theorem of Cauchy in convex regions.

Proposition 5.1. If f is holomorphic in the convex region Ω, then f has a primitive in Ω.

Proof. We fix z0 ∈ Ω. Then for every z ∈ Ω the linear segment [z0, z] is contained in Ω and we
define F (z) =

∫
[z0,z]

f(ζ) dζ. We shall prove that F is a primitive of f in Ω. We take arbitrary
z, w ∈ Ω and consider the closed triangular region∆ with vertices z0, z, w. Since Ω is convex,∆
is contained in Ω and the Cauchy-Goursat theorem implies

∮
∂∆ f(z) dz = 0, i.e.∫

[z0,z]
f(ζ) dζ +

∫
[z,w] f(ζ) dζ +

∫
[w,z0]

f(ζ) dζ = 0.

Therefore F (w)− F (z) =
∫
[z,w] f(ζ) dζ and hence

F (w)− F (z)− f(z)(w − z) =
∫
[z,w] f(ζ) dζ − f(z)

∫
[z,w] dζ =

∫
[z,w](f(ζ)− f(z)) dζ. (5.3)
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Since f is continuous, for every ϵ > 0 there is δ > 0 so that |f(ζ) − f(z)| < ϵ for every ζ ∈ Ω
with |ζ − z| < δ. Taking w ∈ Ω with |w − z| < δ we automatically have |ζ − z| < δ for every
ζ ∈ [z, w] and (5.3) implies

|F (w)− F (z)− f(z)(w − z)| ≤ ϵ|w − z|.

Therefore,
∣∣F (w)−F (z)

w−z −f(z)
∣∣ ≤ ϵ for everyw with 0 < |w−z| < δ and henceF ′(z) = f(z).

The theorem of Cauchy in convex regions. If f is holomorphic in the convex region Ω, then∮
γ f(z) dz = 0

for every closed piecewise smooth curve γ in Ω.

Proof. Direct from propositions 4.10 and 5.1.

Now we shall decribe a very useful technique to handle curvilinear integrals of holomorphic
functions. Every closed piecewise smooth curve γ we shall refer to will be visually simple, for
instance a circle or a triangle or a rectangle, and we shall be able to distinguish between the points
inside γ and the points outside γ. We assume that γ surrounds every point inside it once and in
the positive direction and that it does not surround the points outside it. The points inside γ form
the region inside γ and the points outside γ form the region outside γ. Then γ∗ is the common
boundary of the region inside γ and the region outside γ. We shall concentrate on two characteristic
cases.
First case. Let f be holomorphic in the open set Ω and let γ be a closed piecewise smooth curve
in Ω. We want to evaluate

∮
γ f(z) dz.

If Ω is convex, then
∮
γ f(z) dz = 0. So let us assume that Ω is not convex. To continue, we

assume that the region inside γ, call it D, is contained in Ω, and hence f is holomorphic in D
as well as in ∂D = γ∗. Now our technique is the following. We split D into specific disjoint
open sets E1, . . . , Em so that their boundaries ∂E1, . . . , ∂Em are trajectories of closed piecewise
smooth curves σ1, . . . , σm, so that D = E1 ∪ · · · ∪ Em and, finally, so that, when we analyse in
an appropriate way each of σ1, . . . , σm in successive subcurves and drop those subcurves which
appear as pairs of opposite curves, the remaining subcurves can be summed up to give the original
curve γ. The result is: ∮

γ f(z) dz =
∮
σ1
f(z) dz + · · ·+

∮
σm
f(z) dz.

In fact we applied this technique in the proof of the theorem of Cauchy-Goursat.
Now, if the various E1, . . . , Em can be chosen so that each E1, . . . , Em is contained in a corre-
sponding convex open subset of Ω, then we conclude that∮

γ f(z) dz =
∮
σ1
f(z) dz + · · ·+

∮
σm
f(z) dz = 0 + · · ·+ 0 = 0.

Second case. Let f be holomorphic in the open setΩ and let γ, γ1, . . . , γn be n+1 closed piecewise
smooth curves in Ω. We want to relate

∮
γ f(z) dz,

∮
γ1
f(z) dz, . . . ,

∮
γn
f(z) dz.

We assume that the regions inside γ1, . . . , γn are disjoint and that they are all contained in the
region inside γ. Let us call D the intermediate region, i.e. the set consisting of the points which
are inside γ and outside every γ1, . . . , γn, i.e. the intersection of the region inside γ and the regions
ouside γ1, . . . , γn. We further assume thatD is a subset of Ω, and hence f is holomorphic inD as
well as in ∂D = γ∗ ∪ γ∗1 ∪ · · · ∪ γ∗n. Now, here is the technique. We splitD into specific disjoint
open sets E1, . . . , Em so that their boundaries ∂E1, . . . , ∂Em are trajectories of closed piecewise
smooth curves σ1, . . . , σm, so that E = E1 ∪ · · · ∪ Em and, finally, so that, when we analyse in
an appropriate way each of σ1, . . . , σm in successive subcurves and drop those subcurves which
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appear as pairs of opposite curves, the remaining subcurves can be summed up to give γ as well
as the opposites of γ1, . . . , γn. The result is:∮

γ f(z) dz −
∮
γ1
f(z) dz − · · · −

∮
γn
f(z) dz =

∮
σ1
f(z) dz + · · ·+

∮
σm
f(z) dz.

If the various E1, . . . , Em can be chosen so that each E1, . . . , Em is contained in a corresponding
convex open subset of Ω, then

∮
σ1
f(z) dz + · · ·+

∮
σm
f(z) dz = 0 + · · ·+ 0 = 0 and hence∮

γ f(z) dz =
∮
γ1
f(z) dz + · · ·+

∮
γn
f(z) dz.

Corollary 5.1. Let C,C1, . . . , Cn be n + 1 circles and let D,D1, . . . , Dn be the corresponding
open discs. Assume that D1, . . . , Dn are disjoint and that they are all contained in D. Consider
also the closed regionM = D \ (D1 ∪ · · · ∪Dn). If f : Ω → C is holomorphic in an open set Ω
which containsM , then ∮

C f(z) dz =
∮
C1
f(z) dz + · · ·+

∮
Cn
f(z) dz.

Instead of circles we may consider rectangles or triangles or any combination of the three shapes.

Exercises.

5.2.1. Let γR be the closed piecewise smooth curve which is the sum of the linear segment [0, R],
the arc of the circle C0(R) from R to Rei

π
4 in the positive direction and the linear segment

[Rei
π
4 , 0]. Also, let σR be the curve wich describes only the above arc from R to Rei

π
4 .

(i) Prove that
∫
σR
e−z

2
dz → 0 when R→ +∞.

(ii) Using γR appropriately together with the formula
∫ +∞
0 e−x

2
dt =

√
π
2 , prove the formulas for

the so-called Fresnel integrals:∫ +∞
0 sin(x2) dx =

∫ +∞
0 cos(x2) dx =

√
π

2
√
2
.

5.2.2. Let y,R > 0 and γR,y be the closed piecewise smooth curve which is the sum of the linear
segments [−R,R], [R,R+ iy], [R+ iy,−R+ iy] and [−R+ iy,−R].
(i) If y > 0 is constant, prove that

∫
[R,R+iy] e

−z2 dz → 0 and
∫
[−R+iy,−R] e

−z2 dz → 0 when
R→ +∞.
(ii) Using γR,y appropriately, prove that

∫ +∞
−∞ e−(x+iy)2 dx does not depend on y ∈ [0,+∞).

(iii) Using the formula
∫ +∞
0 e−x

2
dx =

√
π
2 , prove that∫ +∞

−∞ e−x
2 cos(2xy) dx =

√
πe−y

2

for every y ≥ 0 (and hence for every y ≤ 0 also). This identity is very important in harmonic
analysis.

5.3 Cauchy’s formulas for circles and infinite differentiability.

Cauchy’s formula for circles. If f is holomorphic in an open set Ω containing the closed disc
Dz0(R), then

f(z) = 1
2πi

∮
Cz0 (R)

f(ζ)
ζ−z dζ

for every z ∈ Dz0(R).

Proof. Let z ∈ Dz0(R). We consider any open discDz(r) with r < R− |z− z0|. ThenDz(r) ⊆
Dz0(R) and the function f(ζ)

ζ−z is holomorphic in the open set Ω \ {z} which contains the closed
region between the circles Cz(r) and Cz0(R). Corollary 5.1 implies∮

Cz0 (R)
f(ζ)
ζ−z dζ =

∮
Cz(r)

f(ζ)
ζ−z dζ. (5.4)
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Now, we have
∮
Cz(r)

1
ζ−z dζ =

∫ 2π
0

1
reit

ireit dt = 2πi and hence∮
Cz(r)

f(ζ)
ζ−z dζ − 2πif(z) =

∮
Cz(r)

f(ζ)−f(z)
ζ−z dζ. (5.5)

We take ϵ > 0. Since f is continuous at z, there is δ > 0 so that |f(ζ)−f(z)| < ϵ for every ζ ∈ Ω
with |ζ − z| < δ. Therefore, if r < δ, (5.5) implies∣∣ ∮

Cz(r)
f(ζ)
ζ−z dζ − 2πif(z)

∣∣ ≤ ϵ
r 2πr = 2πϵ.

Since ϵ is arbitrary, we conclude that

limr→0

∮
Cz(r)

f(ζ)
ζ−z dζ = 2πif(z).

Now, letting r → 0 in (5.4), we get
∮
Cz0 (R)

f(ζ)
ζ−z dζ = 2πif(z).

A particular instance of the formula of Cauchy is when z = z0, the center of the circleCz0(R).
Using the parametric equation ζ = z0 +Reit, t ∈ [0, 2π], we get

f(z0) =
1
2π

∫ 2π
0 f(z0 +Reit) dt

and this is calledmean value property of the holomorphic function f .

Cauchy’s formula for derivatives and circles. If f is holomorphic in an open set Ω containing
the closed disc Dz0(R), then f is infinitely many times differentiable at every z ∈ Dz0(R) and

f (n)(z) = n!
2πi

∮
Cz0 (R)

f(ζ)
(ζ−z)n+1 dζ

for every z ∈ Dz0(R) and every n ∈ N.

Proof. Proposition 4.12 says that 1
2πi

∮
Cz0(R)

f(ζ)
ζ−z dζ is an infinitely many times differentiable

function of z in the disc Dz0(R). On the other hand, Cauchy’s formula says that this function
coincides with the function f in the same disc. Therefore f is infinitely many times differentiable
in Dz0(R). Moreover, the derivatives of f are the same as the derivatives of 1

2πi

∮
Cz0 (R)

f(ζ)
ζ−z dζ

and these are given by the formulas in proposition 4.12.

Example 5.3.1. Let n ∈ N. Then ∮
Cz0 (R)

1
(ζ−z)n dζ = 0

for every z ̸∈ Dz0(R). To see this we observe that the circle Cz0(R) is contained in a slightly
larger open discDz0(R

′) which does not contain z: it is enough to take R < R′ < |z − z0|. Then
the disc Dz0(R

′) is a convex region and 1
(ζ−z)n is a holomorphic function of ζ in Dz0(R

′). Now
the result is an application of the theorem of Cauchy in convex regions.
On the other hand, for every z ∈ Dz0(R) we have

∮
Cz0 (R)

1
(ζ−z)n dζ =

{
2πi, if n = 1,

0, if n ≥ 2

This is a simple application of Cauchy’s formula (for a function and its derivatives) to the constant
function 1. The special case z = z0 we have already seen in examples 2.2.9 and 4.2.2 and the
general case (for n ≥ 2) in example 4.5.3.

Theorem 5.1. If f is holomorphic in the open set Ω, then f is infinitely many times differentiable
in Ω.
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Proof. Let z0 ∈ Ω. We take a closed disc Dz0(R) ⊆ Ω and then f is infinitely many times
differentiable in Dz0(R) and hence at z0.

It is time to recall the remark after theorem 4.1. The assumption of continuity of the derivative
in theorem 4.1 is superfluous. The same we may say for the hypothesis in example 4.5.6 and in
exercises 3.3.3 and 4.5.1.

Cauchy’s estimates. If f is holomorphic in an open set containing the closed disc Dz0(R) and if
|f(ζ)| ≤M for every ζ ∈ Cz0(R), then

|f (n)(z0)| ≤ n!M
Rn

for every n ∈ N.

Proof. Direct application of Cauchy’s formulas.

Exercises.

5.3.1. Evaluate
∮
C0(r)

z2+1
z(z2+4)

dz for 0 < r < 2 and for 2 < r < +∞.

5.3.2. If n ∈ N, evaluate∮
C0(1)

ez

zn dz,
∫ 2π
0 ecos θ sin(nθ − sin θ) dθ,

∫ 2π
0 ecos θ cos(nθ − sin θ) dθ.

5.3.3. If n ∈ N, evaluate∮
C0(1)

eiz

zn dz,
∮
C0(1)

sin z
zn dz,

∮
C0(1)

ez−e−z

zn dz,
∮
C1(

1
2
)

Log z
(z−1)n dz.

5.3.4. Let f be holomorphic inC and let |f(z)| ≤ A+M |z|n for every z. Prove that f (n+1)(z) = 0
for every z and that f is a polynomial function of degree ≤ n.

5.3.5. Let the complex function f be continuous in Dz0(R) and holomorphic in Dz0(R). Prove
that f(z) = 1

2πi

∮
Cz0 (R)

f(ζ)
ζ−z dζ for every z ∈ Dz0(R).

5.3.6. Let f be holomorphic in an open set containing the closed disc Dz0(R) and let 0 < r < R.
If |f(z)| ≤ M for every z ∈ Cz0(R), find an upper bound for |f (n)| in Dz0(r), which depends
only on n, r,R,M and not on f or z0.

5.3.7. Let f be holomorphic in Dz0(R). If |f(z)| ≤ 1
R−|z−z0| for every z ∈ Dz0(R), find the

smallest possible upper bound for |f (n)(z0)|, which depends only on n,R and not on f or z0.

5.3.8. Let f be holomorphic in D with
∫∫

D |f(z)| dxdy < +∞ (z = x+ iy). Prove that

f(w) = 1
π

∫∫
D

f(z)
(1−zw)2 dxdy (z = x+ iy)

for every w ∈ D.

5.3.9. Let f be holomorphic in Dz0(R).
(i) Using the mean value property, prove that

f(z0) =
1

πR2

∫∫
Dz0 (R) f(z) dxdy (z = x+ iy).

(ii) If 1 ≤ p < +∞, prove that

|f(z0)|p ≤ 1
πR2

∫∫
Dz0 (R) |f(z)|

p dxdy (z = x+ iy).

5.3.10. Prove that ∫ 2π
0 ln |1− aeiθ| dθ =

{
2π ln |a|, if |a| ≥ 1

0, if |a| ≤ 1
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5.4 Morera’s theorem.

Theorem 5.1 and proposition 4.10 imply the following corollary. If the complex function f is
continuous in the region Ω ⊆ C and if

∮
γ f(z) dz = 0 for every closed piecewise smooth curve γ

in Ω, then f is holomorphic in Ω. Indeed, since
∮
γ f(z) dz = 0 for every closed piecewise smooth

curve γ in Ω, we get that f has a primitive, say F , in Ω. This means that F ′ = f in Ω and hence F
is holomorphic in Ω. Therefore, F is infinitely many times differentiable in Ω and then f is also
infinitely many times differentiable in Ω. In particular, f is holomorphic in Ω.

The next theorem proves the same result with weaker assumptions.

The theorem of Morera. If the complex function f is continuous in the open set Ω ⊆ C and if∮
∂∆ f(z) dz = 0 for every closed triangular region ∆ in Ω, then f is holomorphic in Ω.

Proof. Let z0 ∈ Ω. We consider a disc Dz0(R) ⊆ Ω. This disc is a convex set and we have that∮
∂∆ f(z) dz = 0 for every closed triangular region∆ inDz0(R). Then the proof of proposition 5.1
applies, andwe get that f has a primitive, sayF , inDz0(R). This means thatF ′ = f inDz0(R) and
hence F is holomorphic inDz0(R). Therefore, F is infinitely many times differentiable inDz0(R)
and f is also infinitely many times differentiable in Dz0(R). In particular, f is holomorphic in
Dz0(R) and hence at z0.

Exercises.

5.4.1. If the complex function f is continuous in the open set Ω and holomorphic in Ω \ l, where l
is a line, prove that f is holomorphic in Ω.

5.5 Liouville’s theorem. The fundamental theorem of algebra.

The theorem of Liouville. If f is holomorphic and bounded in C, then f is constant in C.

Proof. There is M ≥ 0 so that |f(z)| ≤ M for every z. We take any z0 and apply Cauchy’s
estimate for n = 1 with an arbitrary circle Cz0(R) and we find that |f ′(z0)| ≤ M

R . Letting
R→ +∞, we get f ′(z0) = 0. Since z0 is arbitrary, we conclude that f is constant.

Fundamental theorem of algebra. Every polynomial of degree ≥ 1 has at least one root in C.

Proof. Let p be a polynomial of degree ≥ 1 and assume that p has no root in C.
We consider the function f = 1

p , which is holomorphic in C, and we see easily that it is also
bounded in C. Indeed, since limz→∞ p(z) = ∞, we have limz→∞ f(z) = 0, and hence there is
R > 0 so that |f(z)| ≤ 1 for every z with |z| > R. Since |f | is continuous in the compact disc
D0(R), there isM ′ ≥ 0 so that |f(z)| ≤M ′ for every z with |z| ≤ R. TakingM = max{M ′, 1},
we have that |f(z)| ≤M for every z and hence f is bounded.
Liouville’s theorem implies that f and hence p is constant and we arrive at a contradiction.

Having proved that a polynomial p has a root z1, we may prove in a purely algebraic way that
z − z1 is a factor of p, i.e. there is a polynomial p1 so that p(z) = (z − z1)p1(z) for every z.
Continuing inductively, we conclude that, if n ≥ 1 is the degree of p, there are z1, . . . , zn so that

p(z) = c(z − z1) · · · (z − zn) for every z

where c is a constant. Thus, every polynomial p of degree n ≥ 1 has exactly n roots in C.

Exercises.

5.5.1. If f : C → C is holomorphic in C and Re f is bounded in C, prove that f is constant in C.
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5.5.2.We say that z, w are symmetric with respect to T if either z = 0, w = ∞ or z = ∞, w = 0
or z, w ∈ C, z = 1

w .
Let p, q be two polynomials with no common root and so that |p(z)| = |q(z)| for every z ∈ T.
Prove that, if a ∈ C \ {0} is a root of p of multiplicity k, then b = 1

a is a root of q of multiplicity
k and conversely. I.e. the roots of p and the roots of q form pairs of points symmetric with respect
to T. (In particular, p and q have the same degree.)

5.6 Taylor series and Laurent series.

Proposition 5.2. Let f be holomorphic in the open set Ω, z0 ∈ Ω and let Dz0(R) be the largest
disc with center z0 which is contained inΩ. Then there is a unique power series

∑+∞
n=0 an(z−z0)n

so that
f(z) =

∑+∞
n=0 an(z − z0)

n

for every z ∈ Dz0(R). The coefficients are given by

an = f (n)(z0)
n! = 1

2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ

for 0 < r < R.

Proof. We take z ∈ Dz0(R), and then |z − z0| < R. If |z − z0| < r < R, then z ∈ Dz0(r) and,
according to the formula of Cauchy, we have

f(z) = 1
2πi

∮
Cz0 (r)

f(ζ)
ζ−z dζ. (5.6)

Now for every ζ ∈ Cz0(r) we have
∣∣ z−z0
ζ−z0

∣∣ = |z−z0|
r < 1 and hence

1
ζ−z = 1

(ζ−z0)−(z−z0) =
1

ζ−z0
1

1− z−z0
ζ−z0

= 1
ζ−z0

∑+∞
n=0(

z−z0
ζ−z0 )

n.

The test of Weierstrass implies that
∑+∞

n=0

(
z−z0
ζ−z0

)n converges, as a series of functions of ζ, uni-
formly in Cz0(r). Indeed,

∣∣ z−z0
ζ−z0

∣∣n = ( |z−z0|r )n for every ζ ∈ Cz0(r) and
∑+∞

n=0(
|z−z0|
r )n < +∞.

So from (5.6) we have that

f(z) =
∑+∞

n=0
1

2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ (z − z0)

n. (5.7)

Now, we observe that the radius r has been chosen to satisfy the inequality |z − z0| < r < R and
so the integrals 1

2πi

∫
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ depend a priori on z. But there are two reasons that these

integrals actually do not depend on the value of r in the interval (0, R) and hence on z. The first
reason is that from the formulas of Cauchy we get

1
2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ = f (n)(z0)

n!

when 0 < r < R. The second reason is that f(ζ)
(ζ−z0)n+1 is holomorphic in Dz0(R) \ {z0}, and

because of corollary 5.1, we have

1
2πi

∮
Cz0 (r1)

f(ζ)
(ζ−z0)n+1 dζ = 1

2πi

∮
Cz0 (r2)

f(ζ)
(ζ−z0)n+1 dζ

when 0 < r1 < r2 < R. We conclude from (5.7) that f(z) =
∑+∞

n=0 an(z − z0)
n for every

z ∈ Dz0(R), where an = f (n)(z0)
n! = 1

2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ for 0 < r < R.

74



Regarding uniqueness, assume that f(z) =
∑+∞

n=0 bn(z − z0)
n for every z ∈ Dz0(R). Then, if

0 < r < R, the series
∑+∞

n=0 bn(z − z0)
n converges uniformly in Cz0(r) and we get

2πiak =
∮
Cz0 (r)

f(ζ)
(ζ−z0)k+1 dζ =

∮
Cz0(r)

1
(ζ−z0)k+1

∑+∞
n=0 bn(ζ − z0)

n dζ

=
∑+∞

n=0 bn
∮
Cz0(r)

(ζ − z0)
n−k−1 dζ = 2πibk.

The last equality uses the calculation in example 4.2.2.

The power series provided by proposition 5.2 is called Taylor series of f in the discDz0(R),
the largest open disc with center z0 which is contained in the domain of holomorphy of f .

Example 5.6.1. The function f(z) = 1
1−z is holomorphic in C \ {1} and the largest open disc

with center 0 which is contained in C \ {1} is D0(1). To find the Taylor series of f in D0(1) we
calculate the derivatives f (n)(z) = n!

(1−z)n+1 for every n ≥ 0. Thus, an = f (n)(0)
n! = 1 for every

n ≥ 0 and the Taylor series of f is
∑+∞

n=0 z
n. I.e. 1

1−z =
∑+∞

n=0 z
n for every z ∈ D0(1). Of

course, this is already known.

Example 5.6.2. The function f(z) = 1
1+z2

= 1
(z+i)(z−i) is holomorphic in the open setC\{i,−i}

and the largest open disc with center 0 which is contained in C \ {i,−i} is D0(1). To find the
Taylor series of f in D0(1) we calculate the derivatives of f . We write f(z) = − 1

2i(
1
i−z +

1
i+z )

and get
f (n)(z) = − 1

2i(
n!

(i−z)n+1 + (−1)n n!
(i+z)n+1 )

for every n ≥ 0. Hence an = f (n)(0)
n! = 1+(−1)n

2in for every n ≥ 0. Thus, an = 0, if n is
odd, and an = 1

in = (−1)
n
2 , if n is even. So the Taylor series of f is

∑+∞
k=0(−1)kz2k. I.e.

1
1+z2

=
∑+∞

k=0(−1)kz2k for every z ∈ D0(1).
We may find the same formula if we use the Taylor series of 1

1−z , i.e.
1

1−z =
∑+∞

n=0 z
n. We

replace z with−z2 and find 1
1+z2

=
∑+∞

n=0(−1)nz2n. From the moment that we have found some
power series which coincides with our function in D0(1), then, because of uniqueness, this is the
Taylor series of our function.

Example 5.6.3. The exponential function f(z) = ez is holomorphic in C and the largest open disc
with center 0 which is contained in C isD0(+∞) = C. The derivatives of f are f (n)(z) = ez for
every n ≥ 0 and the coefficients of the Taylor series of f are an = f (n)(0)

n! = 1
n! for every n ≥ 0.

Thus, the Taylor series of f is
∑+∞

n=0
1
n!z

n and we have

ez =
∑+∞

n=0
1
n!z

n

for every z. We have proven this identity differently in example 4.6.3.

Example 5.6.4. The function f(z) = cos z is holomorphic in C and the largest open disc with
center 0which is contained inC isD0(+∞) = C. The derivatives of f are f (n)(z) = (−1)

n
2 cos z

for even n and f (n)(z) = (−1)
n+1
2 sin z for odd n. Therefore, the coefficients of the Taylor series

are an = f (n)(0)
n! = (−1)

n
2

n! for even n and an = f (n)(0)
n! = 0 for odd n. Thus, the Taylor series of

f is
∑+∞

k=0
(−1)k

(2k)! z
2k and we have

cos z =
∑+∞

k=0
(−1)k

(2k)! z
2k

for every z. In the same manner we can prove that

sin z =
∑+∞

k=1
(−1)k−1

(2k−1)! z
2k−1
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for every z.
Another way to find the Taylor series of cos and sin is through the definitions of the two functions
and the Taylor series of ez . For instance:

cos z = eiz+e−iz

2 = 1
2

∑+∞
n=0

1
n!(iz)

n + 1
2

∑+∞
n=0

1
n!(−iz)

n =
∑+∞

n=0
in(1+(−1)n)

2n! zn

=
∑+∞

k=0
i2k

(2k)!z
2k =

∑+∞
k=0

(−1)k

(2k)! z
2k.

The power series we found coincides with the function cos in the largest open disc with center
0 which is contained in the domain of holomorphy of cos and, because of uniqueness, this is the
Taylor series of cos.

Example 5.6.5. The function f(z) = −Log(1 − z) is defined and holomorphic in C \ [1,+∞).
The largest disc with center 0 in C \ [1,+∞) is D. The derivatives of f are f (n)(z) = (n−1)!

(1−z)n for

every n ≥ 1. Thus, a0 = 0 and an = f (n)(0)
n! = 1

n for every n ≥ 1 and the Taylor series of f is∑+∞
n=1

zn

n . I.e.
−Log(1− z) =

∑+∞
n=1

zn

n

for every z ∈ D. We found the same result in example 4.6.1.

Proposition 5.3. Let f be holomorphic in the open set Ω and let Dz0(R1, R2) be a largest open
ring with center z0 which is contained inΩ. Then there is a unique power series

∑+∞
−∞ an(z−z0)n

so that
f(z) =

∑+∞
−∞ an(z − z0)

n

for every z ∈ Dz0(R1, R2). The coefficients are given by

an = 1
2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ

for R1 < r < R2.

Proof. We take z ∈ Dz0(R1, R2), and then R1 < |z − z0| < R2. We choose any r1, r2 so that
R1 < r1 < |z − z0| < r2 < R2. Then z ∈ Dz0(r1, r2) and

f(z) = 1
2πi

∮
Cz0 (r2)

f(ζ)
ζ−z dζ −

1
2πi

∮
Cz0 (r1)

f(ζ)
ζ−z dζ. (5.8)

To prove (5.8), we consider an open discDz(r) with r < min{r2 − |z− z0|, |z− z0| − r1}. Then
Dz(r) ⊆ Dz0(r1, r2) and we apply corollary 5.1 to f(ζ)

ζ−z , which is a holomorphic function of ζ in
Dz0(R1, R2) \ {z}. We get∮

Cz0 (r2)
f(ζ)
ζ−z dz −

∮
Cz0 (r1)

f(ζ)
ζ−z dz =

∮
Cz(r)

f(ζ)
ζ−z dζ.

Now as in the proof of Cauchy’s formula for circles, we have

limr→0

∮
Cz(r)

f(ζ)
ζ−z dζ = 2πif(z)

and the proof of (5.8) is complete.
For every ζ ∈ Cz0(r2) we have

1
ζ−z = 1

(ζ−z0)−(z−z0) =
1

ζ−z0
1

1− z−z0
ζ−z0

= 1
ζ−z0

∑+∞
n=0(

z−z0
ζ−z0 )

n,

because
∣∣ z−z0
ζ−z0

∣∣ = |z−z0|
r2

< 1. Similarly, for every ζ ∈ Cz0(r1) we have

1
ζ−z = 1

(ζ−z0)−(z−z0) = − 1
z−z0

1

1− ζ−z0
z−z0

= − 1
z−z0

∑+∞
n=0(

ζ−z0
z−z0 )

n

76



because
∣∣ ζ−z0
z−z0

∣∣ = r1
|z−z0| < 1. Exactly as in the proof of proposition 5.2, we see that these two

series of functions converge uniformly and (5.8) implies

f(z) =
∑+∞

n=0
1

2πi

∮
Cz0 (r2)

f(ζ)
(ζ−z0)n+1 dζ (z − z0)

n

+
∑+∞

n=0
1

2πi

∮
Cz0 (r1)

f(ζ)(ζ − z0)
n dζ 1

(z−z0)n+1 .

In the last series we change n+ 1 to −n and get

f(z) =
∑+∞

n=0
1

2πi

∮
Cz0 (r2)

f(ζ)
(ζ−z0)n+1 dζ (z − z0)

n

+
∑n=−1

−∞
1

2πi

∮
Cz0 (r1)

f(ζ)
(ζ−z0)n+1 dζ (z − z0)

n.
(5.9)

Now, f(ζ)
(ζ−z0)n+1 is holomorphic in Dz0(R1, R2) and another application of corollary 5.1 implies

that ∮
Cz0 (r1)

f(ζ)
(ζ−z0)n+1 dζ =

∮
Cz0 (r2)

f(ζ)
(ζ−z0)n+1 dζ

for R1 < r1 < r2 < R2. Therefore the coefficients of both series in (5.9) do not depend on
the values of r1, r2, and we replace both radii with any r with R1 < r < R2. We conclude that
f(z) =

∑+∞
−∞ an(z − z0)

n for every z ∈ Dz0(R1, R2), where an = 1
2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ for

R1 < r < R2.
Regarding uniqueness, assume that f(z) =

∑+∞
−∞ bn(z − z0)

n for every z ∈ Dz0(R1, R2). We
take any r with R1 < r < R2, and then

∑+∞
−∞ bn(z − z0)

n converges uniformly in Cz0(r). Then

2πiak =
∮
Cz0 (r)

f(ζ)
(ζ−z0)k+1 dζ =

∮
Cz0 (r)

1
(ζ−z0)k+1

∑+∞
−∞ bn(ζ − z0)

n dζ

=
∑+∞

−∞ bn
∮
Cz0 (r)

(ζ − z0)
n−k−1 dζ = 2πibk

and we get that bk = ak for every k.

The power series given by proposition 5.3 is called Laurent series of f in Dz0(R1, R2), a
largest open ring with center z0 which is contained in the domain of holomorphy of f .

Example 5.6.6. The function f(z) = 1
z is holomorphic inC\{0}. The ringD0(0,+∞) = C\{0}

is the largest open ring with center 0 which is contained in C \ {0}. To find the Laurent series of
f in D0(0,+∞) we evaluate the coefficients an. We take any r with 0 < r < +∞, and then we
have

an = 1
2πi

∮
C0(r)

1/ζ
ζn+1 dζ = 1

2πi

∮
C0(r)

1
ζn+2 dζ

for every n. If n ̸= −1, then an = 0 and, if n = −1, then a−1 = 1. Therefore, the Laurent series
of f in D0(0,+∞) is

∑+∞
−∞ anz

n = z−1 and hence we have the obvious identity 1
z = z−1 for

every z ∈ D0(0,+∞).

In the following examples we shall use the uniqueness of the Laurent series to find the Laurent
series of certain functions without evaluating integrals: we find in an indirect way a power series
which coincides with the function in a specific ring and then, because of uniqueness, this is the
Laurent series of the function in the ring.

Example 5.6.7. The function f(z) = 1
1−z is holomorphic in the open set C \ {1}. We have seen

that the largest open disc with center 0 which is contained in C \ {1} isD0(1) and that the Taylor
series of f in this disc is

∑+∞
n=0 z

n.
Another largest open ring with center 0 which is contained in C \ {1} is D0(1,+∞). To find the
Laurent series of f in this ring, we may evaluate the coefficients an using their formulas with the
integrals. But we can do something simpler. If z ∈ D0(1,+∞), then

∣∣1
z

∣∣ < 1 and hence

1
1−z = −1

z
1

1− 1
z

= −1
z

∑+∞
n=0(

1
z )
n = −

∑n=−1
−∞ zn.

Because of uniqueness, the Laurent series of f in D0(1,+∞) is −
∑n=−1

−∞ zn.
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Example 5.6.8. The function f(z) = 1
(z−1)(z−2) is holomorphic in C \ {1, 2}. There is a largest

open disc and two largest open rings with center 0which are contained inC\{1, 2} : the discD0(1)
and the rings D0(1, 2) and D0(2,+∞). To find the corresponding Taylor and Laurent series we
write f as a sum of simple fractions: f(z) = 1

z−2 − 1
z−1 .

If z ∈ D0(1), then |z| < 1 and
∣∣ z
2

∣∣ < 1, and hence

f(z) = −1
2

1
1− z

2
+ 1

1−z = −1
2

∑+∞
n=0(

z
2)
n +

∑+∞
n=0 z

n =
∑+∞

n=0(1−
1

2n+1 )z
n.

Therefore, the Taylor series of f in D0(1) is
∑+∞

n=0(1−
1

2n+1 )z
n.

If z ∈ D0(1, 2), then
∣∣1
z

∣∣ < 1 and
∣∣ z
2

∣∣ < 1, and hence

f(z) = −1
2

1
1− z

2
− 1

z
1

1− 1
z

= −1
2

∑+∞
n=0(

z
2)
n − 1

z

∑+∞
n=0(

1
z )
n = −

∑n=−1
−∞ zn −

∑+∞
n=0

1
2n+1 z

n.

Therefore, the Laurent series of f in D0(1, 2) is −
∑n=−1

−∞ zn −
∑+∞

n=0
1

2n+1 z
n.

If z ∈ D0(2,+∞), then
∣∣1
z

∣∣ < 1 and
∣∣2
z

∣∣ < 1, and hence

f(z) = 1
z

1
1− 2

z

− 1
z

1
1− 1

z

= 1
z

∑+∞
n=0(

2
z )
n − 1

z

∑+∞
n=1(

1
z )
n =

∑n=−2
−∞ ( 1

2n+1 − 1)zn.

Therefore, the Laurent series of f in D0(2,+∞) is
∑n=−2

−∞ ( 1
2n+1 − 1)zn.

Example 5.6.9. The function f(z) = e
1
z is holomorphic in C \ {0}. ThenD0(0,+∞) = C \ {0}

is the only largest open ring with center 0which is contained inC\{0}. We find the Laurent series
of f inD0(0,+∞) using the Taylor series of ez in C. In the identity ez =

∑+∞
n=0

1
n!z

n we replace
z with 1

z and we find
e

1
z =

∑n=−1
−∞

1
(−n)!z

n + 1

for every z ̸= 0. Therefore, the Laurent series of f in D0(0,+∞) is
∑n=−1

−∞
1

(−n)!z
n + 1.

Exercises.

5.6.1. Let 0 < |a| < |b|. Find the three Laurent series with center 0, the two Laurent series with
center a and the two Laurent series with center b of the function z

(z−a)(z−b) .

5.6.2. Find the Taylor series of 1
1+z2

with center any a ∈ R.

5.6.3. Find the Taylor series with center 1 of the holomorphic branch of z
1
2 with value 1 at 1.

5.6.4. Let f be holomorphic in Dz0(R) and let
∑+∞

n=0 an(z − z0)
n be the Taylor series of f .

(i) Prove that, if 0 ≤ r < R, then

1
2π

∫ 2π
0 |f(z0 + reit)|2 dt =

∑+∞
n=0 |an|2r2n.

(ii) If |f(z)| ≤M for every z ∈ Dz0(R), prove that
∑+∞

n=0 |an|2R2n ≤M2.
(iii) If g is also holomorphic in Dz0(R) with Taylor series

∑+∞
n=0 bn(z − z0)

n, prove that, if 0 ≤
r < R, then

1
2π

∫ 2π
0 f(z0 + reit) g(z0 + reit) dt =

∑+∞
n=0 anbnr

2n.

5.6.5. Let f be holomorphic in Dz0(R1, R2). Prove that there are functions f1, f2 so that f2 is
holomorphic inDz0(R2) and f1 is holomorphic inDz0(R1,+∞)∪{∞} and so that f = f1+f2 in
Dz0(R1, R2). Prove that, if f is bounded inDz0(R1, R2), then f1, f2 are bounded inDz0(R1, R2).

5.6.6. Let f be holomorphic in D0(R,+∞). Prove that f is holomorphic also at ∞ if and only if
the Laurent series of f inD0(R,+∞) is of the form

∑n=−1
−∞ anz

n+a0. Observe that f(∞) = a0.
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5.6.7. Prove that
1

cos z = 1 +
∑+∞

k=1
E2k
(2k)!z

2k

for |z| < π
2 , where the numbers E2k satisfy the recursive relations

E2n −
(

2n
2n−2

)
E2n−2 +

(
2n

2n−4

)
E2n−4 − · · ·+ (−1)n−1

(
2n
2

)
E2 + (−1)n = 0.

Evaluate E2, E4, E6, E8. The numbers E2k are called Euler constants.

5.6.8. Let f be holomorphic in the horizontal zone Ω = {x+ iy |A < y < B} and periodic with
period 1, i.e. f(z + 1) = f(z) for every z ∈ Ω.
(i) Prove that there are cn so that

f(z) =
∑+∞

−∞ cne
2πinz

for every z ∈ Ω and find formulas for the coefficients cn.
(ii) Prove that the series in (i) converges uniformly in every smaller zone {x + iy | a < y < b}
with A < a < b < B.

5.6.9. (i) Prove that
e

w
2
(z− 1

z
) = b0(w) +

∑+∞
n=1 bn(w)

(
zn + (−1)n

zn

)
for every z ̸= 0, where

bn(w) =
1
π

∫ π
0 cos(nt− w sin t) dt

for n ∈ N0.
(ii) Ifm,n ∈ N0, prove that

1
2πi

∫
C0(1)

(z2±1)m

zm+n+1 dz =

{
(±1)p(n+2p)!
p!(n+p)! ifm = n+ 2p, p ∈ N0

0, otherwise

(iii) The function bn(w) is called Bessel function of the first kind. Find the Taylor series of bn(w)
with center 0.

5.6.10. f : I → C is called real analytic in the open interval I in R if for every t0 ∈ I there are
ϵ > 0 and an ∈ C, n ∈ N0, so that (t0 − ϵ, t0 + ϵ) ⊆ I and f(t) =

∑+∞
n=0 an(t − t0)

n for every
t ∈ (t0 − ϵ, t0 + ϵ).
Prove that, if f is real analytic in I , then there is an open set Ω ⊆ C so that I ⊆ Ω and so that f
can be extended as a function f : Ω → C holomorphic in Ω.

5.7 Roots and the principle of identity.

Let f be holomorphic in the open set Ω and z0 ∈ Ω. We consider the largest open discDz0(R)
which is contained in Ω and the Taylor series of f in this disc. Then

f(z) =
∑+∞

n=0 an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · ·

for every z ∈ Dz0(R).
We assume that z0 is a root of f or, equivalently, that a0 = 0 and we distinguish between two

cases.
First case: an = 0 for every n.
Then, obviously, f(z) = 0 for every z ∈ Dz0(R), i.e. f is identically 0 in Dz0(R). Because of
the formulas for an, the condition an = 0 for every n is equivalent to f (n)(z0) = 0 for every n.
Second case: an ̸= 0 for at least one n.
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We consider the smallest n ≥ 1 with an ̸= 0 and let this be N . I.e. a0 = a1 = . . . = aN−1 = 0
and aN ̸= 0. This is equivalent to

f(z0) = f (1)(z0) = . . . = f (N−1)(z0) = 0, f (N)(z0) ̸= 0.

Then we have
f(z) = (z − z0)

N
∑+∞

n=0 aN+n(z − z0)
n

for every z ∈ Dz0(R). The power series
∑+∞

n=0 aN+n(z− z0)
n converges in the discDz0(R) and

defines a function g holomorphic in Dz0(R). Then

f(z) = (z − z0)
Ng(z)

for every z ∈ Dz0(R), and thus g(z) = f(z)
(z−z0)N for every z ∈ Dz0(R) \ {z0}. We observe that

f(z)
(z−z0)N is a holomorphic function in Ω \ {z0} and not only inDz0(R) \ {z0}. Therefore, we may

consider g as defined in Ω \ {z0} with the same formula: g(z) = f(z)
(z−z0)N . We also recall that g

is defined, through its power series, at z0 and it is holomorphic in Dz0(R) ⊆ Ω. In fact its value
at z0 is g(z0) = aN = f (N)(z0)

N ! . Thus, the formula of g, as a function holomorphic in Ω, can be
written:

g(z) =


f(z)

(z−z0)N , if z ∈ Ω \ {z0}

aN = f (N)(z0)
N ! , if z = z0

Since g(z0) = aN ̸= 0 and since g is continuous at z0, there is r with 0 < r ≤ R so that g(z) ̸= 0
for every z ∈ Dz0(r), and hence f(z) ̸= 0 for every z ∈ Dz0(r) \ {z0}.

Let f be holomorphic in the open set Ω, z0 ∈ Ω and
∑+∞

n=0 an(z − z0)
n be the Taylor series

of f at z0. Then we have three cases. If an = 0 for every n, then we say that z0 is a root of f of
infinite multiplicity. If a0 = a1 = . . . = aN−1 = 0 and aN ̸= 0 for some N ≥ 1, then we say
that z0 is a root of f ofmultiplicity N. Finally, if f(z0) = a0 ̸= 0, we say that z0 is a root of f of
multiplicity 0.

We saw that, if z0 is a root of f of infinite multiplicity, then f is identically 0 in the largest
disc with center z0 which is contained in the domain of holomorphy of f . If z0 is a root of f of
finite multiplicity, then there is some discDz0(r) which contains no other root of f besides z0 and
hence we say that the root z0 is isolated. Moreover, if the multiplicity of z0 isN , then the function
g(z) = f(z)

(z−z0)N , which is holomorphic in Ω\{z0}, can be defined at z0 as g(z0) = aN = f (N)(z0)
N !

and then it is holomorphic in Ω. In other words, we can factorize (z− z0)N from f(z), i.e. we can
write f(z) = (z − z0)

Ng(z) with a function g holomorphic in Ω. This is a striking generalization
of the analogous factorization for polynomials: is z0 is a root of the polynomial p(z) of multiplicity
N , then we can write p(z) = (z − z0)

Nq(z), where q(z) is another polynomial.

Example 5.7.1. The function ez3 − 1 is holomorphic in C and its Taylor series with center 0 is∑+∞
n=1

1
n! z

3n. Therefore,

ez
3 − 1 = z3

∑+∞
n=1

1
n! z

3(n−1) = z3
∑+∞

n=0
1

(n+1)! z
3n = z3g(z)

for every z, where g is the function defined by the power series
∑+∞

n=0
1

(n+1)! z
3n. Now g is holo-

morphic in C with g(0) = 1 ̸= 0, hence 0 is a root of ez3 − 1 of multiplicity 3.

Lemma 5.1. If f is holomorphic in the regionΩ and if z0 ∈ Ω is a root of f of infinite multiplicity,
then f is identically 0 in Ω.

Proof. f is identically 0 in some disc with center z0. We define

B = {z ∈ Ω | f is identically 0 in some disc with center z}
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and the complementary set C = Ω \B. Obviously, B ∪ C = Ω and B ̸= ∅, since z0 ∈ B.
If z ∈ B, then f is identically 0 in some disc Dz(r), and if we take any w ∈ Dz(r), then f
is identically 0 in some small disc Dw(r

′) ⊆ Dz(r). Thus every w ∈ Dz(r) belongs to B, i.e.
Dz(r) ⊆ B and z is not a limit point of C.
Now, let z ∈ C. Then f is identically 0 in no disc with center z, and hence z is not a root of infinite
multiplicity of f . Therefore, there is a discDz(r) in which the only possible root of f is its center
z. Then this disc contains no w ∈ B and z is not a limit point of B.
Thus, none of B,C contains a limit point of the other. Since B ̸= ∅, we must have C = ∅,
otherwise B,C would form a decomposition of Ω. Hence Ω = B and f is identically 0 in Ω.

Principle of identity. If f is holomorphic in the regionΩ and if the roots of f have an accumulation
point in Ω, then f is identically 0 in Ω.

Proof. Suppose that there is a sequence (zn) of roots of f so that zn → z with z ∈ Ω and zn ≠ z
for every n. Since f is continuous at z and zn → z, we have 0 = f(zn) → f(z) and hence
f(z) = 0. If z is a root of finite multiplicity of f , then there would be some disc Dz(r) in which
the only root of f is its center z. This is wrong, since Dz(r) contains, after some index, all roots
zn and these are different from z. Therefore, z is a root of infinite multiplicity of f , and lemma
5.1 implies that f is identically 0 in Ω.

Lemma 5.1 and the principle of identity can be stated for a non-connected open set Ω. Then
the result of lemma 5.1 holds in the connected component of Ω which contains the root of infinite
multiplicity z0 and the result of the principle of identity holds in the connected component of Ω
which contains the accumulation point of the roots of f .

Instead of speaking only about the roots of f , i.e. the solutions of the equation f(z) = 0, we
may state our results for the solutions of the equation f(z) = w for any fixed w. The results are
the same as before. We just consider the function g(z) = f(z) − w, and then the solutions of
f(z) = w are the same as the roots of g. For instance, if z0 is a solution of f(z) = w of infinite
multiplicity, then f is constantw in some discDz0(R) and, if z0 is a solution of f(z) = w of finite
multiplicity N , then in some disc Dz0(r) the function f takes the value w only at the center z0.
Then lemma 5.1 says that, if f is holomorphic in the region Ω and z0 is a solution of f(z) = w
of infinite multiplicity, then f is constant w in Ω. And the principle of identity says that, if f is
holomorphic in the region Ω and the solutions of f(z) = w have an accumulation point in Ω, then
f is constant w in Ω.

The principle of identity has another equivalent form.

Principle of identity. If f is holomorphic in the region Ω and if some compact K ⊆ Ω contains
infinitely many roots of f , then f is identically 0 in Ω.

Proof. Let us assume the previous principle of identity and let us suppose that some compact
K ⊆ Ω contains infinitely many roots of f . Then there is a sequence (zn) of roots of f inK with
distinct terms. SinceK is compact, there is a subsequence (znk

) so that znk
→ z for some z ∈ K.

But then z ∈ Ω is an accumulation point of roots of f and hence f is identically 0 in Ω.
Conversely, let us assume the present form of the principle of identity and let us suppose that the
roots of f have an accumulation point in Ω. Then there is a sequence (zn) of roots of f so that
zn → z with z ∈ Ω and zn ̸= z for every n. Then the set {zn |n ∈ N} ∪ {z} is a compact ⊆ Ω
and contains infinitely many roots of f . So f is identically 0 in Ω.

Example 5.7.2. Assume that there is f holomorphic in C so that f( 1n) =
n
n+1 for every n ∈ N.

Wewrite f( 1n) =
1

1+ 1
n

and compare the functions f(z) and 1
1+z . Both are holomorphic inC\{−1}

and their difference f(z)− 1
1+z has roots at the points

1
n which have 0 as their accumulation point.

Since 0 ∈ C \ {−1} and C \ {−1} is connected, we have that f(z) − 1
1+z is identically 0 in this

set, i.e. f(z) = 1
1+z for every z ̸= −1. Since we assume that f is holomorphic at −1, we get

limz→−1
1

1+z = limz→−1 f(z) = f(−1) and we arrive at a contradiction.
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Example 5.7.3. Assume that there is some f holomorphic in C \ {0} so that f(x) =
√
x for every

x ∈ (0,+∞) or even for every x in some subinterval (a, b) of (0,+∞).
We consider the continuous branch g of z

1
2 in the region Ω = C \ (−∞, 0] which has value 1 at

z = 1. The function g is given by
g(z) =

√
r ei

θ
2 ,

where z = reiθ is the polar representation of z ∈ Ω with−π < θ < π. So f(x) =
√
x = g(x) for

every x ∈ (a, b). Hence f − g is holomorphic in the region Ω and has roots at all points of (a, b).
We conclude that f − g is identically 0 in Ω. I.e.

f(z) =
√
r ei

θ
2 ,

where z = reiθ is the polar representation of z ∈ Ω with −π < θ < π. Since f is holomorphic in
C \ {0}, it is continuous at every point of (−∞, 0), e.g. at −1.
We take points z = reiθ converging to −1 from the upper halfplane. This means that r → 1 and
θ → π−. Then we have

f(−1) = limr→1,θ→π−
√
r ei

θ
2 = ei

π
2 = i.

Now we take points z = reiθ converging to −1 from the lower halfplane. This means that r → 1
and θ → −π+. Then we have

f(−1) = limr→1,θ→−π+
√
r ei

θ
2 = e−i

π
2 = −i.

We arrive at a contradiction.

Exercises.

5.7.1. Let f be holomorphic in the discDz0(R) and let z0 be a root of multiplicity N ≥ 1 of f . If
F is a primitive of f in Dz0(R) and F (z0) = w0, which is the multiplicity of z0 as a solution of
F (z) = w0?

5.7.2. Is there any f holomorphic in C which satisfies one of the following?
(i) f( 1n) = (−1)n for every n ∈ N.
(ii) f( 1n) =

1+(−1)n

n for every n ∈ N.
(iii) f( 1

2k ) = f( 1
2k+1) =

1
k for every k ∈ N.

5.7.3. Is there any f holomorphic in C \ {0} so that f(x) = |x| for every x ∈ R \ {0}?

5.7.4. Let f, g be holomorphic in the region Ω and 0 ∈ Ω. If f , g have no root in Ω and if
f ′( 1n)/f(

1
n) = g′( 1n)/g(

1
n) for every n ∈ N, what do you conclude about f , g?

5.7.5. Let f, g be holomorphic in the region Ω. If fg = 0 in Ω, prove that either f = 0 in Ω or
g = 0 in Ω.

5.7.6. Let f, g be holomorphic in the region Ω. If f g is holomorphic in Ω, prove that either g = 0
in Ω or f is constant in Ω.

5.7.7. (i) Let the region Ω be symmetric with respect to R, i.e. z ∈ Ω for every z ∈ Ω. If Ω ̸= ∅,
prove that Ω ∩ R ̸= ∅. Let also f be holomorphic in Ω and assume that f(z) ∈ R for every
z ∈ Ω ∩ R. Prove that f(z) = f(z) for every z ∈ Ω.
(ii) Let the region Ω ⊆ C \ {0} be symmetric with respect to T, i.e. 1

z ∈ Ω for every z ∈ Ω. If
Ω ̸= ∅, prove that Ω∩T ̸= ∅. Let also f be holomorphic in Ω and assume that f(z) ∈ T for every
z ∈ Ω ∩ T. Prove that f(1z ) =

1

f(z)
for every z ∈ Ω.

(iii) Let f be holomorphic in C and let f(z) ∈ T for every z ∈ T. Prove that there is c ∈ T and
n ∈ N0 so that f(z) = czn for every z.
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5.7.8.Many of the results of this section hold also for the point∞.
(i) Let Ω ⊆ C be an open set containing some ring D0(R,+∞) and let f be holomorphic in
Ω∪ {∞}. Then, according to exercice 5.6.6, the Laurent series of f inD0(R,+∞) is of the form∑n=−1

−∞ anz
n + a0 and also f(∞) = a0.

If an = 0 for every n ≤ 0, we say that∞ is a root of f of multiplicity +∞, and in this case prove
that f is identically 0 in the connected component of Ω which contains D0(R,+∞).
If a0 = a−1 = . . . = a−N+1 = 0 and a−N ̸= 0, we say that ∞ is a root of f of multiplicity N ,
and in this case prove that∞ is an isolated root of f , i.e. there is some r ≥ R so that f has no root
in D0(r,+∞).
Of course, if a0 ̸= 0, we say that ∞ is a root of f of multiplicity 0.
If∞ is an accumulation point of roots of f , prove that f is identically 0 in the connected component
of Ω which contains D0(R,+∞).
Prove that∞ is a root of f of multiplicityN if and only if 0 is a root of g of multiplicityN , where
g is defined by g(w) = f( 1

w ).
(ii) Let r = p

q be a rational function and let n be the degree of the polynomial p and m be the
degree of the polynomial q. If n ≤ m, prove that ∞ is a root of r of multiplicitym− n.

5.8 Isolated singularities.

We say that z0 is an isolated singularity of f if there is some disc Dz0(R) so that f is holo-
morphic in Dz0(R) \ {z0}. Then f has a Laurent series in Dz0(0, R) = Dz0(R) \ {z0}. I.e.

f(z) =
∑+∞

−∞ an(z − z0)
n

for every z ∈ Dz0(R) \ {z0}.
Now we have three cases. If an = 0 for every n < 0, then we say that z0 is a removable

singularity of f . If an ̸= 0 for at least one n < 0 and there are only finitely many n < 0 such that
an ̸= 0, then we say that z0 is a pole of f . Finally, if an ̸= 0 for infinitely many n < 0, then we
say that z0 is an essential singularity of f .

Let us start with the case of a removable singularity z0. Then

f(z) =
∑+∞

n=0 an(z − z0)
n

for every z ∈ Dz0(R)\{z0}. The power series
∑+∞

n=0 an(z−z0)n converges at every z ∈ Dz0(R)
and defines a holomorphic function in Dz0(R) with value a0 at z0. The function f may not be
defined at z0 or it may be defined at z0 with a value f(z0) either equal to a0 or not equal to a0.
Now, in any case, we define (or redefine) f at z0 to be f(z0) = a0. Then we have f(z) =∑+∞

n=0 an(z − z0)
n for every z ∈ Dz0(R) and f becomes holomorphic in Dz0(R).

We summarize. If z0 ∈ Ω is a removable singularity of f , then f can be defined (or redefined)
appropriately at z0 so that it becomes holomorphic in a disc with center z0. The Laurent series
of f at z0 reduces to a power series of first type and this power series is the Taylor series of the
(extended) f in a disc with center z0.

Here is a useful test to decide if an isolated singularity is removable without calculating the
Laurent series of the function.

Riemann’s criterion. Let z0 be an isolated singularity of f . If

limz→z0(z − z0)f(z) = 0,

then z0 is a removable singularity of f .

Proof. Let f(z) =
∑+∞

−∞ an(z − z0)
n for every z ∈ Dz0(R) \ {z0}. We take any ϵ > 0 and then

there is δ > 0 so that |z − z0||f(z)| ≤ ϵ for every z ∈ Dz0(R) with 0 < |z − z0| < δ. Now, we
consider any r with 0 < r < min{δ,R, 1} and any n < 0. Then we have

|an| =
∣∣ 1
2πi

∮
Cz0 (r)

f(ζ)
(ζ−z0)n+1 dζ

∣∣ ≤ 1
2π

ϵ
rn+2 2πr = ϵr−n−1 = ϵr|n|−1 ≤ ϵ.
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Since ϵ > 0 is arbitrary, we get an = 0 for every n < 0 and z0 is a removable singularity of f .

In the case of an isolated singularity z0 for f , sometimes we know that the limz→z0 f(z) exists
and it is finite or that f is bounded close to z0. In both cases we have that limz→z0(z−z0)f(z) = 0
is satisfied and we conclude that z0 is a removable singularity of f .

Example 5.8.1. The function f(z) = z2−3z+2
z−2 is holomorphic in C\{2}. Since limz→2 f(z) = 1,

the point 2 is a removable singularity of f . If we define f(2) = 1, then f , now defined in C, is
holomorphic in C. In fact, the extended f is the simple function z − 1 in C.

Now we consider the case of a pole z0 of f . Let
∑+∞

−∞ an(z − z0)
n be the Laurent series of f

in the ringDz0(R) \ {z0} and then there is a largestm ≥ 1 so that a−m ̸= 0. LetN be this largest
m. Then we say that z0 is a pole of f of order N or of multiplicity N and we have

f(z) =
a−N

(z−z0)N + · · ·+ a−1

z−z0 +
∑+∞

n=0 an(z − z0)
n

for every z ∈ Dz0(R) \ {z0} with a−N ̸= 0. We may write this as

f(z) = 1
(z−z0)N

∑+∞
n=0 an−N (z − z0)

n

for every z ∈ Dz0(R) \ {z0}. Since the power series
∑+∞

n=0 an−N (z − z0)
n converges in the disc

Dz0(R), it defines a function g holomorphic in Dz0(R) and we have

f(z) = g(z)
(z−z0)N

for every z ∈ Dz0(R) \ {z0}. Observe that g(z0) = a−N ̸= 0.
It is easy to prove the converse. Suppose there is a g holomorphic in some discDz0(R) so that

g(z0) ̸= 0 and f(z) = g(z)
(z−z0)N for every z ∈ Dz0(R)\{z0}. Let

∑+∞
n=0 bn(z− z0)n be the Taylor

series of g and then we have

f(z) = b0
(z−z0)N + · · ·+ bN−1

z−z0 +
∑+∞

n=0 bn+N (z − z0)
n

for z ∈ Dz0(R)\{z0}. The last power series is the Laurent series of f inDz0(R)\{z0} and since
b0 = g(z0) ̸= 0, we have that z0 is a pole of f of order N .

