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Chapter 1

Normed spaces

1.1 Norms.

Let X be a linear space over the field F , where F = R or F = C.
We recall the operations:

A+B = {a+ b | a ∈ A, b ∈ B}, x+A = {x+ a | a ∈ A}, λA = {λa | a ∈ A}

for every A,B ⊆ X and every λ ∈ F .

Definition. We say that the function
∥ · ∥ : X → R

is a norm on X , if

(i) ∥x∥ ≥ 0,

(ii) ∥x∥ = 0 ⇔ x = 0,

(iii) ∥λx∥ = |λ| ∥x∥,

(iv) ∥x+ y∥ ≤ ∥x∥+ ∥y∥,

for every x, y ∈ X and every λ ∈ F .

From the properties of the norm ∥ · ∥ we easily get

∥ − x∥ = ∥x∥,
∣∣∥x∥ − ∥y∥

∣∣ ≤ ∥x± y∥ ≤ ∥x∥+ ∥y∥

for every x, y ∈ X .

Example 1.1.1. A trivial example of a normed space over F is the field F itself with the absolute
value | · | : F → R as a norm.

The norm ∥ · ∥ on X induces ametric on X , i.e. the function d : X ×X → R defined by

d(x, y) = ∥x− y∥

for every x, y ∈ X . This metric has the usual properties:

(i) d(x, y) ≥ 0,

(ii) d(x, y) = 0 ⇔ x = y,

(iii) d(y, x) = d(x, y),
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(iv) d(x, z) ≤ d(x, y) + d(y, z)

for every x, y, z ∈ X .
The metric d induced by a norm as above has the additional properties

(v) d(x+ y, x+ z) = d(y, z), i.e. the metric is translation invariant,

(vi) d(λx, λy) = |λ| d(x, y), i.e. the metric is positive homogenuous.

Now as in any metric space we define neighborhoods of points, i.e. the open balls and the
closed balls

B(a; r) = {x ∈ X | ∥x− a∥ < r}, B(a; r) = {x ∈ X | ∥x− a∥ ≤ r},

with center a ∈ X and radius r > 0.
Two easily proved identities are

x+B(a; r) = B(x+ a; r), λB(a; r) = B(λa; |λ|r).

As in any metric space, we define the open subsets and the closed subsets of the normed space
X . The set A ⊆ X is open if for every a ∈ A there is some r > 0 so that B(a; r) ⊆ A, i.e. if
every a ∈ A is an interior point of A. The set A ⊆ X is closed if its complement Ac = X \ A is
open.

It is well known that the special sets ∅ and X are open and closed, that the union of open sets
is open and the intersection of closed sets is closed, and that the intersection of finitely many open
sets is open and the union of finitely many closed sets is closed.

We also have the notion of convergence of sequences in the normed spaceX . We say that the
sequence (xn) in X converges to x ∈ X , and we denote this by xn → x, if for every ϵ > 0 there
is n0 ∈ N so that ∥xn − x∥ < ϵ for every n ≥ n0. Of course

xn → x in X ⇔ d(xn, x) = ∥xn − x∥ → 0 in R.

Proposition 1.1. The linear space operations of a normed space X are continuous, i.e.
(i) if xn → x and yn → y in X , then xn + yn → x+ y in X .
(ii) if xn → x in X and λn → λ in F , then λnxn → λx in X .

Proof. These two properties are implied by the inequalities

∥(xn + yn)− (x+ y)∥ ≤ ∥xn − x∥+ ∥yn − y∥,

∥λnxn − λx∥ ≤ |λn| ∥xn − x∥+ |λn − λ| ∥x∥.

Proposition 1.2. The norm of a normed spaceX is continuous, i.e. if xn → x inX , then ∥xn∥ →
∥x∥ in R.

Proof. This is implied by the inequality
∣∣∥xn∥ − ∥x∥

∣∣ ≤ ∥xn − x∥.

Proposition 1.3. Let X be a normed space and Y be a linear subspace of X . Then cl(Y ), the
closure of Y in X , is a linear subspace of X .

Proof. Let a, b ∈ cl(Y ) and λ, κ ∈ F .
There are sequences (an), (bn) ∈ Y so that an → a and bn → b. By the continuity of the linear
space operations, we have that λan + κbn → λa+ κb. Since λan + κbn ∈ Y for every n, we get
that λa+ κb ∈ cl(Y ).
So cl(Y ) is a linear subspace of X .
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Proposition 1.4. Let X be a normed space.
(i) If A ⊆ X is open (closed), then x+A is open (closed).
(ii) If A ⊆ X is open (closed) and λ ̸= 0, then λA is open (closed).

Proof. (i) Let A be open. We take any b ∈ x+A and then b− x ∈ A. So there is r > 0 such that
B(b− x; r) ⊆ A, and then

B(b; r) = x+B(b− x; r) ⊆ x+A.

Therefore x+A is open.
Now let A be closed. We take any sequence (bn) in x + A and we assume that bn → b. Then
(bn − x) is a sequence in A and bn − x → b− x. Thus b− x ∈ A and so b ∈ x+A.
Therefore x+A is closed.
(ii) The proof is similar.

As in any metric space we have the notion of compactness for subsets of a normed space
X . We say that K ⊆ X is compact if every open covering of K has a finite subcovering of K.
This means that if K ⊆

∪
A∈AA, where every A ∈ A is an open subset of X , then there are

A1, . . . , An ∈ A so thatK ⊆
∪n

k=1Ak.
We know that K ⊆ X is compact if and only if every sequence in K has some subsequence

which converges to an element ofK.
We also know that every compact subset of X is closed and bounded (i.e. it is contained in

some ball). In general, the converse is not correct.

1.2 Hölder and Minkowski inequalities.

Hölder’s inequality for sums. Let p, q > 1 and 1
p + 1

q = 1, and let λk, κk ≥ 0 for every k ∈ N.
(i) If

∑+∞
k=1 λ

p
k < +∞ and

∑+∞
k=1 κ

q
k < +∞, then

+∞∑
k=1

λkκk ≤
( +∞∑

k=1

λp
k

)1/p( +∞∑
k=1

κqk

)1/q
.

(ii) If
∑+∞

k=1 λk < +∞ and supk κk < +∞, then

+∞∑
k=1

λkκk ≤
( +∞∑

k=1

λk

)
sup
k

κk.

Proof. (i) We observe that the function f(t) = 1
p t

p + 1
q − t has minimum value f(1) = 0 in

[0,+∞). I.e. t ≤ 1
p t

p + 1
q for every t ≥ 0. We use t = λ

κq/p and we get

λκ ≤ 1

p
λp +

1

q
κq

for every λ, κ ≥ 0.
If
∑+∞

k=1 λ
p
k =

∑+∞
k=1 κ

q
k = 1, then, using the last inequality, we get

+∞∑
k=1

λkκk ≤ 1

p

+∞∑
k=1

λp
k +

1

q

+∞∑
k=1

κqk =
1

p
+

1

q
= 1.

If 0 <
∑+∞

k=1 λ
p
k < +∞ and 0 <

∑+∞
k=1 κ

q
k < +∞, then we set

A =
( +∞∑

k=1

λp
k

)1/p
, B =

( +∞∑
k=1

κqk

)1/q
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and we observe that
∑+∞

k=1

(
λk
A

)p
=

∑+∞
k=1

(
κk
B

)q
= 1. Hence

+∞∑
k=1

λkκk = AB
+∞∑
k=1

λk

A

κk
B

≤ AB.

If one of
∑+∞

k=1 λ
p
k,
∑+∞

k=1 κ
q
k is equal to 0, the inequality of (i) is obvious: it becomes 0 ≤ 0.

(ii) This is trivial.

If p = q = 2, Hölder’s inequality for sums is usually called Cauchy’s inequality.
If p, q > 1 and 1

p +
1
q = 1, then p, q are called dual exponents. Since 1

+∞ = 0, the 1,+∞ are
also dual exponents.

Minkowski’s inequality for sums. Let p ≥ 1, and let λk, κk ≥ 0 for every k ∈ N.
(i) If

∑+∞
k=1 λ

p
k < +∞ and

∑+∞
k=1 κ

p
k < +∞, then( +∞∑

k=1

(λk + κk)
p
)1/p

≤
( +∞∑

k=1

λp
k

)1/p
+

( +∞∑
k=1

κpk

)1/p
.

(ii) If supk λk < +∞ and supk κk < +∞, then

sup
k
(λk + κk) ≤ sup

k
λk + sup

k
κk.

Proof. (i) The inequality of (i) is an obvious equality when p = 1.
Now we take p > 1 and q = p

p−1 , and so
1
p + 1

q = 1.
Since

∑+∞
k=1 λ

p
k < +∞ and

∑+∞
k=1 κ

p
k < +∞, we get

+∞∑
k=1

(λk + κk)
p ≤ 2p−1

+∞∑
k=1

λp
k + 2p−1

+∞∑
k=1

κpk < +∞.

For the last inequality we used the trivial inequality

(λ+ κ)p ≤ 2p−1(λp + κp)

for λ, κ ≥ 0, which can be proved using the convexity of the function tp in [0,+∞). Then
+∞∑
k=1

(λk + κk)
p =

+∞∑
k=1

(λk + κk)(λk + κk)
p−1 =

+∞∑
k=1

λk(λk + κk)
p−1 +

+∞∑
k=1

κk(λk + κk)
p−1

and, using Hölder’s inequality for sums,
+∞∑
k=1

(λk + κk)
p ≤

( +∞∑
k=1

λp
k

)1/p( +∞∑
k=1

(λk + κk)
p
)1/q

+
( +∞∑

k=1

κpk

)1/p( +∞∑
k=1

(λk + κk)
p
)1/q

.

If
∑+∞

k=1(λk + κk)
p > 0, we divide the last inequality with

(∑+∞
k=1(λk + κk)

p
)1/q and we finish

the proof. If
∑+∞

k=1(λk + κk)
p = 0, then the inequality of (i) is trivial: 0 ≤ 0 + 0.

(ii) Trivial.

Hölder’s inequality for integrals. Let p, q > 1 and 1
p +

1
q = 1. Let (Ω,Σ, µ) be a measure space,

and f, g ∈ M(Ω,Σ) (i.e. f, g are Σ-measurable in Ω) with f, g ≥ 0 µ-a.e. in Ω.
(i) If

∫
Ω fp dµ < +∞ and

∫
Ω gq dµ < +∞, then∫
Ω
fg dµ ≤

(∫
Ω
fp dµ

)1/p(∫
Ω
gq dµ

)1/q
.

(ii) If
∫
Ω f dµ < +∞ and ess-supΩ g < +∞, then∫

Ω
fg dµ ≤

(∫
Ω
f dµ

)
ess-supΩ g.
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Proof. If
∫
Ω fp dµ =

∫
Ω gq dµ = 1, then, using the inequality λκ ≤ 1

p λ
p + 1

q κ
q, we get∫

Ω
fg dµ ≤ 1

p

∫
Ω
fp dµ+

1

q

∫
Ω
gq dµ =

1

p
+

1

q
= 1.

If 0 <
∫
Ω fp dµ < +∞ and 0 <

∫
Ω gq dµ < +∞, then we set

A =
(∫

Ω
fp dµ

)1/p
, B =

(∫
Ω
gq dµ

)1/q

and we observe that
∫
Ω

( f
A

)p
dµ =

∫
Ω

( g
B

)q
dµ = 1. Hence∫

Ω
fg dµ = AB

∫
Ω

f

A

g

B
dµ ≤ AB.

If one of
∫
Ω fp dµ,

∫
Ω gq dµ is equal to 0, the inequality of (i) is obvious: it becomes 0 ≤ 0.

(ii) Trivial.

If p = q = 2, Hölder’s inequality for integrals is usually called Schwarz’s inequality or
Buniakowsky’s inequality.

Minkowski’s inequality for integrals. Let p ≥ 1. Let (Ω,Σ, µ) be a measure space, and f, g ∈
M(Ω,Σ) (i.e. f, g are Σ-measurable in Ω) with f, g ≥ 0 µ-a.e. in Ω.
(i) If

∫
Ω fp dµ < +∞ and

∫
Ω gp dµ < +∞, then(∫

Ω
(f + g)p dµ

)1/p
≤

(∫
Ω
fp dµ

)1/p
+

(∫
Ω
gp dµ

)1/p
.

(ii) If ess-supΩ f < +∞ and ess-supΩ g < +∞, then

ess-supΩ(f + g) ≤ ess-supΩ f + ess-supΩ g.

Proof. (i) The inequality of (i) is an obvious equality when p = 1.
Now let p > 1 and q = p

p−1 , so that
1
p + 1

q = 1.
Since

∫
Ω fp dµ < +∞ and

∫
Ω gp dµ < +∞, using the inequality (λ+ κ)p ≤ 2p−1(λp + κp), we

get ∫
Ω
(f + g)p dµ ≤ 2p−1

∫
Ω
fp dµ+ 2p−1

∫
Ω
gp dµ < +∞.

Then∫
Ω
(f + g)p dµ =

∫
Ω
(f + g)(f + g)p−1 dµ =

∫
Ω
f(f + g)p−1 dµ+

∫
Ω
g(f + g)p−1 dµ

and, using Hölder’s inequality for integrals,∫
Ω
(f + g)p dµ ≤

(∫
Ω
fp dµ

)1/p(∫
Ω
(f + g)p dµ

)1/q
+

(∫
Ω
gp dµ

)1/p(∫
Ω
(f + g)p dµ

)1/q
.

If
∫
Ω(f + g)p dµ > 0, we divide the last inequality with

( ∫
Ω(f + g)p dµ

)1/q and we finish the
proof. If

∫
Ω(f + g)p dµ = 0, then the inequality of (i) is trivial: 0 ≤ 0 + 0.

(ii) Trivial.
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1.3 Subspaces, cartesian products, quotient spaces.

We shall now see three ways to produce new normed spaces from old ones. The first is to
consider a subspace of a normed space. The second is to consider the cartesian product of normed
spaces. And the third way is to consider the quotient space of a normed space over any subspace
of it.

Proposition 1.5. LetX be a normed space with norm ∥·∥ : X → R, and let Y be a linear subspace
of X . Then the restriction ∥ · ∥ : Y → R is a norm on Y .

Proof. This is obvious.

Definition. The linear subspace Y of the normed space X , equipped with the restriction on Y of
the norm on X , is called subspace of X .

We assume thatX1, . . . , Xm are normed spaces (over the sameF ) with norms ∥·∥1, . . . , ∥·∥m.
We consider the cartesian product X = X1 × · · · ×Xm and for every x = (x1, . . . , xm) ∈ X =
X1 × · · · ×Xm we define

∥x∥p =

{
(∥x1∥p1 + · · ·+ ∥xm∥pm)1/p, 1 ≤ p < +∞,

max{∥x1∥1, . . . , ∥xm∥m}, p = ∞.

Proposition 1.6. For every p ∈ [1,+∞] the function ∥ · ∥p : X → R just defined is a norm on
X = X1 × · · · ×Xm.

Proof. All properties of the norm are trivially satisfied by ∥ · ∥p except for the last one, the triangle
inequality, which is implied by Minkowski’s inequality for sums.

Definition. The norm ∥ · ∥p just defined on the cartesian product X = X1 × · · · ×Xm of normed
spaces is called p-norm on X .

Example 1.3.1.We consider X1 = . . . = Xm = F with ∥ · ∥1 = . . . = ∥ · ∥m = | · | and then we
get the cartesian product X = F × · · · × F = Fm with the p-norm, which is defined for every
x = (λ1, . . . , λm) ∈ F × · · · × F = Fm by

∥x∥p =

{
(|λ1|p + · · ·+ |λm|p)1/p, 1 ≤ p < +∞,

max{|λ1|, . . . , |λm|}, p = +∞.

The case p = 2 gives the usual euclidean norm on Fm.

Finally, we consider a normed space X and a linear subspace Z of X . We also consider the
quotient space

X/Z = {x+ Z |x ∈ X}.

The elements of X/Z are subsets of X: they are the parallel translations of Z.
We know from Linear Algebra (and we can easily prove) the following facts:

1. If ξ ∈ X/Z, then: ξ = x+ Z ⇔ x ∈ ξ.

2. If ξ, η ∈ X/Z, then: ξ ∩ η ̸= ∅ ⇒ ξ = η.

3. x+ Z = y + Z ⇔ x− y ∈ Z.
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It is well known fromLinear Algebra that the quotient spaceX/Z is a linear spacewith addition
and multiplication defined by

(x+ Z) + (y + Z) = (x+ y) + Z, λ (x+ Z) = (λx) + Z.

The zero element of X/Z is 0 + Z = Z.
It is easy to show that the equality (x + Z) + (y + Z) = (x + y) + Z is not just a formal

definition; it is a true equality between subsets ofX . If λ ̸= 0, then the same is true for the equality
λ (x + Z) = (λx) + Z. If λ = 0, then 0 (x + Z) = (0x) + Z is not true as an equality between
sets: we have 0 (x+ Z) = {0} and (0x) + Z = Z.

Now we define the function
∥ · ∥X/Z : X/Z → R

by
∥ξ∥X/Z = inf{∥x∥ |x ∈ ξ}

for every ξ ∈ X/Z.

Proposition 1.7. IfZ is a closed linear subspace of the normed spaceX , then the function ∥·∥X/Z :
X/Z → R just defined is a norm on X/Z.

Proof. (i) It is obvious that ∥ξ∥X/Z ≥ 0 for every ξ ∈ X/Z.
(ii) If ξ = Z, i.e. if ξ is the zero element of X/Z, then 0 ∈ ξ and so 0 ≤ ∥ξ∥X/Z ≤ ∥0∥ = 0 and
hence ∥ξ∥X/Z = 0.
Conversely, let ∥ξ∥X/Z = 0. Then there are xn ∈ ξ so that ∥xn∥ → 0, i.e. xn → 0. But ξ is a
closed subset ofX , since it is a translation of the closed setZ. Hence 0 ∈ ξ and so ξ = 0+Z = Z,
the zero element of X/Z.
(iii) If λ = 0, then 0ξ = Z and so ∥0ξ∥X/Z = ∥Z∥X/Z = 0. Also, trivially |0|∥ξ∥X/Z = 0. So
the equality ∥0ξ∥X/Z = |0|∥ξ∥X/Z is correct.
Now let λ ̸= 0 and ξ ∈ X/Z. We take any x ∈ ξ and then we have λx ∈ λξ. Therefore

∥λξ∥X/Z ≤ ∥λx∥ = |λ|∥x∥.

Taking the infimum over all x ∈ ξ, we find

∥λξ∥X/Z ≤ |λ|∥ξ∥X/Z .

We apply this to 1
λ in the place of λ and to λξ in the place of ξ, and we get

∥ξ∥X/Z ≤ 1

|λ|
∥λξ∥X/Z

and so
|λ|∥ξ∥X/Z ≤ ∥λξ∥X/Z .

The two inequalities imply
∥λξ∥X/Z = |λ|∥ξ∥X/Z .

(iv) Let ξ, η ∈ X/Z. We take any x ∈ ξ and any y ∈ η. Then x+ y ∈ ξ + η and hence

∥ξ + η∥X/Z ≤ ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Taking the infimum over all x ∈ ξ and, independently, over all y ∈ η, we find

∥ξ + η∥X/Z ≤ ∥ξ∥X/Z + ∥η∥X/Z .
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1.4 Banach spaces.

Definition. The normed space X is called Banach space if it is complete, i.e. if every Cauchy
sequence in X converges to an element of X .

Proposition 1.8. Let X be a normed space with norm ∥ · ∥. Then the following are equivalent.
(i) X is a Banach space.
(ii) For every sequence (xn) inX: if

∑+∞
n=1 ∥xn∥ < +∞, then

∑+∞
n=1 xn converges to an element

of X .

Proof. Let X be complete and let
∑+∞

n=1 ∥xn∥ < +∞. We consider the partial sums sn = x1 +
· · ·+ xn and then for n < m we have

∥sm − sn∥ = ∥xn+1 + · · ·+ xm∥ ≤ ∥xn+1∥+ · · ·+ ∥xm∥ → 0

whenm,n → +∞. Thus (sn) is a Cauchy sequence and so it converges to an element ofX .
Conversely, we assume that (ii) holds. We take any Cauchy sequence (xn) in X . Then for every
k there is nk ∈ N so that ∥xn − xm∥ < 1

k2
when n,m ≥ nk. We may choose nk so that (nk) is

strictly increasing and then ∥xnk+1
− xnk

∥ < 1
k2

for every k. Thus

∥xn1∥+
+∞∑
k=1

∥xnk+1
− xnk

∥ < +∞.

By our assumption, the series xn1 +
∑+∞

k=1(xnk+1
− xnk

) converges to some element x ∈ X .
Observing the telescoping partial sums of the last series we get that xnk

→ x. Since (xn) is
Cauchy,

xk = (xk − xnk
) + xnk

→ 0 + x = x

when k → +∞.
Therefore X is complete.

Proposition 1.9. LetX be a Banach space and Y be a subspace ofX . Then Y is a Banach space
if and only if Y is closed.

Proof. Let Y be a Banach space. We take any sequence (yn) in Y so that yn → y ∈ X . Since
(yn) converges, it is a Cauchy sequence. But Y is complete, so (yn) converges to an element of
Y . Since the limit of a sequence is unique, we get that y ∈ Y .
Therefore Y is closed.
Conversely, let Y be closed. We take any Cauchy sequence (yn) in Y . Since X is complete,
yn → y for some y ∈ X . Since Y is closed, we get y ∈ Y .
Hence Y is complete.

Observe that in the first part of the last proof the assumption of the completeness ofX was not
used. Therefore,
If Y is a complete subspace of a normed space X , then Y is closed in X .

Proposition 1.10. Let X1, . . . , Xm be Banach spaces with norms ∥ · ∥1, . . . , ∥ · ∥m. Then the
product space X = X1 × · · · ×Xm equipped with any of the p-norms is a Banach space.

Proof. Let (xn) be a Cauchy sequence in X , where xn = (xn,1, . . . , xn,m) for every n. Clearly,
for every j = 1, . . . ,m we have

∥xn,j − xk,j∥j ≤ ∥xn − xk∥p → 0
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as n, k → +∞ and so (xn,j) is a Cauchy sequence inXj . Thus xn,j → xj for some xj ∈ Xj . We
consider the element x = (x1, . . . , xm) ∈ X and then

∥xn − x∥p = (∥xn,1 − x1∥p1 + · · ·+ ∥xn,m − xm∥pm)1/p → 0

when 1 ≤ p < +∞, and

∥xn − x∥∞ = max{∥xn,1 − x1∥1, . . . , ∥xn,m − xm∥m} → 0

when p = +∞.
So X is complete.

Proposition 1.11. Let X be a Banach space and Z be a closed subspace of X . Then X/Z is a
Banach space.

Proof. We consider ξn ∈ X/Z so that
+∞∑
n=1

∥ξn∥X/Z < +∞.

Since ∥ξn∥X/Z = inf{∥x∥ |x ∈ ξn}, there is some xn ∈ ξn so that

∥xn∥ < ∥ξn∥X/Z +
1

n2
.

Therefore
+∞∑
n=1

∥xn∥ < +∞.

Since X is a Banach space, the series
∑+∞

n=1 xn converges to an element s ∈ X , i.e.

x1 + · · ·+ xn → s

when n → +∞. We consider η = s+Z ∈ X/Z. Then x1 + · · ·+ xn ∈ ξ1 + · · ·+ ξn and s ∈ η
and hence (x1 + · · ·+ xn)− s ∈ (ξ1 + · · ·+ ξn)− η. Thus

∥(ξ1 + · · ·+ ξn)− η∥X/Z ≤ ∥(x1 + · · ·+ xn)− s∥ → 0

when n → +∞. We conclude that the series
∑+∞

n=1 ξn converges to an element of X/Z.
So X/Z is a Banach space.

1.5 Linear isometries.

Definition. Let X,Y be normed spaces with norms ∥ · ∥X , ∥ · ∥Y , and let T : X → Y be a linear
operator with the property

∥T (x)∥Y = ∥x∥X
for every x ∈ X . Then we say that T is a linear isometry of X into Y . It is clear that T (x) = 0
implies x = 0, and so T is one-to-one.
If T is onto Y , i.e. if T (X) = Y , then we say that T is a linear isometry of X onto Y . We also
say that X is linearly isometric to Y .

It is easy to see that the relation between normed spaces of being linearly isometric is an equiv-
alence relation.

A linear isometry T : X → Y is continuous. Indeed, if xn → x in X , then

∥T (xn)− T (x)∥Y = ∥T (xn − x)∥Y = ∥xn − x∥X → 0

and thus T (xn) → T (x) in Y .
If T is a linear isometry of X into Y , then we may “identify” every x ∈ X with the corre-

sponding T (x) ∈ Y and so we may “identify” X with the subspace T (X) of Y .
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Proposition 1.12. Let X be a normed space with norm ∥ · ∥X , let Y be a linear space and let
T : X → Y be a linear operator which is one-to-one in X and onto Y . Then there is a norm on
Y so that T becomes a linear isometry of X onto Y .

Proof. We take any y ∈ Y , we consider the unique x ∈ X so that T (x) = y, and we define

∥y∥Y = ∥x∥X .

We can easily prove that the function ∥ · ∥Y : Y → R just defined is a norm on Y .
Of course, since T (x) = y, the equality ∥y∥Y = ∥x∥X can be written ∥T (x)∥Y = ∥x∥X and so
T is a linear isometry of X onto Y .

In other words, when we have two isomorphic linear spaces and one of them has a norm, then
we can transfer this norm to the other linear space so that the two spaces become linearly isometric.

Example 1.5.1. Let X be a linear space of finite dimension and let {b1, . . . , bm} be a basis of X .
We consider the normed space Fm with any of the p-norms ∥ · ∥p, 1 ≤ p ≤ +∞. We also consider
the linear operator T : Fm → X defined for every (λ1, . . . , λm) ∈ Fm by

T (λ1, . . . , λm) = λ1b1 + · · ·+ λmbm.

Then T is one-to-one in Fm and onto X , and so the p-norm on Fm can be transfered to a norm
∥ · ∥p : X → R. This norm is defined for every x = λ1b1 + · · ·+ λmbm ∈ X by the formula

∥x∥p = ∥λ1b1 + · · ·+ λmbm∥p = ∥T (λ1, . . . , λm)∥p = ∥(λ1, . . . , λm)∥p

=

{
(|λ1|p + · · ·+ |λm|p)1/p, 1 ≤ p < +∞,

max{|λ1|, . . . , |λm|}, p = +∞.

The norm ∥ · ∥p on X just defined is called p-norm on X with respect to the basis {b1, . . . , bm}.
Of course, if we change the basis of X , then we shall get a different norm on X: the coefficient
m-tuple (λ1, . . . , λm) of any x ∈ X depends on the basis.

1.6 Equivalent norms.

Definition. Two norms ∥ · ∥ and 9 · 9 on the same linear space X are called equivalent if there
are constatns c, C > 0 so that

c∥x∥ ≤ 9x9 ≤ C∥x∥

for every x ∈ X .

Proposition 1.13. Let ∥·∥, 9·9 be two norms on the linear spaceX . The following are equivalent.
(i) The norms are equivalent.
(ii) For every sequence (xn) in X: 9xn9 → 0 if and only if ∥xn∥ → 0.

Proof. Assume that the two norms are equivalent, i.e. that

c∥x∥ ≤ 9x9 ≤ C∥x∥

for every x ∈ X , and let ∥xn∥ → 0. Then

9xn9 ≤ C∥xn∥ → 0

and hence 9xn9 → 0. In the same manner, if 9xn9 → 0 we get that ∥xn∥ → 0.
For the converse we assume that there is no c > 0 so that c∥x∥ ≤ 9x9 for every x ∈ X . Therefore,
for every n ∈ N there is xn ∈ X so that 1

n∥xn∥ > 9xn9. We consider the elements

yn =
1

∥xn∥
xn
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for which we have
∥yn∥ = 1, 9yn9 <

1

n
.

Then 9yn9 → 0 but ∥yn∥ ̸→ 0, and we get a contradiction to (ii). In the same manner we get a
contradiction to (ii) if there is no C > 0 so that 9x9 ≤ C∥x∥ for every x ∈ X .

So we see that, if two norms on the same linear space are equivalent, then a sequence (xn)
converges to x with respect to one of the norms if and only if (xn) converges to x with respect to
other norm.

Assume again that the norms ∥ · ∥ and 9 · 9 on the same linear space X are equivalent, i.e.
they satisfy c∥x∥ ≤ 9x9 ≤ C∥x∥ for every x ∈ X . If B(a; r) is a ball with respect to the norm
∥ · ∥ and D(a; r) is a ball with respect to the norm 9 · 9, then

D(a; cr) ⊆ B(a; r) ⊆ D(a;Cr).

Therefore, if a set A ⊆ X is open with respect to one of the norms, then A is open with respect
to the other norm. Since the closed sets are the complements of the open sets, the same is true for
closed subsets of X . And, since the notion of compact set depends solely on the notion of open
set, the same is true for compact subsets ofX . Finally, if a set A is contained in a ball with respect
to one of the norms, then it is contained in a ball with respect to the other norm.

In other words, equivalent norms define the same convergent sequences (with the same limits)
and the same open, closed, compact, and bounded sets.

1.7 Finite dimensional normed spaces.

Proposition 1.14. Let X be a linear space of finite dimension. Then every two norms on X are
equivalent.

Proof. Let {b1, . . . , bm} be a basis of X . We consider the 2-norm on X defined for every x =
λ1b1 + · · ·+ λmbm ∈ X by

∥x∥2 = (|λ1|2 + · · ·+ |λm|2)1/2.

We shall prove that every other norm ∥ · ∥ on X is equivalent to ∥ · ∥2.
Initially, for every x = λ1b1 + · · ·+ λmbm ∈ X we get

∥x∥ ≤ |λ1| ∥b1∥+ · · ·+ |λm| ∥bm∥ ≤ (∥b1∥2+ · · ·+∥bm∥2)1/2(|λ1|2+ · · ·+ |λm|2)1/2 = C∥x∥2,

where C = (∥b1∥2 + · · ·+ ∥bm∥2)1/2. The second inequality above is Cauchy’s inequality.
Now assume that there is no c > 0 so that c∥x∥2 ≤ ∥x∥ for every x ∈ X . Then, as in the proof of
proposition 1.13, we see that there is a sequence (xn) in X so that

∥xn∥2 = 1, ∥xn∥ → 0.

If xn = λn,1b1 + · · ·+ λn,mbm, then from the last equality we get that

|λn,1|2 + · · ·+ |λn,m|2 = 1

for every n.
Since the unit sphere of Fm is a compact set, there is a subsequence (xnk

) of (xn) so that

(λnk,1, . . . , λnk,m) → (λ1, . . . , λm)

for some (λ1, . . . , λm) ∈ Fm satisfying

|λ1|2 + · · ·+ |λm|2 = 1.
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We consider the element
x = λ1b1 + · · ·+ λmbm

of X and then we have

∥xnk
− x∥ ≤ |λnk,1 − λ1| ∥b1∥+ · · ·+ |λnk,m − λm| ∥bm∥ → 0

and
∥xnk

− x∥2 = (|λnk,1 − λ1|2 + · · ·+ |λnk,m − λm|2)1/2 → 0.

Hence xnk
→ x with respect to both norms, and so

∥x∥2 = 1, ∥x∥ = 0.

This is impossible.

Proposition 1.15. Let X be a normed space of finite dimension. Then,
(i) every closed and bounded subset of X is compact.
(ii) X is a Banach space.

Proof. (i) Let {b1, . . . , bm} be a basis of X . Besides the norm ∥ · ∥ on X , we also consider the
2-norm on X defined for every x = λ1b1 + · · ·+ λmbm ∈ X by

∥x∥2 = (|λ1|2 + · · ·+ |λm|2)1/2.

We also consider the linear operator
T : Fm → X

defined for every (λ1, . . . , λm) ∈ Fm by

T (λ1, . . . , λm) = λ1b1 + · · ·+ λmbm.

As we have already observed, T is one-to-one in Fm and ontoX . Moreover, T and T−1 are linear
isometries between Fm and X , if we consider the two spaces equipped with their 2-norms.
Now, let K ⊆ X be closed and bounded (with respect to the norm ∥ · ∥). Since every two norms
on X are equivalent, K is closed and bounded with respect to the 2-norm on X . Now, since
T : Fm → X is a linear isometry with respect to the 2-norms on Fm and X , T−1(K) is closed
and bounded in Fm. But Fm with its 2-norm is the standard euclidean space and so T−1(K) is
compact. Therefore K = T (T−1(K)) is compact in X with respect to the 2-norm on X . Finally,
since the norm ∥ · ∥ and the 2-norm on X are equivalent, K is compact in X with respect to its
original norm ∥ · ∥.
(ii) Let (xn) be a Cauchy sequence inX . Then (xn) is bounded, i.e. it is contained in some closed
ball B(0; r). By (i), this closed ball is compact and so (xn) has a convergent subsequence. Since
(xn) is a Cauchy sequence, it is convergent.

Proposition 1.16. Let X be a normed space and let Y be a subspace of X of finite dimension.
Then Y is closed.

Proof. Since Y is a normed space of finite dimension, it is a complete subspace of X and hence
closed in X .
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1.8 Completion.

Definition. Let X be a normed space. We say that the normed space X is a completion of X if X
is complete, i.e. a Banach space, and there is a linear isometry T : X → X so that T (X) is a
dense subspace of X .

In other words, a Banach space X is a completion of X if X is linearly isometric to a dense
subspace of X .

A trivial case is when X itself is complete. Then we may consider X = X , i.e. X is a
completion of itself.

Theorem 1.1. Let X be a normed space. Then there is at least one completion of X . Moreover,
every two completions of X are linearly isometric.

Proof. We shall construct a completionX of X .
We first consider the set of all Cauchy sequences inX:

X̂ = {(xn) | (xn) is a Cauchy sequence in X}.

Then we consider a relation between Cauchy sequences:

(xn) ≡ (yn) if xn − yn → 0 in X.

This is obviously an equivalence relation in X̂ , and so we may consider the quotient space con-
sisting of all equivalence classes:

X = {[(xn)] | (xn) ∈ X̂} = X̂/ ≡

We define algebraic operations in X:

[(xn)] + [(yn)] = [(xn + yn)], λ [(xn)] = [(λxn)].

(It is easy to check that these are well defined.) Thus,X is a linear space over F .
If (xn) is a Cauchy sequence in X , then it is easy to see that (∥xn∥) is a Cauchy sequence in R
and so it converges to some real number. Hence we may define a norm onX by:

∥[(xn)]∥X = lim
n→+∞

∥xn∥.

(Again, it is easy to check that this is well defined and that it has the properties of a norm.) So X
is a normed space.
Next we consider the linear operator

T : X → X

defined for every x ∈ X by
T (x) = [(x)],

where (x) is, of course, the constant sequence x, x, x, . . . . It is easy to see thatT is a linear operator,
and that T is a linear isometry of X into X:

∥T (x)∥X = ∥[(x)]∥X = lim
n→+∞

∥x∥ = ∥x∥.

Now, take any [(xn)] ∈ X and any ϵ > 0. Since (xn) is a Cauchy sequence in X , there is n0 so
that ∥xn − xm∥ < ϵ for every n,m ≥ n0. Therefore,

∥[(xn)]− T (xn0)∥X = ∥[(xn)]− [(xn0)]∥X = ∥[(xn − xn0)]∥X = lim
n→+∞

∥xn − xn0∥ ≤ ϵ.
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This means that T (X) is dense in X .
Finally, let (ξn) be a Cauchy sequence inX . Since T (X) is dense inX , for every n there is some
xn ∈ X so that

∥ξn − T (xn)∥X <
1

n
.

Then we get

∥xn − xm∥ = ∥T (xn − xm)∥X = ∥T (xn)− T (xm)∥X
≤ ∥T (xn)− ξn∥X + ∥ξn − ξm∥X + ∥ξm − T (xm)∥X → 0

when n,m → +∞ and so (xn) is a Cauchy sequence in X . We now consider the element ξ =
[(xn)] of X and we get

∥ξm − ξ∥X ≤ ∥ξm − T (xm)∥X + ∥T (xm)− ξ∥X <
1

m
+ ∥[(xm)]− [(xn)]∥X

where (xm) is the constant sequence xm, xm, . . . . So

∥ξm − ξ∥X ≤ 1

m
+ ∥[(xm − xn)]∥X =

1

m
+ lim

n→+∞
∥xm − xn∥ → 0

whenm → +∞.
We conclude that every Cauchy sequence inX converges to an element of X .
Now, assume that X1 and X2 are two completions of X . Thus there are linear isometries T1 :
X → X1 and T2 : X → X2 so that T1(X) and T2(X) are dense subspaces of X1 and X2.
We take any ξ1 ∈ X1. Then there is a sequence (xn) inX so that T1(xn) → ξ1 inX1. So (T1(xn))
is a Cauchy sequence in X1, and since T1 is a linear isometry, (xn) is a Cauchy sequence in X .
Now, since T2 is a linear isometry, (T2(xn)) is a Cauchy sequence inX2. ButX2 is complete, and
so there is some ξ2 ∈ X2 so that T2(xn) → ξ2 in X2. Now, this procedure defines a function

T : X1 → X2

so that for every ξ1 ∈ X1 we have
T (ξ1) = ξ2.

Taking this procedure backwards from an arbitrary ξ2 ∈ X2 to ξ1 ∈ X1 we see that T is one-to-
one in X1 and onto X2. It is also easy to check that T is a linear operator, and that it is a linear
isometry

∥T (ξ1)∥X2
= ∥ξ2∥X2

= lim
n→+∞

∥T2(xn)∥X2
= lim

n→+∞
∥xn∥ = lim

n→+∞
∥T1(xn)∥X1

= ∥ξ1∥X1
.

Therefore, X1 and X2 are linearly isometric.

1.9 Sequence spaces.

Definition. We define the following spaces whose elements are sequences in F :

c = {(λk) | (λk) converges in F}
c0 = {(λk) |λk → 0 in F}
l∞ = {(λk) | (λk) is bounded}

lp =
{
(λk)

∣∣∣ +∞∑
k=1

|λk|p < +∞
}
, 1 ≤ p < +∞.
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The algebraic operations in all these spaces are defined component-wise as usual:

(λk) + (κk) = (λk + κk), λ (λk) = (λλk).

These operations are well defined in these spaces, since if (λk), (κk) are convergent, or convergent
to 0, or bounded, then (λk + κk), (λλk) are also convergent, or convergent to 0, or bounded.
Regarding the last space, we observe that if (λk) ∈ lp, i.e. if

∑∞
k=1 |λk|p < +∞, then

+∞∑
k=1

|λλk|p = |λ|p
+∞∑
k=1

|λk|p < +∞

and hence (λλk) ∈ lp. Also if (λk), (κk) ∈ lp, i.e. if
∑+∞

k=1 |λk|p < +∞ and
∑+∞

k=1 |κk|p < +∞,
then, as we saw in the proof of Minkowski’s inequality for sums,

+∞∑
k=1

|λk + κk|p ≤
+∞∑
k=1

(|λk|+ |κk|)p ≤ 2p−1
+∞∑
k=1

|λk|p + 2p−1
+∞∑
k=1

|κk|p < +∞,

and hence (λk + κk) ∈ lp.
Thus all these sequence spaces are linear spaces over F .
We have the obvious inclusions

lp ⊆ c0 ⊆ c ⊆ l∞.

We can also prove that
lp ⊆ lq, if 1 ≤ p < q < +∞.

Indeed, if (λk) ∈ lp, then λk → 0, and so there is k0 so that |λk| ≤ 1 for every k ≥ k0. Then

+∞∑
k=k0

|λk|q ≤
+∞∑
k=k0

|λk|p < +∞,

and so (λk) ∈ lq.

Definition. If 1 ≤ p ≤ +∞, we consider the function ∥ · ∥p : lp → R defined for every x = (λk) ∈
lp by

∥x∥p =

{(∑+∞
k=1 |λk|p

)1/p
, 1 ≤ p < +∞,

supk |λk|, p = +∞.

Minkowski’s inequality for sums implies that ∥ · ∥p is a norm on lp; it is the p-norm of lp.

Theorem 1.2. If 1 ≤ p ≤ +∞, then lp with the norm ∥ · ∥p is a Banach space.

Proof. We consider the case 1 ≤ p < +∞.
We take a Cauchy sequence (xn) in lp. If xn = (λn,k) for every n, then for every k we have

|λn,k − λm,k| ≤ ∥xn − xm∥p → 0

when n,m → +∞. Since F is complete, for every k there is λk ∈ F so that λn,k → λk when
n → +∞, and we consider the sequence

x = (λk).

We take n0 so that ∥xn − xm∥p < 1 for every n,m ≥ n0. Then for every K and every n ≥ n0

we get

( K∑
k=1

|λn,k|p
)1/p

≤
( +∞∑

k=1

|λn,k|p
)1/p

= ∥xn∥p ≤ ∥xn − xn0∥p + ∥xn0∥p < 1 + ∥xn0∥p.
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Taking the limit first when n → +∞ and next whenK → +∞, we find

( +∞∑
k=1

|λk|p
)1/p

≤ 1 + ∥xn0∥p < +∞

and so x ∈ lp.
Now we take any ϵ > 0 and a coresponding n0 so that ∥xn − xm∥p < ϵ for every n,m ≥ n0.
Then for everyK and every n,m ≥ n0 we get

( K∑
k=1

|λn,k − λm,k|p
)1/p

≤
( +∞∑

k=1

|λn,k − λm,k|p
)1/p

= ∥xn − xm∥p < ϵ.

Taking the limit first whenm → +∞ and next whenK → +∞, we find

∥xn − x∥p =
( +∞∑

k=1

|λn,k − λk|p
)1/p

≤ ϵ

for every n ≥ n0. Thus xn → x in lp.
Finally, let p = +∞ and consider a Cauchy sequence (xn) in l∞. If xn = (λn,k) for every n, then
for every k we have

|λn,k − λm,k| ≤ ∥xn − xm∥∞ → 0

when n,m → +∞. Again, since F is complete, for every k there is λk ∈ F so that λn,k → λk

when n → +∞. Define
x = (λk).

We take n0 so that ∥xn − xm∥∞ < 1 for every n,m ≥ n0. Then for every k and every n ≥ n0

we have
|λn,k| ≤ ∥xn∥∞ ≤ ∥xn − xn0∥∞ + ∥xn0∥∞ < 1 + ∥xn0∥∞.

Taking the limit when n → +∞, we find

|λk| ≤ 1 + ∥xn0∥∞ < +∞

for every k, and so x ∈ l∞.
Now we take any ϵ > 0 and a coresponding n0 so that ∥xn − xm∥∞ < ϵ for every n,m ≥ n0.
Then for every k and every n,m ≥ n0 we get

|λn,k − λm,k| ≤ ∥xn − xm∥∞ < ϵ.

Taking the limit whenm → +∞, we find

|λn,k − λk| ≤ ϵ

for every k and every n ≥ n0. Thus ∥xn − x∥∞ ≤ ϵ for every n ≥ n0 and so xn → x in l∞.

Now c and c0 are linear subspaces of l∞, and so they are normed spaces equipped with the
restriction of the norm ∥ · ∥∞ on each of them.

Theorem 1.3. The spaces c, c0 with the norm ∥ · ∥∞ are Banach spaces.

Proof. Since l∞ is a Banach space, it is enough to prove that c, c0 are closed in l∞.
Let (xn) be a sequence in c and xn → x in l∞. Let xn = (λn,k) for every n, and x = (λk).
For any ϵ > 0 there is n0 so that ∥xn − x∥∞ < ϵ for every n ≥ n0. Then for every k we have

|λn0,k − λk| ≤ ∥xn0 − x∥∞ < ϵ.
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Since (λn0,k) is a Cauchy sequence in F , there is k0 so that |λn0,k−λn0,l| < ϵ for every k, l ≥ k0.
Then

|λk − λl| ≤ |λk − λn0,k|+ |λn0,k − λn0,l|+ |λn0,l − λl| < 3ϵ

for every k, l ≥ k0. Therefore x = (λk) is a Cauchy sequence in F and so it belongs to c.
Now let (xn) be a sequence in c0 and xn → x in l∞. Let xn = (λn,k) for every n, and x = (λk).
For any ϵ > 0 there is n0 so that ∥xn − x∥∞ < ϵ for every n ≥ n0. Then for every k we have

|λn0,k − λk| ≤ ∥xn0 − x∥∞ < ϵ.

Since λn0,k → 0 when k → +∞, there is k0 so that |λn0,k| < ϵ for every k ≥ k0. Therefore,

|λk| ≤ |λk − λn0,k|+ |λn0,k| < 2ϵ

for every k ≥ k0, and so x ∈ c0.

Definition. We define the sequence space

c00 = {(λk) |λk = 0 after some value of k}.

It is obvious that c00 is a linear subspace of all previous spaces c, c0, and lp, 1 ≤ p ≤ +∞. So
in each of these spaces c00 is a subspace when we consider the norm of the space restricted to c00.

Proposition 1.17. c00 is a dense subspace of each of the spaces c0, and lp, 1 ≤ p < +∞.

Proof. We take any x ∈ c0, with x = (λk), and any ϵ > 0. Since λk → 0, there is k0 so that
|λk| < ϵ for every k ≥ k0. Now we take the sequence y = (κk), where κk = λk for k < k0, and
κk = 0 for k ≥ k0. Then y ∈ c00. Also, κk − λk = 0 for k < k0, and κk − λk = −λk for k ≥ k0.
Then

∥y − x∥∞ = sup
k

|κk − λk| = sup
k≥k0

|λk| ≤ ϵ.

So c00 is dense in c0.
Now let 1 ≤ p < +∞ and take any x ∈ lp, with x = (λk), and any ϵ > 0. Since

∑+∞
k=1 |λk|p <

+∞, there is k0 so that
∑+∞

k=k0
|λk|p < ϵp. Now, as before, we take the sequence y = (κk), where

κk = λk for k < k0, and κk = 0 for k ≥ k0. Then y ∈ c00. Also, κk − λk = 0 for k < k0, and
κk − λk = −λk for k ≥ k0. Therefore,

∥y − x∥p =
( +∞∑

k=1

|κk − λk|p
)1/p

=
( +∞∑

k=k0

|λk|p
)1/p

< ϵ.

So c00 is dense in lp.

The space c00 with the norm ∥ · ∥∞ is certainly not complete. To see this we consider any
element x of c0 \ c00. For example, we may take x to be any sequence in F which converges to
0 and whose terms are all ̸= 0. Since c00 is dence in c0, there is a sequence (xn) in c00 so that
xn → x in c0. Then (xn) is a Cauchy sequence in c0 and hence in c00 (since the two spaces have
the same norm) but it does not converge to an element of c00.

In this case, c0 is a completion of c00 with the norm ∥ · ∥∞.
With exactly the same argument, we see that c00 with the norm ∥ · ∥p is not complete, and that,

in this case, lp is a completion of c00 with the norm ∥ · ∥p.
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1.10 Function spaces.

1.10.1 Bounded continuous functions.

Definition. We consider the space of all bounded functions f : A → F , where A is any non-empty
set:

B(A) = {f | f : A → F is bounded in A}

If f, g are bounded in A and λ ∈ F , then f + g, λf are also bounded in A. SoB(A) is a linear
space over F .

Definition. We consider the function ∥ · ∥u : B(A) → R defined for every f ∈ B(A) by

∥f∥u = sup{|f(a)| | a ∈ A}

It is easy to see that ∥ · ∥u is a norm on B(A); it is called uniform norm on B(A).
If fn → f in B(A), we say that (fn) converges to f uniformly in A.

Theorem 1.4. B(A) with the uniform norm is a Banach space.

Proof. Take (fn) in B(A) so that ∥fn − fm∥u → 0 when n,m → +∞. Then for every a ∈ A we
have

|fn(a)− fm(a)| ≤ ∥fn − fm∥u → 0

when n,m → +∞, and so the sequence (fn(a)) converges to some element of F . We consider
f : A → F defined for every a ∈ A by

f(a) = lim
n→+∞

fn(a).

We consider n0 so that ∥fn − fm∥u < 1 for every n,m ≥ n0. Then for every a ∈ A and every
n ≥ n0 we have

|fn(a)| ≤ ∥fn∥u ≤ ∥fn − fn0∥u + ∥fn0∥u < 1 + ∥fn0∥u.

Taking the limit when n → +∞, we find

|f(a)| ≤ 1 + ∥fn0∥u

for every a ∈ A and so f ∈ B(A).
Now we take any ϵ > 0 and then there is n0 so that ∥fn − fm∥u < ϵ for every n,m ≥ n0. Then
for every n,m ≥ n0 and every a ∈ A we have

|fn(a)− fm(a)| ≤ ∥fn − fm∥u < ϵ.

Taking the limit whenm → +∞, we get

|fn(a)− f(a)| ≤ ϵ

for every n ≥ n0 and every a ∈ A. So ∥fn−f∥u ≤ ϵ for every n ≥ n0, i.e. fn → f inB(A).

Definition. We consider the spaces of all continuous and of all bounded and continuous functions
f : A → F , whereA is any non-empty subset of a metric space or, more generally, of a topological
space:

C(A) = {f | f : A → F is continuous in A},
BC(A) = B(A) ∩ C(A) = {f | f : A → F is bounded and continuous in A}.
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It is clear that both spaces are linear spaces and that BC(A) is a linear subspace of B(A).
Therefore, we may consider the restriction on BC(A) of the uniform norm ∥ · ∥u on B(A), and
then BC(A) becomes a subspace of B(A).

Theorem 1.5. Let A be a topological space. Then BC(A) with the uniform norm is a Banach
space.

Proof. It is enough to prove that BC(A) is a closed subspace of B(A).
We take any sequence (fn) in BC(A) so that fn → f for some f ∈ B(A). We take any a ∈ A
and any ϵ > 0. Then there is n0 so that

|fn(b)− f(b)| ≤ ∥fn − f∥u ≤ ϵ

3

for every n ≥ n0 and every b ∈ A. Since fn0 is continuous at a, there is some open U ⊆ A so that
a ∈ U and

|fn0(b)− fn0(a)| ≤
ϵ

3

for every b ∈ U . Then

|f(b)− f(a)| ≤ |f(b)− fn0(b)|+ |fn0(b)− fn0(a)|+ |fn0(a)− f(a)| ≤ ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ

for every b ∈ U . So f is continuous at any a ∈ A.

1.10.2 Measurable functions.

Now we consider any measurable space (Ω,Σ), i.e. any non-empty set Ω and a σ-algebra Σ of
subsets of Ω. We also consider the set of all functions f : Ω → F which are measurable with
respect to Σ:

M(Ω) = M(Ω,Σ) = {f | f : Ω → F is measurable with respect to Σ}.

Since the sum of measurable functions and the product of a number and a measurable function
are measurable functions we see thatM(Ω) is a linear space over F .

Now we also consider a measure µ onΣ, i.e. a measure space (Ω,Σ, µ). As in the basic theory
of Measure and Integration, we consider equal every two functions inM(Ω) which differ only in
a set of µ-measure equal to 0.

Definition. We define the function spaces

L∞(Ω) = L∞(Ω,Σ, µ) = {f ∈ M(Ω) | f is essentially bounded in Ω},

Lp(Ω) = Lp(Ω,Σ, µ) =
{
f ∈ M(Ω)

∣∣∣ ∫
Ω
|f |p dµ < +∞

}
, 1 ≤ p < +∞.

It is easy to see that the sum of essentially bounded functions and the product of a number and
an essentially bounded function are essentially bounded functions. Hence L∞(Ω) is a linear space
over F .

Regarding the space Lp(Ω) with 1 ≤ p < +∞, we have that, if f ∈ Lp(Ω), then∫
Ω
|λf |p dµ = |λ|p

∫
Ω
|f |p dµ < +∞

and hence λf ∈ Lp(Ω). Also, if f, g ∈ Lp(Ω), then, as we saw in the proof of Minkowski’s
inequality for integrals,∫

Ω
|f + g|p dµ ≤ 2p−1

∫
Ω
|f |p dµ+ 2p−1

∫
Ω
|g|p dµ < +∞,

and so f + g ∈ Lp(Ω).
Therefore, the space Lp(Ω) is a linear space over F .
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Definition. If 1 ≤ p ≤ +∞, we consider the function ∥ · ∥p : Lp(Ω) → R defined for every
f ∈ Lp(Ω) by

∥f∥p =

{( ∫
Ω |f |p dµ

)1/p
, 1 ≤ p < +∞,

ess-supΩ |f |, p = +∞.

Minkowski’s inequality for integrals shows that ∥ · ∥p is a norm on Lp(Ω); it is the p-norm of
Lp(Ω).

Theorem 1.6. Lp(Ω) with the p-norm is a Banach space.

Proof. We first consider the case 1 ≤ p < +∞.
We take a sequence (fn) in Lp(Ω) so that ∥fn − fm∥p → 0 when n,m → +∞.
For every k ∈ N there is nk so that ∥fn − fm∥p < 1

2k
for every n,m ≥ nk. We may assume that

(nk) is strictly increasing and so we have ∥fnk+1
− fnk

∥ < 1
2k

for every k.
We consider the function

sk = |fn1 |+ |fn2 − fn1 |+ · · ·+ |fnk
− fnk−1

| ∈ Lp(Ω),

and we have that(∫
Ω
spk dµ

)1/p
= ∥sk∥p ≤ ∥fn1 ||p + ∥fn2 − fn1∥p + · · ·+ ∥fnk

− fnk−1
∥p

≤ ∥fn1∥p +
1

2
+ · · ·+ 1

2k−1
≤ ∥fn1∥p + 1.