Here are some more comments. Since g(z0) ̸= 0 and g is continuous at z0, we have that
g does not vanish at any point of some disc Dz0(r) with 0 < r ≤ R. Then h(z) = 1

g(z) is
holomorphic in Dz0(r) and 1

f(z) = (z − z0)
Nh(z) for every z ∈ Dz0(r) \ {z0}. Therefore, z0

is a removable singularity of 1
f . Moreover, if we define 1

f to take the value 0 at z0, then we have
1
f (z) = (z−z0)Nh(z) for every z ∈ Dz0(r) and, since h(z0) ̸= 0, then z0 is a root of the extended
1
f of multiplicityN . It is easy to prove in a similar way the converse, and we conclude that z0 is a
pole of f of order N if and only if it is a root of 1

f of mutiplicity N .

Example 5.8.2.Many times we meet functions of the form f = p
q , where p, q are holomorphic in

a neighborhood of z0. For instance, if p, q are polynomials, then f is a rational function.
Let z0 be a root of p and q of multiplicityM ≥ 0 and N ≥ 0, respectively. In this case we saw
that there are holomorphic functions p1 and q1 in a neighborhood Dz0(R) of z0 so that

p(z) = (z − z0)
Mp1(z), q(z) = (z − z0)

Nq1(z)

for every z ∈ Dz0(R) and also p1(z0) ̸= 0 and q1(z0) ̸= 0. (Of course we consider the case that
none of p, q is identically 0.) Then there is r with 0 < r ≤ R so that p1(z) ̸= 0 and q1(z) ̸= 0 for
every z ∈ Dz0(r), and then we have

f(z) = p(z)
q(z) = (z − z0)

M−N p1(z)
q1(z)

= (z − z0)
M−Ng(z)
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for every z ∈ Dz0(r) \ {z0}, where the function g = p1
q1

is holomorphic in Dz0(r) and g(z0) =
p1(z0)
q1(z0)

̸= 0. Now we have two cases. IfM ≥ N , then z0 is a removable singularity of f , and f
(after we extend it appropriately at z0) is holomorphic at z0 and z0 is a root of f of multiplicity
M −N . IfM < N , then z0 is a pole of order N −M of f .

Here are some concrete instances of this example.

Example 5.8.3. The function f(z) = z2−3z+2
(z−2)2

is holomorphic in C \ {2}.
Since z2 − 3z + 2 = (z − 2)(z − 1), we have f(z) = z−1

z−2 for z ̸= 2. The function g(z) = z − 1
is holomorphic in C and g(2) = 1 ̸= 0. Therefore, 2 is a pole of f of order 1.

Example 5.8.4. The function f(z) = ez−1
z3

is holomorphic in C \ {0}.
The Taylor series of ez − 1 with center 0 is z + 1

2! z
2 + 1

3! z
3 + · · · . Hence ez − 1 = zg(z) with

g(z) = 1+ 1
2! z+

1
3! z

2+ · · · . The function g is holomorphic in C and g(0) = 1 ̸= 0 and we have
f(z) = g(z)

z2
for z ̸= 0. Therefore, 0 is a pole of f of order 2.

Example 5.8.5. The function cot z = cos z
sin z is holomorphic in C \ {kπ | k ∈ Z}.

The points kπ, k ∈ Z, are isolated singularities of cot z and we shall prove that they are all poles
of order 1. We fix k ∈ Z. The Taylor series of sin z with center kπ results from the Taylor series
of sin z with center 0, as follows

sin z = sin((z − kπ) + kπ) = cos kπ sin(z − kπ) = (−1)k sin(z − kπ)

= (−1)k
(
(z − kπ)− 1

3!(z − kπ)3 + · · ·
)
= (−1)k(z − kπ)− (−1)k

3! (z − kπ)3 + · · · .

Therefore, sin z = (z − kπ)q1(z) for every z, where the function q1 is holomorphic in C with
q1(kπ) = (−1)k. Hence,

cot z = cos z
(z−kπ)q1(z) =

g(z)
z−kπ

with g(z) = cos z
q1(z)

and g is holomorphic in the disc Dkπ(π) and g(kπ) = cos kπ
q1(kπ)

= 1. Therefore,
kπ is a pole of cot z of order 1.
(Observe that Dkπ(π) is the largest open disc with center kπ which is contained in the domain of
holomorphy of g because it is the largest open disc with center kπ which does not contain any root
of q1. This is true because q1(z) = sin z

z−kπ vanishes at every lπ with l ∈ Z, l ̸= k.)
The Laurent series of cot z in Dkπ(0, π) is

cot z = 1
z−kπ + g′(kπ) + 1

2g
′′(kπ)(z − kπ) + · · · .

For the determination of poles there is a criterion similar to the criterion of Riemann for re-
movable singularities.

Proposition 5.4. Let z0 be an isolated singularity of f . Then z0 is a pole of f if and only if
limz→z0 f(z) = ∞.

Proof. There is a disc Dz0(R) so that f is holomorphic in Dz0(R) \ {z0}.
If z0 is a pole of orderN of f , then we saw that there is a function g holomorphic inDz0(R) so that
g(z0) ̸= 0 and f(z) = g(z)

(z−z0)N for every z ∈ Dz0(R) \ {z0}. This implies limz→z0 f(z) = ∞.
Conversely, let limz→z0 f(z) = ∞. Then there is r with 0 < r ≤ R so that f(z) ̸= 0 for ev-
ery z ∈ Dz0(r) \ {z0} and then the function h = 1

f is holomorphic in Dz0(r) \ {z0}. Since
limz→z0 h(z) = limz→z0

1
f(z) = 0, the criterion of Riemann implies that z0 is a removable sin-

gularity of h. Therefore, we may define h appropriately at z0 so that it becomes holomorphic in
Dz0(r): we set h(z0) = limz→z0 h(z) = 0. It is clear that z0 is the only root of (the extended)
h in Dz0(r) and, if N is the multiplicity of this root, then h(z) = (z − z0)

Nh1(z) where h1 is
holomorphic in Dz0(r) and has no root in Dz0(r). Thus, the function g = 1

h1
is holomorphic in

Dz0(r) and, clearly, has no root inDz0(r). Now we have altogether that f(z) = g(z)
(z−z0)N for every

z ∈ Dz0(r) \ {z0} with g(z0) ̸= 0, and so z0 is a pole of f of order N .
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There is one more test for the case of a pole which also determines the exact order of the pole.

Proposition 5.5. Let z0 be an isolated singularity of f . Then z0 is a pole of f of order N ≥ 1 if
and only if the limz→z0(z − z0)

Nf(z) exists and it is finite and ̸= 0.

Proof. If z0 is a pole of f of orderN , then we repeat the beginning of the proof of proposition 5.4
and we get that limz→z0(z − z0)

Nf(z) = limz→z0 g(z) = g(z0) ̸= 0.
Conversely, let limz→z0(z − z0)

Nf(z) be finite and ̸= 0. Riemann’s criterion implies that the
function g(z) = (z−z0)Nf(z), which is holomorphic in some ringDz0(R)\{z0}, can be extended
at z0 by setting g(z0) = limz→z0 g(z) = limz→z0(z − z0)

Nf(z) ̸= 0, and the extended g is
holomorphic in Dz0(R). Therefore, there is a g holomorphic in Dz0(R) with g(z0) ̸= 0 so that
f(z) = g(z)

(z−z0)N for every z ∈ Dz0(R) \ {z0} and z0 is a pole of f of order N .

Finally, for the case of an essential singularity we have the following result.

Proposition 5.6. Let z0 be an isolated singularity of f . Then z0 is an essential singularity of f if
and only if the limz→z0 f(z) does not exist.

Proof. By the criterion of Riemann, z0 is a removable singularity if and only if the limz→z0 f(z)
exists and it is finite. Proposition 5.4 says that z0 is a pole if and only if limz→z0 f(z) = ∞.

Example 5.8.6. In example 5.6.9 we saw that
∑n=−1

−∞
1

(−n)! z
n + 1 is the Laurent series of e

1
z in

D0(0,+∞). Hence 0 is an essential singularity of e
1
z .

Therefore, the limz→0 e
1
z does not exist. We can see this without proving first that 0 is an essential

singularity of e
1
z . In fact, proving that the limz→0 e

1
z does not exist is another way to see that

0 is an essential singularity of e
1
z . Indeed, if z = x tends to 0 on the positive x-semiaxis, then

|e
1
z | = e

1
x → +∞, and hence e

1
z → ∞. If z = x tends to 0 on the negative x-semiaxis, then

|e
1
z | = e

1
x → 0, and hence e

1
z → 0. Thus, the limz→0 e

1
z does not exist.

Let z0 be an isolated singularity of f and let
∑+∞

−∞ an(z − z0)
n be the Laurent series of f in

the ringDz0(0, R) = Dz0(R) \ {z0}. Then
∑n=−1

−∞ an(z− z0)
n is called the singular part of the

Laurent series of f or, simply, the singular part of f at z0. Also,
∑+∞

n=0 an(z − z0)
n is called the

regular part of the Laurent series of f or, simply, the regular part of f at z0.
We have seen that in the case of a removable singularity z0 the singular part of f at z0 is zero

and the Laurent series of f at z0 consists only of its regular part. In the case of a pole z0 of f of
order N the singular part at z0 is a finite sum of the form

∑N
n=1

a−n

(z−z0)n with a−N ̸= 0. In this
case the singular part is a rational function whose denominator is (z − z0)

N . In the case of an
essential singularity z0 the singular part at z0 has infinitely many terms.

If we subtract from f its singular part at its singularity z0, then we get

f(z)−
∑n=−1

−∞ an(z − z0)
n =

∑+∞
n=0 an(z − z0)

n,

which is a power series of first type and hence converges in the discDz0(R), including the center
z0. Therefore, z0 is a removable singularity of the function F (z) = f(z) −

∑n=−1
−∞ an(z − z0)

n

and if we define F to have value F (z0) = a0 at z0, then this function is holomorphic in Dz0(R).
We shall now establish the well known analysis of a rational function into a sum of simple

fractions.

Proposition 5.7. Let r = p
q be a rational function. We assume that the polynomials p, q have no

common roots (and hence no common factors), that the degree of p is n, the degree of q ism and
that z1, . . . , zk are the roots of q with corresponding multiplicitiesm1, . . . ,mk. Then

r(z) = p1(
1

z−z1 ) + · · ·+ pk(
1

z−zk ) + p0(z),

where p1, . . . , pk are polynomials without constant terms and of degreesm1, . . . ,mk, respectively,
and p0 is either the null polynomial, if n < m, or a polynomial of degree n−m, if n ≥ m.
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Proof. We saw in example 5.8.2 that each zj is a pole of r of degree mj . Then the singular part
of r at zj has the form

∑mj

l=1
a−l

(z−z0)l
with a−mj ̸= 0. This can be written∑mj

l=1
a−l

(z−z0)l
= pj(

1
z−zj ),

where pj is the polynomial pj(z) =
∑mj

l=1 a−lz
l without constant term and of degreemj .

We subtract from r all its singular parts at z1, . . . , zk and we form the function

p0(z) = r(z)−
(
p1(

1
z−z1 ) + · · ·+ pk(

1
z−zk )

)
.

This function is a rational function defined in C \ {z1, . . . , zk} and its only possible poles are the
points z1, . . . , zk. We observe, though, that every zj is a removable singularity of r(z)−pj( 1

z−zj )

and that each of p1( 1
z−z1 ), . . . , pk(

1
z−zk ), besides pj(

1
z−zj ), is holomorphic at zj . Thus, every zj

is a removable singularity of p0. In other words, the rational function p0 has no poles and hence it
is a polynomial. Now, we have the identity

r(z) = p1(
1

z−z1 ) + · · ·+ pk(
1

z−zk ) + p0(z)

and we consider two cases. If n < m, then limz→∞ r(z) = 0 and, since limz→∞ pj(
1

z−zj ) = 0

for every j, we have that limz→∞ p0(z) = 0. Thus, p0 is the null polynomial. If n ≥ m, then
c = limz→∞

r(z)
zn−m is a complex number ̸= 0. Since limz→∞ pj(

1
z−zj )/z

n−m = 0 for every j, we

have that limz→∞
p0(z)
zn−m = c ̸= 0. Thus the polynomial p0 has degree n−m.

Exercises.

5.8.1. Is 0 an isolated singularity of 1
sin(1/z) ?

5.8.2. Find the isolated (non-removable) singularities of:

1
z2+5z+6

, 1
(z2−1)2

, ez−1
z , ez−1

z3
, z2

sin z ,
1

sin z , tan z, 1
sin2 z , ez + e1/z, 1

ez−1 .

Which of the singularities are poles and what is their order?

5.8.3. Find the initial four terms of the Laurent series at 0 of the functions:

cot z, 1
sin z ,

z
sin2 z ,

1
ez−1 .

5.8.4. Prove that an isolated singularity of f cannot be a pole of ef .

5.8.5. Let z0 be an isolated singularity of f , which is not constant in any neighborhood of z0. If
there is s ∈ R so that limz→z0 |z − z0|s|f(z)| ∈ [0,+∞], prove that z0 is either a removable
singularity or a pole of f and that there ism ∈ Z so that

limz→z0 |z − z0|s|f(z)|


= 0, if s > m

= +∞, if s < m

∈ (0,+∞), if s = m

5.8.6. Let f be holomorphic in C \ {0} so that limz→0
f(z)√
|z|

= 0 and limz→∞
f(z)

|z|
√

|z|
= 0. What

do you conclude about f?

5.8.7. Let f be holomorphic in Dz0(R) \ {z0} and let either Re f or Im f be bounded either from
above or from below in Dz0(R) \ {z0}. Prove that z0 is a removable singularity of f .

5.8.8. Let f be holomorphic in D0(R) \ {z0}, where R > 1 and |z0| = 1, and let z0 be a pole of
f . If f(z) =

∑+∞
n=0 anz

n is the Taylor series of f in D0(1), prove that an
an+1

→ z0.
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5.8.9. Let Ω be a region so that every point of Ω is either a point of holomorphy or an isolated
singularity of f . If the roots of f have an accumulation point in Ω, which is not an essential
singularity of f , prove that f is identically 0 in Ω.

5.8.10. (i) Let z0 be an essential singularity of f and let w ∈ C. Prove that for every r > 0 the
function 1

f−w is not bounded in Dz0(r) \ {z0}.
(ii) Prove the Casorati-Weierstrass theorem. If z0 is an essential singularity of f , then for every
w there is a sequence (zn) with zn → z0 and zn ̸= z0 for every n so that f(zn) → w.

5.8.11. (i) Prove that every 2kπi, k ∈ Z, is a pole of 1
ez−1 of order 1.

(ii) Prove that
1

ez−1 = 1
z −

1
2 +

∑+∞
k=1(−1)k−1 Bk

(2k)!z
2k−1

for |z| < 2π, where the numbers Bk satisfy the recursive relations

1
(2k+1)! −

1
2(2k)! +

∑k
ν=1

(−1)ν−1Bν

(2ν)!(2k−2ν+1)! = 0

for k ≥ 1. Evaluate B1, B2, B3. The numbers Bk are called Bernoulli constants.

5.8.12. Look at exercises 5.6.6 and 5.7.8. We shall extend what we said in this section to the case
of the point ∞.
(i) We say that∞ is an isolated singularity of f if f is holomorphic in some ringD0(R,+∞). Let∑+∞

−∞ anz
n be the Laurent series of f in this ring. If an = 0 for every n ≥ 1, then we say that ∞

is a removable singularity of f . If an ̸= 0 for at least one n ≥ 1 and for only finitely many n ≥ 1,
then we say that ∞ is a pole of f . Finally, if an ̸= 0 for infinitely many n ≥ 1, then we say that
∞ is an essential singularity of f .
Prove that ∞ is a removable singularity of f if and only if limz→∞

f(z)
z = 0.

Prove that ∞ is a pole of f if and only if limz→∞ f(z) = ∞.
Let ∞ be a pole of f and let N be the largest n ≥ 1 with an ̸= 0. Then we say that ∞ is a pole
of f of order N . Prove that ∞ is a pole of f of order N if and only if there is a g holomorphic in
D0(R,+∞)∪{∞} so that g(∞) ̸= 0 and f(z) = zNg(z) for every z ∈ D0(R,+∞). Moreover,
prove that∞ is a pole of f of orderN if and only if the limz→∞

f(z)
zN

exists and it is finite and ̸= 0.
Prove that ∞ is an essential singularity of f if and only if the limz→∞ f(z) does not exist.
(ii) Let r = p

q be a rational function and let n be the degree of the polynomial p and m be the
degree of the polynomial q. Prove that ∞ is a removable singularity of r ifm ≥ n and that it is a
pole of r of order n −m if n > m. In particular, a polynomial p of degree n ≥ 1 has a pole of
order n at ∞.
(iii) What kind of an isolated singularity is∞ for the following functions?

ez, e
1
z , z2e

1
z , sin z, sin 1

z , z5 sin 1
z .

(iv) What kind of an isolated singularity is ∞ for any holomorphic branch of (z2 − 1)
1
2 in the

region C \ [−1, 1]? (For the existence of such a branch look at exercise 4.4.9.)
(v) Is ∞ an isolated singularity of 1

sin z or of tan z?

5.9 Maximum principle.

Maximum principle. Let f be holomorphic in the regionΩ ⊆ C andM = supz∈Ω |f(z)|. If there
is z0 ∈ Ω so that |f(z0)| =M , then f is constant in Ω.

Proof. We take any z ∈ Ω for which |f(z)| =M . We consider an open discDz(R) ⊆ Ω and any
r with 0 < r < R. The mean value property of f says that f(z) = 1

2π

∫ 2π
0 f(z + reit) dt. Since

|f(z + reit)| ≤M for every t ∈ [0, 2π], we have

M = |f(z)| =
∣∣ 1
2π

∫ 2π
0 f(z + reit) dt

∣∣ ≤ 1
2π

∫ 2π
0 |f(z + reit)| dt ≤M.
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Hence, 1
2π

∫ 2π
0 |f(z + reit)| dt = M and, since |f(z + reit)| is a continuous function of t, we

get |f(z + reit)| = M for every t ∈ [0, 2π]. Now, r is arbitrary in the interval (0, R) and we
find that |f(z + reit)| = M for every t ∈ [0, 2π] and every r ∈ (0, R). So we get |f(w)| = M
for every w ∈ Dz(R). We proved that, if |f(z)| = M for a z ∈ Ω, then this equality holds in a
neighborhood of z. Now we define

B = {z ∈ Ω | |f(z)| =M}, C = {z ∈ Ω | |f(z)| < M}

and it is clear that B ∪ C = Ω.
If z ∈ B, then |f(z)| = M and hence the same is true at every point in a neighborhood of z.
Therefore z is not a limit point of C. Moreover, if z ∈ C then |f(z)| < M and, by the continuity
of f , the same is true in a neighborhood of z. Hence z is not a limit point of B.
If both B and C are non-empty, then they form a decomposition of Ω. But Ω is connected and,
since z0 ∈ B, we get that C = ∅. Therefore, |f(z)| =M for every z ∈ Ω.
Now we shall prove that f is constant in Ω. IfM = 0, then clearly f = 0 in Ω. So let us assume
thatM > 0. If u and v are the real and the imaginary part of f , then u2 + v2 is constantM2 in Ω
and hence u∂u∂x + v ∂v∂x = 0 and u∂u∂y + v ∂v∂y = 0 in Ω. Using the C-R equations, we get

u∂u∂x + v ∂v∂x = 0, v ∂u∂x − u ∂v∂x = 0

in Ω. Viewing this as a system with unknowns ∂u
∂x ,

∂v
∂x , we see that its determinant is u2 + v2 =

M2 > 0, and we find that ∂u∂x = 0 and ∂v
∂x = 0 in Ω. Therefore, f ′ = ∂u

∂x + i ∂v∂x = 0 in Ω and so f
is constant in the region Ω.

That was a first version of the maximum principle. There is a second version. In this second
version the region Ω is a subset of C, but when we consider Ω or ∂Ω we shall think of them as
subsets of Ĉ. In other words, if Ω is unbounded, then we assume that Ω and ∂Ω contain the point
∞. This assumption holds until the end of this subsection, including the exercises.

Maximum principle. Let f be holomorphic in the region Ω and continuous in Ω. Then either f is
constant in Ω or |f | has a maximum value in Ω, sayM , attained at a point of ∂Ω and |f(z)| < M
for every z ∈ Ω. In every case, |f | has a maximum value in Ω which is attained at a point of ∂Ω.
In other words we have

maxz∈Ω |f(z)| = maxζ∈∂Ω |f(ζ)|.

Proof. If f is constant in Ω, then |f | is also constant, say M , in Ω. Then, obviously, M is the
maximum value of |f | and it is attained (everywhere and hence) at every point of ∂Ω.
Now we assume that f is not constant in Ω. This implies easily that f is not constant in Ω either.
Now, |f | is continuous in the compact set Ω and hence attains its maximum value, sayM , at some
point z0 ∈ Ω. I.e. we have |f(z0)| =M and |f(z)| ≤M for every z ∈ Ω.
If any such z0 belongs to Ω, then the previous maximum principle implies that f is constant in Ω
and we arrive at a contradiction. We conclude that z0 ∈ ∂Ω and |f(z)| < M for every z ∈ Ω.

The second version of the maximum principle is usually applied in the simplified form:

Let f be holomorphic in the region Ω and continuous in Ω. If |f(ζ)| ≤M for every ζ ∈ ∂Ω, then
|f(z)| ≤M for every z ∈ Ω.

Besides the maximum principle, we have theminimum principle. It is stated in two versions
which can be found in exercise 5.9.1. Here we state a usefull simplified form:

Let f be holomorphic in the region Ω and continuous in Ω so that f(z) ̸= 0 for every z ∈ Ω. If
|f(ζ)| ≥ m for every ζ ∈ ∂Ω, then |f(z)| ≥ m for every z ∈ Ω.

The proof is a trivial application of the previous simplified form of the maximum principle to the
function 1

f which is holomorphic in Ω and continuous in Ω.
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Exercises.

5.9.1. (i) Let f be holomorphic in the region Ω ⊆ C so that f(z) ̸= 0 for every z ∈ Ω and
m = infz∈Ω |f(z)|. If there is z0 ∈ Ω so that |f(z0)| = m, then f is constant in Ω.
(ii) Let f be holomorphic in the region Ω and continuous in Ω so that f(z) ̸= 0 for every z ∈ Ω.
Then either f is constant in Ω or |f | has a minimum value in Ω, say m, attained at a point of ∂Ω
and |f(z)| > m for every z ∈ Ω. In every case, |f | has a minimum value in Ω which is attained at
a point of ∂Ω. In other words we have minz∈Ω |f(z)| = minζ∈∂Ω |f(ζ)|.
Both (i) and (ii) are calledminimum principle.

5.9.2. Let f be holomorphic in D and continuous in D so that |f(z)| > 1 for every z ∈ T and
f(0) = 1. Does f have a root in D?

5.9.3. Let f be holomorphic in the region Ω and limz→ζ f(z) = 0 for every ζ ∈ ∂Ω. Prove that f
is constant 0 in Ω.

5.9.4. Let f be holomorphic in the region Ω ⊆ C and K = supz∈Ω Re f(z). If there is z0 ∈ Ω so
that Re f(z0) = K, prove that f is constant in Ω.

5.9.5. Prove the fundamental theorem of algebra using the maximum principle.

5.9.6. Let fn, f be holomorphic in the region Ω and continuous in Ω. If fn → f uniformly in ∂Ω,
prove that fn → f uniformly in Ω.

5.9.7. Let R be a square region with center z0. Let f be holomorphic in R and continuous in R. If
|f(z)| ≤ m for every z in one of the four sides of R and |f(z)| ≤M for every z in the other three
sides of R, prove that |f(z0)| ≤

4
√
mM3.

5.9.8. Let Ω = {x + iy | − π
2 < y < π

2 } and f(z) = ee
z . Then f is holomorphic in Ω and

continuous in Ω = {x+ iy | − π
2 ≤ y ≤ π

2 }. Prove that |f(x− iπ2 )| = |f(x+ iπ2 )| = 1 for every
x ∈ R and that limx→+∞ f(x) = +∞. Does this contradict the maximum principle?

5.9.9. Let f be holomorphic in the region Ω and continuous in Ω.
(i) If |f | is constant in ∂Ω, prove that either f has at least one root in Ω or f is constant in Ω.
(ii) If Re f or Im f is constant in ∂Ω, prove that f is constant in Ω.

5.9.10. (i) Let z0 ∈ D, |λ| = 1 and
T (z) = z−z0

1−z0z

for z ∈ D. This l.f.t. appears in exercise 4.1.8 and we know that T is holomorphic in D and
continuous in D, and that T (z) ∈ D for every z ∈ D, and T (z) ∈ T for every z ∈ T.
Now let z1, . . . , zn ∈ D and |λ| = 1 and

B(z) = λ
∏n
k=1

z−zk
1−zkz

for z ∈ D. Then B is holomorphic in D and continuous in D. Prove that B(z) ∈ D for every
z ∈ D, and that B(z) ∈ T for every z ∈ T.
Every function B of this form is called (finite) Blaschke product.
(ii) Prove the converse of (i). I.e. let f be holomorphic in D and continuous in D and let f(z) ∈ D
for every z ∈ D and f(z) ∈ T for every z ∈ T. If f is non-constant, prove that there is n ∈ N and
z1, . . . , zn ∈ D and λ with |λ| = 1 so that f(z) = λ

∏n
k=1

z−zk
1−zkz for every z ∈ D.

5.9.11. Let f be holomorphic in the region Ω so that lim supΩ∋z→ζ |f(z)| ≤M for every ζ ∈ ∂Ω.
Prove that |f(z)| ≤ M for every z ∈ Ω. Moreover, if |f(z)| = M for at least one z ∈ Ω, prove
that f is constant in Ω.
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5.9.12. Let the complex function f be holomorphic in the region Ω and continuous in Ω. If U is
an open set so that U ⊆ Ω, prove that maxz∈∂U |f(z)| ≤ maxz∈∂Ω |f(z)|. If equality holds, prove
that f is constant in Ω.

5.9.13. Let f be holomorphic in D0(R1, R2) and a ∈ R. Prove that |z|a|f(z)| has no maximum
value inD0(R1, R2), except if a ∈ Z and there is c so that f(z) = cz−a for every z ∈ D0(R1, R2).

5.9.14. Let f, g be holomorphic in C and |f(z)| ≤ |g(z)| for every z. Prove that there is µ so that
f(z) = µg(z) for every z.

5.9.15. Let f be holomorphic in D. Prove that there is a sequence (zn) in D so that |zn| → 1 and
(f(zn)) is bounded.

5.9.16. (i) Let f be holomorphic and non-constant in the region Ω ⊆ C. For every µ > 0 prove
that

{z ∈ Ω | |f(z)| < µ} ∩ Ω = {z ∈ Ω | |f(z)| ≤ µ}.

(ii) Let p be a polynomial of degree n ≥ 1. Prove that for every µ > 0 the set {z | |p(z)| < µ} has
at most n connected components and each of them contains at least one root of p. How do these
connected components behave when µ→ 0+ and when µ→ +∞?

5.9.17. The three circles theorem of Hadamard. Let f be holomorphic in Dz0(R1, R2) and let

M(r) = maxz∈Cz0 (r)
|f(z)|

for R1 < r < R2. Prove that lnM(r) is a convex function of ln r in (R1, R2). I.e. prove that,
if R1 < r1 < r2 < R2 and ln r = (1 − t) ln r1 + t ln r2 for 0 < t < 1, then lnM(r) ≤
(1− t) lnM(r1) + t lnM(r2). Another way to express this is:

M(r) ≤M(r1)
ln r2−ln r
ln r2−ln r1M(r2)

ln r−ln r1
ln r2−ln r1

when R1 < r1 < r < r2 < R2.

5.9.18. The three lines theorem. Let f be holomorphic and bounded in the vertical zone K =
{x+ iy |X1 < x < X2} and let

M(x) = supy∈R |f(x+ iy)|

for X1 < x < X2. Prove that lnM(x) is a convex function of x in (X1, X2). I.e. prove that, if
X1 < x1 < x2 < X2 and x = (1− t)x1+ tx2 for 0 < t < 1, then lnM(x) ≤ (1− t) lnM(x1)+
t lnM(x2). Another way to express this is:

M(x) ≤M(x1)
x2−x
x2−x1M(r2)

x−x1
x2−x1

when X1 < x1 < x < x2 < X2.

5.9.19. The Phragmén-Lindelöf theorem. Let f, ϕ be holomorphic in the region Ω and let ϕ be
bounded in Ω and have no root in Ω. Let also A ∩B = ∅ and A ∪B = ∂Ω. If
(i) limΩ∋z→ζ |f(z)| ≤M for every ζ ∈ A and
(ii) limΩ∋z→ζ |f(z)||ϕ(z)|ϵ ≤M for every ζ ∈ B and every ϵ > 0,
then prove that |f(z)| ≤ M for every z ∈ Ω. If, moreover, f is non-constant in Ω, prove that
|f(z)| < M for every z ∈ Ω.
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5.10 The open mapping theorem.

Open mapping theorem. If f is holomorphic and not constant in the region Ω, then f(U) is open
for every open U ⊆ Ω.

Proof. Let U ⊆ Ω be open. We shall prove that f(U) is also open, i.e. that every w0 ∈ f(U) is
an interior point of f(U).
Since w0 ∈ f(U) there is some z0 ∈ U so that f(z0) = w0. Since U is open, there is r > 0 so that
Dz0(r) ⊆ U . Since f is non-constant in Ω, the solution z0 of the equation f(z) = w0 is isolated.
Therefore, we may take r small enough so that f(z) = w0 has no solution in Dz0(r) except z0.
Thus, f(ζ) ̸= w0 for every ζ ∈ Cz0(r) and by the continuity of |f −w0| we get that there is some
ϵ > 0 so that |f(ζ) − w0| ≥ ϵ for every ζ ∈ Cz0(r). Now, we consider any w /∈ f(Dz0(r)) and
we have that

|f(ζ)− w| ≥ |f(ζ)− w0| − |w0 − w| ≥ ϵ− |w0 − w|

for every ζ ∈ Cz0(r). But the function f −w is holomorphic inDz0(r) and continuous inDz0(r)
and also f(z)−w ̸= 0 for every z ∈ Dz0(r). Therefore, by (the simplified form of) the minimum
principle at the end of section 5.9, we get

|w0 − w| = |f(z0)− w| ≥ ϵ− |w0 − w|.

Thus |w0 − w| ≥ ϵ
2 and we have proved that any w /∈ f(Dz0(r)) satisfies |w0 − w| ≥ ϵ

2 . This
implies that every w ∈ Dw0(

ϵ
2) belongs to f(Dz0(r)). Hence Dw0(

ϵ
2) ⊆ f(Dz0(r)) ⊆ f(U) and

so w0 is an interior point of f(U).

Exercises.

5.10.1. Prove the first maximum principle using the open mapping theorem.

5.11 Local mapping properties.

Proposition 5.8. Let f be holomorphic in the open set Ω and let z0 ∈ Ω with f ′(z0) ̸= 0. Then
there is an open set U ⊆ Ω containing z0 so thatW = f(U) is an open set containingw0 = f(z0)
and so that the function f : U → W is one-to-one. Moreover, the function f−1 : W → U is
holomorphic inW .

Proof. Since f ′ is continuous, there is r > 0 so that |f ′(z) − f ′(z0)| ≤ 1
2 |f

′(z0)| for every
z ∈ Dz0(r). This implies |f ′(z)| ≥ |f ′(z0)| − |f ′(z) − f ′(z0)| ≥ 1

2 |f
′(z0)| > 0 and hence

f ′(z) ̸= 0 for every z ∈ Dz0(r). Furthermore,

|f(z2)− f(z1)− f ′(z0)(z2 − z1)| =
∣∣ ∫

[z1,z2]
(f ′(z)− f ′(z0)) dz

∣∣ ≤ 1
2 |z2 − z1||f ′(z0)|

for every z1, z2 ∈ Dz0(r). This implies

|f(z2)−f(z1)| ≥ |f ′(z0)(z2− z1)|− |f(z2)−f(z1)−f ′(z0)(z2− z1)| ≥ 1
2 |z2− z1||f

′(z0)| > 0

for every z1, z2 ∈ Dz0(r) with z1 ̸= z2.
Now we take U = Dz0(r). From the open mapping theorem we have that the set W = f(U)
is open. We have proved that f ′ ̸= 0 in U and that f : U → W is one-to-one and onto and so
the inverse mapping f−1 : W → U is defined. Now it is easy to see that this inverse mapping is
continuous inW . Indeed let w ∈ W . Then there is (a unique) z ∈ U so that f(z) = w. We take
any ϵ > 0 small enough so thatDz(ϵ) ⊆ U . Then the set f(Dz(ϵ)) is open and contains w. Hence
there is δ > 0 so thatDw(δ) ⊆ f(Dz(ϵ)). Then for every w′ ∈ Dw(δ) the (unique) z′ ∈ U which
satisfies f(z′) = w′ is contained inDz(ϵ). This says that for every w′ ∈W with |w′ −w| < δ we
have |f−1(w′) − f−1(w)| = |z′ − z| < ϵ and the function f−1 : W → U is continuous at every
w ∈W . Now, proposition 3.4 implies that f−1 :W → U is holomorphic inW .

92



Theorem 5.2. Let f be holomorphic in the region Ω and let z0 ∈ Ω and w0 = f(z0). Let z0 be
a solution of f(z) = w0 of multiplicity N . Then there is an open set U ⊆ Ω containing z0 so
that W = f(U) is an open set containing w0 = f(z0) and so that the function f : U → W is
N -to-one.

Proof. We know that there is a disc Dz0(R) and a function g holomorphic in Dz0(R) so that

f(z)− w0 = (z − z0)
Ng(z)

for every z ∈ Dz0(R) and g(z0) ̸= 0. By the continuity of g we have that there is r ≤ R so
that g(z) ̸= 0 for every z ∈ Dz0(r). Then the function g′

g is holomorphic in Dz0(r) and the
theorem of Cauchy in convex regions implies that

∮
γ
g′(z)
g(z) dz = 0 for every closed curve γ in

Dz0(r). Now, theorem 4.1 implies that there is a holomorphic branch of log g in Dz0(r) and then
example 4.4.4 says that there is a holomorphic branch of g1/N inDz0(r). I.e. there is a function ϕ
holomorphic inDz0(r) so that ϕ(z)N = g(z) for every z ∈ Dz0(r). Now we consider the function
h(z) = (z − z0)ϕ(z). This is holomorphic in Dz0(r) and we have that

f(z)− w0 = h(z)N

for every z ∈ Dz0(r). Moreover, h′(z0) = ϕ(z0) ̸= 0. Proposition 5.8, applied to h, implies
that there is an open set U0 ⊆ Dz0(r) containing z0 so thatW0 = h(U0) is an open set containing
h(z0) = 0 and so that the function h : U0 →W0 is one-to-one. Now, we consider a discD0(r0) ⊆
W0 and the open set U = h−1(D0(r0)) ⊆ U0. Then h : U → D0(r0) is holomorphic in U , onto
D0(r0) and one-to-one in U . Moreover, we have that f(z)−w0 = h(z)N for every z ∈ U . Since
the N -th power w = ζN maps the discD0(r0) onto the discD0(r

N
0 ) and in an N -to-one manner,

we conclude that f : U →W is N -to-one, whereW is the disc Dw0(r
N
0 ).

In the proof of theorem 5.2 if we take any linear segment [w0, w] in the disc Dw0(r
N
0 ), where

w is a point of the circle Cw0(r
N
0 ), then, through the mapping w = w0 + ζN , this linear segment

corresponds to N linear segments [0, z1], . . . , [0, zN ] in the disc D0(r0), where z1, . . . , zN are N
points on the circle C0(r0). These N linear segments form N successive angles at 0 all equal to
2π
N . Now the one-to-one function h−1 : D0(r0) → U maps these linear segments onto N curves
γ1, . . . , γN with common initial endpoint z0 and N corresponding final endpoints on ∂U . Since
h′(z0) ̸= 0, the conformality of h at z0 implies that γ1, . . . , γN formN successive angles at z0 all
equal to 2π

N . TheN successive “angular” regions U1, . . . , UN in U between the curves γ1, . . . , γN
are mapped by h onto the corresponding succesive angular regionsA1, . . . , AN inD0(r0) between
the linear segments [0, z1], . . . , [0, zN ] and these are then mapped by the mapping w = w0 + ζN

onto the same region B = Dw0(r
N
0 ) \ [w0, w]. We conclude that f , which is the composition of

the two mappings, maps each of U1, . . . , UN in U onto B and in an one-to-one manner.

Exercises.

5.11.1. Let f be holomorphic inD0(R), f ′(0) ̸= 0 and n ∈ N. Prove that there is r > 0 and there
is g holomorphic in D0(r) so that f(zn) = f(0) + g(z)n for every z ∈ D0(r).

5.11.2. Let Ω1,Ω2 be two regions, let f : Ω1 → Ω2 and g : Ω2 → C be non-constant functions
and let h = g ◦ f .
(i) If f, h are holomorphic in Ω1, is g holomorphic in Ω2?
(ii) If g, h are holomorphic in Ω2,Ω1, respectively, is f holomorphic in Ω1?

5.11.3. If f is holomorphic and one-to-one in C, prove that there are a ̸= 0 and b so that f(z) =
az + b for every z.

93



5.12 Uniform convergence in compact sets and holomorphy.

The theorem of Weierstrass. Let every fn be holomorphic in the open set Ω ⊆ C. If fn → f
uniformly in every compact subset of Ω, then f is also holomorphic in Ω and for every k ∈ N we
have that f (k)n → f (k) uniformly in every compact subset of Ω.

Proof. We take any z0 ∈ Ω. Then there is a closed disc Dz0(R) contained in Ω and for every n
we have

fn(z) =
1

2πi

∮
Cz0 (R)

fn(ζ)
ζ−z dζ (5.10)

for every z ∈ Dz0(R). Since Cz0(R) is a compact subset of Ω, we have that fn → f uniformly in
Cz0(R). We also have that fn(z) → f(z) for every z ∈ Dz0(R). Hence

f(z) = 1
2πi

∮
Cz0 (R)

f(ζ)
ζ−z dζ (5.11)

for every z ∈ Dz0(R). The right side of this equality is a holomorphic function of z in Dz0(R)
and so the left side, f(z), is also holomorphic inDz0(R). Thus, f is holomorphic at every z0 ∈ Ω.
Now, from the variants of (5.10) and (5.11) for derivatives, we have for every z ∈ Dz0(

R
2 ) that

|f (k)n (z)− f (k)(z)| =
∣∣ k!
2πi

∮
Cz0 (R)

fn(ζ)−f(ζ)
(ζ−z)k+1 dζ

∣∣ ≤ k!
2π

∥fn−f∥Cz0 (R)

(R/2)k+1 2πR

= 2k+1k!
Rk ∥fn − f∥Cz0 (R).

Hence,
∥f (k)n − f (k)∥Dz0 (R/2) ≤ 2k+1k!

Rk ∥fn − f∥Cz0 (R)

and so f (k)n → f (k) uniformly in Dz0(
R
2 ).

We proved that every z ∈ Ω has a neighborhood Dz(rz) in which f (k)n converges uniformly to f .
Now, if K ⊆ Ω is compact, there are z1, . . . , zn ∈ K so that K ⊆ Dz1(rz1) ∪ · · · ∪ Dzn(rzn).
Since f (k)n → f (k) uniformly in eachDzj (rzj ), we conclude that f

(k)
n → f (k) uniformly inK.

The theorem ofHurwitz. Let every fn be holomorphic in the regionΩ ⊆ C and fn → f uniformly
in every compact subset of Ω. If fn(z) ̸= 0 for every n and every z ∈ Ω, then either f(z) ̸= 0 for
every z ∈ Ω or f(z) = 0 for every z ∈ Ω.

First proof. The theorem of Weierstrass implies that f is holomorphic in Ω. We assume that f is
not identically 0 in Ω and we shall prove that f(z) ̸= 0 for every z ∈ Ω.
We take any z0 ∈ Ω. Even if f(z0) = 0, we know that z0 is an isolated root of f and hence there
is r > 0 so that f(ζ) ̸= 0 for every ζ ∈ Cz0(r). By the continuity of f we get that there is some
δ > 0 so that |f(ζ)| ≥ δ for every ζ ∈ Cz0(r). Now, we have that fn → f uniformly in Dz0(r)
and so there is n so that

|fn(z)− f(z)| ≤ δ
4 (5.12)

for every z ∈ Dz0(r). Therefore

|fn(ζ)| ≥ |f(ζ)| − |fn(ζ)− f(ζ)| ≥ δ − δ
4 = 3δ

4

for every ζ ∈ Cz0(r). Since fn is holomorphic inDz0(r) and continuous inDz0(r) and fn(z) ̸= 0
for every z ∈ Dz0(r), by the minimum principle we have that |fn(z)| ≥ 3δ

4 for every z ∈ Dz0(r).
This and (5.12) imply

|f(z)| ≥ |fn(z)| − |fn(z)− f(z)| ≥ 3δ
4 − δ

4 = δ
2

for every z ∈ Dz0(r). Thus there is no root of f in the disc Dz0(r). In particular, f(z0) ̸= 0.
Second proof. We follow the first proof up to the point that we get |f(ζ)| ≥ δ for every ζ ∈ Cz0(r).
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Now, we have that fn → f uniformly in Cz0(r) and the theorem of Weierstrass implies that also
f ′n → f ′ uniformly in Cz0(r). Therefore,

f ′n
fn

→ f ′

f uniformly in Cz0(r) and hence

1
2πi

∮
Cz0 (r)

f ′n(ζ)
fn(ζ)

dζ → 1
2πi

∮
Cz0 (r)

f ′(ζ)
f(ζ) dζ.

By the argument principle, the left side is equal to the number of roots of fn in the discDz0(r) and
hence it is equal to 0. Thus, the right side is also equal to 0 and, by the argument principle again,
there is no root of f in the disc Dz0(r). In particular, f(z0) ̸= 0.

We now recall some definitions for collections of complex functions defined in a subset of a
general metric space: here our metric space will be C.

Let A ⊆ C and F be a collection of complex functions defined in the set A. We say that F
is bounded at some z ∈ A if there isM so that |f(z)| ≤ M for every f ∈ F . We say that F is
equicontinuous at some z ∈ A if for every ϵ > 0 there is δ > 0 so that |f(w) − f(z)| < ϵ for
every w ∈ A with |w − z| < δ and for every f ∈ F .

We observe that if F is equicontinuous at some z ∈ A, then every f ∈ F is continuous at z
and that the δ which corresponds to ϵ in the definition of continuity at z does not depend on the
particular f , i.e. δ is uniform over f ∈ F .

Let A ⊆ C and F be a collection of functions defined in the set A. We say that F is locally
bounded at some z ∈ A if there are δ > 0 and M so that |f(w)| ≤ M for every w ∈ A with
|w − z| < δ and for every f ∈ F .

The theorem of Montel. Let Ω ⊆ C be open and F be a collection of holomorphic functions in
Ω. Then the following are equivalent:
(i) For every sequence (fn) in F there is a subsequence (fnk

) and a function f holomorphic in Ω
so that fnk

→ f uniformly in every compact subset of Ω.
(ii) F is locally bounded at every z ∈ Ω.

Proof. (i)⇒ (ii) Assume thatF is not locally bounded at some z ∈ Ω. Then for every n ∈ N there
is zn ∈ Ω and fn ∈ F with

|zn − z| < 1
n , |fn(zn)| > n.

Now, there is a subsequence (fnk
) of (fn) and a function f holomorphic in Ω so that fnk

→ f
uniformly in every compact subset of Ω. Since zn → z, the set K = {zn |n ∈ N} ∪ {z} is a
compact subset of Ω and hence fnk

→ f uniformly in K. Moreover, the continuity of f implies
that f(znk

) → f(z). But then

∥fnk
− f∥K ≥ |fnk

(znk
)− f(znk

)| ≥ |fnk
(znk

)| − |f(znk
)| → +∞

and we arrive at a contradiction.
Another course goes as follows. By the Arzela-Ascoli theorem, (i) implies that F is bounded and
equicontinuous at every z ∈ Ω. This easily implies that F is locally bounded at every z ∈ Ω.
Indeed, there is M so that |f(z)| ≤ M for every f ∈ F . Moreover, there is δ > 0 so that
|f(w)− f(z)| < 1 for every w ∈ A with |w − z| < δ and for every f ∈ F . Hence

|f(w)| ≤ |f(z)|+ |f(w)− f(z)| ≤M + 1

for every w ∈ A with |w − z| < δ and for every f ∈ F . So F is locally bounded at every z ∈ Ω.
(ii)⇒ (i) By the Arzela-Ascoli theorem and by the theorem of Weierstrass it is enough to prove
that F is bounded and equicontinuous at every z ∈ Ω.
It is clear that local boundedness of F at every z ∈ Ω implies that F is bounded at every z ∈ Ω.
Now we take any z ∈ Ω and then there is r > 0 andM so that |f(z)| ≤ M for every z ∈ Dz(r)
and every f ∈ F . Thus, for every w ∈ Dz(

r
2) and every f ∈ F we have

|f ′(w)| =
∣∣ 1
2πi

∮
Cz(r)

f(ζ)
(ζ−w)2 dζ

∣∣ ≤ 1
2π

M
(r/2)2

2πr = 4M
r .
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This implies that for every w ∈ Dz(
r
2) and every f ∈ F we have

|f(w)− f(z)| =
∣∣ ∫

[z,w] f
′(ζ) dζ

∣∣ ≤ 4M
r |w − z|.

Hence, for every ϵ > 0 we may take δ = min{ rϵ
4M ,

r
2} and then for every z ∈ Dz(δ) and every

f ∈ F we get
|f(w)− f(z)| ≤ 4M

r |w − z| < 4M
r δ ≤ ϵ.

Thus, F is equicontinuous at z.

Exercises.

5.12.1. Prove that
∑+∞

n=−∞
1

(z+n)2
converges uniformly in every compact subset of C \ Z.

5.12.2. Prove that
∑+∞

n=0
zn

z2n+1
converges uniformly in every compact subset of C \ T.

5.12.3. Prove that
∑+∞

n=0(
z
z+1)

n converges uniformly in every compact subset of {z | Re z > −1
2}.

5.12.4.We define tz = ez ln t for every z ∈ C and every t > 0.
(i) Prove that

∑+∞
n=1

1
nz converges absolutely for every z in {z | Re z > 1} and diverges for every

z in {z | Re z ≤ 1}.
(ii) Let δ > 0. Prove that

∑+∞
n=1

1
nz converges uniformly in {z | Re z ≥ 1 + δ}.

The function ζ : {z | Re z > 1} → C with

ζ(z) =
∑+∞

n=1
1
nz

for every z with Re z > 1 is the famous ζ function of Riemann and it is connected with one of the
most difficult unsolved problems of mathematics.
(iii) Prove that

ζ ′(z) = −
∑+∞

n=2
lnn
nz

for every z with Re z > 1.

5.12.5. Let (fn) be a sequence of functions holomorphic in the region Ω ⊆ C which is locally
bounded at every z ∈ Ω. If every fn has no roots in Ω and fn(z0) → 0 for some z0 ∈ Ω, prove
that fn → 0 uniformly in every compact subset of Ω.

5.12.6. Let (fn) be a sequence of functions holomorphic in the region Ω ⊆ C which is locally
bounded at every z ∈ Ω and let E ⊆ Ω have an accumulation point in Ω. If limn→+∞ fn(z) is a
complex number for every z ∈ E, prove that (fn) converges to some function uniformly in every
compact subset of Ω.

5.12.7. Let (fn) be a sequence of functions holomorphic in the open setΩ ⊆ C. If limn→+∞ fn(z)
is a complex number for every z ∈ Ω, use the theorem of Baire to prove that there is an open set
H ⊆ Ω which is dense in Ω and so that (fn) converges to some function uniformly in every
compact subset of H .

5.12.8. LetΩ ⊆ C be a region and (fn) be a sequence of functions holomorphic inΩwith Re fn >
0 in Ω for every n.
(i) If (fn(z0)) is bounded for some z0 ∈ Ω, prove that there is a subsequence (fnk

)which converges
to some function uniformly in every compact subset of Ω.
(ii) If (fn(z0)) is unbounded for some z0 ∈ Ω, prove that there is a subsequence (fnk

) so that
fnk

→ ∞ uniformly in every compact subset of Ω.

5.12.9. Let fn, f be holomorphic in Dz0(R) and fn → f uniformly in every compact subset of
Dz0(R). If fn(z) =

∑+∞
k=0 ak,n(z − z0)

k and f(z) =
∑+∞

k=0 ak(z − z0)
k are the corresponding

Taylor series, prove that ak,n → ak for every k.
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5.12.10. Let F be a collection of functions holomorphic in Dz0(R). We denote ak(f) = f (k)(z0)
k!

the k-th Taylor coefficient of each f ∈ F . Prove that the following are equivalent:
(i) For every sequence (fn) in F there is a subsequence (fnj ) which converges to some function
uniformly in every compact subset of Dz0(R).
(ii) There areMk so that lim k

√
Mk ≤ 1

R and |ak(f)| ≤Mk for every k and every f ∈ F .

5.12.11. A theorem of Montel. Let −∞ < a < x0 < b < +∞ and f be bounded and holomor-
phic in the vertical zone

Ω = {z = x+ iy | a < x < b, y > 0}.

If limy→+∞ f(x0 + iy) = A ∈ C, prove that for every ϵ > 0 we have

limy→+∞ supx∈[a+ϵ,b−ϵ] |f(x+ iy)−A| = 0.

5.12.12. Let Ω ⊆ C be open, M ≥ 0, 1 ≤ p < +∞, and F be the collection of all functions f
holomorphic in Ω with ∫∫

Ω |f(z)|p dxdy ≤M (z = x+ iy).

Using exercise 5.3.9, prove that F is locally bounded at every z ∈ Ω.

5.12.13. Let F be a collection of holomorphic functions in the open set Ω ⊆ C with the property:
for every sequence (fn) in F there is a subsequence (fnk

) which converges to some function
uniformly in every compact subset of Ω. Prove that the collection F ′ = {f ′ | f ∈ F} has the same
property. Is the converse true?

5.12.14. Let Ω ⊆ C be open, Dz0(r) ⊆ Ω, fn, f be holomorphic in Ω and fn → f uniformly in
Cz0(r). If f has no root in Cz0(r) and has exactly k roots in Dz0(r), prove that every fn, after
some value of the index n, has exactly k roots in Dz0(r).

5.12.15. Let (fn) be a sequence of holomorphic functions in the region Ω ⊆ C so that fn → f
uniformly in every compact subset of Ω. If every fn has at most k roots in Ω, prove that either f
has also at most k roots in Ω or that f is identically 0 in Ω.

5.12.16. Let fn, f be holomorphic in the open set Ω ⊆ C and fn → f uniformly in every compact
subset of Ω. Prove that

{z ∈ Ω | f(z) = 0} = Ω ∩
∩+∞
n=1

(∪+∞
k=n{z ∈ Ω | fk(z) = 0}

)
.
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Chapter 6

Global behaviour of holomorphic
functions.

6.1 Index of a closed curve with respect to a point.

6.1.1 The piecewise smooth case

LetA ⊆ C, and g : A→ C\{0} be continuous inA. We say that the function h is a continuous
branch of arg g inA if h is continuous inA and for every w ∈ A we have that h(w) is an element
of arg g(w) or, equivalently,

g(w) = |g(w)|eih(w)

for every w ∈ A.
We recall the notion of a continuous branch of log g. We say that f is a continuous branch of

log g if f is continuous in A and f(w) is an element of log g(w) or, equivalently,

ef(w) = g(w)

for every w ∈ A.

Proposition 6.1. Let A ⊆ C and g : A→ C \ {0} be continuous in A. Then there is a one-to-one
correspondence between continuous branches of log g and continuous branches of arg g in A.

Proof. If h is a continuous branch of arg g in A, then the function

f = ln |g|+ ih (6.1)

is a continuous branch of log g in A. Indeed, ef(w) = eln |g(w)|eih(w) = |g(w)|eih(w) = g(w) for
every w ∈ A and f is continuous in A.
Conversely, if f is a continuous branch of log g inA, then h, defined through (6.1), is a continuous
branch of arg g in A. Indeed, |g(w)|eih(w) = |g(w)|ef(w)e− ln |g(w)| = g(w) for every w ∈ A and
h is continuous in A.

In other words, relation (6.1) says that, if we have a continuous branch f of log g inA, then the
imaginary part h of f is a continuous branch of arg g in A. Conversely, if we have a continuous
branch h of arg g inA, then the function f with imaginary part h and real part ln |g| is a continuous
branch of log g in A.

The next result is analogous to proposition 4.6 and their proofs are almost identical.

Proposition 6.2. Let g : A→ C \ {0} be continuous in A ⊆ C.
(i) If h1 is a continuous branch of arg g in A and h2 − h1 = k2π in A, where k is a fixed integer,
then h2 is also a continuous branch of arg g in A.
(ii) If, moreover, A is connected and h1, h2 are continuous branches of arg g inA, then h2−h1 =
k2π in A, where k is a fixed integer. In particular, if h1(w0) = h2(w0) for some w0 ∈ A, then
h1 = h2 in A.
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Now we consider a piecewise smooth curve γ (not necessarily closed). Then there is a succes-
sion of points a = t0 < t1 < · · · < tn−1 < tn = b so that γ is continuously differentiable in every
[tk−1, tk]. We consider an arbitrary fixed z /∈ γ∗ and we define

f(t) =
∫ t
a

γ′(s)
γ(s)−z ds

for t ∈ [a, b]. Then f is continuous in [a, b] and differentiable at every point of continuity of γ′

γ−z .
So in every (tk−1, tk) we have d

dt

(
(γ(t) − z)e−f(t)

)
= γ′(t)e−f(t) − (γ(t) − z)f ′(t)e−f(t) = 0.

Thus, (γ(t)− z)e−f(t) is constant in each (tk−1, tk) with a constant value which a priori depends
on k, but since this function is continuous in [a, b], it is constant in [a, b]. Hence there is c ∈ C so
that (γ(t)− z)e−f(t) = c for every t ∈ [a, b]. Since c ̸= 0, there is d ∈ C so that ed = c, and thus
ef(t)+d = γ(t)− z for every t ∈ [a, b]. Now we redefine f by adding to it the constant d, i.e. we
write

f(t) =
∫ t
a

γ′(s)
γ(s)−z ds+ d (6.2)

for every t ∈ [a, b] and we have
ef(t) = γ(t)− z

for every t ∈ [a, b]. In other words, the function f is a continuous branch of log(γ − z) in [a, b].
Now, the real part of f is ln |γ − z| and, if we denote h the imaginary part of f , i.e.

h(t) = Im
∫ t
a

γ′(s)
γ(s)−z ds+ Im d (6.3)

for every t ∈ [a, b], then h is a continuous branch of arg(γ− z) in [a, b]. Loosely speaking, h(t) is
a continuously varying angle of the continuously varying vector

−−−→
z γ(t), as this vector turns around

its fixed base point z following its variable tip γ(t) which moves over the trajectory of the curve
γ from its initial point γ(a) towards its final point γ(b). This is the reason why the expression

h(b)− h(a) = Im
∫ b
a

γ′(s)
γ(s)−z ds = Im

∫
γ

1
ζ−z dζ,

a consequence of (6.3), is called total increment of argument or total increment of angle over
the curve γ with respect to z.

Let us consider the important special case of a closed curve γ, i.e. when γ(b) = γ(a). This
implies γ(b)− z = γ(a)− z, and hence

Re f(b) = ln |γ(b)− z| = ln |γ(a)− z| = Re f(a). (6.4)

It also implies that h(b)− h(a) is an integer multiple of 2π: indeed, both h(b), h(a) are values of
arg(γ(b)− z) = arg(γ(a)− z). Then the integer

n(γ; z) = h(b)−h(a)
2π (6.5)

is called rotation number or index of γ with respect to z0. It represents the number of complete
rotations of the continuously varying vector

−−−→
z γ(t) as γ(t) moves over the trajectory of the curve

from its initial point towards its final point.
If we recall that h is the imaginary part of f , then (6.2), (6.4) and (6.5) give

n(γ; z) = 1
2πi

∫ b
a

γ′(s)
γ(s)−z ds =

1
2πi

∮
γ

1
ζ−z dζ. (6.6)

Let γ be a closed piecewise smooth curve and z /∈ γ∗. We say that γ surrounds z if

n(γ; z) ̸= 0.
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Example 6.1.1.We take n ∈ Z and the closed curve γ with parametric equation γ(t) = z0+re
int,

t ∈ [0, 2π]. It is visually clear that, if n ̸= 0 and t increases in the interval [0, 2π], then γ(t)
describes |n| times the circleCz0(r) in the positive direction, ifn > 0, and in the negative direction,
if n < 0. In the case n = 0, then γ(t) is constant and describes |n| = 0 times the circle Cz0(r).
All these agree with the result of the calculation:

n(γ; z0) =
1

2πi

∮
γ

1
ζ−z0 dζ = 1

2πi

∫ 2π
0

1
reint rine

int dt = n.

The next three propositions are trivial consequences of (6.6) and of basic properties of curvi-
linear integrals.

Proposition 6.3. Let γ1, γ2 be closed piecewise smooth curves with the same endpoints and z /∈ γ∗1 ,
z /∈ γ∗2 . Then γ1

·
+ γ2 is defined and it is also a closed piecewise smooth curve and z /∈ (γ1

·
+ γ2)

∗

and
n(γ1

·
+ γ2; z) = n(γ1; z) + n(γ2; z).

Proposition 6.4. Let γ1, γ2 be closed piecewise smooth curves with z /∈ γ∗1 , z /∈ γ∗2 , so that each
is a reparametrization of the other. Then

n(γ2; z) = n(γ1; z).

Proposition 6.5. Let γ be a closed piecewise smooth curve and z /∈ γ∗. Then

n(¬ γ; z) = −n(γ; z).

Let B be a bounded set and A = C \ B. We know that A is equal to the union of its distinct
(and hence mutually disjoint) connected components. Since B is bounded, it is contained in some
disc D0(R). Then the connected ring D0(R,+∞) is contained in A and hence it is contained
in (exactly) one of the connected components, call it M , of A. All other connected components
of A are disjoint from M and so they are contained in D0(R). Therefore, M is the unbounded
connected component of A and all other connected components of A are bounded.

In particular if γ is a curve, then the open set C \ γ∗ has one unbounded connected component
and all its other connected components are bounded.

Proposition 6.6. Let γ be a closed piecewise smooth curve. Then the integer-valued function
n(γ; z) is constant in every connected component of the open set C \ γ∗. We also have that
n(γ; z) = 0 for every z in the unbounded connected component of C \ γ∗.

Proof. Proposition 4.12 implies that n(γ; z), as given by (6.6), is a holomorphic function of z in
C \ γ∗. Now, let Ω be any connected component of C \ γ∗. The function n(γ; z) is continuous
and integer valued in Ω and, since n(γ; z) has the intermediate value property in Ω, it has to be
constant in Ω.
Finally, let Ω be the unbounded connected component of C \ γ∗. We shall prove that n(γ; z) = 0

for every z ∈ Ω. If γ∗ ⊆ D0(R), then (6.6) for |z| > R implies |n(γ; z)| ≤ 1
2π

l(γ)
|z|−R . Thus,

limz→∞ n(γ; z) = 0 and since n(γ; z) is constant in Ω, it has to be equal to 0 in Ω.

Proposition 6.6 says that if z1, z2 are in the same connected component of the complement of
the trajectory of the closed piecewise smooth curve γ, then the number of complete rotations of γ
around z1 is equal to the number of complete rotations of γ around z2.

Example 6.1.2.We consider the same closed curve as in example 6.1.1.
We have seen that n(γ; z0) = n. Since γ∗ = Cz0(r), the complement of γ∗ has two connected
components: the discDz0(r) and the unbounded ringDz0(r,+∞). Thus, n(γ; z) = n(γ; z0) = n
when z ∈ Dz0(r). Also, n(γ; z) = 0 when z ∈ Dz0(r,+∞).
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Proposition 6.7. Let Ω be a region and z /∈ Ω. A holomorphic branch of log(ζ − z) (as a function
of ζ) exists in Ω if and only if n(γ; z) = 0 for every closed piecewise smooth curve γ in Ω.

Proof. A direct consequence of theorem 4.1 applied to g(ζ) = ζ − z.

Example 6.1.3.We consider the region Ω = C\ l, where l is any halfline with vertex z. We know
that a holomorphic branch of log(ζ − z) exists in Ω and hence n(γ; z) = 0 for every closed curve
γ inΩ. This is geometrically obvious: since γ is inΩ, it does not intersect the halfline l with vertex
z, and hence it cannot make any complete rotation around z.

Cauchy’s formula for derivatives and closed curves in convex regions. If f is holomorphic in
the convex region Ω and γ is a closed piecewise smooth curve in Ω, then for all n ∈ N0 we have

n(γ; z)f (n)(z) = n!
2πi

∮
γ

f(ζ)
(ζ−z)n+1 dζ

for every z ∈ Ω \ γ∗.

Proof. The function F (ζ) = f(ζ)−f(z)
ζ−z is holomorphic inΩ\{z}. Since z is a root of f(ζ)−f(z),

the singularity z of F is removable. So we define F at z as F (z) = limζ→z
f(ζ)−f(z)

ζ−z = f ′(z) and
then F becomes holomorphic in Ω. Now we apply the theorem of Cauchy in convex regions and
get ∮

γ
f(ζ)−f(z)

ζ−z dζ =
∮
γ F (ζ) dζ = 0

for every z ∈ Ω \ γ∗. This implies

1
2πi

∮
γ
f(ζ)
ζ−z dζ = f(z) 1

2πi

∮
γ

1
ζ−z dζ = f(z)n(γ; z) (6.7)

for every z ∈ Ω \ γ∗. This is the result of the statement in the case n = 0.
Now, if z ∈ Ω \ γ∗, then z is contained in one connected component of C \ γ∗ and, since all
connected components of C \ γ∗ are open, there is a small disc Dz(r) which is contained in one
connected component ofC\γ∗. Therefore, the index n(γ;w) is a constant function ofw inDz(r),
i.e. n(γ;w) = n(γ; z) for every w ∈ Dz(r). This implies that all derivatives of n(γ;w) vanish at
z and so when we differentiate (6.7) we get n!

2πi

∮
γ

f(ζ)
(ζ−z)n+1 dζ = f (n)(z)n(γ; z) for n ≥ 1.

A particular instance of the last result is Cauchy’s formula for derivatives and circles. Indeed,
when the curve γ describes the circle Cz0(R) once in the positive direction we have n(γ; z) = 1
for all z ∈ Dz0(R). We originally proved the result in the case of a circle, using corollary 5.1.
We now have a “new” proof using that z is a removable singularity of f(ζ)−f(z)ζ−z . We have also
introduced the notion of the index of a closed curve. This new proof together with the introduction
of the notion of index allows us to generalize the case of a circle to the case of a more general
closed piecewise smooth curve. There is still a restriction in the sense that the curve has to be
contained in a convex region in which the function is holomorphic. This is because our proof is
based on Cauchy’s theorem in convex regions. In this chapter we shall replace this restriction on
the region with a restriction on the curve.

6.1.2 The general case

In the general case of a curve γ, which is not necessarily piecewise smooth, the notions of total
increment of argument over γ and of index of γ cannot be based on integrals of the form

∫
γ

1
ζ−z dζ

any more.

Proposition 6.8. Let g1, g2 : A→ C \ {0} be continuous in A ⊆ C.
(i) If f1, f2 are continuous branches of log g1, log g2 in A, then f1 + f2 is a continuous branch of
log(g1g2) in A.
(ii) If h1, h2 are continuous branches of arg g1, arg g2 in A, then h1 + h2 is a continuous branch
of arg(g1g2) in A.
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Proof. (i) f1 + f2 is continuous in A and also ef1(w)+f2(w) = ef1(w)ef2(w) = g1(w)g2(w) for
every w ∈ A.
(ii) Just as in (i).

Proposition 6.9 is the first existence result of this section.

Proposition 6.9. Let g : [a, b] → C \ {0} be continuous in the interval [a, b]. Then there is a
continuous branch of log g and a continuous branch of arg g in [a, b].

Proof. It is enough to prove the existence of a continuous branch of log g.
Since g is continuous in [a, b], there is ϵ > 0 so that |g(t)| ≥ ϵ for every t ∈ [a, b]. Now, g is
also uniformly continuous in [a, b] and hence there is δ > 0 so that |g(t′) − g(t′′)| < ϵ for every
t′, t′′ ∈ [a, b] with |t′ − t′′| < δ. We take successive points a = t0 < t1 < . . . < tn−1 < tn = b
so that tk − tk−1 < δ for every k = 1, . . . , n. Then, for every k = 1, . . . , n we have

{g(t) | t ∈ [tk−1, tk]} ⊆ Dg(tk)(ϵ).

Since |g(tk)| ≥ ϵ, the disc Dg(tk)(ϵ) does not contain 0 and hence a continuous branch of log is
defined in this disc. Then example 4.3.3 implies that there is a continuous branch, say fk, of log g
in [tk−1, tk].
Now, f1 is a continuous branch of log g in [t0, t1] and f2 is a continuous branch of log g in [t1, t2].
Then f2(t1) − f1(t1) = m2πi for some m ∈ Z. We replace the function f2 with the function
f2 −m2πi and the new function f2 is also a continuous branch of log g in [t1, t2] with f2(t1) =
f1(t1). Working with the (new) function f2 and the function f3 which is a continuous branch
of log g in [t2, t3], we see as before that f3(t2) − f2(t2) = l2πi for some l ∈ Z. We replace the
function f3 with the function f3− l2πi and the new function f3 is also a continuous branch of log g
in [t2, t3] with f3(t2) = f2(t2). We continue inductively and finally we end up with continuous
branches fk of log g in [tk−1, tk] for every k = 1, . . . , n so that fk(tk) = fk+1(tk) for every
k = 1, . . . , n − 1. Therefore, the function f : [a, b] → C, which is defined to be equal to fk in
the corresponding interval [tk−1, tk], is continuous in [a, b]. Moreover, f is a continuous branch of
log g in every [tk−1, tk] and hence in [a, b].

We consider any curve γ : [a, b] → C and z /∈ γ∗. Then the function γ−z : [a, b] → C\{0} is
continuous in [a, b] and, according to proposition 6.9, there is a continuous branch f of log(γ− z)
and a continuous branch h of arg(γ − z) in [a, b] related by

f = ln |γ − z|+ ih. (6.8)

Then the functions f + k2πi and h + k2π, where k is an arbitrary, but constant, integer, are
also continuous branches of log(γ−z) and arg(γ−z) in [a, b]. Moreover, since [a, b] is connected,
these are all the continuous branches of log(γ − z) and arg(γ − z) in [a, b].

Now, let h be any continuous branch of arg(γ − z) in [a, b]. We observe that the expression
h(b)−h(a) is independent of the particular choice of h. Indeed, if h1 is another continuous branch
of arg(γ − z) in [a, b], then there is a constant integer k so that h1 = h+ k2π in [a, b] and then we
have h1(b)− h1(a) = (h(b) + k2π)− (h(a) + k2π) = h(b)− h(a). The expression

∆ arg(γ − z) = h(b)− h(a)

is called total increment of argument or total increment of angle over the curve γ with respect
to z.

Observe that in the previous subsection, i.e. when γ is piecewise smooth, we had a specific
construction of a continuous branch h of arg(γ− z) in [a, b] and∆ arg(γ− z) was given by means
of a curvilinear integral: Im

∫
γ

1
ζ−z dζ.

Now, assume that γ is closed, i.e. γ(b) = γ(a). This implies γ(b)− z = γ(a)− z, and hence
ln |γ(b)− z| = ln |γ(a)− z|. It also implies that h(b) and h(a) differ by some integer multiple of
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2π, since both h(b), h(a) are values of arg(γ(b) − z) = arg(γ(a) − z). Therefore the expresion
∆ arg(γ − z) = h(b)− h(a) is an integer multiple of 2π. Then the integer

n(γ; z) = ∆ arg(γ−z)
2π

is called rotation number or index of γ with respect to z.
Again, we remark that when the closed curve γ is piecewise smooth we have from the previous

subsection an expression of n(γ, z), namely (6.6), by means of a curvilinear integral.

Proposition 6.10. Let γ1, γ2 be closed curves with the same endpoints and z /∈ γ∗1 , z /∈ γ∗2 . Then
γ1

·
+ γ2 is defined and it is also a closed curve and z /∈ (γ1

·
+ γ2)

∗ and

n(γ1
·
+ γ2; z) = n(γ1; z) + n(γ2; z).

Proof. Let γ1 : [a, b] → C and γ2 : [b, c] → C be the two curves and h1 : [a, b] → R and
h2 : [b, c] → R be continuous branches of arg(γ1 − z) and arg(γ2 − z). We may redefine h2
by adding to it an appropriate integer multiple of 2π so that h2(b) = h1(b). Then the function
h : [a, c] → Rwhich equals h1 in [a, b] and h2 in [b, c] is a continuous branch of log((γ1

·
+ γ2)−z)

in [a, c]. Therefore, h(c)− h(a) = h(c)− h(b) + h(b)− h(a) = h2(c)− h2(b) + h1(b)− h1(a)

and hence n(γ1
·
+ γ2; z) = n(γ1; z) + n(γ2; z).

Proposition 6.11. Let γ1, γ2 be closed curves with z /∈ γ∗1 , z /∈ γ∗2 , so that each is a reparametriza-
tion of the other. Then

n(γ2; z) = n(γ1; z).

Proof. Let γ1 : [a, b] → C and γ2 : [c, d] → C be the two curves and σ : [c, d] → [a, b] be the
change of parameter so that γ2 = γ1 ◦ σ. If h is a continuous branch of arg(γ1 − z) in [a, b], then
h ◦ σ is a continuous branch of arg(γ2 − z) in [c, d]. Indeed, from eih(t) = γ1(t)−z

|γ1(t)−z| for every

t ∈ [a, b] we get eih(σ(s)) = γ1(σ(s))−z
|γ1(σ(s))−z| =

γ2(s)−z
|γ2(s)−z| for every s ∈ [c, d].

So from h(σ(d))− h(σ(c)) = h(b)− h(a) we get n(γ2; z) = n(γ1; z).

Proposition 6.12. Let γ be a closed curve and z /∈ γ∗. Then

n(¬ γ; z) = −n(γ; z).

Proof. Let γ,¬ γ : [a, b] → C be the two curves. Then ¬ γ(t) = γ(a+ b− t) for every t ∈ [a, b].
If h is a continuous branch of arg(γ − z) in [a, b], then the function k(t) = h(a + b − t) is a
continuous branch of arg(¬ γ − z) in [a, b]. Indeed, from eih(t) = γ(t)−z

|γ(t)−z| for every t ∈ [a, b] we

get eik(t) = eih(a+b−t) = γ(a+b−t)−z
|γ(a+b−t)−z| =

¬ γ(t)−z
|¬ γ(t)−z| for every t ∈ [a, b].

So from k(b)− k(a) = h(a)− h(b) we get n(¬ γ; z) = −n(γ; z).

Proposition 6.13. Let A ⊆ C and z /∈ A. If a continuous branch of log(ζ − z) (as a function of ζ)
exists in A then n(γ; z) = 0 for every closed curve γ in A.

Proof. Let ϕ(ζ) be a continuous branch of log(ζ − z) in A and γ : [a, b] → A be a closed curve
with z /∈ γ∗. Then h = ϕ ◦ γ is a continuous branch of log(γ − z) in [a, b]. Indeed, for every
t ∈ [a, b] we have eih(t) = eiϕ(γ(t)) = γ(t)−z

|γ(t)−z| .

Now, γ(b) = γ(a) implies h(b) = ϕ(γ(b)) = ϕ(γ(a)) = h(a) and n(γ; z) = h(b)−h(a)
2π = 0.

Example 6.1.4.We consider the set A = C \ l, where l is any halfline with vertex z. We know
that a continuous branch of log(ζ − z) exists in A and hence n(γ; z) = 0 for every closed curve γ
in A.
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Proposition 6.14. Let γ1, γ2 : [a, b] → C be closed curves such that |γ1(t)− γ2(t)| < |γ2(t)− z|
for every t ∈ [a, b]. Then

n(γ1; z) = n(γ2; z).

Proof. From |γ1(t)−γ2(t)| < |γ2(t)−z| for every t ∈ [a, b]we easily get that z /∈ γ∗1 and z /∈ γ∗2 .
We also have ∣∣γ1(t)−z

γ2(t)−z − 1
∣∣ < 1

for every t ∈ [a, b]. Now, we apply again the argument of example 4.3.3. We consider the function
g : [a, b] → D1(1) with g(t) = γ1(t)−z

γ2(t)−z for every t ∈ [a, b]. Let q be a continuous branch of log
in D1(1). Then f = q ◦ g is a continuous branch of log g in [a, b]. Since the curves γ1, γ2 are
closed, we have that g(b) = g(a) and hence f(b) = q(g(b)) = q(g(a)) = f(a). According to
(6.8), the imaginary part h of f is a continuous branch of arg g in [a, b] and from f(b) = f(a) we
get h(b) = h(a).
Now let h2 be a continuous branch of arg(γ2 − z) in [a, b]. Since, γ1 − z = (γ2 − z)g in [a, b],
proposition 6.8 implies that h1 = h2+h is a continuous branch of arg(γ1−z) in [a, b]. Therefore,
h1(b)−h1(a) = h2(b)−h2(a)+h(b)−h(a) = h2(b)−h2(a) and hence n(γ1; z) = n(γ2; z)

For every closed curve γ with z /∈ γ∗ we may consider the translated closed curve γz = γ − z
with 0 /∈ γ∗z . It is obvious that n(γ; z) = n(γz; 0).

Proposition 6.15. Let γ be a closed curve. Then the integer-valued function n(γ; z) is constant in
every connected component of the open set C \ γ∗. We also have that n(γ; z) = 0 for every z in
the unbounded connected component of C \ γ∗.

Proof. Let γ : [a, b] → C be the curve and let z /∈ γ∗. Then there is some disc Dz(r) contained
in C \ γ∗ and hence |w − z| < r ≤ |γ(t)− z| for every t ∈ [a, b] and every w ∈ Dz(r).
We take any w ∈ Dz(r) and we consider the translated curves γz = γ− z and γw = γ−w. Then
we have that |γw(t)− γz(t)| = |w− z| < |γz(t)| for every t ∈ [a, b] and proposition 6.14 implies
that n(γ;w) = n(γw; 0) = n(γz; 0) = n(γ; z).
We just proved that the function n(γ; z) is locally constant in C \ γ∗. Of course, this implies that
n(γ; z) is continuous in C \ γ∗. Now, let Ω be a connected component of C \ γ∗. Since n(γ; z) is
continuous and integer-valued in the connected set Ω, it is constant in Ω.
Now, let Ω be the unbounded connected component of C \ γ∗. We take a disc D0(R) which
contains γ∗. As we saw in the previous subsection, the connected ringD0(R,+∞) is contained in
Ω. We take any z ∈ D0(R,+∞) (and hence z ∈ Ω) and then obviously there is a halfline l with
vertex z which does not intersect the disc D0(R) and hence it does not intersect γ∗ either. From
example 6.1.4 we have that n(γ; z) = 0. Therefore n(γ, z) = 0 for every z ∈ Ω.

Exercises.

6.1.1. (i) Consider closed curves γ1, γ2 and z not on their trajectories. Assume that there are succes-
sive points w(1)

1 , . . . , w
(1)
n , w

(1)
n+1 = w

(1)
1 of γ∗1 and successive points w(2)

1 , . . . , w
(2)
n , w

(2)
n+1 = w

(2)
1

of γ∗2 and curves σ1, . . . , σn, σn+1 = σ1 so that every σj goes from w
(1)
j to w(2)

j and so that, for
each j = 1, . . . , n, the part of γ1 between w(1)

j , w
(1)
j+1, the part of γ2 between w(2)

j , w
(2)
j+1, σj and

σj+1 are all in a convex subregion Dj of C \ {z}. Prove that n(γ1; z) = n(γ2; z).
(ii) Take a point z and two halflines l,m with vertex z. Let A ∈ l, A ̸= z and B ∈ m, B ̸= z.
Consider any curve γ1 from A to B in one of the two angular regions defined by l,m and any
curve γ2 from B to A in the second angular region defined by l,m. Consider the closed curve
γ = γ1

·
+ γ2. Prove that n(γ; z) = ±1.

6.1.2. If γ1, γ2 are closed curves in C \ {0} then γ1γ2 is a closed curve in C \ {0}. Prove that
∆ arg(γ1γ2) = ∆ arg γ1 +∆ arg γ2.
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6.1.3. Let F ⊆ C be closed and connected, ±1 ∈ F and Ω = C \ F . Prove that there is a
holomorphic branch of log z−1

z+1 in Ω. Prove also that there is a holomorphic branch of (z2 − 1)1/2

in Ω.

6.2 Homotopy.

Let γ0, γ1 : [a, b] → C be two curves. We say that γ1 is homotopic to γ0 if there is a continuous
function F : [a, b] × [0, 1] → C so that F (t, 0) = γ0(t) and F (t, 1) = γ1(t) for every t ∈ [a, b].
The function F is called a homotopy from γ0 to γ1.

For each s ∈ [0, 1] the function γs : [a, b] → C, given by

γs(t) = F (t, s)

for t ∈ [a, b], is continuous and hence it is a curve. We shall call it intermediate curve between γ0
and γ1.

Since [a, b]× [0, 1] is compact, the homotopy F is uniformly continuous. Thus for every ϵ > 0
there is δ > 0 so that |F (t′, s′)−F (t′′, s′′)| < ϵwhen

√
(t′ − t′′)2 + (s′ − s′′)2 < δ. Therefore, if

|s′ − s′′| < δ then we have |γs′(t)− γs′′(t)| < ϵ for every t ∈ [a, b], i.e. the curves γs′ and γs′′ are
uniformly close. We see that when s increases in [0, 1] the curves γs form a continuously varying
family of curves, starting with γ0 and ending with γ1. To be more precise, we have a mapping

[0, 1] ∋ s 7→ γs ∈ C([a, b]),

which is continuous from [0, 1] with the euclidean distance to C([a, b]) with the uniform distance:

|s′ − s′′| < δ ⇒ ∥γs′ − γs′′∥[a,b] = maxt∈[a,b] |γs′(t)− γs′′(t)| < ϵ.

If all curves γs are closed, i.e. if F (a, s) = F (b, s) for every s ∈ [0, 1], then we say that F is
a homotopy with closed intermediate curves. If all curves γs have the same initial endpoint and
the same final endpoint, i.e. if F (a, s) is constant and F (b, s) is constant for s ∈ [0, 1], then we
say that F is a homotopy with fixed endpoints.

If all curves γs are in the same set A, then we say that F is a homotopy in A.
We may define a relation between curves in a set A: we write γ0 ≡ γ1 if there is a homotopy

in A from γ0 to γ1. It is easy to see that this is an equivalence relation:
(i) Every curve γ : [a, b] → A is homotopic to itself through the homotopy F : [a, b]× [0, 1] → A
given by F (t, s) = γ(t).
(ii) IfF : [a, b]×[0, 1] → A is a homotopy from γ0 to γ1, i.e. ifF (t, 0) = γ0(t) andF (t, 1) = γ1(t)
for t ∈ [a, b], then the functionG : [a, b]×[0, 1] → A given byG(t, s) = F (t, 1−s) is a homotopy
from γ1 to γ0. In fact G is continuous and G(t, 0) = γ1(t) and G(t, 1) = γ0(t) for t ∈ [a, b].
(iii) If F : [a, b] × [0, 1] → A is a homotopy from γ0 to γ1, i.e. if F (t, 0) = γ0(t) and F (t, 1) =
γ1(t) for t ∈ [a, b], and ifG : [a, b]×[0, 1] → A is a homotopy from γ1 to γ2, i.e. ifG(t, 0) = γ1(t)
and G(t, 1) = γ2(t) for t ∈ [a, b], then H : [a, b]× [0, 1] → A, given by

H(t, s) =

{
F (t, 2s), t ∈ [a, b], s ∈ [0, 12 ]

G(t, 2s− 1), t ∈ [a, b], s ∈ [12 , 1]

is a homotopy from γ0 to γ2. Indeed, H is continuous and H(t, 0) = γ0(t) and H(t, 1) = γ2(t)
for t ∈ [a, b].

Furthermore, the previous argument shows that the relation of homotopy with closed interme-
diate curves and the relation of homotopy with fixed endpoints are both equivalence relations.

Example 6.2.1. If the set A is convex, every two curves in A are homotopic in A. Indeed, let
γ0, γ1 : [a, b] → A be two curves inA. Since γ0(t), γ1(t) ∈ A andA is convex, the linear segment
[γ0(t), γ1(t)] is contained in A. Now, if we define F : [a, b]× [0, 1] → C by

F (t, s) = (1− s)γ0(t) + sγ1(t),
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then F is continuous and all its values are in A. Moreover, F (t, 0) = γ0(t) and F (t, 1) = γ1(t)
for t ∈ [a, b]. Therefore, F is a homotopy in A from γ0 to γ1. It is easy to see that, if γ0 and γ1 are
closed, then all intermediate curves are closed. Also, if γ0 and γ1 have the same initial endpoint
and the same final endpoint, then all intermediate curves have the same initial endpoint and the
same final endpoint.

Proposition 6.16. Let f be holomorphic in the open set Ω.
(i) If γ0, γ1 are piecewise smooth curves in Ω with the same initial endpoint and the same final
endpoint and if there is a homotopy in Ω, with fixed endpoints, between γ0 and γ1, then∫

γ0
f(z) dz =

∫
γ1
f(z) dz.

(ii) If γ0, γ1 are closed piecewise smooth curves in Ω and if there is a homotopy in Ω, with closed
intermediate curves, between γ0 and γ1, then∮

γ0
f(z) dz =

∮
γ1
f(z) dz.

Proof. Let F : [a, b]× [0, 1] → Ω be the homotopy in Ω from γ0 to γ1.
Then the subset F ([a, b]× [0, 1]) of Ω is compact and hence there is ϵ > 0 so that |z −w| ≥ ϵ for
every z ∈ F ([a, b]× [0, 1]) and every w ∈ Ωc.
Moreover, since F is uniformly continuous, there is δ > 0 so that |F (t′, s′) − F (t′′, s′′)| < ϵ if
|t′ − t′′| < δ and |s′ − s′′| < δ.
Now, we take intermediate points a = t0 < t1 < . . . < tn−1 < tn = b and 0 = s0 < s1 < . . . <
sm−1 < sm = 1 so that tk − tk−1 < δ and sl − sl−1 < δ for all k and l. Then every rectangle
[tk−1, tk]× [sl−1, sl] is mapped by F in the discDF (tk−1,sl−1)(ϵ) which is contained in Ω. Since f
is holomorphic in this disc, its curvilinear integral over any closed curve in this disc is equal to 0.
Now we denote γ0,k and γ1,k the restrictions of γ0 and γ1 in [tk−1, tk]. We also denote σk,l the
linear segment [F (tk−1, sl), F (tk, sl)] for k = 1, . . . , n and l = 1, . . . ,m− 1. Finally, we denote
ρk,l the linear segment [F (tk, sl−1), F (tk, sl)] for k = 0, . . . , n and l = 1, . . . ,m. Then for every
k = 1, . . . , n we have∫

γ0,k
f(z) dz −

∫
σk,1

f(z) dz =
∫
ρk−1,1

f(z) dz −
∫
ρk,1

f(z) dz∫
σk,l−1

f(z) dz −
∫
σk,l

f(z) dz =
∫
ρk−1,l

f(z) dz −
∫
ρk,l

f(z) dz for l = 2, . . . ,m− 1∫
σk,m−1

f(z) dz −
∫
γ1,k

f(z) dz =
∫
ρk−1,m

f(z) dz −
∫
ρk,m

f(z) dz.

Adding these m equalities and then adding for k = 1, . . . , n and considering cancellations, we
find ∫

γ0
f(z) dz −

∫
γ1
f(z) dz =

∑m
l=1

∫
ρ0,l

f(z) dz −
∑m

l=1

∫
ρn,l

f(z) dz. (6.9)

(i) Since all intermediate curves have the same initial endpoint and the same final endpoint, we see
that all linear segments ρ0,l and ρn,l are single point sets and hence all integrals in the right side of
(6.9) are equal to 0. Thus,

∫
γ0
f(z) dz =

∫
γ1
f(z) dz.

(ii) Since all intermediate curves are closed, we have F (a, s) = F (b, s) for every s ∈ [0, 1].
Therefore, for each l the linear segments ρ0,l and ρn,l coincide and again the right side of (6.9) is
equal to 0. Thus,

∮
γ0
f(z) dz =

∮
γ1
f(z) dz.

Proposition 6.17. Let γ0, γ1 be two closed curves in C \ {z}. If there is a homotopy in C \ {z},
with closed intermediate curves, between γ0 and γ1, then

n(γ0; z) = n(γ1; z).

Proof. First case: the two curves are piecewise continuous.
Then we just apply proposition 6.16(ii) to f(ζ) = 1

ζ−z and Ω = C \ {z}.
Second case: the two curves are not necessarily piecewise continuous.
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LetF : [a, b]×[0, 1] → C\{z} be a homotopy with closed intermediate curves, between γ0 and γ1.
Since F is continuous and [a, b]× [0, 1] is compact and F does not take the value z, there is ϵ > 0
so that |F (t, s)− z| ≥ ϵ for every t ∈ [a, b] and s ∈ [0, 1]. Also, since F is uniformly continuous,
there is δ > 0 so that |s′ − s′′| < δ implies |γs′(t) − γs′′(t)| < ϵ for every t ∈ [a, b], where γs is
the intermediate curve corresponding to s ∈ [0, 1]. Then |γs′(t)− γs′′(t)| < |γs′′(t)− z| for every
t ∈ [a, b] and proposition 6.14 implies that n(γs′ ; z) = n(γs′′ ; z). Now we take successive points
0 = s0 < s1 < . . . < sn−1 < sn = 1 so that sk − sk−1 < δ for every k = 1, . . . , n. Then we
have n(γsk−1

; z) = n(γsk ; z) for every k = 1, . . . , n and hence n(γ0; z) = n(γ1; z).

Exercises.

6.2.1. Let A be arcwise connected and γ1(t) = z1 and γ2(t) = z2 be two constant curves in A. If
a curve γ is homotopic in A to γ1, prove that γ is homotopic in A to γ2.

6.2.2. If γ is a closed curve in C \ {0}, prove that γ is homotopic in C \ {0} to a closed curve
whose trajectory is contained in the circle T.

6.2.3. (i) Let f be continuous in D0(R). We define γ(t) = f(Reit) for every t ∈ [0, 2π]. Prove
that, if n(γ;w) ̸= 0, then w ∈ f(D0(R)). I.e. {w |w is surrounded by γ} ⊆ f(D0(R)).
(ii) Using the result of (i), prove the fundamental theorem of algebra.

6.2.4. Let p ∈ A and letMp(A) be the set of all closed curves in A with both of their endpoints at
p. If γ1, γ2 ∈ Mp(A), then clearly γ1

·
+ γ2 ∈ Mp(A). Also, if γ ∈ Mp(A), then ¬ γ ∈ Mp(A).

(i) Prove that the relation of homotopy in A with closed intermediate curves and fixed endpoints
(= p) is an equivalence relation inMp(A). The set of all equivalence classes is denotedHp(A) =
{[γ] | γ ∈ Mp(A)}.
(ii) If γ, γ1, γ2 ∈ Mp(A), we define [γ1] + [γ2] = [γ1

·
+ γ2] and −[γ] = [¬γ]. Prove that these

are well-defined and that Hp(A) with these operations is a group, whose neutral element is [γp],
where γp is the constant curve p.
(iii) If A is arcwise connected, prove that for every p, q ∈ A the groups Hp(A) and Hq(A) are
isomorphic. In this case we writeH(A). (See exercise 6.2.1.)
(iv) Prove that H(C) ∼= {0}, H(C \ {0}) ∼= Z, H(T) ∼= Z.

6.2.5. Let z1, z2, z3, w1, w2, w3 be distinct points. Is it possible to join every zk with everywj with
simple curves γkj whose trajectories are mutually disjoint?

6.3 Combinatorial results for curves and square nets.

Lemma 6.1. Let Σ = {σ1, . . . , σn} be a set of curves (not necessarily closed) and let A =
{a1, . . . , am} be the set of their endpoints (m ≤ 2n). We assume that for every point of A the
number of the curves inΣ that arrive at this point is the same as the number of the curves inΣ that
leave from this point. Then we can partition Σ into subsets Σ1, . . . ,Σk so that each Σj consists of
successive curves and the sum γj of the curves in Σj is a closed curve.

Proof. We describe an algorithm for the partitioning of Σ.
We start with σ1. The final endpoint of σ1 is the initial endpoint of at least one curve in Σ. If the
final endpoint of σ1 coincides with its initial endpoint, then σ1 is closed and we stop the process. If
this is not the case, then, renumbering if necessary the curves σ2, . . . , σn, we may assume that the
final endpoint of σ1 coincides with the initial endpoint of σ2. If the final endpoint of σ2 coincides
with the initial endpoint of σ1, then the sum of σ1, σ2 is a closed curve and we stop the process. If
the final endpoint of σ2 coincides with its initial endpoint, then σ2 is a closed curve and we stop
the process. If the final endpoint of σ2 is not the initial point of either σ1 or σ2, then renumbering
if necessary the curves σ3, . . . , σn, we may assume that the final endpoint of σ2 coincides with
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the initial endpoint of σ3. Then, exactly as before, we examine whether the final endpoint of σ3
coincides with the initial endpoint of σ1 or of σ2 or of σ3. Then, respectively, the sum of σ1, σ2, σ3
or the sum of σ2, σ3 or σ3 by itself is a closed curve and we stop the process. If the final endpoint
of σ3 is not the initial endpoint of either σ1 or σ2 or σ3, then renumbering if necessary the curves
σ4, . . . , σn, we may assume that the final endpoint of σ3 coincides with the initial endpoint of
σ4. Now, it is clear that this process will eventually stop, because we have only finitely many
curves. Therefore, we shall eventually find successive curves σ1, σ2, . . . , σk−1, σk (1 ≤ k ≤
n) so that the final endpoint of σk coincides with the initial endpoint of one of the same curves
σ1, σ2, . . . , σk−1, σk. Let the final endpoint of σk coincide with the initial endpoint of σl for some
l with 1 ≤ l ≤ k. Then the sum of σl, σl+1, . . . , σk−1, σk is a closed curve and we stop the process.
Now we set

Σ1 = {σl, σl+1, . . . , σk−1, σk}

and call γ1 the closed curve which is the sum of σl, σl+1, . . . , σk−1, σk. Then we drop the curves
of Σ1 from Σ, i.e. we consider the set

Σ′ = Σ \ Σ1 = {σ1, . . . , σl−1, σk+1, . . . , σn}.

Each endpoint of the curves in Σ′ is one of the points of A = {a1, . . . , am}, say it is aj . Then the
number of the curves in Σ that arrive at aj is the same as the number of the curves in Σ that leave
from aj . But the curves σl, σl+1, . . . , σk−1, σk are successive and hence if one of them arrives at
aj then the next one leaves from aj . Therefore, the remaining curves, i.e. those in Σ′, have the
same property: the number of the curves in Σ′ that arrive at aj is the same as the number of the
curves in Σ′ that leave from aj . Thus Σ′ has the same property as the original Σ.
Now we continue our algorithm with Σ′. We find a subset Σ2 of Σ′ which consists of successive
curves and we call γ2 the closed curve which is the sum of the curves in Σ2. Then we drop the
curves of Σ2 from Σ′, i.e. we consider the set

Σ′′ = Σ′ \ Σ2 = Σ \ (Σ1 ∪ Σ2).

We go on until we exhaust the original Σ.

Lemma 6.2. We take any δ > 0 and two perpendicular lines. For each of them we consider all its
parallel lines at distances equal to integermultiples of δ. The result is a net of closed square regions
of sidelength δ which cover the plane and have disjoint interiors. We choose any of those closed
square regions, sayQ1, . . . , Ql. We consider the closed boundary curves ∂Q1, . . . , ∂Ql with their
positive direction. Each of them is the sum of four corresponding linear segments, considered as
curves with the same direction. We drop the linear segments (with necessarily opposite directions)
which are common to any two neighboring square regions from among the Q1, . . . , Ql and we
consider the setΣ = {σ1, . . . , σn} of all the remaining linear segments, i.e. those which belong to
only one ofQ1, . . . , Ql. Then we can partition Σ into subsets Σ1, . . . ,Σk so that each Σj consists
of successive linear segments and the sum γj of the linear segments in Σj is a closed curve.

Proof. It is enough to prove that Σ has the property described in lemma 6.1, i.e. that for every
point of intersection a of our lines the number of the curves in Σ that arrive at a is the same as
the number of the curves in Σ that leave from a. This can be done easily, considering cases for
the number, 0 or 1 or 2 or 3 or 4, of the squares among Q1, . . . , Ql which have a as one of their
corners.

6.4 The theorem of Cauchy in general open sets.

Let σ1, . . . , σn be any curves (not necessarily closed) and k1, . . . , kn be any integers (not nec-
essarily non-negative). Then we say that the curves σ1, . . . , σn considered k1, . . . , kn times, re-
spectively, form a chain Σ. The integer kj is called multiplicity of the corresponding σj in the
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chain Σ. If every σj is closed, then Σ is called closed chain or cycle. If every σj is in a setA, then
we say that Σ is in A.

If a curve σ is not among the curves which constitute a chain Σ, we may include it among
those curves by assigning multiplicity 0 to σ. And now we may introduce the algebraic structure
of a module in the set of all chains in the following manner. If Σ′ and Σ′′ are two chains, we
may assume that they are formed by the same collection σ1, . . . , σn of curves. If k′1, . . . , k′n and
k′′1 , . . . , k

′′
n are the corresponding multiplicities in the chains Σ′ and Σ′′, then we define Σ′+Σ′′ to

be the chain which consists of σ1, . . . , σn with multiplicities k′1+k′′1 , . . . , k′n+k′′n. Moreover, if k
is an integer and Σ is a chain formed by the curves σ1, . . . , σn with multiplicities k1, . . . , kn, then
we define kΣ to be the chain formed by σ1, . . . , σn with multiplicities kk1, . . . , kkn. It is very
easy to show that, under this addition of chains and this multiplication of chains and integers, the
set of chains is a Z-module. The opposite −Σ of a chain Σ is (−1)Σ and the neutral element of
addition is the chain which contains no curve (or any curves all with multiplicities 0).

If Σ is a chain formed by the curves σ1, . . . , σn with multiplicities k1, . . . , kn, we immediately
see that, under the above definitions of addition andmultiplication, we haveΣ = k1σ1+· · ·+knσn.
Here we consider each σj as a chain consisting of only one curve with multiplicity 1.

It is obvious that if Σ′, Σ′′ are cycles and k′, k′′ are integers then k′Σ′ + k′′Σ′′ is a cycle.
Therefore the set of cycles is a Z-submodule of the Z-module of all chains.

Now we consider a chainΣ formed by the piecewise smooth curves σ1, . . . , σn with multiplic-
ities k1, . . . , kn and a continuous ϕ : σ∗1 ∪ · · · ∪ σ∗n → C. We define the curvilinear integral of
ϕ over Σ by ∫

Σ ϕ(z) dz =
∑n

j=1 kj
∫
σj
ϕ(z) dz.

If Σ is a cycle, we may use the notation ∮
Σ ϕ(z) dz.

It is easy to show that∫
k′Σ′+k′′Σ′′ ϕ(z) dz = k′

∫
Σ′ ϕ(z) dz + k′′

∫
Σ′′ ϕ(z) dz.

This says that integration “respects” the linear structure of the Z-module of chains.
IfΣ is a cycle formed by the closed curves σ1, . . . , σn with multiplicities k1, . . . , kn and z does

not belong to σ∗1 ∪ · · · ∪ σ∗n we define the rotation number or index of Σ with respect to z by

n(Σ; z) =
∑n

j=1 kjn(σj ; z).

Wemay say that n(Σ; z) is the total number of rotations around z of the closed curves forming
Σ, taking into account their multiplicities.

Again, it is easy to show that

n(k′Σ′ + k′′Σ′′; z) = k′n(Σ′; z) + k′′n(Σ′′; z)

for every z which does not belong to the trajectories of the curves forming the cycles Σ′ and Σ′′,
and this says that the index “respects” the linear structure of the Z-module of cycles.

Combining the last two definitions, we easily see that the index of a cycle consisting of closed
piecewise smooth curves is given by the same integral form which gives the index of a closed
piecewise smooth curve:

n(Σ; z) = 1
2πi

∮
Σ

1
ζ−z dζ.

Indeed, n(Σ; z) =
∑n

j=1 kjn(σj ; z) =
∑n

j=1 kj
1

2πi

∮
σj

1
ζ−z dζ = 1

2πi

∮
Σ

1
ζ−z dζ.

Now we state a basic definition.
Let Σ be a cycle in the open set Ω. We say that Σ is null-homologous in Ω if n(Σ; z) = 0 for

every z ∈ Ωc.
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In other words, a cycle Σ in Ω is null-homologous in Ω if the total number of rotations of the
curves forming Σ, taking into account their multiplicities, around every point of the complement
of Ω is zero.

It is easy to see that if the cycles Σ′, Σ′′ are null-homologous in Ω and k′, k′′ are integers then
the cycle k′Σ′ + k′Σ′′ is null-homologous in Ω. Thus, the set C0(Ω) of all cycles which are null-
homologous in Ω is a Z-submodule of the Z-module C(Ω) of all cycles in Ω. Hence we may form
the quotient Z-module

H(Ω) = C(Ω)
/
C0(Ω).

The elements of H(Ω) are the classes [Σ] of all cycles Σ in Ω, i.e. Σ ∈ C(Ω), described as

[Σ] = {Σ+ Σ′ |Σ′ ∈ C0(Ω)}.

Now we introduce an equivalence relation among the cycles in Ω. We say that the cycles
Σ1, Σ2 are homologous in Ω and we write Σ1 ∼ Σ2 if Σ1 − Σ2 is null-homologous in Ω i.e. if
Σ1 − Σ2 ∈ C0(Ω). Of course this means that n(Σ1 − Σ2; z) = 0 or equivalently n(Σ1; z) =
n(Σ2; z) for every z ∈ Ωc. If O is the zero-cycle, then clearly Σ is null-homologous in Ω if and
only if Σ ∼ O. Another way to describe the elements [Σ] of H(Ω) is

[Σ] = {Σ′ ∈ C(Ω) |Σ′ − Σ ∈ C0(Ω)} = {Σ′ ∈ C(Ω) |Σ′ ∼ Σ}.

The algebraic operations in the quotient Z-moduleH(Ω) are as follows:

[Σ′] + [Σ′′] = [Σ′ +Σ′′], k[Σ] = [kΣ].

We shall not go further into this algebraic point of view, since it does not have much to offer
in our study of complex analysis. We shall keep in mind, though, the definition and notation of
Σ′+Σ′′ and kΣ and from time to time we shall feel free to make certain mild algebraic comments.

Proposition 6.18. Let Ω be an open set andK ⊆ Ω be compact. Then there are closed piecewise
smooth curves γ1, . . . , γk in Ω \K so that for every f holomorphic in Ω we have

f(z) =
∑k

j=1
1

2πi

∮
γj

f(ζ)
ζ−z dζ. (6.10)

for every z ∈ K, and
0 =

∑k
j=1

1
2πi

∮
γj

f(ζ)
ζ−z dζ. (6.11)

for every z ∈ Ωc.

Proof. There is δ > 0 so that |z − w| ≥ 2δ for every z ∈ K and every w ∈ Ωc. For this δ > 0
we consider the net of closed square regions of lemma 6.2 and we take all closed square regions
Q1, . . . , Ql of the net which intersectK. Each Qm intersectsK and its diameter is equal to

√
2δ.

Therefore, the distance of every point of Qm from K is ≤
√
2δ. Since

√
2δ < 2δ, we see that

Qm is contained in Ω. Thus, all Q1, . . . , Ql are contained in Ω. As in lemma 6.2, we consider the
set Σ = {σ1, . . . , σn} of all boundary linear segments of Q1, . . . , Ql which belong to only one
of Q1, . . . , Ql and we partition Σ into subsets Σ1, . . . ,Σk so that each Σj consists of successive
linear segments and the sum γj of the linear segments in Σj is a closed curve.
Now consider any of the linear segments σ1, . . . , σn, say σj . Then σj belongs to one ofQ1, . . . , Ql,
say Qm. Since Qm is contained in Ω, we have that σj is also contained in Ω. If σj intersects K,
then both closed square regions of our net which lie on the two sides of σj intersect K and hence
both are among Q1, . . . , Ql. This is impossible because σj belongs to only one of Q1, . . . , Ql.
Therefore, σj does not intersect K and hence it is contained in Ω \ K. Finally, since each of
γ1, . . . , γk is the sum of certain of the σ1, . . . , σn, we get that all γ1, . . . , γk are in Ω \K.
Now we take any z ∈ K. Then z belongs to one of Q1, . . . , Ql, say Qm. Let us assume that z is
an interior point of Qm. Since the closed square region Qm is contained in Ω, there is a slightly
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larger open square region Q′ which is also contained in Ω. Now f is holomorphic in the convex
region Q′ and Cauchy’s formula in section 6.1 says that

f(z) = 1
2πi

∮
∂Qm

f(ζ)
ζ−z dζ, (6.12)

because the index of ∂Qm with respect to z is equal to 1. Now we take any closed square region
Qp with p ̸= m. Then z is not contained in Qp and again we may find an open square region
Q′ slightly larger than Qp which is contained in Ω and which does not contain z. Then f(ζ)

ζ−z is a
holomorphic function of ζ in the convex region Q′ and hence

0 = 1
2πi

∮
∂Qp

f(ζ)
ζ−z dζ (6.13)

for p ̸= m. We add (6.12) and (6.13) for all values of p and we get

f(z) =
∑l

p=1
1

2πi

∮
∂Qp

f(ζ)
ζ−z dζ. (6.14)

Now we split the integral over each ∂Qp in four integrals over the boundary linear segments of
∂Qp and we get 4l integrals. If a linear segment belongs to two neighboring closed square regions,
then it appears twice among the integrals, with opposite directions, and hence the two integrals
cancel. Therefore, the remaining integrals will be only over the boundary linear segments which
belong to exactly one of Q1, . . . , Ql, i.e. the linear segments of the set Σ = {σ1, . . . , σn}. Thus
(6.14) becomes

f(z) =
∑

σ∈Σ
1

2πi

∫
σ
f(ζ)
ζ−z dζ.

The subsets Σ1, . . . ,Σk form a partition of Σ and hence

f(z) =
∑k

j=1

∑
σ∈Σj

1
2πi

∫
σ
f(ζ)
ζ−z dζ.

Finally, since γj is the sum of the successive linear segments σ ∈ Σj , we end up with (6.10).
Now let z be a boundary point of Qm. Then we may consider a variable point z′ in the interior of
Qm so that z′ → z. We have proved (6.10) for z′, i.e.

f(z′) =
∑k

j=1
1

2πi

∮
γj

f(ζ)
ζ−z′ dζ.

Proposition 4.12 implies the continuity of the right side as a function of z′. Therefore, taking the
limit as z′ → z, we end up again with (6.10).
Now we consider any z ∈ Ωc. Then z does not belong to any of Q1, . . . , Ql and so we get (6.13)
for all values of p. Adding we find (6.14) with f(z) replaced by 0. Now, following the same steps
as before (splitting each ∂Qp in four linear segments etc.), we end up with (6.11).

Lemma 6.3. Let γ be a piecewise smooth curve,K be a compact set so thatK ∩ γ∗ = ∅ and f be
a complex function continuous in γ∗. Then for every ϵ there are points ζ0, ζ1, . . . , ζm−1, ζm of γ∗
so that ∣∣ ∫

γ
f(ζ)
ζ−z dζ −

∑m
l=1

f(ζl)
ζl−z (ζl − ζl−1)

∣∣ ≤ ϵ

for every z ∈ K.

Proof. SinceK ∩ γ∗ = ∅, there is some ρ > 0 so that

|ζ − z| ≥ ρ (6.15)

for every ζ ∈ γ∗ and every z ∈ K.
We have that γ : [a, b] → γ∗ and f : γ∗ → C are continuous and hence f ◦ γ : [a, b] → C is also
continuous. Therefore, there isM ≥ 0 so that

|f(γ(t))| ≤M (6.16)
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for every t ∈ [a, b] and also there is δ > 0 so that

|γ(t′)− γ(t′′)| ≤ ρ2ϵ
2Ml(γ) , |f(γ(t′))− f(γ(t′′))| ≤ ρϵ

2l(γ) (6.17)

for every t′, t′′ ∈ [a, b] with |t′ − t′′| < δ.
Now we take succesive points a = t0 < t1 < . . . < tm−1 < tm = b so that tl − tl−1 < δ for
every l = 1, . . . ,m. Then (6.15), (6.16) and (6.17) imply that for every t ∈ [tl−1, tl] and every
z ∈ K we have ∣∣f(γ(t))

γ(t)−z − f(γ(tl))
γ(tl)−z

∣∣ ≤ ∣∣f(γ(t))
γ(t)−z − f(γ(tl))

γ(t)−z
∣∣+ ∣∣f(γ(tl))

γ(t)−z − f(γ(tl))
γ(tl)−z

∣∣
= |f(γ(t))−f(γ(tl))|

|γ(t)−z| + |f(γ(tl))||γ(t)−γ(tl)|
|γ(t)−z||γ(tl)−z|

≤ ρϵ
2l(γ)ρ +

Mρ2ϵ
2Ml(γ)ρ2

= ϵ
l(γ) .

(6.18)

The points ζl = γ(tl) are in γ∗ and by (6.18) we finally get∣∣ ∫
γ
f(ζ)
ζ−z dζ −

∑m
l=1

f(ζl)
ζl−z (ζl − ζl−1)

∣∣ = ∣∣∑m
l=1

∫ tl
tl−1

(f(γ(t))
γ(t)−z − f(γ(tl))

γ(tl)−z
)
γ′(t) dt

∣∣
≤

∑m
l=1

∫ tl
tl−1

∣∣f(γ(t))
γ(t)−z − f(γ(tl))

γ(tl)−z
∣∣|γ′(t)| dt

≤
∑m

l=1

∫ tl
tl−1

ϵ
l(γ) |γ

′(t)| dt

= ϵ
l(γ)

∫ b
a |γ

′(t)| dt = ϵ

for every z ∈ K.

The actual points ζ0, ζ1, . . . , ζm−1, ζm of γ∗, which were constructed in the proof of lemma
6.3, are obviously successive in the direction of γ from γ(a) towards γ(b). The actual content of
lemma 6.3 is the approximation of curvilinear integrals by Riemann sums in a concrete situation.
For the more general picture (but with no parameter z) look at exercise 2.2.8.

Proposition 6.19. Let Ω be an open set,K ⊆ Ω be compact and f be holomorphic in Ω. Then for
every ϵ > 0 there is a function g which is a linear combination of functions (of z) of the form 1

z−ζ
with ζ ∈ Ω \K so that ∥f − g∥K ≤ ϵ.

Proof. We consider the closed piecewise smooth curves γ1, . . . , γk in Ω \K which are provided
by proposition 6.18. If f is holomorphic in Ω, then (6.10) holds for every z ∈ K. Lemma 6.3 for
ϵ = 1

nk implies that in each γ∗j there are points ζj,0, ζj,1, . . . , ζj,mj−1, ζj,mj so that∣∣ ∫
γj

f(ζ)
ζ−z dζ −

∑mj

l=1
f(ζj,l)
ζj,l−z (ζj,l − ζj,l−1)

∣∣ ≤ 2πϵ
k

for every z ∈ K. Now, the points ζj,l (1 ≤ j ≤ k, 1 ≤ l ≤ mj) are in Ω \K and we have∣∣2πif(z)−∑k
j=1

∑mj

l=1
f(ζj,l)
ζj,l−z (ζj,l − ζj,l−1)

∣∣
≤

∣∣∑k
j=1

( ∮
γj

f(ζ)
ζ−z dζ −

∑mj

l=1
f(ζj,l)
ζj,l−z (ζj,l − ζj,l−1)

)∣∣
≤

∑k
j=1

∣∣ ∮
γj

f(ζ)
ζ−z dζ −

∑mj

l=1
f(ζj,l)
ζj,l−z (ζj,l − ζj,l−1)

∣∣
≤

∑k
j=1

2πϵ
k = 2πϵ

for every z ∈ K. So if we denote aj,l = −f(ζj,l)
2πi (ζj,l − ζj,l−1), we have that∣∣f(z)−∑k
j=1

∑mj

l=1
aj,l
z−ζj,l

∣∣ ≤ ϵ

for every z ∈ K. Now the function g(z) =
∑k

j=1

∑mj

l=1
aj,l
z−ζj,l is a linear combination of functions

(of z) of the form 1
z−ζ with ζ ∈ Ω \K and ∥f − g∥K ≤ ϵ.
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Lemma 6.4. Let Ω ⊆ C be open, R > 0, δ > 0. Then

K = {z ∈ Ω | |z| ≤ R, |z − w| ≥ δ for every w ∈ Ωc}

is a compact subset of Ω.

Proof. It is clear thatK ⊆ Ω. AlsoK is bounded sinceK ⊆ D0(R).
Now, let zn ∈ K for all n and zn → z. From |zn| ≤ R for all n we get |z| ≤ R. Also, for every
w ∈ Ωc, from |zn − w| ≥ δ for all n we get |z − w| ≥ δ. Therefore, z ∈ K and hence K is
closed.

The theorem of Cauchy in general open sets. If f is holomorphic in the open set Ω and if the
cycle Σ, consisting of closed piecewise smooth curves, is null-homologous in Ω, then∮

Σ f(z) dz = 0.

First proof. Let the cycle Σ consist of the closed piecewise smooth curves σ1, . . . , σn with mul-
tiplicities k1, . . . , kn. Since σ∗1 ∪ · · · ∪ σ∗n is a compact subset of Ω, there is δ > 0 so that every
point of σ∗1 ∪ · · · ∪ σ∗n has a distance ≥ 2δ from Ωc and there is R > 0 so that σ∗1 ∪ · · · ∪ σ∗n is
contained in the closed disc D0(R). We consider the set

K = {z ∈ Ω | |z| ≤ R, |z − w| ≥ 2δ for every w ∈ Ωc}.

Lemma 6.4 says thatK is a compact subset of Ω. Moreover, σ∗1 ∪ · · · ∪ σ∗n ⊆ K.
Now, take any ζ in Ω \ K. Then either ζ ̸∈ D0(R) or the distance of ζ from Ωc is < 2δ. If
ζ ̸∈ D0(R), then, since Σ is in D0(R), we have that n(Σ; ζ) = 0. If the distance of ζ from Ωc is
< 2δ, then there is w ∈ Ωc so that |ζ − w| < 2δ. Then every point of the linear segment [ζ, w]
has distance < 2δ from w and hence from Ωc. Thus [ζ, w] is not contained in K which implies
that [ζ, w] is in the complement of σ∗1, . . . , σ∗n. Since [ζ, w] is connected and it is contained in the
complement of every σ∗j we have that n(σj ; ζ) = n(σj ;w) for every j = 1, . . . , n. Therefore,

n(Σ; ζ) =
∑n

j=1 kj n(σj ; ζ) =
∑n

j=1 kj n(σj ;w) = n(Σ;w) = 0

because w ∈ Ωc and Σ is null-homologous in Ω. With this compact set K we form the closed
curves γ1, . . . , γk in Ω \ K, which are described in proposition 6.18. According to proposition
6.18 we have

f(z) =
∑k

l=1
1

2πi

∮
γl

f(ζ)
ζ−z dζ

for every z ∈ σ∗1 ∪ · · · ∪ σ∗n. Hence∮
Σ f(z) dz =

∑n
j=1 kj

∮
σj
f(z) dz =

∑n
j=1 kj

∮
σj

(∑k
l=1

1
2πi

∮
γl

f(ζ)
ζ−z dζ

)
dz

= −
∑k

l=1

∮
γl

(∑n
j=1 kj

1
2πi

∮
σj

1
z−ζ dz

)
f(ζ) dζ

= −
∑k

l=1

∮
γl

(∑n
j=1 kj n(σj ; ζ)

)
f(ζ) dζ

= −
∑k

l=1

∮
γl
n(Σ; ζ)f(ζ) dζ.

(6.19)

Finally, when ζ belongs to any of γ∗1 , . . . , γ∗k then ζ belongs to Ω \K and so n(Σ; ζ) = 0. Now
(6.19) implies

∮
Σ f(z) dz = 0.