Since (sk) is an increasing sequence of non-negative functions, themonotone convergence theorem
implies that the function S = limk→+∞ sk : Ω → [0,+∞] satisfies

∫
Ω Sp dµ < +∞. Hence,

S(x) < +∞ for µ-a.e. x ∈ Ω and so the series fn1(x) +
∑+∞

k=2(fnk
(x) − fnk−1

(x)) converges
absolutely for µ-a.e. x ∈ Ω. Therefore the limit

lim
k→+∞

(
fn1(x) + (fn2(x)− fn1(x)) + · · ·+ (fnk

(x)− fnk−1
(x))

)
= lim

k→+∞
fnk

(x)

exists in F for µ-a.e. x ∈ Ω.
Now we consider the function f : Ω → F defined for µ-a.e. x ∈ Ω by

f(x) = lim
k→+∞

fnk
(x).

We have

|fnk
(x)|p =

∣∣fn1(x) + (fn2(x)− fn1(x)) + · · ·+ (fnk
(x)− fnk−1

(x))
∣∣p ≤ sk(x)

p ≤ Sp(x)

for µ-a.e. x ∈ Ω, and hence |f |p ≤ Sp µ-a.e. in Ω. So∫
Ω
|f |p dµ ≤

∫
Ω
Sp dµ < +∞,

and thus f ∈ Lp(Ω). Moreover, the dominated convergence theorem implies that

∥fnk
− f∥p =

(∫
Ω
|fnk

− f |p dµ
)1/p

→ 0

when k → +∞. Finally, since (fn) is a Cauchy sequence,

∥fk − f∥p ≤ ∥fk − fnk
∥p + ∥fnk

− f∥p → 0
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when k → +∞.
Now let p = +∞ and take a Cauchy sequence (fn) in L∞(Ω).
Considering the union of countably many appropriate sets of µ-measure equal to 0, we see that

|fn(x)− fm(x)| ≤ ∥fn − fm∥∞

for µ-a.e. x ∈ Ω and every n,m. Therefore, limn→+∞ fn(x) exists in F for µ-a.e. x ∈ Ω. Now
we consider the function f defined for µ-a.e. x ∈ Ω by

f(x) = lim
n→+∞

fn(x).

For any ϵ > 0 there is n0 so that

|fn(x)− fm(x)| ≤ ∥fn − fm∥∞ < ϵ

for µ-a.e. x ∈ Ω and every n,m ≥ n0. Taking the limit whenm → +∞, we find that

|fn(x)− f(x)| ≤ ϵ

for µ-a.e. x ∈ Ω and every n ≥ n0. Therefore ∥fn − f∥∞ ≤ ϵ for every n ≥ n0, and so fn → f
in L∞(Ω).

A special case of the above is when Ω is a topological space. In this special case we may
consider Σ to be the smallest σ-algebra which contains all open subsets of Ω. This σ-algebra
is denoted B(Ω) and it is called σ-algebra of the Borel subsets of Ω. Since B(Ω) is a σ-algebra
which contains all open subsets ofΩ, it also contains all closed subsets ofΩ, as well as all countable
intersections of open subsets of Ω and all countable unions of closed subsets of Ω. The elements
of B(Ω) are called Borel subsets of Ω.

A measure µ on B(Ω) is called Borel measure in Ω. If µ also satisfies µ(K) < +∞ for every
compactK ⊆ Ω, then it is called locally finite Borel measure.

Every continuous function f : Ω → F is measurable with respect to B(Ω). So if µ is a Borel
measure in Ω, we may consider the subset

C(Ω) ∩ Lp(Ω) =
{
f
∣∣∣ f : Ω → F continuous in Ω with

∫
Ω
|f |p dµ < +∞

}
ofLp(Ω), which consists of all functions which are continuous and p-integrable inΩ. ThenC(Ω)∩
Lp(Ω) is a subspace of Lp(Ω), and it is well known that C(Ω)∩Lp(Ω) is dense in Lp(Ω). In other
words, Lp(Ω) is a completion of C(Ω) ∩ Lp(Ω).

1.10.3 Differentiable functions.

LetU be an open subset ofRd and let f : U → F . We take anymulti-indexα = (α1, . . . , αd) ∈ Nd
0

with length |α| = α1 + · · ·+ αd, and we consider the derivative of order |α| at any x ∈ U :

Dαf(x) =
∂|α|f

∂xα
(x) =

∂|α|f

∂xα1
1 · · · ∂xαd

d

(x).

Definition. For every k ∈ N ∪ {+∞} we define the space

Ck(U) = {f | f : U → F has continuous derivatives of order ≤ k in U}.

We also define C0(U) = C(U).
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It is clear that all Ck(U) are linear spaces over F , and that

C∞(U) ⊆ Ck(U) ⊆ C l(U) ⊆ C(U)

for every k, l ∈ N0 with k ≥ l.
In the following we consider m to be the Lebesgue measure in U ⊆ Rd and when we write

Lp(U) we consider U with the Lebesgue measurem.

Definition. If k ∈ N0 and 1 ≤ p < +∞, we define the space

Ck,p(U) = {f ∈ Ck(U) |Dαf ∈ Lp(U) when |α| ≤ k}.

If k ∈ N0 and p = +∞, we define the space

Ck,∞(U) = {f ∈ Ck(U) |Dαf ∈ BC(U) when |α| ≤ k}.

Definition. Let k ∈ N0 and 1 ≤ p ≤ +∞. We consider the function ∥·∥k,p : Ck,p(U) → R defined
for every f ∈ Ck,p(U) by

∥f∥k,p =

{(∑
|α|≤k

∫
U |Dαf |p dm

)1/p
, 1 ≤ p < +∞,∑

|α|≤k ∥Dαf∥u, p = +∞.

Of course, when we write ∥ · ∥u we mean the uniform norm on BC(U).

Proposition 1.18. The function ∥ · ∥k,p : Ck,p(U) → R is a norm on Ck,p(U).

Proof. Let 1 ≤ p < +∞. Then, using Minkowski’s inequalities for sums and integrals, we get

∥f + g∥k,p =
( ∑

|α|≤k

∫
U
|Dαf +Dαg|p dm

)1/p

≤
( ∑

|α|≤k

[( ∫
U
|Dαf |p dm

)1/p
+

(∫
U
|Dαg|p dm

)1/p]p)1/p

≤
( ∑

|α|≤k

∫
U
|Dαf |p dm

)1/p
+
( ∑

|α|≤k

∫
U
|Dαg|p dm

)1/p

= ∥f∥k,p + ∥g∥k,p.

All other properties of the norm, as well as the case p = +∞, are straightforward.

Theorem 1.7. Ck,∞(U) is a Banach space.

Proof. If k = 0, then C0,∞(U) = BC(U) and we already know that this is a Banach space.
So we take k ≥ 1 and we consider a Cauchy sequence (fn) in Ck,∞(U), i.e.∑

|α|≤k

∥Dαfn −Dαfm∥u → 0

when n,m → +∞. Then for every α with |α| ≤ k we have that ∥Dαfn −Dαfm∥u → 0 when
n,m → +∞, and so (Dαfn) is a Cauchy sequence in BC(U). Therefore, there is fα ∈ BC(U)
so that Dαfn → fα uniformly in U .
We take any x = (x1, . . . , xj , . . . , xd) ∈ U and a small h ∈ R so that the linear segment with
endpoints x and x+ hej = (x1, . . . , xj + h, . . . , xd) is contained in U . Then for every n we have

fn(x1, . . . , xj + h, . . . , xd)− fn(x1, . . . , xj , . . . , xd) =

∫ h

0

∂fn
∂xj

(x1, . . . , xj + t, . . . , xd) dt.
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Because of uniform convegrence, when n → +∞ the left side of this equality converges to

f(0,...,0)(x1, . . . , xj + h, . . . , xd)− f(0,...,0)(x1, . . . , xj , . . . , xd)

and the right side converges to∫ h

0
f(0,...,1,...,0)(x1, . . . , xj + t, . . . , xd) dt,

where the 1 in the last multi-index appears at the j-th place. Thus

f(0,...,0)(x1, . . . , xj + h, . . . , xd)−f(0,...,0)(x1, . . . , xj , . . . , xd)

=

∫ h

0
f(0,...,1,...,0)(x1, . . . , xj + t, . . . , xd) dt.

Since the integrated function is continuous in t, we may differentiate the integral with respect to h
at h = 0 and we get

∂f(0,...,0)

∂xj
(x) = f(0,...,1,...,0)(x).

Therefore, if we define f = f(0,...,0), then f(0,...,1,...,0) =
∂f
∂xj

in U .
In the same way, we can show inductively that for every α with |α| ≤ k we have fα = Dαf in U .
Thus for every α with |α| ≤ k we have ∥Dαfn −Dαf∥u → 0 when n → +∞, and so

∥fn − f∥k,∞ =
∑
|α|≤k

∥Dαfn −Dαf∥u → 0

when n → +∞.

If 1 ≤ p < +∞, then the normed spaces Ck,p(U) are not complete. We shall now say a few
things about the completion of each of these spaces.

Definition. Let X be a topological space and let f : X → F be continuous in X . The set

supp(f) = cl({x ∈ X | f(x) ̸= 0})

is called support of f .
If supp(f) is compact, then we say that f has compact support.

It is easy to see that X \ supp(f) is the largest open subset of X in which f is identically 0.

Definition. Let U ⊆ Rd be open. We define the space

C∞
c (U) = {f ∈ C∞(U) | f has compact support ⊆ U}.

Lemma 1.1. Let X be a topological space, λ ∈ F and f, g : X → F be continuous in X . Then
supp(λf) ⊆ supp(f) and supp(f + g) ⊆ supp(f) ∪ supp(g).

Proof. Trivial.

Proposition 1.19. C∞
c (U) is a linear subspace of C∞(U).

Proof. From the last lemma it is obvious that, if f, g ∈ C∞
c (U), then supp(λf), being a closed

subset of the compact supp(f), is a compact subset ofU , and also supp(f+g), being a closed subset
of the compact supp(f)∪ supp(g), is a compact subset of U . Therefore λf, f + g ∈ C∞

c (U).
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If f : U → F has continuous derivativesDαf in U for every α with |α| ≤ k, then integration
by parts implies that ∫

U
Dαf ϕ dm = (−1)|α|

∫
U
f Dαϕdm

for every α with |α| ≤ k, and every ϕ ∈ C∞
c (U).

Definition. Let 1 ≤ p < +∞ and f ∈ Lp(U). We say that the function fα ∈ Lp(U) is a weak
α-derivative of f in U if ∫

U
fα ϕdm = (−1)|α|

∫
U
f Dαϕdm

for every ϕ ∈ C∞
c (U).

If a weak α-derivative of f exists, then it is unique. Indeed, if both f ′
α, f

′′
α ∈ Lp(U) are weak

α-derivatives of f , then∫
U
f ′
α ϕdm = (−1)|α|

∫
U
f Dαϕdm =

∫
U
f ′′
α ϕdm

and hence ∫
U
(f ′

α − f ′′
α)ϕdm = 0

for every ϕ ∈ C∞
c (U). This implies that f ′

α = f ′′
α m-a.e. in U1. Therefore, if f has derivative

Dαf in the usual sense andDαf ∈ Lp(U), then a function fα ∈ Lp(U) is a weak α-derivative of
f if and only if fα = Dαf m-a.e. in U .

The weak derivatives fα are substitutes for the usual derivatives Dαf whenever the function
f is not differentiable in the usual sense. We agree to denoteDαf the weak α-derivative fα, even
when Dαf does not exist in the usual sense.

Definition. Let k ∈ N and 1 ≤ p < +∞. We call Sobolev space and denote W k,p(U) the set of
all functions f ∈ Lp(U) which have weak α-derivatives Dαf in Lp(U) for every α with |α| ≤ k.
We consider the function ∥ · ∥k,p : W k,p(U) → R defined for every f ∈ W k,p(U) by

∥f∥k,p =
( ∑

|α|≤k

∫
U
|Dαf |p dm

)1/p
.

It is clear that ∥ · ∥k,p is a norm onW k,p(U) and that Ck,p(U) is a subspace ofW k,p(U).

Proposition 1.20.W k,p(U) with the norm ∥ · ∥k,p is a Banach space.

Proof. Let (fn) be a Cauchy sequence in W k,p(U), i.e. ∥fn − fm∥k,p → 0 when n,m → +∞.
Then for every α with |α| ≤ k we have

∥Dαfn −Dαfm∥p ≤ ∥fn − fm∥k,p → 0

when n,m → +∞. So, for every α with |α| ≤ k we have that (Dαfn) is a Cauchy sequence in
Lp(U) and hence there is some fα ∈ Lp(U) so that Dαfn → fα in Lp(U).
In particular, when α = (0, . . . , 0) we have a function f = f(0,...,0) so that fn → f in Lp(U).
Now we consider any ϕ ∈ C∞

c (U) and then we have the equality∫
U
Dαfn ϕdm = (−1)|α|

∫
U
fnD

αϕdm

for every n. Using Hölder’s inequality, with the dual exponents p and q, we have that∣∣∣ ∫
U
Dαfn ϕdm−

∫
U
fα ϕdm

∣∣∣ = ∣∣∣ ∫
U
(Dαfn − fα)ϕdm

∣∣∣ ≤ ∥Dαfn − fα∥p∥ϕ∥q → 0

1This conclusion together with the fact that the space C∞
c (U) is non-empty are taken for granted.

24



and ∣∣∣ ∫
U
fnD

αϕdm−
∫
U
f Dαϕdm

∣∣∣ = ∣∣∣ ∫
U
(fn − f)Dαϕdm

∣∣∣ ≤ ∥fn − f∥p∥Dαϕ∥q → 0

when n → +∞. Thus, ∫
U
fα ϕdm = (−1)|α|

∫
U
f Dαϕdm.

Since this holds for every ϕ ∈ C∞
c (U), we have that fα is a weak α-derivative of f in Lp(U), i.e.

fα = Dαf .
So the function f ∈ Lp(U) has weak derivativesDαf in Lp(U) for every α with |α| ≤ k. In other
words, f ∈ W k,p(U).
Finally, since Dαfn → fα = Dαf in Lp(U) for every α with |α| ≤ k, we find that

∥fn − f∥k,p =
( ∑

|α|≤k

∫
U
|Dαfn −Dαf |p dm

)1/p
=

( ∑
|α|≤k

∥Dαfn −Dαf∥pp
)1/p

→ 0

when n → +∞. Thus fn → f inW k,p(U).

Proposition 1.21. 2 Ck,p(U) is a dense subspace of W k,p(U).

Therefore the Sobolev spaceW k,p(U) is a completion of Ck,p(U).

1.11 Measure spaces.

Let Ω be a non-empty set and Σ be a σ-algebra of subsets of Ω. We recall from the basic course
on Measure and Integration that a function µ : Σ → F is called real (if F = R) or complex (if
F = C) measure on Σ, if

µ(∅) = 0, µ
(+∞∪

j=1

Aj

)
=

+∞∑
j=1

µ(Aj)

for every pairwise disjoint Aj ∈ Σ, j ∈ N. (In particular, the last series converges.) Note that a
real or complex measure does not take the values ±∞ and∞.

We define

A(Ω) = A(Ω,Σ) = {µ |µ is a real or complex measure on Σ}.

It is easy to see that, if µ, ν ∈ A(Ω) and λ ∈ F , then µ+ ν, λµ ∈ A(Ω). So A(Ω) is a linear
space over F .

If a real or complex measure µ satisfies µ(A) ≥ 0 for every A ∈ Σ, then we say that µ is a
non-negative real measure, and then µ is a special case of ameasure: a measure onΣ is a function
µ : Σ → [0,+∞] which satisfies µ(∅) = 0 and µ(

∪+∞
j=1 Aj) =

∑+∞
j=1 µ(Aj) for every pairwise

disjoint Aj ∈ Σ, j ∈ N. Therefore, a measure µ is a non-negative real measure if and only if
µ(Ω) < +∞.

Definition. Let (Ω,Σ) be a measurable space, and µ be a real or complex measure onΣ. For every
A ∈ Σ we define

|µ|(A) = sup
{ n∑

m=1

|µ(Am)|
∣∣∣n ∈ N, A1, . . . , An ∈ Σ are pairwise disjoint,

n∪
m=1

Am ⊆ A
}
.

Then |µ|(A) is called total variation of µ in A.
2We shall not prove (now) proposition 1.21. For the proof see the book “Sobolev Spaces” by Adams and Fournier.
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Lemma 1.2. Let K ⊆ C be finite. Then there is M ⊆ K, so that |
∑

λ∈M λ| ≥ 1
6

∑
λ∈K |λ|.

Proof. C is the union of

Q1 = {λ | Reλ ≥ | Imλ|}, Q2 = {λ | Reλ ≤ −| Imλ|},

Q3 = {λ | Imλ ≥ |Reλ|}, Q4 = {λ | Imλ ≤ −|Reλ|}.

If λ1, . . . , λn ∈ Q1, then

|λ1 + · · ·+ λn| ≥ Re(λ1 + · · ·+ λn) = Reλ1 + · · ·+ Reλn ≥ 1√
2
(|λ1|+ · · ·+ |λn|).

The same is true if λ1, . . . , λn all belong to one of Q2, Q3, Q4.
Now, we splitK in four pairwise disjoint subsetsK1,K2,K3,K4, so that each contains elements
ofK in Q1, Q2, Q3, Q4, respectively. Then at least one of them, sayM , satisfies∑

λ∈M
|λ| ≥ 1

4

∑
λ∈K

|λ|.

and so ∣∣∣ ∑
λ∈M

λ
∣∣∣ ≥ 1√

2

∑
λ∈M

|λ| ≥ 1

4
√
2

∑
λ∈K

|λ| ≥ 1

6

∑
λ∈K

|λ|.

Theorem 1.8. If µ is a complex measure on Σ, then |µ| is a non-negative real measure on Σ. In
particular, |µ|(Ω) < +∞.

Proof. It is obvious that |µ|(A) ≥ 0 for every A ∈ Σ, and that |µ|(∅) = 0.
Now let A1, A2, . . . ∈ Σ be pairwise disjoint, and A =

∪+∞
j=1 A

j .
We take pairwise disjointA1, . . . , An ∈ Σ with

∪n
m=1Am ⊆ A. We consider theAj

m = Aj ∩Am

and then

Am =

+∞∪
j=1

Aj
m,

n∪
m=1

Aj
m ⊆ Aj .

Therefore,

n∑
m=1

|µ(Am)| =
n∑

m=1

∣∣∣ +∞∑
j=1

µ(Aj
m)

∣∣∣ ≤ n∑
m=1

+∞∑
j=1

|µ(Aj
m)| =

+∞∑
j=1

n∑
m=1

|µ(Aj
m)| ≤

+∞∑
j=1

|µ|(Aj).

Taking the supremum of the left side, we get |µ|(A) ≤
∑+∞

j=1 |µ|(Aj).
We take any J , and for every j = 1, . . . , J we take any λj < |µ|(Aj). Then there are pairwise
disjoint Aj

1, . . . , A
j
nj ∈ Σ so that

nj∪
m=1

Aj
m ⊆ Aj , λj <

nj∑
m=1

|µ(Aj
m)|.

Then A1
1, . . . , A

J
nJ

are pairwise disjoint and their union is contained in A. Hence

J∑
j=1

λj <
J∑

j=1

nj∑
m=1

|µ(Aj
m)| ≤ |µ|(A).

Taking first the supremum over the λ1, . . . , λJ and then the limit when J → +∞, we get that∑+∞
j=1 |µ|(Aj) ≤ |µ|(A).

26



We conclude that
∑+∞

j=1 |µ|(Aj) = |µ|(A), i.e. that |µ| is a measure, and we still have to prove
that |µ|(Ω) < +∞.
We assume that |µ|(Ω) = +∞, and we claim that there are B1, B2, . . . ∈ Σ so that

B1 ⊇ B2 ⊇ B3 ⊇ . . . , |µ|(Bk) = +∞, |µ(Bk)| ≥ k − 1

for every k. We take B1 = Ω and we assume that we have proven the existence of the first
B1, . . . , Bk. Since |µ|(Bk) = +∞, there are pairwise disjoint A1, . . . , An ∈ Σ so that

n∪
m=1

Am ⊆ Bk,
n∑

m=1

|µ(Am)| ≥ 6(|µ(Bk)|+ k).

According to lemma 1.2, there are some of the A1, . . . , An, which we may assume that they are
the A1, . . . , Al, so that ∣∣∣ l∑

m=1

µ(Am)
∣∣∣ ≥ 1

6

n∑
m=1

|µ(Am)| ≥ |µ(Bk)|+ k.

We set S =
∪l

m=1Am ⊆ Bk, and then

|µ(S)| ≥ |µ(Bk)|+ k.

Since |µ|(S)+ |µ|(Bk \S) = |µ|(Bk) = +∞, we have that either |µ|(S) = +∞ or |µ|(Bk \S) =
+∞. In the first case we set Bk+1 = S ⊆ Bk, and then |µ(Bk+1)| ≥ |µ(Bk)| + k ≥ k. In the
second case we set Bk+1 = Bk \ S ⊆ Bk, and then |µ(Bk+1)| ≥ |µ(S)| − |µ(Bk)| ≥ k.
In any case we have proven the existence of an appropriate Bk+1 and hence the claim.
Now we consider the pairwise disjointA1 = B1 \B2, A2 = B2 \B3, . . . and theB∞ =

∩+∞
k=1Bk.

Then

µ(B1)− µ(B∞) = µ(B1 \B∞) = µ
( +∞∪

m=1

Am

)
=

+∞∑
m=1

µ(Am)

= lim
k→+∞

k−1∑
m=1

µ(Am) = lim
k→+∞

(µ(B1)− µ(Bk)).

Therefore limk→+∞ µ(Bk) = µ(B∞), i.e. |µ(B∞)| = +∞, and we arrive at a contradiction.

Definition. If µ is a complex measure on Σ, then the non-negative real measure |µ| on Σ is called
absolute variation of µ and the number |µ|(Ω) is called total variation of µ.

Definition. We consider the function ∥ · ∥ : A(Ω,Σ) → R defined for every µ ∈ A(Ω,Σ) by

∥µ∥ = |µ|(Ω).

Proposition 1.22. ∥ · ∥ : A(Ω,Σ) → R is a norm on A(Ω,Σ).

Proof. Let ∥µ∥ = 0. Then for every A ∈ Σ we have |µ(A)| ≤ |µ|(Ω) = 0, and hence µ(A) = 0.
So µ = 0.
Let µ ∈ A(Ω,Σ) and λ ∈ F . We take pairwise disjoint A1, . . . , An ∈ Σ and we have

n∑
m=1

|(λµ)(Am)| = |λ|
n∑

m=1

|µ(Am)|.

Taking the supremum of both sides, we find ∥λµ∥ = |λ|∥µ∥.
Now let µ, ν ∈ A(Ω,Σ). For every pairwise disjoint A1, . . . , An ∈ Σ we have

n∑
m=1

|(µ+ ν)(Am)| ≤
n∑

m=1

|µ(Am)|+
n∑

m=1

|ν(Am)| ≤ ∥µ∥+ ∥ν∥.

Taking the supremum of the left side, we get ∥µ+ ν∥ ≤ ∥µ∥+ ∥ν∥.
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Theorem 1.9. A(Ω,Σ) with the norm ∥ · ∥ is a Banach space.

Proof. Let (µn) be a Cauchy sequence in A(Ω,Σ). Then for every A ∈ Σ we have

|µn(A)− µm(A)| ≤ ∥µn − µm∥ → 0

when n,m → +∞ and so the limit limn→+∞ µn(A) exists in F . Thus, we may consider the
function µ : Σ → F defined for every A ∈ Σ by

µ(A) = lim
n→+∞

µn(A).

Clearly, µ(∅) = limn→+∞ µn(∅) = 0.
Now we take pairwise disjoint A1, A2, . . . ∈ Σ and A =

∪+∞
j=1 Aj . For every ϵ > 0 there is n0 so

that ∥µn − µm∥ < ϵ for every n,m ≥ n0. Since
∑+∞

j=1 µn0(Aj) = µn0(A), there is J0 so that

∣∣∣µn0(A)−
J∑

j=1

µn0(Aj)
∣∣∣ < ϵ

for every J ≥ J0. If m ≥ n0, then∣∣∣(µn0(A)− µm(A))−
J∑

j=1

(µn0(Aj)− µm(Aj))
∣∣∣ = ∣∣∣ +∞∑

j=J+1

(µn0(Aj)− µm(Aj))
∣∣∣

≤
+∞∑

j=J+1

|µn0(Aj)− µm(Aj)| ≤ ∥µn0 − µm∥ < ϵ.

Taking the limit whenm → +∞ we find

∣∣∣(µn0(A)− µ(A))−
J∑

j=1

(µn0(Aj)− µ(Aj))
∣∣∣ ≤ ϵ

and hence ∣∣∣µ(A)−
J∑

j=1

µ(Aj)
∣∣∣ ≤ 2ϵ

for every J ≥ J0. Thus
∑+∞

j=1 µ(Aj) = µ(A) and so µ ∈ A(Ω,Σ).
Finally, for any ϵ > 0 we choose n0 as before. We take pairwise disjoint A1, . . . , Ak ∈ Σ, and
then for every n,m ≥ n0 we have

k∑
j=1

|µn(Aj)− µm(Aj)| ≤ ∥µn − µm∥ < ϵ.

We take the limit whenm → +∞ and we get

k∑
j=1

|µn(Aj)− µ(Aj)| ≤ ϵ.

Considering the supremum of the left side, we get ∥µn − µ∥ ≤ ϵ for every n ≥ n0. Therefore,
µn → µ in A(Ω,Σ).

Definition. If µ is a real measure on Σ, then the non-negative real measures µ+ = 1
2(|µ|+ µ) and

µ− = 1
2(|µ| − µ) are called positive variation of µ and negative variation of µ.
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That these two real measures are non-negative follows from the definition of |µ|(A): we have
|µ|(A) ≥ |µ(A)| for every A ∈ Σ. The two identities

µ = µ+ − µ−, |µ| = µ+ + µ−

are clear.
It is easy to prove for any complex measure µ : Σ → C that the functions Reµ, Imµ : Σ → R

defined for every A ∈ Σ by

Reµ(A) = Re(µ(A)), Imµ(A) = Im(µ(A)),

are real measures on Σ. Also the function µ : Σ → C defined for every A ∈ Σ by

µ(A) = µ(A),

is a complex measure on Σ. Moreover,

µ = Reµ+ i Imµ, µ = Reµ− i Imµ,

|Reµ| ≤ |µ|, | Imµ| ≤ |µ|, |µ| ≤ |Reµ|+ | Imµ|,

|µ1 + µ2| ≤ |µ1|+ |µ2|, |µ| = |µ|, |λµ| = |λ||µ|.

A special case of the above is when Ω is a topological space, and Σ is the σ-algebra B(Ω) of
the Borel subsets of Ω. Then every real or complex measure on B(Ω) is called real or complex
Borel measure in Ω.

Definition. A real or complex Borel measure µ on B(Ω), i.e. an element of A(Ω,B(Ω)) is called
regular, if for every A ∈ B(Ω) and every ϵ > 0 there are K,U ⊆ Ω so that K is compact, U is
open, and

K ⊆ A ⊆ U, |µ|(U \K) < ϵ.

The set of all regular Borel measures on B(Ω) is denoted

Ar(Ω,B(Ω)) = {µ ∈ A(Ω,B(Ω)) |µ is regular}.

Proposition 1.23. Ar(Ω,B(Ω)) is a linear subspace of A(Ω,B(Ω)).
If µ ∈ Ar(Ω,B(Ω)), then |µ| ∈ Ar(Ω,B(Ω)).

Proof. Trivial.

So we may considerAr(Ω,B(Ω)) to be a subspace ofA(Ω,B(Ω)) with the total variation ∥ · ∥
as norm.

Proposition 1.24. Ar(Ω,B(Ω)) is a closed subspace of A(Ω,B(Ω)) and so it is a Banach space.

Proof. Let (µn) be a sequence in Ar(Ω,B(Ω)), and let µn → µ in A(Ω,B(Ω)).
We take any A ∈ B(Ω) and any ϵ > 0. Then there is n0 so that ∥µn0 − µ∥ < ϵ. Moreover, since
µn0 is regular, there areK,U ⊆ Ω so thatK is compact, U is open, and

K ⊆ A ⊆ U, |µn0 |(U \K) < ϵ.

Then

|µ|(U \K) ≤ |µ− µn0 |(U \K) + |µn0 |(U \K) ≤ |µ− µn0 |(Ω) + |µn0 |(U \K)

= ∥µ− µn0∥+ |µn0 |(U \K) < 2ϵ.

Thus, µ ∈ Ar(Ω,B(Ω)).
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1.12 Compact sets in infinite dimensional normed spaces.

Riesz’s lemma. Let X be a normed space, Y ⫋ X be a closed subspace of X , and 0 < t < 1.
Then there exists x ∈ X so that ∥x∥ = 1 and infy∈Y ∥x− y∥ ≥ t.

Proof. To begin with, we observe that if ∥x∥ = 1 then, since 0 ∈ Y , we have

inf
y∈Y

∥x− y∥ ≤ ∥x− 0∥ = ∥x∥ = 1.

Now, we take any x0 ∈ X \Y and then, since Y is closed, there is r > 0 so thatB(x0, r)∩Y = ∅.
This implies that

inf
y∈Y

∥x0 − y∥ ≥ r > 0.

We denote d0 = infy∈Y ∥x0 − y∥ and then there is y0 ∈ Y so that

d0
t

> ∥x0 − y0∥ ≥ d0.

We set x = x0−y0
∥x0−y0∥ and then ∥x∥ = 1. Also

∥x− y∥ =
∥∥∥ x0 − y0
∥x0 − y0∥

− y
∥∥∥ =

∥x0 − (y0 + ∥x0 − y0∥y)∥
∥x0 − y0∥

≥ d0
∥x0 − y0∥

> t

for every y ∈ Y . Thus, infy∈Y ∥x− y∥ ≥ t.

We recall that for a subset A of a linear space X the set span(A), the linear span of A, is the
linear subspace ofX generated byA or, equivalently, the smallest linear subspace ofX containing
A or, equivalently, the set of all linear combinations of elements of A.

Proposition 1.25. LetX be a normed space with dim(X) = +∞. Then the closed ball B(0; 1) is
not compact.

Proof. We take any x1 ∈ X with ∥x1∥ = 1. Then the subspace Y1 = span({x1}) is a one-
dimensional, and hence closed, subspace ofX . By Riesz’s lemma there is x2 ∈ X with ∥x2∥ = 1
and infy∈Y1 ∥x2 − y∥ ≥ 1

2 and hence

∥x2 − x1∥ ≥ 1

2
.

Then the subspace Y2 = span({x1, x2}) is a two-dimensional, and hence closed, subspace of X .
By Riesz’s lemma there is x3 ∈ X with ∥x3∥ = 1 and infy∈Y2 ∥x3 − y∥ ≥ 1

2 and hence

∥x3 − x1∥ ≥ 1

2
, ∥x3 − x2∥ ≥ 1

2
.

Continuing inductively, we generate a sequence (xn) in B(0; 1) so that

∥xn − xm∥ ≥ 1

2

for every n,m with n ̸= m. Obviously, this sequence has no convergent subsequence and so
B(0; 1) is not compact.

Proposition 1.26. Let X be a normed space with dim(X) = +∞. Then every compact subset of
X has empty interior.

Proof. LetK ⊆ X be compact and assume that a is an interior point ofK.
Then B(a; r) ⊆ K for some r > 0 and so B(a; r) is compact. But the function f : X → X
defined for every x ∈ X by

f(x) =
1

r
(x− a)

is continuous in X and f(B(a; r)) = B(0; 1). Therefore, B(0; 1) is compact and we arrive at a
contradiction. SoK has no interior points.
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1.13 Series.

Definition. Let I be a non-empty set of indices and {αi | i ∈ I} a set of non-negative real numbers,
i.e. αi ≥ 0 for every i ∈ I . We say that the series

∑
i∈I αi converges if

S = sup
{∑

i∈J
αi

∣∣∣J finite ⊆ I
}
< +∞.

Then we also say that S is the sum of the αi, i ∈ I , and we write∑
i∈I

αi = S.

Lemma 1.3. Let I be a non-empty set of indices and αi ≥ 0 for every i ∈ I . If
∑

i∈I αi converges,
then the set I0 = {i ∈ I | ai > 0} is countable.

Proof. We consider In = {i ∈ I |αi ≥ 1
n}, and then we have I0 =

∪+∞
n=1 In. We take any finite

J ⊆ In, and then
1

n
card(J) ≤

∑
i∈J

αi ≤ S.

Thus, card(J) ≤ nS, and so In is finite with card(In) ≤ nS. Therefore, I0 is countable.

Definition. LetX be a normed space with norm ∥ · ∥ and let (xn) be a sequence inX . We say that
the series

∑+∞
n=1 xn converges to s ∈ X if x1 + · · ·+ xn → s. Then we also say that s is the sum

of
∑+∞

n=1 xn and we write
+∞∑
n=1

xn = s.

Theorem 1.10. Let X be a Banach space with norm ∥ · ∥ and let {xi | i ∈ I} ⊆ X , where I is
a non-empty set of indices. If the series

∑
i∈I ∥xi∥ converges, then I0 = {i ∈ I |xi ̸= 0} is

countable.
(i) If I0 is finite, then

∑
i∈I0 xi is just a finite sum.

(ii) If card(I0) = +∞ and if {i1, i2, . . .} is any enumeration of I0, then the series
∑+∞

k=1 xik
converges and the sum s =

∑+∞
k=1 xik does not depend on the particular enumeration of I0.

Proof. Lemma 1.3 implies that I0 is countable.
(i) This is trivial.
(ii) We assume that card(I0) = +∞ and that {i1, i2, . . .} is any enumeration of I0. We also
consider the partial sums

sn =

n∑
k=1

xik .

Let ∑
i∈I

∥xi∥ = S.

We take any ϵ > 0 and then there is a finite J ⊆ I so that

S − ϵ <
∑
i∈J

∥xi∥ ≤ S.

If J ′ ⊆ I is finite and J ∩ J ′ = ∅, then

S − ϵ+
∑
i∈J ′

∥xi∥ <
∑
i∈J

∥xi∥+
∑
i∈J ′

∥xi∥ =
∑

i∈J∪J ′

∥xi∥ ≤ S,
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and so ∑
i∈J ′

∥xi∥ < ϵ.

Now, there is n0 large enough so that J ∩ {in0 , in0+1, . . .} = ∅. So if n0 ≤ n < m, then the sets
J and J ′ = {in+1, . . . , im} are disjoint and hence

∥sm − sn∥ =
∥∥∥ m∑
k=n+1

xik

∥∥∥ ≤
m∑

k=n+1

∥xik∥ =
∑
i∈J ′

∥xi∥ < ϵ.

Therefore, (sn) is a Cauchy sequence in X and so it converges to some s ∈ X . I.e.

+∞∑
k=1

xik = s.

Finally, we consider any other enumeration {j1, j2, . . .} of I0 and we consider the corresponding
partial sums

tn =
n∑

k=1

xjk .

Now, there is n0 large enough so that J ∩ {in0 , in0+1, . . .} = ∅ and J ∩ {jn0 , jn0+1, . . .} = ∅. So
if n ≥ n0, then the difference

sn − tn =
n∑

k=1

xik −
n∑

k=1

xjk

contains only terms ±xi with indices i ∈ J ′, where J ′ ⊆ I is finite and J ∩ J ′ = ∅. Therefore, if
n ≥ n0, then

∥sn − tn∥ =
∥∥∥∑
i∈J ′

±xi

∥∥∥ ≤
∑
i∈J ′

∥xi∥ < ϵ.

Thus, sn − tn → 0, and since sn → s, we also get tn → s.

Definition. Let X be a normed space with norm ∥ · ∥ and let {xi | i ∈ I} ⊆ X , where I is a non-
empty set of indices.
(i) If the series

∑
i∈I ∥xi∥ converges, we say that the series

∑
i∈I xi converges absolutely.

(ii) If I0 = {i ∈ I |xi ̸= 0} is countable and infinite, and if the series
∑+∞

k=1 xik converges in X
for every enumeration {i1, i2, . . .} of I0, and if the sum s of the last series does not depend on the
enumeration of I0, then we say that the series

∑
i∈I xi converges unconditionally and that s is

its sum, and we write ∑
i∈I

xi = s.

So theorem 1.10 says that, in a Banach space, if a series converges absolutely then it converges
unconditionally.

1.14 Separable normed spaces.

Definition. Let X be a normed space. We say that X is separable if there is a countable subset of
X which is dense in X .

Proposition 1.27. All spaces lp, 1 ≤ p < +∞, and c, c0 are separable, but l∞ is not separable.
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Proof. We say that λ ∈ C is rational if Reλ, Imλ ∈ Q. It is obvious that the set of rational
complex numbers is countable and dense in C.
We consider the set

A = {(κ1, . . . , κk, 0, 0, . . .) | k ∈ N, κ1, . . . , κk are rational in F}.

Then A is countable and it is a subset of every lp, 1 ≤ p < +∞, and of c0.
Let 1 ≤ p < +∞, and take any x = (λk) ∈ lp and any ϵ > 0. Then there is k0 so that

+∞∑
k=k0+1

|λk|p ≤
ϵp

2
.

Also, for every k = 1, . . . , k0 there is a rational κk ∈ F so that |λk −κk| ≤ ϵ

21/pk
1/p
0

. We consider

the element y = (κ1, . . . , κk0 , 0, 0, . . .) ∈ A, and then

∥x− y∥pp =
k0∑
k=1

|λk − κk|p +
+∞∑

k=k0+1

|λk|p ≤ ϵp,

and hence ∥x− y∥p ≤ ϵ. Thus A is dense in lp and so lp is separable.
Now, take any x = (λk) ∈ c0 and any ϵ > 0. Then there is k0 so that |λk| ≤ ϵ for every
k ≥ k0 + 1. Also, for every k = 1, . . . , k0 there is a rational κk ∈ F so that |λk − κk| ≤ ϵ. Then
y = (κ1, . . . , κk0 , 0, 0, . . .) ∈ A and

∥x− y∥∞ = sup{|λ1 − κ1|, . . . , |λk0 − κk0 |, |λk0+1|, |λk0+2|, . . .} ≤ ϵ.

Therefore A is dense in c0 and so c0 is separable.
For the space c we consider the set

B = {(κ1, . . . , κk, κ, κ, . . .) | k ∈ N, κ, κ1, . . . , κk are rational in F}.

Then B is a countable subset of c.
Now we take any x = (λk) ∈ c and any ϵ > 0. If λ = limk→+∞ λk, then there is k0 so that
|λk − λ| ≤ ϵ

2 for every k ≥ k0 + 1. Now, for every k = 1, . . . , k0 there is a rational κk ∈ F so
that |λk − κk| ≤ ϵ. Also, there is a rational κ ∈ F so that |λ− κ| < ϵ

2 and hence

|λk − κ| ≤ |λk − λ|+ |λ− κ| < ϵ

2
+

ϵ

2
= ϵ

for every k ≥ k0. Then y = (κ1, . . . , κk0 , κ, κ, . . .) ∈ B and

∥x− y∥∞ = sup{|λ1 − κ1|, . . . , |λk0 − κk0 |, |λk0+1 − κ|, |λk0+2 − κ|, . . .} ≤ ϵ.

Thus B is dense in c, and so c is separable.
Finally, assume that l∞ has a countable and dense subset

C = {x1, x2, . . .},

where xn = (λn,k) for every n.
For each k we consider λk ∈ F so that |λk| ≤ 1 and |λk − λk,k| ≥ 1, and we form the element
x = (λk) ∈ l∞. Then

∥x− xn∥∞ ≥ |λn − λn,n| ≥ 1

for every n. So there is no element of C at a distance from x less than 1 and we arrive at a
contradiction.
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Proposition 1.28. Let (Ω,Σ, µ) be a measure space, and assume that there is a countable Ξ ⊆ Σ
so that for every A ∈ Σ with µ(A) < +∞ and every ϵ > 0 there is B ∈ Ξ with µ(B△A) ≤ ϵ.
Then every Lp(Ω,Σ, µ), 1 ≤ p < +∞, is separable.

Proof. We take any f ∈ Lp(Ω,Σ, µ) and any ϵ > 0. We know that there is a simple function

g =

n∑
k=1

λkχAk
∈ Lp(Ω,Σ, µ)

so that λk ∈ F , Ak ∈ Σ and µ(Ak) < +∞ for every k = 1, . . . , n and(∫
Ω
|f − g|p dµ

)1/p
<

1

2
ϵ.

We select η > 0 depending on ϵ in a way to be made precise in a moment.
For every k = 1, . . . , n there is Bk ∈ Ξ so that µ(Bk△Ak) ≤ η and there is a rational κk ∈ F so
that |λk − κk| ≤ η. We consider the function

h =

n∑
k=1

κkχBk

and we get(∫
Ω
|f − h|p dµ

)1/p
≤

(∫
Ω
|f − g|p dµ

)1/p
+

(∫
Ω
|g − h|p dµ

)1/p

≤ 1

2
ϵ+

n∑
k=1

|λk − κk|
(∫

Ω
|χAk

|p dµ
)1/p

+

n∑
k=1

|κk|
(∫

Ω
|χAk

− χBk
|p dµ

)1/p

=
1

2
ϵ+

n∑
k=1

|λk − κk|(µ(Ak))
1/p +

n∑
k=1

|κk|(µ(Bk△Ak))
1/p

≤ 1

2
ϵ+ η

n∑
k=1

(µ(Ak))
1/p + η1/p

n∑
k=1

(|λk|+ η).

Since

η

n∑
k=1

(µ(Ak))
1/p + η1/p

n∑
k=1

(|λk|+ η) → 0

when η → 0+, we may select η so that the last sum is ≤ 1
2 ϵ and hence

( ∫
Ω |f − h|p dµ

)1/p ≤ ϵ.
So the set

Q =
{ n∑

k=1

κkχBk

∣∣∣n ∈ N, κ1, . . . , κn are rational in F,B1, . . . , Bn ∈ Ξ
}

is countable and dense in Lp(Ω,Σ, µ).

It is known that if Ω is a Borel set in Rd, if Σ = B(Ω), and if µ = m is the Lebesgue
measure, then the collection Ξ of the sets of the form B = P ∩ Ω, where P is any finite union
of parallelepipeds with rational vertices, has the assumed property in the last proposition. So the
corresponding spaces Lp(Ω,B(Ω),m), 1 ≤ p < +∞, are separable.
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Chapter 2

Inner product spaces

2.1 Inner products.

Let X be a linear space over the field F , where F = R or F = C.

Definition. We say that the function

⟨·, ·⟩ : X ×X → F

is an inner product on X , if

(i) ⟨x, x⟩ ≥ 0,

(ii) ⟨x, x⟩ = 0 ⇔ x = 0,

(iii) ⟨y, x⟩ = ⟨x, y⟩,

(iv) ⟨λx, y⟩ = λ ⟨x, y⟩,

(v) ⟨x1 + x2, y⟩ = ⟨x1, y⟩+ ⟨x2, y⟩,

for every x, x1, x2, y ∈ X and every λ ∈ F .

If F = R, then of course (iii) becomes ⟨y, x⟩ = ⟨x, y⟩.
Properties (iv), (v) say that ⟨·, ·⟩ is linear in the first variable. If we combine these two properties

with (iii) we get that ⟨·, ·⟩ is conjugate-linear in the second variable:

(vi) ⟨x, λy⟩ = λ ⟨x, y⟩,

(vii) ⟨x, y1 + y2⟩ = ⟨x, y1⟩+ ⟨x, y2⟩,

for every x, y, y1, y2 ∈ X and every λ ∈ F .
Again, if F = R, then ⟨·, ·⟩ is linear in the second variable.
Using λ = 0 in (iv) and (vi), we get

⟨0, y⟩ = ⟨x, 0⟩ = 0

for every x, y ∈ X .
A very useful identity which results easily from (iv)-(vii) is

⟨λx+ κy, λx+ κy⟩ = |λ|2⟨x, x⟩+ 2Re(λκ ⟨x, y⟩) + |κ|2⟨y, y⟩ (2.1)

for every x, y ∈ X and every λ, κ ∈ F .
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Schwarz’s inequality. Let X be a linear space with an inner product ⟨·, ·⟩. Then

|⟨x, y⟩|2 ≤ ⟨x, x⟩ ⟨y, y⟩

for every x, y ∈ X .

Proof. Let ⟨x, x⟩ = 0. Then x = 0, hence ⟨x, y⟩ = 0 and so Schwarz’s inequality becomes 0 ≤ 0.
Now let ⟨x, x⟩ > 0. Then

|λ|2⟨x, x⟩+ 2Re(λ ⟨x, y⟩) + ⟨y, y⟩ = ⟨λx+ y, λx+ y⟩ ≥ 0

for every λ ∈ F .
There is µ ∈ F so that |µ| = 1 and µ⟨x, y⟩ = |⟨x, y⟩|. Taking λ = tµ with t ∈ R we get

t2⟨x, x⟩+ 2t|⟨x, y⟩|+ ⟨y, y⟩ ≥ 0

for every t ∈ R. If we use t = − |⟨x,y⟩|
⟨x,x⟩ in the last inequality, we get Schwarz’s inequality.

Proposition 2.1. Let X be a linear space with an inner product ⟨·, ·⟩. Then the function ∥ · ∥ :
X → R defined for every x ∈ X by

∥x∥ =
√

⟨x, x⟩

is a norm on X .

Proof. All properties of the norm are easy to prove. For example, for the last property:

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ⟨x, x⟩+ 2Re(⟨x, y⟩) + ⟨y, y⟩ ≤ ⟨x, x⟩+ 2|⟨x, y⟩|+ ⟨y, y⟩

≤ ⟨x, x⟩+ 2
√

⟨x, x⟩
√

⟨y, y⟩+ ⟨y, y⟩ = ∥x∥2 + 2∥x∥∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2,

and hence ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Definition. We say that the norm ∥ · ∥, which is defined by the inner product ⟨·, ·⟩ as above, is the
norm induced by the inner product.

Now, Schwarz’s inequality takes the form

|⟨x, y⟩| ≤ ∥x∥ ∥y∥.

Also, identity (2.1) becomes

∥λx+ κy∥2 = |λ|2∥x∥2 + 2Re(λκ ⟨x, y⟩) + |κ|2∥y∥2.

Moreover, taking λ = 1, κ = 1 and also λ = 1, κ = −1, and then adding the two resulting
identities, we get the parallelogram law:

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2.

Example 2.1.1. A trivial example of a normed space over F is the field F itself with the inner
product ⟨λ, κ⟩ = λκ.

Proposition 2.2. The inner product of an inner product spaceX is continuous, i.e. if xn → x and
yn → y in X , then ⟨xn, yn⟩ → ⟨x, y⟩ in R.

Proof. This is implied by

|⟨xn, yn⟩ − ⟨x, y⟩| ≤ |⟨xn, yn⟩ − ⟨xn, y⟩|+ |⟨xn, y⟩ − ⟨x, y⟩| = |⟨xn, yn − y⟩|+ |⟨xn − x, y⟩|
≤ ∥xn∥∥yn − y∥+ ∥xn − x∥∥y∥.

Definition. Let X be an inner product space. If X with the norm induced by the inner product is
complete, then we say that X is a Hilbert space.

Hence, a Hilbert space is Banach space with a norm induced by an inner product.
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2.2 Subspaces, cartesian products.

Proposition 2.3. LetX be an inner product space with inner product ⟨·, ·⟩ : X ×X → F , and let
Y be a linear subspace of X . Then the restriction ⟨·, ·⟩ : Y × Y → F is an inner product on Y .

Proof. Obvious.

Definition. The linear subspace Y of an inner product space X , equipped with the restriction on
Y of the inner product on X , is called subspace of X .

Let X1, . . . , Xm be inner product spaces with inner products ⟨·, ·⟩1, . . . , ⟨·, ·⟩m. We consider
the cartesian product X = X1 × · · · ×Xm and for every x = (x1, . . . , xm), y = (y1, . . . , ym) ∈
X = X1 × · · · ×Xm we define

⟨x, y⟩ = ⟨x1, y1⟩1 + · · ·+ ⟨xm, ym⟩m.

Proposition 2.4. The function ⟨·, ·⟩ : X × X → F just defined is an inner product on X =
X1 × · · · ×Xm.

Proof. Trivial.

Example 2.2.1.We consider X1 = . . . = Xm = F with ⟨λ, κ⟩1 = . . . = ⟨λ, κ⟩m = λκ and then
we get the cartesian productX = F × · · · × F = Fm with the inner product which is defined for
every x = (λ1, . . . , λm), y = (κ1, . . . , κm) ∈ F × · · · × F = Fm by

⟨x, y⟩ = λ1 κ1 + · · ·+ λm κm.

This is the standard euclidean inner product on Fm. Obviously, the norm induced by this inner
product is the euclidean norm on Fm:

⟨x, x⟩ = λ1 λ1 + · · ·+ λm λm = |λ1|2 + · · ·+ |λm|2 = ∥x∥22.

2.3 Linear isometries.

Definition. LetX,Y be inner product spaces with inner products ⟨·, ·⟩X , ⟨·, ·⟩Y , and let T : X → Y
be a linear operator with the property

⟨T (x1), T (x2)⟩Y = ⟨x1, x2⟩X

for every x1, x2 ∈ X . Then T is called linear isometry of X into Y .
If T is onto Y , i.e. if T (X) = Y , then T is called linear isometry of X onto Y . We also say that
X is linearly isometric to Y .

Taking x1 = x2 = x ∈ X , we see that if T : X → Y is a linear isometry, then

∥T (x)∥Y = ∥x∥X

for every x ∈ X , where the two norms are those which are induced by the inner products. In other
words, an “inner product” linear isometry is also a “norm” linear isometry. We shall immediately
see that the converse is also true. Indeed, assume that

∥T (x)∥Y = ∥x∥X

for every x ∈ X . Then, taking x = x1 + x2, we get

∥T (x1)∥2Y + 2Re(⟨T (x1), T (x2)⟩Y ) + ∥T (x2)∥2Y = ∥x1∥2X + 2Re(⟨x1, x2⟩X) + ∥x2∥2X
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and hence
Re(⟨T (x1), T (x2)⟩Y ) = Re(⟨x1, x2⟩X)

for every x1, x2 ∈ X . If F = R, then of course we get

⟨T (x1), T (x2)⟩Y = ⟨x1, x2⟩X

for every x1, x2 ∈ X . If F = C, then we use ix2 in the place of x2 and we get

Im(⟨T (x1), T (x2)⟩Y ) = Im(⟨x1, x2⟩X)

for every x1, x2 ∈ X . Therefore

⟨T (x1), T (x2)⟩Y = ⟨x1, x2⟩X

for every x1, x2 ∈ X .

Proposition 2.5. Let X be an inner product space with inner product ⟨·, ·⟩X , let Y be a linear
space and let T : X → Y be a linear operator which is one-to-one in X and onto Y . Then there
is an inner product on Y so that T becomes a linear isometry of X onto Y .

Proof. We take any y1, y2 ∈ Y , we consider the unique x1, x2 ∈ X so that T (x1) = y1 and
T (x2) = y2 and we define

⟨y1, y2⟩Y = ⟨x1, x2⟩X .

It is easy to prove that the function ⟨·, ·⟩Y : Y × Y → F just defined is an inner product on Y .
Then, since T (x1) = y1, T (x2) = y2, the equality ⟨y1, y2⟩Y = ⟨x1, x2⟩X can be written

⟨T (x1), T (x2)⟩Y = ⟨x1, x2⟩X

and so T is a linear isometry of X onto Y .

Thus, when we have two isomorphic linear spaces and one of them has an inner product, then
we can transfer this inner product to the other linear space so that the two spaces become linearly
isometric.

Example 2.3.1. Let X be a linear space of finite dimension and let {b1, . . . , bm} be a basis of X .
We consider the inner product space Fm with the euclidean inner product. We also consider the
linear operator T : Fm → X defined for every (λ1, . . . , λm) ∈ Fm by

T (λ1, . . . , λm) = λ1b1 + · · ·+ λmbm.

ThenT is one-to-one inFm and ontoX , and so the euclidean inner product onFm can be transfered
to an inner product ⟨·, ·⟩ : X × X → F . This is defined for every x = λ1b1 + · · · + λmbm and
y = κ1b1 + · · ·+ κmbm in X by the formula

⟨x, y⟩ = ⟨λ1b1 + · · ·+ λmbm, κ1b1 + · · ·+ κmbm⟩
= ⟨T (λ1, . . . , λm), T (κ1, . . . , κm)⟩
= ⟨(λ1, . . . , λm), (κ1, . . . , κm)⟩
= λ1 κ1 + · · ·+ λm κm.

The inner product on X just defined is called euclidean inner product on X with respect to the
basis {b1, . . . , bm}.
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2.4 Completion.

Definition. LetX be an inner product space. We say that the inner product spaceX is a completion
of X if X is complete, i.e. a Hilbert space, and there is a linear isometry T : X → X so that
T (X) is a dense subspace of X .

Theorem 2.1. LetX be an inner product space. Then there is at least one completion ofX . More-
over, every two completions of X are linearly isometric.

Proof. This is just a variant of the proof of theorem 1.1. Again we consider the set X̂ of all Cauchy
sequences ofX and then the same linear spaceX of the equivalence classes of Cauchy sequences.
Now, instead of defining the norm on X , we define the inner product by

⟨[(xn)], [(yn)]⟩X = lim
n→+∞

⟨xn, yn⟩.

It is obvious that the norm on X which is induced by the inner product just defined on X is the
same as the norm defined in the proof of theorem 1.1. Then the rest of the proof is the same as the
proof of theorem 1.1. The details are left to the interested reader.