Second proof. We start with the same compactK ⊆ Ω as in the first proof and we observe, exactly
as before, that n(Σ; ζ) = 0 for every ζ ∈ Ω \ K. Now, proposition 6.19 implies that, for every
ϵ > 0, there is a function g which is a linear combination of functions (of z) of the form 1

z−ζ with
ζ ∈ Ω \K and so that ∥f − g∥K ≤ ϵ. Let

g(z) =
∑m

l=1
al
z−ζl
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with ζ1, . . . , ζm ∈ Ω \K. Then we get∮
Σ g(z) dz =

∑m
l=1 al

∮
Σ

1
z−ζl dz =

∑m
l=1 al2πin(Σ; ζl) = 0.

Now we apply proposition 6.19 with ϵ = 1
n and we get a sequence (gn) of functions, of the same

type as the g we just considered, so that gn → f uniformly in K. Since Σ is in K, we have
that

∮
Σ gn(z) dz →

∮
Σ f(z) dz and, finally, since

∮
Σ gn(z) dz = 0 for every n, we conclude that∮

Σ f(z) dz = 0.

It is interesting to see that the assumption of our last result is at the same time a special case
of it. Indeed, if we take any w ∈ Ωc, then the function f(z) = 1

z−w is holomorphic in Ω and the
theorem of Cauchy implies that

∮
Σ

1
z−w dz = 0. But this says that n(Σ;w) = 0. In other words,

we have the following situation. The assumption that Σ is null-homologous in Ω is equivalent to
the validity of the theorem of Cauchy for the very particular holomorphic functions of the form
f(z) = 1

z−w for every w ∈ Ωc. Therefore the real content of the theorem of Cauchy is that the
validity of

∮
Σ f(z) dz = 0 for the special holomorphic functions in Ω of the form f(z) = 1

z−w for
every w ∈ Ωc implies its validity for every function f which is holomorphic in Ω.

Example 6.4.1. Let γ be any closed piecewise smooth curve in the convex regionΩ and letw ∈ Ωc.
Then w is contained in the unbounded connected component of C \γ∗ and proposition 6.6 implies
that n(γ;w) = 0. Hence γ is null-homologous in Ω. Now the theorem of Cauchy for general
open sets says that

∮
γ f(z) dz = 0 for every f holomorphic in Ω. We conclude that the theorem

of Cauchy for convex regions is a corrolary of the theorem of Cauchy for general open sets.

Example 6.4.2.We consider the open set Dz0(R1, R2) with 0 ≤ R1 < R2 ≤ +∞. We consider
the closed curve γ which describes the circle Cz0(r), with R1 < r < R2, once and in the positive
direction. This curve is not null-homologous in Dz0(R1, R2). Indeed, z0 is in the complement of
Dz0(R1, R2) and n(γ; z0) = 1

2πi

∮
Cz0 (r)

1
z−z0 dz = 1. So we do not expect that

∮
γ f(z) dz = 0

is true for every f which is holomorphic in Dz0(R1, R2). In fact, this is certainly not true for
f(z) = 1

z−z0 which is holomorphic in Dz0(R1, R2).

Example 6.4.3.We consider the same open set Dz0(R1, R2) as in the previous example and an
arbitrary closed piecewise smooth curve γ in Dz0(R1, R2). We shall see how we can evaluate∮
γ f(z) dz with a minimum of effort for any f holomorphic in Dz0(R1, R2). It is clear that, de-
pending on the specific curve γ, it may be difficult to evaluate the integral using a parametric
equation of γ.
Let us assume that the shape of the trajectory and the direction of γ allow us to count the number
of rotations of γ around z0, i.e. we assume that we know the integer k = n(γ; z0).
Since Dz0(R1) is one of the two connected components of the complement of Dz0(R1, R2), we
have that n(γ; z) = k for every z ∈ Dz0(R1). On the other hand, we have that n(γ; z) = 0
for every z in the unbounded connected component of the complement of Dz0(R1, R2), which
is Dz0(R2,+∞). Now we take a closed piecewise smooth curve γ1 in Dz0(R1, R2) such that
the

∮
γ1
f(z) dz may be much easier to evaluate than the original

∮
γ f(z) dz. For instance, we

may consider γ1 to describe the circle Cz0(r) with R1 < r < R2 once and in the positive direc-
tion. In this case we have that n(γ1; z) = 1 for every z ∈ Dz0(R1) and n(γ1; z) = 0 for every
z ∈ Dz0(R2,+∞). Now we form the cycle Σ = 1 γ + (−k) γ1 and we have

n(Σ; z) = 1n(γ; z) + (−k)n(γ1; z) = k + (−k) = 0

for every z ∈ Dz0(R1) and also

n(Σ; z) = 1n(γ; z) + (−k)n(γ1; z) = 0 + 0 = 0
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for every z ∈ Dz0(R2,+∞). Therefore, Σ is null-homologous in Dz0(R1, R2) and the theorem
of Cauchy implies

0 =
∮
Σ f(z) dz = 1

∮
γ f(z) dz + (−k)

∮
γ1
f(z) dz

and hence ∮
γ f(z) dz = k

∮
γ1
f(z) dz = k

∮
Cz0 (r)

f(z) dz.

We see that the evaluation of
∮
γ f(z) dz has been reduced to the evaluation of the possibly much

simpler integral
∮
Cz0 (r)

f(z) dz and the evaluation of the index n(γ; z0).
We shall generalize this technique in the following sections and chapters.

Now we generalize Cauchy’s formulas for derivatives.

Cauchy’s formula for derivatives and closed curves in general open sets. If f is holomorphic in
the open setΩ and if the cycleΣ, consisting of closed piecewise smooth curves, is null-homologous
in Ω, then for all n ∈ N0 we have

n(Σ; z)f (n)(z) = n!
2πi

∮
Σ

f(ζ)
(ζ−z)n+1 dζ

for every z ∈ Ω which does not belong to the trajectory of any closed curve forming Σ.

Proof. The function F (ζ) = f(ζ)−f(z)
ζ−z is holomorphic inΩ\{z}. Since z is a root of f(ζ)−f(z),

the singularity z of F is removable. So we may define F at z as F (z) = limζ→z
f(ζ)−f(z)

ζ−z = f ′(z)
and then F becomes holomorphic inΩ. Now we apply the theorem of Cauchy in general open sets
and get ∮

Σ
f(ζ)−f(z)

ζ−z dζ =
∮
Σ F (ζ) dζ = 0,

which implies
1

2πi

∮
Σ
f(ζ)
ζ−z dζ = f(z) 1

2πi

∮
Σ

1
ζ−z dζ = f(z)n(Σ; z)

for every z ∈ Ω which does not belong to the trajectory of any closed curve forming Σ. This is
the result of the statement in the case n = 0. For derivatives of order n ≥ 1 we differentiate both
sides of the last formula, just as in the proof of the same theorem in convex sets, using the fact that
the index of Σ is constant in a neighborhood of z.

Exercises.

6.4.1. Let f be holomorphic in D \ {0}. If the closed piecewise smooth curve γ is in D \ {0} and
n(γ; 0) = 0, evaluate

∮
γ f(z) dz.

6.4.2. Let f be holomorphic in C and f(1) = 6, f(−1) = 10. Prove that, if γ is any closed
piecewise smooth curve in C \ {−1, 1}, then 1

2πi

∮
γ
f(z)
z2−1

dz can take every integral value.

6.4.3. Let f(z) = (1z +
a
z3
)ez for z ̸= 0. Find all the values of a so that

∮
γ f(z) dz = 0 for every

closed piecewise smooth curve γ in C \ {0}.

6.4.4. (i) Find all possible values of
∮
γ

2z−1
z2−z dz, where γ is an arbitrary closed piecewise smooth

curve in C \ {0, 1}.
(ii) Find all possible values of

∫
γ

2z−1
z2−z dz, where γ is an arbitrary piecewise smooth curve in C \

{0, 1} with initial endpoint −i and final endpoint i.

6.4.5. Find all possible values of
∮
γ

cos z
z2−πz dz, where γ is an arbitrary closed piecewise smooth

curve in C \ {0, π}.

6.4.6. Let f be holomorphic in the open set Ω and γ be a closed piecewise smooth curve null-
homologous in Ω. Let also n(γ; z0) ̸= 0.
(i) If A is the connected component of C \ γ∗ which contains z0, prove that A ⊆ Ω and ∂A ⊆ γ∗.
(ii) If |f(ζ)| ≤ 1 for every ζ ∈ γ∗, prove that |f(z0)| ≤ 1.
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6.5 The residue theorem.

Let z0 be an isolated singularity of f and let∑+∞
−∞ an(z − z0)

n

be the Laurent series of f in the ringDz0(R) \ {z0}. Then the coefficient a−1 is called residue of
f at z0 and we denote

Res(f ; z0) = a−1 =
1

2πi

∮
Cz0 (r)

f(ζ) dζ

for 0 < r < R.

Example 6.5.1. If z0 is a removable singularity of f , then an = 0 for every n < 0 and in particular
Res(f ; z0) = 0.

Example 6.5.2. Every function of the form f(z) = 1
(z−z0)N with N ≥ 2 has residue 0 at z0.

Example 6.5.3. If z0 is a pole of f of orderN ≥ 1, then we can find “easily” the residue of f at z0.
Indeed, there is a function g holomorphic in a discDz0(R) so that g(z0) ̸= 0 and f(z) = g(z)

(z−z0)N

for every z ∈ Dz0(R) \ {z0}. From the Taylor series
∑+∞

n=0 bn(z − z0)
n of g we see that

Res(f ; z0) = bN−1 =
g(N−1)(z0)
(N−1)! .

For instance, if N = 1, then Res(f ; z0) = g(z0) and, if N = 2, then Res(f ; z0) = g′(z0).

Example 6.5.4.We consider a power series of the form∑n=−1
−∞ an(z − z0)

n

and we assume that its radius of convergence is 0, i.e. that it converges in the ring Dz0(0,+∞).
If f is the holomorphic function defined by the power series inDz0(0,+∞), then

1
2πi

∮
γ f(ζ) dζ = n(γ; z0)a−1 = n(γ; z0)Res(f ; z0)

for every closed piecewise smooth curve γ in C \ {z0}. Indeed, since the power series converges
uniformly in the compact set γ∗ which is contained in its ring of convergence, we have

1
2πi

∮
γ f(ζ) dζ =

∑n=−1
−∞

an
2πi

∮
γ(ζ − z0)

n dζ = a−1

2πi

∮
γ

1
ζ−z0 dζ = n(γ; z0)Res(f ; z0),

where, for n ≤ −2 we used the result of example 4.5.3. Of course, this result holds for a general
cycle Σ which consists of closed piecewise smooth curves γ in C \ {z0}.

The residue theorem is a generalization of the last example.

The residue theorem. Let f be holomorphic, except for isolated singularities, in the open set Ω
and Σ be a cycle which is null-homologous in Ω and so that no isolated singularity of f is in the
trajectory of any of the closed curves forming Σ. Then n(Σ; z) ̸= 0 for at most finitely many
isolated singularities z of f . Moreover, if Σ consists of closed piecewise smooth curves, then

1
2πi

∮
Σ f(ζ) dζ =

∑
z sing. of f n(Σ; z) Res(f ; z),

where the sum, extended over all isolated singularities of f in Ω, is finite.
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First proof. Exactly as in the proof of the theorem of Cauchy in general open sets, we see that
there is a compact setK ⊆ Ω so that n(Σ; z) = 0 for every z ∈ Ω\K. Now, since all singularities
of f are isolated, there can be only finitely many of them inK. Let z1, . . . , zn be the singularities
of f inK. Then every other singularity z of f is in Ω \K and hence n(Σ; z) = 0.
We define the integers

p1 = n(Σ; z1), . . . , pn = n(Σ; zn)

and then ∑
z sing. of f n(Σ; z) Res(f ; z) =

∑n
k=1 pk Res(f ; zk).

Therefore, it is enough to prove
1

2πi

∮
Σ f(ζ) dζ =

∑n
k=1 pk Res(f ; zk). (6.20)

Since every z1, . . . , zn is an isolated singularity, there are disjoint closed discs Dzk(rk) for k =
1, . . . , n so that each of them contains no singularity of f except its center. We denote γk the
closed curve which describes the circle Czk(rk) once and in the positive direction. We consider
the cycle

Σ′ = Σ+ (−p1) γ1 + · · ·+ (−pn) γn
and the open set

Ω′ = Ω \ {z ∈ Ω | z singularity of f}.
Clearly, f is holomorphic in Ω′ and we shall prove that the cycle Σ′ is null-homologous in Ω′, i.e.
n(Σ′; z) = 0 for every z /∈ Ω′. If z /∈ Ω′, then either z /∈ Ω or z = z1, . . . , zn or z is any other
isolated singularity of f in Ω.
If z /∈ Ω or if z is any isolated singularity of f in Ω different from z1, . . . , zn, then n(Σ; z) = 0
and n(γk; z) = 0 for every k. Therefore

n(Σ′; z) = n(Σ; z)− p1n(γ1; z)− · · · − pnn(γn; z) = 0.

If z = zk0 for some k0, then n(Σ; z) = n(Σ; zk0) = pk0 and n(γk0 ; z) = n(γk0 ; zk0) = 1 and
n(γk; z) = n(γk; zk0) = 0 for every k ̸= k0. Therefore

n(Σ′; z) = n(Σ; z)− p1n(γ1; z)− · · · − pnn(γn; z) = pk0 − pk0 = 0.

Thus, Σ′ is null-homologous in Ω′. Since f is holomorphic in Ω′, the theorem of Cauchy implies∮
Σ′ f(ζ) dζ = 0. Hence∮

Σ f(ζ) dζ =
∑n

k=1 pk
∮
γk
f(ζ) dζ = 2πi

∑n
k=1 pk Res(f ; zk)

and we proved (6.20).
Second proof. We follow the first proof up to the point where we considered the isolated singular-
ities z1, . . . , zn of f . I.e. n(Σ; z) = 0 for every isolated singularity of f different from z1, . . . , zn.
Now, we consider the corresponding singular parts s1, . . . , sn of f at z1, . . . , zn. Then we know
from section 5.8 that f − sk is holomorphic at zk and also that sk is holomorphic in C \ {zk}.
Hence the function

g = f − s1 − . . .− sn

is holomorphic in Ω except at the isolated singularities of f which are different from z1, . . . , zn.
We consider the open set

Ω′′ = Ω \ {z ∈ Ω | z is a singularity of f, z ̸= z1, . . . , zn}.

and then g is holomorphic in Ω′′. Also, Σ is null-homologous in Ω′′. Therefore, the theorem of
Cauchy implies that 1

2πi

∮
Σ g(ζ) dζ = 0 and hence

1
2πi

∮
Σ f(ζ) dζ =

∑n
k=1

1
2πi

∮
Σ sk(ζ) dζ =

∑n
k=1 n(Σ; zk)Res(sk; zk)

=
∑n

k=1 n(Σ; zk)Res(f ; zk),

where for the second equality we used the result of example 6.5.4.
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Exercises.

6.5.1. Find the singular parts as well as the residues of

1
z2+5z+6

, 1
(z2−1)2

, ez + e1/z, cos z−1
z4

, 1
sin z , tan z, 1

sin2 z ,
1

ez−1

at their isolated singularities.

6.5.2. If f = gh, where g is holomorphic at z0 and h has a pole of order 1 at z0, prove that
Res(f ; z0) = g(z0)Res(h; z0).

6.5.3. Let f = g
h , where g, h are holomorphic in a neighborhood of z0. Assume that z0 is a root of

h of multiplicity N and not a root of g. Then z0 is a pole of f of order N .
(i) If N = 1, prove that Res(f ; z0) = g(z0)

h′(z0)
.

(ii) If N = 2, prove that Res(f ; z0) = 6g′(z0)h′′(z0)−2g(z0)h′′′(z0)
3h′′(z0)2

.

6.5.4. If z1, . . . , zn ∈ D0(R) are distinct and f is holomorphic in an open set containing D0(R)
and p(z) = (z − z1) · · · (z − zn), prove that∮

C0(R)
f(z)

(z−z1)···(z−zn) dz = 2πi
( f(z1)
p′(z1)

+ · · ·+ f(zn)
p′(zn)

)
.

6.5.5. If n ∈ N, evaluate
∮
C0(n)

tan(πz) dz.

6.5.6. Let r = p
q be a rational function with deg q ≥ deg p+ 2. If z1, . . . , zn are the distinct roots

of q, prove that
∑n

k=1 Res(r; zk) = 0. What is the value of
∑n

k=1 Res(r; zk) if deg q = deg p+1?

6.5.7. If f(z) = ez+(1/z), prove that Res(f ; 0) =
∑+∞

n=0
1

n!(n+1)! .

6.5.8. (i) Prove that there ism > 0 so that | sin(πz)| ≥ m and | tan(πz)| ≥ m for every z ∈ ∂Rn,
where Rn is the square region with corners at the points ±(n+ 1

2)± i(n+ 1
2), n ∈ N.

(ii) Let f be holomorphic in D0(R,+∞) for some R > 0 and let limz→∞ zf(z) be a complex
number. Prove that

limn→+∞
∮
∂Rn

f(z)
sin(πz) dz = 0, limn→+∞

∮
∂Rn

f(z)
tan(πz) dz = 0.

(iii) Let f be holomorphic inC except for poles z1, . . . , zN /∈ Z and let limz→∞ zf(z) be a complex
number. Prove that

limn→+∞
∑n

k=−n f(k) = −π
∑N

j=1 Res
( f(z)
tan(πz) ; zj

)
,

limn→+∞
∑n

k=−n(−1)kf(k) = −π
∑N

j=1 Res
( f(z)
sin(πz) ; zj

)
.

(iv) If w /∈ Z, prove that

− 1
w +

∑+∞
k=−∞( 1

k−w − 1
k ) = limn→+∞

∑n
k=−n

1
k−w = − π

tan(πw) .

(v) If w /∈ Z, prove that ∑+∞
k=−∞

1
(k−w)2 = π2

sin2(πw)

and then that ∑+∞
n=1

1
k2

= π2

6 .

(vi) If a > 0, prove that∑+∞
k=1

1
k2+a2

= − 1
2a2

+ π
2a

eπa+e−πa

eπa−e−πa ,
∑+∞

k=1
(−1)k

k2+a2
= − 1

2a2
− π

a
1

eπa−e−πa .
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6.6 Evaluation of integrals.

The residue theorem is a powerful tool for the evaluation of integrals, because it reduces this
evaluation to the location of the isolated sinularities of the function to be integrated and to the
evaluation of the corresponding residues. Let us see some characteristic examples.

Example 6.6.1. Evaluation of
∫ +∞
−∞ r(x) dx, where r = p

q is a rational function, deg q ≥ deg p+2,
q has no real roots and the coefficients of p, q are real numbers.
Let p(x) = anx

n+ · · ·+a1x+a0, with an ̸= 0, and q(x) = bmx
m+ · · ·+b1x+b0, with bm ̸= 0,

and m ≥ n + 2. Then r is continuous in R and the generalized integral
∫ +∞
−∞ r(x) dx converges.

To see this, we observe that limz→∞ zm−nr(z) = an
bm

. Hence, if c = |an|
|bm| > 0, there is R0 > 0 so

that
c
2 ≤ |z|m−n|r(z)| ≤ 2c (6.21)

when |z| ≥ R0. Now, sincem− n ≥ 2, we get∫ −R0

−∞ |r(x)| dx ≤ 2c
∫ −R0

−∞
1

|x|m−n dx < +∞,
∫ +∞
R0

|r(x)| dx ≤ 2c
∫ +∞
R0

1
xm−n dx < +∞.

Thus, the integrals
∫ −R0

−∞ r(x) dx,
∫ +∞
R0

r(x) dx converge absolutely and so they converge. More-
over, r is continuous in [−R0, R0] and so the integral

∫ +∞
−∞ r(x) dx also converges.

We consider the roots of q in the upper halfplane and let them be z1, . . . , zM , where M ≤ m.
We take any R > R0 so that z1, . . . , zM are contained in the disc D0(R). We apply the residue
theorem with r = p

q which is holomorphic in C except for the roots of q and with the closed curve
γR which is the sum of the linear segment [−R,R], with parametric equation z = x, x ∈ [−R,R],
and of the curve σR, with parametric equation z = Reit, t ∈ [0, π], which describes the upper
semicircle of C0(R) from R to −R. The trajectory of γR contains no isolated singularity of r.
Since γR rotates around each of z1, . . . , zM once and in the positive direction, the residue theorem
implies

1
2πi

∮
γR
r(z) dz = Res(r; z1) + · · ·+ Res(r; zM ).

We have that
∮
γR
r(z) dz =

∫
[−R,R] r(z) dz +

∫
σR
r(z) dz and hence∫ R

−R r(x) dx =
∫
[−R,R] r(z) dz = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))−

∫
σR
r(z) dz.

Since R > R0, (6.21) andm ≥ n+ 2 imply∣∣ ∫
σR
r(z) dz

∣∣ ≤ 2c
Rm−n πR→ 0

when R→ +∞, and we conclude that∫ +∞
−∞ r(x) dx = 2πi(Res(r; z1) + · · ·+ Res(r; zM )).

Thus, to evaluate
∫ +∞
−∞ r(x) dx we only need to find the residues of r at the poles z1, . . . , zM of r

in the upper halfplane.

Example 6.6.2. Evaluation of pv
∫ +∞
−∞ r(x) dx, where r = p

q is a rational function, deg q =
deg p+ 1, q has no real root and the coefficients of p, q are real numbers.
Let p(x) = anx

n + · · · + a1x + a0, with an ̸= 0, and q(x) = bn+1x
n+1 + · · · + b1x + b0, with

bn+1 ̸= 0. It easy to see that the generalized integral
∫ +∞
−∞ r(x) dx does not converge. Indeed, we

recall the estimate (6.21), i.e. |r(z)| ≥ c
2|z| when |z| ≥ R0. Therefore, for real z = x we have that

|r(x)| ≥ c
2x when x ≥ R0. Now, r has constant sign in [R0,+∞) and hence∣∣ ∫ +∞

R0
r(x) dx

∣∣ = ∫ +∞
R0

|r(x)| dx ≥ c
2

∫ +∞
R0

1
x dx = +∞.
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Thus,
∫ +∞
R0

r(x) dx = +∞ or −∞ and, similarly,
∫ −R0

−∞ r(x) dx = +∞ or −∞.
Since the generalized integral diverges, we examine its principal value, i.e.

pv
∫ +∞
−∞ r(x) dx = limR→+∞

∫ R
−R r(x) dx.

It is easy to see that r(z) − an
bn+1

1
z is a rational function whose denominator has degree two units

larger than the degree of its numerator. According to the previous example, there isR0 > 0 so that∣∣r(z)− an
bn+1

1
z

∣∣ ≤ C
|z|2 (6.22)

when |z| ≥ R0. As in the previous example, we consider the roots z1, . . . , zM of q in the upper
halfplane and we take R > R0 so that z1, . . . , zM are contained in D0(R). We apply the residue
theorem with r = p

q and the same closed curve γR and we get

1
2πi

∮
γR
r(z) dz = Res(r; z1) + · · ·+ Res(r; zM ).

Now,
∮
γR
r(z) dz =

∫
[−R,R] r(z) dz +

∫
σR
r(z) dz and hence∫ R

−R r(x) dx = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))−
∫
σR

(
r(z)− an

bn+1

1
z

)
dz − an

bn+1

∫
σR

1
z dz.

The last term is
an
bn+1

∫
σR

1
z dz =

an
bn+1

∫ π
0

1
Reit

iReit dt = iπ an
bn+1

.

Since R > R0, we have from (6.22) that∣∣ ∫
σR

(r(z)− an
bn+1

1
z ) dz

∣∣ ≤ C
R2 πR→ 0

when R→ +∞ and we finally get

pv
∫ +∞
−∞ r(x) dx = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))− iπ an

bn+1
.

Example 6.6.3. Evaluation of pv
∫ +∞
−∞ r(x) dx, where r = p

q is a rational function, deg q ≥
deg p+ 1, the real roots of q have multiplicity 1 and the coefficients of p, q are real numbers.
Let p(x) = anx

n+ · · ·+a1x+a0, with an ̸= 0, and q(x) = bmx
m+ · · ·+b1x+b0, with bm ̸= 0,

andm ≥ n+ 1. We assume that the real roots of q are x1, . . . , xN with x1 < . . . < xN and that
these are not roots of p. We take ϵ0 > 0 so that the intervals [x1−ϵ0, x1+ϵ0], . . . , [xN−ϵ0, xN+ϵ0]
around the real roots of q are disjoint. In order for

∫ +∞
−∞ r(x) dx to converge, the generalized inte-

grals
∫ xk
xk−ϵ0 r(x) dx and

∫ xk+ϵ0
xk

r(x) dx must converge for every xk. This is not correct. Indeed,
we write r(z) = p(z)

(z−xk)qk(z) = gk(z)
z−xk , where qk is a polynomial with qk(xk) ̸= 0 and where

gk = p
qk

is a rational function holomorphic at xk. Since limz→xk gk(z) = gk(xk) ̸= 0, there
is ϵk with 0 < ϵk ≤ ϵ0 so that |gk(z)| ≥ 1

2 |gk(xk)| for every z with |z − xk| ≤ ϵk. Hence,
|r(z)| ≥ 1

2
|gk(xk)|
|z−xk| for every z with 0 < |z − xk| ≤ ϵk. The function r has constant sign in

(xk, xk + ϵk]. Therefore,∣∣ ∫ xk+ϵk
xk

r(x) dx
∣∣ = ∫ xk+ϵk

xk
|r(x)| dx ≥ |gk(xk)|

2

∫ xk+ϵk
xk

1
x−xk dx = +∞

and the generalized integral
∫ xk+ϵk
xk

r(x) dx does not converge. Similarly,
∫ xk
xk−ϵk r(x) dx does not

converge either. This is why we examine the principal value of
∫ +∞
−∞ r(x) dx, i.e.

pv
∫ +∞
−∞ r(x) dx = limR→+∞,ϵ→0+

( ∫ x1−ϵ
−R r(x) dx+

∫ x2−ϵ
x1+ϵ

r(x) dx+ · · ·

· · ·+
∫ xN−ϵ
xN−1+ϵ

r(x) dx+
∫ R
xN+ϵ r(x) dx

)
= limR→+∞,ϵ→0+ I(R, ϵ).

(6.23)
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We evaluate I(R, ϵ) using a variant of the curve γR of the previous examples: the curve γR,ϵ, which
is the sum of the linear segments [−R, x1−ϵ], [x1+ϵ, x2−ϵ], . . . , [xN−1+ϵ, xN−ϵ], [xN+ϵ, R],
of the curve σR, which describes the upper semicircle of C0(R) from R to −R, and of the curves
σ1,ϵ, . . . , σN,ϵ, where each σk,ϵ describes the upper semicircle of the corresponding Cxk(ϵ) from
xk − ϵ to xk + ϵ. We just take R large enough and ϵ small enough so that the curve γR,ϵ rotates
once and in the positive direction around each of the roots z1, . . . , zM of q in the upper halfplane.
Then γR,ϵ rotates no times around each of the remaining roots of q. The residue theorem implies
that ∮

γR,ϵ
r(z) dz = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))

and hence

I(R, ϵ) = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))−
∫
σR
r(z) dz

−
∫
σ1,ϵ

r(z) dz − · · · −
∫
σN,ϵ

r(z) dz.
(6.24)

Now, xk is a pole of r of order 1 and r can be written r(z) = ck
z−xk + fk(z) for z ̸= xk in a disc

with center xk, where fk is holomorphic at xk and ck = Res(r;xk). Since fk is bounded in a
disc with center xk, there isMk ≥ 0 and ϵ′k > 0 so that |fk(z)| ≤ Mk for |z − xk| ≤ ϵ′k. Thus,
0 < ϵ ≤ ϵ′k implies |

∫
σk,ϵ

fk(z) dz| ≤Mkπϵ and hence limϵ→0+

∫
σk,ϵ

fk(z) dz = 0. Therefore,∫
σk,ϵ

r(z) dz = ck
∫
σk,ϵ

1
z−xk dz +

∫
σk,ϵ

fk(z) dz

= −πick +
∫
σk,ϵ

fk(z) dz → −πick
(6.25)

when ϵ → 0+. The limit of
∫
σR
r(z) dz when R → +∞ has been evaluated in the previous two

examples:

limR→+∞
∫
σR
r(z) dz =

{
0, ifm ≥ n+ 2

iπ an
bn+1

, ifm = n+ 1
(6.26)

Now, (6.23), (6.24), (6.25) and (6.26) imply

pv
∫ +∞
−∞ r(x) dx = 2πi(Res(r; z1) + · · ·+ Res(r; zM ))

+ πi(Res(r;x1) + · · ·+ Res(r;xN ))−

{
0, ifm ≥ n+ 2

iπ an
bn+1

, ifm = n+ 1

Example 6.6.4. Evaluation of
∫ +∞
−∞ r(x) cosx dx,

∫ +∞
−∞ r(x) sinx dx (or of their principal values),

where r = p
q is a rational function, deg q ≥ deg p + 1, the real roots of q (if they exist) have

multiplicity 1 and the coefficients of p, q are real numbers.
Since the coefficients of p, q are real, we have that r(x) ∈ R for every x ∈ R which is not a root
of q. Hence,∫ +∞

−∞ r(x) cosx dx = Re
∫ +∞
−∞ r(x)eix dx,

∫ +∞
−∞ r(x) sinx dx = Im

∫ +∞
−∞ r(x)eix dx

and we evaluate
∫ +∞
−∞ r(x)eix dx (or its principal value).

The method of evaluation has been described already in the previous three examples. We use either
the curve γR or the curve γR,ϵ and we evaluate the residues of r(z)eiz at the roots of q.
We shall concentrate on the important specific generalized integral∫ +∞

0
sinx
x dx = 1

2

∫ +∞
−∞

sinx
x dx.

(Equality holds because sinx
x is even.) We shall evaluate pv

∫ +∞
−∞

eix

x dx instead of
∫ +∞
−∞

sinx
x dx.

Observe that eixx = cosx
x +i sinxx diverges at 0 because its real part cosxx diverges at 0. The imaginary

part sinx
x converges at 0 and, in fact, if we define sinx

x at 0 to have value limx→0
sinx
x = 1, then it
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becomes continuous at 0.
The function eiz

z is holomorphic in C except for a pole at 0 of order 1. We consider the closed
curve γR,ϵ which is the sum of the linear segments [−R,−ϵ] and [ϵ, R], of the curve σR, which
describes the upper semicircle of C0(R) from R to −R, and of the curve σϵ, which describes the
upper semicircle of C0(ϵ) from −ϵ to ϵ. Then γR,ϵ does not rotate around the pole 0 of eizz . The
residue theorem implies

∮
γR,ϵ

eiz

z dz = 0 and hence∫ −ϵ
−R

eix

x dx+
∫ R
ϵ

eix

x dx = −
∫
σR

eiz

z dz −
∫
σϵ

eiz

z dz. (6.27)

Now, ∫
σR

eiz

z dz =
∫ π
0
eiReit

Reit
iReit dt = i

∫ π
0 e

−R sin t+iR cos t dt

and ∣∣ ∫
σR

eiz

z dz
∣∣ ≤ ∫ π

0 e
−R sin t dt = 2

∫ π/2
0 e−R sin t dt ≤ 2

∫ π/2
0 e−

2R
π
t dt

= π
R(1− e−R) → 0

(6.28)

when R → +∞. For the second inequality we used the well known inequality sin t ≥ 2t
π for

0 ≤ t ≤ π
2 . From the Laurent series of eizz at 0 we see that eizz = 1

z + h(z) for z ̸= 0, where
h is holomorphic in C. Now, h is bounded in a neighborhood of 0, i.e. there is M ≥ 0 so that
|h(z)| ≤ 1 when |z| ≤ 1. Hence, for ϵ ≤ 1 we have |

∫
σϵ
h(z) dz| ≤ Mπϵ → 0 when ϵ → 0+.

Therefore ∫
σϵ

eiz

z dz =
∫
σϵ

1
z dz +

∫
σϵ
h(z) dz

= −πi+
∫
σϵ
h(z) dz → −πi

(6.29)

when ϵ→ 0+. From (6.27), (6.28) and (6.29):

pv
∫ +∞
−∞

eix

x dx = limϵ→0+,R→+∞
( ∫ −ϵ

−R
eix

x dx+
∫ R
ϵ

eix

x dx
)
= πi.

Since cosx
x is odd and sinx

x is even, we get
∫ −ϵ
−R

eix

x dx+
∫ R
ϵ

eix

x dx = 2i
∫ R
ϵ

sinx
x dx and hence∫ +∞

0
sinx
x dx = limϵ→0+,R→+∞

∫ R
ϵ

sinx
x dx = π

2 .

Example 6.6.5.We shall evaluate
∫ +∞
0

lnx
x2+4

dx.
We consider the holomorphic branch of the logarithm, which we shall denote log z, in the open
region Ω = C \ {iy | y ≤ 0} and which takes the value 0 at 1. This branch is given by

log z = ln r + iθ

for z = reiθ with r > 0 and −π
2 < θ < 3π

2 . The function log z
z2+4

is holomorphic in Ω except for
the point 2i which is a pole of order 1. Indeed, we write log z

z2+4
= (log z)/(z+2i)

z−2i = g(z)
z−2i and we

have that g(z) = log z
z+2i is holomorphic in Ω with g(2i) = π

8 − ln 2
4 i. Moreover, Res( log z

z2+4
; 2i) =

g(2i) = π
8 − ln 2

4 i. Now we consider the closed curve γR,ϵ of the previous example. We take R
large enough and ϵ small enough so that γR,ϵ rotates once and in the positive direction around the
pole 2i. From the residue theorem we have that∮

γR,ϵ

log z
z2+4

dz = 2πiRes( log z
z2+4

; 2i) = π ln 2
2 + π2

4 i.

Taking real parts of both sides, we find

2
∫ R
ϵ

lnx
x2+4

dx = π ln 2
2 − Re

∫
σR

log z
z2+4

dz − Re
∫
σϵ

log z
z2+4

dz.

Now, ∣∣ ∫
σR

log z
z2+4

dz
∣∣ ≤ lnR+π

R2−4
πR→ 0,

∣∣ ∫
σϵ

log z
z2+4

dz
∣∣ ≤ ln ϵ+π

4−ϵ2 πϵ→ 0

when R→ +∞ and ϵ→ 0+. Hence∫ +∞
0

lnx
x2+4

dx = limϵ→0+,R→+∞
∫ R
ϵ

lnx
x2+4

dx = π ln 2
4 .
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Example 6.6.6.We shall evaluate
∫ +∞
0

xa−1

x+1 dx when 0 < a < 1.
We write x2 instead of x:∫ +∞

0
xa−1

x+1 dx = 2
∫ +∞
0

x2a−1

x2+1
dx = 2

∫ +∞
0

xb

x2+1
dx

with b = 2a− 1 and −1 < b < 1.
We consider the holomorphic branch log z of the previous example in the same region Ω. The
function h(z) = eb log z is holomorphic in Ω and, if z = x > 0, we have h(x) = eb lnx = xb.
The function h(z)

z2+1
is holomorphic in Ω except for a pole at i of order 1. Indeed, we write h(z)

z2+1
=

h(z)/(z+i)
z−i = g(z)

z−i and we have that g(z) = h(z)
z+i is holomorphic in Ω with g(i) = h(i)

2i = e
bπ
2 i

2i .

Moreover, Res( h(z)
z2+1

; i) = g(i) = e
bπ
2 i

2i . Now we consider the same closed curve γR,ϵ of the
previous example. The residue theorem implies∮

γR,ϵ

h(z)
z2+1

dz = 2πiRes( h(z)
z2+1

; i) = πe
bπ
2
i,

and hence
(ebπi + 1)

∫ R
ϵ

xb

x2+1
dx = πe

bπ
2
i −

∫
σR

h(z)
z2+1

dz −
∫
σϵ

h(z)
z2+1

dz.

Now ∣∣ ∫
σR

h(z)
z2+1

dz
∣∣ ≤ Rb

R2−1
πR→ 0,

∣∣ ∫
σϵ

h(z)
z2+1

dz
∣∣ ≤ ϵb

1−ϵ2 πϵ→ 0

when R→ +∞ and ϵ→ 0+. Hence∫ +∞
0

xa−1

x+1 dx = 2
∫ +∞
0

xb

x2+1
dx = limϵ→0+,R→+∞ 2

∫ R
ϵ

xb

x2+1
dx = 2πe

bπ
2 i

ebπi+1
= π

sin aπ .

We shall evaluate
∫ +∞
0

xa−1

x+1 dx in a different way.
We consider the holomorphic branch of the logarithm, which we shall denote log z again, in the
(different) region Ω = C \ {x |x ≥ 0} and which takes the value iπ at −1. This branch is given
by

log z = ln r + iθ

for z = reiθ with r > 0 and 0 < θ < 2π. The function h(z) = e(a−1) log z is holomorphic in Ω,
and hence h(z)

z+1 is holomorphic in Ω except at the point −1 which is a pole of order 1. Indeed, we
have Res(h(z)z+1 ;−1) = h(−1) = e(a−1)πi. We also consider the closed curve γR,ϵ,δ which is the
sum of the curve σR,δ, which describes the arc of C0(R) from Reiδ to Rei(2π−δ) in the positive
direction, of the curve σϵ,δ, which describes the arc of C0(ϵ) from ϵei(2π−δ) to ϵeiδ in the negative
direction, of the linear segment [ϵeiδ, Reiδ] and of the linear segment [Rei(2π−δ), ϵei(2π−δ)]. The
residue theorem implies that∮

γR,ϵ,δ

h(z)
z+1 dz = 2πiRes(h(z)z+1 ;−1) = 2πie(a−1)πi

and hence ∫
[ϵeiδ ,Reiδ ]

h(z)
z+1 dz +

∫
[Rei(2π−δ),ϵei(2π−δ)]

h(z)
z+1 dz

= 2πie(a−1)πi −
∫
σR,δ

h(z)
z+1 dz −

∫
σϵ,δ

h(z)
z+1 dz.

Now,
∣∣ ∫
σR,δ

h(z)
z+1 dz

∣∣ ≤ 2πRa

R−1 and
∣∣ ∫
σϵ,δ

h(z)
z+1 dz

∣∣ ≤ 2πϵa

1−ϵ . Therefore∣∣ ∫
[ϵeiδ,Reiδ ]

h(z)
z+1 dz +

∫
[Rei(2π−δ),ϵei(2π−δ)]

h(z)
z+1 dz − 2πie(a−1)πi

∣∣ ≤ 2πRa

R−1 + 2πϵa

1−ϵ . (6.30)

We have ∫
[ϵeiδ ,Reiδ ]

h(z)
z+1 dz = eiaδ

∫ R
ϵ

ra−1

reiδ+1
dr.
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Keeping ϵ and R fixed, we take the limit when δ → 0+. Clearly, eiaδ → 1. Also, 1
reiδ+1

→ 1
r+1

uniformly in [ϵ, R] and hence ∫
[ϵeiδ ,Reiδ]

h(z)
z+1 dz →

∫ R
ϵ

ra−1

r+1 dr (6.31)

when δ → 0+. We also have∫
[Rei(2π−δ),ϵei(2π−δ)]

h(z)
z+1 dz = −eia(2π−δ)

∫ R
ϵ

ra−1

re−iδ+1
dr.

Keeping ϵ and R fixed, we take the limit when δ → 0+. Exactly as with (6.31), we get∫
[Rei(2π−δ),ϵei(2π−δ)]

h(z)
z+1 dz → −ei2aπ

∫ R
ϵ

ra−1

r+1 dr (6.32)

when δ → 0+. From (6.30), (6.31) and (6.32) we get∣∣(1− ei2aπ)
∫ R
ϵ

ra−1

r+1 dr − 2πie(a−1)πi
∣∣ ≤ 2πRa

R−1 + 2πϵa

1−ϵ .

Finally, we let ϵ→ 0+ and R→ +∞ and we conclude that∫ +∞
0

xa−1

x+1 dx = limϵ→0+,R→+∞
∫ R
ϵ

ra−1

r+1 dr =
2πie(a−1)πi

1−ei2aπ = π
sin aπ .

Example 6.6.7. Evaluation of
∫ 2π
0 r(cos θ, sin θ) dθ, where r(s, t) is a rational function of two

variables.
We parametrize C0(1) with z = eiθ, θ ∈ [0, 2π], and we have cos θ = 1

2(z+
1
z ), sin θ =

1
2i(z−

1
z )

and dz
dθ = ieiθ = iz. Hence∫ 2π

0 r(cos θ, sin θ) dθ = 1
i

∮
C0(1)

r( z
2+1
2z , z

2−1
2iz ) 1

z dz.

The function s(z) = r( z
2+1
2z , z

2−1
2iz )1z is a rational function of z. We apply the residue theorem

after we evaluate the residues of s at its poles in the disc D0(1).

Exercises.

6.6.1. Evaluate∫ +∞
−∞

1
x2+1

dx,
∫ +∞
−∞

1
(x2+1)(x2+4)

dx,
∫ +∞
−∞

1
(x2+1)2

dx,
∫ +∞
−∞

x4

1+x8
dx,

pv
∫ +∞
−∞

x+1
x2+1

dx, pv
∫ +∞
−∞

x3

x4−4x2+5
dx, pv

∫ +∞
−∞

x2+3
x(x2+1)

dx,∫ +∞
−∞

cosx
(x2+1)(x2+4)

dx,
∫ +∞
−∞

x3 sinx
x4+1

dx, pv
∫ +∞
−∞

cosx
x(x2+1)

dx,∫ 2π
0

1
(1−a cos θ)2 dθ (0 < a < 1),

∫ 2π
0

cos 2θ
1−2a cos θ+a2 dθ (0 < a < 1),∫ π/2

0
1

a+sin2 θ dθ (|a| > 1),
∫ +∞
0

xa

x2+3x+2
dx (|a| < 1),∫ +∞

0
lnx

(x2+1)(x2+4)
dx,

∫ +∞
0

ln2 x
x2+1

dx,
∫ +∞
0

ln(1+x2)
x1+a dx (0 < a < 2),∫ +∞

−∞
cosx

ex+e−x dx,
∫ +∞
0

1
x3+8

dx,
∫ +∞
0

x
x4+16

dx,
∫ 2π
0

1
2+cos θ dθ.
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6.7 The argument principle. The theorem of Rouché.

A function f is calledmeromorphic in the open setΩ if it is holomorphic inΩ except at certain
points in Ω which are poles of f .

Let f be meromorphic in the open set Ω. If w ∈ C, we shall denote Aw the set of solutions of
f(z) = w, i.e.

Aw = {z ∈ Ω | f(z) = w}.

If f is not constant in any connected component of Ω, then the solutions of f(z) = w are isolated
points.

Also, letting f have the value ∞ at each of its poles in Ω, so that f becomes continuous at its
poles considered as a function from Ω to Ĉ, we denote A∞ the set of solutions of f(z) = ∞, i.e.

A∞ = {z ∈ Ω | f(z) = ∞} = {z ∈ Ω | z is a pole of f}.

The argument principle. Letw ∈ C. We assume that f is meromorphic in the open setΩ and that
it is not constant in any connected component of Ω. Also let Σ be a cycle, which consists of closed
piecewise smooth curves and which is null-homologous in Ω, so that no element of Aw ∪A∞ is in
the trajectory of any of the closed curves forming Σ. Then n(Σ; z) ̸= 0 for at most finitely many
elements of Aw ∪A∞ and so the sums∑

z∈Aw
n(Σ; z)m(z),

∑
z∈A∞

n(Σ; z)m(z),

wherem(z) is the corresponding multiplicity of z ∈ Aw ∪A∞, are finite. Moreover,

n(f(Σ);w) = 1
2πi

∮
Σ

f ′(ζ)
f(ζ)−w dζ =

∑
z∈Aw

n(Σ; z)m(z)−
∑

z∈A∞
n(Σ; z)m(z). (6.33)

Furthermore, even if the closed curves which form Σ are not necessarily piecewise smooth, then
the left and the right side of (6.33) are still equal.

Proof. At first we assume that the closed curves forming Σ are all piecewise continuous.
We apply the residue theorem to the function f ′

f−w . The isolated singularities of this function are
the elements of Aw ∪A∞.
Ifm(z) is the multiplicity of z ∈ Aw, then there is a g holomorphic in some neighborhood Dz(r)
of z so that f(ζ)−w = (ζ − z)m(z)g(ζ) when ζ ∈ Dz(r) and also g(z) ̸= 0. Since g(z) ̸= 0, we
may assume that r is small enough so that g(ζ) ̸= 0 when ζ ∈ Dz(r). Therefore

f ′(ζ)
f(ζ)−w = m(z)

ζ−z + g′(ζ)
g(ζ)

when ζ ∈ Dz(r)\{z}. Since g′

g is holomorphic inDz(r), we have that z is a pole of f ′

f−w of order
1 with residuem(z).
Ifm(z) is the order of z ∈ A∞, there is a g holomorphic in some neighborhoodDz(r) of z so that
f(ζ) − w = g(ζ)

(ζ−z)m(z) when ζ ∈ Dz(r) and also g(z) ̸= 0. Since g(z) ̸= 0, we may assume that
r is small enough so that g(ζ) ̸= 0 when ζ ∈ Dz(r). Hence

f ′(ζ)
f(ζ)−w = −m(z)

ζ−z + g′(ζ)
g(ζ)

when ζ ∈ Dz(r)\{z}. Since g′

g is holomorphic inDz(r), we have that z is a pole of f ′

f−w of order
1 with residue −m(z).
Now, the residue theorem implies the second equality in (6.33). The first equality is a matter of
a simple change of variable. If ζ = γ(t), t ∈ [a, b], is the parametric equation of any curve γ
forming Σ, then the parametric equation of f(γ) is η = f(γ(t)), t ∈ [a, b], and hence:

n(f(γ);w) = 1
2πi

∮
f(γ)

1
η−w dη = 1

2πi

∫ b
a
f ′(γ(t))γ′(t)
f(γ(t))−w dt = 1

2πi

∮
γ

f ′(ζ)
f(ζ)−w dζ.
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The rest is simple if we recall that Σ = n1γ1 + · · ·+nkγk and f(Σ) = n1f(γ1)+ · · ·+nkf(γk).
Now we assume that the curves γ which form Σ are not necessarily piecewise smooth.
We consider any of the closed curves which form Σ with parametric equation ζ = γ(t), t ∈ [a, b],
and the corresponding f(γ) with parametric equation η = f(γ(t)), t ∈ [a, b]. The set Aw ∪ A∞
has no accumulation point in Ω. Thus, the set Aw ∪A∞ ∪ Ωc is closed and we also have that it is
disjoint from γ∗. Therefore, there is ϵ1 > 0 so that

|γ(t)− z| ≥ 2ϵ1 (6.34)

for every t ∈ [a, b] and every z ∈ Aw ∪A∞ ∪ Ωc. We consider the set

K = {z | |z − γ(t)| ≤ ϵ1 for at least one t ∈ [a, b]}

and we easily see that K is a compact subset of Ω \ (Aw ∪ A∞) and hence f is continuous in K.
Also, we have f(z) ̸= w for every z ∈ K and γ∗ is a subset ofK and hence there is ϵ2 > 0 so that

|f(γ(t))− w| ≥ ϵ2 (6.35)

for every t ∈ [a, b]. Since f is continuous inK, there is δ1 with 0 < δ1 ≤ ϵ1 so that

|f(z′)− f(z′′)| < ϵ2 (6.36)

for every z′, z′′ ∈ K with |z′ − z′′| < δ1. Finally, there is δ > 0 so that

|γ(t′)− γ(t′′)| < δ1 (6.37)

for every t′, t′′ ∈ [a, b] with |t′ − t′′| < δ.
Now we take successive points a = t0 < t1 < . . . < tn−1 < tn = b so that tk − tk−1 < δ for
every k and we consider the polygonal curve σ : [a, b] → C consisting of the successive linear
segments [γ(tk−1), γ(tk)]. It is easy to see that we have

|σ(t)− γ(t)| < δ1 ≤ ϵ1 (6.38)

for every t ∈ [a, b]. Indeed, if t ∈ [tk−1, tk], then, because of (6.37), we have

|σ(t)− γ(t)| =
∣∣( tk−t
tk−tk−1

γ(tk−1) +
t−tk−1

tk−tk−1
γ(tk)

)
− γ(t)

∣∣
≤ tk−t

tk−tk−1
|γ(tk−1)− γ(t)|+ t−tk−1

tk−tk−1
|γ(tk)− γ(t)|

< tk−t
tk−tk−1

δ1 +
t−tk−1

tk−tk−1
δ1 = δ1 ≤ ϵ1.

Now, (6.34), (6.38) imply
|σ(t)− γ(t)| < |γ(t)− z|

for every t ∈ [a, b] and every z ∈ Aw ∪A∞. Proposition 6.14 implies n(γ; z) = n(σ; z) for every
z ∈ Aw ∪A∞ and hence∑

z∈Aw
n(γ; z)m(z)−

∑
z∈A∞

n(γ; z)m(z)

=
∑

z∈Aw
n(σ; z)m(z)−

∑
z∈A∞

n(σ; z)m(z).
(6.39)

Also, (6.38) implies σ(t) ∈ K for every t ∈ [a, b] and, because of (6.36),

|f(σ(t))− f(γ(t))| < ϵ2

for every t ∈ [a, b]. But then (6.35) implies

|f(σ(t))− f(γ(t))| < |f(γ(t))− w|
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for every t ∈ [a, b]. Proposition 6.14 again implies

n(f(γ);w) = n(f(σ);w). (6.40)

Since the curve σ is piecewise smooth, we have from the first part of the proof that

n(f(σ);w) =
∑

z∈Aw
n(σ; z)m(z)−

∑
z∈A∞

n(σ; z)m(z). (6.41)

Now, (6.39), (6.40) and (6.41) imply the equality of the left and the right side of (6.33) for each γ
forming Σ and the proof is finished by addition over all such γ.

The geometric content of the argument principle is described as follows. The number of ro-
tations of f(Σ) around w is equal to the total number of rotations of Σ around the solutions of
f(z) = w minus the total number of rotations of Σ around the poles of f . When we count the
solutions of f(z) = w and the poles of f we take into account their multiplicities. We countm(z)
points at every point z ∈ Aw ∪A∞ which has multiplicitym(z).

If f has no poles in Ω, i.e. if f is holomorphic in Ω, then the argument principle says that the
number of rotations of f(Σ) around w is equal to the total number of rotations of Σ around the
solutions of f(z) = w. In fact, if Σ is such that for every z not in the trajectories of the curves
forming Σ we have either n(Σ; z) = 1 or n(Σ; z) = 0, then the number of rotations of f(Σ)
around w is equal to the number of solutions of f(z) = w which are surrounded by Σ.

The theorem of Rouché. Let w ∈ C. We assume that f, g are holomorphic in the open set Ω and
that they are not constant in any connected component of Ω. We also consider Σ to be a cycle
which is null-homologous in Ω. If |f(ζ)− g(ζ)| < |g(ζ)−w| for every ζ in the trajectories of the
closed curves forming Σ, then∑

z∈Aw,f
n(Σ; z)mf (z) =

∑
z∈Aw,g

n(Σ; z)mg(z),

where mf (z) and mg(z) are the corresponding multiplicities and Aw,f = {z ∈ Ω | f(z) = w},
Aw,g = {z ∈ Ω | g(z) = w}.

Proof. We observe that the condition |f(ζ)− g(ζ)| < |g(ζ)−w| for every ζ in the trajectories of
the closed curves forming Σ implies that no element of Aw,f ∪ Aw,g is in these trajectories. The
function h = f−w

g−w is holomorphic in Ω except for the elements of Aw,g, which are either poles or
removable singularities of h. From (6.33) we have

n(h(Σ); 0) =
∑

z∈A0,h
n(Σ; z)mh(z)−

∑
z∈A∞,h

n(Σ; z)mh(z). (6.42)

If z ∈ Aw,f \ Aw,g, then z ∈ A0,h and mh(z) = mf (z). Similarly, if z ∈ Aw,g \ Aw,f , then
z ∈ A∞,h and mh(z) = mg(z). Finally, if z ∈ Aw,f ∩ Aw,g, then we have three cases. If
mf (z) > mg(z), then z ∈ A0,h andmh(z) = mf (z)−mg(z). Ifmf (z) < mg(z), then z ∈ A∞,h

and mh(z) = mg(z) −mf (z). If mf (z) = mg(z), then z ̸∈ A0,h ∪ A∞,h and mh(z) = 0. All
these imply∑

z∈A0,h
n(Σ; z)mh(z)−

∑
z∈A∞,h

n(Σ; z)mh(z)

=
∑

z∈Aw,f
n(Σ; z)mf (z)−

∑
z∈Aw,g

n(Σ; z)mg(z)

and from (6.42) we get∑
z∈Aw,f

n(Σ; z)mf (z)−
∑

z∈Aw,g
n(Σ; z)mg(z) = n(h(Σ); 0).

Now, our hypothesis says that |h(z)− 1| < 1 for every z in the trajectories of the curves forming
Σ. Therefore, the cycle h(Σ) is in the disc D1(1) and hence n(h(Σ); 0) = 0.
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Example 6.7.1.We shall find the number of roots of f(z) = z7 − 2z5 + 6z3 − z + 1 in D.
We consider g(z) = 6z3 and we have

|f(z)− g(z)| = |z7 − 2z5 − z + 1| ≤ |z|7 + 2|z|5 + |z|+ 1 = 5 < 6|z|3 = |g(z)|

for every z ∈ T. Now we apply the theorem of Rouché with w = 0 and Σ consisting of only the
curve γ which describesT once and in the positive direction. We have n(γ; z) = 1 for every z ∈ D
and n(γ; z) = 0 for every z ̸∈ D. The only solution of g(z) = 0 in D is z = 0 with multiplicity
mg(0) = 3. Therefore ∑

z∈A0,g
n(γ; z)mg(z) =

∑
z∈A0,g∩Dmg(z) = 3.

Moreover, ∑
z∈A0,f

n(γ; z)mf (z) =
∑

z∈A0,f∩Dmf (z).

Now the theorem of Rouché implies that
∑

z∈A0,f∩Dmf (z) = 3 and hence f has three roots in D.

Exercises.

6.7.1. Let f be holomorphic in Dz0(R), let 0 < r < R and assume that there is no solution of
f(z) = w in Cz0(r). If k ∈ N, describe the content of

1
2πi

∮
Cz0 (r)

f ′(z)
f(z)−w z

k dz.

6.7.2. Let f be holomorphic in D and continuous in D and let |f(z)| < 1 for every z ∈ T. Prove
that the equation f(z) = zn has exactly n solutions in D.

6.7.3. Find the number of roots of
(i) z4 − 6z + 3 in D0(1, 2).
(ii) z4 + 8z3 + 3z2 + 8z + 3 in {z | Re z > 0}.

6.7.4. Let z1, . . . , zn ∈ D and |λ| = 1. In C \
{

1
z1
, . . . , 1

zk

}
we consider the function

B(z) = λ
∏n
k=1

z−zk
1−zk z .

We know from exercise 5.9.10 thatB(z) ∈ D for every z ∈ D and thatB(z) ∈ T for every z ∈ T.
(i) Find the index with respect to 0 of the curve with parametric equation w = B(eit), t ∈ [0, 2π].
(ii) Prove that for every w ∈ D the equation B(z) = w has exactly n solutions and all of them are
in D.

6.7.5. Prove that the set of all meromorphic functions in the region Ω is an algebraic field.

6.7.6. Let f be holomorphic in the open set Ω. We assume that γ is a closed piecewise smooth
curve in Ω, that C \ γ∗ has only one bounded connected component U and that n(γ; z) = 1 for
every z ∈ U . We also assume that C \ f(γ)∗ has only one bounded connected component V and
that n(f(γ);w) = N for every w ∈ V .
(i) If f(z) /∈ f(γ)∗ for every z ∈ U , prove that f is N-to-one from U onto V .
(ii) If moreover N = 1, we may consider the inverse function f−1 : V → U . Prove that

f−1(w) = 1
2πi

∮
γ

ζf ′(ζ)
f(ζ)−w dζ

for every w ∈ V .

6.7.7. Let f(z) =
∑+∞

n=0 anz
n for z ∈ D and let F ⊆ D be compact with 0 ∈ F . If m is the

number of roots of f in F , prove that minz∈∂F |f(z)| ≤ |a0|+ |a1|+ · · ·+ |am|.

6.7.8. Let f be holomorphic in D and continuous in D. Assume that the restriction of f in T is
one-to-one and hence the curve γ(t) = f(eit), t ∈ [0, 2π], is closed and simple. Using Jordan’s
theorem, prove that f is one-to-one in D and that it maps D onto the interior region of γ. Also
prove that γ has the positive direction.
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Chapter 7

Simply connected regions and the
theorem of Riemann.