2.5 Examples.

Besides the finite dimensional Hilbert spaces with their euclidean inner products, we have the
following examples.
1. We have the sequence space

l2 =
{
(λk)

∣∣∣ +∞∑
k=1

|λk|2 < +∞
}
.

The inner product on l2 is defined by

⟨x, y⟩ =
+∞∑
k=1

λk κk

for every x = (λk), y = (κk) ∈ l2. Of course, the norm induced by this inner product is the
2-norm of l2 which we know from the previous chapter:

√
⟨x, x⟩ =

( +∞∑
k=1

λk λk

)1/2
=

( +∞∑
k=1

|λk|2
)1/2

= ∥x∥2.

Schwarz’s inequality in this case is a special case of Hölder’s inequality:∣∣∣ +∞∑
k=1

λk κk

∣∣∣ ≤ ( +∞∑
k=1

|λk|2
)1/2( +∞∑

k=1

|κk|2
)1/2

.

Of course, with this inner product l2 is a Hilbert space.
2. Then we have the function space

L2(Ω,Σ, µ) =
{
f ∈ M(Ω)

∣∣∣ ∫
Ω
|f |2 dµ

}
.

The inner product on L2(Ω,Σ, µ) is defined by

⟨f, g⟩ =
∫
Ω
f g dµ
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for every f, g ∈ L2(Ω,Σ, µ). Again, the norm induced by this inner product is the 2-norm of
L2(Ω,Σ, µ): √

⟨f, f⟩ =
(∫

Ω
f f dµ

)1/2
=

(∫
Ω
|f |2 dµ

)1/2
= ∥f∥2.

As in the previous example, Schwarz’s inequality is a special case of Hölder’s inequality:∣∣∣ ∫
Ω
f g dµ

∣∣∣ ≤ (∫
Ω
|f |2 dµ

)1/2(∫
Ω
|g|2 dµ

)1/2
.

Moreover, L2(Ω,Σ, µ) with this inner product is a Hilbert space.
3. Finally, we have the Sobolev spaceW k,2(U), which is also denoted Hk(U), i.e.

Hk(U) = W k,2(U).

We recall that Hk(U) is the set of all functions f ∈ L2(U) which have weak α-derivatives Dαf
in L2(U) for every α with |α| ≤ k. The inner product on Hk(U) is defined by

⟨f, g⟩k =
∑
|α|≤k

∫
U
Dαf Dαg dm.

With this inner product, Hk(U) is a Hilbert space.

2.6 Convex sets.

We know that a setK in a linear space X is convex if

a, b ∈ K, 0 ≤ t ≤ 1 ⇒ (1− t)a+ tb ∈ K.

The set
[a, b] = {(1− t)a+ tb | 0 ≤ t ≤ 1}

is considered as the linear segment with endpoints a, b.

Proposition 2.6. Let X be an inner product space with inner product ⟨·, ·⟩ and norm ∥ · ∥, let
K ⊆ X be convex and complete, and let x0 ∈ X . Then there is a unique y0 ∈ K so that

∥x0 − y0∥ = inf
y∈K

∥x0 − y∥.

Moreover,
Re(⟨x0 − y0, y − y0⟩) ≤ 0

for every y ∈ K.
If X is a Hilbert space, we may only assume that K is convex and closed.

Proof. We denote
d = inf

y∈K
∥x0 − y∥.

Then there is a sequence (yn) inK so that

∥x0 − yn∥ → d

when n → +∞. Now, the parallelogram law implies

2∥x0 − yn∥2 + 2∥x0 − ym∥2 = ∥(x0 − yn)− (x0 − ym)∥2 + ∥(x0 − yn) + (x0 − ym)∥2

= ∥yn − ym∥2 + 4
∥∥∥x0 − yn + ym

2

∥∥∥2
≥ ∥yn − ym∥2 + 2d2
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for every n,m. The last inequality is implied by yn+ym
2 ∈ K which is due to the convexity ofK.

Taking the limit when n,m → +∞, we find that

∥yn − ym∥ → 0.

Thus, (yn) is a Cauchy sequence inK and, sinceK is complete, there is y0 ∈ K so that yn → y0.
Now ∥x0 − yn∥ → ∥x0 − y0∥ and hence ∥x0 − y0∥ = d.
If we assume that y′0 ∈ K and ∥x0 − y′0∥ = d, then exactly as before we have

4d2 = 2∥x0 − y0∥2 + 2∥x0 − y′0∥2 = ∥y0 − y′0∥2 + 4
∥∥∥x0 − y0 + y′0

2

∥∥∥2 ≥ ∥y0 − y′0∥2 + 4d2.

Therefore, ∥y0 − y′0∥2 ≤ 0 and so y0 = y′0. This proves the uniqueness of y0.
Finally, we take any y ∈ K and then for 0 ≤ t ≤ 1 we have that (1− t)y0 + ty ∈ K and hence

d2 ≤ ∥x0 − ((1− t)y0 + ty)∥2 = ∥(x0 − y0)− t(y − y0)∥2

= ∥x0 − y0∥2 − 2tRe(⟨x0 − y0, y − y0⟩) + t2∥y − y0∥2

= d2 − 2tRe(⟨x0 − y0, y − y0⟩) + t2∥y − y0∥2.

When 0 < t ≤ 1 we get
2Re(⟨x0 − y0, y − y0⟩) ≤ t∥y − y0∥2,

and taking the limit when t → 0+ we conclude that Re(⟨x0 − y0, y − y0⟩) ≤ 0.

2.7 Orthogonality.

Definition. LetX be an inner product space with inner product ⟨·, ·⟩. Let x, y ∈ X , andA,B ⊆ X .
(i) If ⟨x, y⟩ = 0, we say that x, y are orthogonal and we write

x ⊥ y.

(ii) If ⟨x, a⟩ = 0 for every a ∈ A, we say that x,A are orthogonal and we write

x ⊥ A.

(iii) If ⟨a, b⟩ = 0 for every a ∈ A and every b ∈ B, we say that A,B are orthogonal and we write

A ⊥ B.

It is obvious that
x ⊥ x ⇒ x = 0.

Therefore,
x ⊥ A, x ∈ A ⇒ x = 0,

A ⊥ B, A ∩B ̸= ∅ ⇒ A ∩B = {0}.

Proposition 2.7. Let X be an inner product space, let x, y, z ∈ X and (yn) be a sequence in X .
(i) If x ⊥ y and x ⊥ z, then x ⊥ (λy + κz) for every λ, κ ∈ F .
(ii) If x ⊥ yn for every n and yn → y, then x ⊥ y.

Proof. Trivial.

For a subset A of a normed space X the set clspan(A), the closed linear span of A, is the
closure of the linear span of A inX or, equivalently, the smallest closed subspace ofX containing
A or, equivalently, the set of the limits of the linear combinations of elements of A.
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Proposition 2.8. Let X be an inner product space, and let x ∈ X and A,B ⊆ X .
(i) If x ⊥ A, then x ⊥ clspan(A).
(ii) If A ⊥ B, then clspan(A) ⊥ clspan(B).

Proof. This is an easy corollary of proposition 2.7.

Definition. Let X be an inner product space and A ⊆ X . We denote

A⊥ = {x ∈ X |x ⊥ A}.

We say that A⊥ is the subspace which is orthogonal to A.

Proposition 2.9. Let X be an inner product space and A,B ⊆ X .
(i) A⊥ is a closed subspace of X .
(ii) clspan(A) ⊆ (A⊥)⊥.
(iii) A ⊆ B ⇒ B⊥ ⊆ A⊥.
(iv) (clspan(A))⊥ = A⊥.

Proof. Trivial.

2.8 Otrhogonal complements.

Definition. Let X be an inner product space. If Y, Z are subspaces of X and

Y + Z = X, Y ⊥ Z,

we say that each of Y,Z is the orthogonal complement of the other.

Proposition 2.10. Let X be an inner product space, and let Y, Z be subspaces of X . If each of
Y, Z is the orthogonal complement of the other, then Z = Y ⊥ and Y = Z⊥. In particular, Y, Z
are closed.

Proof. Obviously, Y ⊥ Z implies Z ⊆ Y ⊥.
Now, let x ∈ Y ⊥. Since X = Y + Z, there are y ∈ Y , z ∈ Z so that x = y + z. From x ∈ Y ⊥

and z ∈ Y ⊥ we get y = x− z ∈ Y ⊥. Hence y = 0 and so x = z ∈ Z. Thus, Y ⊥ ⊆ Z.
The proof of Y = Z⊥ is symmetric.

Proposition 2.11. Let X be an inner product space, and let Y be a subspace of X .
(i) Y has an orthogonal complement in X if and only if Y + Y ⊥ = X .
(ii) If Y has an orthogonal complement in X , then Y is closed, its orthogonal complement is Y ⊥,
and it is the orthogonal complement of Y ⊥, i.e. Y = (Y ⊥)⊥.

Proof. Clear from the definition and proposition 2.10.

Theorem 2.2. LetX be an inner product space with inner product ⟨·, ·⟩ and norm ∥ · ∥, let Y be a
complete subspace of X , and let x0 ∈ X . Then there is a unique y0 ∈ Y so that

∥x0 − y0∥ = inf
y∈Y

∥x0 − y∥.

Moreover,
x0 − y0 ⊥ Y.

Thus
X = Y + Y ⊥

and so each of Y, Y ⊥ is the orthogonal complement of the other. In particular, Y = (Y ⊥)⊥.
If X is a Hilbert space, we may only assume that Y is a closed subspace of X .
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Proof. Every linear subspace is a convex set. So proposition 2.6 implies the existence of y0 and
also that

Re(⟨x0 − y0, y − y0⟩) ≤ 0

for every y ∈ Y . Since Y is a linear subspace, we have that y ∈ Y if and only if y − y0 ∈ Y , and
so, replacing y − y0 with y in the last inequality, we get

Re(⟨x0 − y0, y⟩) ≤ 0

for every y ∈ Y . Now, replacing y with −y, we get Re(⟨x0 − y0, y⟩) ≥ 0 for every y ∈ Y . So we
have that

Re(⟨x0 − y0, y⟩) = 0

for every y ∈ Y .
If F = R, then we get ⟨x0 − y0, y⟩ = 0 for every y ∈ Y and so x0 − y0 ⊥ Y .
If F = C, then we replace y with iy and we get

Im(⟨x0 − y0, y⟩) = 0

for every y ∈ Y . Thus ⟨x0 − y0, y⟩ = 0 for every y ∈ Y and so x0 − y0 ⊥ Y .
If we set z0 = x0 − y0, then we have x0 = y0 + z0 with y0 ∈ Y and z0 ∈ Y ⊥.
We conclude that X = Y + Y ⊥. All the rest are implied by proposition 2.11.

Thus, every complete subspace of an inner product space (and hence every closed subspace of
a Hilbert space) has an orthogonal complement.

Proposition 2.12. Let X be an inner product space and A ⊆ X .
(i) If clspan(A) is complete, then clspan(A) = (A⊥)⊥.
(ii) If X is a Hilbert space, then clspan(A) = (A⊥)⊥.

Proof. (i) Since clspan(A) is a complete subspace ofX , theorem 2.2 implies that (clspan(A))⊥ =
A⊥ is an orthogonal complement of clspan(A), and hence clspan(A) = (A⊥)⊥.
(ii) Immediate from (i).

2.9 Orders.

The content of this section is very general and belongs to the Foundations of Set Theory.

Definition. LetA be a non-empty set and let ≺⊆ A×A. We say that the set ≺ is an order relation
in A, if for every a, a1, a2, a3 ∈ A:
(i) (a, a) ∈≺ ,
(ii) if (a1, a2) ∈≺ and (a2, a1) ∈≺ , then a1 = a2,
(iii) if (a1, a2) ∈≺ and (a2, a3) ∈≺ , then (a1, a3) ∈≺ .
If ≺ is an order relation in A, we say that A is ordered by ≺ .
Finally, if ≺ is an order relation in A, we prefer to write

a ≺ a′

instead of (a, a′) ∈≺ .

Thus, (i)-(iii) of the definition take the form
(i) a ≺ a,
(ii) if a1 ≺ a2 and a2 ≺ a1, then a1 = a2,
(iii) if a1 ≺ a2 and a2 ≺ a3, then a1 ≺ a3.

Example 2.9.1. R with the usual order relation ≤ .
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Example 2.9.2. N with the relation of divisibility / . I.e. a/b if a divides b.

Example 2.9.3. If Q is any non-empty set, we consider P(Q), the set of all subsets of Q, and as
an order relation in P(Q) we consider the relation of inclusion ⊆ .

In the first example, for every x, y ∈ R we have either x ≤ y or y ≤ x. In the second
example, though, we have neither 2/3 nor 3/2. Similarly, in the third example, if Q contains at
least two elements q1, q2, then the elements {q1}, {q2} of P(Q) satisfy neither {q1} ⊆ {q2} nor
{q2} ⊆ {q1}.

Definition. Let A be ordered by ≺ , and B ⊆ A. Then we say that B is totally ordered if every
b1, b2 ∈ B satisfy either b1 ≺ b2 or b2 ≺ b1.

Definition. Let A be ordered by ≺ , B ⊆ A, and a ∈ A. Then a is called upper bound of B, if
b ≺ a for every b ∈ B.

Definition. Let A be ordered by ≺ , and a ∈ A. Then a is calledmaximal element of A, if there is
no a′ ∈ A such that a ≺ a′ and a ̸= a′.

It is fairly standard to accept as an axiom the following statement.

Zorn’s Lemma. Let A be ordered by some order relation. If every totally ordered subset of A has
an upper bound in A, then A has at least one maximal element.

2.10 Orthonormal bases.

Definition. LetX be an inner product space with inner product ⟨·, ·⟩ and norm ∥·∥, and letA ⊆ X .
(i)We say thatA is orthogonal if a ̸= 0 for every a ∈ A and a1 ⊥ a2 for every a1, a2 ∈ A, a1 ̸= a2.
(ii) We say that A is orthonormal if ∥a∥ = 1 for every a ∈ A and a1 ⊥ a2 for every a1, a2 ∈ A,
a1 ̸= a2.

Of course, if A is orthonormal then it is orthogonal. Also, if A is orthogonal, then the set
A′ = { 1

∥a∥ a | a ∈ A} is orthonormal.

Proposition 2.13. Let X be an inner product space, and A ⊆ X . If A is orthogonal, then it is
linearly independent.

Proof. Assume that a1, . . . , an ∈ A and λ1, . . . , λn ∈ F so that

λ1a1 + · · ·+ λnan = 0.

If we take the inner product of both sides with ak we find λk = 0.

Definition. Let X be an inner product space, and A ⊆ X .
(i) We say that A is a maximal orthonormal set of X , if A is orthonormal and there is no or-
thonormal set A′ so that A ⫋ A′.
(ii) We say that A is an orthonormal basis of X , if A is orthonormal and clspan(A) = X .

It is easy to see thatA is a maximal orthonormal set if and only if it is orthonormal and there is
no x ̸= 0 so that x ⊥ A. Also, A is an orthonormal basis if and only if it is orthonormal and every
x is the limit of linear combinations of elements of A.

Proposition 2.14. Let X be an inner product space, and A ⊆ X .
(i) If A is an orthonormal basis of X , then A is a maximal orthonormal set of X .
(ii) If A is a maximal orthonormal set of X and X is a Hilbert space, then A is an orthonormal
basis of X .
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Proof. (i) Assume that A is an orthonormal basis of X and let x ⊥ A. Then x ⊥ clspan(A) = X
and hence x = 0. So A is a maximal orthonormal set of X .
(ii) Assume that A is a maximal orthonormal set of X and take any x ∈ X . Since clspan(A) is a
closed subspace of the Hilbert space X , there are y, z ∈ X so that y ∈ clspan(A), z ⊥ clspan(A)
and x = y + z. From z ⊥ clspan(A) we get z ⊥ A and, since A is a maximal orthonormal set of
X , we find z = 0. Therefore, x = y ∈ clspan(A).
We conclude that X = clspan(A), i.e. A is an orthonormal basis of X .

Theorem 2.3. Let X ̸= {0} be an inner product space.
(i) There exists a maximal orthonormal set A in X .
(ii) If A0 is any orthonormal set inX , then there exists a maximal orthonormal set A inX so that
A0 ⊆ A.
If X is a Hilbert space, the maximal orthonormal set A in (i-ii) is an orthonormal basis of X .

Proof. Let ⟨·, ·⟩ and ∥ · ∥ be the inner product and the norm of X .
(i) We consider the collection A of all orthonormal sets of X . If a ̸= 0 is any element of X , then
{ a
∥a∥} is an element of A and so A is non-empty. We also consider A ordered by set inclusion.

Now, let B be any totally ordered subcollection of A. We define

A =
∪
B∈B

B.

Every a ∈ A belongs to some B ∈ B and so ∥a∥ = 1. Also, if a1, a2 ∈ A and a1 ̸= a2, then
there are B1, B2 ∈ B so that a1 ∈ B1 and a2 ∈ B2. Since B is totally ordered, we have that either
B1 ⊆ B2 or B2 ⊆ B1, and hence both a1, a2 belong to one of B1, B2. Thus a1 ⊥ a2. Therefore,
A ∈ A and A is obviously an upper bound of B.
Now, Zorn’s lemma implies that A has a maximal element.
(ii) We consider the collection A of all orthonormal sets of X which contain A0. Then A0 is an
element of A and so A is non-empty. Now we repeat the proof of (i).

Bessel’s inequality. LetX be an inner product space with inner product ⟨·, ·⟩ and norm ∥ · ∥, and
let A be an orthonormal set in X . Then∑

a∈A
|⟨x, a⟩|2 ≤ ∥x∥2

for every x ∈ X .

Proof. We take any finite B ⊆ A and we consider the element z = x −
∑

a∈B⟨x, a⟩a. Then for
every a′ ∈ B we get

⟨z, a′⟩ = ⟨x, a′⟩ −
∑
a∈B

⟨x, a⟩⟨a, a′⟩ = ⟨x, a′⟩ − ⟨x, a′⟩ = 0.

So z ⊥ a′ for every a′ ∈ B and hence z ⊥
∑

a∈B⟨x, a⟩a. This implies

∥x∥2 =
∥∥∥z + ∑

a∈B
⟨x, a⟩a

∥∥∥2 = ∥z∥2 +
∥∥∥∑
a∈B

⟨x, a⟩a
∥∥∥2 ≥ ∥∥∥∑

a∈B
⟨x, a⟩a

∥∥∥2 = ∑
a∈B

|⟨x, a⟩|2.

Since this holds for every finite B ⊆ A, we conclude that
∑

a∈A |⟨x, a⟩|2 ≤ ∥x∥2.

The theorem of F.Riesz and Fischer. LetX be a Hilbert space with inner product ⟨·, ·⟩ and norm
∥ · ∥, let A be an orthonormal set in X , and let λa ∈ F , a ∈ A. If

∑
a∈A |λa|2 < +∞, then the

series
∑

a∈A λa a converges unconditionally inX . If x =
∑

a∈A λa a is the sum of the series, then
x ∈ clspan(A), and
(i) ⟨x, a⟩ = λa for every a ∈ A,
(ii) ∥x∥2 =

∑
a∈A |λa|2,

(iii) ⟨x, y⟩ =
∑

a∈A λa ⟨y, a⟩ for every y ∈ X .
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Proof. Due to lemma 1.3, from
∑

a∈A |λa|2 < +∞ we get that the set A0 = {a ∈ A |λa ̸= 0}
is countable. Since the case of A0 being finite is trivial, we assume that A0 is infinite, and we
consider any enumeration {a1, a2, . . .} of A0. Then the set An = {a1, . . . , an} is a finite subset
of A and hence

n∑
k=1

|λak |
2 =

∑
a∈An

|λa|2 ≤
∑
a∈A

|λa|2.

This is true for every n and so

+∞∑
k=1

|λak |
2 ≤

∑
a∈A

|λa|2 < +∞.

We set sn =
∑n

k=1 λakak for every n. Then for every n,m with n < m we get

∥sm − sn∥2 =
∥∥∥ m∑
k=n+1

λakak

∥∥∥2 = m∑
k=n+1

|λak |
2 → 0

when n,m → +∞. Since X is a Hilbert space, there is x ∈ X so that sn → x, i.e.

x =
+∞∑
k=1

λakak.

Obviously, sn ∈ span(A) for every n, and so x ∈ clspan(A). Moreover, for every a ∈ A we have

⟨x, a⟩ = lim
n→+∞

⟨sn, a⟩ = lim
n→+∞

n∑
k=1

λak⟨ak, a⟩ =
+∞∑
k=1

λak⟨ak, a⟩ = λa.

If we consider any other enumeration {a′1, a′2, . . .} of A0, then again we have x′ =
∑+∞

k=1 λa′k
a′k

for some x′ ∈ clspan(A), satisfying ⟨x′, a⟩ = λa for every a ∈ A. Then

⟨x′ − x, a⟩ = ⟨x′, a⟩ − ⟨x, a⟩ = λa − λa = 0

for every a ∈ A. Thus x′ − x ⊥ A and so x′ − x ⊥ clspan(A). Since x′ − x ∈ clspan(A), we
conclude that x′ − x = 0, i.e. x′ = x, and so the sum of the series

∑+∞
k=1 λakak does not depend

on the enumeration of A0. Thus, the series
∑

a∈A λa a converges unconditionally in X and

∑
a∈A

λaa = x =

+∞∑
k=1

λakak.

Now, for every y ∈ X we get

⟨x, y⟩ = lim
n→+∞

⟨sn, y⟩ = lim
n→+∞

n∑
k=1

λak⟨ak, y⟩ =
+∞∑
k=1

λak⟨ak, y⟩ =
+∞∑
k=1

λak ⟨y, ak⟩.

Since the sum ⟨x, y⟩ of
∑+∞

k=1 λak ⟨y, ak⟩ does not depend on the enumeration of A0, we get that
the series

∑
a∈A λa ⟨y, a⟩ converges unconditionally, and

⟨x, y⟩ =
∑
a∈A

λa ⟨y, a⟩.

This is the equality of (iii) and, setting y = x, we get the equality of (ii).
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Definition. Let X be an inner product space with inner product ⟨·, ·⟩, let A be an orthonormal set
in X and x ∈ X . The numbers ⟨x, a⟩, a ∈ A, are called Fourier coefficients of x with respect to
A, and the series

∑
a∈A⟨x, a⟩a is called Fourier series of x with respect to A.

Theorem 2.4. Let X be a Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥, and let A be
an orthonormal basis of X . Then the Fourier series

∑
a∈A⟨x, a⟩ a of every x ∈ X converges

unconditionally in X and its sum is x, i.e.∑
a∈A

⟨x, a⟩ a = x.

Also,
(i) ∥x∥2 =

∑
a∈A |⟨x, a⟩|2,

(ii) ⟨x, y⟩ =
∑

a∈A⟨x, a⟩ ⟨y, a⟩ for every y ∈ X .
The last two equalities are called Parseval’s identities.

Proof. Bessel’s inequality and then the theorem of F.Riesz and Fischer imply that
∑

a∈A⟨x, a⟩ a
converges unconditionally in X . If

x′ =
∑
a∈A

⟨x, a⟩ a

is the sum of the series, then ⟨x′, a⟩ = ⟨x, a⟩ for every a ∈ A. So x′ − x ⊥ A and, since A is a
maximal orthonormal set, we get x′ = x. Thus

∑
a∈A⟨x, a⟩ a = x, and then we get (i),(ii) from

the theorem of F.Riesz and Fischer.

It is worth seeing that the two Parseval’s identities are equivalent. Indeed, if (ii) holds for every
x, y ∈ X , then, setting y = x, we see that (i) holds for every x ∈ X . Conversely, assume that (i)
holds for every x ∈ X . Then it holds for x, y, x+ y, i.e.

∥x∥2 =
∑
a∈A

|⟨x, a⟩|2, ∥y∥2 =
∑
a∈A

|⟨y, a⟩|2, ∥x+ y∥2 =
∑
a∈A

|⟨x+ y, a⟩|2.

The third equality implies

∥x∥2 + 2Re(⟨x, y⟩) + ∥y∥2 =
∑
a∈A

|⟨x, a⟩|2 + 2
∑
a∈A

Re(⟨x, a⟩ ⟨y, a⟩) +
∑
a∈A

|⟨y, a⟩|2.

Therefore,
Re(⟨x, y⟩) =

∑
a∈A

Re(⟨x, a⟩ ⟨y, a⟩)

for every x, y ∈ X . Now, if F = R, then we have got (ii). If F = C, then we replace y with iy
and we get

Im(⟨x, y⟩) =
∑
a∈A

Im(⟨x, a⟩ ⟨y, a⟩)

for every x, y ∈ X . From the last two equalities we get (ii).

Example 2.10.1. In the space l2 we consider the elements

en = (0, . . . , 0, 1, 0, . . .), n ∈ N,

where en has all its coordinates equal to 0 except for the n-th coefficient which is equal to 1. It is
trivial to see that

⟨en, em⟩ =

{
1, n = m,

0, n ̸= m.
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So the set A = {en |n ∈ N} is orthonormal in l2.
If x = (λn) ∈ l2 is orthogonal to A, then we have

λn = ⟨x, en⟩ = 0

for every n and hence x = 0. Thus, A is a maximal orthonormal set in l2 and, since l2 is a Hilbert
space, A is an orthonormal basis of l2. So for every x = (λn) ∈ l2 we can write

x =
+∞∑
n=1

⟨x, en⟩ en =
+∞∑
n=1

λnen.

Also, Parseval’s identities for this particular orthonormal basis A = {en |n ∈ N} of l2 take, for
every x = (λn), y = (κn) ∈ l2, the form

∥x∥2 =
+∞∑
n=1

|⟨x, en⟩|2 =
+∞∑
n=1

|λn|2,

⟨x, y⟩ =
+∞∑
n=1

⟨x, en⟩ ⟨y, en⟩ =
+∞∑
n=1

λn κn.

In fact these identities are just the defining equalities for the norm and the inner product of l2.

Example 2.10.2. In the space L2([0, 1]) with the Lebesgue measure of [0, 1], we consider the ele-
ments

en(t) = e2πint, n ∈ Z.

Then we have

⟨en, em⟩ =
∫ 1

0
en(t) em(t) dt =

∫ 1

0
e2πi(n−m)t dt =

{
1, n = m,

0, n ̸= m.

Therefore, the set A = {en |n ∈ Z} is orthonormal in L2([0, 1]).
If f ∈ L2([0, 1]), then the Fourier coefficient of f with respect to every en is denoted f̂(n) and it
is equal to

f̂(n) = ⟨f, en⟩ =
∫ 1

0
f(t) en(t) dt =

∫ 1

0
f(t)e−2πint dt, n ∈ Z.

It is known that A = {en |n ∈ Z} is an orthonormal basis of L2([0, 1]). So every f ∈ L2([0, 1])
is equal to its Fourier series with respect to A, i.e.

f =
∑
n∈Z

⟨f, en⟩ en =
∑
n∈Z

f̂(n) en.

Also, Parseval’s identities take, for every f, g ∈ L2([0, 1]), the form∫ 1

0
|f(t)|2 dt = ∥f∥2 =

∑
n∈Z

|⟨f, en⟩|2 =
∑
n∈Z

|f̂(n)|2,

∫ 1

0
f(t) g(t) dt = ⟨f, g⟩ =

∑
n∈Z

⟨f, en⟩ ⟨g, en⟩ =
∑
n∈Z

f̂(n) ĝ(n).
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2.11 Orthogonal projections.

Definition. Let X be an inner product space, and let Y be a subspace of X with an orthogonal
complement in X . Then we know from proposition 2.11 that Y + Y ⊥ = X , that Y is closed, that
its orthogonal complement is Y ⊥ and that Y is the orthogonal complement of Y ⊥ in X .
We consider the function

PY : X → X

defined for every x ∈ X by
PY (x) = y,

where x = y + z, with y ∈ Y and z ∈ Y ⊥.
The function PY is called orthogonal projection of X onto Y .

Proposition 2.15. Let X be an inner product space with inner product ⟨·, ·⟩ and norm ∥ · ∥, and
let Y be a subspace of X with an orthogonal complement in X . Then the orthogonal projection
PY : X → X has the following properties.
(i) PY is linear.
(ii) The range of PY is Y , i.e. R(PY ) = Y , and its null space is Y ⊥, i.e. N(PY ) = Y ⊥.
(iii) PY ◦ PY = PY .
(iv) ⟨PY (x1), x2⟩ = ⟨x1, PY (x2)⟩ for every x1, x2 ∈ X .
(v) ∥PY (x)∥ ≤ ∥x∥ for every x ∈ X .

Proof. (i) Take x1, x2 ∈ X . Then there are y1, y2 ∈ Y and z1, z2 ∈ Y ⊥ so that x1 = y1 + z1 and
x2 = y2 + z2. Now, y1 + y2 ∈ Y and z1 + z2 ∈ Y ⊥, and x1 + x2 = (y1 + y2) + (z1 + z2).
Therefore,

PY (x1 + x2) = y1 + y2 = PY (x1) + PY (x2).

Similarly, take x ∈ X and λ ∈ F . Then there are y ∈ Y and z ∈ Y ⊥ so that x = y + z. Now,
λy ∈ Y and λz ∈ Y ⊥, and λx = λy + λz. Therefore,

PY (λx) = λy = λPY (x).

(ii) It is clear that R(PY ) ⊆ Y . Now, take any y ∈ Y . Then y = y + 0 and y ∈ Y , 0 ∈ Y ⊥. So
PY (y) = y and hence y ∈ R(PY ). Therefore Y ⊆ R(PY ).
Take any z ∈ Y ⊥. Then z = 0 + z and 0 ∈ Y , z ∈ Y ⊥. So PY (z) = 0 and hence z ∈ N(PY ).
Therefore, Y ⊥ ⊆ N(PY ).
Conversely, let x ∈ N(PY ), i.e. PY (x) = 0. Then x = 0 + z and z ∈ Y ⊥ and hence x ∈ Y ⊥.
Therefore, N(PY ) ⊆ Y ⊥.
(iii) We saw in the proof of (ii) that PY (y) = y for every y ∈ Y . Now, for any x ∈ X we have
that PY (x) ∈ Y and hence PY (PY (x)) = PY (x).
(iv) Take x1, x2 ∈ X . Then there are y1, y2 ∈ Y and z1, z2 ∈ Y ⊥ so that x1 = y1 + z1 and
x2 = y2 + z2. Now,

⟨PY (x1), x2⟩ = ⟨y1, y2 + z2⟩ = ⟨y1, y2⟩ = ⟨y1 + z1, y2⟩ = ⟨x1, PY (x2)⟩.

(v) Take any x ∈ X . Then there are y ∈ Y and z ∈ Y ⊥ so that x = y + z. Then

∥PY (x)∥2 = ∥y∥2 ≤ ∥y∥2 + ∥z∥2 = ∥y + z∥2 = ∥x∥2.

It is clear from the proof of (ii) of proposition 2.15 that if we restrict PY on Y then it is equal
to the identity operator of Y :

PY (y) = y, y ∈ Y.
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Also, if we restrict PY on Y ⊥ then it is equal to the null operator of Y ⊥:

PY (z) = 0, z ∈ Y ⊥.

Note that an orthogonal projection PY corresponds to a subspace Y which has an orthogonal
complement in X (i.e. Y ⊥). In this case Y ⊥ also has an orthogonal complement in X (i.e. Y )
and so the orthogonal projection PY ⊥ is also defined. Proposition 2.15 describes the properties
of any orthogonal projection and hence of PY ⊥ . The following proposition describes some extra
properties of the pair of orthogonal projections PY and PY ⊥ .

Proposition 2.16. LetX be an inner product space, and let Y be a subspace ofX with an orthog-
onal complement in X . Then:
(i) PY + PY ⊥ = I , the identity operator of X .
(ii) PY ⊥ ◦ PY = PY ◦ PY ⊥ = 0, the null operator of X .

Proof. Take any x ∈ X . Then there are y ∈ Y and z ∈ Y ⊥ so that x = y + z.
(i) PY (x) + PY ⊥(x) = y + z = x.
(ii) PY ⊥(PY (x)) = PY ⊥(y) = 0 and PY (PY ⊥(x)) = PY (z) = 0.

The following proposition describes the properties which characterize orthogonal projections
among linear operators on an inner product space.

Proposition 2.17. Let X be an inner product space with inner product ⟨·, ·⟩, and let P : X → X
be a linear operator. If P ◦ P = P and ⟨P (x1), x2⟩ = ⟨x1, P (x2)⟩ for every x1, x2 ∈ X , then
there is a subspace Y of X , which has an orthogonal complement in X , so that P = PY .

Proof. We consider the linear subspaces Y = R(P ) and Z = N(P ) of X .
Clearly, P (z) = 0 for every z ∈ Z. Also, if y ∈ Y , then y = P (x) for some x ∈ X and so

P (y) = P (P (x)) = P (x) = y.

Hence, for every y ∈ Y and every z ∈ Z we have

⟨y, z⟩ = ⟨P (y), z⟩ = ⟨y, P (z)⟩ = ⟨y, 0⟩ = 0,

and so Y ⊥ Z.
Now take any x ∈ X and consider y = P (x) and z = x− P (x). Then y ∈ Y and

P (z) = P (x)− P (P (x)) = P (x)− P (x) = 0,

i.e. z ∈ Z. Obviously: x = y+ z and we conclude thatX = Y +Z and Y ⊥ Z. Therefore, Y, Z
are orthogonal complements of each other.
We just saw that for any x ∈ X we have x = P (x) + z, where P (x) ∈ Y and z ∈ Z. Hence
PY (x) = P (x).

We know from theorem 2.2 that every complete subspace of an inner product space has an
orthogonal complement and so defines a corresponding othogonal projection. Also, theorem 2.3
implies that every complete subspace of an inner product space has an orthonormal basis. Now we
shall describe the orthogonal projection on a complete subspace in terms of an orthonormal basis
of the subspace.

Proposition 2.18. Let X be an inner product space with inner product ⟨·, ·⟩, let Y be a complete
subspace of X , and let A be any orthonormal basis of Y . Then for every x ∈ X we have

PY (x) =
∑
a∈A

⟨x, a⟩ a.
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Proof. Take any x ∈ X . Then there are y ∈ Y and z ∈ Y ⊥ so that x = y + z.
Since a ∈ Y for every a ∈ A, we have that

⟨x, a⟩ = ⟨y + z, a⟩ = ⟨y, a⟩+ ⟨z, a⟩ = ⟨y, a⟩

for every a ∈ A. Hence

PY (x) = y =
∑
a∈A

⟨y, a⟩ a =
∑
a∈A

⟨x, a⟩ a.

2.12 Separable inner product spaces.

The theorem of Schmidt. Let X be a separable inner product space with dim(X) = +∞.
(i) Every orthonormal basis of X is countable and infinite.
(ii) X has an orthonormal basis.
(iii) If X is complete, then X and l2 are linearly isometric.

Proof. LetM be a countable and dense subset of X .
(i) IfA is any orthonormal basis ofX , then for every a ∈ A we consider the ballB(a;

√
2
2 ) and we

observe that these balls are pairwise disjoint.
Now, for every a ∈ A there is xa ∈ M ∩ B(a;

√
2
2 ), and we may consider the function A ∋ a 7→

xa ∈ M . This function is one-to-one in A, and so A is countable.
If A is finite, i.e. A = {a1, . . . , an}, then X = clspan({a1, . . . , an}) = span({a1, . . . , an}) has
finite dimension. (We used that any subspace of finite dimension is closed.)
(ii) Now, letM = {x1, x2, x3, . . .}.
Let n1 be the least natural number so that xn1 ̸= 0. Then let n2 be the least natural number so that
xn2 is not a multiple of xn1 . We continue inductively: if we have found n1, . . . , nk−1, we let nk be
the natural number so that xnk

is not a linear combination of xn1 , . . . , xnk−1
. If this process stops

at some point, then there is N so that all xN+1, xN+2, . . . are linear combinations of x1, . . . , xN .
But thenX = clspan({x1, . . . , xN}) = span({x1, . . . , xN}) and soX is finite dimensional. Thus,
the above process does not end, and so we get the countable and infinite set

N = {xn1 , xn2 , . . .} ⊆ M.

Since every xnk
is not a linear combination of xn1 , . . . , xnk−1

, the set N is linearly independent.
Now, take any x ∈ X and any ϵ > 0. Then there is xj ∈ M so that ∥x − xj∥ < ϵ. Then there
is k so that j < nk, and this implies that xj is a linear combination of xn1 , . . . , xnk−1

. Therefore,
X = clspan(N).
For simplicity, we denote yk = xnk

, i.e.

N = {y1, y2, . . .}.

We define
a1 =

1

∥y1∥
y1,

and then
{a1} is orthonormal, span({a1}) = span({y1}).

Now assume that we have defined a1, . . . , ak−1 so that

{a1, . . . , ak−1} is orthonormal, span({a1, . . . , ak−1}) = span({y1, . . . , yk−1}).
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We denote
Mk−1 = span({a1, . . . , ak−1}) = span({y1, . . . , yk−1}).

Then yk /∈ Mk−1, and so yk − PMk−1
(yk) ̸= 0, where PMk−1

is the orthogonal projection on the
finite dimensional subspaceMk−1. We define

ak =
1

∥yk − PMk−1
(yk)∥

(yk − PMk−1
(yk))

and then ak is orthogonal to Mk−1 with ∥ak∥ = 1. Moreover, ak is a linear combination of
y1, . . . , yk and also yk is a linear combination of a1, . . . , ak. Thus

{a1, . . . , ak−1, ak} is orthonormal, span({a1, . . . , ak−1, ak}) = span({y1, . . . , yk−1, yk}).

Continuing inductively, we construct the set

A = {a1, a2, . . .},

which is orthonormal and satisfies:

clspan(A) = clspan(N) = X.

Therefore, A is an orthonormal basis of X .
(iii) Let A = {a1, a2, . . .} be any orthonormal basis of X . If x ∈ X , then

+∞∑
k=1

|⟨x, ak⟩|2 = ∥x∥2 < +∞,

and so we may consider the function T : X → l2 defined for every x ∈ X by

T (x) =
(
⟨x, a1⟩, ⟨x, a2⟩, . . .

)
.

It is easy to see that T is linear. Also, T is a linear isometry, since

∥T (x)∥22 =
+∞∑
k=1

|⟨x, ak⟩|2 = ∥x∥2

for every x ∈ X . If (λk) ∈ l2, then there is x ∈ X so that ⟨x, ak⟩ = λk for every k. Thus
T (x) = (λk) and so T is onto l2.

This theorem is useful, because many classical Hilbert spaces are separable. For example
L2(Ω,B(Ω),m) with a Borel set Ω ⊆ Rd and the Lebesgue measurem.
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Chapter 3

The dual of a normed space

3.1 Bounded linear functionals.

Definition. Let X be a normed space with norm ∥ · ∥, and let l : X → F be a linear functional on
X . Then l is called bounded if there is C ≥ 0 so that

|l(x)| ≤ C∥x∥

for every x ∈ X .

Proposition 3.1. LetX be a normed space with norm ∥·∥, and let l : X → F be a linear functional
on X . The following are equivalent:
(i) l is continuous in X .
(ii) N(l) is closed in X .
(iii) l is bounded.
(iv) l is continuous at 0 ∈ X .

Proof. N(l) = l−1({0}) is the inverse image of a closed set, and so, if l is continuous in X , then
N(l) is closed in X .
Now, assume that N(l) is closed inX . If l = 0, then l is obviously bounded. So assume that l ̸= 0.
Then there is x0 ∈ X so that l(x0) = 1. Since N(l) is closed and x0 /∈ N(l), there is r > 0 so that
B(x0; r) ∩ N(l) = ∅. Now take any x ∈ X with l(x) ̸= 0. Then

l
(
x0 −

x

l(x)

)
= l(x0)−

l(x)

l(x)
= 1− 1 = 0.

Hence x0 − x
l(x) ∈ N(l) and so x0 − x

l(x) /∈ B(x0; r). Thus ∥ x
l(x)∥ ≥ r, i.e. |l(x)| ≤ 1

r ∥x∥. This
is obviously true when l(x) = 0, and we conclude that

|l(x)| ≤ 1

r
∥x∥

for every x ∈ X . Therefore, l is bounded.
If l is bounded, then there is C ≥ 0 so that |l(x)| ≤ C∥x∥ for every x ∈ X . If xn → 0 inX , then

|l(xn)| ≤ C∥xn∥ → 0,

and so l(xn) → 0 in R. Hence l is continuous at 0.
Finally, assume that l is continuous at 0. If xn → x in X , then xn − x → 0 in X , and then
l(xn)− l(x) = l(xn − x) → 0 in R, and then l(xn) → l(x) in R. So l is continuous in X .

Definition. Let X be a normed space. The set of all continuous or, equivalently, bounded linear
functionals on X is called dual space of X , and it is denoted X ′.
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Proposition 3.2. Let X be a normed space with norm ∥ · ∥. Then X ′ as a function space, with
the usual addition of functions and the usual multiplication of numbers and functions, is a linear
space.

Proof. If l, l1, l2 : X → F and λ ∈ F , we consider the functions l1+l2 : X → F and λl : X → F
defined for every x ∈ X by

(l1 + l2)(x) = l1(x) + l2(x), (λl)(x) = λl(x).

It is known from Linear Algebra (and it is very easy to prove) that, if l, l1, l2 are linear functionals,
then l1 + l2 and λl are also linear functionals. It is also clear that, if l, l1, l2 are continuous, then
l1 + l2 and λl are also continuous.

Usually we denote the elements of X ′ with symbols like x′, y′ etc.

Definition. Let X be a normed space with norm ∥ · ∥. For every x′ ∈ X ′ we define

∥x′∥ = sup
x∈X,∥x∥≤1

|x′(x)|.

Proposition 3.3. Let X be a normed space with norm ∥ · ∥ and let x′ ∈ X ′. Then ∥x′∥ is the
smallest constant C which satifies the inequality |x′(x)| ≤ C∥x∥ for every x ∈ X .

Proof. For every x ∈ X , x ̸= 0, we have
∥∥ x
∥x∥

∥∥ = 1, and then, by the definition of ∥x′∥ we get

|x′(x)| =
∣∣∣x′( x

∥x∥

)∣∣∣∥x∥ ≤ ∥x′∥∥x∥.

The inequality |x′(x)| ≤ ∥x′∥∥x∥ is obviously satistied if x = 0, and so C = ∥x′∥ satisfies the
inequality |x′(x)| ≤ C∥x∥ for every x ∈ X .
Conversely, let C satisfy the inequality |x′(x)| ≤ C∥x∥ for every x ∈ X . Then we have |x′(x)| ≤
C for every x ∈ X with ∥x∥ ≤ 1, and so ∥x′∥ ≤ C.

So, if x′ ∈ X ′, then
|x′(x)| ≤ ∥x′∥∥x∥ for every x ∈ X.

Also,
|x′(x)| ≤ C∥x∥ for every x ∈ X ⇒ ∥x′∥ ≤ C.

Proposition 3.4. Let X be a normed space with norm ∥ · ∥. The function ∥ · ∥ : X ′ → R defined
above is a norm on X ′, and X ′ with this norm is a Banach space.

Proof. Obviously, ∥x′∥ ≥ 0 for every x′ ∈ X ′. It is also clear that ∥x′∥ = 0 if x′ = 0.
If x′ ∈ X ′ and ∥x′∥ = 0, then x′(x) = 0 for every x ∈ X , and so x′ = 0.
For every x ∈ X and every x′1, x′2 ∈ X ′ we have

|(x′1 + x′2)(x)| ≤ |x′1(x)|+ |x′2(x)| ≤ ∥x′1∥∥x∥+ ∥x′2∥∥x∥ = (∥x′1∥+ ∥x′2∥)∥x∥.

Hence ∥x′1 + x′2∥ ≤ ∥x′1∥+ ∥x′2∥.
For every x′ ∈ X ′ and every λ ∈ F we have

∥λx′∥ = sup
x∈X,∥x∥≤1

|(λx′)(x)| = sup
x∈X,∥x∥≤1

|λ||x′(x)| = |λ| sup
x∈X,∥x∥≤1

|x′(x)| = |λ|∥x′∥.

Therefore, ∥ · ∥ : X ′ → R is a norm on X ′.
Now take a sequence (x′n) in X ′ so that ∥x′n − x′m∥ → 0 when n,m → +∞. For every x ∈ X
we have

|x′n(x)− x′m(x)| = |(x′n − x′m)(x)| ≤ ∥x′n − x′m∥∥x∥ → 0
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when n,m → +∞, and so (x′n(x)) is a Cauchy sequence in F .
We consider the function x′ : X → F defined for every x ∈ X by

x′(x) = lim
n→+∞

x′n(x).

Since each x′n is a linear functional, we have for every x, y ∈ X and λ ∈ F that

x′(x+ y) = lim
n→+∞

x′n(x+ y) = lim
n→+∞

x′n(x) + lim
n→+∞

x′n(y) = x′(x) + x′(y),

x′(λx) = lim
n→+∞

x′n(λx) = λ lim
n→+∞

x′n(x) = λx′(x).

So x′ is a linear functional on X .
Now, there is n0 so that ∥x′n − x′m∥ ≤ 1 for every n,m ≥ n0. Hence

|x′n(x)| ≤ |x′n(x)− x′n0
(x)|+ |x′n0

(x)| ≤ ∥x′n − x′n0
∥∥x∥+ ∥x′n0

∥∥x∥ ≤ (1 + ∥x′n0
∥)∥x∥

for every n ≥ n0 and every x ∈ X . Taking the limit when n → +∞, we find

|x′(x)| ≤ (1 + ∥x′n0
∥)∥x∥

for every x ∈ X . So x′ is bounded, i.e. x′ ∈ X ′.
Finally, we take any ϵ > 0 and then there is n0 so that ∥x′n − x′m∥ ≤ ϵ for every n,m ≥ n0. Then

|x′n(x)− x′m(x)| ≤ ∥x′n − x′m∥∥x∥ ≤ ϵ∥x∥

for every n,m ≥ n0 and every x ∈ X . Taking the limit whenm → +∞, we find

|x′n(x)− x′(x)| ≤ ϵ∥x∥

for every n ≥ n0 and every x ∈ X . Therefore, ∥x′n − x′∥ ≤ ϵ for every n ≥ n0, and so x′n → x′

in X ′.

3.2 Finite dimensional spaces.

Theorem 3.1. Let X be a finite dimensional normed space. Then X ′ is also finite dimensional
with the same dimension as X .

Proof. Let {b1, . . . , bn} be a basis of X . Since all norms on X are equivalent, a linear functional
onX is continuous or not independently of the normwe are considering onX . So wemay consider
X equipped with its 2-norm with respect to the basis {b1, . . . , bn}, i.e.

∥x∥2 = (|λ1|2 + · · ·+ |λn|2)1/2

for every x = λ1b1 + · · ·+ λnbn in X .
Now, we take any z = µ1b1 + · · ·+µnbn inX , and we consider the function lz : X → F defined
for every x = λ1b1 + · · ·+ λnbn in X by

lz(x) = µ1λ1 + · · ·+ µnλn.

It is very easy to show that lz is a linear functional onX . We also have

|lz(x)| ≤ ∥z∥2∥x∥2

for every x ∈ X and hence lz ∈ X ′ with ∥lz∥ ≤ ∥z∥2.
Now we consider the particular x = µ1 b1 + · · ·+ µn bn in X , and we get

∥z∥22 = |µ1 µ1 + · · ·+ µn µn| = |lz(x)| ≤ ∥lz∥∥x∥2 = ∥lz∥∥z∥2,
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and so ∥z∥2 ≤ ∥lz∥. Therefore,
∥lz∥ = ∥z∥2

for every z ∈ X . Now we consider the function T : X → X ′ defined for every z ∈ X by

T (z) = lz.

If z = µ1b1 + · · ·+ µnbn and w = ν1b1 + · · ·+ νnbn, then

lz+w(x) = (µ1 + ν1)λ1 + · · ·+ (µn + νn)λn = lz(x) + lw(x)

for every x = λ1b1 + · · ·+ λnbn in X . Thus lz+w = lz + lw, i.e. T (z + w) = T (z) + T (w).
If z = µ1b1 + · · ·+ µnbn and µ ∈ F , then

lµz(x) = (µµ1)λ1 + · · ·+ (µµn)λn = µlz(x)

for every x = λ1b1 + · · ·+ λnbn in X . Thus lµz = µlz , i.e. T (µz) = µT (z).
We conclude that T : X → X ′ is a linear operator.
We have already proven that ∥T (z)∥ = ∥lz∥ = ∥z∥2 for every z ∈ X , and so T is a linear isometry
of X into X ′. Now we shall prove that T is onto X ′, i.e. that X and X ′ are linearly isometric.
We take any l ∈ X ′ and we define

z = l(b1)b1 + · · ·+ l(bn)bn ∈ X.

Then for every x = λ1b1 + · · ·+ λnbn in X we have

lz(x) = l(b1)λ1 + · · ·+ l(bn)λn = l(λ1b1 + · · ·+ λnbn) = l(x),

and hence T (z) = lz = l. Therefore, T is onto X ′.

If {b1, . . . , bn} is the basis ofX and T : X → X ′ is the linear isometry which appeared in the
proof of theorem 3.1, we may define

b′j = T (bj) = lbj , j = 1, . . . , n.

Then {b′1, . . . , b′n} is a basis of X ′, and in Linear Algebra this basis is called dual to the basis
{b1, . . . , bn} of X . It is easy to see that:

b′j(bi) =

{
1, i = j,

0, i ̸= j.

3.3 Sequence spaces.

Theorem 3.2. Let 1 ≤ p ≤ +∞ and 1
p + 1

q = 1.
(i) If 1 ≤ p < +∞, then there is a linear isometry of lq onto (lp)′.
(ii) If p = +∞, then there is a linear isometry of l1 into (l∞)′.

Proof. We take any z = (µk) ∈ lq and we consider the function lz : lp → F defined for every
x = (λk) ∈ lp by

lz(x) =

+∞∑
k=1

µkλk.

Hölder’s inequality implies that the series defining lz(x) converges absolutely. It is easy to see that
lz is a linear functional on lp. Also, Hölder’s inequality says that

|lz(x)| ≤ ∥z∥q∥x∥p
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for every x ∈ lp and hence lz ∈ (lp)′ and ∥lz∥ ≤ ∥z∥q.
If 1 < p < +∞ (and so 1 < q < +∞), we consider the numbers

λk =

{
µk |µk|q−2, µk ̸= 0,

0, µk = 0.
(3.1)

Then
+∞∑
k=1

|λk|p =
+∞∑
k=1

|µk|q < +∞,

and so x = (λk) ∈ lp with ∥x∥p = ∥z∥q/pq . Also

+∞∑
k=1

µkλk =

+∞∑
k=1

|µk|q.

Hence,
∥z∥qq = |lz(x)| ≤ ∥lz∥∥x∥p = ∥lz∥∥z∥q/pq ,

and so ∥z∥q ≤ ∥lz∥.
If p = +∞ (and so q = 1), we select again the x = (λk) given by (3.1). Then |λk| ≤ 1 for every
k and so ∥x∥∞ ≤ 1. Also,

∑+∞
k=1 µkλk =

∑+∞
k=1 |µk|. Thus,

∥z∥1 =
+∞∑
k=1

µkλk = |lz(x)| ≤ ∥lz∥∥x∥∞ ≤ ∥lz∥.

If p = 1 (and so q = +∞), then

|µk| = |lz(ek)| ≤ ∥lz∥∥ek∥1 = ∥lz∥

for every k, and so ∥z∥∞ ≤ ∥lz∥.
So, in any case we get

∥lz∥ = ∥z∥q.
We consider, now, the function T : lq → (lp)′ defined for every z ∈ lq by

T (z) = lz.

As in the proof of theorem 3.1 we see that T : lq → (lp)′ is a linear operator. The equality
∥T (z)∥ = ∥lz∥ = ∥z∥q says that T is a linear isometry of lq into (lp)′.
Now, we take any l ∈ (lp)′.
Let 1 < p < +∞. We consider µk = l(ek) for every k, and λk as in (3.1). Then for every n we
have

n∑
k=1

|µk|q =
n∑

k=1

µkλk = l
( n∑

k=1

λkek

)
≤ ∥l∥

( n∑
k=1

|λk|p
)1/p

= ∥l∥
( n∑

k=1

|µk|q
)1/p

.

This implies
∑n

k=1 |µk|q ≤ ∥l∥q for every n and hence
∑+∞

k=1 |µk|q ≤ ∥l∥q. So if we define
z = (µk), then z ∈ lq and ∥z∥q ≤ ∥l∥ < +∞.
If p = 1, we consider again µk = l(ek), and then

|µk| = |l(ek)| ≤ ∥l∥∥ek∥1 = ∥l∥

for every k. So if we define z = (µk), then z ∈ l∞ and ∥z∥∞ ≤ ∥l∥ < +∞.
So if 1 ≤ p < +∞, we have z ∈ lq.
Now for any x = (λk) ∈ lp we take xn = (λ1, . . . , λn, 0, 0, . . .) =

∑n
k=1 λkek and then

lz(xn) =

n∑
k=1

µkλk =

n∑
k=1

l(ek)λk = l(xn).
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Since lz, l are continuous and xn → x in lp, we get lz(x) = l(x). Thus T (z) = lz = l and so T is
onto (lp)′.

In fact the main result of theorem 3.2 is the “onto” part:
Let 1 ≤ p < +∞ and 1

p + 1
q = 1. Then for every l ∈ (lp)′ there is a unique z = (µk) ∈ lq so that

∥l∥ = ∥z∥q, l(x) =

+∞∑
k=1

µkλk for every x = (λk) ∈ lp.

In the case p = +∞, q = 1 it is worth finding the point at which the last proof fails to show
that the operator T is onto (lp)′: the problem is that for the general x ∈ l∞ it is not always true
that xn → x in l∞ !