7.1 Conformal equivalence.

If Ω ⊆ C is a region and f is holomorphic and not constant in Ω, then by the open mapping
theorem f(Ω) is also a region.

Proposition 7.1. Let f be holomorphic and one-to-one in the region Ω ⊆ C. Then f(Ω) is also a
region, f ′(z) ̸= 0 for every z ∈ Ω and f−1 is holomorphic in f(Ω).

Proof. If f ′(z0) = 0 for some z ∈ Ω, then theorem 5.2 implies that there is N ≥ 2 so that f is
N -to-one in some open set U ⊆ Ω containing z0. Hence f ′(z) ̸= 0 for every z ∈ Ω.
Now let w0 ∈ f(Ω) and consider the unique z0 ∈ Ω so that f(z0) = w0. Then proposition 5.8
implies that there are two open sets, U ⊆ Ω and W ⊆ f(Ω) with z0 ∈ U and w0 ∈ W so that
f−1 :W → U is holomorphic. Thus f−1 is holomorphic at every w0 ∈ f(Ω).

Let f be holomorphic and one-to-one in the region Ω ⊆ C. Since f ′(z) ̸= 0 for every z ∈ Ω
and due to the discussion in section 3.3, we say that f is a conformal mapping of Ω.

Two regions Ω1,Ω2 ⊆ C are called conformally equivalent if there is f : Ω1 → Ω2 holo-
morphic and one-to-one from Ω1 onto Ω2.

If f : Ω1 → Ω2 is holomorphic and one-to-one from Ω1 onto Ω2, then f−1 : Ω2 → Ω1 is
also holomorphic and one-to-one from Ω2 onto Ω1. It is easy to see that conformal equivalence
between regions in C is an equivalence relation.

The Schwarz lemma. Let f : D → D be holomorphic in D and f(0) = 0. Then
(i) |f(z)| ≤ |z| for every z ∈ D,
(ii) |f ′(0)| ≤ 1.
If equality holds in (i) for at least one z ∈ D \ {0} or in (ii), then there is a constant c with |c| = 1
so that f(z) = cz for every z ∈ D.

Proof. Since f(0) = 0, the function f(z)
z has a removable singularity at 0 and we may define the

function g by

g(z) =

{
f(z)
z , if z ∈ D, z ̸= 0

f ′(0), if z = 0

Then g is holomorphic in D.
We take any z ∈ D and we take any r so that |z| < r < 1. By the maximum principle we have

|g(z)| ≤ maxζ∈C0(r) |g(ζ)| = maxζ∈C0(r)
|f(ζ)|
|ζ| ≤ 1

r .
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Hence, |g(z)| ≤ 1
r and since this is true for every r with |z| < r < 1, we conclude that |g(z)| ≤ 1.

Of course this implies (i) and (ii).
Now, assume that equality holds in (i) for at least one z ∈ D\{0} or in (ii). Then |g(z)| = 1 for at
least one z ∈ D and the maximum principle implies that g is a constant c in D with |c| = 1. Hence
f(z) = cz for every z ∈ D.

Example 7.1.1. Let z0 ∈ D and |λ| = 1. We consider the function T : Ĉ → Ĉ given by

T (z) =


λ z−z0

1−z0 z , if z ∈ C, z ̸= 1
z0

∞, if z = 1
z0

− λ
z0
, if z = ∞

Then T is a linear fractional transformation and hence it is one-to-one from Ĉ onto Ĉ and holo-
morphic in Ĉ \ { 1

z0
}. The inverse function T−1 : Ĉ → Ĉ is given by

T−1(w) =


µ w−w0

1−w0 w
, if w ∈ C, w ̸= 1

w0

∞, if w = 1
w0

− µ
w0
, if w = ∞

where µ = 1
λ and w0 = −λz0. Since |µ| = 1 and w0 ∈ D, the inverse function T−1 is of the same

form as T .
For simplicity, we shall follow the same practice as with all l.f.t. and we shall only write

T (z) = λ z−z0
1−z0 z ,

understanding that T ( 1
z0
) = ∞ and T (∞) = − λ

z0
whenever this is needed.

We easily see that
T (D) = D, T (T) = T.

Indeed,
1− |T (z)|2 = 1− |z−z0|2

|1−z0 z|2 = 1+|z|2|z0|2−|z|2−|z0|2
|1−z0 z|2 = (1−|z|2)(1−|z0|2)

|1−z0 z|2 ,

which implies that |T (z)| < 1 if |z| < 1, that |T (z)| = 1 if |z| = 1 and that |T (z)| > 1 if |z| > 1.
Thus, T (D) ⊆ D, T (T) ⊆ T and T (Ĉ \ D) ⊆ Ĉ \ D. But, since T is onto Ĉ, all these inclusions
are equalities.
Another simple property of T is

T (z0) = 0.

We also have
T ′(z) = λ 1−|z0|2

(1−z0 z)2

for every z ̸= 1
z0
. Thus, T ′(z0) =

λ
1−|z0|2 and hence

ArgT ′(z0) = Argλ.

If we restrict T in D we see that T is a conformal mapping of D onto D.
All functions T are calledMöbius transformations.

The next proposition describes all conformal mappings of D onto D: they are just the Möbius
transformations.

Proposition 7.2. Let z0 ∈ D and θ0 ∈ (−π, π]. Then the function T : D → D given by

T (z) = eiθ0 z−z0
1−z0 z

for every z ∈ D is a conformal mapping of D onto D. Moreover, T is the unique conformal
mapping of D onto D satisfying

T (z0) = 0, ArgT ′(z0) = θ0.
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Proof. From the discussion in example 7.1.1 we have all properties of the function T . So we only
need to prove the uniqueness of T .
Let S be another conformal mapping of D onto D satisfying S(z0) = 0 and ArgS′(z0) = θ0.
Then the function f = S ◦ T−1 : D → D is holomorphic in D and satisfies f(0) = 0 and
f ′(0) = S′(z0)

T ′(z0)
> 0. By the Schwarz lemma we get |f ′(0)| ≤ 1.

But also the function g = T ◦ S−1 : D → D is holomorphic in D and satisfies g(0) = 0 and
g′(0) > 0. Again, by the Schwarz lemma we get |g′(0)| ≤ 1.
Now, the functions f and g are mutually inverse and hence g′(0) = 1

f ′(0) . Therefore, |f
′(0)| =

|g′(0)| = 1 and the Schwarz lemma implies that there is some c with |c| = 1 so that f(w) = cw
for every w ∈ D. Now, c = f ′(0) > 0 implies c = 1. Hence, f(w) = w for every w ∈ D and
finally S(z) = T (z) for every z ∈ D.

Exercises.

7.1.1. Let T, S be two Möbius transformations. Prove that S ◦ T is a Möbius transformation.
7.1.2. Let f be a conformal mapping of the region Ω ⊆ C onto D with f(z0) = 0 for some z0 ∈ Ω
and let g : Ω → D be holomorphic in Ω with g(z0) = 0. Prove that |g′(z0)| ≤ |f ′(z0)|. What can
you conclude if |g′(z0)| = |f ′(z0)|?
7.1.3. Let f : D → D be holomorphic in D. Prove that:
(i)

∣∣ f(z1)−f(z2)
1−f(z2)f(z1)

∣∣ ≤ ∣∣ z1−z2
1−z2z1

∣∣ for every z1, z2 ∈ D.

(ii) |f ′(z)|
1−|f(z)|2 ≤ 1

1−|z|2 for every z ∈ D.
Prove that, if equality holds in (i) for at least one pair of z1, z2 ∈ Dwith z1 ̸= z2 or in (ii) for at least
one z ∈ D, then f is a Möbius transformation and then equalities in (i) and (ii) hold identically.
7.1.4. (See exercise 7.1.3.) For every piecewise smooth curve γ : [a, b] → D we define the hyper-
bolic length of γ by

lh(γ) =
∫ b
a

|γ′(t)|
1−|γ(t)|2 dt.

(i) If f : D → D is holomorphic inD, and γ is a piecewise smooth curve inD, prove that lh(f(γ)) ≤
lh(γ). If, moreover, f is a Möbius transformation, prove that lh(f(γ)) = lh(γ).
(ii) If z1, z2 ∈ D and z1 ̸= z2, prove that among all piecewise smooth curves in D with endpoints
z1 and z2 the one with the smallest hyperbolic length is the arc of the circle which contains z1, z2
and which is orthogonal to T. This smallest hyperbolic length is called hyperbolic distance of
z1, z2 and it is equal to

dh(z1, z2) =
1
2 ln

1+
∣∣ z1−z2
1−z2z1

∣∣
1−
∣∣ z1−z2
1−z2z1

∣∣ .
Prove that dh is a metric inD, the so-called hyperbolic metric, which is equivalent to the euclidean
metric in D.
(iii) Consider sequences (z′n) and (z′′n) inD so that z′n → ζ for some ζ ∈ T and so that dh(z′n, z′′n) ≤
M for every n. Prove that z′′n → ζ.
7.1.5. (See exercise 7.1.4.) Let f : D → D be holomorphic in D. Prove that dh(f(z1), f(z2)) ≤
dh(z1, z2) for all z1, z2 ∈ D. If, moreover, equality dh(f(z1), f(z2)) = dh(z1, z2) for at least
one pair of z1, z2 ∈ D with z1 ̸= z2, prove that f is a Möbius transformation and then equality
dh(f(z1), f(z2)) = dh(z1, z2) holds for all z1, z2 ∈ D.
7.1.6. Find all f : D → D holomorphic in D with f(0) = 1

2 and f ′(0) = 3
4 .

7.1.7. Prove that for everyM,N with 0 < M < N there isP = P (M,N) < N with this property:
if f is holomorphic in Dz0(R) with |f(z0)| < M and |f(z)| < N for every z ∈ Dz0(R), then
|f(z)| < P for every z ∈ Dz0(

R
2 ).

7.1.8. Let f : D → D be holomorphic in D with f(0) = 0 and |f ′(0)| < 1. For every n we define
fn = f ◦ f ◦ · · · ◦ f ◦ f︸ ︷︷ ︸

n times

. Prove that fn(z) → 0 for every z ∈ D.
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7.2 Simply connected regions and the theorem of Riemann.

Let Ω be a region in C. We say that Ω is topologically simply connected if Ĉ\Ω is connected.
We say that Ω is homologically simply connected if n(γ; z) = 0 for every closed curve γ in Ω
and every z ∈ Ωc. We say that Ω is homotopically simply connected if for every closed curve γ
in Ω there is a homotopy with closed intermediate curves in Ω from γ to a constant curve.

Example 7.2.1. The region Ω = Dz0(R1, R2) with 0 ≤ R1 < R2 ≤ +∞ is not simply connected
in any of the three senses.
The set Ĉ \ Ω = Dz0(R1) ∪Dz0(R2,+∞) ∪ {∞} has two connected components.
If R1 < r < R2, the closed curve γ in Ω which describes the circle Cz0(r) once in the positive
direction has n(γ; z0) = 1.
For the same closed curve γ in Ω there is no homotopy with closed intermediate curves in Ω from
γ to a constant curve. Indeed, if there was such a homotopy from γ to a constant curve γ1, then
proposition 6.17 would imply that n(γ; z0) = n(γ1; z0) = 0, which is wrong.

If Ω is a region, its complement Ĉ \Ω in the sphere of Riemann is compact with respect to the
chordal metric. Therefore, the connected components of Ĉ \ Ω are all compact sets with respect
to the chordal metric. One of them contains the point ∞. Every other connected component is
a compact subset of C either with respect to the chordal metric or with respect to the euclidean
metric, since the two metrics are equivalent in C. Hence, all connected components of Ĉ \ Ω,
besides the one which contains ∞, are closed and bounded subsets of C. We continue with some
mathematically imprecise thoughts, which may help the understanding of the three notions of sim-
ple connectedness. In visually simple cases of regions Ω, like the one in example 7.2.1, the closed
and bounded components of the complement of Ω appear as “holes” of Ω. Thus, naively speaking,
a region Ω is topologically simply connected if it has no “holes”. On the other hand, the region Ω
is homologically simply connected if no closed curve in Ω surrounds any point in the complement
of Ω. If Ω has a “hole” then, naively speaking again, one can find a closed curve surrounding
the “hole”, exactly as in example 7.2.1, and then Ω is not homologically simply connected. In the
same case and naively speaking again, a closed curve surrounding a “hole” of Ω cannot be shrunk
continuously to a point (i.e. to a constant curve) so that all intermediate closed curves are in Ω:
it seems that some intermediate curves must intersect the “hole”. Thus, Ω is not homotopically
simply connected.

Example 7.2.2. A set A ⊆ C is called star-shaped if there is a specific z0 ∈ A so that [z0, z] ⊆ A
for every z ∈ A. The point z0 is called center of A.
Now, let Ω be any open star-shaped set and let z0 be a center of Ω. We consider any z ∈ Ωc and
the halfline lz with vertex z which is opposite to the halfine with vertex z going through z0. Then
lz ⊆ Ωc and hence l̂z = lz ∪{∞} ⊆ Ĉ \Ω. Therefore, Ĉ \Ω is the union of the connected subsets
l̂z , z ∈ Ωc, of Ĉ all of which have ∞ as a common point. Thus Ĉ \ Ω is connected. We conclude
that every open star-shaped set is topologically simply connected.
If γ is a closed curve in Ω and z ∈ Ωc, then γ is in C \ lz , where lz is the halfline of the previous
paragraph. Hence n(γ; z) = 0. Therefore every open star-shaped set is homologically simply
connected.
Finally, if γ : [a, b] → Ω is a closed curve in Ω, then the function F : [a, b]× [0, 1] → Ω defined
by

F (t, s) = (1− s)γ(t) + sz0

is a homotopy with closed intermediate curves in Ω from γ to the constant curve z0. Therefore
every open star-shaped set is homotopically simply connected.

Example 7.2.3. The region Ω = C\
(
D0(1)∪ (−∞,−1]

)
is not star-shaped but it is topologically

simply connected. Indeed, Ĉ \ Ω = D0(1) ∪ (−∞,−1] ∪ {∞} is connected.
Moreover, if γ is a closed curve inΩ, thenΩc = D0(1)∪(−∞,−1] is connected and it is contained
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in the connected component of C \ γ∗. Hence n(γ; z) = 0 for every z ∈ Ωc. Therefore, Ω is
homologically simply connected.
Finally, let γ : [a, b] → Ω be a closed curve inΩ. Then the function F : [a, b]× [0, 1] → Ω defined
by

F (t, s) = (1− s)γ(t) + 2s γ(t)|γ(t)|

is a homotopy with closed intermediate curves in Ω from γ to the closed curve γ1 : [a, b] →
Ω∩C0(2) given by γ1(t) = 2 γ(t)

|γ(t)| . Now we consider the functionG : [a, b]× [0, 1] → Ω∩C0(2)
defined by

G(t, s) = 2e(1−s)Arg(γ(t)).

ThenG is a homotopy with closed intermediate curves inΩ from γ1 to the constant curve 2. Hence
there is a homotopy with closed intermediate curves in Ω from γ to the constant curve 2 and we
conclude that Ω is homotopically simply connected.

Proposition 7.3. Let Ω be a region in C.
(i) Ω is topologically simply connected if and only if it is homologically simply connected.
(ii) If Ω is homotopically simply connected then it is topologically and homologically simply con-
nected.

Proof. (i) Assume that Ω is topologically simply connected. Let γ be any closed curve in Ω and
let U be the unbounded connected component of C \ γ∗. Then it is easy to see that U ∪ {∞} is a
connected component of Ĉ \ γ∗. Since γ∗ ⊆ Ω, we have Ĉ \Ω ⊆ Ĉ \ γ∗ and hence the connected
set Ĉ \ Ω is contained in only one connected component of Ĉ \ γ∗. Since Ĉ \ Ω contains ∞, we
conclude that Ĉ \Ω ⊆ U ∪{∞}. Therefore Ωc ⊆ U . Since n(γ; z) = 0 for every z ∈ U , we have
n(γ; z) = 0 for every z ∈ Ωc.
Now, assume that Ω is homologically simply connected and, to arrive at a contradiction, assume
that Ω is not topologically simply connected. Then Ĉ\Ω is not connected and so there is a decom-
position B,C of Ĉ \Ω. Let∞ ∈ C (the case∞ ∈ B is the same). Then∞ is not a limit point of
B and hence B is a bounded subset of C. Since Ĉ \ Ω is closed, both B,C are closed and hence
B is a compact subset of C. The complement of Ω′ = Ω ∪ B is the closed set C and hence Ω′ is
open. Now we apply proposition 6.18 to the open set Ω′, to the compact subset B of Ω′ and to the
constant function f(z) = 1, and we get that there are closed curves γ1, . . . , γk in Ω′ \ B = Ω so
that

1 = n(γ1; z) + · · ·+ n(γk; z)

for every z ∈ B. We fix any z0 ∈ B and then for at least one of the closed curves γ1, . . . , γk, say
γj , in Ω we have that n(γj ; z0) ̸= 0. Therefore Ω is not homologically simply connected and we
arrived at a contradiction.
(ii) Assume that Ω is homotopically simply connected and let γ be any closed curve in Ω and
z ∈ Ωc. Then there is a homotopy with closed intermediate curves in Ω and hence in C \ {z} from
γ to a constant curve γ1 in Ω. Proposition 6.17 implies that n(γ; z) = n(γ1; z) = 0. Thus, Ω is
homologically simply connected.

Later on, at the end of this section, we shall prove that topological and homological simple con-
nectedness imply homotopical simple connectedness and thus all senses of simple connectedness
are equivalent.

The theorem of Cauchy in simply connected regions. If f is holomorphic in the region Ω ⊆ C
which is simply connected in any of the three senses, then for every cycle Σ in Ω which consists of
closed piecewise smooth curves we have∮

Σ f(z) dz = 0.

Proof. Immediate from the theorem of Cauchy in general open sets and proposition 7.3.
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In the same manner we have versions of Cauchy’s formulas for derivatives of any order, of
the residue theorem, of the argument principle and of the theorem of Rouché for regions Ω which
are simply connected in any of the three senses. In all these cases we do not have to assume that
the cycles Σ in Ω are null-homologous in Ω: every cycle in a simply connected Ω is automatically
null-homologous in Ω. In this respect it might be desirable to recall the algebraic facts mentioned
at the beginning of section 6.4. If the region Ω is simply connected in any of the three senses, then
the Z-module C(Ω) of all cycles in Ω is identical to its Z-submodule C0(Ω) of all cycles which are
null-homologous in Ω. Therefore the quotient Z-moduleH(Ω) is trivial:

H(Ω) = C(Ω)
/
C0(Ω) = {[O]},

where O is the zero cycle in Ω. I.e. H(Ω) consists only of its zero element.

Proposition 7.4. Let the region Ω ⊆ C be simply connected in any of the three senses. Then
(i) every f holomorphic in Ω has a primitive in Ω.
(ii) for every g : Ω → C \ {0} there is a holomorphic branch of log g in Ω.

Proof. (i) An application of proposition 4.10 and the theorem of Cauchy in simply connected
regions.
(ii) An application of theorem 4.1 and the theorem of Cauchy in simply connected regions.

Proposition 7.5. Let the regions Ω1,Ω2 ⊆ C be conformally equivalent.
(i) If Ω1 is topologically or homologically simply connected, then Ω2 is also topologically or ho-
mologically simply connected.
(ii) If Ω1 is homotopically simply connected, then Ω2 is also homotopically simply connected.

Proof. Let f : Ω1 → Ω2 be holomorphic and one-to-one from Ω1 onto Ω2.
(i) Consider any closed piecewise smooth curve γ in Ω2 and any w0 ∈ Ωc2. Consider also the
closed piecewise smooth curve f−1(γ) in Ω1. Then, after a simple change of variables, we have

n(γ;w0) =
1

2πi

∮
γ

1
w−w0

dw = 1
2πi

∮
f−1(γ)

f ′(z)
f(z)−w0

dz = 0

by the theorem of Cauchy in the topologically or homologically simply connected region Ω.
Therefore, Ω2 is homologically (and hence also topologically) simply connected.
(ii) Let γ : [a, b] → Ω2 be any closed curve in Ω2. Then f−1(γ) : [a, b] → Ω1 is a closed curve
in Ω1. Since Ω1 is homotopically simply connected, there is a homotopy F : [a, b]× [0, 1] → Ω1

with closed intermediate curves so that

F (t, 0) = f−1(γ)(t) = f−1(γ(t)), F (t, 1) = z0

for every t ∈ [a, b]. Then f ◦ F : [a, b] × [0, 1] → Ω2 is a homotopy with closed intermediate
curves so that

(f ◦ F )(t, 0) = γ(t), (f ◦ F )(t, 1) = f(z0)

for every t ∈ [a, b]. Therefore, γ is homotopic with closed intermediate curves to a constant curve
in Ω2.

The theorem of Riemann. Let Ω ⫋ C be a region which is simply connected in any of the three
senses, z0 ∈ Ω and θ0 ∈ (−π, π]. Then there is a unique conformal mapping f of Ω onto D with

f(z0) = 0, Arg f ′(z0) = θ0.

Proof. Step 1. We take any a ∈ Ωc. Since the function z − a is holomorphic in Ω and has no
root in Ω, proposition 7.4 implies that there is a holomorphic branch g of log(z − a) in Ω. I.e.
g : Ω → C is holomorphic in Ω and

eg(z) = z − a
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for every z ∈ Ω.
Now, g is one-to-one in Ω. Indeed, if g(z1) = g(z2), then eg(z1) = eg(z2) and hence z1 = z2.
We consider w′

0 = g(z0)+2πi and then we have w′
0 /∈ g(Ω). Indeed, if w′

0 ∈ g(Ω), then there are
zn ∈ Ω so that g(zn) → w′

0. Hence zn − a = eg(zn) → ew
′
0 = eg(z0) = z0 − a and thus zn → z0.

But then g(zn) → g(z0) which implies w′
0 = g(z0) and we arrive at a contradiction.

Since w′
0 /∈ g(Ω), there is r0 > 0 so that |g(z)− w′

0| > r0 for every z ∈ Ω.
We consider the function χ : Ω → D given by

χ(z) = r0
g(z)−w′

0

for every z ∈ Ω. Then χ is holomorphic and one-to-one in Ω. In particular, χ′(z0) ̸= 0.
Now we consider the Möbius transformation R : D → D given by

R(w) = |χ′(z0)|
χ′(z0)

eiθ0 w−χ(z0)
1−χ(z0)w

for every w ∈ D. (Look again at example 7.1.1 and at proposition 7.2 for the properties of Möbius
transformations. They appear many times in this proof.) Then the function

h = R ◦ χ : Ω → D

is holomorphic and one-to-one in Ω and satisfies h(z0) = R(χ(z0)) = 0 and

h′(z0) = R′(χ(z0))χ
′(z0) =

|χ′(z0)|eiθ0
1−|χ(z0)|2

and hence Argh′(z0) = θ0.
Step 2. We consider the set

F = {h |h : Ω → D, h is holomorphic and one-to-one in Ω, h(z0) = 0,Argh′(z0) = θ0}.

The result of step 1 implies that F is a non-empty subset of H(Ω). We also define

α = suph∈F |h′(z0)|.

Since, h′(z0) ̸= 0 for every h ∈ F , we have that α > 0 (but α = +∞ is not excluded a priori).
There is a sequence (hn) in F so that |h′n(z0)| → α. For every h ∈ F we have that |h(z)| < 1
for every z ∈ Ω and hence F is obviously locally bounded in Ω. Montel’s theorem implies that
there is a subsequence (hnk

) such that hnk
→ f uniformly in every compact subset of Ω for

some f holomorphic in Ω. Obviously, we have 0 = hnk
(z0) → f(z0) and so f(z0) = 0. The

theorem of Weierstrass implies that h′nk
→ f ′ uniformly in every compact subset of Ω. Hence,

h′nk
(z0) → f ′(z0) and thus |f ′(z0)| = α (henceα < +∞) and Arg f ′(z0) = θ0. Since f ′(z0) ̸= 0,

we have that f is not constant in Ω. Now, for every z ∈ Ω we have |hnk
(z)| < 1 for every nk and

hence |f(z)| ≤ 1. If |f(z)| = 1 for some z ∈ Ω, the maximum principle implies that f is constant
in Ω and we just saw that this is wrong. Therefore, f : Ω → D. Next, we take any z1, z2 ∈ Ω with
z1 ̸= z2. Since hnk

(z2) → f(z2), we get that hnk
− hnk

(z2) → f − f(z2) uniformly in every
compact subset of Ω and hence in every compact subset of Ω \ {z2}. Each hnk

is one-to-one in Ω
and so hnk

−hnk
(z2) has no root in Ω \ {z2}. Since f − f(z2) is not identically 0 in Ω \ {z2}, the

theorem of Hurwitz implies that f − f(z0) has no root in Ω \ {z2}. Thus f(z1)− f(z2) ̸= 0 and
we conclude that f is one-to-one in Ω.
We proved that there is f ∈ F with |f ′(z0)| = α.
Step 3. Assume that there is some b ∈ D \ f(Ω).
We consider the Möbius transformation T : D → D given by

T (w) = w−b
1−bw
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for every w ∈ D, and then the function

ϕ = T ◦ f : Ω → D.

Then ϕ is holomorphic and one-to-one in Ω. Since f(z) ̸= b for every z ∈ Ω, we have that
ϕ(z) ̸= 0 for every z ∈ Ω. ButΩ is simply connected in any of the three senses, and so proposition
7.4 implies that there is a holomorphic branch of logϕ and hence a holomorphic branch ψ of ϕ1/2
in Ω. I.e. there is ψ : Ω → D which is holomorphic in Ω and satisfies

ψ(z)2 = ϕ(z)

for every z ∈ Ω. It is easy to see that ψ is one-to-one in Ω, because ϕ is one-to-one in Ω.
Now we consider the Möbius transformation S : D → D given by

S(w) = |ψ′(z0)|
ψ′(z0)

eiθ0 w−ψ(z0)
1−ψ(z0)w

for every w ∈ D

and then the function
h = S ◦ ψ : Ω → D.

Then h is holomorphic and one-to-one in Ω. We also see easily that h(z0) = S(ψ(z0)) = 0 and

h′(z0) = S′(ψ(z0))ψ
′(z0) =

|ψ′(z0)|eiθ0
1−|ψ(z0)|2

and hence Argh′(z0) = θ0. Thus, h ∈ F .
Now we have altogether that f, ϕ, ψ, h : Ω → D, that T, S : D → D and that

ϕ = T ◦ f, h = S ◦ ψ, ϕ = F ◦ ψ,

where F : D → D is given by F (w) = w2 for every w. All these functions, except F , are
one-to-one. We consider now the holomorphic function Φ : D → D, given by

Φ = T−1 ◦ F ◦ S−1,

and then we have
f = Φ ◦ h.

Now, Φ(0) = (T−1 ◦ F ◦ S−1)(0) = (T−1 ◦ F )(ψ(z0)) = T−1(ϕ(z0)) = f(z0) = 0 and

|f ′(z0)| = |Φ′(h(z0))||h′(z0)| = |Φ′(0)||h′(z0)|. (7.1)

Then the Schwartz lemma implies that |Φ′(0)| ≤ 1.
If |Φ′(0)| = 1, then there is c with |c| = 1 so that Φ(z) = cz for every z ∈ D. This implies that
F (w) = T (cS(w)) for every w ∈ D. This is wrong because the right side is one-to-one in D. We
conclude that |Φ′(0)| < 1 and (7.1) implies that

|h′(z0)| > |f ′(z0)| = α.

This contradicts the definition of α and the fact that h ∈ F . Therefore, there is no b ∈ D \ f(Ω)
and hence f is onto D.
We proved the existence of a function f : Ω → D which is conformal from Ω onto D and which
satisfies f(z0) = 0 and Arg f ′(z0) = θ0.
Step 4. To prove the uniqueness of f , we repeat the argument in the proof of proposition 7.2.
Let f1, f2 : Ω → D be conformal from Ω onto D with f1(z0) = f2(z0) = 0 and Arg f ′1(z0) =
Arg f ′2(z0) = θ0.
Then the function f = f2 ◦ f−1

1 : D → D is holomorphic in D and satisfies f(0) = 0 and
f ′(0) =

f ′2(z0)
f ′1(z0)

> 0. By the Schwarz lemma we get |f ′(0)| ≤ 1.
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The function g = f1 ◦ f−1
2 : D → D is also holomorphic in D and satisfies g(0) = 0 and

g′(0) =
f ′1(z0)
f ′2(z0)

> 0. Again, by the Schwarz lemma we get |g′(0)| ≤ 1.
But the functions f and g are mutually inverse and hence g′(0) = 1

f ′(0) . Therefore, |f ′(0)| =
|g′(0)| = 1 and the Schwarz lemma implies that there is some c with |c| = 1 so that f(w) = cw
for every w ∈ D. Now, c = f ′(0) > 0 implies c = 1. Hence, f(w) = w for every w ∈ D and
finally f2(z) = f1(z) for every z ∈ D.

Proposition 7.6. Let Ω ⊆ C be a region. If Ω is topologically or homologically simply connected,
then it is also homotopically simply connected.

Proof. If Ω = C, then Ω is obviously homotopically simply connected. If Ω ⫋ C, then, by
the theorem of Riemann, Ω is conformally equivalent to D. Since D is homotopically simply
connected, proposition 7.5 implies that Ω is also homotopically simply connected.

We just proved that all three senses of simple connectedness are equivalent. From now on, we
shall use the term simply connected for a region without having to distinguish between the three
senses.

Proposition 7.7. Every simply connected region Ω ⫋ C is conformally equivalent with D. The
simply connected region C is conformally equivalent only with itself.

Proof. The first part is a simple application of the theorem of Riemann.
If C is conformally equivalent with some simply connected region Ω ⫋ C, then, by the first part,
C is conformally equivalent with D. Thus, there is a holomorphic f : C → D which is one-to-one
in C. But Liouville’s theorem implies that f is constant and we arrive at a contradiction.

Exercises.

7.2.1.We know that there is no holomorphic f : C → D which is one-to-one in C. Find some
f : C → D which is one-to-one and onto so that f and f−1 are both continuous.

7.2.2. Are the regionsD0(1, 3)\ [1, 3] andC\
(
(−∞,−2]∪ [−1

2 ,
1
2 ]∪ [2,+∞)

)
simply connected?

Which are the possible values of
∮
γ(z +

1
z ) dz, where γ is a closed piecewise smooth curve (i) in

the first set? (ii) in the second set?

7.2.3. Let f be holomorphic in the simply connected region Ω except for isolated singularities in
Ω. Prove that (i) and (ii) are equivalent:
(i) e

∮
γ f(z) dz = 1 for every closed piecewise smooth curve γ in Ω whose trajectory contains no

isolated singularity of f .
(ii) Res(f ; z) ∈ Z for every isolated singularity z of f in Ω.
If f satisfies (i), (ii) and it is holomorphic at z0 ∈ Ω, define F (z) = e

∫
γ f(ζ) dζ for every z ∈ Ω,

where γ is any piecewise smooth curve inΩ from z0 to z and whose trajectory contains no isolated
singularity of f .
Prove that F is well-defined and holomorphic in Ω except for the isolated singularities of f .
Prove that every point in Ω is either a point of holomorphy or a pole of F if and only if all isolated
singularities of f in Ω are simple poles of f .

7.2.4. Let H+ = {z | Im z > 0}, z0 ∈ H+, θ0 ∈ (−π, π]. Find the unique conformal mapping f
of H+ onto D with f(z0) = 0 and Arg f ′(z0) = θ0.

7.2.5. Find a conformal mapping of {z | Re z > 0, Im z > 0} onto D.

7.2.6. (i) Find a conformal mapping between two angular regions.
(ii) Find a conformal mapping between an angular region and an open zone.
(iii) Find a conformal mapping between an angular region and the intersection of two open discs
or the intersection of an open disc and an open halfplane.
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7.2.7. (i) Find a conformal mapping f of Ĉ \ [−1, 1] onto D, with f(∞) = 0.
(ii) Let 0 < a < π and τ be the arc of T with endpoints e−ia and eia. Find a conformal mapping
f of Ĉ \ τ onto D, with f(∞) = 0.

7.2.8. Find a conformal mapping of [−1, 1]× [−1, 1] onto D0(1).

7.2.9. Prove that there is no conformal mapping of D onto D \ {0}.

7.2.10. Let H+ = {z | Im z > 0} and let f : H+ → H+ be holomorphic in H+. Prove that:
(i)

∣∣f(z1)−f(z2)
f(z1)−f(z2)

∣∣ ≤ ∣∣ z1−z2
z1−z2

∣∣ for every z1, z2 ∈ H+.

(ii) |f ′(z)|
Im f(z) ≤

1
Im z for every z ∈ H+.

Prove that, if equality holds in (i) for at least one pair of z1, z2 ∈ H+ with z1 ̸= z2 or in (ii) for
at least one z ∈ H+, then there is z0 ∈ H+ and λ with |λ| = 1 so that f(z)−if(z)+i = λ z−z0

z−z0 for every
z ∈ H+ and then equalities in (i) and (ii) hold identically.

7.2.11. Let H+ = {z | Im z > 0} and let f : H+ → D be holomorphic in H+ with f(i) = 0.
Prove that |f(z)| ≤ | i−zi+z | for every z ∈ H+ and |f ′(i)| ≤ 1

2 .

7.2.12. Let Ω ⊆ C be a simply connected region, z0 ∈ Ω and f, g be conformal mappings of Ω
onto D with f(z0) = g(z0) for some z0 ∈ Ω. Find a relation between f, g.

7.2.13. Let Ω1,Ω2 ⊆ C be two regions and f be a conformal mapping of Ω1 onto Ω2. If (zn) is in
Ω1 and zn → z ∈ ∂Ω1, prove that every limit point of (f(zn)) belongs to ∂Ω2. Is it necessary for
(f(zn)) to converge?

7.2.14. (i) Let f, g : D → Ω be holomorphic in D so that f is one-to-one in D and onto Ω. If
f(0) = g(0), prove that g(D0(r)) ⊆ f(D0(r)) for every r with 0 < r < 1.
(ii) LetΩ = {w = u+iv | −1 < u < 1}. Find the conformalmapping f ofD ontoΩwith f(0) = 0

and f ′(0) > 0. If g : D → Ω is holomorphic in D with g(0) = 0, prove that |g(z)| ≤ 2
π ln

1+|z|
1−|z|

for every z ∈ D.

7.2.15. Let Ω ⫋ C be a simply connected region, z0 ∈ Ω and let F be the collection of all holo-
morphic f : Ω → D with f(z0) = 0 and which are one-to-one in Ω. We fix a ∈ Ω, a ̸= z0 and we
definem = supf∈F |f(a)|. Prove that there is f0 ∈ F so that |f0(a)| = m and that such a f0 is a
conformal mapping of Ω onto D.

7.2.16. Let Ω ⫋ C be a simply connected region so that z ∈ Ω for every z ∈ Ω. Let z0 ∈
Ω ∩ R and let f be the conformal mapping of Ω onto D with f(z0) = 0 and f ′(z0) > 0. Let
Ω+ = {z ∈ Ω | Im z > 0}, Ω− = {z ∈ Ω | Im z < 0}, D+ = {z ∈ D | Im z > 0} and
D− = {z ∈ D | Im z < 0}. Prove that f(Ω+) = D+, f(Ω−) = D− and f(Ω ∩ R) = (−1, 1).

7.3 Multiply connected regions.

The region Ω ⊆ C is calledm-tuply connected if Ĉ \Ω has exactlym connected components.
If the region Ω ⊆ C is m-tuply connected and A1, . . . , Am are the connected components of

Ĉ \ Ω, then one of these components, say Am, contains ∞. Since A1, . . . , Am are closed subsets
of Ĉ \Ω (with respect to the chordal metric), they are compact. Thus, A1, . . . , Am−1 are compact
subsets of C (either with respect to the chordal metric or with respect to the euclidean metric).

Example 7.3.1. Let the closed discs Dz1(r1), . . . , Dzm−1(rm−1) be disjoint and contained in the
open disc Dz0(R0). Then the region Dz0(R0) \

(
Dz1(r1) ∪ · · · ∪ Dzm−1(rm−1)

)
is m-tuply

connected. Some (or all) of the inner discs may reduce to single points.

Example 7.3.2. The regionC\{z0} is doubly connected. The regionC\[a, b] is doubly connected.
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Proposition 7.8. Let m ≥ 2 and Ω ⊆ C be an m-tuply connected region and let A1, . . . , Am−1

be the connected components of Ĉ \ Ω which do not contain ∞. Then:
(i) There are cyclesΣ1, . . . ,Σm−1 inΩ so that for every k = 1, . . . ,m−1 we have: n(Σk, z) = 1
for every z ∈ Ak and n(Σk; z) = 0 for every z ∈ Ωc \Ak.
(ii) Let Σ1, . . . ,Σm−1 be any cycles in Ω as in (i) and take any zk ∈ Ak for k = 1, . . . ,m − 1.
Then for every f holomorphic in Ω and every cycle Σ in Ω we have∮

Σ f(z) dz = n(Σ; z1)
∮
Σ1
f(z) dz + · · ·+ n(Σ; zm−1)

∮
Σm−1

f(z) dz. (7.2)

Proof. (i) We take any of the connected components A1, . . . , Am−1, say Ak, and the set Ω′ =
Ω ∪ Ak. Then Ω′ ⊆ C and Ĉ \ Ω′ = A1 ∪ · · · ∪ Ak−1 ∪ Ak+1 ∪ · · ·Am is a closed subset of
Ĉ (with respect to the chordal metric) and hence Ω′ is an open subset of C (either with respect
to the chordal metric or with respect to the euclidean metric). Now we apply proposition 6.18 to
the open set Ω′, to the compact Ak ⊆ Ω′ and to the constant function f(z) = 1, and we get a
cycle Σk in Ω′ \ Ak = Ω such that n(Σk; z) = 1 for every z ∈ Ak and n(Σk; z) = 0 for every
z ∈ (Ω′)c = Ωc \Ak.
(ii) We concider any cycle Σ in Ω and the integers

pk = n(Σ; zk), k = 1, . . . ,m− 1.

Now we define the cycle Σ′ = p1Σ1 + · · ·+ pm−1Σm−1 and we get

n(Σ; z) = n(Σ′; z)

for every z ∈ Ωc. Indeed, if z ∈ Ak for any k = 1, . . . ,m− 1 then

n(Σ′; z) = p1n(Σ1; z) + · · ·+ pm−1n(Σm−1; z) = pk = n(Σ; zk) = n(Σ; z)

since z, zk belong to the connected set Ak which is in the complement of all the trajectories of the
closed curves forming Σ in Ω. Also, if z ∈ Am then

n(Σ′; z) = p1n(Σ1; z) + · · ·+ pm−1n(Σm−1; z) = 0 = n(Σ; z).

Thus, n(Σ − Σ′; z) = 0 for every z ∈ Ωc, i.e. Σ − Σ′ is null-homologous in Ω. So, if f is
holomorphic in Ω then

∮
Σ−Σ′ f(z) dz = 0 and hence∮

Σ f(z) dz =
∮
Σ′ f(z) dz = p1

∮
Σ1
f(z) dz + · · ·+ pm−1

∮
Σm−1

f(z) dz

and this is (7.2).

In the course of the proof of proposition 7.8 we saw that for every cycle Σ in Ω there are
integers p1, . . . , pm−1 so that Σ− (p1Σ1 + · · ·+ pm−1Σm−1) is null-homologous in Ω, i.e. Σ−
(p1Σ1 + · · ·+ pm−1Σm−1) ∈ C0(Ω). This says that in H(Ω) = C(Ω)/C0(Ω) we have

[Σ] = [p1Σ1 + · · ·+ pm−1Σm−1] = p1[Σ1] + · · ·+ pm−1[Σm−1].

In other words, the elements [Σ1], . . . , [Σm−1] ofH(Ω) produce the Z-moduleH(Ω). On the other
hand, if for some integers p1, . . . , pm−1 we have

p1[Σ1] + · · ·+ pm−1[Σm−1] = [O],

the zero element ofH(Ω), then [p1Σ1+· · ·+pm−1Σm−1] = [O] and hence p1Σ1+· · ·+pm−1Σm−1

is null-homologous in Ω. This implies that

p1n(Σ1; z) + · · ·+ pm−1n(Σm−1; z) = 0
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for every z ∈ Ωc. If z ∈ Ak for any k = 1, . . . ,m − 1, then n(Σj ; z) = 0 for j ̸= k and
n(Σk; z) = 1. Therefore, the last formula reduces to pk = 0. This means that the elements
[Σ1], . . . , [Σm−1] of H(Ω) are linearly independent and we conclude that they form a basis of
H(Ω). Hence

dimH(Ω) = m− 1.

We say that the elements [Σ1], . . . , [Σm−1] form a homology basis ofH(Ω) and that the cycles
Σ1, . . . ,Σm−1 form a homology basis in Ω.

The above complement the case of a simply connected region Ω, where m = 1 and H(Ω) =
{[O]} and hence dimH(Ω) = 0.

Exercises.

7.3.1. Let Ω ⊆ C be anm-tuply connected region and let A1, . . . , Am−1 be the connected compo-
nents of Ĉ \ Ω which do not contain ∞. We take any zk ∈ Ak for k = 1, . . . ,m − 1. Prove that
for every f holomorphic in Ω which has no roots in Ω there are n1, . . . , nm−1 ∈ N0 so that there
is a holomorphic branch in Ω of log g, where g(z) = f(z)

(z−z1)n1 ···(z−zm−1)
nm−1 for every z ∈ Ω.

7.3.2. Let γ be a closed curve. Prove that every bounded connected component ofC\γ∗ is a simply
connected region and that the unbounded connected component of C \ γ∗ is a doubly connected
region.

7.3.3. Let Ω ⊆ C be a simply connected region and z1, . . . , zm−1 ∈ Ω. Prove that the region
Ω \ {z1, . . . , zm−1} ism-tuply connected and find a homology basis of cycles in this region.

7.3.4. Let Ω ⊆ C be a doubly connected region and let A1, A2 be the connected components of
Ĉ \ Ω. If f is holomorphic in Ω, prove that there are f1, f2 so that f = f1 + f2 in Ω, and f1 is
holomorphic in Ω ∪A1 and f2 is holomorphic in Ω ∪A2.
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Chapter 8

Isolated singularities and roots.

8.1 Isolated singularities in the complex plane.

Let us generalize slightly the argument at the end of section 5.8. We consider a function f in
C with a finite number of isolated singularities z1, . . . , zn and holomorphic in the rest of C. The
singular part of f at zj has the form

sj(z) =
∑k=−1

−∞ aj,k(z − zj)
k =

∑+∞
k=1

aj,−k

(z−zj)k

and converges in Ĉ \ {zj}. We consider the function

h(z) = f(z)− (s1(z) + · · ·+ sn(z)).

Then h is holomorphic in the set C \ {z1, . . . , zn} and its only possible singularities are the points
z1, . . . , zn. We observe that every zj is a removable singularity of f(z)− sj(z) and that all terms
s1(z), . . . , sn(z), besides sj(z), are holomorphic at zj . Therefore, every zj is a removable singu-
larity of the function h. So the function h has no isolated singularities and hence it is holomorphic
in C. Now, we have the identity

f(z) = s1(z) + · · ·+ sn(z) + h(z),

which gives the general form of a holomorphic function in C with the exception of finitely many
isolated singularities.

We shall generalize this to the case of a holomorphic function f in C with the exception of
infinitely many isolated singularities. In this case, i.e. if the terms of the sequence (zn) are the
distinct isolated singularities of f in C, it is necessary that zn → ∞. In the opposite case there
would be a subsequence of (zn) converging to some z ∈ C and then this z would be a non-isolated
singularity of f .

We may obviously try to form the infinite sum
∑+∞

n=1 sn(z), but this is doomed to failure in
the general case since there is no guarantee that this series converges. The next theorem shows that
we may subtract a suitable “correction term” from each sn(z) so as to make the series convergent.

The theorem of Mittag-Leffler. Let the terms of the sequence (zn) be distinct with zn → ∞. For
each zn we consider a power series of the form sn(z) =

∑k=−1
−∞ an,k(z − zn)

k, which converges
in Ĉ \ {zn}.
(i) Then there are polynomials qn so that the series of functions∑+∞

n=1(sn − qn)

has the property: for every compact set K there is n0 so that
∑+∞

n=n0+1(sn − qn) converges
uniformly inK.
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(ii) If the polynomials qn satisfy (i), then the function F =
∑+∞

n=1(sn − qn) is holomorphic in C,
with the exception of the terms of (zn), and its singular part at each zn is sn. Moreover, the most
general holomorphic function in C, with the exception of the terms of (zn), and whose singular
part at each zn is sn, is of the form

f = F + h =
∑+∞

n=1(sn − qn) + h,

where h is an arbitrary function holomorphic in C. We also have that

f ′ =
∑+∞

n=1(s
′
n − q′n) + h′.

Proof. (i) If zn = 0, we just take qn = 0. If zn ̸= 0, then the function sn is holomorphic in the
discD0(|zn|) and so its Taylor series at 0 converges to it uniformly in the smaller discD0(|zn|/2).
Hence there is a partial sum qn of this Taylor series, i.e. a polynomial, so that

∥sn − qn∥D0(|zn|/2) ≤
1
2n .

Now let K be any compact set. Since K is bounded, there is R > 0 so that K ⊆ D0(R). Since
zn → ∞, there is n0 so that |zn| ≥ 2R and henceK ⊆ D0(|zn|/2) for every n ≥ n0 + 1. Thus

∥sn − qn∥K ≤ ∥sn − qn∥D0(|zn|/2) ≤
1
2n

for every n ≥ n0+1. The test of Weierstrass implies that
∑+∞

n=n0+1(sn−qn) converges uniformly
inK.
(ii) We assume that the polynomials qn satisfy (i) and we take any z ∈ C. Since {z} is compact,
there is n0 so that

∑+∞
n=n0+1(sn(z)− qn(z)) converges. So if z is not equal to any of z1, . . . , zn0 ,

then the sum
∑+∞

n=1(sn(z)− qn(z)) is finite and we define the function F : C\{zn |n ∈ N} → C
by

F =
∑+∞

n=1(sn − qn).

If z is not equal to any of the terms of (zn), then, because of zn → ∞, there is a closed discDz(r)
which contains no term of (zn). Then there is n0 so that

∑+∞
n=n0+1(sn − qn) converges uniformly

inDz(r) and so it defines a function holomorphic inDz(r). But the finite sum
∑n0

n=1(sn− qn) is
also holomorphic inDz(r) and hence F is holomorphic inDz(r). Moreover, by the uniform con-
vergence of

∑+∞
n=n0+1(sn−qn) inDz(r), we have that the series of the derivatives also converges

uniformly in Dz(r) and hence

F ′(z) =
∑+∞

n=1(s
′
n(z)− q′n(z)).

This equality holds at every z which is not equal to any of the terms of {zn}.
If z = zk for some k, then there is a closed disc Dzk(r) which contains only the term zk of (zn).
Then there is n0 so that

∑+∞
n=n0+1(pn − qn) converges uniformly in Dzk(r) and so it defines a

function holomorphic inDzk(r). But the finite sum
∑n0

n=1(sn−qn) is holomorphic inDzk(r)\{zk}
with singular part sk at zk. So F has the singular part sk at zk.
We conclude thatF is holomorphic inCwith the exception of the terms of (zn) and that its singular
part at each zn is sn.
Now let us consider an arbitrary holomorphic function f in C with the exception of the terms of
(zn) and whose singular part at each zn is sn. Then the function h = f − F is holomorphic in C
and hence f = F + h.

The theorem of Mittag-Leffler describes the most general holomorphic function in C with the
exception of preassigned isolated singularities and corresponding preassigned singular parts. In
fact, the actual theorem of Mittag-Leffler is restricted to the case of meromorphic functions, i.e. to
the case that all isolated singularities are poles.
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Example 8.1.1.We consider the function 1
sin(πz) , which is meromorphic in C. Its poles are the

integers n ∈ Z. Since sin(πz) = πz − π3z3

3! + · · · is the Taylor series of sin(πz) at 0 we have, for
each n ∈ Z, that

sin(πz) = (−1)n sin(πz − nπ) = (−1)nπ(z − n)− (−1)nπ3(z−n)3
3! + · · · = (z − n)g(z)

where g is holomorphic in C with g(n) = (−1)nπ. So the function h = 1
g is holomorphic at n

with h(n) = (−1)n

π and

1
sin(πz) =

h(z)
z−n = (−1)n

π(z−n) + h′(n) + h′′(n)
2! (z − n) + · · ·

in a neighborhood of n. This says that n is a pole of order 1 of 1
sin(πz) and the singular part at n is

sn(z) =
(−1)n

π(z−n) .

Now we take n ̸= 0 and we write the Taylor series of (−1)n

π(z−n) at 0:

(−1)n

π(z−n) =
(−1)n+1

nπ
1

1−z/n = (−1)n+1

nπ + (−1)n+1

n2π
z + (−1)n+1

n3π
z2 + · · · .

We consider the polynomial qn to be the constant term of this Taylor series, i.e. qn(z) = (−1)n+1

nπ .
If n = 0, we just take qn = 0.
Now we examine the uniform convergence of the series∑

n∈Z(sn(z)− qn(z)) =
1
πz +

1
π

∑
n∈Z\{0}(−1)n

(
1

z−n + 1
n

)
.

IfK is a compact set, then there is R so thatK ⊆ D0(R). Now, if n0 + 1 ≥ 2R and z ∈ K, then
for every n with |n| ≥ n0 + 1 we have that |z − n| ≥ |n| − |z| ≥ |n| −R ≥ |n|

2 and hence

|(−1)n( 1
z−n + 1

n)| =
|z|

|n||z−n| ≤
2R
n2 .

By the test of Weierstrass,
∑

n∈Z,|n|≥n0+1(−1)n
(

1
z−n + 1

n

)
converges uniformly inK.

Now the theorem of Mittag-Leffler implies that

1
sin(πz) =

1
πz +

1
π

∑
n∈Z\{0}(−1)n

(
1

z−n + 1
n

)
+ h(z), (8.1)

where h is holomorphic in C. We shall determine the function h.
Again, based on the theorem of Mittag-Leffler, we differentiate the last series to get

π cos(πz)
sin2(πz) = 1

πz2
+ 1

π

∑
n∈Z\{0}

(−1)n

(z−n)2 + h′(z) = 1
π

∑
n∈Z

(−1)n

(z−n)2 + h′(z). (8.2)

The function π cos(πz)
sin2(πz) is 2-periodic and it is easy to prove that 1

π

∑
n∈Z

(−1)n

(z−n)2 is also 2-periodic.
Indeed,

1
π

∑
n∈Z

(−1)n

(z+2−n)2 = 1
π

∑
n∈Z

(−1)n

(z−(n−2))2
= 1

π

∑
n∈Z

(−1)n+2

(z−n)2 = 1
π

∑
n∈Z

(−1)n

(z−n)2 .

Therefore, h′ is 2-periodic.
We restrict now our investigation in a period-zone A = {z + iy | − 1 ≤ x ≤ 1}. Again, it is easy
to prove that cos(πz)

sin2(πz) → 0 when z → ∞ in A. Indeed, if z = x+ iy and |x| ≤ 1, then we have

∣∣ cos(πz)
sin2(πz)

∣∣ = sinh2(πy)+cos2(πx)
(sinh2(πy)+sin2(πx))2 ≤ sinh2(πy)+1

sinh4(πy) → 0 (8.3)

when |y| → +∞. The same is true for
∑

n∈Z
(−1)n

(z−n)2 . To see this we take ϵ > 0 and then there is
n0 so that ∑

n∈Z,|n|≥n0+1
1

(|n|−1)2
< ϵ

2 .
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If z ∈ A, i.e. if z = x+ iy and |x| ≤ 1, then |z − n| ≥ |x− n| ≥ |n| − 1 and hence∣∣∑
n∈Z,|n|≥n0+1

(−1)n

(z−n)2
∣∣ ≤ ∑

n∈Z,|n|≥n0+1
1

|z−n|2 ≤
∑

n∈Z,|n|≥n0+1
1

(|n|−1)2
< ϵ

2 . (8.4)

Since 1
(z−nπ)2 → 0 when z → ∞, there is y0 > 0 so that∣∣∑

n∈Z,|n|≤n0

(−1)n

(z−n)2
∣∣ < ϵ

2 (8.5)

when z = x+ iy and |x| ≤ 1, |y| > y0. From (8.4) and (8.5) we get∣∣∑
n∈Z

(−1)n

(z−n)2
∣∣ ≤ ∣∣∑

n∈Z,|n|≤n0

(−1)n

(z−n)2
∣∣+ ∣∣∑

n∈Z,|n|≥n0+1
(−1)n

(z−n)2
∣∣ < ϵ

2 + ϵ
2 = ϵ

when z = x+ iy and |x| ≤ 1, |y| > y0. Therefore∑
n∈Z

(−1)n

(z−n)2 → 0 (8.6)

when z → ∞ in A. From (8.2), (8.3) and (8.6) we conclude that h′(z) → 0 when z → ∞ in A.
This implies that h′ is bounded in the period-zone A and since h′ is 2-periodic we have that h′ is
bounded inC. By the theorem of Liouville, h′ is constant inC. But since h′(z) → 0when z → ∞
in A, we get that h′ = 0 in C. This implies that h is constant in C.
Now we go back to (8.1) and we observe that the terms 1

sin(πz) and
1
πz are odd functions. The same

is true for
∑

n∈Z\{0}(−1)n
(

1
z−n + 1

n

)
. Indeed,∑

n∈Z\{0}(−1)n
(

1
−z−n + 1

n

)
= −

∑
n∈Z\{0}(−1)n

(
1

z+n − 1
n

)
= −

∑
n∈Z\{0}(−1)−n

(
1

z−n + 1
n

)
= −

∑
n∈Z\{0}(−1)n

(
1

z−n + 1
n

)
.

Hence h is an odd constant function and this implies that h = 0 in C. So we end up with the
identity

1
sin(πz) =

1
πz +

1
π

∑
n∈Z\{0}(−1)n

(
1

z−n + 1
n

)
= 1

πz +
2z
π

∑+∞
n=1

(−1)n

z2−n2

from which, by differentiation, we get (8.2) (with h′ = 0), i.e.

cos(πz)
sin2(πz) =

1
π2

∑
n∈Z

(−1)n

(z−n)2 .

In exactly the same manner we can prove the identity

cot(πz) = cos(πz)
sin(πz) = 1

πz +
1
π

∑
n∈Z\{0}

(
1

z−n + 1
n

)
= 1

πz +
2z
π

∑+∞
n=1

1
z2−n2 (8.7)

from which, by differentiation, we get

1
sin2(πz) =

1
π2

∑
n∈Z

1
(z−n)2 .

Exercises.

8.1.1. Using (8.7) and the Laurent series of cot(πz) at 0, find the values of∑+∞
n=1

1
n2 ,

∑+∞
n=1

1
n4 ,

∑+∞
n=1

1
n6 .

8.1.2. Express
∑

n∈Z
1

(z−n)2+a2 in closed form.
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8.2 Infinite products.

Let (zn) be a sequence in C. The expression∏+∞
n=1 zn

is called infinite product of the z1, z2, . . . . We consider three cases.
First case. zn ̸= 0 for every n.
We denote pn = z1 · · · zn the n-th partial product of the z1, z2, . . . . If pn → p for some p ∈ Ĉ,
we write ∏+∞

n=1 zn = p

and we say that p is the product of the z1, z2, . . . . If p ̸= 0 and p ̸= ∞, we say that the infinite
product converges to p. If p = 0 or p = ∞, we say that the infinite product diverges to 0 or to∞,
respectively. If the sequence (pn) does not have a limit, we say that the infinite product diverges.

Example 8.2.1. Let zn = 1 + 1
n for every n. Then

pn = (1 + 1
1) · · · (1 +

1
n) =

2
1

3
2 · · ·

n
n−1

n+1
n = n+ 1.

Hence pn → ∞ and so
∏+∞
n=1(1 +

1
n) = ∞. In this case the infinite product diverges to∞.

Since all pn are real, we may also say that pn → +∞ and that the infinite product diverges to+∞.

Example 8.2.2. Let zn = 1− 1
n+1 for every n. Then

pn = (1− 1
2) · · · (1−

1
n+1) =

1
2

2
3 · · ·

n−1
n

n
n+1 = 1

n+1 .

So pn → 0 and
∏+∞
n=1(1−

1
n+1) = 0. In this case the infinite product diverges to 0.

Example 8.2.3. Let zn = 1− 1
(n+1)2

for every n. Then

pn = (1− 1
22
) · · · (1− 1

(n+1)2
) = 1·3

22
2·4
32

· · · (n−1)(n+1)
n2

n(n+2)
(n+1)2

= 1
2
n+2
n+1 .

Therefore pn → 1
2 and so

∏+∞
n=1(1−

1
(n+1)2

) = 1
2 . In this case the infinite product converges to

1
2 .

Second case. There ism so that zn ̸= 0 for every n ≥ m+ 1 and zn = 0 for at least one n ≤ m.
If the infinite product

∏+∞
n=m+1 zn diverges, we say that the infinite product

∏+∞
n=1 zn diverges.

Now let
∏+∞
n=m+1 zn = p′ for some p′ ∈ Ĉ. If p′ ̸= 0 and p′ ̸= ∞, then

∏+∞
n=m+1 zn converges

to p′, and we say that
∏+∞
n=1 zn converges to p =

(∏m
n=1 zn

)
p′ = 0p′ = 0. If p′ = 0, then∏+∞

n=m+1 zn diverges to 0, and we say that
∏+∞
n=1 zn diverges to p =

(∏m
n=1 zn

)
0 = 00 = 0. If

p′ = ∞, then
∏+∞
n=m+1 zn diverges to ∞, and we say that

∏+∞
n=1 zn diverges.

Third case. There are infinitely many n so that zn = 0.
Then we say that

∏+∞
n=1 zn diverges.

Therefore, in any case, the infinite product
∏+∞
n=1 zn converges if and only if there ism so that

zn ̸= 0 for every n ≥ m + 1 and the partial products zm+1 · · · zn converge (as n → +∞) to
some complex number ̸= 0. Moreover, if

∏+∞
n=1 zn converges, its value is equal to 0 if and only if

zn = 0 for at least one n.

Proposition 8.1. If
∏+∞
n=1 zn converges, then zn → 1.

Proof. There is m so that zn ̸= 0 for every n ≥ m + 1 and
∏+∞
n=m+1 zn = p′ where p′ ̸= 0,∞.

Then zm+1 · · · zn → p′, as n→ +∞, and thus zn = zm+1···zn−1zn
zm+1···zn−1

→ p′

p′ = 1.
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From now on we shall use the symbol∏+∞
n=1(1 + an)

for the infinite product. According to the previous discussion, convergence of the infinite product
implies that an → 0.

There are three simple inequalities which play some role in the study of infinite products. The
first two are:

1 + a1 + · · ·+ an ≤ (1 + a1) · · · (1 + an) ≤ ea1+···+an (8.8)

when 0 ≤ a1, . . . , an. The left inequality is easily proved by induction and the right inequality is
based on the well known 1 + x ≤ ex. The third inequality is:

1− a1 − · · · − an ≤ (1− a1) · · · (1− an) (8.9)

when 0 ≤ a1, . . . , an ≤ 1. This is proved also by induction.

Lemma 8.1. Let an ≥ 0 for every n. Then
∏+∞
n=1(1 + an) converges if and only if

∑+∞
n=1 an

converges.

Proof. We set pn = (1 + a1) · · · (1 + an) for every n. Then the sequence (pn) is increasing and
we have pn ≥ 1 for every n. Then p = limn→+∞ pn exists and 1 ≤ p ≤ +∞. We also denote
s =

∑+∞
n=1 an and we have 0 ≤ s ≤ +∞. Taking the limit in (8.8) we find 1+ s ≤ p ≤ es. Thus,

p < +∞ if and only if s < +∞.

Example 8.2.4.
∏+∞
n=1(1 +

1
n) = +∞, because

∑+∞
n=1

1
n = +∞.∏+∞

n=1(1 +
1
n2 ) converges, because

∑+∞
n=1

1
n2 < +∞.

We say that the infinite product
∏+∞
n=1(1 + an) converges absolutely if the infinite product∏+∞

n=1(1 + |an|) converges or, equivalently, if the series
∑+∞

n=1 |an| converges.

Criterion of absolute convergence. If
∏+∞
n=1(1 + an) converges absolutely, then it converges.

Proof. Since
∑+∞

n=1 |an| < +∞, we have that an → 0 and so at most finitely many an are equal
to −1.
We denote

pn = (1 + a1) · · · (1 + an), Pn = (1 + |a1|) · · · (1 + |an|).

Then, if n < m, we have

|pm − pn| =
∣∣∏m

k=1(1 + ak)−
∏n
k=1(1 + ak)

∣∣
=

∣∣∏n
k=1(1 + ak)

(∏m
k=n+1(1 + ak)− 1

)∣∣
=

∏n
k=1 |1 + ak|

∣∣∏m
k=n+1(1 + ak)− 1

∣∣
≤

∏n
k=1(1 + |ak|)

(∏m
k=n+1(1 + |ak|)− 1

)
=

∏m
k=1(1 + |ak|)−

∏n
k=1(1 + |ak|) = Pm − Pn.

(8.10)

Since
∏+∞
n=1(1 + |an|) converges, we have that (Pn) is a Cauchy sequence. So the last inequality

implies that (pn) is also a Cauchy sequence and hence converges.
Now we have two cases.
Let

∑+∞
n=1 |an| < 1. Then

|pn| =
∏n
k=1 |1 + ak| ≥

∏n
k=1(1− |ak|) ≥ 1−

∑n
k=1 |ak| ≥ 1−

∑+∞
k=1 |ak| > 0,

where for the second inequality we use (8.9). This implies | limn→+∞ pn| ≥ 1−
∑+∞

k=1 |ak| > 0.
Therefore limn→+∞ pn ̸= 0 and hence

∏+∞
n=1(1 + an) converges.

Now let
∑+∞

n=1 |an| ≥ 1. Then there is m so that
∑+∞

n=m+1 |an| < 1 and from the first case we
have that

∏+∞
n=m+1(1 + an) converges. Hence

∏+∞
n=1(1 + an) also converges.
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From now on we consider infinite products of functions.

Proposition 8.2. Let an : A→ C be bounded functions inA and let
∑+∞

n=1 |an| converge uniformly
in A. Then

∏+∞
n=1(1 + an) converges uniformly in A.

Proof. Since
∑+∞

n=1 |an(z)| converges for every z ∈ A, we have that
∏+∞
n=1(1+an(z)) converges

absolutely and so it converges for every z ∈ A. We define p : A→ C by

p(z) =
∏+∞
n=1(1 + an(z))

for every z ∈ A. The uniform convergence of
∑+∞

n=1 |an| in A implies that there is M so that∑+∞
n=1 |an(z)| ≤M for every z ∈ A.

We set

pn(z) =
∏n
k=1(1 + ak(z)), Sn(z) =

∑n
k=1 |ak(z)|, S(z) =

∑+∞
k=1 |ak(z)|.

We apply (8.10) and we get

|pm(z)− pn(z)| ≤
∏n
k=1(1 + |ak(z)|)

(∏m
k=n+1(1 + |ak(z)|)− 1

)
for n < m and z ∈ A. We apply the right side of (8.8) and then we letm→ +∞ to find

|p(z)− pn(z)| ≤ eSn(z)
(
eS(z)−Sn(z) − 1

)
≤ eM

(
eS(z)−Sn(z) − 1

)
= eM

(
e|S(z)−Sn(z)| − 1

)
for every n and z ∈ A. Therefore, ∥p− pn∥A ≤ eM

(
e∥S−Sn∥A − 1

)
for every n. Since Sn → S

uniformly in A, we have that pn → p uniformly in A.

Now we state the analogue of the theorem ofWeierstrass for the uniform convergence of series
of holomorphic functions in compact sets.

Theorem 8.1. Let (an) be a sequence of holomorphic functions in the regionΩ, so that
∑+∞

n=1 |an|
converges uniformly in every compact subset of Ω. Then

∏+∞
n=1(1 + an) converges uniformly in

every compact subset of Ω and it defines a function

p =
∏+∞
n=1(1 + an),

which is holomorphic in Ω. Moreover, p(z) = 0 if and only if an(z) = −1 for at least one n.
Finally, if none of the an is identically −1 in Ω, we have that

p′

p =
∑+∞

n=1
a′n

1+an
(8.11)

at every point inΩwhich is not a root of p. The series in (8.11) has the property: for every compact
K ⊆ Ω there is n0 so that

∑+∞
n=n0+1

a′n
1+an

converges uniformly inK.

Proof. Of course, proposition 8.2 implies that
∏+∞
n=1(1 + an) converges uniformly in every com-

pact subset ofΩ. Every pn =
∏n
k=1(1+ak) is holomorphic inΩ. Since pn → p uniformly in every

compact subset of Ω, the theorem of Weierstrass implies that p is holomorphic in Ω. Moreover,
for every z ∈ Ω we have p(z) =

∏+∞
n=1(1+an(z)) and, since the product converges, we have that

p(z) = 0 if and only if an(z) = −1 for at least one n.
Now, let us assume that none of the an is identically −1 in Ω. Then every root of the function
1 + an is isolated and hence the set of the roots of 1 + an is countable. From the first part of
the theorem we have that the set of the roots of p is also countable and hence p is not identically
0 in Ω. In particular, the roots of p are isolated and if we take any compact K ⊆ Ω then there
are only finitely many roots, say z1, . . . , zm, of p in K. Now, by the convergence of the infinite
product, for each j = 1, . . . ,m, there is nj so that an(zj) ̸= −1 for every n ≥ nj + 1. If we
set n0 = max{n1, . . . , nm}, then we have that an(zj) ̸= −1 for every n ≥ n0 + 1 and for every
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j = 1, . . . ,m. Moreover, since p has no root inK other than z1, . . . , zm, we have that an(z) ̸= −1
for every n ≥ n0 + 1 and for every z ∈ K.
Now we consider the infinite product q =

∏+∞
n=n0+1(1 + an) and the partial products qn =∏n

k=n0+1(1 + ak). Of course, we have that qn → q uniformly in K and also q′n → q′ uni-
formly in K. We also have that q has no root in K and so there is δ > 0 so that |q(z)| ≥ δ for
every z ∈ K. These imply that q

′
n
qn

→ q′

q uniformly in K. On the other hand, it is trivial to show
that

q′n
qn

=
∑n

k=n0+1
a′k

1+ak

and so
q′

q =
∑+∞

n=n0+1
a′n

1+an
(8.12)

uniformly inK. At last, from pn =
∏n0
k=1(1 + ak) qn and from p =

∏n0
k=1(1 + ak) q, we also get

p′n
pn

=
∑n0

k=1
a′k

1+ak
+ q′n

qn
, p′

p =
∑n0

k=1
a′k

1+ak
+ q′

q (8.13)

at every point inK which is not a root of p. From (8.12) and (8.13) we get (8.11) at every z ∈ K
which is not a root of p. SinceK is an arbitrary compact subset ofΩ, we conclude that (8.11) holds
at every point in Ω which is not a root of p.

Exercises.

8.2.1. Recall from the proof of the argument principle, that the roots of p are simple poles of p
′

p .
What are the corresponding residues? Now prove that (8.11) holds also at the roots of p.

8.2.2. Prove theorem 8.1 under the assumption of the uniform convergence of
∏+∞
n=1(1 + an) in

every compact subset of Ω. Do not assume that
∑+∞

n=1 |an| converges uniformly in every compact
subset of Ω.

8.3 Holomorphic functions in the complex plane.

We know that every non-zero polynomial of degree n can be written as

p(z) = c(z − z1)
m1 · · · (z − zk)

mk

where z1, . . . , zk are the distinct roots of p and m1, . . . ,mk are the corresponding multiplicities.
In particular,m1 + · · ·+mk = n.

Let f be a non-zero function holomorphic in the region Ω and let z1, . . . , zk be all the roots of
f in Ω with corresponding multiplicitiesm1, . . . ,mk. We know that we can factorize (z − z1)

m1

from f , i.e. that f(z) = (z − z1)
m1g(z) for every z ∈ Ω, where g is holomorphic in Ω with

g(z1) ̸= 0. Now g has roots z2, . . . , zn with corresponding multiplicitiesm2, . . . ,mn. Similarly,
g(z) = (z− z2)

m2h(z) for every z ∈ Ω, where h is holomorphic in Ω with h(z1) ̸= 0, h(z2) ̸= 0.
Nowh has roots z3, . . . , znwith correspondingmultiplicitiesm3, . . . ,mn. Continuing inductively,
we get that

f(z) = (z − z1)
m1 · · · (z − zk)

mkF (z)

for every z ∈ Ω, where F is holomorphic and has no roots in Ω. If we do not want to show the
multiplicities of the roots except for the (possible) root at 0 we may simply write

f(z) = zm(z − z1) · · · (z − zn)F (z),

where m ≥ 0 is the multiplicity of the root 0 and z1, . . . , zn are the remaining (not necessarily
distinct) non-zero roots of f in Ω.

The question now is to generalize this situation in case f has infinitely many roots 0, z1, z2, . . . .
In this case the corresponding infinite product zm(z − z1)(z − z2) · · · may not converge.
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To prepare for what will follow, we rewrite the last identity in the form

f(z) = zm(1− z
z1
) · · · (1− z

zn
)F (z),

where the new F is the previous F multiplied by the non-zero number (−1)nz1 · · · zn. We also
note that if the region is simply connected, e.g. if Ω = D or Ω = C, then, since F has no roots in
Ω, there is a holomorphic branch g of F in Ω. So the last identity becomes

f(z) = zm(1− z
z1
) · · · (1− z

zn
)eg(z)

for every z ∈ Ω, where g is holomorphic in Ω. This is the most general form of a holomorphic
function in the simply connected regionΩwith finitelymany preassigned roots (and no other roots).

In the following discussion we shall concentrate only in the case Ω = C.

Lemma 8.2. We have |ez − 1| ≤ 8
7 |z| for every z with |z| ≤ 1

4 .

Proof. Since 2k−1 ≤ k! when k ≥ 1, we get

|ez − 1| =
∣∣∑+∞

k=1
zk

k!

∣∣ ≤ ∑+∞
k=1

|z|k
k! = |z|

∑+∞
k=1

|z|k−1

k! ≤ |z|
∑+∞

k=1
|z|k−1

2k−1 = |z|
1− |z|

2

≤ 8
7 |z|

when |z| ≤ 1
8 .

We set

p0(z) = 1− z, pm(z) = (1− z)ez+
z2

2
+···+ zm

m when m ≥ 1.

Lemma 8.3. For everym ≥ 0 we have

|pm(z)− 1| ≤ 3|z|m+1

m+1

when |z| ≤ 1
2 .

Proof. Form = 0 we have |p0(z)− 1| = |z| ≤ 3|z|.
Now letm ≥ 1. If |z| ≤ 1

2 , then by the Taylor series of Log(1− z) in the disc D0(1) we get∣∣Log(1− z) + z + z2

2 + · · ·+ zm

m

∣∣ = ∣∣∑+∞
k=m+1

zk

k

∣∣ ≤ ∑+∞
k=m+1

|z|k
k ≤ |z|m+1

m+1

∑+∞
k=0 |z|k

= |z|m+1

(m+1)(1−|z|) ≤
2|z|m+1

m+1 .

If |z| ≤ 1
2 , then

2|z|m+1

m+1 ≤ 1
(m+1)2m ≤ 1

4 . Thus, lemma 8.2 implies

|pm(z)− 1| = |eLog(1−z)+z+
z2

2
+···+ zm

m − 1| ≤ 8
7

2|z|m+1

m+1 ≤ 3|z|m+1

m+1

for |z| ≤ 1
2 .

The following is a theorem of Weierstrass.

Theorem 8.2. Let (zn) be a sequence of non-zero numbers so that zn → ∞.
(i) Then there are integersmn ≥ 0 so that∑+∞

n=1
1

mn+1

(
R
|zn|

)mn+1
< +∞

for every R > 0.
(ii) If the integersmn satisfy (i) then the function

F (z) =
∏+∞
n=1 pmn

(
z
zn

)
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is holomorphic in C and its only roots are the terms of (zn). The multiplicity of each zk as a
root of F is the same as the number of its appearances as a term of (zn). Moreover, the most
general holomorphic function in C, whose only roots, besides 0, are the terms of (zn) and so that
the multiplicity of each zk as a root of f is the same as the number of its appearances as a term of
(zn), is of the form

f(z) = zmeg(z)
∏+∞
n=1 pmn

(
z
zn

)
= zmeg(z)

∏+∞
n=1

(
1− z

zn

)
e

z
zn

+ 1
2
( z
zn

)2+···+ 1
mn

( z
zn

)mn
,

wherem ≥ 0 and g is an arbitrary function holomorphic in C. We also have that

f ′(z)
f(z) = m

z + g′(z) +
∑+∞

n=1

(
1

z−zn + 1
zn

+ z
z2n

+ · · ·+ zmn−1

zmn
n

)
at every z which is not a root of f .

Proof. (i) We may considermn = n and then, since zn → ∞, for every R > 0 there is n0 so that
|zn| ≥ 2R for every n ≥ n0 + 1. This implies that∑+∞

n=n0+1
1

n+1

(
R
|zn|

)n+1 ≤
∑+∞

n=n0+1
1

(n+1)2n+1 < +∞.

(ii) Let the integersmn satisfy (i). We consider any compact K ⊆ C, and then there is R > 0 so
that K ⊆ D0(R). As in (i), there is n0 so that |zn| ≥ 2R for every n ≥ n0 + 1. Now lemma 8.3
implies that for every z ∈ K we have∣∣pmn

(
z
zn

)
− 1

∣∣ ≤ 3
mn+1

(
R
|zn|

)mn+1
< +∞.

By the test of Weierstrass, the series
∑+∞

n=1 |pmn(
z
zn
) − 1| converges uniformly in K. Since this

is true for an arbitrary compact K ⊆ C, theorem 8.1 implies that the infinite product defines a
function

F (z) =
∏+∞
n=1 pmn

(
z
zn

)
holomorphic inC. The roots of F are the roots of pmn , i.e. the terms of (zn). Also, the multiplicity
of each zk as a root of F is the same as the number of its appearances as a term of (zn). Theorem
8.1 also implies that

F ′(z)
F (z) =

∑+∞
n=1

(
1

z−zn + 1
zn

+ z
z2n

+ · · ·+ zmn−1

zmn
n

)
at every z which is not a root of F .
Now let f be any holomorphic function inC, whose only roots, besides 0, are the terms of (zn) and
so that themultiplicity of each zk as a root of f is the same as the number of its appearances as a term
of (zn). Letm ≥ 0 be the multiplicity of 0 as a root of f . Then the function f(z)

zmF (z) is holomorphic

in C and has no roots. So there is some function g holomorphic in C so that f(z)
zmF (z) = eg(z) for

every z. Finally, from f(z) = zmeg(z)F (z) we easily get that

f ′(z)
f(z) = m

z + g′(z) + F ′(z)
F (z)

and the proof is complete.

The functions pmn(
z
zn
) appearing in the product expansion of f and of F in theorem 8.2 are

called primary factors of Weierstrass.
There is an important special case of theorem 8.2. It is the case when all integersmn ≥ 0 can

be taken to be equal to the same integer h ≥ 0. This means that∑+∞
n=1

1
|zn|h+1 < +∞.
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If this is true for some integer h ≥ 0 and we consider the smallest such h, called genus of the
sequence of roots (zn), then the most general holomorphic function f in C, whose only roots,
besides 0, are the terms of (zn) and so that the multiplicity of each zk as a root of f is the same as
the number of its appearances as a term of (zn), is of the form

f(z) = zmeg(z)
∏+∞
n=1 ph

(
z
zn

)
= zmeg(z)

∏+∞
n=1

(
1− z

zn

)
e

z
zn

+ 1
2
( z
zn

)2+···+ 1
h
( z
zn

)h ,

wherem ≥ 0 and g is an arbitrary function holomorphic in C.

Example 8.3.1. The function sin(πz) is holomorphic in C and its roots are the integers n ∈ Z.
Each root is of multiplicity 1. For the non-zero roots we have that∑

n∈Z\{0}
1
|n| = +∞,

∑
n∈Z\{0}

1
|n|2 < +∞.

Thus, we may use h = 1 in order to apply theorem 8.2 and we get that

sin(πz) = zeg(z)
∏
n∈Z\{0}

(
1− z

n

)
e

z
n

for some g holomorphic in C. We also have that

π cos(πz)
sin(πz) = 1

z + g′(z) +
∑

n∈Z\{0}
(

1
z−n + 1

n

)
.

Now, (8.7) implies that g′(z) = 0 for every z and so g is constant in C. Then eg is a constant, say
c, and then we have that

sin(πz)
z = c

∏
n∈Z\{0}

(
1− z

n

)
e

z
n

for every z. Both sides of this equality are holomorphic in C and setting z = 0 to it we get c = π.
Therefore,

sin(πz) = πz
∏
n∈Z\{0}

(
1− z

n

)
e

z
n = πz

∏+∞
n=1

(
1− z2

n2

)
. (8.14)

This is the formula of Wallis.

8.4 Euler’s gamma function.

Lemma 8.4. The limit
γ = lim

n→+∞

(
1 + 1

2 + · · ·+ 1
n − lnn

)
exists and 0 < γ < 1. The constant γ is the so-called Euler’s constant.

Proof. We have
1

k+1 =
∫ k+1
k

1
k+1 dt <

∫ k+1
k

1
t dt <

∫ k+1
k

1
k dt =

1
k

and hence
1

k+1 < ln k+1
k < 1

k . (8.15)

We observe that
1 + 1

2 + · · ·+ 1
n − ln(n+ 1) =

∑n
k=1

(
1
k − ln k+1

k

)
is the n-th partial sum of the series ∑+∞

k=1

(
1
k − ln k+1

k

)
.

Now (8.15) says that this series has positive terms and that it is dominated by
∑+∞

k=1(
1
k−

1
k+1) = 1.

So the limit γ of the partial sums 1 + 1
2 + · · ·+ 1

n − ln(n+ 1) exists and 0 < γ < 1.
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As in example 8.3.1, we use the sequence zn = −n, n ∈ N, to apply theorem 8.2, and we form
the function

f(z) = zeγz
∏+∞
n=1

(
1 + z

n

)
e−

z
n .

This function is holomorphic in C and has simple roots at the points 0,−1,−2,−3, . . . .

Definition.We define the function

Γ(z) = 1
f(z) = z−1e−γz

∏+∞
n=1

(
1 + z

n

)−1
e

z
n .

This is Euler’s gamma function.

It is clear that the gamma function is meromorphic in C. It has simple poles at the points
0,−1,−2,−3, . . . and it is otherwise holomorphic in C. It is also clear that the gamma function
has no roots in C and that Γ(1) = 1.

If we restrict the gamma function in C \ (−∞, 0], then we have a holomorphic function which
does not vanish in a simply connected region, and so there is a holomorphic branch of the logarithm
of the gamma function in this region. We shall denote

logΓ

this branch of the logarithm and we may uniquely determine it by setting logΓ(1) = Log 1 = 0.
Now, it is clear from the defining formula of the gamma function that Γ(x) > 0 for every x > 0.
And then it is obvious, by the uniqueness of branches of logarithms in connected sets, that

logΓ(x) = ln(Γ(x))

for all x ∈ (0,+∞).

Proposition 8.3.
Γ(z) = lim

n→+∞
nzn!

z(z+1)···(z+n) .

This is the formula of Gauss for the gamma function.

Proof. By the definition of Γ(z) we have

Γ(z) = lim
n→+∞

z−1e−
(∑n

k=1
1
k
−lnn

)
z∏n

k=1

(
1 + z

k

)−1
e
∑n

k=1
z
k = lim

n→+∞
nzn!

z(z+1)···(z+n) .

Proposition 8.4. The gamma function satisfies the functional equation

Γ(z + 1) = zΓ(z).

Proof. By the formula of Gauss,

Γ(z + 1) = lim
n→+∞

nz+1n!
(z+1)(z+2)···(z+1+n) = z lim

n→+∞
nzn!

z(z+1)···(z+n)
n

z+1+n = zΓ(z).

Proposition 8.5.
Γ(n) = (n− 1)!

for every integer n ∈ N.

Proof. Since Γ(1) = 1, the result is implied by the functional equation and a trivial induction.
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Proposition 8.6.
Γ(z)Γ(1− z) = π

sin(πz) .

Proof. We use the functional equation to write

Γ(z)Γ(1− z) = Γ(z)(−z)Γ(−z)

= z−1e−γz
∏+∞
n=1

(
1 + z

n

)−1
e

z
n (−z)(−z)−1eγz

∏+∞
n=1

(
1− z

n

)−1
e−

z
n

= z−1
∏
n∈Z\{0}

(
1− z

n

)−1
e−

z
n = π

sin(πz) .

For the last equality we used the formula (8.14) of Wallis.

Now substituting z = 1
2 in the last equality we get

Γ
(
1
2

)
=

√
π.

Proposition 8.7.
Γ(z)Γ(z + 1

2) =
√
π 21−2zΓ(2z).

This is the duplication formula.

Proof. By the formula of Gauss,

Γ(z)Γ
(
z + 1

2

)
= lim

n→+∞
nzn!

z(z+1)···(z+n)
nz+1

2 n!
(z+ 1

2
)(z+ 1

2
+1)···(z+ 1

2
+n)

= lim
n→+∞

(2n)2z(2n)!
(2z)(2z+1)(2z+2)(2z+3)···(2z+2n)

22n+2−2zn
1
2 (n!)2

(2n)!(2z+2n+1)

= Γ(2z) lim
n→+∞

22n+2−2zn
1
2 (n!)2

(2n)!(2z+2n+1) .

On the other hand,

√
π = Γ

(
1
2

)
= lim

n→+∞
n

1
2 n!

1
2
( 1
2
+1)···( 1

2
+n)

= lim
n→+∞

22n+1n
1
2 (n!)2

(2n)!(2n+1) .

These two equalities imply the duplication formula.

Proposition 8.8.

Γ′(z)
Γ(z) = −γ − 1

z −
∑+∞

n=1

(
1

z+n − 1
n

)
,

(Γ′(z)
Γ(z)

)′
=

∑+∞
n=0

1
(z+n)2

.

Proof. We use theorem 8.2 of Weierstrass to calculate Γ′(z)
Γ(z) = −f ′(z)

f(z) and then we differentiate
the resulting series termwise, due to its uniform convergence in compact sets.

Of course, if we restrict in C \ (−∞, 0] then Γ′(z)
Γ(z) and

(Γ′(z)
Γ(z)

)′ are the logarithmic derivatives
(logΓ)′ and (logΓ)′′.

The following proposition states some results for the restriction of the gamma function in
(0,+∞). Some of them have been already proved.

Proposition 8.9. (i) Γ(x) > 0 for every x ∈ (0,+∞).
(ii) limx→0+ Γ(x) = +∞ and limx→+∞ Γ(x) = +∞.
(iii) Γ(x+ 1) = xΓ(x) for every x ∈ (0,+∞).
(iv) Γ(n) = (n− 1)! for every n ∈ N.
(v) logΓ = lnΓ is convex in (0,+∞).
(vi) Γ(x)Γ′′(x) ≥ (Γ′(x))2 for every x ∈ (0,+∞).
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Proof. Only (ii), (v) and (vi) need to be proved.
(ii) We know that 0 is a pole of Γ and that Γ(x) > 0 for x > 0. This implies that limx→0+ Γ(x) =
+∞. A second proof uses (iii):

lim
x→0+

Γ(x) = lim
x→0+

Γ(x+ 1) lim
x→0+

1
x = Γ(1)(+∞) = +∞.

Now, if n = [x], then 1 ≤ x− n+ 1 ≤ 2 and since Γ is continuous and positive in [0, 1], there is
δ > 0 so that Γ(x− n+ 1) ≥ δ. Then (iii) implies

Γ(x) = (x− 1)(x− 2) · · · (x−n+1)Γ(x−n+1) ≥ (n− 1)(n− 2) · · · 1δ = (n− 1)!δ → +∞

when x→ +∞.
(v) Proposition 8.8 implies

(LogΓ)′′(x) =
(Γ′(x)
Γ(x)

)′
=

∑+∞
n=0

1
(x+n)2

> 0

for every x > 0.
(vi) We just observe that

(LogΓ)′′(x) =
(Γ′(x)
Γ(x)

)′
= Γ(x)Γ′′(x)−(Γ′(x))2

(Γ(x))2

and the inequality to be proved is equivalent to the convexity of LogΓ.

Now we consider the so called Euler’s second integral:∫ +∞
0 tz−1e−t dt.

When we write tz−1 with t > 0, we mean tz−1 = e(z−1) ln t.
At first we consider the case when z = x is real and > 0.
If x > 1, then tx−1e−t as a function of t is continuous in [0,+∞). So

∫ 1
0 t

x−1e−t dt is a
common integral. On the other hand

∫ +∞
1 tx−1e−t dt converges. To see this we consider n ∈ N

so that n > x. Then et =
∑+∞

k=0
tk

k! implies et ≥ tn

n! for t ≥ 0 and hence

0 ≤
∫ +∞
1 tx−1e−t dt ≤ n!

∫ +∞
1 tx−n−1 dt < +∞.

Therefore
∫ +∞
0 tx−1e−t dt converges.

If 0 < x ≤ 1, then tx−1e−t as a function of t is continuous in (0,+∞). The integral∫ +∞
1 tx−1e−t dt is still convergent. Regarding

∫ 1
0 t

x−1e−t dt we see that

0 ≤
∫ 1
0 t

x−1e−t dt ≤
∫ 1
0 t

x−1 dt < +∞.

Therefore
∫ +∞
0 tx−1e−t dt is convergent again.

In the case when z is complex with Re z > 0, we see that∫ +∞
0 |tz−1e−t| dt =

∫ +∞
0 tRe z−1e−t dt < +∞

and so
∫ +∞
0 tz−1e−t dt converges and∣∣ ∫ +∞

0 tz−1e−t dt
∣∣ ≤ ∫ +∞

0 tRe z−1e−t dt.

Now we are going to see that the function

F (z) =
∫ +∞
0 tz−1e−t dt
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is holomorphic in the right half-plane {z | 0 < Re z}. At first we consider the integral

Fδ,R(z) =
∫ R
δ tz−1e−t dt

when 0 < δ < 1 < R < +∞, and we leave it as an exercise to the reader to prove that Fδ,R is
holomorphic in {z | 0 < Re z} and, in fact, that it is holomorphic in all of C, with derivatives

F
(n)
δ,R (z) =

∫ R
δ tz−1e−t lnn t dt.

We now prove that
lim

δ→0+,R→+∞
Fδ,R = F

uniformly in every compact subset of {z | 0 < Re z}. In fact, since every compact subset of
{z | 0 < Re z} is contained in some vertical zone of the form {z | a ≤ Re z ≤ b}, 0 < a < b,
we shall prove that the convergence is uniform in every such zone. Indeed, for every z with
a ≤ Re z ≤ b we get

|Fδ,R(z)− F (z)| ≤
∫ δ
0 t

Re z−1e−t dt+
∫ +∞
R tRe z−1e−t dt ≤

∫ δ
0 t

a−1e−t dt+
∫ +∞
R tb−1e−t dt.

Thus
∥Fδ,R − F∥{z | a≤Re z≤b} ≤

∫ δ
0 t

a−1e−t dt+
∫ +∞
R tb−1e−t dt→ 0

when δ → 0+ and R→ +∞.
The uniform convergence of the holomorphic functions Fδ,R to F in every compact subset of

{z | 0 < Re z} implies that F is also holomorphic in {z | 0 < Re z} and also that

F (n)(z) =
∫ +∞
0 tz−1e−t lnn t dt

for all z with Re z > 0.
It easy to prove the functional equation

F (z + 1) = zF (z)

i.e. the same functional equation that the gamma function satisfies. Indeed, by a simple integration
by parts we get

F (z + 1) =
∫ +∞
0 tze−t dt = −

∫ +∞
0 tz(e−t)′ dt =

∫ +∞
0 (tz)′e−t dt = z

∫ +∞
0 tz−1e−t dt

= zF (z).

Since F (1) =
∫ +∞
0 e−t dt = 1, induction shows that F (n) = (n− 1)! for every n ∈ N.

With the help of the functional equation, F , which is holomorphic in {z | 0 < Re z}, can
be extended as a meromorphic function in all of C, having simple poles only at the integers
0,−1,−2,−3, . . . . To do this we consider any n ∈ N and the function

F−n(z) =
F (z+n)

z(z+1)···(z+n−1)

in the half-plane {z | −n < Re z}. This function is holomorphic in {z | −n < Re z} except at the
points 0,−1, . . . ,−(n−1). Since F (n), F (n−1), . . . , F (1) ̸= 0, the points 0,−1, . . . ,−(n−1)
are simple poles of F−n. If 0 < Re z, we get F−n(z) = F (z) because of the functional equation
satisfied by F . Thus, F−n is an extension of F in {z | − n < Re z} and we trivially see that F−n
satisfies the functional equation F−n(z + 1) = zF−n(z) for all z ∈ {z | − n < Re z}.
Now, if we take any m,n ∈ N with n < m, then the functions F−n and F−m are the same in
the intersection of their domains of definition {z | − n < Re z} and {z | − m < Re z}. This
intersection is the smallest of the two half-planes, i.e. {z | −n < Re z}. To see that F−n and F−m
are the same in {z | −n < Re z}, we either use their defining relations F−n(z) =

F (z+n)
z(z+1)···(z+n−1)
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and F−m(z) =
F (z+m)

z(z+1)···(z+m−1) together with the functional equation F (z + 1) = zF (z), or we
think that both functions coincide with F in {z | 0 < Re z} and then use the principle of identity.
Finally, since all the half-planes {z | − n < Re z}, n ∈ N, cover C, we conclude that all the
functions F−n, n ∈ N, determine a single function F−∞ defined in C \ {0,−1,−2, . . .}. Indeed,
for any z ̸= 0,−1,−2, . . . we take any n ∈ N so that −n < Re z and we set

F−∞(z) = F−n(z).

The value F−n(z) does not depend upon the specific n ∈ N satisfying −n < Re z. In fact, if
n,m ∈ N are such that −n < Re z and −m < Re z, then we have shown that F−n(z) = F−m(z).
Thus F−∞ is well defined in C \ {0,−1,−2, . . .}.
Of course we have that F−∞ = F in {z | 0 < Re z} and F−∞ = F−n in {z | − n < Re z} for
every n ∈ N. Therefore, F−∞ is holomorphic in C except at the points 0,−1,−2, . . . which are
simple poles of it. Since F−∞ extends F , we shall denote it by the same symbol F . We easily see
that it satisfies the functional equation F (z + 1) = zF (z) in its domain of definition.

Now we shall prove some results for the restriction of F in (0,+∞) which are analogous to
results for the restriction of the gamma function Γ in (0,+∞).

Proposition 8.10. (i) F (x) > 0 for every x ∈ (0,+∞).
(ii) limx→0+ F (x) = +∞ and limx→+∞ F (x) = +∞.
(iii) F (x+ 1) = xF (x) for every x ∈ (0,+∞).
(iv) F (n) = (n− 1)! for every n ∈ N.
(v) lnF is convex in (0,+∞).
(vi) F (x)F ′′(x) ≥ (F ′(x))2 for every x ∈ (0,+∞).

Proof. (i) Trivial.
(ii) Let x > 0. Then

F (x) ≥
∫ 1
0 t

x−1e−t dt ≥ e−1
∫ 1
0 t

x−1 dt = 1
ex → +∞

when x→ 0+.
Now let x ≥ 1. Then

F (x) ≥
∫ +∞
2 tx−1e−t dt ≥ 2x−1

∫ +∞
2 e−t dt = 2x−1e−2 → +∞

when x→ +∞.
(iii)-(iv) They have been proved.
(v)-(vi) For every x ∈ (0,+∞) and every a ∈ R we get

a2F ′′(x) + 2aF ′(x) + F (x) =
∫ +∞
0 tx−1(a ln t+ 1)2e−t dt ≥ 0.

This implies that F ′′(x)F (x) ≥ (F ′(x))2 and so (lnF )′′(x) ≥ 0 for every x > 0.
The inequality F ′′(x)F (x) ≥ (F ′(x))2 can also be proved by the Schwarz inequality for integrals:

(F ′(x))2 =
( ∫ +∞

0 tx−1e−t ln t dt
)2

=
( ∫ +∞

0 t
x−1
2 e−

t
2 t

x−1
2 e−

t
2 ln t dt

)2
≤

∫ +∞
0 tx−1e−t dt

∫ +∞
0 tx−1e−t ln2 t dt = F (x)F ′′(x).

Our next task is to prove that the functions Γ and F are the same function. Below we give
three proofs. The first is the simplest.

Proposition 8.11.
Γ(z) =

∫ +∞
0 tz−1e−t dt

for every z ∈ C, z ̸= 0,−1,−2,−3, . . . .
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First proof. Due the principle of identity, it is enough to prove Γ(x) = F (x) for x ∈ (0,+∞).
The functional equation for F implies that

lnF (x+ n+ 1) = lnF (x) + lnx+ ln(x+ 1) + · · ·+ ln(x+ n)

for every x > 0 and n ∈ N. Differentiating this twice, we get

(lnF )′′(x+ n+ 1) = (lnF )′′(x)− 1
x2

− 1
(x+1)2

− · · · − 1
(x+n)2

.

Since (lnF )′′(x+ n+ 1) ≥ 0, we have that

(lnF )′′(x) ≥ 1
x2

+ 1
(x+1)2

+ · · ·+ 1
(x+n)2

for every x > 0 and n ∈ N. Letting n→ +∞ we get

(lnF )′′(x) ≥ (lnΓ)′′(x)

for every x > 0.
Therefore, the function h = lnF − lnΓ is convex in (0,+∞). But we also have that F (n) =
Γ(n) = (n − 1)!, and hence h(n) = 0, for every n ∈ N. Now it is trivial for the reader to prove
that h(x) = 0 for every x ≥ 1. So F (x) = Γ(x) for x ≥ 1 and then the functional equation
implies the same for 0 < x < 1.
Second proof. As in the first proof, we shall prove that Γ(x) = F (x) for x ∈ (0,+∞).
Succesive integrations by parts give the formula∫ n

0 t
x−1

(
1− t

n

)n
dt = nxn!

x(x+1)···(x+n)

and so it is enough to prove that

lim
n→+∞

∫ n
0 t

x−1
(
1− t

n

)n
dt =

∫ +∞
0 tx−1e−t dt.

We have
tx−1

(
1− t

n

)n ≤ tx−1e−
t
n
n = tx−1e−t (8.16)

for every t > 0 and n ∈ N.
Now take ϵ > 0. Then there is a > 0 so that∫ +∞

a tx−1e−t dt < ϵ
4 . (8.17)

Now tx−1
(
1− t

n

)n → tx−1e−t uniformly in [0, a]. Indeed, for n ≥ 2a and t ∈ [0, a] we have that
t
n ≤ 1

2 and so∣∣tx−1
(
1− t

n

)n − tx−1e−t
∣∣ = tx−1

∣∣en ln(1−(t/n)) − e−t
∣∣ = tx−1e−t

(
1− et+n ln(1−(t/n))

)
≤ tx−1e−t

(
1− e−t

2/n
)
≤ tx−1e−t t

2

n ≤ ax+1

n .

Therefore
∫ a
0 t

x−1(1− t
n)
n dt→

∫ a
0 t

x−1e−t dt. Thus there is n0 so that∣∣ ∫ a
0 t

x−1
(
1− t

n

)n
dt−

∫ a
0 t

x−1e−t dt
∣∣ < ϵ

2

for every n ≥ n0. This last relation together with (8.16) and (8.17) imply∣∣ ∫ +∞
0 tx−1

(
1− t

n

)n
dt−

∫ +∞
0 tx−1e−t dt

∣∣
≤

∣∣ ∫ a
0 t

x−1
(
1− t

n

)n
dt−

∫ a
0 t

x−1e−t dt
∣∣+ ∫ a

0 t
x−1

(
1− t

n

)n
dt+

∫ a
0 t

x−1e−t dt

≤
∣∣ ∫ a

0 t
x−1

(
1− t

n

)n
dt−

∫ a
0 t

x−1e−t dt
∣∣+ ∫ a

0 t
x−1e−t dt+

∫ a
0 t

x−1e−t dt

< ϵ
2 + ϵ

4 + ϵ
4 = ϵ
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for every n ≥ n0.
Third proof. We shall prove a rather crude estimate of Γ(z) when z = x+ iy, 0 ≤ x ≤ 1.
At first we use (8.15) to get ∑n

k=m+1
1
k ≤

∑n
k=m+1 ln

k
k−1 = ln n

m .

Also ∑+∞
k=m+1

1
k2

≤
∑+∞

k=m+1

∫ k
k−1

1
t2
dt =

∫ +∞
m

1
t2
dt = 1

m .

Now we consider 0 ≤ x ≤ 1 and |y| ≥ 1, and then we takem = [2|y|] ∈ N. Then we have∑n
k=m+1

( (x+k)2+y2
k2

− 1
)
=

∑n
k=m+1

2x
k +

∑n
k=m+1

x2+y2

k2
≤ 2x ln n

m + x2+y2

m

≤ 2x ln n
m + 1 + |y|

2 .

This implies

((x+m+1)2+y2)···((x+n)2+y2)
(m+1)2···n2 ≤ e

∑n
k=m+1(

(x+k)2+y2

k2
−1) ≤

(
n
m

)2x
e1+

|y|
2 ≤ n2xe1+

|y|
2 .

On the other hand,
(x2+y2)((x+1)2+y2)···((x+m)2+y2)

12···m2 ≤ (1 + |y|)2
( (1+m+|y|)m

m!

)2 ≤ (1 + |y|)2e2(1+m+|y|)

≤ (1 + |y|)2e4+6|y|.

Multiplying the last two inequalities we get∣∣ z(z+1)···(z+n)
nzn!

∣∣ ≤ (1 + |y|)e
5
2
+ 13

4
|y|

and letting n→ +∞ we conclude that
1

|Γ(z)| ≤ (1 + |y|)e
5
2
+ 13

4
|y|.

We observe that, if 0 ≤ x ≤ 1 and |y| ≥ 1, then

|F (z)| = |F (z+1)|
|z| ≤

∫ +∞
0 txe−t dt ≤

∫ 1
0 t

xe−t dt+
∫ +∞
1 txe−t dt ≤

∫ 1
0 dt+

∫ +∞
1 te−t dt ≤ 2.

Now we consider the function
h(z) = F (z)

Γ(z) .

Since the poles of F and Γ are simple and coincide, h is holomorphic in C. Also, since both F
and Γ satisfy the same functional equation, we get that h(z + 1) = h(z) for every z, i.e. that h is
1-periodic. Now the estimates we have got for |F (z)| and 1

|Γ(z)| imply that

|h(z)| ≤ c(1 + |y|)e
13
4
|y|

for every z = x+ iy with 0 ≤ x ≤ 1, where c is a constant.
Since h is 1-periodic, we may define the function

g(w) = h(z), where w = e2πiz.

Then g is holomorphic in C \ {0}. From the last estimate of |h(z)| we easily get that

|g(w)| ≤ c
(
1 + 1

2π ln
1
|w|

)
|w|−a, if |w| ≤ 1,

|g(w)| ≤ c
(
1 + 1

2π ln |w|
)
|w|a, if |w| ≥ 1,

where a = 13
8π and hence 0 < a < 1. From the first relation we get limw→0wg(w) = 0 and,

by the criterion of Riemann, g can be considered holomorphic at 0. Moreover, if we consider the
function p(z) = g(1z ), then from the second relation we have that |p(z)| ≤ c

(
1 + 1

2π ln
1
|z|
)
|z|−a

for |z| ≤ 1. The same argument as before shows that p can also be considered holomorphic at 0.
In particular, p is bounded near 0 and so g is bounded near ∞. By the theorem of Liouville, we
conclude that g is constant and of course this implies that h = F

Γ is constant. Since h(1) = 1 we
finally get that F = Γ.
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Lemma 8.5. We consider the 1-periodic functions in R:

F (t) = t− [t]− 1
2 , G(t) = 1

2(t− [t])(t− [t]− 1).

Then for every twice continuously differentiable function f in [0, n] we have∑n
k=0 f(k)−

∫ n
0 f(t) dt =

f(0)+f(n)
2 +

∫ n
0 f

′(t)F (t) dt = f(0)+f(n)
2 −

∫ n
0 f

′′(t)G(t) dt.

Proof. In every interval [k − 1, k], k ∈ Z, we have that F ′(t) = 1 and G′(t) = F (t). Integration
by parts implies

f(k−1)+f(k)
2 −

∫ k
k−1 f(t) dt =

∫ k
k−1 f

′(t)F (t) dt =
∫ k
k−1 f

′′(t)G(t) dt

from which we get

f(k)−
∫ k
k−1 f(t) dt = −f(k−1)−f(k)

2 +
∫ k
k−1 f

′(t)F (t) dt = −f(k−1)−f(k)
2 −

∫ k
k−1 f

′′(t)G(t) dt.

Now we add these relations for k = 1, . . . , n, and then we add f(0) to both sides of the resulting
equality.

Now we shall prove a famous asymptotic formula.
When we write f(z) ∼ g(z) as z → ∞ we mean that limz→∞

f(z)
g(z) = 1.

Theorem 8.3. Let 0 < δ < π and Gδ = {z | z ̸= 0,−π + δ < Arg z < π − δ}. Then

Γ(z) ∼
√
2πe−zzz−

1
2 as z → ∞ in Gδ.

This is Stirling’s asymptotic formula.
When we write zz−

1
2 we mean zz−

1
2 = e(z−

1
2
)Log z .

Proof. We apply lemma 8.5 to the function f(t) = Log(z + t) and we get∑n
k=0 Log(z + k)−

∫ n
0 Log(z + t) dt = Log z+Log(z+n)

2 +
∫ n
0

G(t)
(z+t)2

dt.

Now, Log(z + t) is the derivative of (z + t)Log(z + t)− t and so we have∑n
k=0 Log(z + k)− (z + n)Log(z + n) + n+ z Log z = Log z+Log(z+n)

2 +
∫ n
0

G(t)
(z+t)2

dt.

Thus ∑n
k=0 Log(z + k) =

(
z + n+ 1

2

)
Log(z + n)−

(
z − 1

2

)
Log z − n+

∫ n
0

G(t)
(z+t)2

dt.

We write the same formula for z = 1:∑n
k=0 Log(1 + k) =

(
n+ 3

2

)
Log(1 + n)− n+

∫ n
0

G(t)
(1+t)2

dt.

Taking exponentials of both equalities we find

z(z + 1) · · · (z + n) = (z + n)z+n+
1
2 z−z+

1
2 e−neIn(z),

(n+ 1)! = (n+ 1)n+
3
2 e−neIn(1),

where In(z) =
∫ n
0

G(t)
(z+t)2

dt.
We divide the last two equalities and we easily find

nzn!
z(z+1)···(z+n) =

(
n
n+z

)z(n+1
n+z

)n+ 1
2 zz−

1
2 eIn(1)−In(z).

162



The left side of this equality has limit Γ(z) when n → +∞. Moreover, ( n
n+z )

z → 1 and
(n+1
n+z )

n+ 1
2 → e1−z when n → +∞. Finally, we observe that −1

8 ≤ G(t) ≤ 0 for every t.
This implies that the integral I(z) =

∫ +∞
0

G(t)
(z+t)2

dt converges absolutely:

|I(z)| ≤
∫ +∞
0

∣∣ G(t)
(z+t)2

∣∣ dt ≤ 1
8

∫ +∞
0

1
|z+t|2 dt < +∞

for every z in C \ (−∞, 0]. We conclude that

Γ(z) = e1−zzz−
1
2 eI(1)−I(z) = ce−zzz−

1
2 e−I(z)

for every z in C \ (−∞, 0], where c = e1+I(1) is a constant.
Now we shall prove that I(z) → 0 when z → ∞ in Gδ. We write z = |z|eiθ with θ = Arg z and
we assume that z ∈ Gδ, i.e. −π + δ < θ < π − δ. Then

|I(z)| ≤ 1
8

∫ +∞
0

1
|z+t|2 dt =

1
8|z|

∫ +∞
0

1
|eiθ+u|2 du

= 1
8|z|

∫ +∞
0

1
u2+2u cos θ+1

du ≤ 1
8|z|

∫ +∞
0

1
u2−2u cos δ+1

du

= 1
8|z|

∫ +∞
0

1
(u−cos δ)2+sin2 δ du = 1

8|z|
∫ +∞
− cos δ

1
u2+sin2 δ du

≤ 1
8|z|

∫ +∞
−∞

1
u2+sin2 δ du = 1

8|z| sin δ
∫ +∞
−∞

1
u2+1

du

= π
8|z| sin δ .

So we get that
supz∈Gδ,|z|≥r |I(z)| ≤

π
8r sin δ

and we conclude that I(z) → 0 uniformly as z → ∞ in Gδ.
We have got that Γ(z) ∼ ce−zzz−

1
2 as z → ∞ in Gδ and the only thing that remains to be proved

is that c =
√
2π.

We shall use the duplication formula

Γ(z)Γ(z + 1
2) =

√
π 21−2zΓ(2z)

with z = x→ +∞. We then have that

ce−xxx−
1
2 ce−x−

1
2

(
x+ 1

2

)x ∼
√
π 21−2xce−2x(2x)2x−

1
2

and this easily implies that c =
√
2π.

Since n! = Γ(n+ 1), Stirling’s asymptotic formula implies that

n! ∼
√
2π e−nnn+

1
2

when n→ +∞.

8.5 Riemann’s zeta function.

Definition.We define the function

ζ(z) =
∑+∞

n=1
1
nz = 1 + 1

2z + 1
3z + 1

4z + · · · .

When we write nz we mean nz = ez lnn.
The function ζ is called Riemann’s zeta function.
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If Re z > 1, then the series defining the zeta function converges absolutely. Indeed, if x =
Re z > 1, then ∑+∞

n=1

∣∣ 1
nz

∣∣ = ∑+∞
n=1

1
nx < +∞.

Now we can easily see that the series converges uniformly in every half-plane of the form
{z | a ≤ Re z} with a > 1 and hence in every compact subset of the half-plane {z | 1 < Re z}.
Indeed, this is a corollary of the test of Weierstrass: if Re z ≥ a > 1, then

∣∣ 1
nz

∣∣ ≤ 1
na , and∑+∞

n=1
1
na < +∞. Since every 1

nz is holomorphic, we conclude that ζ is holomorphic in the half-
plane {z | 1 < Re z}.

The following result connects the zeta function to number theory.
Let p1 < p2 < . . . < pn < . . . be the increasing sequence of the prime numbers. We consider

the infinite product ∏+∞
n=1

(
1− 1

pzn

)
.

Since the sequence of the prime numbers is only part of the sequence of all natural numbers, the
previous arguments show that the series

∑+∞
n=1

∣∣ 1
pzn

∣∣ converges uniformly in every compact subset
of {z | 1 < Re z}. Now theorem 8.1 implies that the infinite product∏+∞

n=1

(
1− 1

pzn

)
defines a function holomorphic in {z | 1 < Re z}.

Proposition 8.12. For every z with Re z > 1 we have

ζ(z) =
∏+∞
n=1

(
1− 1

pzn

)−1
.

Proof. Let Re z > 1. We observe that

ζ(z)
(
1− 1

2z

)
=

∑+∞
n=1

1
nz −

∑+∞
n=1

1
(2n)z =

∑
n∈N,2̸|n

1
nz .

Next

ζ(z)
(
1− 1

2z

)(
1− 1

3z

)
=

∑
n∈N,2̸|n

1
nz −

∑
n∈N,2̸|n

1
(3n)z =

∑
n∈N,2̸|n,3̸|n

1
nz .

So we see that
ζ(z)

(
1− 1

pz1

)
· · ·

(
1− 1

pzN

)
=

∑
n∈N,p1 ̸|n,...,pN ̸|n

1
nz

for every N .
Now, if 1 < n < pN+1, then n is divisible by at least one of p1, . . . , pN and so the last series does
not include the term 1

nz . Therefore the first term of this series is 1 and the next term is 1
pzN+1

. This
implies ∣∣ζ(z)(1− 1

pz1

)
· · ·

(
1− 1

pzN

)
− 1

∣∣ ≤ ∑+∞
n=pN+1

1
nx

for x = Re z > 1. Since pN+1 → +∞, we get
∑+∞

n=pN+1

1
nx → 0 when N → +∞. This finishes

the proof.

A corollary of proposition 8.12 is that ζ has no root in the half-plane {z | 1 < Re z}.
The next result relates the gamma function and the zeta function.
We consider the generalized integral ∫ +∞

0
tz−1

et−1 dt

for Re z > 1. The integral converges absolutely: if x = Re z > 1 we have∫ +∞
0

∣∣ tz−1

et−1

∣∣ dt = ∫ 1
0
tx−1

et−1 dt+
∫ +∞
1

tx−1

et−1 dt =
∫ 1
0 t

x−2 dt+ n!
∫ +∞
1 tx−n−1 dt < +∞,

where we use any n ∈ N, n > x, and hence et − 1 ≥ tn

n! .
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Proposition 8.13. For every z with Re z > 1 we have

ζ(z)Γ(z) =
∫ +∞
0

tz−1

et−1 dt.

Proof. Let Re z > 1. For every n ∈ N we have

Γ(z) =
∫ +∞
0 e−ssz−1 ds = nz

∫ +∞
0 e−nttz−1 dt.

Therefore

ζ(z)Γ(z) =
∑+∞

n=1

∫ +∞
0 e−nttz−1 dt =

∫ +∞
0

(∑+∞
n=1 e

−nt)tz−1 dt =
∫ +∞
0

tz−1

et−1 dt.

To justify the interchange of the sum and the integral we take any N ∈ N and we set

AN =
∑+∞

n=N+1

∫ +∞
0 e−nttz−1 dt, BN =

∫ +∞
0

(∑+∞
n=N+1 e

−nt)tz−1 dt.

Then we have
|AN | =

∣∣∑+∞
n=N+1

Γ(z)
nz

∣∣ ≤ |Γ(z)|
∑+∞

n=N+1
1
nx → 0

when N → +∞. Also

|BN | =
∣∣ ∫ +∞

0
e−Nttz−1

et−1 dt
∣∣ ≤ ∫ +∞

0
e−Nttx−1

et−1 dt

=
∫ 1/

√
N

0
e−Nttx−1

et−1 dt+
∫ +∞
1/

√
N

e−Nttx−1

et−1 dt

≤
∫ 1/

√
N

0
tx−1

et−1 dt+ e−
√
N
∫ +∞
1/

√
N

tx−1

et−1 dt

≤
∫ 1/

√
N

0
tx−1

et−1 dt+ e−
√
N
∫ +∞
0

tx−1

et−1 dt→ 0

whenN → +∞. Combining these two limits with the interchange of the sum of the firstN terms
and the integral, we get∑+∞

n=1

∫ +∞
0 e−nttz−1 dt−

∫ +∞
0

(∑+∞
n=1 e

−nt)tz−1 dt = AN −BN → 0

when N → +∞. Since the left side does not depend upon N , it is equal to 0.

We consider the principal branch Log of the logarithm defined in the region C \ (−∞, 0] by

Log ζ = ln r + iθ for ζ = reiθ with − π < θ < π.

We also define

Log+ ζ = ln(−ζ) + iπ, Log− ζ = ln(−ζ)− iπ for ζ ∈ (−∞, 0)

It is clear that

lim
θ→π−

Log(reiθ) = Log+(−r), lim
θ→−π+

Log(reiθ) = Log−(−r) (8.18)

uniformly in (0,+∞).
Now we consider the parametric equation γ−(t) = −t, t ∈ (−∞, 0], and the parametric

equation γ+(t) = t, t ∈ [0,+∞). Then we take the curvilinear integral∫
γ−

e(z−1) Log−(−ζ)

eζ−1
dζ +

∫
γ+

e(z−1) Log+(−ζ)

eζ−1
dζ

where Re z > 1.
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The curve γ− describes the positive x-axis [0,+∞) in the direction from +∞ to 0, and then
the curve γ+ describes the same positive x-axis [0,+∞) in the direction from 0 back to+∞. Now
we calculate∫

γ−
e(z−1) Log−(−ζ)

eζ−1
dζ +

∫
γ+

e(z−1) Log+(−ζ)

eζ−1
dζ

= −
∫ 0
−∞

(−t)z−1e−iπ(z−1)

e−t−1
dt+

∫ +∞
0

tz−1eiπ(z−1)

et−1 dt

= −
∫ +∞
0

tz−1e−iπ(z−1)

et−1 dt+
∫ +∞
0

tz−1eiπ(z−1)

et−1 dt

= (eiπ(z−1) − e−iπ(z−1))
∫ +∞
0

tz−1

et−1 dt

= −2i sin(πz)
∫ +∞
0

tz−1

et−1 dt

= −2i sin(πz)ζ(z)Γ(z)

(8.19)

for Re z > 1.
We now take any r with 0 < r < 2π and we consider the parametric equation γr−(t) = −t,

t ∈ (−∞,−r], the parametric equation γr+(t) = t, t ∈ [r,+∞), and the parametric equation
σr(θ) = reiθ, 0 ≤ θ ≤ 2π. The curve γr− describes the half-line [r,+∞) in the direction from
+∞ to r, then the curve σr describes the circle C0(r) in the positive direction from r back to r,
and then the curve γr+ describes the half-line [r,+∞) in the direction from r back to +∞.