Theorem 3.3. There is a linear isometry of l1 onto (c0)
′.

Proof. We take any z = (µk) ∈ l1 and we consider the function lz : c0 → F defined for every
x = (λk) ∈ c0 by

lz(x) =
+∞∑
k=1

µkλk.

The series converges absolutely, and it is clear that lz is a linear functional on c0. Also,

|lz(x)| ≤ ∥z∥1∥x∥∞

for every x ∈ c0 and hence lz ∈ (c0)
′ with ∥lz∥ ≤ ∥z∥1.

We consider the λk defined in (3.1) (with q = 1) and then for every n we have
n∑

k=1

|µk| =
n∑

k=1

µkλk = lz

( n∑
k=1

λkek

)
≤ ∥lz∥

∥∥∥ n∑
k=1

λkek

∥∥∥
∞

≤ ∥lz∥,

and so ∥z∥1 =
∑+∞

k=1 |µk| ≤ ∥lz∥.
Therefore, ∥lz∥ = ∥z∥1.
We consider the function T : l1 → (c0)

′ defined for every z ∈ l1 by

T (z) = lz.

It is easy to see that T is a linear operator. Since we have proved that ∥T (z)∥ = ∥lz∥ = ∥z∥1 for
every z ∈ l1, we have that T is a linear isometry of l1 into (c0)′.
Now we take any l ∈ (c0)

′. We define µk = l(ek) for every k, and the same λk as above. Then
for every n we get

n∑
k=1

|µk| =
n∑

k=1

µkλk = l
( n∑

k=1

λkek

)
≤ ∥l∥

∥∥∥ n∑
k=1

λkek

∥∥∥
∞

≤ ∥l∥.

So, if we consider z = (µk), then z ∈ l1 and ∥z∥1 =
∑+∞

k=1 |µk| ≤ ∥l∥.
Now, for every x = (λk) ∈ c0 we take xn = (λ1, . . . , λn, 0, 0, . . .) =

∑n
k=1 λkek, and then

lz(xn) =

n∑
k=1

µkλk =

n∑
k=1

l(ek)λk = l(xn).

Since lz, l are continuous and xn → x in c0, we get that lz(x) = l(x). Thus T (z) = l and so T is
onto (c0)′.

The main result of theorem 3.3 is its “onto” part:
For every l ∈ (c0)

′ there is a unique z = (µk) ∈ l1 so that

∥l∥ = ∥z∥1, l(x) =

+∞∑
k=1

µkλk for every x = (λk) ∈ c0.
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3.4 Inner product spaces.

Definition. Let X,Y be linear spaces over F and let T : X → Y . Then T is called conjugate-
linear operator if

T (x1 + x2) = T (x1) + T (x2), T (λx) = λT (x)

for every x, x1, x2 ∈ X and every λ ∈ F .
If X,Y are normed spaces with norms ∥ · ∥X , ∥ · ∥Y , and T : X → Y is conjugate-linear and
satisfies ∥T (x)∥Y = ∥x∥X for every x ∈ X , then T is called conjugate-linear isometry of X
into Y .

Of course, if F = R, then a conjugate-linear operator is just a linear operator.

The theorem of F.Riesz. LetX be an inner product space. Then there is a conjugate-linear isom-
etry of X into X ′. If X is a Hilbert space, then this conjugate-linear isometry is onto X ′.

Proof. For every z ∈ X we consider the function lz : X → F defined for every x ∈ X by

lz(x) = ⟨x, z⟩.

It is obvious that lz is a linear functional on X . Also,

|lz(x)| ≤ ∥z∥∥x∥

for every x ∈ X . Hence lz ∈ X ′ and ∥lz∥ ≤ ∥z∥.
Moreover,

∥z∥2 = ⟨z, z⟩ = lz(z) ≤ ∥lz∥∥z∥.

So ∥z∥ ≤ ∥lz∥ and hence
∥lz∥ = ∥z∥.

We consider T : X → X ′ defined for every z ∈ X by

T (z) = lz.

It is easy to see that

T (z1 + z2) = T (z1) + T (z2), T (λz) = λT (z)

for every z, z1, z2 ∈ X and every λ ∈ F . We have already proven that ∥T (z)∥ = ∥lz∥ = ∥z∥ for
every z ∈ X and so T is a conjugate-linear isometry ofX into X ′.
Now we assume that X is complete, and we take any l ∈ X ′.
If l = 0, then, taking z = 0, we obviously have T (z) = lz = l. So we assume that l ̸= 0 and then
N(l) is a proper closed subspace of X . We take any x0 /∈ N(l), and then there are y0 ∈ N(l) and
z0 ⊥ N(l) so that x0 = y0 + z0. Then l(z0) = l(x0) ̸= 0.
Now we take any x ∈ X . Then there are y ∈ N(l) and w ⊥ N(l) so that x = y+w. Now we have

l
(
w − l(w)

l(z0)
z0

)
= l(w)− l(w)

l(z0)
l(z0) = 0,

and so w − l(w)
l(z0)

z0 ∈ N(l). Since also w − l(w)
l(z0)

z0 ⊥ N(l), we get w − l(w)
l(z0)

z0 = 0 and hence

w = l(w)
l(z0)

z0. Therefore,

⟨x, z0⟩ = ⟨y, z0⟩+ ⟨w, z0⟩ = ⟨w, z0⟩ =
l(w)

l(z0)
∥z0∥2 =

l(x)

l(z0)
∥z0∥2.

We define z = l(z0)
∥z0∥2 z0, and then we have lz(x) = ⟨x, z⟩ = l(x) for every x ∈ X . I.e. T (z) =

lz = l, and so T is onto X ′.
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The main result of the theorem of F. Riesz is the “onto” part:
If X is a Hilbert space with inner product ⟨·, ·⟩, then for every l ∈ X ′ there is a unique z ∈ X so
that

∥l∥ = ∥z∥, l(x) = ⟨x, z⟩ for every x ∈ X.

3.5 Function spaces.

Definition. Let (Ω,Σ, µ) be a measure space and let ν ∈ A(Ω,Σ).
(i) µ is called σ-finite if there are A1, A2, . . . ∈ Σ so that Ω =

∪+∞
j=1 Aj and µ(Aj) < +∞ for

every j.
(ii) ν is called absolutely continuous with respect to µ, if ν(A) = 0 for every A ∈ Σ with
µ(A) = 0.

The next theorem is a well known result of Measure Theory. We shall see its proof by von
Neumann with Hilbert space methods.

The theorem of Radon-Nikodym. Let (Ω,Σ, µ) be a measure space and let ν ∈ A(Ω,Σ). If µ is
σ-finite and ν is absolutely continuous with respect to µ, then there is a unique h ∈ L1(Ω,Σ, µ)
so that ν(A) =

∫
A h dµ for every A ∈ Σ.

Proof. We assume that ν is a non-negative real measure and that µ(Ω) < +∞.
We consider the non-negative real measure λ = µ + ν, and the function l : L2(Ω,Σ, λ) → F
defined for every f ∈ L2(Ω,Σ, λ) by

l(f) =

∫
Ω
f dν.

Using Schwartz’s inequality, we get

|l(f)| ≤
∫
Ω
|f | dν ≤

∫
Ω
|f | dλ ≤ (λ(Ω))1/2

(∫
Ω
|f |2 dλ

)1/2
= (λ(Ω))1/2∥f∥2

for every f ∈ L2(Ω,Σ, λ). It is clear that l is a linear functional and hence l ∈
(
L2(Ω,Σ, λ)

)′.
Since L2(Ω,Σ, λ) is a Hilbert space, the theorem of F. Riesz implies that there is g ∈ L2(Ω,Σ, λ)
so that ∫

Ω
f dν = l(f) =

∫
Ω
fg dλ for every f ∈ L2(Ω,Σ, λ). (3.2)

Now we consider the set A = {a ∈ Ω | Im(g(a)) > 0} ∈ Σ. If we use f = χA ∈ L2(Ω,Σ, λ)
in (3.2), and if we equate the imaginary parts of both sides, we get 0 =

∫
A Im(g) dλ, and hence

λ(A) = 0. In the same manner we find λ(A) = 0 for the set A = {a ∈ Ω | Im(g(a)) < 0}) = 0.
We conclude that g(a) ∈ R for λ-a.e. a ∈ Ω.
Next we consider the set A = {a ∈ Ω | Re(g(a)) > 1}, we use f = χA in (3.2), and we equate
tha real parts of both sides. Then we get

∫
A(1− Re(g)) dλ ≥ 0 and hence λ(A) = 0. In the same

way we get λ(A) = 0 for the set A = {a ∈ Ω | Re(g(a)) < 0}.
Hence, 0 ≤ g(a) ≤ 1 for λ-a.e. a ∈ Ω.
Our equality (3.2) is equivalent to∫

Ω
f(1− g) dν =

∫
Ω
fg dµ for every f ∈ L2(Ω,Σ, λ). (3.3)

If we take B = {a ∈ Ω | g(a) = 1} and use f = χB in (3.3), we get 0 = µ(B) and so ν(B) = 0.
Hence λ(B) = 0 and so 0 ≤ g(a) < 1 for λ-a.e. a ∈ Ω.
Now, for any A ∈ Σ we consider the function f = (1 + g + g2 + · · ·+ gn)χA, and from (3.3) we
get ∫

A
(1− gn+1) dν =

∫
A
(g + g2 + · · ·+ gn+1) dµ.
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The monotone convergence theorem implies ν(A) =
∫
A

g
1−g dµ. We set h = g

1−g , and so we have

ν(A) =

∫
A
h dµ

for every A ∈ Σ. Clearly, 0 ≤ h(a) < +∞ for λ-a.e. a ∈ Ω. With A = Ω we get
∫
Ω h dµ =

ν(Ω) < +∞, from which h ∈ L1(Ω,Σ, µ).
The general case of a real or complex measure ν and of a σ-finite measure µ can be derived from
the particular case we just studied, using standard measure-theoretic techniques, and it is left as an
exercise. The uniqueness of h is also left as an exercise.

Theorem 3.4. Let (Ω,Σ, µ) be a measure space, and 1 ≤ p ≤ +∞, 1
p + 1

q = 1.
(i) If 1 < p < +∞, then there is a linear isometry of Lq(Ω,Σ, µ) onto

(
Lp(Ω,Σ, µ)

)′.
If µ is σ-finite, then the same result is true when p = 1.
(ii) If p = +∞, then there is a linear isometry of L1(Ω,Σ, µ) into

(
L∞(Ω,Σ, µ)

)′.
Proof. For each h ∈ Lq(Ω,Σ, µ) we consider the function lh : Lp(Ω,Σ, µ) → F defined for
every f ∈ Lp(Ω,Σ, µ) by

lh(f) =

∫
Ω
fh dµ.

Hölder’s inequality implies that the function fh is integrable and so the integral defining lh(f)
exists. Hölder’s inequality implies the more precise inequality

|lh(f)| ≤ ∥h∥q∥f∥p

for every f ∈ Lp(Ω,Σ, µ). It is easy to see that lh is a linear functional, and so lh ∈
(
Lp(Ω,Σ, µ)

)′
and ∥lh∥ ≤ ∥h∥q.
If 1 < p < +∞ (and so 1 < q < +∞), we define

f(a) =

{
h(a) |h(a)|q−2, h(a) ̸= 0,

0, h(a) = 0.
(3.4)

Then
∫
Ω |f |p dµ =

∫
Ω |h|q dµ < +∞ and so f ∈ Lp(Ω,Σ, µ). Also,

∫
Ω fh dµ =

∫
Ω |h|q dµ and

hence
∥h∥qq = |lh(f)| ≤ ∥lh∥∥f∥p = ∥lh∥∥h∥q/pq .

This implies ∥h∥q ≤ ∥lh∥.
If p = +∞, q = 1, then with the f defined by (3.4) we get ∥f∥∞ ≤ 1 and

∫
Ω fh dµ =

∫
Ω |h| dµ

and hence
∥h∥1 = |lh(f)| ≤ ∥lh∥∥f∥∞ ≤ ∥lh∥.

If p = 1, q = +∞ and if µ is σ-finite, then there are pairwise disjoint B1, B2, . . . ∈ Σ so that
Ω =

∪+∞
j=1 Bj and µ(Bj) < +∞ for every j. If ∥h∥∞ = 0, then h = 0, and lh = 0 and so

∥lh∥ = ∥h∥∞ = 0. If ∥h∥∞ > 0, then for any j and any t such that 0 < t < ∥h∥∞ we consider
the set Bj,t = {a ∈ Bj | |h(a)| ≥ t} and the function f = h |h|−1χBj,t . Then ∥f∥1 = µ(Bj,t)
and

∫
Ω fh dµ =

∫
Bj,t

|h| dµ and hence

tµ(Bj,t) ≤ |lh(f)| ≤ ∥lh∥∥f∥1 = ∥lh∥µ(Bj,t).

Since 0 < µ(Bj,t) < +∞ for at least one j, we get t ≤ ∥lh∥. Taking the limit when t → ∥h∥∞,
we find ∥h∥∞ ≤ ∥lh∥.
So in any case we have that ∥lh∥ = ∥h∥q for every h ∈ Lq(Ω,Σ, µ).
We consider the function T : Lq(Ω,Σ, µ) →

(
Lp(Ω,Σ, µ)

)′ defined for every h ∈ Lq(Ω,Σ, µ)
by

T (h) = lh.
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It is easy to see that T is a linear operator, and we have already proved that ∥T (h)∥ = ∥h∥q for
every h ∈ Lq(Ω,Σ, µ). This says that T is a linear isometry of Lq(Ω,Σ, µ) into

(
Lp(Ω,Σ, µ)

)′.
For the rest of the proof we assume that µ(Ω) < +∞ and 1 ≤ p < +∞.
We take any l ∈

(
Lp(Ω,Σ, µ)

)′, and we consider ν : Σ → F defined for every A ∈ Σ by

ν(A) = l(χA).

Clearly ν(∅) = l(0) = 0.
If A1, A2, . . . ∈ Σ are pairwise disjoint, and A =

∪+∞
k=1Ak, we set Cn =

∪n
k=1Ak, and then

|ν(A)− ν(Cn)| = |l(χA)− l(χCn)| = |l(χA − χCn)| = |l(χA\Cn
)| ≤ ∥l∥∥χA\Cn

∥p
= ∥l∥(µ(A \ Cn))

1/p → 0,

since 1 ≤ p < +∞, A \ Cn ↓ ∅ and µ is finite. Hence ν(Cn) → ν(A) and so

n∑
k=1

ν(Ak) =
n∑

k=1

l(χAk
) = l

( n∑
k=1

χAk

)
= l(χCn) = ν(Cn) → ν(A).

Therefore, ν(A) =
∑+∞

k=1 ν(Ak), and we conclude that ν is a complex measure on Σ.
If µ(A) = 0, then

|ν(A)| = |l(χA)| ≤ ∥l∥∥χA∥p = ∥l∥(µ(A))1/p = 0,

and so ν is absolutely continuous with respect to µ.
The theorem of Radon-Nikodym implies that there is h ∈ L1(Ω,Σ, µ) so that

ν(A) =

∫
A
h dµ

for every A ∈ Σ. Now, if f =
∑n

k=1 λkχAk
is any simple function, then

l(f) =

n∑
k=1

λkl(χAk
) =

n∑
k=1

λkν(Ak) =

n∑
k=1

λk

∫
Ak

h dµ =

∫
Ω
fh dµ.

If f ∈ L∞(Ω,Σ, µ), there is a sequence (fk) of simple functions so that fk → f in L∞(Ω,Σ, µ).
Since µ is finite, we have that fk → f in Lp(Ω,Σ, µ). Now, l is continuous and so l(fk) → l(f).
Also, ∣∣∣ ∫

Ω
fkh dµ−

∫
Ω
fh dµ

∣∣∣ ≤ ∥fk − f∥∞∥h∥1 → 0.

Hence
l(f) = lim

k→+∞
l(fk) = lim

k→+∞

∫
Ω
fkh dµ =

∫
Ω
fh dµ (3.5)

for every f ∈ L∞(Ω,Σ, µ).
If 1 < p < +∞, then for every n we consider the set An = {a ∈ Ω | |h(a)| ≤ n} and we define

f(a) =

{
h(a) |h(a)|q−2 χAn(a), h(a) ̸= 0,

0, h(a) = 0.

Then f ∈ L∞(Ω,Σ, µ) and also
∫
Ω |f |p dµ =

∫
An

|h|q dµ and
∫
Ω fh dµ =

∫
An

|h|q dµ. So, using
(3.5), we find ∫

An

|h|q dµ =

∫
Ω
hf dµ = l(f) ≤ ∥l∥∥f∥p = ∥l∥

(∫
An

|h|q dµ
)1/p

.
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Therefore
∫
An

|h|q dµ ≤ ∥l∥q for every n, and from the monotone convergence theorem we con-
clude that ∥h∥q ≤ ∥l∥ < +∞.
If p = 1, then for every n > ∥l∥ we consider the set An = {a ∈ Ω | ∥l∥ < |h(a)| ≤ n}
and the function f = h |h|−1 χAn . Then ∥f∥1 = µ(An) and

∫
Ω fh dµ =

∫
An

|h| dµ. Also
f ∈ L∞(Ω,Σ, µ), and, using (3.5),∫

An

|h| dµ =

∫
Ω
fh dµ = l(f) ≤ ∥l∥∥f∥1 = ∥l∥µ(An).

Therefore, µ(An) = 0 for every n and hence |h(a)| ≤ ∥l∥ for µ-a.e. a ∈ Ω, and we conclude that
∥h∥∞ ≤ ∥l∥ < +∞.
So in any case, h ∈ Lq(Ω,Σ, µ). Then for every f ∈ Lp(Ω,Σ, µ) we take a sequence (fk) of
simple functions so that fk → f in Lp(Ω,Σ, µ). Now, the continuity of l and Hölder’s inequality
together with (3.5) for each fk imply

l(f) = lim
k→+∞

l(fk) = lim
k→+∞

∫
Ω
fkh dµ =

∫
Ω
fh dµ = lh(f).

Therefore, l = lh = T (h), and so T is onto
(
Lp(Ω,Σ, µ)

)′.
The general case of a measure µ which is not necessarily finite can be derived from the particular
case of a finite µ using standard measure-theoretic arguments and it is left as an exercise.

The main result of theorem 3.4 is its “onto” part:
Let (Ω,Σ, µ) be a measure space, and 1 < p < +∞, 1p+

1
q = 1. Then for every l ∈

(
Lp(Ω,Σ, µ)

)′
there is a unique h ∈ Lq(Ω,Σ, µ) so that

∥l∥ = ∥h∥q, l(f) =

∫
Ω
fh dµ for every f ∈ Lp(Ω,Σ, µ).

If µ is σ-finite, then the same result is true when p = 1.

Lemma 3.1. Let Ω be a Hausdorff topological space, and let K,L ⊆ Ω be compact and disjoint.
Then there are disjoint open U, V ⊆ Ω so that K ⊆ U and L ⊆ V .

Proof. Take any x ∈ K. For every y ∈ L we consider disjoint open Uy, Vy so that x ∈ Uy and
y ∈ Vy. Then the collection {Vy | y ∈ L} is an open covering of L, and so there are y1, . . . , yn ∈ L
so that L ⊆ Vy1 ∪· · ·∪Vyn . Then the open sets Ux = Uy1 ∩· · ·∩Uyn and Vx = Vy1 ∪· · ·∪Vyn are
disjoint, and x ∈ Ux and L ⊆ Vx. Then the collection {Ux |x ∈ K} is an open covering ofK, and
so there are x1, . . . , xm ∈ K so thatK ⊆ Ux1∪· · ·∪Uxm . Then the open setsU = Ux1∪· · ·∪Uxm

and V = Vx1 ∩ · · · ∩ Vxm are disjoint, andK ⊆ U and L ⊆ V .

Urysohn’s lemma. Let Ω be a compact, Hausdorff topological space, and K,L ⊆ Ω be closed
and disjoint. Then there is a continuous f : Ω → [0, 1] so that f = 0 in K, and f = 1 in L.

Proof. Lemma 3.1 implies that if A ⊆ Ω is closed and B ⊆ Ω is open, and if A ⊆ B, then there
is an open U so that A ⊆ U ⊆ cl(U) ⊆ B.
We consider A0 = K and B1 = Ω \ L. Then there is an open B1/2 so that

A0 ⊆ B1/2 ⊆ cl(B1/2) ⊆ B1.

Then there are open B1/4 and B3/4 so that

A0 ⊆ B1/4 ⊆ cl(B1/4) ⊆ B1/2 ⊆ cl(B1/2) ⊆ B3/4 ⊆ cl(B3/4) ⊆ B1.

Let Qd be the set of all rational numbers of the form r = k/2n with 0 < k ≤ 2n.
Continuing inductively, we see that to every r ∈ Qd corresponds an open set Br, so that

A0 ⊆ Br ⊆ cl(Br) ⊆ Bs
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for every r, s ∈ Qd with r < s.
We consider f : Ω → R defined so that

f(x) =

{
inf{r ∈ Qd |x ∈ Br}, x ∈ B1,

1, x ∈ Ω \B1.

Then f = 0 inK, and f = 1 in L, and f : Ω → [0, 1]. It remains to show that f is continuous.
Take any x ∈ Ω and any ϵ > 0. If 0 < f(x) < 1, then there are r, r′, s ∈ Qd so that

f(x)− ϵ < r < r′ < f(x) < s < f(x) + ϵ.

If y ∈ Bs, then f(y) ≤ s < f(x)+ϵ. If y ∈ Ω\cl(Br), then y /∈ Br, and then f(y) ≥ r > f(x)−ϵ.
Also, x ∈ Bs and x /∈ Br′ , and hence x ∈ Ω \ cl(Br). Therefore the open V = Bs ∩ (Ω \ cl(Br))
contains x, and f(x)− ϵ < f(y) < f(x) + ϵ for every y ∈ V . So f is continuous at x.
If f(x) = 1, we consider, as above, r, r′ ∈ Qd so that 1 − ϵ < r < r′ < 1. Then the open
V = Ω \ cl(Br) contains x, and 1− ϵ < f(y) ≤ 1 < 1 + ϵ for every y ∈ V .
Similarly, if f(x) = 0, we consider s ∈ Qd so that 0 < s < ϵ. Then the open V = Bs contains x,
and −ϵ < 0 ≤ f(y) < ϵ for every y ∈ V .
In any case, f is continuous at x.

We should remark that Urysohn’s lemma holds, more generally, for normal topological spaces
Ω, i.e. Hausdorff topological spaces with the property: for every two disjoint closed K,L ⊆ Ω
there are disjoint open U, V ⊆ Ω so thatK ⊆ U and L ⊆ V . This is the only property of Ω which
was used in the proof of Urysohn’s lemma. Lemma 3.1 says that compact, Hausdorff topological
spaces are normal. Another class of normal spaces are the metric spaces. In fact, for a metric space
Ω, Urysohn’s lemma has a simple proof: we consider the function f(x) = d(x,K)

d(x,K)+d(x,L) for every
x ∈ Ω, where d(x,A) = infy∈A d(x, y) for every A ⊆ Ω.

Lemma 3.2. Le Ω be a compact, Hausdorff topological space, let K ⊆ Ω be compact, and let
U1, . . . , Un ⊆ Ω be open, so thatK ⊆ U1∪· · ·∪Un. Then there are continuous f1, . . . , fn : Ω →
[0, 1] so that supp(fj) ⊆ Uj for every j and f1 + · · ·+ fn = 1 in K.

Proof. We have thatK \ (U2 ∪ · · · ∪ Un) ⊆ U1 and so there is an open V1 so that

K \ (U2 ∪ · · · ∪ Un) ⊆ V1 ⊆ cl(V1) ⊆ U1.

ThenK ⊆ V1 ∪U2 ∪ · · · ∪Un and henceK \ (V1 ∪U3 ∪ · · · ∪Un) ⊆ U2. So there is an open V2

so that
K \ (V1 ∪ U3 ∪ · · · ∪ Un) ⊆ V2 ⊆ cl(V2) ⊆ U2.

ThenK ⊆ V1 ∪ V2 ∪U3 ∪ · · · ∪Un. We continue inductively replacing the open U1, . . . , Un with
the open V1, . . . , Vn so thatK ⊆ V1 ∪ · · · ∪ Vn, and cl(Vj) ⊆ Uj for every j.
We repeat this process, and we find openW1, . . . ,Wn so thatK ⊆ W1 ∪ · · · ∪Wn and cl(Wj) ⊆
Vj ⊆ cl(Vj) ⊆ Uj for every j.
Urysohn’s lemma implies that there are continuous g1, . . . , gn : Ω → [0, 1] so that gj = 1 in
cl(Wj) and gj = 0 in Ω \ Vj . There is also a continuous g0 : Ω → [0, 1] so that g0 = 0 in K and
g0 = 1 in Ω \ (W1 ∪ · · · ∪Wn). Now we define

fj =
gj

g0 + g1 + · · ·+ gn

for every j = 1, . . . , n.
If g0(x) ̸= 1, then x ∈ W1 ∪ · · · ∪Wn, and hence gj(x) = 1 for some j = 1, . . . , n. Therefore,
g0 + g1 + · · ·+ gn ≥ 1 in Ω, and so f1, . . . , fn : Ω → [0, 1] are continuous in Ω.
If x /∈ Vj , then gj(x) = 0, hence fj(x) = 0. So supp(fj) ⊆ cl(Vj) ⊆ Uj .
Also f1 + · · ·+ fn = g1+···+gn

g0+g1+···+gn
= 1 inK, since g0 = 0 inK.
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Definition. Let Ω be a topological space, let K ⊆ Ω be compact, let U1, . . . , Un ⊆ Ω be open and
K ⊆ U1 ∪ · · · ∪ Un. If f1, . . . , fn : Ω → [0, 1] are continuous, supp(fj) ⊆ Uj for every j, and
f1 + · · · + fn = 1 in K, then the collection {f1, . . . , fn} is called partition of unity for K with
respect to its open covering {U1, . . . , Un}.

Thus, lemma 3.2 says that in a compact, Hausdorff topological space every compact set has a
partition of unity with respect to any of its finite open coverings.

Lemma 3.3. Let Ω be a topological space, and let µ ∈ A(Ω,B(Ω)). Then for every f ∈ C(Ω) we
have

∣∣ ∫
Ω f dµ

∣∣ ≤ ∫
Ω |f | d|µ| ≤ ∥f∥u∥µ∥.

Proof. It is enough to prove the left inequality. This is well known if f is real and µ is non-
negative.
If f is real and µ is real, then µ = µ+ − µ−, where µ+, µ− are the positive and the negative
variations of µ, and so∣∣∣ ∫

Ω
f dµ

∣∣∣ ≤ ∣∣∣ ∫
Ω
f dµ+

∣∣∣+ ∣∣∣ ∫
Ω
f dµ−

∣∣∣ ≤ ∫
Ω
|f | dµ+ +

∫
Ω
|f | dµ− =

∫
Ω
|f | d|µ|.

If f is complex and µ is complex, then∣∣∣ ∫
Ω
f dµ

∣∣∣ ≤ ∣∣∣ ∫
Ω
Re(f) dRe(µ)

∣∣∣+ ∣∣∣ ∫
Ω
Re(f) d Im(µ)

∣∣∣
+

∣∣∣ ∫
Ω
Im(f) dRe(µ)

∣∣∣+ ∣∣∣ ∫
Ω
Im(f) d Im(µ)

∣∣∣
≤

∫
Ω
|Re(f)| d|Re(µ)|+

∫
Ω
|Re(f)| d| Im(µ)|

+

∫
Ω
| Im(f)| d|Re(µ)|+

∫
Ω
| Im(f)| d| Im(µ)|

≤ 4

∫
Ω
|f | d|µ|.

Now we decompose the disc {λ ∈ C | |λ| ≤ ∥f∥u} in pairwise disjoint Borel sets Q1, . . . , Qn

where each of them has diameter ≤ ϵ, and we consider the Aj = {x ∈ Ω | f(x) ∈ Qj}. We also
take one λj ∈ Qj for every j, and then∣∣∣ ∫

Ω
f dµ

∣∣∣ ≤ n∑
j=1

∣∣∣ ∫
Aj

f dµ
∣∣∣ ≤ n∑

j=1

∣∣∣ ∫
Aj

(f − λj) dµ
∣∣∣+ n∑

j=1

|λj ||µ(Aj)|

≤ 4

n∑
j=1

ϵ|µ|(Aj) +

n∑
j=1

|λj ||µ|(Aj)

≤ 4ϵ|µ|(Ω) +
n∑

j=1

∫
Aj

|f | d|µ|+
n∑

j=1

∫
Aj

|f − λj | d|µ|

≤ 5ϵ|µ|(Ω) +
∫
Ω
|f | d|µ|.

Since ϵ > 0 is arbitrary, we get
∣∣ ∫

Ω f dµ
∣∣ ≤ ∫

Ω |f | d|µ|.

Definition. Let l : C(Ω) → F be a linear functional.
(i) We say that l is real, if l(f) ∈ R for every real f ∈ C(Ω).
(i) We say that l is non-negative, if l(f) ≥ 0 for every non-negative f ∈ C(Ω).

It is easy to see that, if l is real, then Re(l(f)) = l(Re(f)) and Im(l(f)) = l(Im(f)) and also
l(f) = l(f) for every f ∈ C(Ω). Similarly, if l is non-negative, then l(f) ≤ l(g) for all real
f, g ∈ C(Ω) with f ≤ g in Ω.
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The theorem of F.Riesz-Radon-Banach-Kakutani. Let Ω be a compact, Hausdorff topological
space. Then there is a linear isometry of Ar(Ω,B(Ω)) onto C(Ω)′.

Proof. For every µ ∈ Ar(Ω,B(Ω)) we consider the functon lµ : C(Ω) → F defined for every
f ∈ C(Ω) by

lµ(f) =

∫
Ω
f dµ.

Then lµ is a linear functional on C(Ω) and

|lµ(f)| =
∣∣∣ ∫

Ω
f dµ

∣∣∣ ≤ ∥µ∥∥f∥u

for every f ∈ C(Ω). Therefore, lµ ∈ C(Ω)′ and ∥lµ∥ ≤ ∥µ∥.
We take any ϵ > 0. The definition of ∥µ∥ implies that there are pairwise disjoint Borel sets
A1, . . . , An ⊆ Ω so that

∥µ∥ − ϵ < |µ(A1)|+ · · ·+ |µ(An)|.

Since µ is regular, for every j there is a compactKj ⊆ Aj so that |µ|(Aj \Kj) <
1
n ϵ and so

∥µ∥ − 2ϵ < |µ(K1)|+ · · ·+ |µ(Kn)|.

SinceK1, . . . ,Kn are pairwise disjoint, there are pairwise disjoint open U1, . . . , Un so thatKj ⊆
Uj for every j, and |µ|(Uj \Kj) <

1
n ϵ for every j. Urysohn’s lemma implies that for every j there

is a continuous fj : Ω → [0, 1] so that fj = 1 inKj and fj = 0 in Ω \ Uj . Finally, we consider

λj =


∫
Uj

fj dµ
∣∣ ∫

Uj
fj dµ

∣∣−1
,

∫
Uj

fj dµ ̸= 0,

0,
∫
Uj

fj dµ = 0,

and f =
∑n

j=1 λjfj . Now, |f | ≤
∑n

j=1 |λj |fj ≤
∑n

j=1 fj ≤ 1 in Ω. Thus,

∥lµ∥ ≥ ∥f∥u∥lµ∥ ≥
∣∣∣ ∫

Ω
f dµ

∣∣∣ = ∣∣∣ n∑
j=1

λj

∫
Uj

fj dµ
∣∣∣ = n∑

j=1

∣∣∣ ∫
Uj

fj dµ
∣∣∣

≥
n∑

j=1

|µ(Kj)| −
n∑

j=1

∣∣∣ ∫
Uj\Kj

fj dµ
∣∣∣ > ∥µ∥ − 2ϵ−

n∑
j=1

|µ|(Uj \Kj) > ∥µ∥ − 3ϵ.

Since ϵ > 0 is arbitrary, we conclude that ∥lµ∥ ≥ ∥µ∥ and hence ∥lµ∥ = ∥µ∥.
Assume that lµ is real. We consider any Borel set A, and then a compact K ⊆ A and an open
U ⊇ A so that |µ|(U \K) < ϵ. There is a continuous f : Ω → [0, 1] so that f = 1 inK and f = 0
in Ω \ U . Then

0 =
∣∣∣ Im(∫

Ω
f dµ

)∣∣∣ ≥ | Im(µ(K))| −
∣∣∣ Im(∫

U\K
f dµ

)∣∣∣
≥ | Im(µ(A))| − | Im(µ(A \K))| − |µ|(U \K)

≥ | Im(µ(A))| − 2|µ|(U \K) ≥ | Im(µ(A))| − 2ϵ.

Since ϵ > 0 is arbitrary, we get Im(µ(A)) = 0 and so µ is a real measure.
Assume that lµ is non-negative. With the same choice of A,K,U, f as in the previous paragraph,
we get

0 ≤
∫
Ω
f dµ = µ(K) +

∫
U\K

f dµ ≤ µ(A) + 2|µ|(U \K) ≤ µ(A) + 2ϵ.
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Again, since ϵ > 0 is arbitrary, we find µ(A) ≥ 0 and so µ is a non-negative measure.
We consider the function T : Ar(Ω,B(Ω)) → C(Ω)′ defined for every µ ∈ Ar(Ω,B(Ω)) by

T (µ) = lµ.

Then T is linear and we have already seen that ∥T (µ)∥ = ∥lµ∥ = ∥µ∥ for every µ ∈ Ar(Ω,B(Ω)).
So it remains to prove that T is ontoC(Ω)′, i.e. to prove that for every l ∈ C(Ω)′ there is a complex
(if F = C) or real (if F = R) Borel measure µ so that l(f) =

∫
Ω f dµ for every f ∈ C(Ω).

At first we assume that l ∈ C(Ω)′ is non-negative.
For every open U ⊆ Ω and every f ∈ C(Ω) we write

f ≺ O,

if f : Ω → [0, 1] and supp(f) ⊆ U .
Now, for every open U ⊆ Ω we define

µ(U) = sup{l(f) | f ≺ U}

and, then, for every E ⊆ Ω we define

µ∗(E) = inf{µ(U) |U open ⊇ E}.

If U,U ′ ⊆ Ω are open and U ⊆ U ′, then f ≺ U implies f ≺ U ′, and hence µ(U) ≤ µ(U ′).
Therefore,

µ∗(U) = µ(U)

for every open U .
If f ≺ U , then l(f) ≤ ∥l∥∥f∥u ≤ ∥l∥. So µ(U) ≤ ∥l∥ and hence µ∗(E) ≤ ∥l∥ for every E ⊆ Ω.
It is clear that µ∗(∅) = µ(∅) = 0, and that µ∗(E) ≤ µ∗(E′) for every E,E′ ⊆ Ω with E ⊆ E′.
Now, let E =

∪+∞
j=1 Ej . For each j we find an open Uj ⊇ Ej so that µ(Uj) < µ∗(Ej) +

ϵ
2j

and we consider the open U =
∪+∞

j=1 Uj . Let f ≺ U , and let K = supp(f) ⊆ U . Then there is
n so that K ⊆

∪n
j=1 Uj and we consider a partition of unity {f1, . . . , fn} for K with respect to

{U1, . . . , Un}. Then f = ff1 + · · ·+ ffn and supp(ffj) ≺ Uj for every j, and so

l(f) =
n∑

j=1

l(ffj) ≤
n∑

j=1

µ(Uj) ≤
+∞∑
j=1

µ(Uj) ≤
+∞∑
j=1

µ∗(Ej) + ϵ.

Taking the supremum of l(f) over all f ≺ U , we get µ(U) ≤
∑+∞

j=1 µ
∗(Ej) + ϵ. Since E ⊆ U ,

we get µ∗(E) ≤
∑+∞

j=1 µ
∗(Ej) + ϵ. Finally, since ϵ > 0 is arbitrary, we find

µ∗(E) ≤
+∞∑
j=1

µ∗(Ej).

Thus µ∗ is an outer measure on Ω.
Now the process of Caratheodory defines the σ-algebra of µ∗-measurable subsets of Ω, and then
µ∗ restricted on this σ-algebra is a measure.
We take any open U ⊆ Ω and any E ⊆ Ω. We take any ϵ > 0, and then there is an open U ′ ⊇ E
with µ(U ′) < µ∗(E) + ϵ, and a f ≺ U ′ ∩ U with l(f) > µ(U ′ ∩ U) − ϵ. Then U ′ \ supp(f)
is open, and there is a g ≺ U ′ \ supp(f) so that l(g) > µ(U ′ \ supp(f)) − ϵ. We observe that
f + g ≺ U ′, and so

µ∗(E) + ϵ > µ(U ′) ≥ l(f + g) = l(f) + l(g) > µ(U ′ ∩ U) + µ(U ′ \ supp(f))− 2ϵ

≥ µ∗(E ∩ U) + µ∗(E \ U)− 2ϵ.
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Since ϵ > 0 is arbitrary, we find

µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E \ U)

and so U is µ∗-measurable. Therefore, the σ-algebra of µ∗-measurable sets contains all open sets,
and so it contains B(Ω). We define µ to be the restriction of µ∗ on B(Ω), and so µ is a non-negative
Borel measure on Ω. Then µ is identical with the already defined µ on all open sets, since we have
proved that µ∗(U) = µ(U) for every open U .
Now we shall prove that

µ(K) = inf{l(f) | f ∈ C(Ω), χK ≤ f in Ω} (3.6)

for every compactK ⊆ Ω.
We take any f ∈ C(Ω) so that f ≥ χK , i.e. f ≥ 0 in Ω and f ≥ 1 in K. We take any t with
0 < t < 1, and we consider the open set U = {x ∈ Ω | f(x) > t} ⊇ K. If g ≺ U , then tg ≤ f in
Ω, and then tl(g) ≤ l(f), since l is non-negative. From this, taking the supremum of l(g) over all
g ≺ U , we find tµ(U) ≤ l(f), and hence tµ(K) ≤ l(f). Then we take the supremum over t < 1,
and we get µ(K) ≤ l(f). Thus,

µ(K) ≤ inf{l(f) | f ∈ C(Ω), χK ≤ f in Ω}.

Now we take any ϵ > 0, and then there is an open U ⊇ K with µ(U) < µ(K) + ϵ, and a
continuous f : Ω → [0, 1] with f = 1 in K and supp(f) ⊆ U . Then f ≥ χK and f ≺ U , and so
l(f) ≤ µ(U) < µ(K) + ϵ. Since ϵ > 0 is arbitrary,

inf{l(f) | f ∈ C(Ω), χK ≤ f in Ω} ≤ µ(K),

and the proof of (3.6) is finished.
We shall now prove the regularity of µ.
For any Borel set E we have

µ(E) = µ∗(E) = inf{µ(U) |U open ⊇ E}

by the definition of µ∗(E), and this is the first regularity condition.
Nowwe take anyBorel setE and any ϵ > 0. Then there is an openU ⊇ E so thatµ(U) < µ(E)+ϵ,
and a g ≺ U so that l(g) > µ(U) − ϵ. We consider the compact K = supp(g) ⊆ U . For every
f ∈ C(Ω) with f ≥ χK , we have f ≥ g, and hence l(f) ≥ l(g). From (3.6) we get µ(K) ≥ l(g)
and hence µ(K) > µ(U)− ϵ. Since µ(U \E) = µ(U)− µ(E) < ϵ, there is an open U ′ ⊇ U \E
so that µ(U ′) < 2ϵ. Now we set L = K \ U ′ and we observe that L is a compact subset of E and
that E \ L ⊆ (U \K) ∪ U ′. Hence µ(E)− µ(L) ≤ µ(U \K) + µ(U ′) < 3ϵ and so

µ(E) = sup{µ(L) |L compact ⊆ E}.

This is the second regularity condition.
Finally, we shall prove that l(f) =

∫
Ω f dµ for every f ∈ C(Ω). Because of the linearity of l, it is

enough to prove this for real f . (Of course, if F = R, then all our functions are real.) If f is real
we consider f+ = 1

2(|f |+ f) ≥ 0 and f− = 1
2(|f | − f) ≥ 0, and then f = f+ − f−. Therefore,

in proving l(f) =
∫
Ω f dµ it is enough to consider f ≥ 0 and, multiplying with an appropriate

constant, we may assume that 0 ≤ f ≤ 1 in Ω.
We take any n ∈ N and we consider Kk = {x ∈ Ω | f(x) ≥ k

n} for 0 ≤ k ≤ n. Then Kk is
compact, andK0 = Ω. Also, for every j = 0, . . . , n− 1 we consider the function

fj = min
{
max

{
f,

j

n

}
,
j + 1

n

}
− j

n
.
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Then every fj is continuous in Ω and

1

n
χKj+1 ≤ fj ≤

1

n
χKj

for every j = 0, . . . , n− 1 and also

f =

n−1∑
j=0

fj .

Adding the last inequalities and integrating we find

1

n

n∑
j=1

µ(Kj) ≤
∫
Ω
f dµ ≤ 1

n

n−1∑
j=0

µ(Kj).

From χKj+1 ≤ nfj and (3.6) we get µ(Kj+1) ≤ l(nfj) = nl(fj). Now, we take any open
U ⊇ Kj . From nfj ≤ χKj we get nfj ≺ U and hence nl(fj) = l(nfj) ≤ µ(U). So from the
definition of µ(Kj) = µ∗(Kj) we get nl(fj) ≤ µ(Kj). Therefore,

1

n
µ(Kj+1) ≤ l(fj) ≤

1

n
µ(Kj),

and, adding, we find
1

n

n∑
j=1

µ(Kj)) ≤ l(f) ≤ 1

n

n−1∑
j=0

µ(Kj).

Therefore,

∣∣∣ ∫
Ω
f dµ− l(f)

∣∣∣ ≤ 1

n

n−1∑
j=0

µ(Kj)−
1

n

n∑
j=1

µ(Kj) =
1

n
µ(K0 \Kn) ≤

1

n
µ(Ω).

Since n is arbitrary, we get

l(f) =

∫
Ω
f dµ.

We finished the proof in the case of a non-negative l ∈ C(Ω)′: we proved that there is a non-
negative µ ∈ Ar(Ω,B(Ω)) so that l(f) =

∫
Ω f dµ for every f ∈ C(Ω).

Now let l ∈ C(Ω)′ be real. For every non-negative f ∈ C(Ω) we define

l+(f) = sup{l(g) | g ∈ C(Ω), 0 ≤ g ≤ f in Ω}.

Obviously, l+(f) ≥ l(0) = 0 and l+(f) ≥ l(f).
If 0 ≤ g ≤ f , then l(g) ≤ |l(g)| ≤ ∥l∥∥g∥u ≤ ∥l∥∥f∥u, and so

0 ≤ l+(f) ≤ ∥l∥∥f∥u < +∞.

For every λ > 0 and every non-negative f ∈ C(Ω) we have

l+(λf) = sup{l(g) | g ∈ C(Ω), 0 ≤ g ≤ λf in Ω}
= sup{l(λh) |h ∈ C(Ω), 0 ≤ h ≤ f in Ω}
= λ sup{l(h) |h ∈ C(Ω), 0 ≤ h ≤ f in Ω} = λl+(f).

If f1, f2 ∈ C(Ω) are non-negative, and 0 ≤ g1 ≤ f1 and 0 ≤ g2 ≤ f2, then l(g1) + l(g2) =
l(g1 + g2) and, since 0 ≤ g1 + g2 ≤ f1 + f2, we get l(g1) + l(g2) ≤ l+(f1 + f2). Taking the
supremum over g1 and g2, we find l+(f1) + l+(f2) ≤ l+(f1 + f2).
Now let 0 ≤ g ≤ f1 + f2. We set g1 = min{f1, g}, and then 0 ≤ g1 ≤ f1 and g1 ≤ g. If

69



we set g2 = g − g1, then it is easy to see that 0 ≤ g2 ≤ f2 and, of course, g = g1 + g2. Thus
l(g) = l(g1) + l(g2) ≤ l+(f1) + l+(f2), and, taking the supremum over g, we get l+(f1 + f2) ≤
l+(f1) + l+(f2).
We conclude that

l+(f1 + f2) = l+(f1) + l+(f2).

Until now, l+(f) is defined only for non-negative f ∈ C(Ω). Now, for any real f ∈ C(Ω) we
consider f+ = 1

2(|f |+ f) ≥ 0 and f− = 1
2(|f | − f) ≥ 0, so that f = f+ − f−. Then for every

real f ∈ C(Ω) we define
l+(f) = l+(f+)− l+(f−).

We observe that, if f = g − h for any non-negative g, h ∈ C(Ω), then f+ + h = f− + g, and so

l+(f+) + l+(h) = l+(f+ + h) = l+(f− + g) = l+(f−) + l+(g).

Thus,
l+(f) = l+(f+)− l+(f−) = l+(g)− l+(h).

If f1, f2 ∈ C(Ω) are real, then f1 + f2 = (f+
1 + f+

2 )− (f−
1 + f−

2 ), and from the last identity we
have

l(f1 + f2) = l(f+
1 + f+

2 )− l(f−
1 + f−

2 ) = l(f+
1 ) + l(f+

2 )− l(f−
1 )− l(f−

2 ) = l(f1) + l(f2).

If f ∈ C(Ω) is real and λ ≥ 0, then

l+(λf) = l+(λf+)− l+(λf−) = λl+(f+)− λl+(f−) = λl+(f),

while if λ < 0, then

l+(λf) = l+(|λ|f−)− l+(|λ|f+) = |λ|l+(f−)− |λ|l+(f+) = λl+(f).

If F = R, we have proved that l+ : C(Ω) → R is linear.
If F = C, then for every f ∈ C(Ω) we define

l+(f) = l+(Re(f)) + il+(Im(f))

and it is easy to see that l+ : C(Ω) → C is linear. If f ∈ C(Ω) is real then

|l+(f)| = |l+(f+)− l+(f−)| ≤ max{l+(f+), l+(f−)} ≤ max{∥l∥∥f+∥u, ∥l∥∥f−∥u}
= ∥l∥∥f∥u.

If f ∈ C(Ω) is complex, then there is λ ∈ C with |λ| = 1 so that λl+(f) = |l+(f)|, and then we
have

|l+(f)| = λl+(f) = l+(λf) = Re(l+(λf)) = l+(Re(λf)) ≤ ∥l∥∥Re(λf)∥u ≤ ∥l∥∥f∥u.

So l+ is a non-negative linear functional on C(Ω) with ∥l+∥ ≤ ∥l∥.
We also define l− = l+ − l : C(Ω) → F . This is a bounded linear functional on C(Ω) and it is
non-negative, since for every non-negative f ∈ C(Ω) we have l−(f) = l+(f) − l(f) ≥ 0. So
there are non-negative µ1, µ2 ∈ Ar(Ω,B(Ω)) so that l+(f) =

∫
Ω f dµ1 and l−(f) =

∫
Ω f dµ2 for

every f ∈ C(Ω). Now we consider µ = µ1 − µ2 and then µ ∈ Ar(Ω,B(Ω)) is real and

l(f) = l+(f)− l−(f) =

∫
Ω
f dµ1 −

∫
Ω
f dµ2 =

∫
Ω
f dµ

for every f ∈ C(Ω).
At this point the proof is complete if F = C and l is real, or if F = R (and so l is automatically
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real).
If F = C and l is complex, then Re(l) and Im(l) are real continous R-linear functionals on C(Ω)
and hence they are continuous R-linear functionals on CR(Ω), the R-linear space of the real con-
tinuous functions on Ω. So there are real µ1, µ2 ∈ Ar(Ω,B(Ω)) so that Re(l)(f) =

∫
Ω f dµ1 and

Im(l)(f) =
∫
Ω f dµ2 for every real f ∈ C(Ω). So if we set µ = µ1 + iµ2, then µ ∈ Ar(Ω,B(Ω))

and for every real f ∈ C(Ω) we get

l(f) = Re(l)(f) + i Im(l)(f) =

∫
Ω
f dµ1 + i

∫
Ω
f dµ2 =

∫
Ω
f dµ.

So for every f ∈ C(Ω) we get

l(f) = l(Re(f)) + il(Im(f)) =

∫
Ω
Re(f) dµ+ i

∫
Ω
Im(f) dµ =

∫
Ω
f dµ.

The main result of the theorem of F.Riesz-Radon-Banach-Kakutani is its “onto” part:
Let Ω be a compact, Hausdorff topological space. Then for every l ∈ C(Ω)′ there is a unique
µ ∈ Ar(Ω,B(Ω)) so that

∥l∥ = ∥µ∥, l(f) =

∫
Ω
f dµ for every f ∈ C(Ω).

If l is non-negative, i.e. l(f) ≥ 0 for every non-negative f ∈ C(Ω), then µ is non-negative.
If l is real, i.e. l(f) ∈ R for every real f ∈ C(Ω), then µ is real.

3.6 The theorem of Hahn-Banach.

3.6.1 The analytic form.

Definition. Let X be a linear space over F . Then p : X → R is called positive-homogenuous
and subadditive functional on X , if
(i) p(tx) = tp(x) for every x ∈ X and every t ≥ 0,
(ii) p(x+ y) ≤ p(x) + p(y) for every x, y ∈ X .

Definition. Let X be a linear space over F . Then p : X → R is called seminorm on X , if
(i) p(λx) = |λ|p(x) for every x ∈ X and every λ ∈ F ,
(ii) p(x+ y) ≤ p(x) + p(y) for every x, y ∈ X .

Every seminorm is a positive-homogenuous and subadditive functional.

Lemma 3.4. (i) If p is a positive-homogenuous and subadditive functional on X , then p(0) = 0,
−p(−x) ≤ p(x) for every x ∈ X , and p(x) − p(y) ≤ p(x − y) ≤ p(x) + p(−y) for every
x, y ∈ X .
(ii) If p is a seminorm on X , then p(0) = 0, p(−x) = p(x) for every x ∈ X , and |p(x)− p(y)| ≤
p(x− y) for every x, y ∈ X . In particular, p(x) ≥ 0 for every x ∈ X .

Proof. Exercise.

Assume that a seminorm p : X → R has the additional property: p(x) = 0 implies x = 0.
Then, clearly, p is a norm on X .

The theorem of Hahn-Banach. We consider F = R. Let X be a linear space and Y be a linear
subspace of X , let p be a positive-homogenuous and subadditive functional on X , and let l be
a linear functional on Y . We assume that l(y) ≤ p(y) for every y ∈ Y . Then there is a linear
functional L on X so that
(i) L(y) = l(y) for every y ∈ Y , i.e. L is an extension of l,
(ii) L(x) ≤ p(x) for every x ∈ X .
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Proof. We consider the set K of all k with the properties:
(i) k : D(k) → R is a linear functional on a linear subspace D(k) of X ,
(ii) k is an extension of l, i.e. Y = D(l) ⊆ D(k) and l(y) = k(y) for every y ∈ Y ,
(iii) k(z) ≤ p(z) for every z ∈ D(k).
Then l is an element of K, and so K is non-empty. We define an order relation ≺ on K in the
following way: k1 ≺ k2 means that k2 is an extension of k1, i.e. D(k1) ⊆ D(k2) and k1(z) =
k2(z) for every z ∈ D(k1). It is very easy to see that ≺ has the properties of an order relation.
Now let M be any totally ordered subset of K. We consider the set

Z0 =
∪

k∈M
D(k).

Since D(l) ⊆ D(k) for every k ∈ M, we see that Y = D(l) ⊆ Z0 ⊆ X .
If z1, z2 ∈ Z0, then there are k1, k2 ∈ M so that z1 ∈ D(k1) and z2 ∈ D(k2). Since one of
k1, k2 is an extension of the other, we have that either D(k1) ⊆ D(k2) or D(k2) ⊆ D(k1). If
D(k1) ⊆ D(k2) then z1, z2 ∈ D(k2), and, since D(k2) is a linear subspace of X , we have that
z1 + z2 ∈ D(k2), and so z1 + z2 ∈ Z0. Obviously, the same is true if D(k2) ⊆ D(k1).
If z ∈ Z0 and λ ∈ R, then there is k ∈ M so that z ∈ D(k). Since D(k) is a linear subspace of
X , we have λz ∈ D(k), and so λz ∈ Z0.
Therefore, Z0 is a linear subspace of X .
Now we take any z ∈ Z0. Then z ∈ D(k) for some k ∈ M. If z ∈ D(k′) for any other k′ ∈ M,
then, since one of k, k′ is an extension of the other, we get that k(z) = k′(z). So we may consider
the function

k0 : Z0 → R

defined for every z ∈ Z0 by

k0(z) = k(z) for any k ∈ M with z ∈ D(k).

We saw that, if z1, z2 ∈ Z0, then there is k ∈ M so that z1, z2 ∈ D(k), and hence

k0(z1 + z2) = k(z1 + z2) = k(z1) + k(z2) = k0(z1) + k0(z2).

Similarly, if z ∈ Z0 and λ ∈ R, then there is k ∈ M so that z ∈ D(k), and hence

k0(λz) = k(λz) = λk(z) = λk0(z).