And now we consider the curvilinear integral

Ir(z) =
∫
γr−

e(z−1) Log−(−ζ)

eζ−1
dζ +

∮
C0(r)

e(z−1) Log(−ζ)

eζ−1
dζ +

∫
γr+

e(z−1) Log+(−ζ)

eζ−1
dζ

=
∮
C0(r)

e(z−1) Log(−ζ)

eζ−1
dζ − 2i sin(πz)

∫ +∞
r

tz−1

et−1 dt.

The second equality above is implied by the same calculation as the one in (8.19).
We observe that Ir(z) is defined for every z. Now the restriction Re z > 1 is not needed

because the curve defining Ir(z) does not approach the point ζ = 0 which is a root of eζ − 1.

Proposition 8.14. Let 0 < r < 2π. Then Ir(z) is holomorphic as a function of z in C. Moreover

ζ(z) = − 1
2πi Γ(1− z)Ir(z) (8.20)

for every z with Re z > 1.

Proof. We leave it as an exercise to the reader to prove that, when r is fixed in (0, 2π), the function
Ir(z) is holomorphic as a function of z in C.
Now we shall first prove that Ir(z) is constant as a function of r in (0, 2π). If we take r1, r2 with
0 < r1 < r2 < 2π then it is clear that

Ir2(z)− Ir1(z) =
∮
C0(r2)

e(z−1) Log(−ζ)

eζ−1
dζ −

∫
γ
r1,r2
−

e(z−1) Log−(−ζ)

eζ−1
dζ

−
∮
C0(r1)

e(z−1) Log(−ζ)

eζ−1
dζ −

∫
γ
r1,r2
+

e(z−1) Log+(−ζ)

eζ−1
dζ

= limδ→0+

∮
cr1,r2,δ

e(z−1) Log(−ζ)

eζ−1
dζ,

where γr1,r2− (t) = −t, t ∈ [−r2,−r1] and γr1,r2+ (t) = t, t ∈ [r1, r2] and where cr1,r2,δ is the
closed curve which describes the arc of the circle C(0, r2) from r2e

iδ to r2ei(2π−δ) in the positive
direction, and then the linear segment from r2e

i(2π−δ) to r1ei(2π−δ), and then the arc of the circle
C(0, r1) from r1e

i(2π−δ) to r1eiδ in the negative direction, and then the linear segment from r1e
iδ

to r2eiδ. The above limit as δ → 0+ holds because of (8.18). Now we have∮
cr1,r2,δ

e(z−1) Log(−ζ)

eζ−1
dζ = 0
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because the closed curve cr1,r2,δ is in C \ [0,+∞) and includes no singularity of the function
e(z−1) Log(−ζ)

eζ−1
which is meromorphic in C \ [0,+∞). Thus Ir2(z) − Ir1(z) = 0 and so Ir(z) is

constant as a function of r in (0, 2π).
Now it is easy to see that, if Re z > 1, then

limr→0+

∮
C0(r)

e(z−1) Log(−ζ)

eζ−1
dζ = 0

Indeed, from the limit limζ→0
eζ−1
ζ = 1 we get that |eζ−1|

|ζ| ≥ 1
2 when r = |ζ| is close to 0. Now if

z = x+ iy with x > 1, then∣∣ ∮
C0(r)

e(z−1) Log(−ζ)

eζ−1
dζ

∣∣ ≤ ∫ 2π
0

2rxey(π−θ)

r dθ ≤ 4πeπ|y|rx−1 → 0

when r → 0+.
Therefore, if Re z > 1, then

limr→0+ Ir(z) =
∫
γ−

e(z−1) Log−(−ζ)

eζ−1
dζ +

∫
γ+

e(z−1) Log+(−ζ)

eζ−1
dζ.

We finally use (8.19), that Ir(z) is constant as a function of r in (0, 2π) and also thatΓ(z)Γ(1−z) =
π

sin(πz) , and we finish the proof.

From the second formula for Ir(z) we see immediately that

Ir(n) =
∮
C0(r)

e(n−1) Log(−ζ)

eζ−1
dζ = (−1)n−1

∮
C0(r)

ζn−1

eζ−1
dζ (8.21)

for every n ∈ Z.
Formula (8.20) holds for Re z > 1. On the other hand its right side is holomorphic in all of

C except perhaps at the points 1, 2, 3, . . . , which are simple poles of the function Γ(1 − z). But
at the points 2, 3, . . . the function ζ is holomorphic. Therefore, these points must be roots of the
function Ir. (In fact, we shall see this in a more straightforward manner in a minute.) So the only
possible singularity of the right side of (8.20) in C is the point 1. Now

Ir(1) =
∮
C0(r)

1
eζ−1

dζ = 2πi,

since ζ = 0 is a simple pole of the function 1
eζ−1

with residue 1. Recalling that 0 is a simple pole
of Γ with residue 1, we conclude that the point 1 is a simple pole of the right side of (8.20) with
residue 1.

Now we use (8.20) to extend the zeta function of Riemann to all of C, and then ζ becomes a
meromorphic function in C with only one pole, i.e. the point 1 with residue 1. In other words, the
function

ζ(z)− 1
z−1

is holomorphic in C.
From (8.21) we have that

Ir(n) = (−1)n−12πia−n, (8.22)

where
∑+∞

−∞ akζ
k is the Laurent expansion of the function 1

eζ−1
at the point 0. Since 0 is a simple

pole of 1
eζ−1

, we get that an = 0 for every n ≤ −2 and hence Ir(n) = 0 for all n ≥ 2. This we
have already seen to be true. If we calculate the first terms of the Laurent expansion of 1

eζ−1
we

get
1

eζ−1
= 1

ζ −
1
2 + ζ

12 +
∑+∞

n=2 anζ
n.

So from (8.20) and (8.22) we get

ζ(0) = −1
2 , ζ(−1) = − 1

12 .
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Wemay also observe very easily that the function 1
eζ−1

− 1
ζ +

1
2 is odd and hence an = 0 for every

even n ∈ N. I.e.
1

eζ−1
= 1

ζ −
1
2 + ζ

12 +
∑+∞

k=1 a2k+1ζ
2k+1.

Then, again from (8.20) and (8.22) we have

ζ(−2k) = 0

for every k ∈ N.
We just saw that the points−2,−4,−6, . . . are roots of ζ. These are the so-called trivial roots

of the zeta function.
If we look at exercise 5.8.11 we see that a2k−1 = (−1)k−1 Bk

(2k)! , where Bk are the Bernoulli
constants. Thus, from (8.20) and (8.22),

ζ(−(2k − 1)) = (−1)k Bk
2k

for every k ∈ N.

Proposition 8.15. The zeta function satisfies the functional equation

ζ(z) = 2zπz−1 sin πz
2 Γ(1− z)ζ(1− z).

Proof. We go back to the proof of proposition 8.14 and we consider 0 < r1 < 2π and 2nπ <
r2 < 2(n+ 1)π for an arbitrary n ∈ N. Now, if 0 < δ < π

2 , the closed curve cr1,r2,δ includes the
poles ±2kπi, 1 ≤ k ≤ n, of the function e(z−1) Log(−ζ)

eζ−1
. These poles are simple with corresponding

residues (∓2kπi)z−1. So, if 0 < δ < π
2 , then∮

cr1,r2,δ
e(z−1) Log(−ζ)

eζ−1
dζ = 2πi

∑n
k=1

(
(2kπi)z−1 + (−2kπi)z−1

)
.

Taking the limit as δ → 0+, we find

Ir2(z)− Ir1(z) = 2πi
∑n

k=1

(
(2kπi)z−1 + (−2kπi)z−1

)
.

We consider Re z > 1, we set r = r2 and we take the limit as r1 → 0+, to find

Ir(z) = −2i sin(πz)ζ(z)Γ(z) + 2πi
∑n

k=1

(
(2kπi)z−1 + (−2kπi)z−1

)
= −2i sin(πz)ζ(z)Γ(z) + 4πi sin πz

2

∑n
k=1(2kπ)

z−1.
(8.23)

when 2nπ < r < 2(n+ 1)π.
We observe that Ir(z) is holomorphic in C and that sin(πz)ζ(z)Γ(z) is also holomorphic in C.
Indeed, the simple poles of ζ(z)Γ(z), i.e. the points 0,−1,−2, . . . , are roots of sin(πz). So both
sides of (8.23) are holomorphic in C and this implies that (8.23) holds not only for Re z > 1 but
for every z.
Now we assume that Re z < 0. Then

limn→+∞
∑n

k=1(2kπ)
z−1 =

∑+∞
k=1(2kπ)

z−1 = (2π)z−1ζ(1− z).

We write the defining formula of Ir(z):

Ir(z) =
∮
C0(r)

e(z−1) Log(−ζ)

eζ−1
dζ − 2i sin(πz)

∫ +∞
r

tz−1

et−1 dt

and we take r = (2n+ 1)π.
Since

∫ +∞
1

tz−1

et−1 dt converges, we have that

limn→+∞
∫ +∞
r

tz−1

et−1 dt = 0.
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If we restrict 1
eζ−1

in its period-zone A = {z | − π ≤ Im z ≤ π} we see that 1
|eζ−1| tends to 1 or

to 0 as z → ∞ in A. So if we exclude a small disc D0(δ) from the period zone, then there is a
constant cδ so that 1

|eζ−1| ≤ cδ for every z ∈ A \D0(δ). Of course this extends to all period-zones
and, since the circle C0(r) (with r = (2n + 1)π) does not intersect any of the discs D2kπi(δ) if
we select δ sufficiently small, we get that 1

|eζ−1| ≤ cδ for every ζ ∈ C0(r) and for every n. This,
with z = x+ iy and x < 0, implies that∣∣ ∮

C0(r)
e(z−1) Log(−ζ)

eζ−1
dζ

∣∣ ≤ cδr
xeπ|y| → 0

when n→ +∞.
Now taking the limit in (8.23) as n→ +∞, we find

0 = −2i sin(πz)ζ(z)Γ(z) + 2i(2π)z sin πz
2 ζ(1− z)

for Re z < 0. Since both terms of the last sum are holomorphic in C, the last equality holds for
every z. Now we finish the proof using the Γ(z)Γ(1− z) = π

sin(πz) .

Since Γ has no roots and ζ has no root in the half-plane {z | 1 < Re z}, an immediate corollary
of the functional equation in proposition 8.15 is that ζ has no roots in the half-plane {z | Re z < 0}
besides the trivial roots −2,−4,−6, . . . . Therefore,
All possible roots of the zeta function, besides its trivial roots, are contained in the verical zone

{z | 0 ≤ Re z ≤ 1}.

It has been proved that there are infinitely many non-trivial roots of the zeta function and the
famous Riemann Hypothesis states that all non-trivial roots of the zeta function lie on the vertical
line with equation Re z = 1

2 . The Riemann Hypothesis remains unsolved and all known roots of
the zeta function satisfy the Re z = 1

2 .

Exercises.

8.5.1. Prove that the series
∑+∞

n=1
1
nz does not converge when Re z = 1, and that it has bounded

partial sums when Re z = 1, z ̸= 1.
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Chapter 9

Metric spaces.

9.1 Metrics, neighborhoods, open sets, closed sets.

Let X be a non-empty set. We call metric on X every function d : X × X → R with the
following properties:
(i) d(x, y) ≥ 0 for every x, y ∈ X .
(ii) For every x, y ∈ X: d(x, y) = 0 if and only if x = y.
(iii) d(x, y) = d(y, x) for every x, y ∈ X .
(iv) d(x, y) ≤ d(x, z) + d(z, y) for every x, y, z ∈ X .
We say that the pair (X, d) is a metric space or that “the set X is equipped with the metric d” or
we just say “the set X with the metric d”. The value of d(x, y) is called distance between x, y.

A metric space consists of two things: a non-empty setX and a metric d : X ×X → R which
measures distances between the elements of X . When we have a non-empty set X we may talk
about the metric space X only when there is a preassigned specific metric d on the set X .

Example 9.1.1. The cartesian productRd = R×· · ·×Rwith d ≥ 2 factors is the set of all ordered
d-tuples (x1, . . . , xd) of real numbers. Using orthogonal axes, we identify R2 with a plane and R3

with the space. If d = 1, we consider R1 = R and we identify R1 with a line.
If for every x = (x1, . . . , xd) we denote

|x| = (x21 + · · ·+ x2d)
1/2,

then the euclidean distance between x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd is

|x− y| = ((x1 − y1)
2 + · · ·+ (xd − yd)

2)1/2.

It is well known that the function d : Rd × Rd → R, defined by d(x, y) = |x − y|, satisfies all
properties of a metric and it is called euclidean metric on Rd.

In everything that follows we shall considerRd equipped with the euclidean metric. In case we
want to use a different metric on Rd we shall state this explicitly and we shall give a description
of the specific metric to be used.

Let (X, d) be a metric space. If x ∈ X , r > 0, we call r-neighborhood of x or neighborhood
with center x and radius r the set

Nx(r) = {y ∈ X | d(y, x) < r}.

It is obvious that every r-neighborhood contains at least its center.

Example 9.1.2. In R2 (with the euclidean metric) Nx(r) is usually denoted Dx(r) and it is the
open disc with center x and radius r: Dx(r) = {y | |y− x| < r}. The corresponding closed disc is
Dx(r) = {y | |y− x| ≤ r} and the corresponding circle is Cx(r) = {y | |y− x| = r}.
In particular, the open disc, the closed disc and the circle with center 0 and radius 1 are denoted D,
D and T, respectively.
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Example 9.1.3. In Rd (with the euclidean metric) Nx(r) is usually denoted Bx(r) and it is the d-
dimensional open ball with center x and radius r: Bx(r) = {y | |y− x| < r}. The corresponding
d-dimensional closed ball isBx(r) = {y | |y−x| ≤ r} and the corresponding (d−1)-dimensional
sphere is Sx(r) = {y | |y− x| = r}.
The closed ball with center 0 and radius 1 is usually denoted Bd and the sphere with center 0 and
radius 1 is usually denoted Sd−1.
Thus, B1 = [−1, 1] and S0 = {−1, 1}. Also, B2 = D and S1 = T.

Proposition 9.1. Let (X, d) be a metric space and x, y ∈ X , x ̸= y. Then there is r > 0 so that

Nx(r) ∩Ny(r) = ∅.

Proof. Take r = 1
2 d(x, y) > 0. If z ∈ Nx(r) ∩Ny(r), i.e. d(z, x) < r and d(z, y) < r, then

2r = d(x, y) ≤ d(x, z) + d(z, y) = d(z, x) + d(z, y) < r + r = 2r

and we arrive at a contradiction. Therefore Nx(r) ∩Ny(r) = ∅.

Now we define some basic notions for a metric space (X, d). Let A ⊆ X and x ∈ X . We
say that x is an interior point of A if some neighborhood of x is contained in A. We say that x is
a boundary point of A if every neighborhood of x intersects both A and Ac. We say that x is a
limit point of A if every neighborhood of x intersects A. We say that x is an accumulation point
of A if every neighborhood of x intersects A at a point different from x. We also define

A◦ = {x ∈ X |x is an interior point of A},
∂A = {x ∈ X |x is a boundary point of A},
A = {x ∈ X |x is a limit point of A}.

The sets A◦, ∂A and A are called interior, boundary and closure of A, respectively.
If A ⊆ X , the complement of A with respect to X is denoted Ac.

Proposition 9.2. Let (X, d) be a metric space and A ⊆ X . Then
(i) ∂A = ∂(Ac).
(ii) A◦ ⊆ A ⊆ A.
(iii) A \A◦ = ∂A.
(iv) A◦ = A \ ∂A.
(v) A = A ∪ ∂A.

Proof. (i) From the definition of a boundary point it is clear that the boundary points of A are the
same as the boundary points ofAc. In other words, the sets ∂A and ∂(Ac) have the same elements.
(ii) If x ∈ A◦, then there is a neighborhood of x which is contained in A and hence x ∈ A. Also,
if x ∈ A, then every neighborhood of x intersects A and hence x ∈ A.
(iii) Let x ∈ A \ A◦. Since x ∈ A, every neighborhood of x intersects A. Since x /∈ A◦, there
is no neighborhood of x which is contained in A and so every neighborhood of x intersects Ac.
Therefore, x ∈ ∂A. Conversely, let x ∈ ∂A. Then every neighborhood of x intersectsA and hence
x ∈ A. Also every neighborhood of x intersects Ac which means that there is no neighborhood of
x which is contained in A and hence x /∈ A◦. Thus x ∈ A \A◦.
(iv) and (v) are straightforward corollaries of (ii) and (iii).

Example 9.1.4.We consider R2 and a relatively simple curve Γ which divides the plane in three
subsets: the set A1 of the points on one side of Γ, the set A2 of points on the other side of Γ and
the set of points of Γ. For instance Γ can be a circle or an ellipse or a line or a closed polygonal
line (the circumference of a rectangle, for instance). Just looking at these shapes on the plane, we
understand that A◦

1 = A1, ∂A1 = Γ and A1 = A1 ∪Γ. We have analogous results for A2 and also
Γ◦ = ∅, ∂Γ = Γ and Γ = Γ.
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Example 9.1.5. Let Γ be a relatively simple surface in R3 which divides the space in the set A1 of
the points on one side of Γ, the set A2 of points on the other side of Γ and the set of points of Γ.
For instance Γ can be a plane or a spherical surface or the surface of a parallelopiped. Then, as in
the last example, A◦

1 = A1, ∂A1 = Γ and A1 = A1 ∪ Γ. There are similar results for A2 and also
Γ◦ = ∅, ∂Γ = Γ and Γ = Γ.

Let (X, d) be a metric space andA ⊆ X . We say thatA is open if it consists only of its interior
points. We say that A is closed if it contains all its limit points.

In other words, A is open if and only if A = A◦, and A is closed if and only if A = A. It is
clear from proposition 9.2 that a set is open if and only if it contains none of its boundary points
and that a set is closed if and only if it contains all its boundary points.

Example 9.1.6. In examples 9.1.4 and 9.1.5 the sets A1, A2 are open and the sets A1 ∪ Γ, A2 ∪ Γ
and Γ are closed.

Proposition 9.3. Let (X, d) be a metric space. Every r-neighborhood is open.

Proof. Let x ∈ X , r > 0. We take any y ∈ Nx(r) and we shall prove that there is s > 0 so that
Ny(s) ⊆ Nx(r), i.e. that y is an interior point of Nx(r). This will imply that Nx(r) is open.
We have d(y, x) < r and we take

s = r − d(y, x) > 0.

If w ∈ Ny(s), then
d(w, x) ≤ d(w, y) + d(y, x) < s+ d(y, x) = r

and thus w ∈ Nx(r). Therefore Ny(s) ⊆ Nx(r).

Proposition 9.4. Let (X, d) be a metric space and A ⊆ X . Then A is closed if and only if Ac is
open.

Proof. Since A and Ac have the same boundary points, we have the following successive equiva-
lent statements: [A is closed]⇔ [A contains all boundary points ofA]⇔ [A contains all boundary
points of Ac] ⇔ [Ac contains no boundary point of Ac] ⇔ [Ac is open].

The complement of the complement of a set is the set itself and hence: A is open if and only if
Ac is closed.

Proposition 9.5. Let (X, d) be a metric space and A ⊆ X . Then A◦ is the largest open set
contained in A and A is the smallest closed set containing A.

Proof. (i) Let x ∈ A◦. Then there is r > 0 so that Nx(r) ⊆ A. We take any y ∈ Nx(r). Since
Nx(r) is open, there is some s > 0 so that Ny(s) ⊆ Nx(r) and hence Ny(s) ⊆ A. Therefore
y ∈ A◦. We see that Nx(r) ⊆ A◦ and so x is an interior point of A◦. Thus, every point of A◦ is
an interior point of A◦ and hence A◦ is an open set contained in A.
Now let B be an open set contained in A. If x ∈ B, then there is r > 0 so that Nx(r) ⊆ B ⊆ A
and hence x ∈ A◦. Therefore B ⊆ A◦.
(ii) Let x be a limit point ofA. We take any r > 0 and thenNx(r) intersectsA. Let y ∈ Nx(r)∩A.
Since Nx(r) is open, there is some s > 0 so that Ny(s) ⊆ Nx(r). Since y ∈ A, Ny(s) intersects
A and hence Nx(r) also intersects A. Therefore, every Nx(r) intersects A and so x ∈ A. We see
that every limit point of A belongs to A and thus A is a closed set containing A.
Finally, let B be a closed set containing A. If x ∈ A, then every Nx(r) intersects A and hence
intersects B. Therefore x ∈ B and, since B is closed, x ∈ B. Thus A ⊆ B.
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Proposition 9.6. Let (X, d) be a metric space.
(i) The union of any open subsets of X is open.
(ii) The intersection of finitely many open subsets of X is open.
(iii) The intersection of any closed subsets of X is closed.
(iv) The union of finitely many closed subsets of X is closed.

Proof. (i) If x belongs to the union U of certain open sets, then x belongs to one of these sets, say
A. Since A is open, there is r > 0 so that Nx(r) ⊆ A ⊆ U . Therefore every point of U is an
interior point of U and then U is open.
(ii) Let F = A1 ∩ · · · ∩ An, where Ak is open for every k. If x ∈ F , then x ∈ Ak for every k.
Thus, there are r1, . . . , rn > 0 so that Nx(rk) ⊆ Ak for every k. We take

r = min{r1, . . . , rn} > 0.

Then
Nx(r) ⊆ Nx(rk) ⊆ Ak

for every k and hence Nx(r) ⊆ F . Therefore every point of F is an interior point of F and then
F is open.
(iii) and (iv) are immediate consequences of (i) and (ii), of proposition 9.4 and of the laws of de
Morgan: (

∩
A)c =

∪
Ac and (

∪
A)c =

∩
Ac.

LetX be a non-empty set and d1, d2 be metrics onX . We say that the two metrics are equiv-
alent if the metric spaces (X, d1) and (X, d2) have the same open sets: every A which is open in
(X, d1) is also open in (X, d2) and conversely.

Proposition 9.4 says that the closed sets in any netric space are the complements of the open
sets. Therefore, the metrics d1, d2 onX are equivalent if and only if the metric spaces (X, d1) and
(X, d2) have the same closed sets.

Proposition 9.7. LetX be non-empty and d1, d2 be metrics onX . We denoteNd1
x (r) andNd2

x (r)
the neighborhoods of x in the metric spaces (X, d1) and (X, d2), respectively. The following are
equivalent.
(i) d1, d2 are equivalent.
(ii) For every x ∈ X and every ϵ > 0 there is δ > 0 so that Nd1

x (δ) ⊆ Nd2
x (ϵ) and, conversely,

for every x ∈ X and every ϵ > 0 there is δ > 0 so that Nd2
x (δ) ⊆ Nd1

x (ϵ).

Proof. (i) ⇒ (ii) Let x ∈ X and ϵ > 0. The neighborhood Nd2
x (ϵ) is open in the metric space

(X, d2). Since (X, d1) and (X, d2) have the same open sets, Nd2
x (ϵ) is also open in (X, d1).

Because x ∈ Nd2
x (ϵ), there is δ > 0 so that Nd1

x (δ) ⊆ Nd2
x (ϵ). The converse is similar.

(ii)⇒ (i) Let A be open in (X, d1). We shall prove that A is also open in (X, d2).
We take any x ∈ A. Since A is open in (X, d1), there is ϵ > 0 so that Nd1

x (ϵ) ⊆ A. Then there is
δ > 0 so thatNd2

x (δ) ⊆ Nd1
x (ϵ) and thusNd2

x (δ) ⊆ A. Therefore every element ofA is an interior
point of A in (X, d2) and so A is open in (X, d2). The converse is similar.

Exercises.

9.1.1. (i) We define three functions d : R× R → R by

d(x, y) = (x− y)2, d(x, y) = |x− y|1/2, d(x, y) = |x−y|
1+|x−y| .

Which of these d is a metric on R?
(ii) For every x = (x1, x2), y = (y1, y2) in R2 we set d(x, y) =

(
(x1 − y1)

2 +4(x2 − y2)
2
)1/2. Is

d a metric on R2?
(iii) Let d(x, y) = |x1−y1| for every x = (x1, x2, x3), y = (y1, y2, y3) inR3. Is d a metric onR3?
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9.1.2.Which of the following are open or closed subsets of R?

N, Q, {1/n |n ∈ N}, {0} ∪ {1/n |n ∈ N}, [0, 1) ∪ {1 + 1/n |n ∈ N}.

Find their interiors, their closures and their boundaries.

9.1.3.Which of the following are open or closed subsets of R2?

{(x1, x2) |x1 > 0}, {(x1, 0) | a ≤ x1 ≤ b}, {(x1, 0) | a < x1 < b}, {(x1, x2) |x1x2 ≤ 1},

{(x1, x2) |x1x2 > 1}, {(1/n, 0) |n ∈ N}, [0, 1]× ({0} ∪ {1/n |n ∈ N}).

Find their interiors, their closures and their boundaries.

9.1.4.Which of the following are open or closed subsets of R3?

{(x1, x2, x3) |x1 > 0}, {(x1, 0, 0) | a < x1 < b}, {(x1, 0, 0) | a ≤ x1 ≤ b},

{(x1, x2, 0) | a ≤ x1 ≤ b, c ≤ x2 ≤ d}, {(x1, x2, x3) |x21 + x22 < x3}.

Find their interiors, their closures and their boundaries.

9.1.5. Let x · y = x1y1 + · · · + xdyd be the usual euclidean inner product in Rd. Let a ∈ Rd,
a ̸= 0 and a ∈ R. The set Γ = {x ∈ Rd | a · x = a} is a hyperplane of Rd. The open halfspaces
of Rd determined by Γ are A1 = {x ∈ Rd | a · x > a} and A2 = {x ∈ Rd | a · x < a} and the
corresponding closed halfspaces are B1 = {x ∈ Rd | a · x ≥ a} and B2 = {x ∈ Rd | a · x ≤ a}.
Find the interiors, the closures and the boundaries of Γ, A1, A2, B1 and B2.

9.1.6. In Rd, the general open or closed orthogonal parallelepiped with edges parallel to the coor-
dinate axes is (a1, b1)× · · · × (ad, bd) or [a1, b1]× · · · × [ad, bd], respectively. Prove that the first
set is open and the second is closed.

9.1.7. Let (X, d) be a metric space.
(i) Prove that both X and ∅ are open and closed subsets of X .
(ii) If A ⊆ X , prove that ∂A is closed.
(iii) Prove that every finite subset of X is closed.
(iv) If A ⊆ B ⊆ X , prove that A◦ ⊆ B◦ and A ⊆ B.
(v) If A ⊆ X is open and B ⊆ X is closed, prove that A \B is open and B \A is closed.

9.1.8. Let (X, d) be a metric space and A,B ⊆ X be closed and disjoint. Prove that there are
U, V ⊆ X open and disjoint so that A ⊆ U and B ⊆ V .

9.1.9. Let (X, d) be a metric space, A ⊆ X and x ∈ X . We define the distance of x from A to be
d(x,A) = inf{d(x, y) | y ∈ A}. Prove that:
(i) d(x,A) = d(x,A).
(ii) d(x,A) = 0 ⇔ x ∈ A.
(iii) |d(x1, A)− d(x2, A)| ≤ d(x1, x2).

9.1.10. Let X be any non-empty set and d : X ×X → R be the function defined by d(x, x) = 1
for every x ∈ X and by d(x, y) = 0 for every x, y ∈ X with x ̸= y.
(i) Prove that d is a metric on X . This metric is called discrete metric.
(ii) Prove that everyA ⊆ X (with the discrete metric) is open and closed. Prove thatA◦ = A = A
and ∂A = ∅ for every A ⊆ X .

9.1.11. Let (X, d) be a metric space. We define d′ : X ×X → R by d′(x, y) = d(x,y)
d(x,y)+1 . Prove

that d′ is a metric on X and that d, d′ are equivalent.

9.1.12. Let X be non-empty, d1, d2 be equivalent metrics on X and A ⊆ X . Prove that in both
metric spaces, (X, d1) and (X, d2), A has the same interior points, the same boundary points and
the same limit points.
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9.2 Limits and continuity of functions.

Let (X, d) and (Y, ρ) be metric spaces, A ⊆ X , f : A→ Y , x0 ∈ X be an accumulation point
of A and y0 ∈ Y . We say that y0 is a limit of f at x0, and denote

y0 = limx→x0 f(x),

if for every ϵ > 0 there is δ > 0 so that f(x) ∈ Ny0(ϵ) for every x ∈ Nx0(δ) ∩ A, x ̸= x0
or, equivalently, if for every ϵ > 0 there is δ > 0 so that ρ(f(x), y0) < ϵ for every x ∈ A with
0 < d(x, x0) < δ.

This definition of the limit of a function is the direct generalization of the well known definition
in case both metric spaces (X, d) and (Y, ρ) are the euclidean space R.

Proposition 9.8. Let (X, d) and (Y, ρ) be metric spaces, A ⊆ X , f : A → Y and x0 ∈ X be an
accumulation point of A. If f has a limit at x0, then this limit is unique.

Proof. Let
y′0 = limx→x0 f(x), y′′0 = limx→x0 f(x),

where y′0, y′′0 ∈ Y . We assume y′0 ̸= y′′0 and then proposition 9.1 implies that there is ϵ > 0 so that

Ny′0
(ϵ) ∩Ny′′0

(ϵ) = ∅.

Then there is δ > 0 so that f(x) ∈ Ny′0
(ϵ) and f(x) ∈ Ny′′0

(ϵ) for every x ∈ Nx0(δ)∩A, x ̸= x0,
and we arrive at a contradiction.

Proposition 9.8 allows us to talk about the limit of a function at a point.
Let (X, d) and (Y, ρ) be metric spaces, A ⊆ X , f : A → Y and x0 ∈ A. We say that

f is continuous at x0 if for every ϵ > 0 there is δ > 0 so that f(x) ∈ Nf(x0)(ϵ) for every
x ∈ Nx0(δ) ∩ A or, equivalently, if for every ϵ > 0 there is δ > 0 so that ρ(f(x), f(x0)) < ϵ for
every x ∈ A with d(x, x0) < δ.

If x0 ∈ A is not an accumulation point of A, i.e. if it is an isolated point of A, then we may
easily see that f is automatically continuous at x0. On the other hand, if x0 ∈ A is an accumulation
point of A, then f is continuous at x0 if and only if limx→x0 f(x) = f(x0).

Let (X, d) and (Y, ρ) be metric spaces, A ⊆ X and f : A→ Y . We say that f is continuous
in A if it is continuous at every point of A.

Proposition 9.9. Let (X, d), (Y, ρ) and (Z, τ) be metric spaces, A ⊆ X , B ⊆ Y , x0 ∈ A,
f : A → B and g : B → Z. If f is continuous at x0 and g is continuous at y0 = f(x0), then
g ◦ f : A→ Z is continuous at x0.

Proof. We take ϵ > 0 and then there is δ′ > 0 so that

τ(g(y), g(y0)) < ϵ (9.1)

for every y ∈ B with ρ(y, y0) < δ′. Then there is δ > 0 so that

ρ(f(x), y0) = ρ(f(x), f(x0)) < δ′ (9.2)

for every x ∈ A with d(x, x0) < δ. From (9.2) and from (9.1) with y = f(x) we get that

τ(g(f(x)), g(f(x0))) < ϵ

for every x ∈ A with d(x, x0) < δ. Thus g ◦ f : A→ Z is continuous at x0.

Proposition 9.10. Let (X, d) be a metric space, A ⊆ X , x0 ∈ A, f, g : A → R be continuous at
x0 and λ, µ ∈ R. Then:
(i) λf + µg : A→ R and fg : A→ R are continuous at x0.
(ii) If B = {x ∈ A | g(x) ̸= 0} and g(x0) ̸= 0, then 1

g : B → R is continuous at x0.
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Proof. (i) We take any ϵ > 0 and then there is δ > 0 so that

|f(x)− f(x0)| < ϵ
2(|λ|+1) , |g(x)− g(x0)| < ϵ

2(|µ|+1)

for every x ∈ A with d(x, x0) < δ. This implies that∣∣(λf(x) + µg(x))− (λf(x0) + µg(x0))
∣∣ ≤ |λ||f(x)− f(x0)|+ |µ||g(x)− g(x0)|
≤ |λ| ϵ

2(|λ|+1) + |µ| ϵ
2(|µ|+1) <

ϵ
2 + ϵ

2 = ϵ

for every x ∈ A with d(x, x0) < δ and hence λf + µg : A→ R is continuous at x0.
We then take any ϵ > 0 and we set

ϵ1 = min
{
( ϵ3)

1/2, ϵ
3(|f(x0)|+1) ,

ϵ
3(|g(x0)|+1)

}
> 0.

Then there is δ > 0 so that

|f(x)− f(x0)| < ϵ1, |g(x)− g(x0)| < ϵ1

for every x ∈ A with d(x, x0) < δ. This implies that

|f(x)g(x)− f(x0)g(x0)| ≤ |f(x)− f(x0)||g(x)− g(x0)|+ |f(x0)||g(x)− g(x0)|
+ |g(x0)||f(x)− f(x0)|

≤ ϵ1
2 + |f(x0)|ϵ1 + |g(x0)|ϵ1 < ϵ

3 + ϵ
3 + ϵ

3 = ϵ

for every x ∈ A with d(x, x0) < δ and hence fg : A→ R is continuous at x0.
(ii) We take any ϵ > 0 and then there is δ > 0 so that

|g(x)− g(x0)| < min
{ |g(x0)|

2 , g(x0)
2

2 ϵ
}

for every x ∈ A with d(x, x0) < δ. This implies that

|g(x)| = |g(x0) + (g(x)− g(x0))| ≥ |g(x0)| − |g(x)− g(x0)| > |g(x0)| − |g(x0)|
2 = |g(x0)|

2

and hence ∣∣ 1
g(x) −

1
g(x0)

∣∣ = |g(x)−g(x0)|
|g(x)||g(x0)| ≤

2|g(x)−g(x0)|
g(x0)2

< ϵ

for every x ∈ B with d(x, x0) < δ. Therefore 1
g : B → R is continuous at x0.

The proof of proposition 9.11 is almost identical to the previous proof.

Proposition 9.11. Let (X, d) be a metric space, A ⊆ X , f, g : A → R, x0 ∈ X be an accumula-
tion point of A, limx→x0 f(x) = y0 ∈ R, limx→x0 g(x) = z0 ∈ R and λ, µ ∈ R. Then:
(i) limx→x0(λf + µg) = λy0 + µz0 and limx→x0 fg = y0z0.
(ii) If z0 ̸= 0, then x0 is an accumulation point ofB = {x ∈ A | g(x) ̸= 0} and limx→x0

1
g(x) =

1
z0
.

Combining propositions 9.9 and 9.10 and starting from very simple examples of continuous
functions, we can produce more complicated ones.

Example 9.2.1. In Rd we define the k-projection πk : Rd → R by πk(x) = xk for every x =
(x1, . . . , xd). Every πk is continuous, since

|πk(x)− πk(y)| ≤ |x− y|

for every x, y ∈ Rd. Therefore, if g : R → R is continuous, then f : Rd → R defined by
f(x) = g(xk) for every x = (x1, . . . , xd) is continuous, since f = g ◦ πk.
Thus, polynomial functions

p(x1, . . . , xd) = Axa11 · · ·xadd +Bxb11 · · ·xbdd + · · · ,
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where all exponents are non-negative integers, all coefficients are real numbers and the sum is
finite, are continuous functions. Rational functions, i.e. quotients of polynomial functions, are
also continuous (except at the points where their denominator vanishes) as well as functions which
are simple combinations of exponential or trigonometric or other simple continuous functions of
the coordinates.

Proposition 9.12. Let (X, d) and (Y, ρ) be metric spaces, A ⊆ X and f : A → Y . Then the
following are equivalent.
(i) f is continuous in A.
(ii) For every openW ⊆ Y there is an open U ⊆ X so that f−1(W ) = U ∩A.
(iii) For every closed F ⊆ Y there is a closed G ⊆ X so that f−1(F ) = G ∩A.

Proof. (i) ⇒ (ii) Let x ∈ f−1(W ), i.e. f(x) ∈ W . Since W is open, there is ϵx > 0 so that
Nf(x)(ϵx) ⊆W . Since f is continuous, there is δx > 0 so that

f(y) ∈ Nf(x)(ϵx) ⊆W,

and hence y ∈ f−1(W ), for every y ∈ Nx(δx) ∩A. Therefore,

Nx(δx) ∩A ⊆ f−1(W ).

Now we consider the set
U =

∪
x∈f−1(W )Nx(δx).

Then U is a union of open sets and so it is open. We also have

U ∩A =
∪
x∈f−1(W )

(
Nx(δx) ∩A

)
⊆ f−1(W ).

On the other hand it is clear that for every x ∈ f−1(W ) we have x ∈ Nx(δx) ∩ A and hence
x ∈ U ∩A. Thus, f−1(W ) ⊆ U ∩A.
(ii) ⇒ (i) Take any x0 ∈ A and any ϵ > 0. Then Nf(x0)(ϵ) is open in Y and so there is an open
U ⊆ X so that

f−1
(
Nf(x0)(ϵ)

)
= U ∩A.

Then x0 ∈ U ∩ A and, since U is open, there is δ > 0 so that Nx0(δ) ⊆ U . Now, for every
x ∈ Nx0(δ) ∩ A we have x ∈ U ∩ A and hence x ∈ f−1

(
Nf(x0)(ϵ)

)
i.e. f(x) ∈ Nf(x0)(ϵ).

Therefore, f is continuous at every x0 ∈ A.
The equivalence (i)⇔ (iii) is a consequence of the equivalence (i)⇔ (ii) and of the general identity
f−1(W c) = (f−1(W ))c ∩A.

The metric spaces (X, d) and (Y, ρ) are called homeomorphic if there is f : X → Y which
is one-to-one in X and onto Y and so that f is continuous in X and f−1 : Y → X is continuous
in Y .

It is trivial to prove that the relation of homeomorphism between metric spaces is an equiva-
lence relation. It is also trivial to see, based for instance on proposition 9.7, that, if d1 and d2 are
two metrics on the non-empty setX , then the two metrics are equivalent if and only if the identity
function between (X, d1) and (X, d2) is a homeomorphism.

Exercises.

9.2.1. Prove that {x ∈ Rd \ {0} | e−|x| + sin |x| > 0} is an open subset of Rd.
Is {x ∈ Rd \ {0} | |x| − |x|3 ≤ 3} a closed subset of Rd?

9.2.2. Consider metric spaces (X, d), (Y, ρ) and A ⊆ X , B ⊆ Y and a continuous f : A→ Y .
(i) If A,B are open, prove that f−1(B) is open.
(ii) If A,B are closed, prove that f−1(B) is closed.

178



9.2.3. Let X,Y be non-empty sets, A ⊆ X , x0 ∈ A and f : A → Y . Let d1, d2 be equivalent
metrics onX and ρ1, ρ2 be equivalent metrics on Y . Prove that f is continuous at x0 with respect
to d1 and ρ1 if and only if it is continuous at x0 with respect to d2 and ρ2.

9.2.4. Let (X, d) be a non-empty set with the discrete metric (exercise 9.1.10), (Y, ρ) be any metric
space, A ⊆ X and f : A→ Y . Prove that f is continuous in A.

9.3 Sequences.

The next definition is the generalization of the analogous definition in the euclidean space R.
Let (X, d) be a metric space, x ∈ X and let (xn) be a sequence in X . We say that (xn)

converges to x in (X, d) or that x is a limit of (xn) in (X, d), and denote

xn → x or limn→+∞ xn = x,

if for every ϵ > 0 there is n0 so that xn ∈ Nx(ϵ) for every n ≥ n0 or, equivalently, if for every
ϵ > 0 there is n0 so that d(xn, x) < ϵ for every n ≥ n0.

It is clear that xn → x in the metric space (X, d) if and only if d(xn, x) → 0 in R.

Proposition 9.13. Let (X, d) be a metric space and let (xn) be a sequence in X . If (xn) has a
limit, then this limit is unique.

Proof. Let xn → x′ and xn → x′′ and assume that x′ ̸= x′′. We know that there is ϵ > 0 so that
Nx′(ϵ) ∩ Nx′′(ϵ) = ∅. Then there is n0 so that xn ∈ Nx′(ϵ) and xn ∈ Nx′′(ϵ) for every n ≥ n0
and this is impossible.

Because of proposition 9.13, we can talk about the limit of a sequence.
The next proposition reduces convergence in the euclidean space Rd to convergence in R.

Proposition 9.14. Let xn = (xn,1, . . . , xn,d) ∈ Rd for every n and x = (x1, . . . , xd) ∈ Rd. The
following are equivalent.
(i) xn → x in Rd.
(ii) xn,k → xk in R for every k = 1, . . . , d.

Proof. (i)⇒ (ii) A consequence of |xn,k − xk| ≤ |xn − x|.
(ii)⇒ (i) A consequence of |xn − x| ≤ |xn,1 − x1|+ · · ·+ |xn,d − xd|.

We shall now see the close relation between the notion of convergence of sequences and certain
notions we have encountered already: the notion of limit point, the notion of closed set (and,
indirectly, of open set) and, finally, the notions of the limit and continuity of a function.

Proposition 9.15. Let (X, d) be a metric space, A ⊆ X and x ∈ X . Then x is a limit point of A
if and only if there is a sequence (xn) in A so that xn → x.

Proof. Let x be a limit point of A. We take any n ∈ N and thenNx

(
1
n

)
contains at least one point

of A, i.e. there is xn ∈ A so that d(xn, x) < 1
n . Thus, the sequence (xn) is in A and xn → x.

Conversely, let (xn) be a sequence in A so that xn → x. We take any ϵ > 0 and then there is n0
so that xn ∈ Nx(ϵ) for every n ≥ n0. Thus Nx(ϵ) intersects A and so x is a limit point of A.

Example 9.3.1. Let us prove that the closure of the open ball Bx0(r) in Rd is the corresponding
closed ball Bx0(r).
Assume that x is a limit point of Bx0(r). Then there is a sequence (xn) in Bx0(r) so that xn → x,
i.e. |xn − x| → 0. Then from ∣∣|xn − x0| − |x− x0|

∣∣ ≤ |xn − x|
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we find |xn − x0| → |x − x0|. Since |xn − x0| < r for every n, we get |x − x0| ≤ r and so
x ∈ Bx0(r). Thus, Bx0(r) ⊆ Bx0(r).
Conversely, take x ∈ Bx0(r), i.e. |x− x0| ≤ r. For each n ∈ N we consider

xn = 1
n x0 + (1− 1

n) x.

Then
|xn − x0| = (1− 1

n)|x− x0| < r

and hence xn ∈ Bx0(r) for every n. Also, xn → x and so x ∈ Bx0(r). Thus, Bx0(r) ⊆ Bx0(r).

Proposition 9.16. Let (X, d) be a metric space and A ⊆ X . The following are equivalent.
(i) A is closed.
(ii) Every x, which is the limit of a sequence in A, belongs to A.

Proof. (i) ⇒ (ii) Take any x which is the limit of a sequence in A. Proposition 9.15 implies that
x is a limit point of A and, since A is closed, x ∈ A.
(ii) ⇒ (i) Take any limit point x of A. Proposition 9.15 implies that there is a sequence in A with
limit x and hence x belongs to A. Thus A contains all its limit points and so it is closed.

Propositions 9.17 and 9.18 are generalizations of analogous propositions for R.

Proposition 9.17. Let (X, d) and (Y, ρ) be metric spaces, A ⊆ X , x0 ∈ A and f : A → Y . The
following are equivalent.
(i) f is continuous at x0.
(ii) For every (xn) in A with xn → x0 we have f(xn) → f(x0).

Proof. (i)⇒ (ii) Take (xn) in A with xn → x0. We take any ϵ > 0 and then there is δ > 0 so that

ρ(f(x), f(x0)) < ϵ (9.3)

for every x ∈ A with d(x, x0) < δ. Then there is n0 so that

d(xn, x0) < δ (9.4)

for every n ≥ n0. Now (9.4) and (9.3) with x = xn imply that for every n ≥ n0 we have

ρ(f(xn), f(x0)) < ϵ.

Therefore f(xn) → f(x0).
(ii) ⇒ (i) Assume that f is not continuous at x0. Then there is ϵ > 0 so that for every δ > 0 there
is x ∈ A such that

d(x, x0) < δ, ρ(f(x), f(x0)) ≥ ϵ.

Hence for every n ∈ N there is xn ∈ A with

d(xn, x0) <
1
n , ρ(f(xn), f(x0)) ≥ ϵ.

Then (xn) is in A and xn → x0 but f(xn) ̸→ f(x0) and we arrived at a contradiction.

The proof of proposition 9.18 is almost identical to the proof of proposition 9.17.

Proposition 9.18. Let (X, d) and (Y, ρ) be metric spaces, A ⊆ X , x0 be an accumulation point of
A, y0 ∈ Y and f : A→ Y . The following are equivalent.
(i) limx→x0 f(x) = y0.
(ii) For every (xn) in A \ {x0} with xn → x0 we have f(xn) → y0.

Let (X, d) be a metric space and (xn) be a sequence in X . We say that (xn) is a Cauchy
sequence if for every ϵ > 0 there is n0 so that d(xn, xm) < ϵ for every n,m ≥ n0.

180



Proposition 9.19. Let (X, d) be a metric space and (xn) be a sequence in X . If (xn) converges
to some element of X , then it is a Cauchy sequence.

Proof. Let xn → x. If ϵ > 0, then there is n0 so that d(xn, x) < ϵ
2 for every n ≥ n0. Therefore,

d(xn, xm) ≤ d(xn, x) + d(xm, x) <
ϵ
2 + ϵ

2 = ϵ

for every n,m ≥ n0 and so (xn) is a Cauchy sequence.

Let (X, d) be a metric space andA ⊆ X . We say thatA is complete if every Cauchy sequence
in A converges to some element of A.

Proposition 9.20. Let X be non-empty and let d1, d2 be metrics on X . The following are equiva-
lent.
(i) The metrics d1, d2 are equivalent.
(ii) The metric spaces (X, d1) and (X, d2) have the same convergent sequences.

Proof. (i)⇒ (ii) Let xn → x in (X, d1). We shall prove that xn → x also in (X, d2).
Let ϵ > 0. Proposition 9.7 implies that there is δ > 0 so that Nd1

x (δ) ⊆ Nd2
x (ϵ). Since xn → x

in (X, d1), there is n0 so that xn ∈ Nd1
x (δ), and hence xn ∈ Nd2

x (ϵ), for every n ≥ n0. Thus
xn → x in (X, d2).
The converse is similar.
(ii)⇒ (i) Let A ⊆ X be closed in (X, d1). We shall see that A is closed also in (X, d2).
We assume that (xn) is in A and xn → x in (X, d2). Then xn → x also in (X, d1) and, since A
is closed in (X, d1), we get x ∈ A. Thus A is closed in (X, d2).
The converse is similar.

Exercises.

9.3.1. Let xn → x and yn → y in (X, d). Prove that d(xn, yn) → d(x, y) in R.

9.3.2. Let (X, d) be a metric space, A ⊆ X and x ∈ X . Prove that x is a boundary point of A if
and only if there are sequences (x′n) in A and (x′′n) in Ac so that x′n → x and x′′n → x.

9.3.3.We consider sequences (xn) and (yn) in Rd and (λn) in R. If xn → x, yn → y in Rd and
λn → λ in R, prove that xn + yn → x+ y and λnxn → λx in Rd and that xn · yn → x · y in R.

9.3.4. Using sequences, prove that { 1
n |n ∈ N} is not a closed subset ofRwhile {0}∪{ 1

n |n ∈ N}
is a closed subset of R.

9.3.5. Using sequences, prove that closed balls, hyperplanes and closed halfspaces inRd are closed
subsets of Rd.

9.3.6. Let (X, d) be a non-empty set with the discrete metric (exercise 9.1.10). Prove that a se-
quence (xn) in X converges if and only if it is constant after some value of its index n.

9.4 Compactness.

Let X be non-empty, M ⊆ X and let Σ be a collection of subsets of X . We say that Σ is a
covering of M ifM ⊆

∪
A∈ΣA. If, moreover, Σ is finite, we say that it is a finite covering of

M . Now, if Σ and Σ′ are coverings ofM such that Σ′ ⊆ Σ, then we say that Σ is larger than Σ′

and that Σ′ is smaller than Σ.
Let (X, d) be a metric space and M ⊆ X . If Σ is a covering of M and all A ∈ Σ are open

sets, then Σ is called open covering ofM . We say thatM is compact if for every open covering
Σ ofM there is a finite covering Σ′ ofM which is smaller than Σ.
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Example 9.4.1. Let (X, d) be a metric space and M = {x1, . . . , xn} ⊆ X . We take any open
covering Σ ofM . Then every xk ∈ M belongs to some Ak ∈ Σ and henceM ⊆ A1 ∪ · · · ∪ An.
Thus, Σ′ = {A1, . . . , An} is a finite covering ofM with Σ′ ⊆ Σ. HenceM is compact.

Let (X, d) be a metric space andM ⊆ X . We say thatM is bounded if there is x0 ∈ X and
r > 0 so thatM ⊆ Nx0(r).

Example 9.4.2. A setM in Rd is bounded if and only if it is contained in some orthogonal paral-
lelopiped with edges parallel to the coordinate axes.

Proposition 9.21. Let (X, d) be a metric space andM ⊆ X . IfM is compact, then it is bounded
and closed.

Proof. We take any x0 ∈ X and we consider the collection

Σ = {Nx0(n) |n ∈ N}.

Then Σ is an open covering ofM , and so there is a covering Σ′ ofM which is smaller than Σ, i.e.
there are n1, . . . , nN so that

M ⊆ Nx0(n1) ∪ · · · ∪Nx0(nN ).

If r = max{n1, . . . , nN}, thenM ⊆ Nx0(r) and soM is bounded.
Now we take any x0 ∈M c. We consider the sets

An = {x ∈ X | d(x, x0) > 1
n}

and the collection Σ = {An |n ∈ N}. Then Σ is an open covering of M , and hence there is a
finite covering Σ′ ofM which is smaller than Σ. I.e. there are n1, . . . , nN so that

M ⊆ An1 ∪ · · · ∪AnN .

If n = max{n1, . . . , nN}, then we have M ⊆ An and hence Nx0(
1
n) ⊆ M c. We proved that

every x0 ∈M c is an interior point ofM c. ThusM c is open and soM is closed.

Proposition 9.22. Let (X, d) be a metric space and N ⊆ M ⊆ X . If M is compact and N is
closed, then N is compact.

Proof. We take any open covering Σ of N . Then

Σ1 = {N c} ∪ Σ

is an open covering ofM . SinceM is compact, there is a finite coveringΣ′
1 ofM which is smaller

than Σ1. I.e. there are A1, . . . , An ∈ Σ1 so thatM ⊆ A1 ∪ · · · ∪An.
IfN c is one ofA1, . . . , An, sayN c = An, thenN ⊆ A1∪· · ·∪An−1 and soΣ′ = {A1, . . . , An−1}
is a finite covering of N which is smaller than Σ.
IfN c is not one ofA1, . . . , An, thenΣ′ = {A1, . . . , An} is a finite covering ofN which is smaller
than Σ.
In any case there is a finite covering of N which is smaller than Σ.

Proposition 9.23. Let (X, d) be a metric space and M,N ⊆ X so that M ∩ N = ∅. If M is
compact and N is closed, then there is ϵ > 0 so that d(x, y) ≥ ϵ for every x ∈M and y ∈ N .

Proof. For every x ∈M we have x ∈ N c and, since N c is open, there is ϵx > 0 so that

Nx(ϵx) ⊆ N c
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and hence Nx(ϵx) ∩N = ∅. This implies

d(x, y) ≥ ϵx (9.5)

for every x ∈ M and y ∈ N . The collection {Nx(
ϵx
2 ) |x ∈ M} is an open covering ofM and,

sinceM is compact, there are x1, . . . , xn ∈M so that

M ⊆ Nx1(
ϵx1
2 ) ∪ · · · ∪Nxn(

ϵxn
2 ).

We set
ϵ = min

{ ϵx1
2 , . . . ,

ϵxn
2

}
> 0.

If x ∈ M , there is k = 1, . . . , n so that x ∈ Nxk(
ϵxk
2 ) and (9.5) implies that for every y ∈ N we

have
d(x, y) ≥ d(y, xk)− d(x, xk) ≥ ϵxk −

ϵxk
2 =

ϵxk
2 ≥ ϵ.

Therefore, d(x, y) ≥ ϵ for every x ∈M and y ∈ N .

The next theorem is a generalization of the well known result for sequences of nested closed
and bounded intervales in R: if [a1, b1] ⊇ [a2, b2] ⊇ . . . ⊇ [an, bn] ⊇ . . . , then there is x which
belongs to every [an, bn] and if, moreover, bn − an → 0, then this x is unique.

Let (X, d) be a metric space andM ⊆ X . We define the diameter ofM to be

diamM = sup{d(x, y) |x, y ∈M}.

Theorem 9.1. Let (X, d) be a metric space andK1,K2, . . . be a sequence of non-empty compact
subsets of X so that Kn+1 ⊆ Kn for every n. Then there is some element which belongs to all
Kn. If, moreover, diam Kn → 0, then the common element of allKn is unique.

Proof. We assume that ∩+∞
n=1Kn = ∅.

Then the collection Σ = {Kc
n |n ∈ N} is an open covering ofK1. SinceK1 is compact, there are

n1, . . . , nN so that
K1 ⊆ Kc

n1
∪ · · · ∪Kc

nN
.

We take n = max{n1, . . . , nN}, and then K1 ⊆ Kc
n. This is wrong, because Kn ⊆ K1 and

Kn ̸= ∅.
Now, let diam Kn → 0. If x, y belong to allKn, then

0 ≤ d(x, y) ≤ diam Kn

for every n and hence d(x, y) = 0.

The important theorem 9.2 describes the notion of compactness in terms of sequences.

Theorem 9.2. Let (X, d) be a metric space andM ⊆ X . The following are equivalent.
(i)M is compact.
(ii) Every sequence inM has at least one subsequence which converges to an element ofM .

Proof. (i)⇒ (ii) We take an arbitrary sequence (xn) inM .
Assume that for every x ∈ M there is a neighborhood Nx(ϵx) of x, which contains only finitely
many terms of (xn). Then Σ = {Nx(ϵx) |x ∈ M} is an open covering ofM and hence there are
y1, . . . , yN ∈M so that

M ⊆ Ny1(ϵy1) ∪ · · · ∪NyN (ϵyN ).

Each of these neighborhoods contains only finitelymany terms of (xn). Therefore,M also contains
only finitely many terms of (xn) and we arrive at a contradiction.
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Therefore there is x0 ∈ M so that for every ϵ > 0 the neighborhood Nx0(ϵ) contains infinitely
many terms of (xn). Thus, there is n1 ≥ 1 so that xn1 ∈ Nx0(1). Then there is n2 > n1 so that
xn2 ∈ Nx0(

1
2). We continue inductively and we find a subsequence (xnk

) of (xn) so that

xnk
∈ Nx0(

1
k )

or, equivalently, d(xnk
, x0) <

1
k for every k. Therefore xnk

→ x0.
(ii)⇒ (i) Step 1. Let ϵ > 0. Then there are x1, . . . , xn ∈M so that

M ⊆ Nx1(ϵ) ∪ · · · ∪Nxn(ϵ).

Assume that this is not true. We take any x1 ∈M . ThenM ̸⊆ Nx1(ϵ) and so there is x2 ∈M with
x2 ̸∈ Nx1(ϵ). ThenM ̸⊆ Nx1(ϵ) ∪Nx2(ϵ) and so there is x3 ∈ M with x3 ̸∈ Nx1(ϵ) ∪Nx2(ϵ).
ThenM ̸⊆ Nx1(ϵ)∪Nx2(ϵ)∪Nx3(ϵ) and so there is x4 ∈M with x4 ̸∈ Nx1(ϵ)∪Nx2(ϵ)∪Nx3(ϵ).
We continue inductively and we see that there is a sequence (xn) inM so that d(xn, xm) ≥ ϵ for
every n,m with n ̸= m. But this does not allow the existence of a convergent subsequence of
(xn) and we arrive at a contradiction.
Step 2. We take any open covering Σ of M . Then there is ϵ > 0 so that for every x ∈ M the
neighborhood Nx(ϵ) is contained in some A ∈ Σ.
Assume that there is no ϵ > 0 with this property. I.e. for every ϵ > 0 there is x ∈M so thatNx(ϵ)
is not contained in any A ∈ Σ. Thus, for every n ∈ N there is xn ∈ M so that Nxn(

1
n) is not

contained in any A ∈ Σ. Now, there is a subsequence (xnk
) of (xn) so that xnk

→ x0 for some
x0 ∈M . Then x0 ∈ A0 for some A0 ∈ Σ. Since A0 is open, there is δ > 0 so that Nx0(δ) ⊆ A0.
We take nk large enough so that

d(xnk
, x0) <

δ
2 ,

1
nk
< δ

2 .