Thus, k0 is a linear functional on Z0.
It is obvious that k0 is an extension of l and that k0(z) ≤ p(z) for every z ∈ Z0.
Thus, k0 ∈ K. It is also clear that k0 is, by its definition, an extension of every k ∈ M, and so k0
is an upper bound of M.
Now Zorn’s lemma implies that K has at least one maximal element. In other words, there is L
with the properties (i), (ii) and (iii), and there is no k with the same properties which is a proper
extension of L.
We shall prove that D(L) = X and this will finish the proof.
Towards a contradiction, we assume that D(L) ̸= X , and we take any x0 ∈ X \ D(L). We
consider the linear subspace

Z = {a+ λx0 | a ∈ D(L), λ ∈ R}

ofX . ThenD(L) as a proper linear subspace of Z. We shall define a linear functional k : Z → R
so that k(a) = L(a) for every a ∈ D(L), and k(z) ≤ p(z) for every z ∈ Z. This means that k is
a proper extension of L with the properties (i), (ii) and (iii), and we shall arrive at a contradiction.
Now we take any λ0 ∈ R and we consider k : Z → R defined for every a + λx0 ∈ Z (i.e. for
every a ∈ D(L) and every λ ∈ R) by

k(a+ λx0) = L(a) + λλ0.
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Then it is very easy to see that k is a linear functional on Z and that k(a) = L(a) for every
a ∈ D(L). So we only have to choose λ0 so that k(a+ λx0) ≤ p(a + λx0) for every a ∈ D(L)
and every λ ∈ R. This is equivalent to

L(a) + λλ0 ≤ p(a+ λx0) for every a ∈ D(L), λ ∈ R.

So for λ = 0 we must have L(a) ≤ p(a) for every a ∈ D(L), which is true.
Then we must have

λ0 ≤
1

λ
p(a+ λx0)−

1

λ
L(a) = p

(a
λ
+ x0

)
− L

(a
λ

)
for every a ∈ D(L), λ > 0

or, equivalently,
λ0 ≤ p(a+ x0)− L(a) for every a ∈ D(L).

Finally, we must have

λ0 ≥
1

λ
p(a+ λx0)−

1

λ
L(a) = −p

( a

|λ|
− x0

)
+ L

( a

|λ|

)
for every a ∈ D(L), λ < 0

or, equivalently,
λ0 ≥ −p(a− x0) + L(a) for every a ∈ D(L).

In other words, we must choose λ0 so that

−p(a− x0) + L(a) ≤ λ0 ≤ p(a+ x0)− L(a) for every a ∈ D(L).

The existence of such λ0 is clearly equivalent to the inequality

sup{−p(a− x0) + L(a) | a ∈ D(L)} ≤ inf{p(a+ x0)− L(a) | a ∈ D(L)},

and this is equivalent to

−p(a1 − x0) + L(a1) ≤ p(a2 + x0)− L(a2) for every a1, a2 ∈ D(L).

But this last inequality is true, since

L(a1) +L(a2) = L(a1 + a2) ≤ p(a1 + a2) = p(a1 − x0 + a2 + x0) ≤ p(a1 − x0) + p(a2 + x0)

for every a1, a2 ∈ D(L).

Definition. Let X be a linear space over C. Then l : X → C is called R-linear functional on X ,
if

l(x1 + x2) = l(x1) + l(x2), l(λx) = λl(x)

for every x, x1, x2 ∈ X and every λ ∈ R.

So the difference between a linear functional and a R-linear functional is that the first satisfies
l(λx) = λl(x) for every λ ∈ C and the second satisfies the same equality for every λ ∈ R. So,
obviously, every linear functional is also a R-linear functional.

Lemma 3.5. Let X be a linear space over C.
(i) If l : X → C is a linear functional, then its real part Re(l) : X → R is a R-linear functional,
and

l(x) = Re(l)(x)− iRe(l)(ix)

for every x ∈ X .
(ii) For every R-linear functional l0 : X → R, there is a unique linear functional l : X → C so
that Re(l) = l0 in X .
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Proof. (i) Equating real parts in l(x1 + x2) = l(x1) + l(x2) and l(λx) = λl(x) with λ ∈ R, we
see that Re(l) is a R-linear functional.
From l(x) = Re(l)(x) + i Im(l)(x) we get

iRe(l)(x)− Im(l)(x) = il(x) = l(ix) = Re(l)(ix) + i Im(l)(ix),

and hence Im(l)(x) = −Re(l)(ix). Thus l(x) = Re(l)(x)− iRe(l)(ix) for every x ∈ X .
(ii) We consider l : X → C defined for every x ∈ X by

l(x) = l0(x)− il0(ix).

For every x1, x2 ∈ X we get

l(x1+x2) = l0(x1+x2)−il0(ix1+ix2) = l0(x1)+ l0(x2)− il0(ix1)−il0(ix2) = l(x1)+ l(x2).

Also, if λ = µ+ iν ∈ C, then

l(λx) = l(µx+ iνx) = l(µx) + l(iνx) = l0(µx)− il0(iµx) + l0(iνx)− il0(−νx)

= µl0(x)− iµl0(ix) + νl0(ix) + iνl0(x) = µl(x) + iνl(x) = λl(x).

Hence l is a linear functional and, clearly, Re(l) = l0.
If Re(l1) = Re(l2) for two linear functionals l1, l2, then

l1(x) = Re(l1)(x)− iRe(l1)(ix) = Re(l2)(x)− iRe(l2)(ix) = l2(x)

for every x ∈ X , and so l1 = l2.

The next result is the “complex” version of the theorem of Hahn-Banach.

The theorem of Bohnenblust-Sobczyk. We consider F = C. LetX be a linear space and Y be a
linear subspace ofX , let p be a seminorm onX , and let l be a linear functional on Y . We assume
that |l(y)| ≤ p(y) for every y ∈ Y . Then there is a linear functional L on X so that
(i) L(y) = l(y) for every y ∈ Y , i.e. L is an extension of l,
(ii) |L(x)| ≤ p(x) for every x ∈ X .

Proof. We can obviously consider X (and hence also Y ) as a linear space over R. Lemma 3.5
implies that Re(l) : Y → R is a R-linear functional on Y and that

l(y) = Re(l)(y)− iRe(l)(iy)

for every y ∈ Y .
We also have Re(l)(y) ≤ |l(y)| ≤ p(y) for every y ∈ Y .
The theorem of Hahn-Banach implies that there is a R-linear functional L0 : X → R so that
L0(y) = Re(l)(y) for every y ∈ Y , and L0(x) ≤ p(x) for every x ∈ X .
Lemma 3.5 implies that there is a linear functional L : X → C so that Re(L) = L0 in X . Then
for every y ∈ Y we have

L(y) = Re(L)(y)− iRe(L)(iy) = L0(y)− iL0(iy) = Re(l)(y)− iRe(l)(iy) = l(y),

and so L is an extension of l.
Finally, for every x ∈ X there is λ ∈ C so that |λ| = 1 and |L(x)| = λL(x). Then

|L(x)| = λL(x) = L(λx) = Re(L)(λx) = L0(λx) ≤ p(λx) = |λ|p(x) = p(x)

for every x ∈ X .
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3.6.2 The geometric form.

Definition. Le X be a linear space over F , and let A ⊆ X .
(i) We say that A absorbs X , if for every x ∈ X there is r0 > 0 so that [0, x] ⊆ r0A.
(ii) We say that A is balanced, if λa ∈ A for every a ∈ A and every λ ∈ F , |λ| ≤ 1.

It is obvious that 0 belongs to every A which absorbs X , and also to every balanced A.
Assume that A absorbs X and take any x ∈ X . Then there is r0 > 0 so that [0, x] ⊆ r0A,

i.e. sx ∈ r0A for all s, 0 ≤ s ≤ 1. This implies that x ∈ rA for all r ≥ r0. Therefore, the set
{r > 0 |x ∈ rA} is a halfline in (0,+∞).

Definition. LetX be a linear space, and assume thatA ⊆ X is convex and absorbsX . We consider
the function pA : X → [0,+∞) defined for every x ∈ X by

pA(x) = inf{r > 0 |x ∈ rA}.

The function pA is calledMinkowski functional of A.

From the remarks before the definition, it is clear that x ∈ rA for every r > pA(x). It is also
clear that, if 0 < r < pA(x), then x /∈ rA.

Proposition 3.5. Let X be a linear space, and assume that A ⊆ X is convex and absorbs X . If
pA is the Minkowski functional of A, then
(i) pA is positive-homogenuous and subadditive on X .
(ii) if A is also balanced, then pA is a seminorm on X .
(iii) {x ∈ X | pA(x) < 1} ⊆ A ⊆ {x ∈ X | pA(x) ≤ 1}.

Proof. (i) If t > 0, then

pA(tx) = inf{r > 0 | tx ∈ rA} = inf
{
r > 0

∣∣∣x ∈ r

t
A
}
= inf{ts > 0 |x ∈ sA}

= t inf{s > 0 |x ∈ sA} = tpA(x).

Also, 0 ∈ rA for every r > 0, and so pA(0) = 0. Thus, pA(tx) = tpA(x) holds also for t = 0.
Now, take any r > pA(x) and any s > pA(y). Then x ∈ rA and y ∈ sA, and so 1

r x ∈ A and
1
s y ∈ A. Then the convexity of A implies that

1

r + s
(x+ y) =

r

r + s

1

r
x+

s

r + s

1

s
y ∈ A.

Therefore, x+ y ∈ (r+ s)A and so pA(x+ y) ≤ r+ s. Since this holds for every r > pA(x) and
every s > pA(y), we get pA(x+ y) ≤ pA(x) + pA(y).
(ii) If λ ̸= 0, then

pA(λx) = inf{r > 0 |λx ∈ rA} = inf
{
r > 0

∣∣∣ λ

|λ|
|λ|
r

x ∈ A
}
= inf

{
r > 0

∣∣∣ |λ|
r

x ∈ A
}

= inf
{
r > 0

∣∣∣x ∈ r

|λ|
A
}
= |λ| inf{s > 0 |x ∈ sA} = |λ|pA(x).

We saw in the proof of (i) that pA(λx) = |λ|pA(x) holds also for λ = 0.
(iii) If pA(x) < 1, then x ∈ 1A = A. If x ∈ A = 1A, then pA(x) ≤ 1.

Proposition 3.6. Let X be a linear space and let p : X → R be a positive-homogenuous and
subadditive functional on X .
(i) B = {x ∈ X | p(x) < 1} and C = {x ∈ X | p(x) ≤ 1} are convex and they absorb X .
(ii) If p is a seminorm, then B,C are also balanced.
(iii) If A is convex and B ⊆ A ⊆ C, then pA = max{p, 0}. If p is a seminorm, then pA = p.
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Proof. (i) If x, y ∈ B and 0 ≤ t ≤ 1, then

p(tx+ (1− t)y) ≤ p(tx) + p((1− t)y) = tp(x) + (1− t)p(y) < t+ (1− t) = 1.

Thus, tx+ (1− t)y ∈ B and so B is convex. The same argument shows that C is convex.
Let x ∈ X , and take any r0 > max{p(x), 0}. If 0 ≤ s ≤ 1, then p( s

r0
x) = s

r0
p(x) < 1, and

hence s
r0

x ∈ B. Thus [0, x] ⊆ r0B and so B absorbs X . Now, C absorbs X , since B ⊆ C.
(ii) Let x ∈ B and |λ| ≤ 1. Then p(λx) = |λ|p(x) < 1 and hence λx ∈ B. So B is balanced, and
the same argument shows that C is balanced.
(iii) A absorbs X , since B absorbs X . From proposition 3.5 we have that

{x ∈ X | pA(x) < 1} ⊆ A ⊆ {x ∈ X | pA(x) ≤ 1}.

Thus, pA(x) < 1 implies p(x) ≤ 1. Also, p(x) < 1 implies pA(x) ≤ 1.
If λ > max{p(x), 0}, then p( 1λ x) < 1, then pA(

1
λ x) ≤ 1, and so pA(x) ≤ λ. Therefore,

pA(x) ≤ max{p(x), 0}.
If λ > pA(x)(≥ 0), then pA(

1
λ x) < 1, then p( 1λ x) ≤ 1, and so p(x) ≤ λ. Therefore, p(x) ≤

pA(x). Since 0 ≤ pA(x), we get max{p(x), 0} ≤ pA(x).
Hence, pA(x) = max{p(x), 0} for every x ∈ X .
If p is a seminorm, then p(x) ≥ 0, and hence pA(x) = p(x) for every x ∈ X .

Definition. Let X be a linear space, A ⊆ X and a ∈ X . We say that A absorbs X with center a,
if A− a absorbs X .

Clearly, if A absorbs X with center a, then 0 ∈ A− a, and so a ∈ A.
It is easy to see that, if A absorbsX with center a, then, for every b ∈ X and every λ ∈ F , we

have that A+ b absorbs X with center a+ b, and that λA absorbs X with center λa.
We know from Linear Algebra that, if l ̸= 0 is a linear functional on X , then its null space

(or kernel) N(l) = {x ∈ X | l(x) = 0} is a linear subspace of X of codimension equal to 1.
Conversely, if Y is a linear subspace ofX of codimension equal to 1 then there is a linear functional
l ̸= 0 on X so that Y = N(l). Moreover, any set of the form Y + a, where Y is a linear subspace
ofX of codimension equal to 1 and a ∈ X , is called hyperplane ofX . Then it is easy to see that a
subset ofX is a hyperplane if and only if it is of the form {x ∈ X | l(x) = λ}, where l ̸= 0 is a linear
functional on X and λ ∈ F . Then we say that {x ∈ X | l(x) < λ} and {x ∈ X | l(x) > λ} are
the open halfspaces, and {x ∈ X | l(x) ≤ λ} and {x ∈ X | l(x) ≥ λ} are the closed halfspaces
determined by the hyperplane.

Theorem 3.5. We consider F = R. LetX be a linear space, and letA ⊆ X be convex and absorb
X with every a ∈ A as center. If b /∈ A, then there is a hyperplane of X which contains b and so
that A is contained in one of the two open halfspaces determined by this hyperplane. Therefore, A
is equal to the intersection of all open halfspaces which contain A.

Proof. At first we assume that 0 ∈ A. Then A is convex and absorbs X , and we consider the
Minkowski functional pA of A. Proposition 3.5 implies that pA(a) ≤ 1 for every a ∈ A, and also
that pA(b) ≥ 1 for every b /∈ A.
If a ∈ A, then A− a absorbsX . Then there is r > 0 so that a ∈ r(A− a), and hence 1+r

r a ∈ A.
Then pA(1+r

r a) ≤ 1 and hence pA(a) ≤ r
1+r < 1. Therefore, pA(a) < 1 for every a ∈ A.

Now we take any b /∈ A (and so b ̸= 0) and we consider the linear subspace Y = {λb |λ ∈ R} of
X , of dimension equal to 1, and the linear functional l : Y → R defined for every λb ∈ Y by

l(λb) = λ.

If λ ≤ 0, then
l(λb) = λ ≤ 0 ≤ pA(λb).
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If λ > 0, then
l(λb) = λ ≤ λpA(b) = pA(λb).

Therefore, l(y) ≤ pA(y) for every y ∈ Y .
The theorem of Hahn-Banach implies that there is a linear functional L : X → R which is an
extension of l and so that L(x) ≤ pA(x) for every x ∈ X . Then L(b) = l(b) = 1 and L(a) ≤
pA(a) < 1 for every a ∈ A. So the hyperplane {x ∈ X |L(x) = 1} contains b, andA is contained
in the open halfspace {x ∈ X |L(x) < 1}.
Now, assume that 0 /∈ A. We take any a0 ∈ A and we consider the setA0 = A−a0. Then 0 ∈ A0,
and A0 is convex and absorbs X with every a ∈ A0 as center.
Now we take any b /∈ A, and we consider b0 = b − a0 /∈ A0. We have proved that there is a
hyperplane L0 which contains b0 and so that A0 is contained in one of the two open halfspaces
determined by L0. Then the hyperplane L0 + a0 contains b, and A is contained in one of the two
open halfspaces determined by L0 + a0.

Theorem 3.6. We consider F = R. LetX be a linear space, and letA ⊆ X be convex and absorb
X with some a ∈ A as center. If b /∈ A, then there is a hyperplane of X which contains b and so
that A is contained in one of the two closed halfspaces determined by this hyperplane.

Proof. We just repeat the proof of theorem 3.5, ommiting the part which proves that pA(a) < 1
for every a ∈ A. It is enough that pA(a) ≤ 1 holds for every a ∈ A.

Theorem 3.7. We consider F = R. Let X be a linear space, let A ⊆ X be convex and absorb
X with some (or every) a ∈ A as center, let B ⊆ X be convex, and A ∩ B = ∅. Then there is a
hyperplane of X so that A is contained in one of the two closed (or open) halfspaces determined
by this hyperplane, and B is contained in the complementary closed halfspace.

Proof. We consider the setC = A−B. Then C is convex and 0 /∈ C. Also, it is easy to show that
C absorbs X with some c ∈ C as center. Indeed, assume that A absorbs X with center a0 ∈ A
and take any b0 ∈ B. Then A − b0 absorbs X with center a0 − b0. Since A − b0 ⊆ A − B, we
have that A−B absorbs X with center a0 − b0.
Then theorems 3.5 and 3.6 imply that there is a hyperplane which contains 0 (i.e. a linear subspace
of X of codimension equal to 1) so that C is contained in one of the two closed halfspaces deter-
mined by this hyperplane. In other words, there is a linear functional l : X → R, l ̸= 0, so that
l(c) ≤ 0 for every c ∈ C. This implies that l(a − b) ≤ 0, i.e. l(a) ≤ l(b) for every a ∈ A and
every b ∈ B.
Therefore,

sup{l(a) | a ∈ A} ≤ inf{l(b) | b ∈ B}.

Now if we consider any λ ∈ R between these supremum and infimum, then

A ⊆ {x ∈ X | l(x) ≤ λ}, B ⊆ {x ∈ X | l(x) ≥ λ}.

Now, assume that A absorbs X with center a. We take any x ∈ X so that l(x) > λ. Then there
is t0 > 0 so that x − a ∈ t0(A − a) and so there is a0 ∈ A so that x − a = t0(a0 − a), i.e.
x = t0a0 + (1− t0)a. Then

λ < l(x) = t0l(a0) + (1− t0)l(a) ≤ t0λ+ (1− t0)l(a).

This excludes the case t0 ≤ 1. So t0 > 1 and then we get l(a) < λ.
Therefore, if A absorbs X with every a ∈ A as center, then

A ⊆ {x ∈ X | l(x) < λ}, B ⊆ {x ∈ X | l(x) ≥ λ}.

Now, the hyperplane we need is the {x ∈ X | l(x) = λ}.
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3.7 Implications of the theorem of Hahn-Banach.

The following is one of the fundamental results in the theory of normed spaces. It is very often
called theorem of Hahn-Banach, but it is actually a corollary of the theorem of Hahn-Banach and
its “complex” version, the theorem of Bohnenblust-Sobczyk.

Let X be a normed space, and Y be a subspace of X . Assume that y′ ∈ Y ′, that x′ ∈ X ′, and
that x′ is an extension of y′, i.e. that x′(y) = y′(y) for every y ∈ Y . Then it is very easy to show
that ∥y′∥ ≤ ∥x′∥. Indeed,

∥y′∥ = sup
y∈Y,∥y∥≤1

|y′(y)| = sup
y∈Y,∥y∥≤1

|x′(y)| ≤ sup
x∈X,∥x∥≤1

|x′(x)| = ∥x′∥.

We may say that extensions have larger norms.

Theorem 3.8. LetX be a normed space, and Y be a subspace ofX . Then for every y′ ∈ Y ′ there
is x′ ∈ X ′ so that x′(y) = y′(y) for every y ∈ Y , and ∥x′∥ = ∥y′∥.

Proof. We consider the seminorm p : X → R defined for every x ∈ X by

p(x) = ∥y′∥∥x∥.

The linear functional y′ on Y satisfies |y′(y)| ≤ p(y) for every y ∈ Y .
Let F = C. Then the theorem of Bohnenblust-Sobczyk implies that there is a linear functional x′

on X so that x′(y) = y′(y) for every y ∈ Y and

|x′(x)| ≤ p(x) = ∥y′∥∥x∥

for every x ∈ X . Therefore, x′ ∈ X ′ and ∥x′∥ ≤ ∥y′∥. Since ∥y′∥ ≤ ∥x′| is trivially satisfied, we
get that ∥x′∥ = ∥y′∥.
Let F = R. Since y′(y) ≤ p(y) for every y ∈ Y , the theorem of Hahn-Banach implies that there
is a linear functional x′ on X so that x′(y) = y′(y) for every y ∈ Y and

x′(x) ≤ p(x) = ∥y′∥∥x∥

for every x ∈ X . If we replace x with −x in this inequality, we get −∥y′∥∥x∥ ≤ x′(x) and so

|x′(x)| ≤ ∥y′∥∥x∥

for every x ∈ X . Thus, ∥x′∥ ≤ ∥y′∥, and hence ∥x′∥ = ∥y′∥.

Definition. Let X be a normed space. If A ⊆ X , we define

A⊥ = {x′ ∈ X ′ |x′(x) = 0 for every x ∈ A}.

IfX is a space with inner product ⟨·, ·⟩ and A ⊆ X , then A⊥ has been defined in two different
forms. The old form is

A⊥,old = {z ∈ X | ⟨x, z⟩ = 0 for every x ∈ A} ⊆ X,

and the new form is

A⊥,new = {x′ ∈ X ′ |x′(x) = 0 for every x ∈ A} ⊆ X ′.

According to the theorem of F.Riesz, there is a conjugate-linear isometry T of X into X ′, given
by:

T (z)(x) = ⟨x, z⟩ for every x ∈ X and every z ∈ X.
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Therefore, if we write A⊥,old = {z ∈ X | ⟨x, z⟩ = 0 for every x ∈ A}, then we see that

T (A⊥,old) = {T (z) ∈ X ′ | ⟨x, z⟩ = 0 for every x ∈ A}
= {T (z) ∈ X ′ |T (z)(x) = 0 for every x ∈ A}
= T (X) ∩A⊥,new ⊆ A⊥,new.

If X is a Hilbert space, then T is onto X ′ and so

T (A⊥,old) = A⊥,new.

Proposition 3.7. Let X be a normed space. If A ⊆ X , then A⊥ is a closed subspace of X ′.

Proof. Exercise.

Theorem 3.9. Let X be a normed space, x ∈ X and Y be a subspace of X . Then

max
x′∈Y ⊥,∥x′∥≤1

|x′(x)| = inf
y∈Y

∥x− y∥.

Proof. For every x′ ∈ Y ⊥ with ∥x′∥ ≤ 1 and for every y ∈ Y we have

|x′(x)| = |x′(x)− x′(y)| = |x′(x− y)| ≤ ∥x′∥∥x− y∥ ≤ ∥x− y∥.

Hence
sup

x′∈Y ⊥,∥x′∥≤1

|x′(x)| ≤ inf
y∈Y

∥x− y∥.

So it is enough to prove that there is x′ ∈ Y ⊥ so that ∥x′∥ ≤ 1 and |x′(x)| = infy∈Y ∥x− y∥.
If x ∈ Y , then infy∈Y ∥x − y∥ = 0 and |x′(x)| = 0 for every x′ ∈ Y ⊥. So in this case the proof
is complete.
If x /∈ Y , we consider the linear subspace Y1 of X which is spanned by Y ∪ {x}:

Y1 = {y + λx | y ∈ Y, λ ∈ F}.

We consider y′ : Y1 → F defined by

y′(y + λx) = λd

for every y ∈ Y and every λ ∈ F , where d = infy∈Y ∥x−y∥. It is clear that y′ is a linear functional
on Y1.
If λ = 0, then

|y′(y + λx)| = |λ|d = 0 ≤ ∥y + λx∥.

If λ ̸= 0, then

|y′(y + λx)| = |λ|d ≤ |λ|
∥∥∥x−

(
− 1

λ
y
)∥∥∥ = ∥y + λx∥.

Hence y′ ∈ Y ′
1 and ∥y′∥ ≤ 1.

Now theorem 3.8 implies that there is x′ ∈ X ′ so that x′(y+λx) = λd for every y ∈ Y and every
λ ∈ F , and ∥x′∥ = ∥y′∥ ≤ 1. Now, x′(y) = x′(y + 0x) = 0d = 0 for every y ∈ Y , and so
x′ ∈ Y ⊥, and |x′(x)| = |x′(0 + 1x)| = 1d = d.

Theorem 3.10. Let X be a normed space, and x ∈ X . Then

∥x∥ = max
x′∈X′,∥x′∥≤1

|x′(x)|.

Proof. This is a corollary of theorem 3.9. We consider the linear subspace Y = {0}, and then we
have {0}⊥ = X ′ and infy∈{0} ∥x− y∥ = ∥x− 0∥ = ∥x∥.
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Theorem 3.11. Let X be a normed space, A ⊆ X and x ∈ X . Then x ∈ clspan(A) if and only if
x′(x) = 0 for every x′ ∈ A⊥.

Proof. This is a corollary of theorem 3.9. We take Y = clspan(A), and then A⊥ = Y ⊥ and

max
x′∈A⊥,∥x′∥≤1

|x′(x)| = inf
y∈Y

∥x− y∥.

Since Y is closed, we have that x ∈ Y if and only if infy∈Y ∥x− y∥ = 0 if and only if x′(x) = 0
for every x′ ∈ A⊥ with ∥x′∥ ≤ 1 if and only if x′(x) = 0 for every x′ ∈ A⊥.

Proposition 3.8. Let X be a normed space. If X ′ is separable, then X is separable.

Proof. Let {x′n |n ∈ N} be a countable dense subset of X ′.
For each n we consider xn ∈ X so that ∥xn∥ = 1 and |x′n(xn)| ≥ 1

2 ∥x
′
n∥ and we define the set

A = {xn |n ∈ N}.
Assume that there is x ∈ X so that x /∈ clspan(A). Then theorem 3.11 implies that there is
x′ ∈ A⊥ so that x′(x) ̸= 0. Hence, x′(xn) = 0 for every n and x′ ̸= 0 and so ∥x′∥ > 0.
Since {x′n |n ∈ N} is dense, there is n so that ∥x′ − x′n∥ < 1

3 ∥x
′∥. Then

∥x′n∥ ≥ ∥x′∥ − ∥x′ − x′n∥ > 2∥x′ − x′n∥,

and so
1

2
∥x′n∥ ≤ |x′n(xn)| = |x′n(xn)− x′(xn)| ≤ ∥x′n − x′∥ <

1

2
∥x′n∥

and we have a contradiction.
Therefore, for every x ∈ X we have that x ∈ clspan(A). Thus, for every ϵ > 0 there are n ∈ N
and λ1, . . . , λn ∈ F so that

∥x− (λ1x1 + · · ·+ λnxn)∥ < ϵ.

Now we take rational κ1, . . . , κn ∈ F so that |λj − κj | < ϵ
n∥xj∥ for every j and we easily see that

∥x− (κ1x1 + · · ·+ κnxn)∥ < 2ϵ.

So the countable set, whose elements are all linear combinations of elements of A with rational
coefficients, is dense in X .

Corollary 3.1. l1 is not linearly isometric with (l∞)′. In fact l1 is not even topologically homeo-
morphic with (l∞)′.

Proof. l1 is separable, so, if the two spaces are topologically homeomorphic, then (l∞)′ is separa-
ble. But then proposition 3.8 implies that l∞ is also separable and this is not true.

Theorem 3.12. Let X be a normed space, let Y be a subspace of X , and x′ ∈ X ′. Then

sup
y∈Y,∥y∥≤1

|x′(y)| = min
z′∈Y ⊥

∥x′ − z′∥.

Proof. For every y ∈ Y with ∥y∥ ≤ 1, and every z′ ∈ Y ⊥ we have

|x′(y)| = |x′(y)− z′(y)| ≤ ∥x′ − z′∥∥y∥ ≤ ∥x′ − z′∥.

Hence,
sup

y∈Y,∥y∥≤1

|x′(y)| ≤ inf
z′∈Y ⊥

∥x′ − z′∥.
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So it is enough to prove that there is z′ ∈ Y ⊥ so that supy∈Y,∥y∥≤1 |x′(y)| = ∥x′ − z′∥.
We consider y′ to be the restriction of x′ on Y , and then

∥y′∥ = sup
y∈Y,∥y∥≤1

|y′(y)| = sup
y∈Y,∥y∥≤1

|x′(y)|.

Theorem 3.8 implies that there is x′1 ∈ X ′ so that x′1(y) = y′(y) = x′(y) for every y ∈ Y and
∥x′1∥ = ∥y′∥. Now we take z′ = x′ − x′1 ∈ X ′, and then

∥x′ − z′∥ = ∥y′∥ = sup
y∈Y,∥y∥≤1

|x′(y)|.

Also z′(y) = x′(y)− x′1(y) = 0 for every y ∈ Y , and hence z′ ∈ Y ⊥.

3.8 The second dual.

The second dual X ′′ = (X ′)′ of a normed space X is a Banach space with norm

∥x′′∥ = sup
x′∈X′,∥x′∥≤1

|x′′(x′)|

for every x′′ ∈ X ′′.

Definition. Let X be a normed space. For every x ∈ X we consider the function lx : X ′ → F
defined for every x′ ∈ X ′ by

lx(x
′) = x′(x).

Theorem 3.13. Let X be a normed space. For every x ∈ X the function lx is an element of X ′′

and the function
J : X → X ′′,

defined for every x ∈ X by J(x) = lx, is a linear isometry.

Proof. We have

lx(x
′
1 + x′2) = (x′1 + x′2)(x) = x′1(x) + x′2(x) = lx(x

′
1) + lx(x

′
2),

lx(λx
′) = (λx′)(x) = λx′(x) = λlx(x

′)

for every x′, x′1, x′2 ∈ X ′ and every λ ∈ F . Thus, lx is a linear functional on X ′.
Theorem 3.10 implies that

sup
x′∈X′,∥x′∥≤1

|lx(x′)| = sup
x′∈X′,∥x′∥≤1

|x′(x)| = ∥x∥.

This means that lx ∈ X ′′ and ∥lx∥ = ∥x∥.
Now,

lx1+x2(x
′) = x′(x1 + x2) = x′(x1) + x′(x2) = lx1(x

′) + lx2(x
′)

for every x′ ∈ X ′ and hence lx1+x2 = lx1 + lx2 . Also,

lλx(x
′) = x′(λx) = λx′(x) = λlx(x

′)

for every x′ ∈ X ′ and hence lλx = λlx. Thus, J is linear:

J(x1 + x2) = lx1+x2 = lx1 + lx2 = J(x1) + J(x2), J(λx) = lλx = λlx = λJ(x).

We saw that ∥J(x)∥ = ∥lx∥ = ∥x∥ for every x ∈ X , and so J is a linear isometry.
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Definition. LetX be a normed space. The linear isometry J : X → X ′′ defined in theorem 3.13 is
called natural embedding of X into X ′′.
If J is onto X ′′, then we say that X is reflexive.

Thus, if X is reflexive, then X is linearly isometric with X ′′. The converse is not true in
general: there are normed spaces X which are linearly isometric with their second dual X ′′ but
their natural embeddings J are not onto X ′′.

We observe that a necessary condition for a normed spaceX to be reflexive is its completeness.
Indeed, X ′′ = (X ′)′ is a dual space, and so it is complete. Hence, if X is linearly isometric with
X ′′, then X is also complete.

A second observation is the following. X1 is complete, since it is a closed subspace of the
Banach spaceX ′′. Also, J(X) is dense inX1, sinceX1 is the closure of J(X). Now, J(X) ⊆ X ′′

is linearly isometric with X , and we conclude that X1 is a completion of X .

Proposition 3.9. Every Hilbert space is reflexive.

Proof. We consider the conjugate-linear isometry of the theorem of F. Riesz, T : X → X ′, given
by

T (z)(x) = ⟨x, z⟩

for every z ∈ X and x ∈ X .
We shall prove that the natural embedding J : X → X ′′ is onto X ′′.
We take any x′′ ∈ X ′′ and we consider the function x′′ ◦ T : X → F . It is easy to prove that this
is linear:

x′′ ◦ T (z1 + z2) = x′′(T (z1 + z2)) = x′′(T (z1) + T (z2)) = x′′(T (z1)) + x′′(T (z2))

= x′′(T (z1)) + x′′(T (z2)) = x′′ ◦ T (z1) + x′′ ◦ T (z2),

x′′ ◦ T (λz) = x′′(T (λz)) = x′′(λT (z)) = λx′′(T (z)) = λx′′(T (z)) = λx′′ ◦ T (z).

Also
|x′′ ◦ T (z)| = |x′′(T (z))| = |x′′(T (z))| ≤ ∥x′′∥∥T (z)∥ = ∥x′′∥∥z∥,

and hence x′′ ◦ T ∈ X ′.
Since T is onto X ′, there is x ∈ X so that x′′ ◦ T = T (x). Then,

x′′(T (z)) = T (x)(z) = ⟨z, x⟩ = ⟨x, z⟩ = T (z)(x) = J(x)(T (z))

for every z ∈ X . Since T is onto X ′, the last equality implies that

x′′(x′) = J(x)(x′)

for every x′ ∈ X ′. Therefore, x′′ = J(x), and so J is onto X ′′.

Proposition 3.10. If 1 < p < +∞ and (Ω,Σ, µ) is a measure space, then lp and Lp(Ω,Σ, µ) are
reflexive.

Proof. We consider q given by 1
p + 1

q = 1 and the linear isometries T (p) : lq → (lp)′ and T (q) :

lp → (lq)′ given by

T (p)(x)(y) =
+∞∑
k=1

λkµk = T (q)(y)(x)

for every x = (λk) ∈ lq and y = (µk) ∈ lp.
We also consider the natural embedding J : lp → (lp)′′.
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We take any y′′ ∈ (lp)′′, and we consider the function y′′ ◦ T (p) : lq → F . Then y′′ ◦ T (p) is a
composition of linear functions and, hence, it is a linear functional on lq. Also,

|y′′ ◦ T (p)(x)| = |y′′(T (p)(x))| ≤ ∥y′′∥∥T (p)(x)∥ = ∥y′′∥∥x∥

for every x ∈ lq. Hence y′′ ◦ T (p) ∈ (lq)′.
Since T (q) is onto (lq)′, there is y ∈ lp so that y′′ ◦ T (p) = T (q)(y). Thus,

J(y)(T (p)(x)) = T (p)(x)(y) = T (q)(y)(x) = y′′(T (p)(x))

for every x ∈ lq. Since T (p) is onto (lp)′, the last equality implies

J(y)(y′) = y′′(y′)

for every y′ ∈ (lp)′. Thus Jy = y′′ and so J is onto (lp)′′.
The proof of the reflexivity of Lp(Ω,Σ, µ) is similar.

Theorem 3.14. LetX be a normed space, and Y be a closed subspace ofX . IfX is reflexive, then
Y is reflexive.

Proof. Take any y′′ ∈ Y ′′. We consider x′′ : X ′ → F defined for every x′ ∈ X ′ by

x′′(x′) = y′′(x′|Y ),

where x′|Y ∈ Y ′ is the restriction of x′ on Y . It is easy to see that x′′ is linear. Also

|x′′(x′)| = |y′′(x′|Y )| ≤ ∥y′′∥∥x′|Y ∥ ≤ ∥y′′∥∥x′∥

for every x′ ∈ X ′. Therefore, x′′ ∈ X ′′ and, sinceX is reflexive, there is x ∈ X so that J(x) = x′′,
where J is the natural embedding of X onto X ′′. This implies

y′′(x′|Y ) = x′′(x′) = J(x)(x′) = x′(x)

for every x′ ∈ X ′.
Now, we take any x′ ∈ Y ⊥. Then x′|Y (y) = x′(y) = 0 for every y ∈ Y , and so x′|Y = 0. The
last equality above implies that x′(x) = y′′(0) = 0. So, theorem 3.9 implies infy∈Y ∥x− y∥ = 0
and, since Y is closed, we get that x ∈ Y . Therefore,

y′′(x′|Y ) = x′(x) = x′|Y (x)

for every x′ ∈ X ′.
Theorem 3.8 says, in particular, that for every y′ ∈ Y ′ there is x′ ∈ X ′ so that x′|Y = y′. So for
every y′ ∈ Y ′ we have, by the last equality,

y′′(y′) = y′(x) = J ′(x)(y′),

where J ′ is the natural embedding of Y into Y ′′. Thus y′′ = J ′(x) with x ∈ Y , and we conclude
that J ′ is onto Y ′′.

3.9 The uniform boundedness principle.

Lemma 3.6. Let X be a complete metric space with metric d. If Cn is a non-empty closed subset
ofX for every n ∈ N, so that Cn+1 ⊆ Cn for every n and diam(Cn) → 0, then

∩+∞
n=1Cn contains

exactly one element.
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Proof. We take any xn ∈ Cn. If n ≤ m, then xn, xm ∈ Cn, and so d(xn, xm) ≤ diam(Cn) → 0
when n,m → +∞. Thus (xn) is a Cauchy sequence, and, since X is complete, there is x ∈ X
so that xn → x. Since the sequence (xn) is contained, after the indexm, in the closed set Cm, we
get that x ∈ Cm. Thus, x ∈

∩+∞
n=1Cn.

If also y ∈
∩+∞

n=1Cn, then x, y ∈ Cn for every n. Therefore, d(x, y) ≤ diam(Cn) for every n,
and so d(x, y) = 0. Thus x = y.

The theorem of Baire. LetX be a complete metric space. If Un is an open and dense subset ofX
for every n ∈ N, then

∩+∞
n=1 Un is dense in X .

Proof. We consider the set U =
∩+∞

n=1 Un, and we take any r > 0.
Since U1 is dense, there is x1 ∈ B(x; r) ∩ U1. Since B(x; r) ∩ U1 is open, there is r1 > 0 so that
r1 ≤ 1

2 r and
cl(B(x1; r1)) ⊆ B(x1; r1) ⊆ B(x; r) ∩ U1.

Since U2 is dense, there is x2 ∈ B(x1; r1) ∩ U2. Since B(x1; r1) ∩ U2 is open, there is r2 > 0 so
that r2 ≤ 1

2 r1 ≤
1
22

r and

cl(B(x2; r2)) ⊆ B(x2; r2) ⊆ B(x1; r1) ∩ U2.

Wecontinue inductively, andwe see that for everyn ∈ N there is a ballB(xn; rn) so that rn ≤ 1
2n r,

and so that

cl(B(xn+1; rn+1)) ⊆ B(xn; rn) ∩ Un+1 ⊆ B(xn; rn) ⊆ cl(B(xn; rn))

for every n. We aplly lemma 3.6 to the non-empty closed sets cl(B(xn; rn)) and we get that that
there is some

y ∈
+∞∩
n=1

cl(B(xn; rn)).

Now, this implies that y ∈ cl(B(x1; r1)) and hence y ∈ B(x; r). It also implies that y ∈
cl(B(xn; rn)) and hence y ∈ Un for every n. Therefore, y ∈ B(x; r) ∩ U and we conclude
that U is dense in X .

If A is a subset of a metric space Y with metric d, then A is bounded if the distances of the
elements of A from any fixed element y0 of Y are bounded, i.e.

sup
a∈A

d(a, y0) < +∞.

The uniform boundedness principle. LetX be a complete metric space, let Y be a metric space
with metric d, let y0 ∈ Y , and let F be a collection of continuous functions f : X → Y . We
assume that

sup
f∈F

d(f(x), y0) < +∞ for every x ∈ X.

Then there is a non-empty open U ⊆ X and a M ≥ 0 so that d(f(x), y0) ≤ M for every x ∈ U
and every f ∈ F , i.e.

sup
x∈U,f∈F

d(f(x), y0) < +∞.

Proof. For each n ∈ N we define

Pn = {x ∈ X | d(f(x), y0) ≤ n for every f ∈ F} =
∩
f∈F

{x ∈ X | d(f(x), y0) ≤ n}.

It is easy to see that the continuity of the metric d and the continuity of each function fn imply that
{x ∈ X | d(f(x), y0) ≤ n} is a closed set. Since Pn is the intersection of closed sets, it is closed.
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Also, the assumption that supf∈F d(f(x), y0) < +∞ for every x ∈ X , implies that for every x ∈
X there is n ∈ N so that supf∈F d(f(x), y0) ≤ n, and hence x ∈ Pn. Therefore X =

∪+∞
n=1 Pn.

If we define Un = X \ Pn, then Un is open and
∩+∞

n=1 Un = ∅.
Now, the theorem of Baire implies that there isM ∈ N so that UM is not dense in X , i.e.

cl(UM ) ̸= X.

We consider the set U = X \ cl(UM ), Then U is open and non-empty, and U ∩ cl(UM ) = ∅. So
U ∩ UM = ∅ and hence U ⊆ PM . Of course, this implies that d(f(x), y0) ≤ M for every x ∈ U
and every f ∈ F .

Regarding the uniform boundedness principle, supf∈F d(f(x), y0) < +∞ is equivalent with
{f(x) | f ∈ F} being a bounded subset of the metric space Y . So we may say that the assumption
that supf∈F d(f(x), y0) < +∞ for every x ∈ X means that the collection of functionsF is point-
wise bounded inX . The result of the uniform boundedness principle, is that, under the assumption
of its pointwise boundedness, the collection F is uniformly bounded in some open subset U ofX .
Of course, another central assumption is the completeness ofX .

The next two theorems are just a few, among many, applications of the uniform boundedness
principle. For both theorems we consider the metric space Y = F with its usual euclidean metric.
The role of y0 ∈ Y is played by 0 ∈ F . So d(f(x), y0) is simply |f(x)| for functions f : X → F .
In other words, we have the following special case of the uniform boundedness principle.
The uniform boundedness principle LetX be a complete metric space, and letF be a collection
of continuous functions f : X → F . We assume that

sup
f∈F

|f(x)| < +∞ for every x ∈ X.

Then there is a non-empty open U ⊆ X and a M ≥ 0 so that |f(x)| ≤ M for every x ∈ U and
every f ∈ F , i.e.

sup
x∈U,f∈F

|f(x)| < +∞.

Theorem 3.15. LetX be a Banach space and let F ⊆ X ′ satisfy supx′∈F |x′(x)| < +∞ for every
x ∈ X . Then supx′∈F ∥x′∥ < +∞.

Proof. We apply the uniform boundedness principle to the collectionX ′ of functions x′ : X → F ,
and we get that there is a non-empty open U ⊆ X and a M ≥ 0 so that |x′(x)| ≤ M for every
x′ ∈ F and every x ∈ U .
Now we take any x0 ∈ U and then there is R > 0 so that B(x0;R) ⊆ U . Therefore, we have that
|x′(x)| ≤ M for every x′ ∈ F and every x ∈ B(x0;R).
Take any x′ ∈ F , any x ̸= 0 and any t > 1. Then x0 ∈ B(x0;R) and x0 +

R
t∥x∥ x ∈ B(x0;R).

Hence

|x′(x)| = t∥x∥
R

∣∣∣x′( R

t∥x∥
x
)∣∣∣ = t∥x∥

R

∣∣∣x′(x0 + R

t∥x∥
x
)
− x′(x0)

∣∣∣ ≤ t∥x∥
R

2M.

Since t > 1 is arbitrary, we get

|x′(x)| ≤ 2M

R
∥x∥.

This is true also for x = 0, and hence ∥x′∥ ≤ 2M
R for every x′ ∈ F .

Since ∥x′∥ = supx∈X,∥x∥≤1 |x′(x)| = supx∈B(0;1) |x′(x)|, theorem 3.15 says that if X is a
Banach space and the collectionF ⊆ X ′ is pointwise bounded inX , then F is uniformly bounded
in the closed unit ball B(0; 1) of X .
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Theorem 3.16. Let X be a normed space and let F ⊆ X satisfy supx∈F |x′(x)| < +∞ for every
x′ ∈ X ′. Then supx∈F ∥x∥ < +∞.

Proof. We consider the natural embedding J : X → X ′′ and the collection J(F) ⊆ X ′′ of the
functions J(x) : X ′ → F for every x ∈ F . We apply the previous theorem for the Banach space
X ′ and for the collection J(F) ⊆ (X ′)′, since

sup
J(x)∈J(F)

|J(x)(x′)| = sup
x∈F

|x′(x)| < +∞

for every x′ ∈ X ′.
We conclude that supx∈F ∥x∥ = supJ(x)∈J(F) ∥J(x)∥ < +∞.

3.10 Weak convergence and weak-star convergence.

Definition. Let X be a normed space.
(i) We say that the sequence (xn) in X converges weakly to x ∈ X , if x′(xn) → x′(x) for every
x′ ∈ X ′. Then we write

xn
w→ x.

(ii) We say that the sequence (x′n) in X ′ converges weakly∗ to x′ ∈ X ′, if x′n(x) → x′(x) for
every x ∈ X . Then we write

x′n
w ∗→ x′.

Of course, when we write xn → x or x′n → x′ we mean ∥xn − x∥ → 0 or ∥x′n − x′∥ → 0,
respectively. To stress the difference between the various notions of convergence, we may say that
(xn) converges strongly to x, if xn → x, and we may say that (x′n) converges strongly to x′, if
x′n → x′. This terminology is justified by the:

Proposition 3.11. Let X be a normed space.
(i) In X: if xn → x, then xn

w→ x.
(ii) In X ′: if x′n → x′, then x′n

w ∗→ x′.

Proof. (i) If xn → x, then for every x′ ∈ X ′ we have |x′(xn) − x′(x)| ≤ ∥x′∥∥xn − x∥ → 0.
Hence xn

w→ x.
(ii) If x′n → x′, then for every x ∈ X we have |x′n(x) − x′(x)| ≤ ∥x′n − x′∥∥x∥ → 0. Hence
x′n

w ∗→ x′.

Proposition 3.12. Let X be a normed space.
(i) In X: if xn

w→ x, yn
w→ y and λn → λ, then xn + yn

w→ x+ y and λnxn
w→ λx.

(ii) In X ′: if x′n
w ∗→ x′, y′n

w ∗→ y′ and λn → λ, then x′n + y′n
w ∗→ x′ + y′ and λnx

′
n

w ∗→ λx′.
(iii) In X: if xn

w→ y and xn
w→ z, then y = z.

(iv) In X ′: if x′n
w ∗→ y′ and x′n

w ∗→ z′, then y′ = z′.

Proof. (i) For every x′ ∈ X ′ we have

x′(xn + yn) = x′(xn) + x′(yn) → x′(x) + x′(y) = x′(x+ y),

x′(λnxn) = λnx
′(xn) → λx′(x) = x′(λx).

Hence xn + yn
w→ x+ y and λnxn

w→ λx.
(ii) Similar to the proof of (i).
(iii) For every x′ ∈ X ′ we have x′(xn) → x′(y) and x′(xn) = x′(z), and hence x′(y − z) =
x′(y)− x′(z) = 0. Theorem 3.10 implies that y − z = 0 and so y = z.
(iv) For every x ∈ X we have x′n(x) → y′(x) and x′n(x) = z′(x), and hence y′(x) = z′(x).
Therefore, y′ = z′.
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We must stress the difference between the natures of (iii) and (iv) of the last proposition, i.e.
the uniqueness of the weak limit and the weak∗ limit, which is reflected in the difference between
the difficulties of their proofs.

Example 3.10.1. If 1 < p ≤ +∞, then en
w→ 0 in lp and also in c, c0. But (en) does not have a

weak limit in l1.
In all cases the norms of the en are equal to 1, and (en) does not converge since the norms of the
differences en − em are constant and ̸= 0.

Example 3.10.2. If {an |n ∈ N} is an orthonormal set in an inner product space X , then an
w→ 0

in X .

Theorem 3.17. Let X be a normed space, and xn
w→ x in X . Then supn ∥xn∥ < +∞ and

∥x∥ ≤ lim infn→+∞ ∥xn∥.

Proof. For every x′ ∈ X ′ the sequence (x′(xn)) converges to x′(x) in F , and so it is bounded.
Theorem 3.16 implies that supn ∥xn∥ < +∞.
Let q = lim infn→+∞ ∥xn∥. Then there is a subsequence (xnk

) so that ∥xnk
∥ → q. For every

x′ ∈ X ′ with ∥x′∥ ≤ 1 we have |x′(xnk
)| ≤ ∥xnk

∥. Since x′(xnk
) → x′(x), we find |x′(x)| ≤ q.

Now theorem 3.10 implies that ∥x∥ = maxx′∈X′,∥x′∥≤1 |x′(x)| ≤ q.

Theorem 3.18. Let X be a Banach space and x′n
w ∗→ x′ in X ′. Then supn ∥x′n∥ < +∞ and

∥x′∥ ≤ lim infn→+∞ ∥x′n∥.

Proof. For every x ∈ X the sequence (x′n(x)) converges to x′(x) in F , and so it is bounded.
Theorem 3.15 implies that supn ∥x′n∥ < +∞.
Let q = lim infn→+∞ ∥x′n∥. Then there is a subsequence (x′nk

) so that ∥x′nk
∥ → q. For every

x ∈ X with ∥x∥ ≤ 1 we have |x′nk
(x)| ≤ ∥x′nk

∥. Since x′nk
(x) → x′(x), we find |x′(x)| ≤ q.

Therefore, ∥x′∥ = supx∈X,∥x∥≤1 |x′(x)| ≤ q.
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Chapter 4

Weak topologies 1

4.1 Generalities about topological spaces.

4.1.1 Open sets and closed sets.

Definition. Let A be a non-empty set, and T be a collection of subsets of A, with the properties:
(i) ∅ ∈ T , A ∈ T .
(ii) The union of any elements of T is an element of T . In other words, if Ui ∈ T for every i ∈ I ,
then

∪
i∈I Ui ∈ T .

(iii) The intersection of any finitely many elements of T is an element of T . In other words, if
U1, . . . , Un ∈ T , then

∩n
i=1 Ui ∈ T .

Then T is called topology of A, and the elements of T are called open (with respect to T ) subsets
of A. Finally, A equipped with a topology is called topological space.

IfA a topological space, then (ii) says that the union of any open subsets ofA is an open subset
of A, and (iii) says that the intersection of any finitely many open subsets of A is an open subset
of A.

Example 4.1.1. Let A be a non-empty set. Then {∅, A} is a topology of A.

Example 4.1.2. Let A be a non-empty set. Then P(A), the collection of all subsets of A, is a
topology of A.

Example 4.1.3. Let A be a metric space with metric d. Then

T = {U ⊆ A |U is open with respect to d}

is a topology in A. In this case we say that the topology T is induced by d.
To be more precise, U ⊆ A is open with respect to d if for every x ∈ U there is a radius r > 0 so
that the ball B(x, r) = {y ∈ A | d(y, x) < r} is included in U .
It is easy to see that ∅ and A are open with respect to d.
Now assume that Ui is open with respect to d for every i ∈ I , and take any x ∈

∪
i∈I Ui. Then

x ∈ Ui0 for some i0 ∈ I , and then there is r > 0 so thatB(x; r) ⊆ Ui0 . HenceB(x; r) ⊆
∪

i∈I Ui

and we have that
∪

i∈I Ui is open with respect to d.
Finally, assume that U1, . . . , Un are open with respect to d, and take any x ∈

∩n
i=1 Ui. Then for

every i = 1, . . . , n there is ri > 0 so that B(x; ri) ⊆ Ui. If we take r = min{r1, . . . , rn} > 0,
then B(x; r) ⊆ B(x; ri) ⊆ Ui for every i = 1, . . . , n, and hence B(x; r) ⊆

∩n
i=1 Ui. So

∩n
i=1 Ui

is open with respect to d.
Every ball B(x; r) is open with respect to d. Indeed, take any y ∈ B(x; r). Then d(y, x) < r, and
we consider s = r − d(y, x) > 0. Now, if z ∈ B(y; s), then

d(z, x) ≤ d(z, y) + d(y, x) < s+ d(y, x) = r

and hence z ∈ B(x; r). Thus B(y; s) ⊆ B(x; r).
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Definition. Let A be a topological space, and F ⊆ A. We say that F is closed, if A \ F is open.

Proposition 4.1. Let A be a topological space. Then
(i) ∅ and A are closed.
(ii) The intersection of any closed subsets of A is a closed subset of A.
(iii) The union of any finitely many closed subsets of A is a closed subset of A.

Proof. The proof is a trivial corollary of the definition of closed set, of the properties of open sets,
and of the laws of de Morgan for the complements of unions and intersections.

Definition. Let A be a topological space, and x ∈ A. Every open set containing x is called open
neighborhood of x.

Definition. Let A be a topological space, and M ⊆ A. Then the set
∩
{F |F ⊇ M is closed} is

called closure of M and it is denoted cl(M).

Proposition 4.2. Let A be a topological space, and M ⊆ A.
(i) cl(M) is the smallest closed subset of A which includes M .
(ii) x ∈ cl(M) if and only if U ∩M ̸= ∅ for every open neighborhood U of x.

Proof. (i) cl(M) is the intersection of closed sets which include M , and so it closed and includes
M . Also, if F is closed and includesM , then cl(M) ⊆ F . So cl(M) is the smallest closed subset
of A which includesM .
(ii) Let x ∈ cl(M), and take any open neighborhod U of x. Then A \ U is closed and, since
x /∈ A \ U , we have that cl(M) is not included in A \ U . According to (i), M is not included in
A \ U , and hence U ∩M ̸= ∅.
Conversely, assume that U ∩ M ̸= ∅ for every open neighborhood U of x. We take any closed
F ⊇ M , and then A \ F is open and (A \ F ) ∩M = ∅. Therefore, x /∈ A \ F and so x ∈ F . We
conclude that x ∈ cl(M).

Definition. Let A be a topological space with topology T , and let (xn) be a sequence in A. We say
that (xn) converges (with respect to T ) to x ∈ A, if for every open neighborhood U of x there is
n0 so that xn ∈ U for every n ≥ n0.
Then we say that x is a limit of (xn), and we write xn → x.

4.1.2 Continuous functions.

Definition. Let A,B be two topological spaces, M ⊆ A, and f : M → B.
(i) We say that f is continuous at x ∈ M if for every open V ⊆ B such that f(x) ∈ V there is
an open U ⊆ A so that x ∈ U and f(U ∩M) ⊆ V , i.e. so that x ∈ U , and f(y) ∈ V for every
y ∈ U ∩M .
(ii) We say that f is continuous in M if it is continuous at every x ∈ M .

Proposition 4.3. Let A,B be two topological spaces, M ⊆ A, and f : M → B. Then f is
continuous in M if and only if for every open V ⊆ B there is an open U ⊆ A so that f−1(V ) =
U ∩M .

Proof. Let f be continuous in M , and let V ⊆ B be open. Then for every x ∈ f−1(V ) we
have f(x) ∈ V , and so there is an open Ux ⊆ A such that x ∈ Ux and f(Ux ∩ M) ⊆ V .
Then U =

∪
x∈f−1(V ) Ux ⊆ A is open, and it is easy to see that f−1(V ) = U ∩ M . Indeed, if

y ∈ f−1(V ), then y ∈ Uy ∩M and hence y ∈ U ∩M . Also, if y ∈ U ∩M , then y ∈ Ux ∩M for
some x ∈ f−1(V ). Then f(y) ∈ V and hence y ∈ f−1(V ).
Conversely, take any x ∈ M and any open V ⊆ B so that f(x) ∈ V . Then there is an openU ⊆ A
so that f−1(V ) = U ∩M . Then x ∈ U and f(U ∩M) ⊆ V , and so f is continuous at x.
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Proposition 4.4. (i) Let A,B,C be topological spaces, M ⊆ A, N ⊆ B, f : M → N and
g : N → C. If f is continuous at x ∈ M and g is continuous at f(x) ∈ N , then g ◦ f is
continuous at x.
(ii) Let A be a topological space, M ⊆ A, f, g : M → Rn and λ ∈ R. If Rn has the topology
induced by the euclidean metric and f, g are continuous at x ∈ M , then f + g, λf are continuous
at x.

Proof. (i) Let W ⊆ C be open and (g ◦ f)(x) = g(f(x)) ∈ W . Then there is an open V ⊆ B
so that f(x) ∈ V and g(V ∩ N) ⊆ W . Then there is an open U ⊆ A so that x ∈ U and
f(U ∩M) ⊆ V . Then f(U ∩M) ⊆ V ∩N and hence

(g ◦ f)(U ∩M) = g(f(U ∩M)) ⊆ g(V ∩N) ⊆ W.

Thus g ◦ f is continuous at x.
(ii) Let V ⊆ Rn be open and f(x) + g(x) ∈ V . Then there is r > 0 so that z ∈ V for every
z ∈ Rn with ∥z − (f(x) + g(x))∥ < r. Now, there is an open U1 ⊆ A so that x ∈ U1 and
∥f(y) − f(x)∥ < r

2 for every y ∈ U1 ∩ M . Also, there is an open U2 ⊆ A so that x ∈ U2 and
∥g(y)− g(x)∥ < r

2 for every y ∈ U2 ∩M . Then U = U1 ∩ U2 ⊆ A is open, and x ∈ U , and for
every y ∈ U ∩M we have

∥(f(y) + g(y))− (f(x) + g(x))∥ ≤ ∥f(y)− f(x)∥+ ∥g(y)− g(x)∥ <
r

2
+

r

2
= r,

and hence f(y) + g(y) ∈ V . So f + g is continuous at x.
The proof for λf is similar.

Definition. Let A,B be topological spaces, and f : A → B. We say that f is a homeomorphism
of A onto B, if f is one-to-one in A and onto B, and f is continuous in A and f−1 is continuous
in B. In this case we say that A,B are homeomorphic.

If A,B are homeomorphic topological spaces, and f : A → B is a homeomorphism of A
onto B, then we may identify the two spaces: we identify every a ∈ A with the corresponding
b = f(a) ∈ B and, conversely, we identify every b ∈ B with the corresponding a = f−1(b) ∈ A.
Then every open U ⊆ A is identified with the open V = f(U) ⊆ B and, conversely, every open
V ⊆ B is identified with the open U = f−1(V ) ⊆ A.

4.1.3 Compact sets.

Definition. Let A be a topological space. We say that A is a Hausdorff topological space, if for
every x1, x2 ∈ A, x1 ̸= x2, there are disjoint open U1, U2 ⊆ A so that x1 ∈ U1 and x2 ∈ U2.

Proposition 4.5. Every metric space is Hausdorff.

Proof. If d is the metric of A and x1, x2 ∈ A, x1 ̸= x2, we take r = 1
2 d(x1, x2) > 0, and then

B(x1; r) ∩B(x2; r) = ∅. The balls B(x1; r), B(x2; r) are open with respect to d.

Proposition 4.6. Let A be a Hausdorff topological space. If a sequence in A has a limit, then this
limit is unique.

Proof. Let xn → y and xn → z. If y ̸= z, then there are disjoint open U, V ⊆ A so that y ∈ U
and z ∈ V . But then there is n0 so that xn ∈ U and xn ∈ V for every n ≥ n0, and obviously this
is impossible.

Definition. LetA be a topological space, andK ⊆ A. We say that a collection {Ui | i ∈ I} of open
subsets of A is an open cover of K, if K ⊆

∪
i∈I Ui.
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Definition. LetA be a topological space, andK ⊆ A. We say thatK is compact, if for every open
cover of K there is a finite subcover of K. More precisely, K is compact, if for every open cover
{Ui | i ∈ I} of K there are i1, . . . , in ∈ I so that {Uik | 1 ≤ k ≤ n} is also an open cover of K.

Proposition 4.7. Let A be a topological space.
(i) If K ⊆ A is compact and A is Hausdorff, then K is closed.
(ii) If K ⊆ A is compact and K ′ ⊆ K is closed, then K ′ is compact.

Proof. (i) Take any x ∈ A \ K. For every z ∈ K there are disjoint open Uz, Vz ⊆ A so that
z ∈ Uz and x ∈ Vz . Then {Uz | z ∈ K} is an open cover of K. Since K is compact, there are
z1, . . . , zn ∈ K so thatK ⊆ Uz1 ∪ · · ·∪Uzn . Then Vz1 ∩ · · ·∩Vzn is open, it is included inA\K,
and contains x. Therefore, A \K is open, and so K is closed.
(ii) Let {Ui | i ∈ I} be any open cover of K ′. Then {Ui | i ∈ I} ∪ {A \ K ′} is an open cover
of K. Since K is compact, there are i1, . . . , in ∈ I so that K ⊆

(∪n
k=1 Uik

)
∪ (A \K ′). Then

K ′ ⊆
∪n

k=1 Uik , and so K ′ is compact.

Proposition 4.8. Let A,B be topological spaces, M ⊆ A, and let f : M → B be continuous. If
K ⊆ M is compact, then f(K) is compact.

Proof. Let {Vi | i ∈ I} be any open cover of f(K), i.e. f(K) ⊆
∪

i∈I Vi. Since each Vi ⊆ B is
open and f is continuous, proposition 4.3 implies that there is a corresponding open Ui ⊆ A so
that f−1(Vi) = Ui ∩M . Then,

K ⊆ f−1
(∪

i∈I
Vi

)
=

∪
i∈I

f−1(Vi) =
∪
i∈I

(Ui ∩M) ⊆
∪
i∈I

Ui.

SinceK is compact, there are i1, . . . , in ∈ I so thatK ⊆
∪n

k=1 Uik . Then

f(K) = f(K ∩M) ⊆ f
( n∪

k=1

(Uik ∩M)
)
=

n∪
k=1

f(Uik ∩M) ⊆
n∪

k=1

Vik .

So f(K) is compact.

Proposition 4.9. Let A be a topological space, M ⊆ A, and let f : M → R be continuous. If
K ⊆ M is compact, then f has a maximum value and a minimum value in K.

Proof. According to proposition 4.8, f(K) is a compact subset of R, and hence it is closed and
bounded. Since f(K) is bounded, u = sup(f(K)) is a real number. Then for every ϵ > 0 there
is a ∈ f(K) so that a ∈ (u − ϵ] and hence u ∈ cl(f(K)). Since f(K) is closed, we conclude
that u ∈ f(K) and so u is the maximum value of f in K. The case of the minimum value is
similar.

Definition. Let A be a non-empty set, and C be a non-empty collection of subsets of A. We say that
C has the finite intersection property, if

∩n
k=1Ck ̸= ∅ for every C1, . . . , Cn ∈ C.

Proposition 4.10. Let A be a topological space, and K ⊆ A. Then K is compact if and only
if for every collection F of subsets of K with the finite intersection property we have that K ∩∩

F∈F cl(F ) ̸= ∅.

Proof. Assume that K is compact, and consider any collection F of subsets of K with the finite
intersection property. Then G = {A \ cl(F ) |F ∈ F} is a collection of open subsets of A. For
every F1, . . . , Fn ∈ F we get K ∩

∩n
k=1 Fk =

∩n
k=1 Fk ̸= ∅ and so K ∩

∩n
k=1 cl(Fk) ̸= ∅

which implies
∪n

k=1(A \ cl(Fk)) ̸= K. So there is no finite subcollection of G which is a cover
of K. Since K is compact, G is not a cover of K. Thus,

∪
F∈F (A \ cl(F )) ̸= K and this implies

K ∩
∩

F∈F cl(F ) ̸= ∅.
Now, assume that for every collection F of subsets of K with the finite intersection property we
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have that K ∩
∩

F∈F cl(F ) ̸= ∅. Take any open cover G of K. If x ∈ K, then x ∈ G0 for some
G0 ∈ G, and, since (K\G0)∩G0 = ∅, we getx /∈ cl(K\G0). Therefore,K∩

∩
G∈G cl(K\G) = ∅.

NowF = {K\G |G ∈ G} is a collection of subsets ofK which, according to our assumption, does
not have the finite intersection property. So there areG1, . . . , Gn ∈ G so that

∩n
k=1(K \Gk) = ∅,

i.e. K ⊆
∪n

k=1Gk. Therefore,K is compact.

4.1.4 Subspace topology.

Proposition 4.11. Let A be a topological space with topology T , and B ⊆ A. Then the collection
S = {U ∩B |U ∈ T } is a topology of B.

Proof. ∅ = ∅ ∩B and B = A ∩B, so ∅ and B belong to S .
Let Vi ∈ S for every i ∈ I . Then there are Ui ∈ T so that Vi = Ui ∩ B for every i ∈ I . Since T
is a topology, we have

∪
i∈I Ui ∈ T . Hence,

∪
i∈I Vi =

(∪
i∈I Ui

)
∩B ∈ S .

Let V1, . . . , Vn ∈ S. Then there are Ui ∈ T so that Vi = Ui ∩ B for every i = 1, . . . , n. Since T
is a topology, we have

∩n
i=1 Ui ∈ T . Hence,

∩n
i=1 Vi =

(∩n
i=1 Ui

)
∩B ∈ S.

Definition. Let A be a topological space, and B ⊆ A. The topology of B, which is described in
proposition 4.11, is called subspace topology or relative topology of B (with respect to A).

In other words, if B ⊆ A has its subspace topology, then the open subsets of B are the inter-
sections with B of the open subsets of A.

Let V ⊆ B ⊆ A. Then we say that V is open inA, if V is open as a subset ofA, i.e. it belongs
to the topology of A, and we say that V is open in B, if V is open as a subset of B, i.e. it belongs
to the subspace topology of B. In the second case, by definition, V = U ∩ B for some U ⊆ A
which is open in A.

Proposition 4.12. Let A be a topological space, and let B ⊆ A have its subspace topology. Then
G ⊆ B is closed in B if and only if there is F ⊆ A closed in A so that G = F ∩B.

Proof. Let G ⊆ B be closed in B. Then B \G is open in B, and so B \G = U ∩B for some U
open in A. We take F = A \ U , and then G = F ∩B and F is closed in A.
The proof of the converse is similar.

4.2 Weak topology.

Proposition 4.13. Let A be a non-empty set, and let F be a non-empty collection of functions
f : A → Bf , where every Bf is a topological space with topology Sf . For every x ∈ A we
consider the collection Nx of all sets

Nx = {y ∈ A | fk(y) ∈ Vk for every k = 1, . . . , n},

with arbitrary n ∈ N, arbitrary f1, . . . , fn ∈ F , and arbitrary V1 ∈ Sf1 , . . . , Vn ∈ Sfn such that
fk(x) ∈ Vk for every k = 1, . . . , n.
Observe that x ∈ Nx.
Finally, we consider the collection

σ(A,F) = {U ⊆ A | for every x ∈ U there is Nx ∈ Nx so that Nx ⊆ U}.

Then σ(A,F) is a topology of A.
Moreover, for every x ∈ X , every Nx ∈ Nx belongs to σ(A,F).

Proof. It is easy to see that ∅ ∈ σ(A,F), and that A ∈ σ(A,F).
Let Ui ∈ σ(A,F) for every i ∈ I , and take any x ∈

∪
i∈I Ui. Then x ∈ Ui0 for some i0 ∈ I , and

so there is Nx ∈ Nx so that Nx ⊆ Ui0 ⊆
∪

i∈I Ui. Therefore
∪

i∈I Ui ∈ σ(A,F).
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Let U1, . . . , Un ∈ σ(A,F), and take any x ∈
∩n

k=1 Uk. Then x ∈ Uk for every k = 1, . . . , n, and
so there are Nx1, . . . , Nxn ∈ Nx so that Nxk ⊆ Uk for every k = 1, . . . , n. Now, it is easy to see
that

∩n
k=1Nxk ∈ Nx, and

∩n
k=1Nxk ⊆

∩n
k=1 Uk. Therefore,

∩n
k=1 Uk ∈ σ(A,F).

Finally, take any Nx ∈ Nx, i.e.

Nx = {y ∈ A | fk(y) ∈ Vk for every k = 1, . . . , n}

for some n ∈ N, some f1, . . . , fn ∈ F , and some V1 ∈ Sf1 , . . . , Vn ∈ Sfn such that fk(x) ∈ Vk

for every k = 1, . . . , n.
We take any z ∈ Nx, and then fk(z) ∈ Vk for every k = 1, . . . , n. Now, if we define Nz = Nx,
then clearly we have thatNz ∈ Nz and obviouslyNz ⊆ Nx. This implies thatNx ∈ σ(A,F).

Definition. LetA be a non-empty set, and letF be a non-empty collection of functions f : A → Bf ,
where everyBf is a topological space with topology Sf . Then the topology σ(A,F) ofA, which is
described in proposition 4.13, is called weak topology of A induced by the collection of functions
F . The elements of σ(A,F) are called weakly open subsets of A with respect to the collection of
functions F .

Definition. LetA be non-empty set, and let T1, T2 be two topologies ofA. We say that T1 isweaker
than T2 and that T2 is stronger than T1, if T1 ⊆ T2.

In other words, T1 is weaker than T2 if and only if every U ⊆ A which is open with respect to
T1 is also open with respect to T2. It is clear that T1 is weaker than T2 if and only if every F ⊆ A
which is closed with respect to T1 is also closed with respect to T2.

Proposition 4.14. Let A be a non-empty set, and let F be a non-empty collection of functions
f : A → Bf , where every Bf is a topological space with topology Sf . Then σ(A,F) is the
weakest topology of A with respect to which every f ∈ F is continuous.

Proof. We take any f ∈ F , and any x ∈ A. We consider any V ∈ Sf such that f(x) ∈ V . Then
the set Nx = {y ∈ A | f(y) ∈ V } clearly belongs to Nx. Now Nx ∈ σ(A,F), x ∈ Nx and
obviously f(Nx) ⊆ V . Hence f is continuous at every x ∈ A.
Let T be any topology of A such that every f ∈ F is continuous. We take any x ∈ A and any
Nx ∈ Nx, i.e.

Nx = {y ∈ A | fk(y) ∈ Vk for every k = 1, . . . , n}

for some n ∈ N, some f1, . . . , fn ∈ F , and some V1 ∈ Sf1 , . . . , Vn ∈ Sfn such that fk(x) ∈ Vk

for every k = 1, . . . , n. We observe that

Nx =

n∩
k=1

f−1
k (Vk).

Since each fk is continuous, we have that f−1
k (Vk) ∈ T for every k = 1, . . . , n, and henceNx ∈ T .

Now we consider any U ∈ σ(A,F). Then for every x ∈ U there isNx ∈ Nx so that x ∈ Nx ⊆ U .
This implies that U =

∪
x∈U Nx, and since Nx ∈ T for every x ∈ U , we conclude that U ∈ T .

Therefore, σ(A,F) ⊆ S .

Proposition 4.15. Let A be a non-empty set, and let F be a non-empty collection of functions
f : A → Bf , where every Bf is a topological space with topology Sf , and let A have the weak
topology σ(A,F). Consider also a topological space D and g : D → A. Then g is continuous if
and only if f ◦ g : D → Bf is continuous for every f ∈ F .

Proof. If g is continuous, then, obviously, f ◦ g : D → Bf is continuous for every f ∈ F .
Conversely, let f ◦ g : D → Bf be continuous for every f ∈ F . We take any p ∈ D and any
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U ∈ σ(A,F) such that g(p) ∈ U . Then there are f1, . . . , fn ∈ F and V1 ∈ Sf1 , . . . , Vn ∈ Sfn , so
that fk(g(p)) ∈ Vk for every k = 1, . . . , n and so that

Ng(p) = {y ∈ A | fk(y) ∈ Vk for every k = 1, . . . , n} ⊆ U.

Since each fk ◦ g is continuous, there is Pk ∈ R, where R is the topology of D, so that p ∈ Pk

and
fk(g(q)) = (fk ◦ g)(q) ∈ Vk for every q ∈ Pk.

Now, if P =
∩n

k=1 Pk, then P ∈ R, p ∈ P , and

g(q) ∈ Ng(p) ⊆ U for every q ∈ P.

Therefore g is continuous at p.

Definition. LetA be a non-empty set, andF be a non-empty collection of functions f : A → Bf . We
say that F is separating, if for every x1, x2 ∈ A, x1 ̸= x2 there is f ∈ F so that f(x1) ̸= f(x2).

Proposition 4.16. Let A be a non-empty set, and let F be a non-empty collection of functions
f : A → Bf , where every Bf is a topological space with topology Sf , and let A have the weak
topology σ(A,F). If F is separating, and if every topology Sf is Hausdorff, then σ(A,F) is
Hausdorff.

Proof. Let x1, x2 ∈ A, x1 ̸= x2. Since F is separating, there is f ∈ F so that f(x1) ̸= f(x2).
Now, since f(x1), f(x2) ∈ Bf and Sf is Hausdorff, there are V1, V2 ∈ Sf so that f(x1) ∈ V1,
f(x2) ∈ V2 and V1 ∩ V2 = ∅.
Now we consider Nx1 = {y ∈ A | f(y) ∈ V1} and Nx2 = {y ∈ A | f(y) ∈ V2}. Then x1 ∈ Nx1 ,
x2 ∈ Nx2 , and Nx1 , Nx2 ∈ σ(A,F), and Nx1 ∩Nx2 = ∅.

4.3 Product topology.

Definition. We consider a non-empty set I of indices, and a collection of sets {Ai | i ∈ I}. We
define the set ∏

i∈I
Ai =

{
x
∣∣∣x : I →

∪
i∈I

Ai so that x(i) ∈ Ai for every i ∈ I}.

This set is called cartesian product of {Ai | i ∈ I}.

Axiom of choice. If I is non-empty andAi is non-empty for every i ∈ I , then the cartesian product
of {Ai | i ∈ I} is non-empty.

Proof. We consider the set X whose elements are all the functions x : D(x) →
∪

i∈I Ai, where
D(x) is any non-empty subset of I and x(i) ∈ Ai for every i ∈ D(x).
If we choose any i0 ∈ I and any a0 ∈ Ai0 we may define the function x0 : {i0} →

∪
i∈I Ai by

x0(i0) = a0. Clearly, x0 ∈ X .
We define an order relation in X as follows. If x1, x2 ∈ X , we write x1 ≺ x2 if x2 is an extension
of x1, i.e. ifD(x1) ⊆ D(x2) and x1(i) = x2(i) for every i ∈ D(x1). It is clear that ≺ is an order
relation in X .
Let X0 be any totally ordered subset of X . We consider the set

J0 =
∪

x∈X0

D(x) ⊆ I.
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If i ∈ J0, there is x ∈ X0 so that i ∈ D(x). If i ∈ D(x′) for any other x′ ∈ X0, then, since one of
the x, x′ is an extension of the other, we get that x(i) = x′(i). So we can consider the function

x0 : J0 →
∪
i∈I

Ai

defined for every i ∈ J0 by

x0(i) = x(i) for any x ∈ X0 with i ∈ D(x).

Then D(x0) = J0 ⊆ I , and it is clear that x0 is an element of X , and that it is an extension of
every x ∈ X0. Thus, x0 is an upper bound of X0 in X .
Therefore, Zorn’s lemma implies that there is at least one maximal element x in X . This means
that x : D(x) →

∪
i∈I Ai, where D(x) ⊆ I , and x(i) ∈ Ai for every i ∈ I , and also that there is

no x′ ∈ X which is a proper extension of x.
If D(x) = I , then x is an element of the cartesian product

∏
i∈I Ai.

Assume that D(x) ̸= I . Then we take any i0 ∈ I \ D(x) and any a0 ∈ Ai0 , and we consider
the function x′ : D(x) ∪ {i0} →

∪
i∈I Ai defined so that: x′(i) = x(i) for every i ∈ D(x), and

x′(i0) = a0. Obviously, x′ ∈ X and x′ is a proper extension of x. This is a contradiction.

We proved the axiom of choice using Zorn’s lemma. It is possible to prove Zorn’s lemma using
the axiom of choice, and so the axiom of choice and Zorn’s lemma are equivalent.

Exactly as in the case of sequences, a convenient way to denote elements x of the cartesian
product

∏
i∈I Ai is

x = (xi)i∈I ,

where we denote xi the value x(i) ∈ Ai and we call it i-th coordinate or i-th term of x. If the
index set is I = {1, 2, . . . , n}, then the cartesian product is denoted

∏n
i=1Ai or A1 × · · · × An,

and its elements are denoted x = (xi)
n
i=1 or x = (x1, . . . , xn). Similarly, if the index set is

N = {1, 2, . . .}, then the cartesian product is denoted
∏+∞

i=1 Ai or A1×A2×· · · , and its elements
are denoted x = (xi)

+∞
i=1 or x = (x1, x2, . . .).

Definition. For each j ∈ I we consider the function πj :
∏

i∈I Ai → Aj defined for every x =
(xi)i∈I by

πj(x) = xj .

This function is called j-th projection.

Definition. Let I be a non-empty set of indices, and for each i ∈ I letAi be a topological space with
topology Si. We also consider the collection P = {πi | i ∈ I} of projections πj :

∏
i∈I Ai → Aj .

The weak topology σ
(∏

i∈I Ai,P
)
of

∏
i∈I Ai, is called product topology of

∏
i∈I Ai.

We recall proposition 4.13 in order to describe the product topology of
∏

i∈I Ai, i.e. the weak
topology σ

(∏
i∈I Ai,P

)
. For every x ∈

∏
i∈I Ai we consider the collection Nx of all sets

Nx =
{
y ∈

∏
i∈I

Ai

∣∣∣ yik = πik(y) ∈ Vik for every k = 1, . . . , n
}

with arbitrary n ∈ N, arbitrary i1, . . . , in ∈ I , and arbitrary Vi1 ∈ Si1 , . . . , Vin ∈ Sin such that
xik = πik(x) ∈ Vik for every k = 1, . . . , n. Then

σ
(∏

i∈I
Ai,P

)
=

{
U ⊆

∏
i∈I

Ai

∣∣∣ for every x ∈ U there is Nx ∈ Nx so that Nx ⊆ U
}
.

We also have that every set Nx belongs to the product topology σ
(∏

i∈I Ai,P
)
.

The next proposition collects all the basic results about the product topology.
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Proposition 4.17. Let I be a non-empty set of indices, and for each i ∈ I let Ai be a topological
space with topology Si.
(i) The product topology is the weakest topology of

∏
i∈I Ai with respect to which every projection

πj :
∏

i∈I Ai → Aj is continuous.
(ii) LetD be a topological space and g : D →

∏
i∈I Ai, and let

∏
i∈I Ai have its product topology.

Then g is continuous if and only if πj ◦ g : D → Aj is continuous for every j ∈ I .
(iii) If every topology Si is Hausdorff, then the product topology is Hausdorff.

Proof. (i) Direct implications of proposition 4.14.
(ii) Direct implication of proposition 4.15.
(iii) The collection P = {πi | i ∈ I} is separating. Indeed, take any x, y ∈

∏
i∈I Ai so that x ̸= y.

Then there is i ∈ I so that xi ̸= yi, i.e. πi(x) ̸= πi(y). Now the result is a direct implication of
proposition 4.16.

The theorem of Tychonov. Let I be a non-empty set of indices, and for each i ∈ I let Ai be a
topological space with topology Si. Let

∏
i∈I Ai have its product topology. If everyAi is compact,

then
∏

i∈I Ai is compact.

Proof. We shall use proposition 4.10.
We take any collection F of subsets of

∏
i∈I Ai with the finite intersection property, and we shall

prove that
∩

F∈F cl(F ) ̸= ∅.
We consider the collection

P =
{
G
∣∣∣G ⊇ F is a collection of subsets of

∏
i∈I

Ai with the finite intersection property
}
.

We also consider the order relation of set inclusion in P.
Now we take any totally ordered P0 ⊆ P, and we define

F0 =
∪
G∈P0

G.

This is a collection of subsets of
∏

i∈I Ai with the finite intersection property. Indeed, if we take
any C1, . . . , Cn ∈ F0, then C1 ∈ G1, . . . , Cn ∈ Gn for some G1, . . . ,Gn ∈ P0. Since P0 is totally
ordered, there is one of G1, . . . ,Gn which includes all the others. Thus, C1, . . . , Cn belong to one
G ∈ P0, and so

∩n
k=1Ck ̸= ∅. It is also clear that F ⊆ F0. Therefore, F0 ∈ P. Since G ⊆ F0 for

every G ∈ P0, we conclude that F0 is an upper bound of P0 in P.
According to the lemma of Zorn, P has a maximal element, i.e. there is a collection G ⊇ F
of subsets of

∏
i∈I Ai with the finite intersection property, and so that there is no strictly larger

collection with the same properties.
This implies, in particular, that every intersection of finitely many elements of G belongs to G.
Indeed, ifG is the intersection of finitely many elements of G so thatG /∈ G, then G′ = G∪{G} ⊇
F is a collection of subsets of

∏
i∈I Ai with the finite intersection property, and it is strictly larger

than G.
Now, since F ⊆ G, it is enough to prove that

∩
G∈G cl(G) ̸= ∅.

For each j ∈ I we consider the collection Gj = {πj(G) |G ∈ G} of subsets of Aj . It is easy to
see that Gj has the finite intersection property. Indeed, if we take any G1, . . . , Gn ∈ G, then there
is x ∈

∩n
k=1Gk, and so xj = πj(x) ∈

∩n
k=1 πk(Gk). Therefore, the compactness of Aj implies

that
∩

G∈G cl(πj(G)) ̸= ∅. For every j ∈ I we take any

xj ∈
∩
G∈G

cl(πj(G)),

and we consider the
x = (xi)i∈I ∈

∏
i∈I

Ai.
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We shall prove that x ∈
∩

G∈G cl(G).
Now, let Vj be any open neighborhood of xj in Aj . Since xj ∈

∩
G∈G cl(πj(G)), we have that Vj

has non-empty intersection with πj(G) for every G ∈ G. So if we take any G ∈ G, then there is
aj ∈ Vj ∩ πj(G), and so there is y ∈ G so that πj(y) = aj ∈ Vj , i.e. y ∈ π−1

j (Vj) ∩ G. Thus,
π−1
j (Vj) has non-empty intersection with every G ∈ G. This implies that G ∪ {π−1

j (Vj)} ⊇ F
is a collection of subsets of

∏
i∈I Ai with the finite intersection property. Since G is a maximal

collection with these properties, we get that π−1
j (Vj) ∈ G.

Now we take any ii, . . . , in ∈ I and any open neighborhoods Vi1 , . . . , Vin of xi1 , . . . , xin in
Ai1 , . . . , Ain . Then

∩n
k=1 π

−1
ik

(Vik) ∈ G and hence
∩n

k=1 π
−1
ik

(Vik) has non-empty intersection
with every G ∈ G.
Now, let U be any open neighborhood of x in

∏
i∈I Ai. Then there are ii, . . . , in ∈ I and open

neighborhoods Vi1 , . . . , Vin of xi1 , . . . , xin in Ai1 , . . . , Ain so that

n∩
k=1

π−1
ik

(Vik) = Cx =
{
y ∈

∏
i∈I

Ai

∣∣∣ yik = πik(y) ∈ Vik for every k = 1, . . . , n
}
⊆ U.

So every open neighborhoodU of x has non-empty intersection with everyG ∈ G. Thus x ∈ cl(G)
for every G ∈ G, and we conclude that x ∈

∩
G∈G cl(G).

4.4 Weak topologies of linear spaces.

Lemma 4.1. Let X be a linear space, and let L be a non-empty collection of linear functionals
l : X → F . We consider F with its usual euclidean topology, and X with the weak topology
σ(X,L). Then U ⊆ X is weakly open if and only if for every x ∈ U there are l1, . . . , ln ∈ L and
ϵ1, . . . , ϵn > 0 so that

Cx = {y ∈ X | |lk(y)− lk(x)| < ϵk for every k = 1, . . . , n} ⊆ U. (4.1)

Moreover, every set of the form Cx = {y ∈ X | |lk(y) − lk(x)| < ϵk for every k = 1, . . . , n} is
weakly open.

Proof. Let U ∈ σ(X,L) and x ∈ U . According to the definition of σ(X,L), as this appears in
proposition 4.13, there are l1, . . . , ln ∈ L, and open sets V1, . . . , Vn ⊆ F so that lk(x) ∈ Vk for
every k = 1, . . . , n and so that

Nx = {y ∈ X | lk(y) ∈ Vk for every k = 1, . . . , n} ⊆ U.

Then for every k = 1, . . . , n there is ϵk > 0 such that {λ ∈ F | |λ− lk(x)| < ϵk} ⊆ Vk. Thus,

Cx = {y ∈ X | |lk(y)− lk(x)| < ϵk for every k = 1, . . . , n} ⊆ Nx ⊆ U.

Conversely, assume that for every x ∈ U there are l1, . . . , ln ∈ L and ϵ1, . . . , ϵn > 0 so that (4.1)
is true. Then each Vk = {λ ∈ F | |λ− lk(x)| < ϵk} is an open subset of F containing lk(x), and
we clearly have

Nx = {y ∈ X | lk(y) ∈ Vk for every k = 1, . . . , n} = Cx ⊆ U.

So U ∈ σ(X,L).
Finally, we already noticed that

Cx = {y ∈ X | |lk(y)− lk(x)| < ϵk for every k = 1, . . . , n}
= {y ∈ X | lk(y) ∈ Vk for every k = 1, . . . , n} = Nx

where each Vk = {λ ∈ F | |λ − lk(x)| < ϵk} is an open subset of F , and so, according to
proposition 4.13, this set is weakly open.
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Proposition 4.18. LetX be a linear space, and letL be a non-empty collection of linear functionals
l : X → F . We consider F with its usual euclidean topology.
(i) σ(X,L) is the weakest topology of X with respect to which every l ∈ L is continuous.
(ii) Let D be a topological space and g : D → X , and let X have the weak topology σ(X,L).
Then g is continuous if and only if l ◦ g : D → F is continuous for every l ∈ L.
(iii) If L is separating, then σ(X,L) is Hausdorff.

Proof. (i) Direct implication of proposition 4.14.
(ii) Direct implication of proposition 4.15.
(iii) Direct implication of proposition 4.16, since F with the euclidean topology is Hausdorff.

Proposition 4.19. LetX be a linear space, and letL be a non-empty collection of linear functionals
l : X → F . We consider F with its usual euclidean topology, and X with the weak topology
σ(X,L). Then the linear space operations of addition and multiplication are continuous.

Proof. We consider addition: + : X ×X → X .
Let x1, x2 ∈ X and let x1 + x2 ∈ U , where U ∈ σ(X,L). Then there are l1, . . . , ln ∈ L and
ϵ1, . . . , ϵn > 0 so that

Cx1+x2 = {y ∈ X | |lk(y)− lk(x1 + x2)| < ϵk for every k = 1, . . . , n} ⊆ U.

We consider the sets

Cx1 =
{
y ∈ X

∣∣∣ |lk(y)− lk(x1)| <
ϵk
2

for every k = 1, . . . , n
}
,

Cx2 =
{
y ∈ X

∣∣∣ |lk(y)− lk(x2)| <
ϵk
2

for every k = 1, . . . , n
}
.

Then Cx1 , Cx2 ∈ σ(X,L) and x1 ∈ Cx1 , x2 ∈ Cx2 . Now, if y1 ∈ Cx1 , y2 ∈ Cx2 , then for every
k = 1, . . . , n we get

|lk(y1 + y2)− lk(x1 + x2)| ≤ |lk(y1)− lk(x1)|+ |lk(y2)− lk(x2)| <
ϵk
2

+
ϵk
2

= ϵk,

and hence y1 + y2 ∈ Cx1+x2 ⊆ U . Therefore, addition is continuous.
The proof that multiplication · : F × X → X is continuous is similar and we leave it as an
exercise.

Definition. Let X be a linear space equipped with a topology T . If the linear space operations
of addition and multiplication on X are continuous with respect to T , then we say that X is a
topological linear space.

Example 4.4.1. If X is a linear space equipped with the weak topology which is induced by a
non-empty collection of linear functionals inX , then X is a topological linear space.

Example 4.4.2. Every normed space X is a topological linear space.

Lemma 4.2. Let X be a linear space, and l, l1, . . . , ln : X → F be linear functionals in X . If
l(x) = 0 for every x ∈ X such that l1(x) = . . . = ln(x) = 0, then there are κ1, . . . , κn ∈ F so
that l = κ1l1 + · · ·+ κnln.

Proof. We consider the linear function L : X → Fn defined for every x ∈ X by

L(x) = (l1(x), . . . , ln(x)).

Then we consider the functionM : R(L) → F defined for every y ∈ R(L) by

M(y) = l(x) where y = L(x).
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This function is well defined, since, if y = L(x1) and y = L(x2), then l(x1) = l(x2). It is also
easy to see thatM is linear on the linear subspace R(L) of Fn.
Now, we extend M to Fn, i.e. we consider any linear functional M : Fn → F so that M(y) =
M(y) for every y ∈ R(L). Then there areκ1, . . . , κn ∈ F so that for every y = (λ1, . . . , λn) ∈ Fn

we have
M(y) = κ1λ1 + · · ·+ κnλn.

This implies

l(x) = M(L(x)) = M(L(x)) = M(l1(x), . . . , ln(x)) = κ1l1(x) + · · ·+ κnln(x)

for every x ∈ X .

Proposition 4.20. Let X be a linear space, let L be a non-empty collection of linear functionals
l : X → F , and let X have the weak topology σ(X,L). Then a linear functional l : X → F is
continuous in X if and only if l ∈ span(L).

Proof. If l ∈ span(L), i.e. if l = κ1l1+ · · ·+κnln for some κ1, . . . , κn ∈ F and some l1, . . . , ln ∈
L, then it is obvious that l is continuous in X .
Conversely, let l be continuous inX . Then l is continuous at 0 ∈ X and so there are l1, . . . , ln ∈ L
and ϵ1, . . . , ϵn > 0 so that |l(x)| < 1 for every x ∈ C0, where

C0 = {x ∈ X | |lk(x)| < ϵk for every k = 1, . . . , n}.

Now, take any x ∈ X such that l1(x) = . . . = ln(x) = 0. Then for every t > 0 we have
l1(tx) = . . . = ln(tx) = 0 and hence tx ∈ C0. Thus,

t|l(x)| = |l(tx)| < 1,

and letting t → +∞ we get l(x) = 0. Now, lemma 4.2 finishes the proof.

Proposition 4.21. Let X be a linear space, and let L be a separating collection of linear func-
tionals l : X → F . We consider the function ϕ : X →

∏
l∈L F defined for every x ∈ X by

ϕ(x) = (l(x))l∈L. Then ϕ is one-to-one in X .
IfX has the weak topology σ(X,L), and

∏
l∈L F has the product topology (where each F has the

euclidean topology), and ϕ(X) has the subspace topology, then ϕ : X → ϕ(X) is a homeomor-
phism of X onto ϕ(X).

Proof. Take any x1, x2 ∈ X with ϕ(x1) = ϕ(x2). Then ϕ(x1)l = ϕ(x2)l and hence l(x1) = l(x2)
for every l ∈ L. Since L is separating, we get x1 = x2. Thus, ϕ is one-to-one.
It remains to prove that ϕ : X → ϕ(X) and ϕ−1 : ϕ(X) → X are continuous.
If x ∈ X , then the parameters n ∈ N, l1, . . . , ln ∈ L and ϵ1, . . . , ϵn > 0 define the open neighbor-
hood

Cx = {y ∈ X | |lk(y)− lk(x)| < ϵk for every k = 1, . . . , n}

of x with respect to σ(X,L).
If z ∈

∏
l∈L F , then the same parameters define the open neighborhood

Nz =
{
w ∈

∏
l∈L

F
∣∣∣ |wlk − zlk | < ϵk for every k = 1, . . . , n

}
of z with respect to the product topology. Now, if we restrict z, w in ϕ(X) and set z = ϕ(x), w =
ϕ(y) with x, y ∈ X , we get an open neighborhood Ñz of z ∈ ϕ(X) with respect to the subspace
topology of ϕ(X). Writing

zlk = ϕ(x)lk = lk(x), wlk = ϕ(y)lk = lk(y)
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for every k = 1, . . . , n, we get

Ñz = {ϕ(y) ∈ ϕ(X) | |lk(y)− lk(x)| < ϵk for every k = 1, . . . , n}.

So Ñz = ϕ(Cx).
Take x ∈ X and V open in ϕ(X) with respect to its subspace topology so that z = ϕ(x) ∈ V .
Then there is some Ñz ⊆ V . We consider the corresponding Cx, which is an open neighborhood
of x in X with respect to σ(X,L), and then ϕ(Cx) = Ñz ⊆ V . Therefore, ϕ is continuous at x.
Take z = ϕ(x) ∈ ϕ(X) and U open in X with respect to σ(X,L) so that x = ϕ−1(z) ∈ U . Then
there is some Cx ⊆ U . We consider the corresponding Ñz , which is an open neighborhood of z
in ϕ(X) with respect to its subspace topology, and then ϕ−1(Ñz) = Cx ⊆ U . Therefore, ϕ−1 is
continuous at z.

4.5 Weak topologies of normed spaces.

If X is a normed space, then theorem 3.10 implies that the collection L = X ′ of bounded linear
functionals in X is separating. Indeed, let x1, x2 ∈ X , x1 ̸= x2. Then

0 < ∥x1 − x2∥ = max
x′∈X′,∥x′∥≤1

|x′(x1 − x2)|,

and so there is x′ ∈ X ′ such that x′(x1)− x′(x2) = x′(x1 − x2) ̸= 0.

Definition. Let X be a normed space. The topology σ(X,X ′) is called weak topology of X . A
subset of X which is open or closed or compact with respect to σ(X,X ′) is called weakly open
or weakly closed or weakly compact, respectively.

According to lemma 4.1, a basic open neighborhood of x ∈ X with respect to σ(X,X ′) is

Cx = {y ∈ X | |x′k(y)− x′k(x)| < ϵk for every k = 1, . . . , n},

where n ∈ N, x′1, . . . , x′n ∈ X ′ and ϵ1, . . . , ϵn > 0 are arbitrary.
We know the following about σ(X,X ′). All are consequences of propositions 4.18, 4.19 and

4.20.
(i) If X has the weak topology σ(X,X ′), then the linear space operations of addition and multi-
plication on X are continuous.
(ii) σ(X,X ′) is the weakest topology of X with respect to which every x′ ∈ X ′ is continuous.
(iii) Let D be a topological space and g : D → X , and let X have its weak topology σ(X,X ′).
Then g is continuous if and only if x′ ◦ g : D → F is continuous for every x′ ∈ X ′.
(iv) σ(X,X ′) is Hausdorff.
(v) IfX has its weak topology σ(X,X ′), then a linear functional l : X → F is continuous inX if
and only if l ∈ X ′.

We have exactly the same situation for X ′ and its dual X ′′. The weak topology on X ′ is
σ(X ′, X ′′). On the other hand, there is another interesting topology onX ′.

Definition. Let X be a normed space, and consider the natural embedding J : X → X ′′. Then
J(X) ⊆ X ′′ is a collection of linear functionals in X ′. The topology σ(X ′, J(X)) is called
weak∗ topology onX ′. Because of the identification ofX with J(X), the topology σ(X ′, J(X))
is traditionally denoted σ(X ′, X). A subset ofX ′ which is open or closed or compact with respect
to σ(X ′, X) is called weakly∗ open or weakly∗ closed or weakly∗ compact, respectively.

A basic open neighborhood of x′ ∈ X ′ with respect to σ(X ′, X ′′) is

Cx′ = {y′ ∈ X ′ | |x′′k(y′)− x′′k(x
′)| < ϵk for every k = 1, . . . , n},
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for arbitrary n ∈ N, x′′1, . . . , x′′n ∈ X ′′ and ϵ1, . . . , ϵn > 0.
Also, a basic open neighborhood of x′ ∈ X ′ with respect to σ(X ′, X) = σ(X ′, J(X)) is

Cx′ = {y′ ∈ X ′ | |J(xk)(y′)− J(xk)(x
′)| < ϵk for every k = 1, . . . , n}

= {y′ ∈ X ′ | |y′(xk)− x′(xk)| < ϵk for every k = 1, . . . , n},

for arbitrary n ∈ N, x1, . . . , xk ∈ X and ϵ1, . . . , ϵn > 0.
We have the following for σ(X ′, X).

(i) If X ′ has the weak∗ topology σ(X ′, X), then the linear space operations of addition and mul-
tiplication on X ′ are continuous.
(ii) σ(X ′, X) is the weakest topology ofX ′ with respect to which every x′′ ∈ J(X) is continuous.
(iii) LetD be a topological space and g : D → X ′, and letX ′ have its weak∗ topology σ(X ′, X).
Then g is continuous if and only if J(x) ◦ g : D → F is continuous for every x ∈ X .
(iv) σ(X ′, X) is Hausdorff.
(v) If X ′ has its weak∗ topology σ(X ′, X), then a linear functional l : X ′ → F is continuous in
X ′ if and only if l ∈ J(X).

The fact that σ(X ′, X) = σ(X ′, J(X)) is Hausdorff follows from proposition 4.18, since
J(X) is separating. Indeed, if x′1, x′2 ∈ X ′, x′1 ̸= x′2, then there is x ∈ X so that x′1(x) ̸= x′2(x)
and hence J(x)(x′1) ̸= J(x)(x′2).

In a normed space X we have two topologies: the weak topology and the topology which is
induced by the norm of X , which is also called strong topology on X .

InX ′ we have three topologies: the strong topology, the weak topology, and the weak∗ topol-
ogy. Clearly, ifX is reflexive, then the weak topology and the weak∗ topology ofX ′ are the same.

In X ′′ we have two topologies: the strong topology and the weak∗ topology.
The next proposition expresses the relation between the weak topology on X and the weak∗

topology on X ′′ through the natural embedding of X into X ′′. What happens is that, after the
identification of X with J(X), the weak topology of X and the weak∗ topology of J(X) (more
precisely, the restriction of the weak∗ topology of X ′′ on J(X)) are the same.

Proposition 4.22. LetX be a normed space, and let J : X → X ′′ be the natural embedding. IfX
has the weak topology, X ′′ has the weak∗ topology, and J(X) ⊆ X ′′ has the subspace topology,
then J : X → J(X) is a homeomorphism.

Proof. Take any x ∈ X . The parameters n ∈ N, x′1, . . . , x′n ∈ X ′ and ϵ1, . . . , ϵn > 0 give us the
open neighborhood

Cx = {y ∈ X | |x′k(y)− x′k(x)| < ϵk for every k = 1, . . . , n}

of x with respect to the weak topology ofX . The same parameters give us the open neighborhood

CJ(x) = {y′′ ∈ X ′′ | |y′′(x′k)− J(x)(x′k)| < ϵk for every k = 1, . . . , n}

of J(x) with respect to the weak∗ topology ofX ′′. Restricting y′′ in J(X), i.e. taking y′′ = J(y),
and writing J(x)(x′k) = x′k(x) and J(y)(x

′
k) = x′k(y), we get the open neighborhood

C̃J(x) = {J(y) ∈ J(X) | |x′k(y)− x′k(x)| < ϵk for every k = 1, . . . , n}

of J(x) with respect to the subspace topology of J(X).
It is clear that C̃J(x) = J(Cx).
Take any x ∈ X , and any V open with respect to the subspace topology of J(X) so that J(x) ∈ V .
Then there is C̃J(x) ⊆ V , and for the corresponding Cx we get J(Cx) = C̃J(x) ⊆ V . Therefore,
J is continuous at x.
Now take any z = J(x) ∈ J(X), and any U weakly open in X so that x ∈ U . Then there is
Cx ⊆ U , and for the corresponding C̃J(x) we get J−1(C̃J(x)) = Cx ⊆ U . Therefore, J−1 is
continuous at z = J(x).

101



Proposition 4.23. Let X be a normed space.
(i) xn

w→ x in X if and only if (xn) converges to x with respect to the weak topology of X .
(ii) x′n

w ∗→ x′ in X ′ if and only if (x′n) converges to x′ with respect to the weak∗ topology of X ′.

Proof. (i) Let xn
w→ x in X . We take any U ∈ σ(X,X ′) such that x ∈ U . Then there are

x′1, . . . , x
′
m ∈ X ′ and ϵ1, . . . , ϵm > 0 so that

Cx = {y ∈ X | |x′k(y)− x′k(x)| < ϵk for every k = 1, . . . ,m} ⊆ U.

Since x′(xn) → x′(x) for every x′ ∈ X ′, there is n0 so that |x′k(xn) − x′k(x)| < ϵk for every
n ≥ n0 and every k = 1, . . . ,m. This means that xn ∈ Cx ⊆ U for every n ≥ n0. So (xn)
converges to x with respect to the weak topology of X .
Conversely, let (xn) converge to x with respect to the weak topology of X . We take any x′ ∈ X ′

and the weakly open neighborhood Cx = {y ∈ X | |x′(y)− x′(x)| < ϵ} of x. Then there is n0 so
that xn ∈ Cx for every n ≥ n0, i.e. |x′(xn)−x′(x)| < ϵ for every n ≥ n0. Thus, x′(xn) → x′(x)

for every x′ ∈ X ′, and so xn
w→ x.

(ii) Similarly.

Proposition 4.24. Let X be a normed space.
(i) The weak topology of X is weaker than the strong topology of X .
(ii) The weak∗ topology of X ′ is weaker than the weak topology of X ′ and this is weaker than the
strong topology of X ′.

Proof. (i) If X has its strong topology, then every x′ ∈ X ′ is continuous. Since σ(X,X ′) is the
weakest topology of X with respect to which every x′ ∈ X ′ is continuous, we get that σ(X,X ′)
is weaker than the strong topology of X .
(ii) That σ(X ′, X ′′) is weaker than the strong topology of X ′ is an immediate consequence of (i).
Now, every x′′ ∈ X ′′ is continuous with respect to σ(X ′, X ′′). In particular, every x′′ ∈ J(X) ⊆
X ′′ is continuous with respect to σ(X ′, X ′′). Since σ(X ′, X) = σ(X ′, J(X)) is the weakest
topology of X ′ with respect to which every x′′ ∈ J(X) is continuous, we get that σ(X ′, X) is
weaker than σ(X ′, X ′′).

Proposition 4.25. Let X be a normed space.
(i) If K ⊆ X is weakly compact, then it is weakly closed and bounded.
(ii) IfK ⊆ X ′ is weakly∗ compact, then it is weakly∗ closed and, ifX is a Banach space, bounded.

Proof. (i) Since X with the topology σ(X,X ′) is Hausdorff, the weakly compact K ⊆ X is
weakly closed.
Every x′ ∈ X ′ is continuous in X , and hence in K, with respect to σ(X,X ′). Since K is weakly
compact, we get supx∈K |x′(x)| < +∞ for every x′ ∈ X ′. According to theorem 3.16, we have
that supx∈K ∥x∥ < +∞, and so K is bounded.
(ii) Similarly.

The theorem of Alaoglou. Let X be a normed space.
(i) The closed unit ball of X ′ with center 0 is weakly∗ compact.
(ii) If K ⊆ X ′ is weakly∗ closed and bounded, then it is weakly∗ compact.

Proof. (i) We apply proposition 4.21 to the space X ′ with L = J(X) ⊆ X ′′ and the induced
weak∗ topology of X ′. To do this we consider the homeomorphism

ϕ : X ′ → ϕ(X ′) ⊆
∏

J(x)∈J(X)

F =
∏
x∈X

F

defined for every x′ ∈ X ′ by

ϕ(x′) = (J(x)(x′))J(x)∈J(X) = (x′(x))x∈X .
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Let B′
= {x′ ∈ X ′ | ∥x′∥ ≤ 1} be the closed unit ball of X ′ with center 0. Then for every x ∈ X

and every x′ ∈ B
′ we have

|ϕ(x′)x| = |x′(x)| ≤ ∥x∥.

Therefore, if x′ ∈ B
′, then ϕ(x′)x ∈ {λ | |λ| ≤ ∥x∥} for every x ∈ X . Hence,

ϕ(B
′
) ⊆

∏
x∈X

{λ | |λ| ≤ ∥x∥} ⊆
∏
x∈X

F.

Now, it is enough to prove that ϕ(B′
) is a closed subset of

∏
x∈X F with respect to the product

topology. Indeed, this will imply that ϕ(B′
) is a closed subset of

∏
x∈X{λ | |λ| ≤ ∥x∥}, which is

compact by the theorem of Tychonov, and this will imply that ϕ(B′
) is compact, and hence that

B
′, a continuous image of ϕ(B′

), is weakly∗ compact.
Let κ = (κx)x∈X ∈

∏
x∈X F belong to cl(ϕ(B′

)). We take any x1, x2 ∈ X , any λ ∈ F and any
ϵ > 0, and the open neighborhood of κ:{

µ = (µx)x∈X ∈
∏
x∈X

F
∣∣∣ |µx1 − κx1 | < ϵ,|µx2 − κx2 | < ϵ,

|µx1+x2 − κx1+x2 | < ϵ, |µλx1 − κλx1 | < ϵ
}
.

Then there is x′ ∈ B
′ so that ϕ(x′) belongs to this neighborhood. This means that

|x′(x1)−κx1 | < ϵ, |x′(x2)−κx2 | < ϵ, |x′(x1+x2)−κx1+x2 | < ϵ, |x′(λx1)−κλx1 | < ϵ.

Since x′ is linear and ∥x′∥ ≤ 1, we easily prove that

|κx1+x2 − κx1 − κx2 | < 3ϵ, |κλx1 − λκx1 | < (1 + |λ|)ϵ, |κx1 | ≤ ∥x1∥+ ϵ.

Finally, since ϵ is arbitrary, we get

κx1+x2 = κx1 + κx2 , κλx1 = λκx1 , |κx1 | ≤ ∥x1∥

for every x1, x2 ∈ X and every λ ∈ F .
Now we consider x′ : X → F defined for every x ∈ X by x′(x) = κx. Then

x′(x1 + x2) = x′(x1) + x′(x2), x′(λx1) = λx′(x1), |x′(x1)| ≤ ∥x1∥

for every x1, x2 ∈ X and every λ ∈ F . This means that x′ ∈ B
′ and ϕ(x′) = κ, and so κ ∈ ϕ(B

′
).

We just proved that x ∈ ϕ(B
′
) for every x ∈ cl(ϕ(B′

)), and hence that ϕ(B′
) is closed.

(ii) Let K ⊆ X ′ be weakly∗ closed and bounded. Then there is M > 0 so that K ⊆ B
′
(0;M),

where B′
(0;M) is the closed ball of X ′ with center 0 and radiusM .

Now, B′
(0;M) is the image of B′

= B
′
(0; 1) under multiplication by M . Since multiplication is

a continuous function with respect to the weak∗ topology ofX ′ and since B′ is weakly∗ compact,
we get that B′

(0;M) is also weakly∗ compact. Then K is a weakly∗ closed subset of B′
(0;M)

and so it is weakly∗ compact.

The theorem of Mazur. Let X be a normed space, let A,B ⊆ X be convex and disjoint, and let
0 be an interior point of A, i.e. B(0;R) ⊆ A for some R > 0. Then there is x′ ∈ X ′ so that
∥x′∥ ≤ 1

R , Re(x′(a)) ≤ 1 for every a ∈ A, and Re(x′(b)) ≥ 1 for every b ∈ B. If, moreover, A is
open, then we may also have that Re(x′(a)) < 1 for every a ∈ A.
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Proof. It is obvious that the ballB(0;R) absorbsX , and soA absorbsX . If, moreover,A is open,
then A absorbs X with every a ∈ A as center.
If F = R, then theorem 3.7 implies that there is a linear functional l : X → R, l ̸= 0, and λ ∈ R
so that l(a) ≤ λ for every a ∈ A, and l(b) ≥ λ for every b ∈ B. If, moreover, A is open, then we
may also have that l(a) < λ for every a ∈ A.
Since l ̸= 0, there is x0 ∈ X so that l(x0) ̸= 0. Then both points ± R

2∥x0∥ x0 belong to B(0;R) ⊆
A, and l has opposite values at these points. This implies λ > 0.
Now, take any x ̸= 0 and any t > 1. Then ± R

t∥x∥ x ∈ B(0;R) ⊆ A, and hence

± R

t∥x∥
l(x) = l

(
± R

t∥x∥
x
)
≤ λ

and hence |l(x)| ≤ tλ
R ∥x∥. Since t > 1 is arbitrary, we get

|l(x)| ≤ λ

R
∥x∥.