Then for every x ∈ Nxnk
( 1
nk

) we have

d(x, x0) ≤ d(x, xnk
) + d(xnk

, x0) <
1
nk

+ d(xnk
, x0) <

δ
2 + δ

2 = δ

and hence Nxnk
( 1
nk
) ⊆ Nx0(δ) ⊆ A0. We arrive at a contradiction, because Nxnk

( 1
nk

) is not
contained in any A ∈ Σ.
Step 3. We take an arbitrary open covering Σ of M . According to step 2, there is ϵ > 0 so that
for every x ∈ M we have that Nx(ϵ) is contained in some A ∈ Σ. According to step 1, there are
x1, . . . , xn ∈M so that

M ⊆ Nx1(ϵ) ∪ . . . ∪Nxn(ϵ).

Now let Nxk(ϵ) ⊆ Ak ∈ Σ for each k = 1, . . . , n. Then

M ⊆ Nx1(ϵ) ∪ · · · ∪Nxn(ϵ) ⊆ A1 ∪ · · · ∪An

and hence Σ′ = {A1, . . . , An} is a finite covering ofM which is smaller than Σ.

Proposition 9.24. Every closed orthogonal parallelopiped in Rd with edges parallel to the coor-
dinate axes is compact.

Proof. LetM = [a1, b1]× · · · × [ad, bd]. We consider an arbitrary open covering Σ ofM and we
assume that there is no finite covering Σ′ ofM which is smaller than Σ.
We split every edge [ak, bk] in the two subintervals [ak, ak+bk2 ] and [ak+bk2 , bk]. This induces a
splitting ofM in 2d orthogonal parallelopipeds, each of which has dimensions equal to one half of
the dimensions ofM . We observe that for at least one of these parallelopipeds, call itM1, there is
no finite coveringwhich is smaller thanΣ. Otherwise, for each of these parallelopipeds there would
exist a finite covering which is smaller thanΣ, and hence the (finite) union of these finite coverings
would be a finite covering ofM which is smaller than Σ. Similarly, we splitM1 in 2d orthogonal
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parallelopipeds for at least one of which, call itM2, there is no finite covering smaller than Σ. We
continue inductively and we end up with a sequence (Ml) of orthogonal parallelopipeds with the
following properties:
(i) For every l there is no finite covering ofMl which is smaller than Σ.
(ii)M ⊇M1 ⊇ . . . ⊇Ml−1 ⊇Ml ⊇ . . . . This means that, if

Ml = [al,1, bl,1]× · · · × [al,d, bl,d],

then for every k = 1, . . . , d we have

ak ≤ a1,k ≤ . . . ≤ al−1,k ≤ al,k ≤ . . . ≤ bl,k ≤ bl−1,k ≤ . . . ≤ b1,k ≤ bk.

(iii) For every k = 1, . . . , d and l ≥ 1 we have bl,k − al,k =
bk−ak

2l
and hence

bl,k − al,k → 0.

(iv) For every l ≥ 1 we have diam Ml =
diam M

2l
and hence

diam Ml → 0.

From (ii) we have that for every k = 1, . . . , d the sequence(al,k) is increasing and bounded above
and that the sequence (bl,k) is decreasing and bounded below and hence both sequences converge
to two limits which, because of (iii), coincide. We set

xk = liml→+∞ al,k = liml→+∞ bl,k.

Then x = (x1, . . . , xd) belongs to everyMl. Since Σ is a covering ofM , there is some A0 ∈ Σ
so that x ∈ A0. Now, A0 is open and hence there is ϵ0 > 0 so that

Nx(ϵ0) ⊆ A0.

Now, (iv) implies that there is l0 so that

diam Ml0 < ϵ0.

Then, since x ∈Ml0 , for every y ∈Ml0 we have

|y− x| ≤ diam Ml0 < ϵ0

and hence y ∈ Nx(ϵ0). Thus
Ml0 ⊆ Nx(ϵ0) ⊆ A0

and so Σ′ = {A0} is a finite covering ofMl0 which is smaller than Σ and we arrive at a contradic-
tion with (i).

Bolzano-Weierstrass theorem. Every bounded sequence in Rd has at least one convergent sub-
sequence.

Proof. If (xn) is any bounded sequence in Rd, then there is a closed orthogonal parallelopipedM
with edges parallel to the coordinate axes so that (xn) is in M . Now, M is compact and hence
there is a subsequence of (xn) which converges (to an element ofM ).

The next theorem is the most useful result for the determination of compact subsets of Rd.

Theorem 9.3. LetM ⊆ Rd. ThenM is compact if and only if it bounded and closed.
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First proof. Because of proposition 9.21, we have to prove only one direction.
LetM be closed and bounded. We take any (xn) inM . SinceM is bounded, (xn) is also bounded
and the Bolzano-Weierstrass theorem implies that there is a subsequence (xnk

) so that xnk
→ x for

some x ∈ Rd. SinceM is closed and (xnk
) is inM , we have that x ∈ M . Hence every sequence

inM has a subsequence which converges to an element ofM and theorem 9.2 implies thatM is
compact.
Second proof. Again, proposition 9.21 proves one direction.
Since M is bounded, there is a closed orthogonal parallelopiped N with edges parallel to the
coordinate axes so that M ⊆ N . Proposition 9.24 implies that N is compact and, since M is
closed, proposition 9.22 implies thatM is compact.

Example 9.4.3. Every closed ball is a compact subset of Rd.

Theorem 9.3 says that the converse of proposition 9.21 is true inRd. This is not the case though
in an arbitrary metric space.

Theorem 9.4. The metric space Rd is complete.

Proof. Let (xn) be a Cauchy sequence in Rd. Then we easily see that (xn) is bounded. Indeed,
there is n0 so that |xn − xm| < 1 for every n,m ≥ n0. This implies that |xn − xn0 | < 1 for every
n ≥ n0 and hence |xn| ≤ |xn0 |+ 1 for every n ≥ n0. Therefore,

|xn| ≤ max{|x1|, . . . , |xn0−1|, |xn0 |+ 1}

for every n. Then the Bolzano-Weierstrass theorem implies that there is a subsequence (xnk
) so

that xnk
→ x for some x. Now, we have that |xk − xnk

| → 0, because (xn) is a Cauchy sequence,
and hence

|xk − x| ≤ |xk − xnk
|+ |xnk

− x| → 0.

Therefore, xk → x.

Proposition 9.25. Let (X, d) and (Y, ρ) be metric spaces, M ⊆ X and f : M → Y . If f is
continuous inM andM is compact, then f(M) is compact.

Proof. Let T be an open covering of f(M). Proposition 9.12 implies that for every B ∈ T there
is an open AB ⊆ X so that

f−1(B) = AB ∩M. (9.6)

Since f(M) ⊆
∪
B∈T B, we have

M ⊆
∪
B∈T f

−1(B) ⊆
∪
B∈T AB,

i.e. the collection Σ = {AB |B ∈ T} is an open covering ofM . SinceM is compact, there are
B1, . . . , Bn ∈ T so that

M ⊆ AB1 ∪ · · · ∪ABn .

This and (9.6) imply

M ⊆ (AB1 ∪ · · · ∪ABn) ∩M = (AB1 ∩M) ∪ · · · ∪ (ABn ∩M) = f−1(B1) ∪ · · · ∪ f−1(Bn),

and hence
f(M) ⊆ B1 ∪ · · · ∪Bn.

Therefore {B1, . . . , Bn} is a finite covering of f(M) which is smaller than T .

Proposition 9.26. Every non-empty compact subset of R has a maximal and a minimal element.
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Proof. LetM ⊆ R be non-empty and compact. SinceM is non-empty and bounded, u = supM
is in R. Then for every ϵ > 0 there is x ∈ M so that u− ϵ < x ≤ u. Therefore u is a limit point
ofM and, sinceM is closed, u ∈M . So u is the maximal element ofM .
The proof for the existence of a minimal element is similar.

Proposition 9.27 generalizes the familiar analogous proposition for continuous f : [a, b] → R.

Proposition 9.27. Let (X, d) be a metric space,M ⊆ X and f : M → R. If f is continuous on
M andM is compact, then f is bounded and has a maximum and a minimum value.

Proof. Proposition 9.25 implies that f(M) ⊆ R is compact. Now proposition 9.26 says that f(M)
is bounded and has a maximal and a minimal element.

Let (X, d) and (Y, ρ) be metric spaces, A ⊆ X and f : A → Y . We say that f is uniformly
continuous in A if for every ϵ > 0 there is δ > 0 so that ρ(f(x′), f(x′′)) < ϵ for every x′, x′′ ∈ A
with d(x′, x′′) < δ.

Theorem 9.5. Let (X, d) and (Y, ρ) be metric spaces,M ⊆ X and f :M → Y . If f is continuous
inM andM is compact, then f is uniformly continuous inM .

Proof. Let ϵ > 0. Since f is continuous inM , for every x ∈M there is δx > 0 so that

ρ(f(y), f(x)) < ϵ
2 (9.7)

for every y ∈M with d(y, x) < δx.
The collection {Nx(

δx
2 ) |x ∈ M} is an open covering of M and, since M is compact, there are

x1, . . . , xn ∈M so that
M ⊆ Nx1(

δx1
2 ) ∪ · · · ∪Nxn(

δxn
2 ). (9.8)

We define
δ = min

{ δx1
2 , . . . ,

δxn
2

}
> 0

and we take any x′, x′′ ∈ M with d(x′, x′′) < δ. Because of (9.8), there is k = 1, . . . , n so that
x′ ∈ Nxk(

δxk
2 ) and hence

d(x′, xk) <
δxk
2 < δxk .

This implies that
d(x′′, xk) ≤ d(x′′, x′) + d(x′, xk) < δ +

δxk
2 ≤ δxk

and from (9.7) we have

ρ(f(x′), f(x′′)) ≤ ρ(f(x′), f(xk)) + ρ(f(x′′), f(xk)) < ϵ.

We proved that for every x′, x′′ ∈M with d(x′, x′′) < δ we have ρ(f(x′), f(x′′)) < ϵ. Therefore,
f is uniformly continuous inM .

Exercises.

9.4.1. Prove that {(x1, x2) |x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1} is a compact subset of R2 and that
{(x1, x2, x3) |x12 + x2

2 ≤ x3 ≤ 1} is a compact subset of R3.

9.4.2. (i) Consider the subset A = {(x1, x2) |x21 + x22 ≤ 1} of R2. Does the function f(x1, x2) =
ex1+x2 have a maximum and a minimum value in A?
(ii) Consider the subset A = {(x1, x2, x3) |x21 + x22 + x2 ≤ 1, |x3| ≤ 2} of R3. Does the function
f(x1, x2, x3) = ex1+x3 sin(x1x2) have a maximum and a minimum value in A?
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9.4.3. (i) Let f : Rd → R such that f(x) → 0 when |x| → +∞. This means, by definition, that
for every ϵ > 0 there is R > 0 so that |f(x)| < ϵ for every x ∈ Rd with |x| > R.
If there is x0 ∈ Rd so that f(x0) ≥ 0, prove that f has a maximum value.
(ii) Prove that f : R2 → R with f(x1, x2) = x1e

−x21−x22 has a maximum and a minimum value
and find them.

9.4.4. Let (X, d) be a metric space, x ∈ X , (xn) be a sequence in X so that xn ̸= x for every n
and xn → x. Prove that {xn |n ∈ N} is not compact and that {x} ∪ {xn |n ∈ N} is compact.

9.4.5. Let (X, d) be a metric space andM1, . . . ,Mn ⊆ X . IfM1, . . . ,Mn are compact, prove that
M1 ∪ · · · ∪Mn is compact.

9.4.6. Let (X, d) be a metric space and A,B ⊆ X . If A is compact and B is closed, prove that
A ∩B is compact.

9.4.7. Let (X, d) be a metric space, x0 ∈ X andM,N be non-empty compact subsets of X .
(i) Prove that there are x′, y′ ∈M so that d(x′, y′) = diamM .
(ii) Prove that there is x′ ∈M so that d(x0, x′) = inf{d(x0, x) |x ∈M}.
(iii) Prove that there are x′ ∈M and y′ ∈ N so that d(x′, y′) = inf{d(x, y) |x ∈M,y ∈ N}.

9.4.8. Let x0 ∈ Rd,M ⊆ Rd be non-empty and closed and N ⊆ Rd be non-empty and compact.
(i) Prove that there is x′ ∈M so that |x0 − x′| = inf{|x0 − x| | x ∈M}.
(ii) Prove that there are x′ ∈M and y′ ∈ N so that |x′ − y′| = inf{|x− y| | x ∈M, y ∈ N}.

9.4.9. LetM be a bounded subset of Rd. Prove thatM and ∂M are compact.

9.4.10. Let (X, d) be a metric space andM ⊆ X . Prove that diamM = diamM .

9.4.11. Let (X, d) be a metric space andM ⊆ X . We say thatM is totally bounded if for every
ϵ > 0 there are x1, . . . , xn ∈M so thatM ⊆ Nx1(ϵ) ∪ · · · ∪Nxn(ϵ).
Prove thatM ⊆ X is compact if and only if it is complete and totally bounded.

9.4.12. Let (X, d) and (Y, ρ) be metric spaces,A ⊆ X and f : A→ Y . Assume thatA is compact,
Y is complete and f is continuous inA. Prove that there is a continuous F : A→ Y so that F = f
in A if and only if f is uniformly continuous in A.

9.4.13. Let (X, d) be a non-empty set with the discrete metric (exercise 9.1.10). Prove thatM ⊆ X
is compact if and only if it is a finite set.

9.5 Connectedness.

Let (X, d) be a metric space and A ⊆ X . We say that B,C form a decomposition of A if (i)
B ∪ C = A, (ii) B ̸= ∅, C ̸= ∅, (iii) none of B,C contains a limit point of the other.

It is clear that (iii) is equivalent to B ∩ C = ∅ and B ∩ C = ∅ taken together.

Example 9.5.1. In R2 we consider the closed discs B = D(0,0)(1), C = D(3,0)(1) and their union
A = B ∪ C. It is clear that B,C form a decomposition of A.
If we consider the open discs B = D(0,0)(1), C = D(2,0)(1) and A = B ∪C, then the discs B,C
are tangent but, again, they form a decomposition of A.
If we take the closed disc B = D(0,0)(1), the open disc C = D(2,0)(1) and A = B ∪ C, then the
discs B,C are tangent and they do not form a decomposition of A. Indeed, B contains the limit
point (1, 0) of C.

Let (X, d) be a metric space and A ⊆ X . We say that A is connected if there is no decompo-
sition of A, i.e. there is no pair of sets B,C with the above mentioned properties (i)-(iii).
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Example 9.5.2. The first two sets A of example 9.5.1 are not connected since each of them admits
a specific decomposition. But we cannot decide at this moment if the third set A of example 9.5.1
is connected or not. We know that the specificB,C related to this A do not form a decomposition
ofA. To decide thatA is connected we must prove that, not only the specific pair, but an arbitrary
pair does not form a decomposition of A.

Example 9.5.3. It is obvious that ∅ as well as any {x} is a connected set.

Lemma 9.1. Let (X, d) be a metric space and A,B,C ⊆ X with B ∩ C = ∅ and assume that
none of B,C contains a limit point of the other. If A is connected and A ⊆ B ∪ C, then either
A ⊆ B or A ⊆ C.

Proof. We define
B1 = A ∩B, C1 = A ∩ C.

Clearly, B1 ∪ C1 = A and B1 ∩ C1 = ∅.
Now let x ∈ B1. Then x ∈ B, and x is not a limit point of C. Then there is r > 0 so that
Nx(r)∩C = ∅ and, since C1 ⊆ C, we getNx(r)∩C1 = ∅. Thus x is not a limit point of C1. We
conclude that B1 does not contain any limit point of C1. Similarly, C1 does not contain any limit
point of B1.
If B1 ̸= ∅ and C1 ̸= ∅, then B1, C1 form a decomposition of A and this contradicts the connect-
edness of A. Hence, either B1 = ∅ or C1 = ∅ and thus either A ⊆ C or A ⊆ B, respectively

Proposition 9.28. Let (X, d) be a metric space and Σ be a collection of connected subsets of X
all of which have a common point. Then

∪
A∈ΣA is connected.

Proof. We set
U =

∪
A∈ΣA

and we shall prove that U is connected. Let x0 be the common point of all A ∈ Σ.
We assume that U is not connected. Then there are B,C which form a decomposition of U .
Since x0 ∈ U , we have x0 ∈ B or x0 ∈ C. Assume that x0 ∈ B (the proof is the same if x0 ∈ C).
For every A ∈ Σ we have A ⊆ U and hence A ⊆ B ∪ C. According to lemma 9.1, every A ∈ Σ
is contained either in B or in C. But if any A ∈ Σ is contained in C, it cannot contain x0 which is
in B. Therefore every A ∈ Σ is contained in B and hence U ⊆ B. This implies that C = ∅ and
we arrived at a contradiction.

Proposition 9.29. Let (X, d) be a metric space and A,D ⊆ X so that A ⊆ D ⊆ A. If A is
connected, then D is connected.

Proof. Let D not be connected. Then there are B,C which form a decomposition of D. Since
A ⊆ D, we have A ⊆ B ∪ C. Lemma 9.1 implies that A ⊆ B or A ⊆ C. Let A ⊆ B. (The
proof is similar if A ⊆ C.) Now, every point of D is a limit point of A and hence a limit point of
B (since A ⊆ B). Therefore no point ofD belongs to C (since C does not contain limit points of
B) and this is wrong since C ̸= ∅.

Proposition 9.30. Let (X, d), (Y, ρ) be metric spaces, A ⊆ X and f : A→ Y . If f is continuous
in A and A is connected, then f(A) is connected.

Proof. Assume that f(A) is not connected. Then there are B′, C ′ which form a decomposition of
f(A). We consider the inverse images of B′, C ′ in A, i.e. the sets

B = f−1(B′) = {x ∈ A | f(x) ∈ B′}, C = f−1(C ′) = {x ∈ A | f(x) ∈ C ′}.

It is clear that B ∪ C = A, B ̸= ∅, C ̸= ∅.
Now, let B contain a limit point b of C. Then there is a sequence (cn) in C so that cn → b. Since
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f is continuous at b, we get f(cn) → f(b). The sequence (f(cn)) is in C ′ and thus f(b) is a limit
point of C ′. But f(b) ∈ B′ and we arrive at a contradiction, because B′ does not contain any limit
point of C ′. Hence B does not contain any limit point of C. Similarly, C does not contain a limit
point of B. Thus, B,C form a decomposition of A and this is wrong since A is connected.

Let (X, d) be a metric space, x, y ∈ X and r > 0. Every finite set {z0, . . . , zn} ⊆ X with
z0 = x, zn = y and d(zk−1, zk) < r for every k = 1, . . . , n is called r-succession of pointswhich
joins x, y. If, moreover, zk ∈ A for every k = 0, . . . , n, we say that the r-succession of points is
in A.

Theorem 9.6. Let (X, d) be a metric space andK be a compact subset ofX . ThenK is connected
if and only if for every x, y ∈ K and every r > 0 there is an r-succession of points in K which
joins x, y.

Proof. Assume K is connected. We take any x, y ∈ K and any r > 0 and let there be no r-
succession of points inK which joins x, y. We define the sets

B = {b ∈ K | there is an r-succession of points in K which joins x, b},
C = {c ∈ K | there is no r-succession of points in K which joins x, c}.

It is clear that B ∪ C = K, B ̸= ∅ (since x ∈ B) and C ̸= ∅ (since y ∈ C).
Assume that B contains a limit point b of C. Then (since b ∈ B) there is an r-succession of points
in K which joins x, b and, also, (since b is a limit point of C) there is c ∈ C so that d(b, c) < r.
If to the r-succession of points ofK which joins x, b we attach c (as a final point after b), then we
get an r-succession of points inK which joins x, c. This is wrong since c ∈ C. Hence B does not
contain any limit point of C.
Now assume thatC contains a limit point c ofB. Then (since c is a limit point ofB) there is b ∈ B
so that d(b, c) < r and (since b ∈ B) there is an r-succession of points in K which joins x, b. If
to the r-succession of points in K which joins x, b we attach c (as a final point after b), then we
get an r-succession of points inK which joins x, c. This is wrong since c ∈ C. Hence C does not
contain any limit point of B.
We conclude that B,C form a decomposition ofK and this is wrong sinceK is connected.
Therefore there is an r-succession of points inK which joins x, y.
Conversely, assume that for every x, y ∈ K and every r > 0 there is an r-succession of points in
K which joins x, y.
We assume thatK is not connected. Then there are B,C which form a decomposition ofK.
Let x be a limit point of B. Since B ⊆ K, x is a limit point of K and, since K is closed, we get
x ∈ K. Now, x /∈ C (because C does not contain any limit point of B) and we get that x ∈ B.
Thus B contains all its limit points and it is closed. Finally, since B ⊆ K andK is compact, B is
also compact. Similarly C is also compact.
Now B,C are compact and disjoint and proposition 9.23 implies that there is r > 0 so that

d(b, c) ≥ r

for every b ∈ B and c ∈ C. SinceB ̸= ∅,C ̸= ∅, we consider b′ ∈ B and c′ ∈ C. Then it is easy to
see that there is no r-succession of points inK which joins b′, c′, and we arrive at a contradiction.
Indeed, assume that there is an r-succession {z0, . . . , zn} inK so that z0 = b′, zn = c′ and

d(zk−1, zk) < r

for every k = 1, . . . , n. Since z0 ∈ B, zn ∈ C, it is clear that there is k so that zk−1 ∈ B, zk ∈ C.
Then d(zk−1, zk) < r contradicts that we have d(b, c) ≥ r for every b ∈ B, c ∈ C.

Proposition 9.31. A set I ⊆ R is connected if and only if it is an interval.
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Proof. Let I be connected. If I is not an interval, there are x1, x2 ∈ I and x /∈ I so that x1 < x <
x2. Then the sets

B = I ∩ (−∞, x), C = I ∩ (x,+∞)

form a decomposition of I and we have a contradiction. Thus I is an interval.
Conversely, let I be an interval. If I has only one element, then it is connected. If I = [a, b] with
a < b, then [a, b] is compact and if we take any x, y in [a, b] and any r > 0, it is clear that we
can find an r-succession of points in [a, b] which joins x and y. Thus [a, b] is connected. If I is an
interval of any other type, we can find a sequence of intervals In = [an, bn]which increase and their
union is I . Then each In is connected and proposition 9.28 implies that I is also connected.

Now we have the following corollary of propositions 9.30 and 9.31.

Proposition 9.32. Let (X, d) be a metric space, A ⊆ X and f : A→ R be continuous on A. If A
is connected, then f has the intermediate value property in A.

Proof. f(A) is a connected subset of R and hence it is an interval. Not let u1, u2 be values of f
in A, i.e. u1, u2 belong to the interval f(A). Then every u with u1 < u < u2 also belongs to the
interval f(A). I.e. every number between the values u1, u2 of f inA is also a value of f inA.

A special case of proposition 9.32 is the well known intermediate value theorem which says
that if f : I → R is continuous in the interval I ⊆ R, then it has the intermediate value property
in I .

Let (X, d) be a metric space, I ⊆ R be an interval and γ : I → X be continuous on I . We say
that γ is a curve in (X, d). The set

γ∗ = γ(I) = {γ(t) | t ∈ I}

is called trajectory of the curve γ. If γ∗ ⊆ A ⊆ X , we say that the curve γ is in A.
Propositions 9.30 and 9.31 imply that the trajectory of any curve in (X, d) is a connected subset

of X . Also, if the interval I (the domain of definition of the curve) is closed and bounded (hence
compact), then proposition 9.25 implies that the trajectory of the curve is a compact subset ofX .

Example 9.5.4. Every linear segment [x, y] in Rd is the trajectory of the curve γ : [a, b] → Rd
given by

γ(t) = b−t
b−a x+

t−a
b−a y

for a ≤ t ≤ b.
A polygonal line consisting of two successive linear segments, i.e. [x, y]∪ [y, z], is also the trajec-
tory of a curve: we may take a < b < c and the continuous γ : [a, c] → Rd given by

γ(t) =

{
b−t
b−a x+

t−a
b−a y, if a ≤ t ≤ b

c−t
c−b y+

t−b
c−b z, if b ≤ t ≤ c

In a similar manner we may see that a general polygonal line consisting of n successive linear
segments is the trajectory of a curve.

Let (X, d) be a metric space andA ⊆ X . We say thatA is arcwise connected if for every two
points of A there is a curve in A which joins these two points.

Proposition 9.33. Let (X, d) be a metric space and A ⊆ X . If A is arcwise connected, then it is
connected.

Proof. We fix any x0 ∈ A. For every x ∈ A there is a curve γx in A which joins x0 and x. Then
γ∗x ⊆ A and hence ∪

x∈A γ
∗
x ⊆ A.
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Conversely, since every x ∈ A is contained in the trajectory γ∗x, we have that

A ⊆
∪
x∈A γ

∗
x.

Therefore A =
∪
x∈A γ

∗
x. Now, every γ∗x is connected and since all γ∗x have the point x0 in

common, we conclude that A is connected.

Example 9.5.5. Every ring is a connected subset of R2.

Example 9.5.6. Every convex set A ⊆ Rd is arcwise connected and hence connected. Indeed if
we take any two points in A the linear segment which joins them is contained in A. For instance,
balls and orthogonal parallelopipeds are connected subsets of Rd.

Example 9.5.7. A set A ⊆ Rd is called star-shaped if there is a specific point x0 ∈ A so that
for every x ∈ A the linear segment [x0, x] is contained in A. Every such x0 is called center of the
star-shaped set A. The center of the star-shaped set A may not be unique, but this does not mean
that every point of A is a center of it.
It is clear that a star-shapedA is arcwise connected and hence connected. Indeed, every two points
of A can be joined with a polygonal line in A consisting of two successive linear segments: one
segment from one of the points to the center x0 and the other segment from x0 to the second point.

Example 9.5.8. The set A = D(0,0)(1) ∪D(2,0)(1) in example 9.5.1 is connected, since it is star-
shaped with center 1.

Theorem 9.7. Let A be an open subset of Rd. Then A is connected if and only if it is arcwise
connected.

Proof. If A is arcwise connected, proposition 9.33 implies that it is connected.
Conversely, let A be connected. We take x, y ∈ A and we assume that there is no polygonal line
in A which joins x, y. We define the sets

B = {b ∈ A | there is a polygonal line in A which joins x, b},
C = {c ∈ A | there is no polygonal line in A which joins x, c}.

It is clear that B ∪ C = A, B ̸= ∅ (since x ∈ B) and C ̸= ∅ (since y ∈ C).
We assume that B contains some limit point b of C. Then (since b ∈ B) there is a polygonal line
in A which joins x, b. Since A is open, there is r > 0 so that Nb(r) ⊆ A and (since b is a limit
point of C) there is c ∈ Nb(r)∩C. If to the polygonal line inA which joins x, b we attach (as last)
the linear segment [b, c] (which is contained in Nb(r) and hence in A), we get a polygonal line in
A which joins x, c. This is wrong, since c ∈ C. Thus B does not contain any limit point of C.
Now we assume that C contains a limit point c of B. Since A is open, there is r > 0 so that
Nc(r) ⊆ A. Then (since c is a limit point of B) there is b ∈ Nc(r) ∩B. As before, (since b ∈ B)
there is a polygonal line in A which joins x, b and, if to this we attach the linear segment [b, c]
(which is contained in Nc(r) and hence in A), we get a polygonal line in A which joins x, c. This
is wrong, since c ∈ C. Thus C does not contain any limit point of B.
We conclude that B,C form a decomposition of A and we arrive at a contradiction because A is
connected.
Therefore, there is a polygonal line in A which joins x, y.

Let (X, d) be a metric space and A ⊆ X . We say that C ⊆ A is a connected component of
A if C is connected and has the following property: if C ⊆ C ′ ⊆ A and C ′ is connected, then
C = C ′. In other words, C is a connected component of A if it is a connected subset of A and
there is no strictly larger connected subset of A.

Let us see a characteristic property of connected components. LetC be a connected component
of A and let B be any connected subset of A so that C ∩B ̸= ∅. Then C ∪B is connected (being
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the union of connected sets with a common point) and C ⊆ C ∪ B ⊆ A. Since C is a connected
component of A, we get C ∪B = C and hence B ⊆ C. In oher words, a connected component of
A swallows every connected subset of A intersecting it.

Let C1, C2 be distinct connected components of A and assume that C1 ∩ C2 ̸= ∅. Since C1

is a connected subset of A and intersects the connected component C2 of A, we get C1 ⊆ C2.
Symmetrically, C2 ⊆ C1 and hence C1 = C2. We arrive at a contradiction and we conclude that
C1 ∩ C2 = ∅. Thus, different connected components of A are disjoint.

Proposition 9.34. Let (X, d) be a metric space and A ⊆ X . Then A is the union of its (mutually
disjoint) connected components.

Proof. We shall prove that every point of A belongs to a connected component of A. We take
x ∈ A and define Cx to be the union of all connected subsets B of A which contain x. (Such a set
is {x}.) I.e.

Cx =
∪

{B |B is connected ⊆ A and x ∈ B}.

Now Cx is a subset of A and contains x. It is also connected, since it is the union of connected
sets B with x as a common point. If Cx ⊆ C ′ ⊆ A and C ′ is connected, then C ′ is one of the
connected subsets B of A which contain x and hence C ′ ⊆ Cx. Thus Cx = C ′. Therefore Cx is a
connected component of A and contains x.

It is obvious that A is connected if and only if A is the only connected component of A.

Example 9.5.9. In R2 we consider the discs B = D(0,0)(1) and C = D(3,0)(1) and the set A =
B ∪C. The discs B,C are connected subsets of A. Lemma 9.1 implies that any connected subset
of A is contained either in B or in C. I.e. there is no connected subset of A strictly larger than
either B or C. Therefore the discs B and C are the connected components of A.

Example 9.5.10.We take Z ⊆ R and any n ∈ Z.
Then {n} is a connected set. Let {n} ⊆ C ′ ⊆ Z and C ′ ̸= {n}. Then

C ′ = {n} ∪
(
C ′ \ {n}

)
and it is clear that the sets {n} and C ′ \{n} form a decomposition of C ′. Thus C ′ is not connected
and hence {n} is a connected component of Z.
Therefore Z has infinitely many connected components, each of them being a singleton.

Proposition 9.35. Let (X, d) be a metric space and A ⊆ X . If A is closed, then every connected
component of A is closed.

Proof. Let C be a connected component ofA. Since C ⊆ A and A is closed, we get C ⊆ C ⊆ A.
Proposition 9.29 implies that C is connected and, since C is a connected component of A, we get
that C = C. Therefore C is closed.

Proposition 9.36. Let A be an open subset of Rd. Every connected component of A is open.

Proof. Let C be a connected component of A and x ∈ C. Then x ∈ A and, since A is open, there
is r > 0 so that Nx(r) ⊆ A. Since Nx(r) is a connected subset of A and intersects the connected
component C of A, we see that Nx(r) ⊆ C. Thus x is an interior point of C.

Propositions 9.34 and 9.36 imply that every open subset of Rd is the union of disjoint open
connected sets.

Exercises.
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9.5.1. Saywhich of the following subsets ofR2 are connected and find their connected components.
(i) The complement of a circle.
(ii) The complement of a linear segment.
(iii) The complement of a closed triangular line.
Also:

{( 1n , 0)|n ∈ N}, {(0, 0)} ∪ {( 1n , 0)|n ∈ N}, [(0, 0), (1, 0)] ∪
∪+∞
n=1[(0,

1
n), (1,

1
n)],∪+∞

n=1{x ∈ R2 | |x| = 1 + 1
n}, {(x, y) |x, y ∈ Q}.

9.5.2. Prove that the following subsets of R2 are connected:

{(x, sinx) |x ∈ R} , {(x, sin 1
x) | 0 < x ≤ 1}, {(x, sin 1

x) | 0 < x ≤ 1} ∪ [(0,−1), (0, 1)].

9.5.3. (i) Find a simple example of two connected sets in R2 whose intersection is not connected.
(ii) Find a simple example of a connected set A in R2 so that ∂A is not connected.
(iii) Find a simple example of a connected set A in R2 so that A◦ is not connected.
9.5.4. Let d ≥ 2,U ⊆ Rd be a connected open set and a1, . . . , an ∈ U . Prove thatU \{a1, . . . , an}
is connected and open.
9.5.5. Consider a hyperplane L in Rd and the two open halfspaces of Rd which are determined by
L. If a curve γ in Rd joins a point of one halfspace and a point of the other halfspace, prove that
the trajectory of γ intersects L.
9.5.6. Let (X, d) be a metric space, An ⊆ X be connected and An ∩An+1 ̸= ∅ for every n. Prove
that

∪+∞
n=1An is connected.

9.5.7. Let B ⊆ Rd. If B is open and closed prove that either B = ∅ or B = Rd.
9.5.8. Let (X, d) be a metric space and A ⊆ X .
(i) IfA is closed, prove thatA is connected if and only if there are no closedB,C so thatB∪C = A,
B ∩ C = ∅, B ̸= ∅, C ̸= ∅.
(ii) IfA is open, prove thatA is connected if and only if there are no openB,C so thatB∪C = A,
B ∩ C = ∅, B ̸= ∅, C ̸= ∅.
9.5.9. Let (X, d) be a metric space andA ⊆ X be connected (not necessarily compact). Prove that
for every r > 0 and every x, y ∈ A there is an r-succession of points in A which joins x, y.
9.5.10. Let (X, d) be a metric space and A ⊆ X . Prove that A is connected if and only if the only
continuous functions f : A→ R with f(A) ⊆ Z are the constant functions.
9.5.11. Let A ⊆ Rd be open and connected and let every point of B ⊆ A be an isolated point of
B. Prove that A \B is connected.
9.5.12. Let (X, d) be a metric space.
(i) Let An ⊆ X be compact so that An+1 ⊆ An for every n ∈ N and so that every two points of
An can be joined by some 1

n -succession of points in An. Prove that
∩+∞
n=1An is connected.

(ii) Let F ⊆ X be compact and let x, y ∈ F belong to different connected components of F . Prove
that there is a decomposition B,C of F so that x ∈ B and y ∈ C.
9.5.13. Let (X, d) be a metric space. We say that (X, d) is locally connected if for every x ∈ X
and every r > 0 there is an open connected U so that x ∈ U ⊆ Nx(r).
Prove that (X, d) is locally connected if and only if for every open A ⊆ X all the connected
components of A are open.
9.5.14. Let (X, d) be a metric space. We say that (X, d) is locally arcwise connected if for every
x ∈ X and every r > 0 there is an open arcwise connected U so that x ∈ U ⊆ Nx(r).
If (X, d) is locally arcwise connected and A ⊆ X is open, prove that A is connected if and only if
it is arcwise connected.
9.5.15. Let (X, d) be a non-empty set with the discrete metric (exercise 9.1.10). Prove thatM ⊆ X
is connected if and only if it has at most one element.

194



9.6 Uniform convergence.

In the following we consider only complex functions, although most of the results can be stated
for functions taking values in the euclidean space Rd or even in a more general metric space.

Let A be any non-empty set and B(A) be the set of all bounded functions f : A→ C, i.e.

B(A) = {f | f : A→ C is bounded }.

For each f ∈ B(A) we define the uniform norm of f in A to be the non-negative real number

∥f∥A = sup{|f(x)| |x ∈ A} = supx∈A |f(x)|.

Proposition 9.37. Let f, g ∈ B(A) and λ ∈ C. Then:
(i) ∥f∥A = 0 if and only if f(x) = 0 for every x ∈ A.
(ii) ∥f + g∥A ≤ ∥f∥A + ∥g∥A.
(iii) ∥λf∥A = |λ|∥f∥A.
(iv) ∥fg∥A ≤ ∥f∥A∥g∥A.

Proof. (i) is obvious.
(ii) For every x ∈ A we have

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ∥f∥A + ∥g∥A

and hence ∥f + g∥A ≤ ∥f∥A + ∥g∥A.
(iii) If λ = 0, then according to (i), both sides of ∥λf∥A = |λ|∥f∥A are equal to 0. Now let λ ̸= 0.
For every x ∈ A we have

|λf(x)| = |λ||f(x)| ≤ |λ|∥f∥A.

Hence ∥λf∥A ≤ |λ|∥f∥A. Applying this to λf and 1
λ , we get the opposite inequality.

(iv) For every x ∈ A we have

|f(x)g(x)| = |f(x)||g(x)| ≤ ∥f∥A∥g∥A.

Thus, ∥fg∥A ≤ ∥f∥A∥g∥A.

For every f, g ∈ B(A) we define their uniform distance in A to be the non-negative real
number

∥f − g∥A = sup{|f(x)− g(x)| |x ∈ A} = supx∈A |f(x)− g(x)|.

The function dA : B(A)×B(A) → R given by

dA(f, g) = ∥f − g∥A

is called uniform metric in A ormetric of uniform convergence in A.
Proposition 9.38 justifies the term “metric” we used for the function dA.

Proposition 9.38. The function dA : B(A)×B(A) → R is a metric on B(A).

Proof. We check the four basic properties of a metric.
(i) dA(f, g) = ∥f − g∥A ≥ 0 is obvious.
(ii) If dA(f, g) = ∥f − g∥A = 0 then proposition 9.37 implies that f(x) = g(x) for every x ∈ A
and hence f = g.
(iii) dA(f, g) = ∥f − g∥A = ∥g − f∥A = dA(g, f).
(iv) We have

dA(f, g) = ∥f − g∥A = ∥(f − h) + (h− g)∥A ≤ ∥f − h∥A + ∥h− g∥A = dA(f, h) + dA(h, g)

from proposition 9.37.
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Thus B(A), equipped with the uniform metric dA, becomes a metric space. It is calledmetric
space of uniform convergence in A.

Let (fn) be a sequence in B(A) and f ∈ B(A). We say that fn converges to f uniformly in
A if fn → f with respect to the metric of uniform convergence in A, i.e. if

dA(fn, f) = ∥fn − f∥A → 0.

Hence fn converges to f uniformly in A if for every ϵ > 0 there is n0 so that ∥fn − f∥A ≤ ϵ for
every n ≥ 0 or, equivalently, if for every ϵ > 0 there is n0 so that |fn(x) − f(x)| ≤ ϵ for every
x ∈ A and every n ≥ 0.

If fn → f uniformly in A, then for every x ∈ A we have

|fn(x)− f(x)| ≤ ∥fn − f∥A → 0

and hence fn(x) → f(x) for every x ∈ A. Therefore, uniform convergence of (fn) to f in A
implies pointwise convergence of (fn) to f in A.

Proposition 9.39. Let λ, µ ∈ C and fn → f and gn → g uniformly in A.
(i) If B ⊆ A, then fn → f uniformly in B.
(ii) λfn + µgn → λf + µg and fngn → fg uniformly in A.
(iii) If 1

g ∈ B(A), then 1
gn

∈ B(A) after some value of the index n and 1
gn

→ 1
g uniformly in A.

Proof. (i) We have

∥fn − f∥B = supx∈B |fn(x)− f(x)| ≤ supx∈A |fn(x)− f(x)| = ∥fn − f∥A.

Therefore, ∥fn − f∥A → 0 implies ∥fn − f∥B → 0.
(ii) From proposition 9.37 we have

∥(λfn + µgn)− (λf + µg)∥A ≤ |λ|∥fn − f∥A + |µ|∥gn − g∥A

and hence ∥(λfn + µgn)− (λf + µg)∥A → 0.
Also,

∥fngn − fg∥A ≤ ∥fn − f∥A∥gn − g∥A + ∥f∥A∥gn − g∥A + ∥g∥A∥fn − f∥A

and so ∥fngn − fg∥A → 0.
(iii) We have 1

|g(x)| ≤ M , and hence |g(x)| ≥ 1
M , for every x ∈ A. Then there is n0 so that

∥gn − g∥A ≤ 1
2M for every n ≥ n0. Hence

|gn(x)| ≥ |g(x)| − |gn(x)− g(x)| ≥ 1
M − 1

2M = 1
2M

for every x ∈ A and every n ≥ n0. Therefore, 1
|gn(x)| ≤ 2M for every x ∈ A and every n ≥ n0.

This implies that 1
gn

∈ B(A) for every n ≥ n0.
Moreover, ∣∣ 1

gn(x)
− 1

g(x)

∣∣ = |gn(x)−g(x)|
|gn(x)||g(x)| ≤ 2M2∥gn − g∥A

for every x ∈ A and every n ≥ n0. Thus,
∥∥ 1
gn

− 1
g

∥∥
A
≤ 2M2∥gn − g∥A for every n ≥ n0 and

hence
∥∥ 1
gn

− 1
g

∥∥
A
→ 0.

Theorem 9.8. The metric space B(A) with the metric of uniform convergence in A is complete.

Proof. Let (fn) be a Cauchy sequence inB(A)with the metric of uniform convergence inA. This
means that for every ϵ > 0 there is n0 so that ∥fn − fm∥A ≤ ϵ for every n,m ≥ n0. In other
words, we have that for every ϵ > 0 there is n0 so that

|fn(x)− fm(x)| ≤ ϵ (9.9)

196



for every x ∈ A and every n,m ≥ n0. Now, (9.9) implies that for every fixed x ∈ A the sequence
(fn(x)) is a Cauchy sequence in C and hence it converges to some number. We define

f(x) = limn→+∞ fn(x)

for every x ∈ A, and we get a function f : A → R. Taking the limit as m → +∞ in (9.9), we
conclude that for every ϵ > 0 there is n0 so that

|fn(x)− f(x)| ≤ ϵ (9.10)

for every x ∈ A and every n ≥ n0. Now we see that f is bounded in A, i.e. that f ∈ B(A).
Indeed, (9.10) with n = n0 implies that

|f(x)| ≤ |fn0(x)− f(x)|+ |fn0(x)| ≤ ϵ+ ∥fn0∥A

for every x ∈ A. Moreover, (9.10) says that for every ϵ > 0 there is n0 so that ∥fn − f∥A ≤ ϵ for
every n ≥ n0. Therefore, (fn) converges to f in the metric space B(A).

Proposition 9.40. Let (X, d) be a metric space, A ⊆ X and f, fn ∈ B(A) for every n ∈ N. Let
fn → f uniformly in A and let x ∈ A. If every fn is continuous at x, then f is continuous at x. In
particular, if every fn is continuous in A, then f is continuous in A.

Proof. Take any ϵ > 0. Then there is n0 so that ∥fn − f∥A < ϵ
3 for every n ≥ n0 and hence

∥fn0 − f∥A < ϵ
3 .

Since fn0 is continuous at x, there is δ > 0 so that

|fn0(y)− fn0(x)| < ϵ
3

for every y ∈ A with |y − x| < δ. So for every y ∈ A with |y − x| < δ we have

|f(y)− f(x)| ≤ |f(y)− fn0(y)|+ |fn0(y)− fn0(x)|+ |fn0(x)− f(x)|
≤ ∥fn0 − f∥A + |fn0(y)− fn0(x)|+ ∥fn0 − f∥A < ϵ

3 + ϵ
3 + ϵ

3 = ϵ

and f is continuous at x.

Let (X, d) be a metric space and A ⊆ X . We denote BC(A) the set of all bounded and
continuous functions f : A→ C, i.e.

BC(A) = {f | f : A→ C is bounded and continuous }.

We denote C(A) the set of all continuous functions f : A→ C, i.e.

C(A) = {f | f : A→ C is continuous }.

It is obvious that BC(A) ⊆ B(A). If A is a compact subset of X , then every continuous
function f : A→ C is bounded and so, in this case, we have BC(A) = C(A).

Proposition 9.41. Let (X, d) be a metric space and A ⊆ X . The set BC(A) is closed in B(A)
with respect to the uniform metric.

Proof. This is a corollary of proposition 9.40.

Theorem 9.9. Let (X, d) be a metric space and A ⊆ X . The subset BC(A) of B(A) with the
metric of uniform convergence in A is complete.
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Proof. Let (fn) be a Cauchy sequence in BC(A). Theorem 9.8 implies that there is f ∈ B(A)
so that fn → f uniformly in A. Proposition 9.40 implies that f is continuous in A and hence
f ∈ BC(A).

From the notion of uniform convergence of a sequence of functions we move to the notion of
uniform convergence of a series of functions (through the sequence of partial sums).

Let fn : A → C for every n. We consider the partial sums sn : A → C, where sn(x) =
f1(x) + · · · + fn(x) for every x ∈ A. Let also s : A → C. We say that the series of functions∑+∞

n=1 fn converges to its sum s uniformly in A if the sequence of functions (sn) converges to
the function s uniformly in A.

As in the case of a sequence of functions, we have that, if
∑+∞

n=1 fn converges to its sum s
uniformly in A, then

∑+∞
n=1 fn(x) = s(x) for every x ∈ A, i.e.

∑+∞
n=1 fn converges to its sum s

pointwise in A.

Proposition 9.42. Let (X, d) be a metric space, A ⊆ X and fn ∈ B(A) for every n ∈ N. Let∑+∞
n=1 fn converge to its sum s uniformly in A and let x ∈ A. If every fn is continuous at x, then

s is continuous at x. In particular, if every fn is continuous in A, then s is continuous in A.

Proof. We consider the partial sums sn = f1 + · · · + fn. Then every sn is continuous at x and
proposition 9.40 implies that s is continuous at x.

Finally, we have a basic criterion for uniform convergence of a series of functions.

Weierstrass test. Let |fn(x)| ≤ Mn for every n and every x ∈ A. If the series (of non-negative
terms)

∑+∞
n=1Mn converges, i.e. if

∑+∞
n=1Mn < +∞, then

∑+∞
n=1 fn converges uniformly in A.

Proof. For every x ∈ A we have∑+∞
n=1 |fn(x)| ≤

∑+∞
n=1Mn < +∞

and so
∑+∞

n=1 fn(x) converges (as a series of complex numbers). Therefore, we may define the
function s : A→ C with

s(x) =
∑+∞

n=1 fn(x)

for every x ∈ A. Now we consider the partial sums sn = f1 + · · ·+ fn and then for every x ∈ A
we have

|sn(x)− s(x)| =
∣∣∑+∞

k=n+1 fk(x)
∣∣ ≤ ∑+∞

k=n+1 |fk(x)| ≤
∑+∞

k=n+1Mk.

Since this is true for every x ∈ A, we get

∥sn − s∥A ≤
∑+∞

k=n+1Mk → 0

when n → +∞, because
∑+∞

n=1Mn < +∞. Therefore, (sn) converges to s uniformly in A and
hence

∑+∞
n=1 fn converges to its sum s uniformly in A.

Let (X, d) be a metric space,A ⊆ X andF be a family of complex functions defined inA. We
say that F is bounded at some x ∈ A if there isM so that |f(x)| ≤M for every f ∈ F . We say
thatF is equicontinuous at some x ∈ A if for every ϵ > 0 there is δ > 0 so that |f(y)−f(x)| < ϵ
for every y ∈ A with d(y, x) < δ and for every f ∈ F .

It is obvious that equicontinuity of F at x implies continuity of every f ∈ F at x. In fact the δ
which corresponds to ϵ in the definition of continuity at x does not depend on the particular f : it
is uniform over f ∈ F .

Proposition 9.43. Let (X, d) be a metric space, A ⊆ X and (fn) be a sequence of continuous
functions in A. If fn → f uniformly in every compact subset of A, then f is continuous in A.
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Proof. Take any x ∈ A and a sequence (xm) in A with xm → x. Then

K = {xm |m ∈ N} ∪ {x}

is a compact subset of A and hence fn → f uniformly in K. Since every fn is continuous in K,
we have that f is also continuous inK. Thus, f(xm) → f(x) and so f is continuous at x.

Let (X, d) be a metric space and A ⊆ X . We say that B ⊆ A is dense in A if A ⊆ B, i.e. if
for every x ∈ A and every r > 0 there is y ∈ B so that d(y, x) < r. We say that A is separable
if there is a countable B ⊆ A which is dense in A.

The theorem of Arzela-Ascoli. Let (X, d) be a metric space, let A ⊆ X be separable, and let F
be a collection of continuous functions in A. Then the following are equivalent:
(i) For every sequence (fn) in F there is a subsequence (fnk

) and a function f continuous in A
so that fnk

→ f uniformly in every compact subset of A.
(ii) F is equicontinuous and bounded at every x ∈ A.

Proof. (i)⇒ (ii) Assume that F is not bounded at some x ∈ A. Then there is a sequence (fn) in
F so that |fn(x)| → +∞. Now, there is a subsequence (fnk

) and a function f so that fnk
→ f

uniformly in every compact subset ofA. One such compact set is {x} and we get fnk
(x) → f(x),

arriving at a contradiction.
Now assume that F is not equicontinuous at some x ∈ A. Then there is ϵ > 0 so that for every
n ∈ N there is xn ∈ A and fn ∈ F so that

d(xn, x) <
1
n , |fn(xn)− fn(x)| ≥ ϵ.

Now there is a subsequence (fnk
) of (fn) and a function f so that fnk

→ f uniformly in every
compact subset of A. Proposition 9.43 implies that f is continuous at x. Since xnk

→ x, the set
K = {xnk

| k ∈ N} ∪ {x} is a compact subset of A and so fnk
→ f uniformly inK. Now

ϵ ≤ |fnk
(xnk

)− fnk
(x)| ≤ |fnk

(xnk
)− f(xnk

)|+ |f(xnk
)− f(x)|+ |f(x)− fnk

(x)|
≤ ∥fnk

− f∥K + |f(xnk
)− f(x)|+ ∥fnk

− f∥K .

for every k. We arrive at a contradiction because ∥fnk
− f∥K → 0 and f(xnk

) → f(x).
(ii)⇒ (i) Let (fn) be a sequence in F . We know that there is a countable B ⊆ A which is dense
in A. Let

B = {ym |m ∈ N}.

The set {fn(y1) |n ∈ N} ⊆ C is bounded. So there is a subsequence (f1,n) of (fn) such that
(f1,n(y1)) is a Cauchy sequence in C. Similarly, the set {f1,n(y2) |n ∈ N} ⊆ C is bounded. So
there is a subsequence (f2,n) of (f1,n) such that (f2,n(y2)) is a Cauchy sequence in C. Similarly,
the set {f2,n(y3) |n ∈ N} ⊆ C is bounded. So there is a subsequence (f3,n) of (f2,n) so that
(f3,n(y3)) is a Cauchy sequence in C. We continue inductively and we find

f1,1 f1,2 f1,3 . . . f1,n . . .
f2,1 f2,2 f2,3 . . . f2,n . . .
...

...
...

...
fm,1 fm,2 fm,3 . . . fm,n . . .
...

...
...

...

so that (a) the sequence in every row is a subsequence of the sequence in the previous row and
hence of the original sequence (fn) and (b) (fm,n(ym)) is a Cauchy sequence in C for every m.
Now we consider the diagonal sequence (fn,n). For every m, (fn,n) is, after the value m of the
index n, a subsequence of (fm,n) and hence (fn,n(ym)) is a Cauchy sequence in C. Also, (fn,n)
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is a subsequence of (fn).
Now we take any compact K ⊆ A and any ϵ > 0. We know that F is equicontinuous at every x.
So for every x ∈ K there is δx > 0 so that

|f(t)− f(x)| < ϵ
5 (9.11)

for every t ∈ Awith d(t, x) < δx and every f ∈ F . SinceK is compact, there are x1, . . . , xN ∈ K
so that

K ⊆
∪N
k=1Nxk(δxk).

Since B is dense in A, for every k = 1, . . . , N there is some

ymk
∈ B ∩Nxk(δxk).

Since (fn,n(ymk
)) is a Cauchy sequence in C for every k = 1, . . . , N , there is n0 so that

|fn′,n′(ymk
)− fn′′,n′′(ymk

)| < ϵ
5 (9.12)

for every n′, n′′ ≥ n0 and every k = 1, . . . , N . Now we take any x ∈ K. Then there is some
k = 1, . . . , N so that x ∈ Nxk(δxk). Then

d(x, xk) < δxk , d(ymk
, xk) < δxk . (9.13)

Now, (9.11) (for x = xk), (9.12) and (9.13) imply that for every n′, n′′ ≥ n0 we have

|fn′,n′(x)− fn′′,n′′(x)| ≤ |fn′,n′(x)− fn′,n′(xk)|+ |fn′,n′(xk)− fn′,n′(ymk
)|

+ |fn′,n′(ymk
)− fn′′,n′′(ymk

)|+ |fn′′,n′′(ymk
)− fn′′,n′′(xk)|

+ |fn′′,n′′(xk)− fn′′,n′′(x)|
< ϵ

5 + ϵ
5 + ϵ

5 + ϵ
5 + ϵ

5 = ϵ.

Thus, for every n′, n′′ ≥ n0 we have

∥fn′,n′ − fn′′,n′′∥K < ϵ

and so (fn,n) is a Cauchy sequence in C(K) for every compact K ⊆ A. Now, theorem 9.9,
applied toK, implies that (fn,n) converges uniformly inK to some function continuous inK (the
limit function depends on K), for every compact K ⊆ A. In particular, if K = {x}, we get that
(fn,n(x)) converges to some number in C and then we define

f(x) = limn→+∞ fn,n(x)

for every x ∈ A. Since (fn,n) converges uniformly in K to some function, say fK , it converges
also pointwise inK to fK . But since (fn,n) converges pointwise in A to f , we get that fK = f in
K, and we proved that (fn,n) converges to f uniformly in every compact subset of A.
Finally, proposition 9.43 says that f is continuous in A.

Exercises.

9.6.1. Let (X, d) be a metric space and A ⊆ X .
(i) We define the collection of functions

Bc(A) = {f | f : A→ C, f is bounded in every compact K ⊆ A}.

Prove that C(A) ⊆ Bc(A).
(ii) We say that K = (Kk) is an exhausting sequence of compact sets for A if every Kk is
compact,Kk ⊆ Kk+1 ⊆ A for every k and, finally, for every compactK ⊆ A there is some k so
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thatK ⊆ Kk.
If (Kk) is an exhausting sequence of compact sets for A, prove that

∪+∞
k=1Kk = A.

(iii) Let F ⊆ Rd be closed. Prove that there is an exhausting sequence of compact sets for F .
(iv) Let Ω ⊆ Rd be open, δ > 0, R > 0 and

K = {x ∈ Ω | |x| ≤ R, |x− y| ≥ δ for every y ∈ Ωc}.

Prove thatK is a compact subset of Ω.
Prove that there is an exhausting sequence of compact sets for Ω.
(v) If K = (Kk) is an exhausting sequence of compact sets for A, then we define the function
dA,K : Bc(A)×Bc(A) → R by

dA,K(f, g) =
∑+∞

k=1
1
2k

∥f−g∥Kk
1+∥f−g∥Kk

Prove that dA,K is a metric on Bc(A).
If f, fn ∈ Bc(A) for every n ∈ N, prove that dA,K(fn, f) → 0 if and only if fn → f uniformly
in every compact subset of A. Because of this result, the metric dA,K is calledmetric of uniform
convergence in the compact subsets of A.
If K′ = (K ′

n) and K′′ = (K ′′
n) are two exhausting sequences of compact sets for A, prove that the

corresponding metrics dA,K′ and dA,K′′ on Bc(A) are equivalent.
If we considerBc(A) as ametric space with themetric dA,K of uniform convergence in the compact
subsets of A, prove that C(A) is a closed subset of Bc(A).

9.6.2. Let (X, d) be a metric space, A ⊆ X and F be a family of complex functions defined in A.
We say that F is equicontinuous inA if for every ϵ > 0 there is δ > 0 so that |f(x′)−f(x′′)| < ϵ
for every x′, x′′ ∈ A with d(x′, x′′) < δ and for every f ∈ F .
If A is compact and F is equicontinuous at every x ∈ A, prove that F is equicontinuous in A.

9.6.3. Let (X, d) be a metric space. If A ⊆ X is a countable union of compact sets, prove that A
is separable.

9.6.4. Let (X, d) be a metric space and A ⊆ A′ ⊆ X . If A′ is separable, prove that A is separable.

9.6.5. Prove that Qd is dense in Rd and hence Rd is separable. Now, exercise 9.6.4 implies that
every subset of Rd is separable.
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