This is also true for x = 0, and so l ∈ X ′ with ∥l∥ ≤ λ
R . Now we consider x′ = 1

λ l ∈ X ′ and we
have that ∥x′∥ ≤ 1

R , x
′(a) ≤ 1 for every a ∈ A, and x′(b) ≥ 1 for every b ∈ B. If, moreover, A

is open, then we may also have x′(a) < 1 for every a ∈ A.
If F = C, we consider at first X as a R-linear space. From the first part we know that there is a
R-linear functional x′0 : X → R such that ∥x′0∥ ≤ 1

R , x
′
0(a) ≤ 1 for every a ∈ A και x′0(b) ≥ 1

for every b ∈ B. Moreover, if A is open, we may also have x′0(a) < 1 for every a ∈ A.
Now, lemma 3.5 implies that there is a linear functional x′ : X → C so that Re(x′) = x′0. Then,
obviously, Re(x′(a)) ≤ 1 for every a ∈ A, and Re(x′(b)) ≥ 1 for every b ∈ B. If, moreover, A is
open, then Re(x′(a)) < 1 for every a ∈ A.
Also, for every x ∈ X there is λ ∈ C so that |λ| = 1 and |x′(x)| = λx′(x), and hence

|x′(x)| = λx′(x) = x′(λx) = Re(x′)(λx) = x′0(λx) ≤ ∥x′0∥∥λx∥ ≤ 1

R
∥x∥.

Therefore, x′ ∈ X ′ with ∥x′∥ ≤ 1
R .

Since the weak topology of a normed spaceX is weaker than its strong topology, everyK ⊆ X
which is weakly closed is also closed. The next theorem says that the converse is true for convex
setsK.

Theorem 4.1. Let X be a normed space, and K ⊆ X be convex. If K closed, then it is weakly
closed.

Proof. Let K be convex and closed. We consider any x /∈ K, and we shall prove that there is a
weakly open neighborhood of x which is disjoint fromK.
Since translations are continuous with respect to both the strong and the weak topology of X , we
may assume that x = 0. Then there is R > 0 so that B(0;R) ∩ K = ∅. The theorem of Mazur
implies that there is x′ ∈ X , so that ∥x′∥ ≤ 1

R , and Re(x′(x)) < 1 for every x ∈ B(0;R), and
Re(x′(x)) ≥ 1 for every x ∈ K. Then {x ∈ X | |x′(x)| < 1} is a weakly open neighborhood of 0
which is disjoint fromK.
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Chapter 5

Weak topologies 2

5.1 Generalities about topological spaces.

5.1.1 Open sets and closed sets.

Definition. Let A be a non-empty set, and T be a collection of subsets of A, with the properties:
(i) ∅ ∈ T , A ∈ T .
(ii) The union of any elements of T is an element of T . In other words, if Ui ∈ T for every i ∈ I ,
then

∪
i∈I Ui ∈ T .

(iii) The intersection of any finitely many elements of T is an element of T . In other words, if
U1, . . . , Un ∈ T , then

∩n
i=1 Ui ∈ T .

Then T is called topology of A, and the elements of T are called open (with respect to T ) subsets
of A. Finally, A equipped with a topology is called topological space.

IfA a topological space, then (ii) says that the union of any open subsets ofA is an open subset
of A, and (iii) says that the intersection of any finitely many open subsets of A is an open subset
of A.

Example 5.1.1. Let A be a non-empty set. Then {∅, A} is a topology of A.

Example 5.1.2. Let A be a non-empty set. Then P(A), the collection of all subsets of A, is a
topology of A.

Example 5.1.3. Let A be a metric space with metric d. Then

T = {U ⊆ A |U is open with respect to d}

is a topology in A. In this case we say that the topology T is induced by d.
To be more precise, U ⊆ A is open with respect to d if for every x ∈ U there is a radius r > 0 so
that the ball B(x, r) = {y ∈ A | d(y, x) < r} is included in U .
It is easy to see that ∅ and A are open with respect to d.
Now assume that Ui is open with respect to d for every i ∈ I , and take any x ∈

∪
i∈I Ui. Then

x ∈ Ui0 for some i0 ∈ I , and then there is r > 0 so thatB(x; r) ⊆ Ui0 . HenceB(x; r) ⊆
∪

i∈I Ui

and we have that
∪

i∈I Ui is open with respect to d.
Finally, assume that U1, . . . , Un are open with respect to d, and take any x ∈

∩n
i=1 Ui. Then for

every i = 1, . . . , n there is ri > 0 so that B(x; ri) ⊆ Ui. If we take r = min{r1, . . . , rn} > 0,
then B(x; r) ⊆ B(x; ri) ⊆ Ui for every i = 1, . . . , n, and hence B(x; r) ⊆

∩n
i=1 Ui. So

∩n
i=1 Ui

is open with respect to d.
Every ball B(x; r) is open with respect to d. Indeed, take any y ∈ B(x; r). Then d(y, x) < r, and
we consider s = r − d(y, x) > 0. Now, if z ∈ B(y; s), then

d(z, x) ≤ d(z, y) + d(y, x) < s+ d(y, x) = r

and hence z ∈ B(x; r). Thus B(y; s) ⊆ B(x; r).
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Definition. Let A be a topological space, and F ⊆ A. We say that F is closed, if A \ F is open.

Proposition 5.1. Let A be a topological space. Then
(i) ∅ and A are closed.
(ii) The intersection of any closed subsets of A is a closed subset of A.
(iii) The union of any finitely many closed subsets of A is a closed subset of A.

Proof. The proof is a trivial corollary of the definition of closed set, of the properties of open sets,
and of the laws of de Morgan for the complements of unions and intersections.

Definition. Let A be a topological space, and x ∈ A. Every open set containing x is called open
neighborhood of x.

Definition. Let A be a topological space, and M ⊆ A. Then the set
∩
{F |F ⊇ M is closed} is

called closure of M and it is denoted cl(M).

Proposition 5.2. Let A be a topological space, and M ⊆ A.
(i) cl(M) is the smallest closed subset of A which includes M .
(ii) x ∈ cl(M) if and only if U ∩M ̸= ∅ for every open neighborhood U of x.

Proof. (i) cl(M) is the intersection of closed sets which include M , and so it closed and includes
M . Also, if F is closed and includesM , then cl(M) ⊆ F . So cl(M) is the smallest closed subset
of A which includesM .
(ii) Let x ∈ cl(M), and take any open neighborhod U of x. Then A \ U is closed and, since
x /∈ A \ U , we have that cl(M) is not included in A \ U . According to (i), M is not included in
A \ U , and hence U ∩M ̸= ∅.
Conversely, assume that U ∩ M ̸= ∅ for every open neighborhood U of x. We take any closed
F ⊇ M , and then A \ F is open and (A \ F ) ∩M = ∅. Therefore, x /∈ A \ F and so x ∈ F . We
conclude that x ∈ cl(M).

Definition. Let A be a topological space with topology T , and let (xn) be a sequence in A. We say
that (xn) converges (with respect to T ) to x ∈ A, if for every open neighborhood U of x there is
n0 so that xn ∈ U for every n ≥ n0.
Then we say that x is a limit of (xn), and we write xn → x.

5.1.2 Continuous functions.

Definition. Let A,B be two topological spaces, M ⊆ A, and f : M → B.
(i) We say that f is continuous at x ∈ M if for every open V ⊆ B such that f(x) ∈ V there is
an open U ⊆ A so that x ∈ U and f(U ∩M) ⊆ V , i.e. so that x ∈ U , and f(y) ∈ V for every
y ∈ U ∩M .
(ii) We say that f is continuous in M if it is continuous at every x ∈ M .

Proposition 5.3. Let A,B be two topological spaces, M ⊆ A, and f : M → B. Then f is
continuous in M if and only if for every open V ⊆ B there is an open U ⊆ A so that f−1(V ) =
U ∩M .

Proof. Let f be continuous in M , and let V ⊆ B be open. Then for every x ∈ f−1(V ) we
have f(x) ∈ V , and so there is an open Ux ⊆ A such that x ∈ Ux and f(Ux ∩ M) ⊆ V .
Then U =

∪
x∈f−1(V ) Ux ⊆ A is open, and it is easy to see that f−1(V ) = U ∩ M . Indeed, if

y ∈ f−1(V ), then y ∈ Uy ∩M and hence y ∈ U ∩M . Also, if y ∈ U ∩M , then y ∈ Ux ∩M for
some x ∈ f−1(V ). Then f(y) ∈ V and hence y ∈ f−1(V ).
Conversely, take any x ∈ M and any open V ⊆ B so that f(x) ∈ V . Then there is an openU ⊆ A
so that f−1(V ) = U ∩M . Then x ∈ U and f(U ∩M) ⊆ V , and so f is continuous at x.
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Proposition 5.4. (i) Let A,B,C be topological spaces, M ⊆ A, N ⊆ B, f : M → N and
g : N → C. If f is continuous at x ∈ M and g is continuous at f(x) ∈ N , then g ◦ f is
continuous at x.
(ii) Let A be a topological space, M ⊆ A, f, g : M → Rn and λ ∈ R. If Rn has the topology
induced by the euclidean metric and f, g are continuous at x ∈ M , then f + g, λf are continuous
at x.

Proof. (i) Let W ⊆ C be open and (g ◦ f)(x) = g(f(x)) ∈ W . Then there is an open V ⊆ B
so that f(x) ∈ V and g(V ∩ N) ⊆ W . Then there is an open U ⊆ A so that x ∈ U and
f(U ∩M) ⊆ V . Then f(U ∩M) ⊆ V ∩N and hence

(g ◦ f)(U ∩M) = g(f(U ∩M)) ⊆ g(V ∩N) ⊆ W.

Thus g ◦ f is continuous at x.
(ii) Let V ⊆ Rn be open and f(x) + g(x) ∈ V . Then there is r > 0 so that z ∈ V for every
z ∈ Rn with ∥z − (f(x) + g(x))∥ < r. Now, there is an open U1 ⊆ A so that x ∈ U1 and
∥f(y) − f(x)∥ < r

2 for every y ∈ U1 ∩ M . Also, there is an open U2 ⊆ A so that x ∈ U2 and
∥g(y)− g(x)∥ < r

2 for every y ∈ U2 ∩M . Then U = U1 ∩ U2 ⊆ A is open, and x ∈ U , and for
every y ∈ U ∩M we have

∥(f(y) + g(y))− (f(x) + g(x))∥ ≤ ∥f(y)− f(x)∥+ ∥g(y)− g(x)∥ <
r

2
+

r

2
= r,

and hence f(y) + g(y) ∈ V . So f + g is continuous at x.
The proof for λf is similar.

Definition. Let A,B be topological spaces, and f : A → B. We say that f is a homeomorphism
of A onto B, if f is one-to-one in A and onto B, and f is continuous in A and f−1 is continuous
in B. In this case we say that A,B are homeomorphic.

If A,B are homeomorphic topological spaces, and f : A → B is a homeomorphism of A
onto B, then we may identify the two spaces: we identify every a ∈ A with the corresponding
b = f(a) ∈ B and, conversely, we identify every b ∈ B with the corresponding a = f−1(b) ∈ A.
Then every open U ⊆ A is identified with the open V = f(U) ⊆ B and, conversely, every open
V ⊆ B is identified with the open U = f−1(V ) ⊆ A.

5.1.3 Compact sets.

Definition. Let A be a topological space. We say that A is a Hausdorff topological space, if for
every x1, x2 ∈ A, x1 ̸= x2, there are disjoint open U1, U2 ⊆ A so that x1 ∈ U1 and x2 ∈ U2.

Proposition 5.5. Every metric space is Hausdorff.

Proof. If d is the metric of A and x1, x2 ∈ A, x1 ̸= x2, we take r = 1
2 d(x1, x2) > 0, and then

B(x1; r) ∩B(x2; r) = ∅. The balls B(x1; r), B(x2; r) are open with respect to d.

Proposition 5.6. Let A be a Hausdorff topological space. If a sequence in A has a limit, then this
limit is unique.

Proof. Let xn → y and xn → z. If y ̸= z, then there are disjoint open U, V ⊆ A so that y ∈ U
and z ∈ V . But then there is n0 so that xn ∈ U and xn ∈ V for every n ≥ n0, and obviously this
is impossible.

Definition. LetA be a topological space, andK ⊆ A. We say that a collection {Ui | i ∈ I} of open
subsets of A is an open cover of K, if K ⊆

∪
i∈I Ui.
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Definition. LetA be a topological space, andK ⊆ A. We say thatK is compact, if for every open
cover of K there is a finite subcover of K. More precisely, K is compact, if for every open cover
{Ui | i ∈ I} of K there are i1, . . . , in ∈ I so that {Uik | 1 ≤ k ≤ n} is also an open cover of K.

Proposition 5.7. Let A be a topological space.
(i) If K ⊆ A is compact and A is Hausdorff, then K is closed.
(ii) If K ⊆ A is compact and K ′ ⊆ K is closed, then K ′ is compact.

Proof. (i) Take any x ∈ A \ K. For every z ∈ K there are disjoint open Uz, Vz ⊆ A so that
z ∈ Uz and x ∈ Vz . Then {Uz | z ∈ K} is an open cover of K. Since K is compact, there are
z1, . . . , zn ∈ K so thatK ⊆ Uz1 ∪ · · ·∪Uzn . Then Vz1 ∩ · · ·∩Vzn is open, it is included inA\K,
and contains x. Therefore, A \K is open, and so K is closed.
(ii) Let {Ui | i ∈ I} be any open cover of K ′. Then {Ui | i ∈ I} ∪ {A \ K ′} is an open cover
of K. Since K is compact, there are i1, . . . , in ∈ I so that K ⊆

(∪n
k=1 Uik

)
∪ (A \K ′). Then

K ′ ⊆
∪n

k=1 Uik , and so K ′ is compact.

Proposition 5.8. Let A,B be topological spaces, M ⊆ A, and let f : M → B be continuous. If
K ⊆ M is compact, then f(K) is compact.

Proof. Let {Vi | i ∈ I} be any open cover of f(K), i.e. f(K) ⊆
∪

i∈I Vi. Since each Vi ⊆ B is
open and f is continuous, proposition 5.3 implies that there is a corresponding open Ui ⊆ A so
that f−1(Vi) = Ui ∩M . Then,

K ⊆ f−1
(∪

i∈I
Vi

)
=

∪
i∈I

f−1(Vi) =
∪
i∈I

(Ui ∩M) ⊆
∪
i∈I

Ui.

SinceK is compact, there are i1, . . . , in ∈ I so thatK ⊆
∪n

k=1 Uik . Then

f(K) = f(K ∩M) ⊆ f
( n∪

k=1

(Uik ∩M)
)
=

n∪
k=1

f(Uik ∩M) ⊆
n∪

k=1

Vik .

So f(K) is compact.

Proposition 5.9. Let A be a topological space, M ⊆ A, and let f : M → R be continuous. If
K ⊆ M is compact, then f has a maximum value and a minimum value in K.

Proof. According to proposition 5.8, f(K) is a compact subset of R, and hence it is closed and
bounded. Since f(K) is bounded, u = sup(f(K)) is a real number. Then for every ϵ > 0 there
is a ∈ f(K) so that a ∈ (u − ϵ] and hence u ∈ cl(f(K)). Since f(K) is closed, we conclude
that u ∈ f(K) and so u is the maximum value of f in K. The case of the minimum value is
similar.

Definition. Let A be a non-empty set, and C be a non-empty collection of subsets of A. We say that
C has the finite intersection property, if

∩n
k=1Ck ̸= ∅ for every C1, . . . , Cn ∈ C.

Proposition 5.10. Let A be a topological space, and K ⊆ A. Then K is compact if and only
if for every collection F of subsets of K with the finite intersection property we have that K ∩∩

F∈F cl(F ) ̸= ∅.

Proof. Assume that K is compact, and consider any collection F of subsets of K with the finite
intersection property. Then G = {A \ cl(F ) |F ∈ F} is a collection of open subsets of A. For
every F1, . . . , Fn ∈ F we get K ∩

∩n
k=1 Fk =

∩n
k=1 Fk ̸= ∅ and so K ∩

∩n
k=1 cl(Fk) ̸= ∅

which implies
∪n

k=1(A \ cl(Fk)) ̸= K. So there is no finite subcollection of G which is a cover
of K. Since K is compact, G is not a cover of K. Thus,

∪
F∈F (A \ cl(F )) ̸= K and this implies

K ∩
∩

F∈F cl(F ) ̸= ∅.
Now, assume that for every collection F of subsets of K with the finite intersection property we
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have that K ∩
∩

F∈F cl(F ) ̸= ∅. Take any open cover G of K. If x ∈ K, then x ∈ G0 for some
G0 ∈ G, and, since (K\G0)∩G0 = ∅, we getx /∈ cl(K\G0). Therefore,K∩

∩
G∈G cl(K\G) = ∅.

NowF = {K\G |G ∈ G} is a collection of subsets ofK which, according to our assumption, does
not have the finite intersection property. So there areG1, . . . , Gn ∈ G so that

∩n
k=1(K \Gk) = ∅,

i.e. K ⊆
∪n

k=1Gk. Therefore,K is compact.

5.2 Weak topologies of linear spaces.

Proposition 5.11. LetX be a linear space, and letL be a non-empty collection of linear functionals
l : X → F . For every x ∈ X we consider the collection Cx of all sets

Cx = {y ∈ X | |lk(y)− lk(x)| < ϵk for every k = 1, . . . , n},

with arbitrary n ∈ N, arbitrary l1, . . . , ln ∈ L, and arbitrary ϵ1, . . . , ϵn > 0.
Observe that x ∈ Cx.
Finally, we consider the collection

σ(X,L) = {U ⊆ X | for every x ∈ U there is Cx ∈ Cx so that Cx ⊆ U}.

Then σ(X,L) is a topology of X .
Moreover, for every x ∈ X , every Cx ∈ Cx belongs to σ(X,L).

Proof. It is easy to see that ∅ ∈ σ(X,L), and that X ∈ σ(X,L).
Let Ui ∈ σ(X,L) for every i ∈ I , and take any x ∈

∪
i∈I Ui. Then x ∈ Ui0 for some i0 ∈ I , and

so there is Cx ∈ Cx so that Cx ⊆ Ui0 ⊆
∪

i∈I Ui. Therefore
∪

i∈I Ui ∈ σ(X,L).
Let U1, . . . , Un ∈ σ(X,L), and take any x ∈

∩n
k=1 Uk. Then x ∈ Uk for every k = 1, . . . , n, and

so there are Cx1, . . . , Cxn ∈ Cx so that Cxk ⊆ Uk for every k = 1, . . . , n. Now, it is easy to see
that

∩n
k=1Cxk ∈ Cx, and

∩n
k=1Cxk ⊆

∩n
k=1 Uk. Therefore,

∩n
k=1 Uk ∈ σ(X,L).

Finally, take any Cx ∈ Cx, i.e.

Cx = {y ∈ X | |lk(y)− lk(x)| < ϵk for every k = 1, . . . , n}

for some n ∈ N, l1, . . . , ln ∈ L, and ϵ1, . . . , ϵn > 0.
We take any z ∈ Cx, and then

|lk(z)− lk(x)| < ϵk for every k = 1, . . . , n.

For each k = 1, . . . , n we consider δk = ϵk − |lk(z)− lk(x)| > 0. We also consider

Cz = {y ∈ X | |lk(y)− lk(z)| < δk for every k = 1, . . . , n}.

Then for every y ∈ Cz we get

|lk(y)−lk(x)| ≤ |lk(y)−lk(z)|+|lk(z)−lk(x)| < δk+|lk(z)−lk(x)| = ϵk for every k = 1, . . . , n

and hence y ∈ Cx. Therefore, Cz ⊆ Cx, and so Cx ∈ σ(X,L).

Definition. Let X be a linear space, and let L be a non-empty collection of linear functionals
l : X → F . Then the topology σ(X,L) of X , which is described in proposition 5.11, is called
weak topology of X induced by the collection of linear functionals L. The elements of σ(X,L)
are called weakly open subsets of X with respect to the collection of linear functionals L.

Proposition 5.12. LetX be a linear space, and letL be a non-empty collection of linear functionals
l : X → F . We consider X with the weak topology σ(X,L). Then the linear space operations of
addition and multiplication are continuous.
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Proof. We consider addition: + : X ×X → X .
Let x1, x2 ∈ X and let x1 + x2 ∈ U , where U ∈ σ(X,L). Then there are l1, . . . , ln ∈ L and
ϵ1, . . . , ϵn > 0 so that

Cx1+x2 = {y ∈ X | |lk(y)− lk(x1 + x2)| < ϵk for every k = 1, . . . , n} ⊆ U.

We consider the sets

Cx1 =
{
y ∈ X

∣∣∣ |lk(y)− lk(x1)| <
ϵk
2

for every k = 1, . . . , n
}
,

Cx2 =
{
y ∈ X

∣∣∣ |lk(y)− lk(x2)| <
ϵk
2

for every k = 1, . . . , n
}
.

Then Cx1 , Cx2 ∈ σ(X,L) and x1 ∈ Cx1 , x2 ∈ Cx2 . Now, if y1 ∈ Cx1 , y2 ∈ Cx2 , then for every
k = 1, . . . , n we get

|lk(y1 + y2)− lk(x1 + x2)| ≤ |lk(y1)− lk(x1)|+ |lk(y2)− lk(x2)| <
ϵk
2

+
ϵk
2

= ϵk,

and hence y1 + y2 ∈ Cx1+x2 ⊆ U . Therefore, addition is continuous.
The proof that multiplication · : F × X → X is continuous is similar and we leave it as an
exercise.

Definition. Let X be a linear space equipped with a topology T . If the linear space operations
of addition and multiplication on X are continuous with respect to T , then we say that X is a
topological linear space.

Example 5.2.1. If X is a linear space equipped with the weak topology which is induced by a
non-empty collection of linear functionals inX , then X is a topological linear space.

Example 5.2.2. Every normed space X is a topological linear space.

Definition. LetA be non-empty set, and let T1, T2 be two topologies ofA. We say that T1 isweaker
than T2 and that T2 is stronger than T1, if T1 ⊆ T2.

In other words, T1 is weaker than T2 if and only if every U ⊆ A which is open with respect to
T1 is also open with respect to T2. It is clear that T1 is weaker than T2 if and only if every F ⊆ A
which is closed with respect to T1 is also closed with respect to T2.

Proposition 5.13. LetX be a linear space, and letL be a non-empty collection of linear functionals
l : X → F . Then σ(X,L) is the weakest topology of X with respect to which every l ∈ L is
continuous.

Proof. We take any l ∈ L, x ∈ X , and ϵ > 0. Then the set

Cx = {y ∈ X | |l(y)− l(x)| < ϵ}

belongs to σ(X,L), x ∈ Cx, and we obviously have |l(y)−l(x)| < ϵ for every y ∈ Cx. Therefore,
l is continuous at x.
Now, let T be any topology of X such that every l ∈ L is continuous. We take any x ∈ X and
any Cx ∈ Cx, i.e.

Cx = {y ∈ X | |lk(y)− lk(x)| < ϵk for every k = 1, . . . , n}

for some l1, . . . , ln ∈ L and ϵ1, . . . , ϵn > 0. We observe that

Cx =

n∩
k=1

l−1
k (Vk),
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where each Vk = {λ | |λ − lk(x)| < ϵk} is open in F . Since each lk is continuous, we have that
l−1
k (Vk) ∈ T for every k = 1, . . . , n, and hence Cx ∈ T .
Now we consider any U ∈ σ(X,L). Then for every x ∈ X there is Cx ∈ Cx so that x ∈ Cx ⊆ U .
This implies that U =

∪
x∈U Cx, and, since Cx ∈ T for every x ∈ U , we conclude that U ∈ T .

In other words σ(X,L) ⊆ T .

Proposition 5.14. Let X be a linear space, let L be a non-empty collection of linear functionals
l : X → F , and letX have the weak topology σ(X,L). Consider also a topological spaceD and
g : D → X . Then g is continuous if and only if l ◦ g : D → F is continuous for every l ∈ L.

Proof. If g is continuous, then, obviously, l ◦ g : D → F is continuous for every l ∈ L.
Conversely, let l ◦ g : D → F be continuous for every l ∈ L. We take any p ∈ D and any
U ∈ σ(X,L) such that g(p) ∈ U . Then there are l1, . . . , ln ∈ L and ϵ1, . . . , ϵn > 0, so that

Cg(p) = {y ∈ X | |lk(y)− lk(g(p))| < ϵk for every k = 1, . . . , n} ⊆ U.

Since each lk ◦ g is continuous, there is Pk ∈ R, whereR is the topology ofD, so that p ∈ Pk and

|lk(g(q))− lk(g(p))| = |(lk ◦ g)(q)− (lk ◦ g)(p)| < ϵk for every q ∈ Pk.

Now, if P =
∩n

k=1 Pk, then P ∈ R, p ∈ P , and

g(q) ∈ Cg(p) ⊆ U for every q ∈ P.

Therefore g is continuous at p.

Definition. Let X be a linear space, and let L be a non-empty collection of linear functionals
l : X → F . We say that L is separating, if for every x1, x2 ∈ X , x1 ̸= x2 there is l ∈ L so that
l(x1) ̸= l(x2).

Proposition 5.15. Let X be a linear space, let L be a non-empty collection of linear functionals
l : X → F , and let X have the weak topology σ(X,L). If L is separating, then σ(X,L) is
Hausdorff.

Proof. Let x1, x2 ∈ X , x1 ̸= x2. Since L is separating, there is l ∈ L so that l(x1) ̸= l(x2). Now,
we take ϵ = |l(x1)−l(x2)|

2 > 0 and we consider the sets

Cx1 = {y ∈ X | |l(y)− l(x1)| < ϵ}, Cx2 = {y ∈ X | |l(y)− l(x2)| < ϵ}.

Then Cx1 , Cx2 ∈ σ(X,L) and x1 ∈ Cx1 , x2 ∈ Cx2 and it is easy to see that Cx1 ∩ Cx2 = ∅.

Lemma 5.1. Let X be a linear space, and l, l1, . . . , ln : X → F be linear functionals in X . If
l(x) = 0 for every x ∈ X such that l1(x) = . . . = ln(x) = 0, then there are κ1, . . . , κn ∈ F so
that l = κ1l1 + · · ·+ κnln.

Proof. We consider the linear function L : X → Fn defined for every x ∈ X by

L(x) = (l1(x), . . . , ln(x)).

Then we consider the functionM : R(L) → F defined for every y ∈ R(L) by

M(y) = l(x) where y = L(x).

This function is well defined, since, if y = L(x1) and y = L(x2), then l(x1) = l(x2). It is also
easy to see thatM is linear on the linear subspace R(L) of Fn.
Now, we extend M to Fn, i.e. we consider any linear functional M : Fn → F so that M(y) =
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M(y) for every y ∈ R(L). Then there areκ1, . . . , κn ∈ F so that for every y = (λ1, . . . , λn) ∈ Fn

we have
M(y) = κ1λ1 + · · ·+ κnλn.

This implies

l(x) = M(L(x)) = M(L(x)) = M(l1(x), . . . , ln(x)) = κ1l1(x) + · · ·+ κnln(x)

for every x ∈ X .

Proposition 5.16. Let X be a linear space, let L be a non-empty collection of linear functionals
l : X → F , and let X have the weak topology σ(X,L). Then a linear functional l : X → F is
continuous in X if and only if l ∈ span(L).

Proof. If l ∈ span(L), i.e. if l = κ1l1+ · · ·+κnln for some κ1, . . . , κn ∈ F and some l1, . . . , ln ∈
L, then it is obvious that l is continuous in X .
Conversely, let l be continuous inX . Then l is continuous at 0 ∈ X and so there are l1, . . . , ln ∈ L
and ϵ1, . . . , ϵn > 0 so that |l(x)| < 1 for every x ∈ C0, where

C0 = {x ∈ X | |lk(x)| < ϵk for every k = 1, . . . , n}.

Now, take any x ∈ X such that l1(x) = . . . = ln(x) = 0. Then for every t > 0 we have
l1(tx) = . . . = ln(tx) = 0 and hence tx ∈ C0. Thus,

t|l(x)| = |l(tx)| < 1,

and letting t → +∞ we get l(x) = 0. Now, lemma 5.1 finishes the proof.

5.3 Weak topologies of normed spaces.

If X is a normed space, then theorem 3.10 implies that the collection L = X ′ of bounded linear
functionals in X is separating. Indeed, let x1, x2 ∈ X , x1 ̸= x2. Then

0 < ∥x1 − x2∥ = max
x′∈X′,∥x′∥≤1

|x′(x1 − x2)|,

and so there is x′ ∈ X ′ such that x′(x1)− x′(x2) = x′(x1 − x2) ̸= 0.

Definition. Let X be a normed space. The topology σ(X,X ′) is called weak topology of X . A
subset of X which is open or closed or compact with respect to σ(X,X ′) is called weakly open
or weakly closed or weakly compact, respectively.

According to proposition 5.11, a basic open neighborhood of x ∈ X with respect to σ(X,X ′)
is

Cx = {y ∈ X | |x′k(y)− x′k(x)| < ϵk for every k = 1, . . . , n},
where n ∈ N, x′1, . . . , x′n ∈ X ′ and ϵ1, . . . , ϵn > 0 are arbitrary.

We know the following about σ(X,X ′). All are consequences of propositions 5.12, 5.13, 5.14,
5.15 and 5.16.
(i) IfX has its weak topology σ(X,X ′), then the linear space operations of addition and multipli-
cation on X are continuous.
(ii) σ(X,X ′) is the weakest topology of X with respect to which every x′ ∈ X ′ is continuous.
(iii) Let D be a topological space and g : D → X , and let X have its weak topology σ(X,X ′).
Then g is continuous if and only if x′ ◦ g : D → F is continuous for every x′ ∈ X ′.
(iv) σ(X,X ′) is Hausdorff.
(v) IfX has its weak topology σ(X,X ′), then a linear functional l : X → F is continuous inX if
and only if l ∈ X ′.

We have exactly the same situation for X ′ and its dual X ′′. The weak topology on X ′ is
σ(X ′, X ′′). On the other hand, there is another interesting topology onX ′.

112



Definition. Let X be a normed space, and consider the natural embedding J : X → X ′′. Then
J(X) ⊆ X ′′ is a collection of linear functionals in X ′. The topology σ(X ′, J(X)) is called
weak∗ topology onX ′. Because of the identification ofX with J(X), the topology σ(X ′, J(X))
is traditionally denoted σ(X ′, X). A subset ofX ′ which is open or closed or compact with respect
to σ(X ′, X) is called weakly∗ open or weakly∗ closed or weakly∗ compact, respectively.

A basic open neighborhood of x′ ∈ X ′ with respect to σ(X ′, X ′′) is

Cx′ = {y′ ∈ X ′ | |x′′k(y′)− x′′k(x
′)| < ϵk for every k = 1, . . . , n},

for arbitrary n ∈ N, x′′1, . . . , x′′k ∈ X ′′ and ϵ1, . . . , ϵn > 0.
Also, a basic open neighborhood of x′ ∈ X ′ with respect to σ(X ′, X) = σ(X ′, J(X)) is

Cx′ = {y′ ∈ X ′ | |J(xk)(y′)− J(xk)(x
′)| < ϵk for every k = 1, . . . , n}

= {y′ ∈ X ′ | |y′(xk)− x′(xk)| < ϵk for every k = 1, . . . , n},

for arbitrary n ∈ N, x1, . . . , xn ∈ X and ϵ1, . . . , ϵn > 0.
We have the following for σ(X ′, X).

(i) If X ′ has its weak∗ topology σ(X ′, X), then the linear space operations of addition and multi-
plication on X ′ are continuous.
(ii) σ(X ′, X) is the weakest topology ofX ′ with respect to which every x′′ ∈ J(X) is continuous.
(iii) LetD be a topological space and g : D → X ′, and letX ′ have its weak∗ topology σ(X ′, X).
Then g is continuous if and only if J(x) ◦ g : D → F is continuous for every x ∈ X .
(iv) σ(X ′, X) is Hausdorff.
(v) If X ′ has its weak∗ topology σ(X ′, X), then a linear functional l : X ′ → F is continuous in
X if and only if l ∈ J(X).

The fact that σ(X ′, X) = σ(X ′, J(X)) is Hausdorff follows from proposition 5.15, since
J(X) is separating. Indeed, if x′1, x′2 ∈ X ′, x′1 ̸= x′2, then there is x ∈ X so that x′1(x) ̸= x′2(x)
and hence J(x)(x′1) ̸= J(x)(x′2).

In a normed space X we have two topologies: the weak topology and the topology which is
induced by the norm of X , which is also called strong topology on X .

InX ′ we have three topologies: the strong topology, the weak topology, and the weak∗ topol-
ogy. Clearly, ifX is reflexive, then the weak topology and the weak∗ topology ofX ′ are the same.

In X ′′ we have two topologies: the strong topology and the weak∗ topology.

Proposition 5.17. Let X be a normed space.
(i) xn

w→ x in X if and only if (xn) converges to x with respect to the weak topology of X .
(ii) x′n

w ∗→ x′ in X ′ if and only if (x′n) converges to x′ with respect to the weak∗ topology of X ′.

Proof. (i) Let xn
w→ x in X . We take any U ∈ σ(X,X ′) such that x ∈ U . Then there are

x′1, . . . , x
′
m ∈ X ′ and ϵ1, . . . , ϵm > 0 so that

Cx = {y ∈ X | |x′k(y)− x′k(x)| < ϵk for every k = 1, . . . ,m} ⊆ U.

Since x′(xn) → x′(x) for every x′ ∈ X ′, there is n0 so that |x′k(xn) − x′k(x)| < ϵk for every
n ≥ n0 and every k = 1, . . . ,m. This means that xn ∈ Cx ⊆ U for every n ≥ n0. Thus, (xn)
converges to x with respect to the weak topology of X .
Conversely, let (xn) converge to x with respect to the weak topology of X . We take any x′ ∈ X ′

and the weakly open neighborhood Cx = {y ∈ X | |x′(y)− x′(x)| < ϵ} of x. Then there is n0 so
that xn ∈ Cx for every n ≥ n0, i.e. |x′(xn)−x′(x)| < ϵ for every n ≥ n0. Thus, x′(xn) → x′(x)

for every x′ ∈ X ′, and so xn
w→ x.

(ii) Similarly.
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Proposition 5.18. Let X be a normed space.
(i) The weak topology of X is weaker than the strong topology of X .
(ii) The weak∗ topology of X ′ is weaker than the weak topology of X ′ and this is weaker than the
strong topology of X ′.

Proof. (i) If X has its strong topology, then every x′ ∈ X ′ is continuous. Since σ(X,X ′) is the
weakest topology of X with respect to which every x′ ∈ X ′ is continuous, we get that σ(X,X ′)
is weaker than the strong topology of X .
(ii) That σ(X ′, X ′′) is weaker than the strong topology of X ′ is an immediate consequence of (i).
Now, every x′′ ∈ X ′′ is continuous with respect to σ(X ′, X ′′). In particular, every x′′ ∈ J(X) ⊆
X ′′ is continuous with respect to σ(X ′, X ′′). Since σ(X ′, X) = σ(X ′, J(X)) is the weakest
topology of X ′ with respect to which every x′′ ∈ J(X) is continuous, we get that σ(X ′, X) is
weaker than σ(X ′, X ′′).

Proposition 5.19. Let X be a normed space.
(i) If K ⊆ X is weakly compact, then it is weakly closed and bounded.
(ii) IfK ⊆ X ′ is weakly∗ compact, then it is weakly∗ closed and, ifX is a Banach space, bounded.

Proof. (i) Since X with the topology σ(X,X ′) is Hausdorff, the weakly compact K ⊆ X is
weakly closed.
Every x′ ∈ X ′ is continuous in X , and hence in K, with respect to σ(X,X ′). Since K is weakly
compact, we get supx∈K |x′(x)| < +∞ for every x′ ∈ X ′. According to theorem 3.16, we have
that supx∈K ∥x∥ < +∞, and so K is bounded.
(ii) Similarly.

The theorem of Alaoglou. Let X be a normed space.
(i) The closed unit ball of X ′ with center 0 is weakly∗ compact.
(ii) If K ⊆ X ′ is weakly∗ closed and bounded, then it is weakly∗ compact.

Proof. (i) Let B′
= {x′ ∈ X ′ | ∥x′∥ ≤ 1} be the closed unit ball of X ′ with center 0. To prove

that B′ is weakly∗ compact, we shall use proposition 5.10.
We consider any collection F of subsets of B′ with the finite intersection property, and we shall
prove that B′ ∩

∩
F∈F cl(F ) ̸= ∅. (The symbol cl(F ) means the weakly∗ closure of F .)

We consider

P = {G | G ⊇ F is a collection of subsets of B′ with the finite intersection property}.

We also consider the order relation of set inclusion in P.
Now we take any totally ordered P0 ⊆ P, and we define

F0 =
∪
G∈P0

G.

This is a collection of subsets of B′ with the finite intersection property. Indeed, if we take any
G1, . . . , Gn ∈ F0, then G1 ∈ G1, . . . , Gn ∈ Gn for some G1, . . . ,Gn ∈ P0. Since P0 is totally
ordered, there is one of G1, . . . ,Gn which includes all the others. Thus, G1, . . . , Gn belong to one
G ∈ P0, and so

∩n
k=1Gk ̸= ∅. It is also clear that F ⊆ F0. Therefore, F0 ∈ P. Since G ⊆ F0 for

every G ∈ P0, we conclude that F0 is an upper bound of P0 in P.
According to the lemma of Zorn, P has a maximal element, i.e. there is a collection G ⊇ F of
subsets of B′ with the finite intersection property, and so that there is no strictly larger collection
with the same properties.
This implies that every intersection of finitely many elements of G belongs to G. Indeed, ifG is the
intersection of finitely many elements of G so that G /∈ G, then G′ = G ∪ {G} ⊇ F is a collection
of subsets of B′ with the finite intersection property, and it is strictly larger than G.
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Now, since F ⊆ G, it is enough to prove that B′ ∩
∩

G∈G cl(G) ̸= ∅.
For each x ∈ X we consider the collection

Gx = {J(x)(G) |G ∈ G}

of subsets of F . For each G ∈ G, we have |J(x)(x′)| = |x′(x)| ≤ ∥x∥ for every x′ ∈ G (since
G ⊆ B

′), and hence J(x)(G) ⊆ {λ | |λ| ≤ ∥x∥} ⊆ F . Thus, Gx is a collection of subsets of
{λ | |λ| ≤ ∥x∥}. Now we take any G1, . . . , Gn ∈ G. Then there exists x′ ∈

∩n
k=1Gk, and so

J(x)(x′) ∈
∩n

k=1 J(x)(Gk). We conclude that Gx has the finite intersection property, and now
the compactness of {λ | |λ| ≤ ∥x∥} implies that {λ | |λ| ≤ ∥x∥} ∩

∩
G∈G cl(J(x)(G)) ̸= ∅.

For every x ∈ X we take any number

µx ∈ {λ | |λ| ≤ ∥x∥} ∩
∩
G∈G

cl(J(x)(G)).

Now, let Dx be any open neighborhood of µx in F . Since µx ∈
∩

G∈G cl(J(x)(G)), we have
that Dx has non-empty intersection with J(x)(G) for every G ∈ G. So if we take any G ∈ G,
then there is κx ∈ Dx ∩ J(x)(G), and so there is y′ ∈ G so that J(x)(y′) = κx ∈ Dx, i.e.
y′ ∈ J(x)−1(Dx) ∩ G. Thus, J(x)−1(Dx) has non-empty intersection with every G ∈ G, and,
since G ⊆ B

′, we have that J(x)−1(Dx) ∩ B
′ has non-empty intersection with every G ∈ G.

This implies that G ∪ {J(x)−1(Dx) ∩ B
′} ⊇ F is a collection of subsets of B′ with the finite

intersection property. Since G is a maximal collection with these properties, we get that

J(x)−1(Dx) ∩B
′ ∈ G.

Now we take any x1, . . . , xn ∈ X and any open neighborhoods Dx1 , . . . , Dxn of µx1 , . . . , µxn in
F . Then by the finite intersection property of G we have

( n∩
k=1

J(xk)
−1(Dxk

)
)
∩B

′
=

n∩
k=1

(
J(xk)

−1(Dxk
) ∩B

′) ̸= ∅, (5.1)

and also( n∩
k=1

J(xk)
−1(Dxk

)
)
∩G =

( n∩
k=1

(
J(xk)

−1(Dxk
) ∩B

′)) ∩G ̸= ∅ for every G ∈ G. (5.2)

Now we take any x1, x2 ∈ X and any λ ∈ F and we consider the following open neighbrhoods
of µx1 , µx2 , µx1+x2 , µλx1 in F :

Dx1 = {κ | |κ− µx1 | < ϵ}, Dx2 = {κ | |κ− µx2 | < ϵ},

Dx1+x2 = {κ | |κ− µx1+x2 | < ϵ}, Dλx1 = {κ | |κ− µλx1 | < ϵ}.

Then (5.1), applied to x1, x2, x1+x2, λx1 ∈ X and to the correspondingDx1 , Dx2 , Dx1+x2 , Dλx1 ,
implies that there is y′ ∈ B

′ so that

|y′(x1)−µx1 | < ϵ, |y′(x2)−µx2 | < ϵ, |y′(x1 +x2)−µx1+x2 | < ϵ, |y′(λx1)−µλx1 | < ϵ.

Since y′ is linear and ∥y′∥ ≤ 1, we easily prove that

|µx1+x2 − µx1 − µx2 | < 3ϵ, |µλx1 − λµx1 | < (1 + |λ|)ϵ, |µx1 | ≤ ∥x1∥+ ϵ.

Finally, since ϵ is arbitrary, we get

µx1+x2 = µx1 + µx2 , µλx1 = λµx1 , |µx1 | ≤ ∥x1∥

115



for every x1, x2 ∈ X and every λ ∈ F .
Now we consider x′ : X → F defined for every x ∈ X by x′(x) = µx. Then

x′(x1 + x2) = x′(x1) + x′(x2), x′(λx1) = λx′(x1), |x′(x1)| ≤ ∥x1∥

for every x1, x2 ∈ X and every λ ∈ F . This means that x′ ∈ B
′.

Now, consider any weakly∗ open neighborhood U of x′. Then there are x1, . . . , xn ∈ X and
ϵ1, . . . , ϵn > 0 so that

Cx′ = {y′ ∈ X ′ | |y′(xk)− x′(xk)| < ϵk for every k = 1, . . . , n} ⊆ U.

We apply (5.2) withDxk
= {κ | |κ− x′(xk)| < ϵk} = {κ | |κ− µxk

| < ϵk} for k = 1, . . . , n, and
we get

Cx′ ∩G ̸= ∅ for every G ∈ G.

Therefore, U ∩ G ̸= ∅ for every G ∈ G. Since this is true for every weakly∗ open neighborhood
U of x′, we conclude that x′ ∈ cl(G) for every G ∈ G.
Hence x′ ∈ B

′ ∩
∩

G∈G cl(G), and so B′ ∩
∩

G∈G cl(G) ̸= ∅.
(ii) Let K ⊆ X ′ be weakly∗ closed and bounded. Then there is M > 0 so that K ⊆ B

′
(0;M),

where B′
(0;M) is the closed ball of X ′ with center 0 and radiusM .

Now, B′
(0;M) is the image of B′

= B
′
(0; 1) under multiplication by M . Since multiplication is

a continuous function with respect to the weak∗ topology ofX ′ and since B′ is weakly∗ compact,
we get that B′

(0;M) is also weakly∗ compact. Then K is a weakly∗ closed subset of B′
(0;M)

and so it is weakly∗ compact.
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Chapter 6

Bounded linear operators

6.1 Bounded linear operators.

Definition. Let X,Y be two normed spaces (over the same F ), and let T : X → Y be a linear
operator. Then T is called bounded, if there is C ≥ 0 so that

∥Tx∥ ≤ C∥x∥

for every x ∈ X .

It is more precise to write ∥Tx∥Y ≤ C∥x∥X , or something similar, in order to distinguish
between the norms of the different spaces X,Y , but most of the time we shall adopt the simpler
notation.

Proposition 6.1. Let X,Y be normed spaces, and let T : X → Y be a linear operator. The
following are equivalent:
(i) T is continuous in X .
(ii) T is continuous at 0 ∈ X .
(iii) T is bounded.

Proof. Let T be continuous at 0 ∈ X . Then there is δ > 0 so that ∥T (x)∥ < 1 for every x ∈ X
with ∥x∥ < δ. Now, if x ̸= 0, then y = δ

2∥x∥ x satisfies ∥y∥ < δ and hence

∥T (x)∥ =
2∥x∥
δ

∥T (y)∥ <
2

δ
∥x∥.

The inequality ∥T (x)∥ ≤ 2
δ∥x∥ is obviously true also for x = 0, and so T is bounded.

If T is bounded, then there is C ≥ 0 so that ∥T (x)∥ ≤ C∥x∥ for every x ∈ X . So, if xn → x in
X , then

∥T (xn)− T (x)∥ = ∥T (xn − x)∥ ≤ C∥xn − x∥ → 0

and so T (xn) → T (x). Hence T is continuous in X .

Proposition 6.2. Let X,Y be normed spaces, and let T : X → Y be a linear operator. If T is
continuous, then N(T ) is closed in X .

Proof. N(T ) = T−1({0}) is the inverse image of a closed set, and so, if T is continuous in X ,
then N(T ) is closed in X .

Definition. Let X,Y be normed spaces. The set of all continuous or, equivalently, bounded linear
operators T : X → Y is denoted L(X,Y ).
If Y = X , then we denote L(X) instead of L(X,X).

If Y = F , then, obviously, L(X,F ) = X ′.
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Proposition 6.3. Let X,Y be normed spaces. Then L(X,Y ) as a function space, with the usual
addition of functions and the usual multiplication of numbers and functions, is a linear space.

Proof. If T, T1, T2 : X → Y and λ ∈ F , we consider the functions T1 + T2 : X → Y and
λT : X → Y defined for every x ∈ X by

(T1 + T2)(x) = T1(x) + T2(x), (λT )(x) = λT (x).

It is known from Linear Algebra that, if T, T1, T2 are linear operators, then T1 + T2 and λT are
also linear operators. It is also clear that, if T, T1, T2 are continuous, then T1+T2 and λT are also
continuous.

Definition. Let X,Y be normed spaces. For every T ∈ L(X,Y ) we define

∥T∥ = sup
x∈X,∥x∥≤1

∥T (x)∥.

Proposition 6.4. Let X,Y be normed spaces and let T ∈ L(X,Y ). Then ∥T∥ is the smallest
constant C which satifies the inequality ∥T (x)∥ ≤ C∥x∥ for every x ∈ X .

Proof. For every x ∈ X , x ̸= 0, we have
∥∥ x
∥x∥

∥∥ = 1, and then, by the definition of ∥T∥, we get

∥T (x)∥ =
∥∥∥T( x

∥x∥

)∥∥∥∥x∥ ≤ ∥T∥∥x∥.

The inequality ∥T (x)∥ ≤ ∥T∥∥x∥ is obviously satistied also if x = 0, and so C = ∥T∥ satisfies
the inequality ∥T (x)∥ ≤ C∥x∥ for every x ∈ X .
Conversely, let C satisfy the inequality ∥T (x)∥ ≤ C∥x∥ for every x ∈ X . Then we have
∥T (x)∥ ≤ C for every x ∈ X with ∥x∥ ≤ 1, and so ∥T∥ ≤ C.

So, if T ∈ L(X,Y ), then

∥T (x)∥ ≤ ∥T∥∥x∥ for every x ∈ X.

Also,
∥T (x)∥ ≤ C∥x∥ for every x ∈ X ⇒ ∥T∥ ≤ C.

Proposition 6.5. Let X,Y be normed spaces. The function ∥ · ∥ : L(X,Y ) → R defined above is
a norm on L(X,Y ). If Y is a Banach space, then L(X,Y ) with this norm is a Banach space.

Proof. Obviously, ∥T∥ ≥ 0 for every T ∈ L(X,Y ). It is also clear that ∥T∥ = 0 if T = 0.
If T ∈ L(X,Y ) and ∥T∥ = 0, then T (x) = 0 for every x ∈ X , and so T = 0.
For every x ∈ X and every T1, T2 ∈ L(X,Y ) we have

∥(T1 + T2)(x)∥ ≤ ∥T1(x)∥+ ∥T2(x)∥ ≤ ∥T1∥∥x∥+ ∥T2∥∥x∥ = (∥T1∥+ ∥T2∥)∥x∥.

Hence ∥T1 + T2∥ ≤ ∥T1∥+ ∥T2∥.
For every T ∈ L(X,Y ) and every λ ∈ F we have

∥λT∥ = sup
x∈X,∥x∥≤1

∥(λT )(x)∥ = sup
x∈X,∥x∥≤1

|λ|∥T (x)∥ = |λ| sup
x∈X,∥x∥≤1

∥T (x)∥ = |λ|∥T∥.

Therefore, ∥ · ∥ : L(X,Y ) → R is a norm on L(X,Y ).
Now we assume that Y is a Banach space, and we take any Cauchy sequence (Tn) in L(X,Y ).
For every x ∈ X we have

∥Tn(x)− Tm(x)∥ = ∥(Tn − Tm)(x)∥ ≤ ∥Tn − Tm∥∥x∥ → 0
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when n,m → +∞, and so (Tn(x)) is a Cauchy sequence in Y . Since Y is complete, the sequence
(Tn(x)) has a limit in Y . Now we consider the function T : X → Y defined for every x ∈ X by

T (x) = lim
n→+∞

Tn(x) ∈ Y.

Since each Tn is a linear operator, we have for every x, z ∈ X and λ ∈ F that

T (x+ z) = lim
n→+∞

Tn(x+ z) = lim
n→+∞

Tn(x) + lim
n→+∞

Tn(z) = T (x) + T (z),

T (λx) = lim
n→+∞

Tn(λx) = λ lim
n→+∞

Tn(x) = λT (x).

So T is a linear operator.
Now, there is n0 so that ∥Tn − Tm∥ ≤ 1 for every n,m ≥ n0. Hence

∥Tn(x)∥ ≤ ∥Tn(x)− Tn0(x)∥+ ∥Tn0(x)∥ ≤ ∥Tn − Tn0∥∥x∥+ ∥Tn0∥∥x∥ ≤ (1 + ∥Tn0∥)∥x∥

for every n ≥ n0 and every x ∈ X . Taking the limit when n → +∞, we find

∥T (x)∥ ≤ (1 + ∥Tn0∥)∥x∥

for every x ∈ X . So T is bounded, i.e. T ∈ L(X,Y ).
Finally, we take any ϵ > 0 and then there is n0 so that ∥Tn − Tm∥ ≤ ϵ for every n,m ≥ n0. Then

∥Tn(x)− Tm(x)∥ ≤ ∥Tn − Tm∥∥x∥ ≤ ϵ∥x∥

for every n,m ≥ n0 and every x ∈ X . Taking the limit whenm → +∞, we find

∥Tn(x)− T (x)∥ ≤ ϵ∥x∥

for every n ≥ n0 and every x ∈ X . Therefore, ∥Tn − T∥ ≤ ϵ for every n ≥ n0, and so Tn → T
in L(X,Y ).

Example 6.1.1. If T : X → Y is a linear isometry from X into Y , then ∥T∥ = 1. Indeed,

∥T∥ = sup
x∈X,∥x∥≤1

∥T (x)∥ = sup
x∈X,∥x∥≤1

∥x∥ = 1.

Example 6.1.2. Let X be an inner product space, let Y be a subspace of X with an orthogonal
complement in X , and let PY : X → X be the orthogonal projection of X onto Y . If Y ̸= {0},
then ∥PY ∥ = 1.
Indeed, for every x ∈ X we have ∥PY (x)∥ ≤ ∥x∥ and this shows that ∥PY ∥ ≤ 1. Also, for every
y ∈ Y , y ̸= 0, we have

∥y∥ = ∥PY (y)∥ ≤ ∥PY ∥∥y∥,

and so ∥PY ∥ ≥ 1. Therefore, ∥PY ∥ = 1.

Proposition 6.6. Let X,Y, Z be normed spaces, T ∈ L(X,Y ) and S ∈ L(Y, Z). Then S ◦ T ∈
L(X,Z), and ∥S ◦ T∥ ≤ ∥S∥∥T∥.

Proof. For every x ∈ X we have

∥(S ◦ T )x∥ = ∥S(T (x))∥ ≤ ∥S∥∥T (x)∥ ≤ ∥S∥∥T∥∥x∥.

So S ◦ T is bounded, and ∥S ◦ T∥ ≤ ∥S∥∥T∥.

We shall use the notation
ST instead of S ◦ T.

The next proposition is useful when it is convenient to work with a one-to-one operator.
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Proposition 6.7. LetX,Y be normed spaces, and T ∈ L(X,Y ). We consider T̃ : X/N(T ) → Y
defined for every ξ ∈ X/N(T ) by T̃ (ξ) = T (x), where x ∈ X is such that [x] = ξ. Then T̃ is a
bounded linear operator. Also, T̃ is one-to-one, R(T̃ ) = R(T ), and ∥T̃∥ = ∥T∥.

Proof. If x1, x2 ∈ X are such that [x1] = [x2] = ξ, then x1−x2 ∈ N(T ), and so T (x1)−T (x2) =
T (x1 − x2) = 0. Thus, T̃ is well defined.
If [x1] = ξ1, [x2] = ξ2, then [x1 + x2] = [x1] + [x2] = ξ1 + ξ2. Also, if [x] = ξ and λ ∈ F , then
[λx] = λ[x] = λξ. Then

T̃ (ξ1 + ξ2) = T (x1 + x2) = T (x1) + T (x2) = T̃ (ξ1) + T̃ (ξ2),

T̃ (λξ) = T (λx) = λT (x) = λT̃ (ξ).

Thus, T̃ is linear. It is also clear that R(T̃ ) = R(T ).
If [x] = ξ, we have

∥T̃ (ξ)∥ = ∥T (x)∥ ≤ ∥T∥∥x∥.

Taking the infimum over all x such that [x] = ξ, we get ∥T̃ (ξ)∥ ≤ ∥T∥∥ξ∥. So T̃ is bounded, and
∥T̃∥ ≤ ∥T∥.
Also, for every x ∈ X we take ξ = [x], and then

∥T (x)∥ = ∥T̃ (ξ)∥ ≤ ∥T̃∥∥ξ∥ ≤ ∥T̃∥∥x∥.

Hence ∥T∥ ≤ ∥T̃∥, and we conclude that ∥T̃∥ = ∥T∥.

Proposition 6.8. Let X,Y be normed spaces, and T ∈ L(X,Y ). Assume that X,Y are comple-
tions of X,Y , i.e. there are linear isometries SX : X → X and SY : Y → Y so that SX(X) is a
dense subspace of X and SY (Y ) is a dense subspace of Y . Then there is a unique T ∈ L(X,Y )
such that TSX = SY T . Also, ∥T∥ = ∥T∥.

Proof. Take any ξ ∈ X . Then there is a sequence (SX(xn)) in SX(X) such that SX(xn) → ξ in
X . Then (SX(xn)) is a Cauchy sequence and, since

∥xn − xm∥ = ∥SX(xn − xm)∥ = ∥SX(xn)− SX(xm)∥ → 0,

we have that (xn) is a Cauchy sequence in X . Now,

∥(SY T )(xn)− (SY T )(xm)∥ = ∥SY (T (xn))− SY (T (xm))∥ = ∥SY (T (xn)− T (xm))∥
= ∥T (xn)− T (xm)∥ ≤ ∥T∥∥xn − xm∥ → 0.

Thus, ((SY T )(xn)) is a Cauchy sequence in Y , and so it converges to some element of Y .
Now we consider the function T : X → Y defined for every ξ ∈ X by

T (ξ) = lim
n→+∞

(SY T )(xn).

It is easy to see that T (ξ) is well defined, i.e. that it depends on ξ and not on the sequence (xn).
Moreover, using the linearity of T, SX , SY , it is very easy to show that T is linear.
Also, for every ξ ∈ X ,

∥T (ξ)∥ = lim
n→+∞

∥(SY T )(xn)∥ = lim
n→+∞

∥T (xn)∥ ≤ lim
n→+∞

∥T∥∥xn∥ = lim
n→+∞

∥T∥∥SX(xn)∥

= ∥T∥∥ξ∥.

This says that T ∈ L(X,Y ) and ∥T∥ ≤ ∥T∥.
If ξ ∈ SX(X), then ξ = SX(x) for some x ∈ X . Then we may take the constant sequence (x) to
define T (ξ), and then

T (SX(x)) = T (ξ) = lim
n→+∞

(SY T )(x) = (SY T )(x).
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Therefore TSX = SY T .
Now, take any T ∈ L(X,Y ) such that TSX = SY T . Then for each ξ ∈ X we take, as above, a
sequence (SX(xn)) in SX(X) such that SX(xn) → ξ in X , and we get

T (ξ) = lim
n→+∞

T (SX(xn)) = lim
n→+∞

(SY T )(xn) = T (ξ).

Thus, T = T .
Finally, since SX(X) ⊆ X , we get

∥T∥ = sup
ξ∈X,∥ξ∥≤1

∥T (ξ)∥ ≥ sup
x∈X,∥SX(x)∥≤1

∥T (SX(x))∥ = sup
x∈X,∥x∥≤1

∥SY (Tx)∥

= sup
x∈X,∥x∥≤1

∥Tx∥ = ∥T∥.

Thus, ∥T∥ ≥ ∥T∥, and we conclude that ∥T∥ = ∥T∥.

The relation TSX = SY T means, of course, that

T (SX(x)) = SY (T (x))

for every x ∈ X . Now, we may “identify” X with the subspace SX(X) of X , and Y with the
subspace SY (Y ) of Y , by “identifying” every x ∈ X with the corresponding SX(x) ∈ X , and
every y ∈ Y with the corresponding SY (y) ∈ Y . Then the above relation becomes

T (x) = T (x)

for every x ∈ X . In other words, it appears as if the operator T ∈ L(X,Y ) extends the operator
T ∈ L(X,Y ).

6.2 The dual operator.

Proposition 6.9. Let X,Y be normed spaces, and T ∈ L(X,Y ). We consider T ′ : Y ′ → X ′

defined for every y′ ∈ Y ′ by
T ′(y′) = y′ ◦ T.

Then T ′ ∈ L(Y ′, X ′), and ∥T ′∥ = ∥T∥.

Proof. For every y′, y′1, y′2 ∈ Y ′ and every λ ∈ F we have

T ′(y′1) + T ′(y′2) = y′1 ◦ T + y′2 ◦ T = (y′1 + y′2) ◦ T = T ′(y′1 + y′2),

T ′(λy′) = (λy′) ◦ T = λ(y′ ◦ T ) = λT ′(y′),

and so T ′ : Y ′ → X ′ is a linear operator.
Take any y′ ∈ Y ′. Then

∥T ′(y′)∥ = ∥y′ ◦ T∥ ≤ ∥y′∥∥T∥.

Therefore, T ′ ∈ L(Y ′, X ′) and ∥T ′∥ ≤ ∥T∥.
Now we take any x ∈ X . According to theorem 3.10, there is y′ ∈ Y ′ so that ∥y′∥ ≤ 1 and
∥T (x)∥ = |y′(T (x))|. Then

∥T (x)∥ = |(y′ ◦ T )(x)| = ∥T ′(y′)(x)∥ ≤ ∥T ′(y′)∥∥x∥ ≤ ∥T ′∥∥y′∥∥x∥ ≤ ∥T ′∥∥x∥.

This implies ∥T∥ ≤ ∥T ′∥, and hence ∥T ′∥ = ∥T∥.

Definition. Let X,Y be normed spaces, and T ∈ L(X,Y ). The operator T ′ ∈ L(Y ′, X ′) defined
in proposition 6.9 is called dual of T .
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The defining relation T ′(y′) = y′ ◦ T means that

T ′(y′)(x) = y′(T (x)) for every x ∈ X, y′ ∈ Y ′.

Proposition 6.10. Let X,Y, Z be normed spaces.
(i) If T, T1, T2 ∈ L(X,Y ) and λ ∈ F , then (T1 + T2)

′ = T ′
1 + T ′

2 and (λT )′ = λT ′.
(ii) If T ∈ L(X,Y ) and S ∈ L(Y, Z), then (ST )′ = T ′S′.
(iii) I ′ = I and 0′ = 0, where I is the identity operator and 0 is the zero operator.
(iv) If T ∈ L(X,Y ) and T−1 ∈ L(Y,X), then (T ′)−1 = (T−1)′.

Proof. Exercise.

We recall the definition of A⊥. If X is a normed space, and A ⊆ X , we define

A⊥ = {x′ ∈ X ′ |x′(a) = 0 for every a ∈ A}.

Here is a similar notion.

Definition. Let X be a normed space. If A ⊆ X ′, we define

⊥A = {x ∈ X | a(x) = 0 for every a ∈ A}.

Proposition 6.11. Let X be a normed space. If A ⊆ X ′, then ⊥A is a closed subspace of X .

Proof. Exercise.

If A ⊆ X , then A⊥ ⊆ X ′. If A ⊆ X ′, then ⊥A ⊆ X .

Proposition 6.12. Let X be a normed space.
(i) If A ⊆ X , then clspan(A) = ⊥(A⊥).
(ii) If A ⊆ X ′, then clspan(A) ⊆ (⊥A)⊥.

Proof. (i) This is the content of theorem 3.11. This theorem says: x ∈ clspan(A) if and only if
x′(x) = 0 for every x′ ∈ A⊥. Equivalently: x ∈ clspan(A) if and only if x ∈ ⊥(A⊥).
(ii) Take any x′ ∈ A. Then for every x ∈ ⊥A we have x′(x) = 0, and so x′ ∈ (⊥A)⊥. Hence
A ⊆ (⊥A)⊥. Since (⊥A)⊥ is a closed subspace of X ′, we get clspan(A) ⊆ (⊥A)⊥.

Proposition 6.13. Let X,Y be normed spaces, and T ∈ L(X,Y ). Then:
(i) N(T ′) = R(T )⊥.
(ii) N(T ) = ⊥ R(T ′).
(iii) cl(R(T ′)) ⊆ N(T )⊥.
(iv) cl(R(T )) = ⊥N(T ′).
Therefore:
(v) T ′ is one-to-one if and only if R(T ) is dense in Y .
(vi) T is one-to-one if R(T ′) is dense in X ′.

Proof. (i) y′ ∈ N(T ′) if and only if T ′(y′) = 0 if and only if y′ ◦T = 0 if and only if y′(T (x)) = 0
for every x ∈ X if and only if y′ ∈ R(T )⊥.
(ii) x ∈ N(T ) if and only if T (x) = 0 if (theorem 3.10) and only if y′(T (x)) = 0 for every y′ ∈ Y ′

if and only if T ′(y′)(x) = 0 for every y′ ∈ Y ′ if and only if x ∈ ⊥ R(T ′).
(iii) Direct implication of (ii) and of (ii) of proposition 6.12.
(iv) Direct implication of (i) and of (i) of proposition 6.12.
(v) Use (i) and (iv).
(vi) Use (ii) and (iii).
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6.3 Finite dimensional spaces.

Let X,Y be two finite dimensional linear spaces, and take any basis B = {b1, . . . , bn} of X and
any basis C = {c1, . . . , cm} of Y . We know from Linear Algebra that to every linear operator
T : X → Y corresponds them× n matrix

[T ]BC = [aij ],

where the aij ∈ F are determined by the relations

T (bj) =

m∑
i=1

aijci, j = 1, . . . , n.

Conversely, everym× n matrix [aij ] determines a linear operator T : X → Y such that [T ]BC =
[aij ]. Therefore, the linear space of all linear operators T : X → Y is in a one-to-one correspon-
dence with the linear space of allm× n matrices [aij ] through the mapping T 7→ [T ]BC .

If to every x ∈ X we assign the n × 1 matrix [x]B = [λj ], where the λj are determined by
x =

∑n
j=1 λjbj , and to every y ∈ Y we assign the m × 1 matrix [y]C = [κi], where the κi are

determined by y =
∑m

i=1 κici, then

y = T (x) ⇔ [y]C = [T ]BC [x]B.

We also know that for every linear operators T, S : X → Y and every λ ∈ F we have

[λT ]BC = λ [T ]BC , [T + S]BC = [T ]BC + [S]BC .

Thus, the mapping T 7→ [T ]BC is a linear space isomorphism between the linear space of all
linear operatots T : X → Y and the linear space of allm× n matrices [aij ].

If Z is another finite dimensional linear space, with a basis D = {d1, . . . , dl}, then for every
linear operators T : X → Y and S : Y → Z we have

[ST ]BD = [S]CD[T ]BC .

Now let B′ = {b′1, . . . , b′n} be the basis of X ′ which is dual to the basis B of X . Also let
C ′ = {c′1, . . . , c′m} be the basis of Y ′ which is dual to the basis C of Y . Then the relation between
the matrices of the linear operator T : X → Y and of the dual linear operator T ′ : Y ′ → X ′ is

[T ′]C′B′ = ([T ]BC)
′,

where [aij ]′ = [aji] is the transpose matrix of [aij ].
It is obvious that, if I : X → X is the identity operator, then [I]BB = [δij ] is the unit matrix,

where δij = 1, if i = j, and δij = 0, if i ̸= j. Also, if 0 : X → Y is the zero linear operator, then
[0]BC = [0] is the zero matrix.

Finally, in the casem = n, the linear operator T : X → Y is invertible if and only if [T ]BC is
an invertible matrix, and then

([T ]BC)
−1 = [T−1]CB.

In fact, [T ]BC is an invertible matrix if and only if det([T ]BC) ̸= 0.
Everything we have said up to this point is known from Linear Algebra. Now we shall see that

every linear operator T : X → Y is bounded. We assume that X,Y have arbitrary norms, and
then for every x ∈ X with x =

∑n
j=1 λjbj we get

∥T (x)∥ =
∥∥∥ n∑

j=1

λjT (bj)
∥∥∥ ≤

n∑
j=1

|λj |∥T (bj)∥ ≤ max
1≤j≤n

∥T (bj)∥
n∑

j=1

|λj | = max
1≤j≤n

∥T (bj)∥∥x∥1

≤ c max
1≤j≤n

∥T (bj)∥∥x∥ = C ∥x∥,
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where c > 0 is a constant such that ∥x∥1 ≤ c∥x∥ for every x ∈ X , andC = c max1≤j≤n ∥T (bj)∥.
The existence of such a constant c is implied by the equivalence of the arbitrary norm ∥ · ∥ with
the 1-norm ∥ · ∥1.

If we consider the p-norm of X and the q-norm of Y , where 1 ≤ p, q ≤ +∞, then we usually
denote ∥T∥pq the norm of a linear operator T : X → Y , i.e.

∥T∥pq = sup
x∈X,∥x∥p≤1

∥T (x)∥q.

Since all norms ofX are pairwise equivalent and all norms of Y are also pairwise equivalent,
it is easy to show that all norms of L(X,Y ) are equivalent. This can also be proven in another
way. We have seen that there is a linear space isomorphism between L(X,Y ) and the linear space
Mmn of allm×nmatrices. This implies that L(X,Y ) is finite dimensional, with dimension equal
tomn. Therefore every two norms of L(X,Y ) are equivalent.

To get an idea of this kind of calculations, we shall find the exact value of the norm

∥T∥∞∞ = sup
x∈X,∥x∥∞≤1

∥T (x)∥∞

of a linear operator T : X → Y .
If [T ]BC = [aij ], then for every x =

∑n
j=1 λjbj ∈ X we have

T (x) =
n∑

j=1

λjT (bj) =
n∑

j=1

λj

( m∑
i=1

aijci

)
=

m∑
i=1

( n∑
j=1

aijλj

)
ci,

and so

∥T (x)∥∞ = max
1≤i≤m

∣∣∣ n∑
j=1

aijλj

∣∣∣ ≤ max
1≤i≤m

n∑
j=1

|aij | max
1≤j≤n

|λj | = max
1≤i≤m

n∑
j=1

|aij | ∥x∥∞.

Therefore, ∥T∥∞∞ ≤ max1≤i≤m
∑n

j=1 |aij |.
Now, there is i0 so that

n∑
j=1

|ai0j | = max
1≤i≤m

n∑
j=1

|aij |

and then we choose λ1, . . . , λn so that |λj | = 1 and ai0jλj = |ai0j | for j = 1, . . . , n. Then for the
particular x =

∑n
j=1 λjbj we have

∥x∥∞ = max
1≤j≤n

|λj | = 1

and so

∥T∥∞∞ ≥ ∥T (x)∥∞ = max
1≤i≤m

∣∣∣ n∑
j=1

aijλj

∣∣∣ ≥ ∣∣∣ n∑
j=1

ai0jλj

∣∣∣ = n∑
j=1

|ai0j | = max
1≤i≤m

n∑
j=1

|aij |.

We conclude that

∥T∥∞∞ = max
1≤i≤m

n∑
j=1

|aij |.

6.4 Hilbert spaces.

In a Hilbert space, besides the notion of dual operator, we also have the notion of adjoint operator.
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Proposition 6.14. Let X,Y be Hilbert spaces, and T ∈ L(X,Y ). Then there is T ∗ ∈ L(Y,X)
such that

⟨x, T ∗(y)⟩ = ⟨T (x), y⟩ (6.1)

for every x ∈ X , y ∈ Y . Moreover, ∥T ∗∥ = ∥T∥.

Proof. We take any y ∈ Y and we consider the function ly : X → F defined for every x ∈ X by

ly(x) = ⟨T (x), y⟩.

It is clear that ly is a linear functional in X . Also

|ly(x)| = |⟨T (x), y⟩| ≤ ∥T (x)∥∥y∥ ≤ ∥T∥∥y∥∥x∥

for every x ∈ X , and so ly ∈ X ′.
According to the theorem of F. Riesz, there is an element ofX , which we denote T ∗(y), such that
⟨x, T ∗(y)⟩ = ly(x), i.e.

⟨x, T ∗(y)⟩ = ⟨T (x), y⟩
for every x ∈ X .
Now, for every y1, y2 ∈ Y we get

⟨x, T ∗(y1 + y2)⟩ = ⟨T (x), y1 + y2⟩ = ⟨T (x), y1⟩+ ⟨T (x), y2⟩ = ⟨x, T ∗(y1)⟩+ ⟨x, T ∗(y2)⟩
= ⟨x, T ∗(y1) + T ∗(y2)⟩

for every x ∈ X . This implies T ∗(y1 + y2) = T ∗(y1) + T ∗(y2). In a similar manner we may
show that T ∗(λy) = λT ∗(y) for every y ∈ Y and every λ ∈ F . Therefore, T ∗ : Y → X is linear.
Also,

∥T ∗(y)∥2 = ⟨T ∗(y), T ∗(y)⟩ = ⟨T (T ∗(y)), y⟩ ≤ ∥T (T ∗(y))∥∥y∥ ≤ ∥T∥∥T ∗(y)∥∥y∥

and hence ∥T ∗(y)∥ ≤ ∥T∥∥y∥ for every y ∈ Y . Therefore, T ∗ is bounded, with ∥T ∗∥ ≤ ∥T∥.
Symmetrically,

∥T (x)∥2 = ⟨T (x), T (x)⟩ = ⟨x, T ∗(T (x))⟩ ≤ ∥x∥∥T ∗(T (x))∥ ≤ ∥x∥∥T ∗∥∥T (x)∥

and hence ∥T (x)∥ ≤ ∥T ∗∥∥x∥ for every x ∈ X . Thus, ∥T∥ ≤ ∥T ∗∥, and we conclude that
∥T ∗∥ = ∥T∥.

Definition. LetX,Y be Hilbert spaces, and T ∈ L(X,Y ). The operator T ∗ ∈ L(Y,X) defined in
proposition 6.14 is called adjoint of T .

Proposition 6.15. Let X,Y, Z be Hilbert spaces.
(i) If T, T1, T2 ∈ L(X,Y ) and λ ∈ F , then (T1 + T2)

∗ = T ∗
1 + T ∗

2 and (λT )∗ = λT ∗.
(ii) If T ∈ L(X,Y ), then (T ∗)∗ = T .
(iii) If T ∈ L(X,Y ) and S ∈ L(Y, Z), then (ST )∗ = T ∗S∗.
(iv) If T ∈ L(X,Y ) and T−1 ∈ L(Y,X), then (T ∗)−1 = (T−1)∗.

Proof. Exercise.

Proposition 6.16. Let X,Y be Hilbert spaces, and T ∈ L(X,Y ). Then ∥T ∗T∥ = ∥TT ∗∥ =
∥T∥2.

Proof. We have ∥T ∗T∥ ≤ ∥T ∗∥∥T∥ = ∥T∥2.
Also, for every x ∈ X ,

∥T (x)∥2 = ⟨T (x), T (x)⟩ = ⟨x, T ∗(T (x))⟩ ≤ ∥x∥∥(T ∗T )(x)∥ ≤ ∥x∥∥T ∗T∥∥x∥
= ∥T ∗T∥∥x∥2,

and so ∥T∥2 ≤ ∥T ∗T∥. Therefore, ∥T ∗T∥ = ∥T∥2.
The equality ∥TT ∗∥ = ∥T∥2 can be proved either in the same manner or by using T ∗ in the place
of T in ∥T ∗T∥ = ∥T∥2.
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To find the relation between the notions of the dual operator T ′ ∈ L(Y ′, X ′) and the adjoint
operator T ∗ ∈ L(Y,X), we consider the conjugate-linear isometries

SX : X → X ′, SY : Y → Y ′

which are defined through the theorem of F. Riesz. We recall that SX is onto X ′ and SY is onto
Y ′. The defining formulas of these isometries are

SX(z)(x) = ⟨x, z⟩ SY (w)(y) = ⟨y, w⟩

for every x, z ∈ X and every y, w ∈ Y .

Proposition 6.17. Let X,Y be Hilbert spaces. Then T ∗ = S−1
X T ′SY .

Proof. For every x ∈ X , y ∈ Y we have

SX(T ∗(y))(x) = ⟨x, T ∗(y)⟩ = ⟨T (x), y⟩ = SY (y)(T (x)) = T ′(SY (y))(x).

Thus, SX(T ∗(y)) = T ′(SY (y)) for every y ∈ Y and so SXT ∗ = T ′SY .

Definition. Let X be a Hilbert space. We say that T ∈ L(X) is self-adjoint, if T ∗ = T .

In the case of a self-adjoint operator, (6.1) states

⟨x1, T (x2)⟩ = ⟨T (x1), x2⟩

for every x1, x2 ∈ X .

Example 6.4.1. If Y is a closed subspace of a Hilbert space X , then we have the orthogonal pro-
jection PY ∈ L(X).
Now, proposition 2.15 implies that PY is self-adjoint. In fact, proposition 2.17 says that orthogo-
nal projections are exactly those operators P ∈ L(X) which are self-adjoint and satisfy P 2 = P
(where P 2 means PP = P ◦ P ).

In an inner product spaceX we have two notions of “orthogonal” setA⊥ of a setA ⊆ X . One
of the A⊥ is a subspace of X ′, exactly as in the case of a general normed space X . The other A⊥

is a subspace of X itself:
A⊥ = {x ∈ X |x ⊥ A}.

The relation between these two notions of A⊥ was determined just before proposition 3.7.
Now we shall see the analogue of proposition 6.13 for the adjoint operator.

Proposition 6.18. Let X,Y be Hilbert spaces, and T ∈ L(X,Y ). Then:
(i) N(T ∗) = R(T )⊥.
(ii) N(T ) = R(T ∗)⊥.
(iii) cl(R(T ∗)) = N(T )⊥.
(iv) cl(R(T )) = N(T ∗)⊥.
Therefore:
(v) T ∗ is one-to-one if and only if R(T ) is dense in Y .
(vi) T is one-to-one if and only if R(T ∗) is dense in X .

Proof. (i) y ∈ N(T ∗) if and only if T ∗(y) = 0 if and only if ⟨x, T ∗(y)⟩ = 0 for every x ∈ X if
and only if ⟨T (x), y⟩ = 0 for every x ∈ X if and only if y ∈ R(T )⊥.
(ii) x ∈ N(T ) if and only if T (x) = 0 if and only if ⟨T (x), y⟩ = 0 for every y ∈ Y if and only if
⟨x, T ∗(y)⟩ = 0 for every y ∈ Y if and only if x ∈ R(T ∗)⊥.
(iii) Direct implication of (ii) and of (ii) of proposition 2.12.
(iv) Direct implication of (i) and of (i) of proposition 2.12.
(v) Use (i) and (iv).
(vi) Use (ii) and (iii).
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If X is a finite dimensional Hilbert space, and B = {b1, . . . , bn} is a basis of X , we consider
the n× n matrix

[T ]BB = [aij ].

Then the corresponding n× n matrix of T ∗ is

[T ∗]BB = ([T ]BB)
∗ = [aij ]

∗,

where [aij ]∗ = [aji] is the conjugate-transpose matrix of [aij ].

6.5 Normed algebras. The normed algebra L(X).

Definition. The linear spaceX over F is called algebra over F , if, besides the (internal) operation
of addition of elements of X and the (external) operation of multiplication of numbers in F with
elements of X , there is also an (internal) operation of multiplication of elements of X , which to
every (x, y) ∈ X ×X assigns the product xy ∈ X , so that
(i) (xy)z = x(yz) for every x, y, z ∈ X ,
(ii) x(y + z) = xy + xz and (x+ y)z = xz + yz for every x, y, z ∈ X ,
(iii) (λx)y = x(λy) = λ(xy) for every λ ∈ F and every x, y ∈ X .
If there is some e ∈ X \ {0} so that
(iv) ex = xe = x for every x ∈ X ,
then e is called unit of the algebra X , and X is called algebra with unit.
Also, if
(v) xy = yx for every x, y ∈ X ,
then X is called commutative algebra.
If the algebra X has a unit, and if for any x ∈ X , x ̸= 0, there is some x−1 ∈ X so that
xx−1 = x−1x = e, then x is called invertible, and x−1 is called inverse of x.

It is very easy to prove that x0 = 0x = 0 for every x ∈ X , where 0 is the zero element of
X . Also, if the algebra X has a unit, then this is unique. Moreover, if some element of X has
an inverse, then this is unique. Finally, if x, y ∈ X are invertible, then xy is also invertible, and
(xy)−1 = y−1x−1.

Definition. LetX be an algebra. If ∥ · ∥ is a norm on the linear spaceX such that ∥xy∥ ≤ ∥x∥∥y∥
for every x, y ∈ X , then X is called normed algebra. If, moreover, X is complete, then X is
called Banach algebra.
If the normed algebra X has a unit e, and ∥e∥ = 1, then X is called normed algebra with unit.

Example 6.5.1. In the space l∞ we consider the operation of multiplication defined for every x =
(λk), y = (κk) ∈ l∞ by

xy = (λkκk).

It is easy to see that l∞ with this multiplication is a commutative algebra with unit. The unit e is
the constant sequence (1). Moreover, l∞ is a normed algebra, since

∥xy∥∞ = sup
k∈N

|λkκk| ≤ sup
k∈N

|λk| sup
k∈N

|κk| = ∥x∥∞∥y∥∞

and ∥e∥∞ = supk∈N |1| = 1.

Example 6.5.2. In L∞ = L∞(Ω) = L∞(Ω,Σ, µ) we consider the standard operation of multipli-
cation of functions: the product of essentially bounded functions is an essentially bounded function.
Then L∞ is a commutative algebra with unit. Its unit is the constant function 1. Moreover, L∞ is
a normed algebra, since

∥fg∥∞ = ess-sup |fg| ≤ ess-sup |f | ess-sup |g| = ∥f∥∞∥g∥∞

and ∥1∥∞ = ess-sup |1| = 1.
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Example 6.5.3. The spaces B(A) and BC(A) are normed algebras with unit. As in the previous
example, multiplication in these spaces is the standard multiplication of functions, and we have

∥fg∥u = sup
x∈A

|f(x)g(x)| ≤ sup
x∈A

|f(x)| sup
x∈A

|g(x)| = ∥f∥u∥g∥u

and ∥1∥u = supx∈A |1| = 1.

Example 6.5.4. A more interesting example is the normed space l1(Z). This is a variant of the
usual space l1 = l1(N), and it is the set of all double-sided sequences x = (λk) = (λk)k∈Z with
the 1-norm, which is defined by

∥x∥1 =
∑
k∈Z

|λk| =
+∞∑
−∞

|λk|.

Addition and multiplication by numbers are defined in l1(Z) exactly as in l1 = l1(N). With its
1-norm, l1(Z) is a Banach space.
Now, we define an operation in l1(Z) as follows. For any x = (λk), y = (κk) ∈ l1(Z) and any
k ∈ Z we define

µk =
∑
m∈Z

λk−mκm. (6.2)

Then∑
k∈Z

|µk| ≤
∑
k∈Z

( ∑
m∈Z

|λk−m||κm|
)
=

∑
m∈Z

(∑
k∈Z

|λk−m|
)
|κm| =

∑
m∈Z

(∑
k∈Z

|λk|
)
|κm|

=
∑
k∈Z

|λk|
∑
m∈Z

|κm| = ∥x∥1∥y∥1 < +∞.
(6.3)

Hence the sequence (µk) is in l1(Z).

Definition. We denote the sequence (µk), defined by (6.2), by the symbol x ∗ y and we call it con-
volution of x, y:

x ∗ y = (µk).

So we have defined the operation of convolution in l1(Z), and it is easy to show the properties:

(x ∗ y) ∗ z = x ∗ (y ∗ z), x ∗ (y + z) = x ∗ y + x ∗ z, (x+ y) ∗ z = x ∗ z + y ∗ z,

(λx) ∗ y = x ∗ (λy) = λ(x ∗ y), x ∗ y = y ∗ x

for every λ ∈ F and every x, y, z ∈ l1(Z). This means that l1(Z) is a commutative algebra, with
convolution as the operation of multilication. This algebra has a unit: the sequence e = (δk),
which is defined by δk = 1, if k = 0, and δk = 0, if k ̸= 0, satisfies

e ∗ x = x ∗ e = x

for every x ∈ l1(Z).
Now, (6.3) says that the norm of l1(Z) satisfies

∥x ∗ y∥1 ≤ ∥x∥1∥y∥1

for every x, y ∈ l1(Z). Also
∥e∥1 =

∑
k∈Z

|δk| = 1.

Therefore, l1(Z) is a commutative Banach algebra with unit.
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Example 6.5.5. Another interesting example is the normed space L1 = L1(Ω) = L1(Ω,Σ, µ).
We define an operation in L1 as follows. For any f, g ∈ L1 one can show that the function
f(x − y)g(y) is measurable with respect to the product σ-algebra Σ × Σ in Ω × Ω. Tonelli’s
theorem implies∫∫

Ω×Ω
|f(x− y)g(y)| d(µ× µ)(x, y) =

∫
Ω

(∫
Ω
|f(x− y)||g(y)| dµ(x)

)
dµ(y)

=

∫
Ω

(∫
Ω
|f(x− y)| dµ(x)

)
|g(y)| dµ(y) =

∫
Ω

(∫
Ω
|f(x)| dµ(x)

)
|g(y)| dµ(y)

=

∫
Ω
|f(x)| dµ(x)

∫
Ω
|g(y)| dµ(y) = ∥f∥1∥g∥1 < +∞.

(6.4)

Now, Fubini’s theorem implies that the function f(x − y)g(y) is integrable with respect to the
product σ-algebra Σ×Σ in Ω×Ω, that for µ-a.e. x ∈ Ω the function f(x− y)g(y) (as a function
of y) is in L1(Ω), that the function ∫

Ω
f(x− y)g(y) dµ(y),

as a function of x, is in L1(Ω), and that∫
Ω

∣∣∣ ∫
Ω
f(x− y)g(y) dµ(y)

∣∣∣ dµ(x) ≤ ∫
Ω

(∫
Ω
|f(x− y)||g(y)| dµ(y)

)
dµ(x)

=

∫
Ω

(∫
Ω
|f(x− y)||g(y)| dµ(x)

)
dµ(y) = ∥f∥1∥g∥1,

(6.5)

where the last equality comes from (6.4).

Definition. For every f, g ∈ L1 we define the function

(f ∗ g)(x) =
∫
Ω
f(x− y)g(y) dµ(y) for µ-a.e. x ∈ Ω.

The function f ∗ g is called convolution of f, g.

We saw that f ∗ g ∈ L1 and (6.5) says that

∥f ∗ g∥1 ≤ ∥f∥1∥g∥1.

It is relatively easy to show the properties:

(f ∗ g) ∗ h = f ∗ (g ∗ h), f ∗ (g + h) = f ∗ g + f ∗ h, (f + g) ∗ h = f ∗ h+ g ∗ h,

(λf) ∗ g = f ∗ (λg) = λ(f ∗ g), f ∗ g = g ∗ f

for every λ ∈ F and every f, g, h ∈ L1. This means that L1 is a commutative algebra, with
convolution as the operation of multilication. It can be proved that, in general, the algebra L1 does
not have a unit.
We conclude that L1 is a commutative Banach algebra.

The last example is the most important for us in this course.

Example 6.5.6. Let X be a normed space. We know that L(X) = L(X,X) is a normed space,
and that, if X is a Banach space, then L(X) is also a Banach space. We have seen in proposition
6.6 that, if we denote ST the composition S ◦ T of S, T ∈ L(X), then ST ∈ L(X) and

∥ST∥ ≤ ∥S∥∥T∥.
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One can easily prove the properties

(TS)R = T (SR), T (S +R) = TS + TR, (T + S)R = TR+ SR,

(λT )S = T (λS) = λ(TS).

Therefore, L(X) is a normed algebra with composition as the operation of multiplication. The unit
of multiplication in L(X) is the identity operator I : X → X , and this satisfies ∥I∥ = 1. The
algebra L(X), in general, is not commutative.
Regarding the notion of invertibility, we must be careful. By definition, T ∈ L(X) is invertible,
if there is T−1 ∈ L(X) so that TT−1 = T−1T = I . The equality TT−1 = T−1T = I , by itself,
is equivalent to the function T being one-to-one in X and onto X , and then T−1 is the mapping
which is inverse to T . We also know from Linear Algebra that the linearity of T automatically
implies the linearity of T−1. But when we write T ∈ L(X) and T−1 ∈ L(X) we also mean that
T and T−1 are bounded. Now, the boundedness of T does not imply the boundedness of T−1. In
other words, for T ∈ L(X), the invertibility of T as a mapping is not equivalent to its invertibility
as an element of L(X). In the context of Functional Analysis, when we say that T ∈ L(X) is
invertible we mean that T is invertible as an element of L(X), i.e. that T is one-to-one in X and
onto X , and the inverse linear operator T−1 is bounded.

A little later, in the open mapping theorem, we shall prove that, if X is a Banach space, then
for every T ∈ L(X) which is invertible as a mapping, i.e. which is one-to-one in X and onto Y ,
T−1 is automatically bounded, and hence T is an invertible element of L(X).

In the algebra L(X) we use the notations

T 0 = I, T k = T ◦ · · · ◦ T︸ ︷︷ ︸
k

when k ∈ N.

Also, if T is invertible and T−1 ∈ L(X), we write

T−k = (T−1)k when k ∈ N.

6.6 The uniform boundedness principle.

Theorem 6.1. Let X be a Banach space, Y be a normed space, and let F ⊆ L(X,Y ). If
supT∈F ∥T (x)∥ < +∞ for every x ∈ X , then supT∈F ∥T∥ < +∞.

Proof. According to the uniform boundedness principle, there is a non-empty open U ⊆ X and a
M ≥ 0 so that ∥T (x)∥ ≤ M for every T ∈ F and every x ∈ U . We take any x0 ∈ U and then
there is R > 0 so that B(x0;R) ⊆ U . So we have that ∥T (x)∥ ≤ M for every T ∈ F and every
x ∈ B(x0;R).
Now we take any T ∈ F , any x ̸= 0 and any t > 1. Then x0 ∈ B(x0;R) and x0 +

R
t∥x∥ x ∈

B(x0;R). Hence

∥T (x)∥ =
t∥x∥
R

∥∥∥T( R

t∥x∥
x
)∥∥∥ =

t∥x∥
R

∥∥∥T(x0 + R

t∥x∥
x
)
− T (x0)

∥∥∥ ≤ t∥x∥
R

2M.

Since t > 1 is arbitrary, we get

∥T (x)∥ ≤ 2M

R
∥x∥.

This is true also for x = 0, and hence ∥T∥ ≤ 2M
R for every T ∈ F .

Theorem 6.2. Let X be a Banach space, Y be a normed space, and let F ⊆ L(X,Y ). If
supT∈F |y′(T (x))| < +∞ for every x ∈ X and every y′ ∈ Y ′, then supT∈F ∥T∥ < +∞.

Proof. Theorem 3.16 implies that supT∈F ∥Tx∥ < +∞ for every x ∈ X , and then theorem 6.1
finishes the proof.

130



6.7 The open mapping theorem.

Lemma 6.1. Let X be a Banach space, Y be a normed space, and let T ∈ L(X,Y ) and K > 0.
If {y ∈ Y | ∥y∥ < 1} ⊆ cl({T (x) | ∥x∥ < K}), then {y ∈ Y | ∥y∥ < 1} ⊆ {T (x) | ∥x∥ < 2K},
and T is onto Y .

Proof. Using {y ∈ Y | ∥y∥ < 1} ⊆ cl({T (x) | ∥x∥ < K}), we easily get

{y ∈ Y | ∥y∥ < r} ⊆ cl({T (x) | ∥x∥ < rK}) (6.6)

for every r > 0. Indeed, take any y ∈ Y with ∥y∥ < r. Then ∥1
r y∥ < 1 and so there is a sequence

(xn) in X so that ∥xn∥ < K for every n and T (xn) → 1
r y. Then the sequence (rxn) satisfies

∥rxn∥ < rK for every n and T (rxn) = rT (xn) → y.
Now, take any y ∈ Y with ∥y∥ < 1. Then (6.6) with r = 1 implies that there is x1 ∈ X so that

∥x1∥ < K, ∥y − T (x1)∥ <
1

2
.

Then (6.6) with r = 1
2 implies that there is x2 ∈ X so that

∥x2∥ <
K

2
, ∥y − T (x1)− T (x2)∥ <

1

22
.

Then, similarly, there is x3 ∈ X so that

∥x3∥ <
K

22
, ∥y − T (x1)− T (x2)− T (x3)∥ <

1

23
.

Continuing inductively, we see that for every k there is xk ∈ X so that

∥xk∥ <
K

2k−1
, ∥y − T (x1)− · · · − T (xk)∥ <

1

2k
.

Since
∑+∞

k=1 ∥xk∥ < +∞, the series
∑+∞

k=1 xk converges in X , and we consider

x =
+∞∑
k=1

xk.

Then

∥x∥ ≤
+∞∑
k=1

∥xk∥ <

+∞∑
k=1

K

2k−1
= 2K.

Moreover, by the continuity of T , we have

y = lim
k→+∞

k∑
j=1

T (xj) = lim
k→+∞

T
( k∑

j=1

xj

)
= T

(
lim

k→+∞

k∑
j=1

xk

)
= T (x).

The open mapping theorem. LetX,Y be Banach spaces, and let T ∈ L(X,Y ) be onto Y . Then
(i) there is M > 0 so that {y ∈ Y | ∥y∥ < 1} ⊆ {T (x) | ∥x∥ < M}.
(ii) T (U) is open in Y for every U open in X .
(ii) if T is one-to-one in X , then T−1 ∈ L(X,Y ).
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Proof. (i) Since T is onto Y , we have Y =
∪+∞

m=1{T (x) | ∥x∥ < m}, and hence

Y =

+∞∪
m=1

cl({T (x) | ∥x∥ < m}).

The theorem of Baire implies that there is m0 so that cl({T (x) | ∥x∥ < m0}) has non-empty
interior in Y . So there are y0 ∈ Y and R > 0 such that

{y ∈ Y | ∥y − y0∥ < R} ⊆ cl({T (x) | ∥x∥ < m0}).

Now take any y ∈ Y with ∥y∥ < 1. Then Ry + y0 is in {y ∈ Y | ∥y − y0∥ < R} and so
there is a sequence (xn) so that ∥xn∥ < m0 for every n and T (xn) → Ry + y0. Also, y0 is in
{y ∈ Y | ∥y − y0∥ < R}, and so there is a sequence (x0n) so that ∥x0n∥ < m0 for every n and
T (x0n) → y0. Then

T
( 1

R

(
xn − x0n

))
=

1

R
T (xn − x0n) =

1

R

(
T (xn)− T (x0n)

)
→ y

and ∥ 1
R (xn − x0n)∥ < 2m0

R for every n. Therefore

{y ∈ Y | ∥y∥ < 1} ⊆ cl({T (x) | ∥x∥ < K}),

whereK = 2m0
R .

Now, lemma 6.1 implies that

{y ∈ Y | ∥y∥ < 1} ⊆ {T (x) | ∥x∥ < 2K},

and this shows (i) with M = 2K.
(ii) Take any open U ⊆ X , and any y0 = T (x0) ∈ T (U) with x0 ∈ U . Then there is r > 0 so that

{x ∈ X | ∥x− x0∥ < r} ⊆ U.

Let ∥y − y0∥ < r
M . Then M

r (y − y0) is in {y ∈ Y | ∥y∥ < 1} and so (i) implies that there is
x ∈ X so that ∥x∥ < M and T (x) = M

r (y − y0). Then

y = T
( r

M
x
)
+ y0 = T

( r

M
x+ x0

)
and r

M x+ x0 is in {x | ∥x− x0∥ < r}. Therefore,{
y ∈ Y

∣∣∣ ∥y − y0∥ <
r

M

}
⊆ {T (x) | ∥x− x0∥ < r} ⊆ T (U)

and so T (U) is open.
(iii) Let T be one-to-one in X . Then T−1 : Y → X is defined and it is a linear operator.
Now, for any y ∈ Y with y ̸= 0 and any t > 1 we have that 1

t∥y∥ y is in {y ∈ Y | ∥y∥ < 1}, and (i)
implies that there is x ∈ X so that ∥x∥ < M and 1

t∥y∥ y = T (x). Thus

∥T−1(y)∥ = t∥y∥∥x∥ < Mt∥y∥.

Since t > 1 is arbitrary, we get ∥T−1(y)∥ ≤ M∥y∥. This is also true for y = 0, and we conclude
that ∥T−1(y)∥ ≤ M∥y∥ for every y ∈ Y .
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6.8 The closed graph theorem.

Definition. Let X,Y be normed spaces, and let T : X → Y be a linear operator. We say that T
is closed if for every sequence (xn) in X such that xn → x in X and T (xn) → y in Y it follows
that T (x) = y.

If X,Y are linear spaces, then we know from Linear Algebra that their direct sum

X ⊕ Y = {(x, y) |x ∈ X, y ∈ Y }

is their cartesian product, equipped with the linear space operations

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), λ (x, y) = (λx, λy).

Definition. Let X,Y be normed spaces. We consider ∥ · ∥ : X ⊕ Y → R defined for every
(x, y) ∈ X ⊕ Y by

∥(x, y)∥ = ∥x∥+ ∥y∥.

It would be more precise to write ∥(x, y)∥ = ∥x∥X + ∥y∥Y , or something similar, since the
spaces X,Y may not have the same norm. But we ignore this, keeping the simpler notation.

Proposition 6.19. LetX,Y be normed spaces. Then the function ∥ ·∥ defined onX⊕Y is a norm.
Moreover, if X,Y are Banach spaces, then X ⊕ Y is a Banach space.

Proof. Exercise.

Definition. If f : A → B, then the set G(f) = {(a, f(a)) | a ∈ A} ⊆ A×B is called graph of f .

It is trivial to show that, if X,Y are linear spaces and T : X → Y is a linear operator, then
G(T ) is a linear subspace of X ⊕ Y .

Lemma 6.2. Let X,Y be normed spaces, and T : X → Y be a linear operator. Then T is closed
if and only if G(T ) is a closed subspace of X ⊕ Y .

Proof. Exercise.

Proposition 6.20. Let X,Y be normed spaces, and T : X → Y be a linear operator. If T is
bounded, then T is closed.

Proof. Exercise.

The closed graph theorem. LetX,Y be Banach spaces, and T : X → Y be a linear operator. If
T is closed, then T is bounded.

Proof. Let T : X → Y be closed. Proposition 6.19 and lemma 6.2 imply that G(T ) is a closed
subspace of the Banach space X ⊕ Y and hence it is a Banach space.
We consider S : G(T ) → X defined for every x ∈ X by

S(x, T (x)) = x.

It is clear that S is a linear operator which is one-to-one in G(T ) and onto X . Moreover, S is
bounded since

∥S(x, T (x))∥ = ∥x∥ ≤ ∥x∥+ ∥T (x)∥ = ∥(x, T (x))∥ for every x ∈ X.

The open mapping theorem implies that S−1 : X → G(T ) is bounded and so there is C ≥ 0 so
that

∥x∥+ ∥T (x)∥ = ∥(x, T (x))∥ = ∥S−1(x)∥ ≤ C∥x∥ για κάθε x ∈ X.

Therefore, C ≥ 1, and also ∥T (x)∥ ≤ (C − 1)∥x∥ for every x ∈ X .
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6.9 Operators in sequence spaces.

Let T be a linear operator mapping sequences of elements of F to sequences of elements of F . We
define the infinite matrix

[T ] = [aij ] =


a11 a12 . . . a1n . . .
a21 a22 . . . a2n . . .
...

...
...

an1 an2 . . . ann . . .
...

...
...


where the numbers aij , 1 ≤ i, j < +∞, are determined by

T (ej) = (a1j , a2j , . . .), j = 1, 2, . . . .

Of course, (ej) = (δij), with δij = 1, if i = j, and δij = 0, if i ̸= j. In other words, the j-th
column of [T ] is formed by the coefficients of the sequence/element T (ej).

We shall see a few important examples of such operators.

Example 6.9.1.We consider a fixed sequencem = (µi) in F , and the operatorMm mapping any
sequence x = (λi) in F to the sequence

y = Mm(x) = (µiλi).

The operatorMm is called multiplication operator, and it is very easy to show thatMm is linear.

Proposition 6.21. Let 1 ≤ p ≤ +∞. Then Mm : lp → lp is bounded if and only if m ∈ l∞, and
in this case we have ∥Mm∥ = ∥m∥∞.

Proof. Letm = (µi) ∈ l∞.
If 1 ≤ p < +∞, then for every x = (λi) ∈ lp we have

+∞∑
i=1

|µiλi|p ≤ ∥m∥p∞
+∞∑
i=1

|λi|p = ∥m∥p∞∥x∥pp < +∞,

and so Mm(x) ∈ lp, and ∥Mm(x)∥p ≤ ∥m∥∞∥x∥p. Similarly, if p = +∞, then for every
x = (λi) ∈ l∞ we have

sup
i∈N

|µiλi| ≤ ∥m∥∞ sup
i∈N

|λi| = ∥m∥∞∥x∥∞ < +∞,

and so Mm(x) ∈ l∞, and ∥Mm(x)∥∞ ≤ ∥m∥∞∥x∥∞.
Thus,Mm : lp → lp is bounded, with ∥Mm∥ ≤ ∥m∥∞.
Conversely, assume thatMm : lp → lp is bounded.
For each j we have ∥ej∥p = 1. Moreover, Mm(ej) = (µiδij), where µiδij = µj , if i = j, and
µiδij = 0, if i ̸= j. Therefore,

∥Mm∥ ≥ ∥Mm(ej)∥p = |µj |

for every j, and hence ∥Mm∥ ≥ ∥m∥∞.
We conclude that ∥Mm∥ = ∥m∥∞.
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Now, we shall determine thematrix [Mm] = [aij ]. We have seen that for each j we haveMm(ej) =
(µiδij), where µiδij = µj , if i = j, and µiδij = 0, if i ̸= j. Thus, aij = µj , if i = j, and aij = 0,
if i ̸= j. Therefore, [Mm] is the diagonal matrix with the sequencem = (µi) on its main diagonal:

[Mm] =


µ1 0 . . . 0 . . .
0 µ2 . . . 0 . . .
...

...
...

0 0 . . . µn . . .
...

...
...


At the beginning of the proof of proposition 6.21 we showed that, ifm ∈ l∞, thenMm(x) ∈ lp for
every x ∈ lp. This was done using elementary inequalities. The converse is much more difficult,
and it uses either the closed graph theorem or the uniform boundedness principle.

Proposition 6.22. If Mm(x) ∈ lp for every x ∈ lp, then m ∈ l∞.

First proof. We take any sequence (xn) of elements of lp, and we assume that xn → x in lp and
that Mm(xn) → y in lp. If xn = (λni) and x = (λi) and y = (κi), then Mm(xn) = (µiλni), and
so for every i we have

|λni − λi| ≤ ∥xn − x∥p → 0, |µiλni − κi| ≤ ∥Mm(xn)− y∥p → 0.

Therefore, κi = µiλi for every i, and hence y = Mm(x).
We conclude thatMm is a closed operator, and so, according to the closed graph theorem, thatMm

is bounded. Now, proposition 6.21 implies thatm ∈ l∞.
Second proof. We consider the sequence mn = (µ1, . . . , µn, 0, 0, . . .). Then mn ∈ l∞ and so the
operatorMmn : lp → lp is bounded with ∥Mmn∥ = ∥mn∥∞.
Let 1 ≤ p < +∞, and take any x = (λi) ∈ lp. ThenMm(x) = (µiλi) ∈ lp, and hence

∥Mm(x)−Mmn(x)∥pp =
+∞∑

i=n+1

|µiλi|p → 0 when n → +∞.

Thus, Mmn(x) → Mm(x) when n → +∞, and so supn∈N ∥Mmn(x)∥p < +∞. It is easy to see
that the same is true when p = +∞.
Now, the uniform boundedness principle implies that supn∈N ∥Mmn∥ < +∞, i.e. there is M <
+∞ so that

max
1≤i≤n

|µi| ≤ M for every n.

Of course, this implies that supi∈N |µi| ≤ M , and som ∈ l∞.

If 1 ≤ p < +∞ and 1
p +

1
q = 1, then we know that there is a linear isometry S : lq → (lp)′ which

is onto (lp)′. The operator S is defined for every y = (κi) ∈ lq by

S(y)(x) =

+∞∑
i=1

κiλi for every x = (λi) ∈ lp.

Proposition 6.23. Let m = (µi) ∈ l∞, and 1 ≤ p < +∞, 1
p + 1

q = 1. If we consider the
multiplication operator Mm : lp → lp, then M ′

m = SMmS−1 : (lp)′ → (lp)′.

Proof. The dual operatorM ′
m : (lp)′ → (lp)′ satisfies:

M ′
m(S(y))(x) = S(y)(Mm(x)) for every x ∈ lp, y ∈ lq.
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Thus, if x = (λi) and y = (κi), thenMm(x) = (µiλi) andMm(y) = (µiκi), and so

M ′
m(S(y))(x) = S(y)(Mm(x)) = S(y)(µiλi) =

+∞∑
i=1

κi(µiλi) =

+∞∑
i=1

(µiκi)λi = S(Mm(y))(x).

Therefore,M ′
m(S(y)) = S(Mm(y)) for every y ∈ lq and henceM ′

mS = SMm.

Therefore, if we identify every element S(y) ∈ (lp)′ with the corresponding element y ∈ lq, then
the equality M ′

m(S(y)) = S(Mm(y)) which appears in the last sentence of the previous proof,
says that M ′

m(y) = Mm(y) for every y ∈ lq. In other words, if we view the dual operator M ′
m :

(lp)′ → (lp)′ as an operator from lq to lq, then it is again the multiplication operatorMm : lq → lq

determined by the samem.

Proposition 6.24. Let m = (µi) ∈ l∞. If we consider the multiplication operator Mm : l2 → l2,
then M∗

m = Mm : l2 → l2, where m = (µi).

Proof. The adjoint operatorM∗
m : l2 → l2 satisfies:

⟨x,M∗
m(y)⟩ = ⟨Mm(x), y⟩ for every x ∈ l2, y ∈ l2.

Thus, if x = (λi) and y = (κi), thenMm(x) = (µiλi) andMm(y) = (µi κi), and so

⟨x,M∗
m(y)⟩ = ⟨Mm(x), y⟩ = ⟨(µiλi), (κi)⟩ =

+∞∑
i=1

µiλi κi =
+∞∑
i=1

λi µi κi = ⟨(λi), (µi κi)⟩

= ⟨x,Mm(y)⟩.

Therefore,M∗
m(y) = Mm(y) for every y ∈ l2 and henceM∗

m = Mm.

Example 6.9.2.We consider the operators Tl, Tr : lp → lp defined for every x = (λi) =
(λ1, λ2, λ3, . . .) ∈ lp by

Tl(x) = (λ2, λ3, . . .), Tr(x) = (0, λ1, λ2, λ3, . . .).

The operator Tl is called left translation, and Tr is called right translation.
It is clear that both operators are linear and bounded with norms ∥Tl∥ = ∥Tr∥ = 1.
The matrix of Tl has all its coordinates equal to 0 except for its coordinates on the first diagonal
above the main diagonal which are all equal to 1. Similarly, the matrix of Tr has all its coordinates
equal to 0 except for its coordinates on the first diagonal below the main diagonal which are all
equal to 1:

[Tl] =


0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

...

 [Tr] =


0 0 0 . . .
1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
...

...
...


In other words, [Tl] = [aij ], where aij = 1, if j − i = 1, and aij = 0, if j − i ̸= 1. Similarly,
[Tr] = [aij ], where aij = 1, if i− j = 1, and aij = 0, if i− j ̸= 1.

Proposition 6.25. Let 1 ≤ p < +∞, 1
p + 1

q = 1. If we consider the operators Tl, Tr : lp → lp,
then T ′

l = STrS
−1 : (lp)′ → (lp)′ and T ′

r = STlS
−1 : (lp)′ → (lp)′.

Proof. The dual operator T ′
l : (l

p)′ → (lp)′ satisfies:

T ′
l (S(y))(x) = S(y)(Tl(x)) for every x ∈ lp, y ∈ lq.
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If x = (λ1, λ2, . . .) and y = (κ1, κ2, . . .), then Tl(x) = (λ2, λ3, . . .) and Tr(y) = (0, κ1, κ2, . . .),
and so

T ′
l (S(y))(x) = S(y)(Tl(x)) = S(y)(λ2, λ3, . . .) = κ1λ2 + κ2λ3 + · · ·

= 0λ1 + κ1λ2 + κ2λ3 + · · · = S(Tr(y))(x).

Therefore, T ′
l (S(y)) = S(Tr(y)) for every y ∈ lq and hence T ′

lS = STr.
The equality T ′

rS = STl has a similar proof.

Just as we did in the previous example, if we identify every element S(y) ∈ (lp)′ with the cor-
responding element y ∈ lq, then the equality T ′

l (S(y)) = S(Tr(y)) which appears in the last
sentence of the previous proof, says that T ′

l (y) = Tr(y) for every y ∈ lq. Hence, if we view the
dual operator T ′

l : (lp)′ → (lp)′ as an operator from lq to lq, then it is equal to Tr : lq → lq.
Similarly, if we view the dual operator T ′

r : (lp)′ → (lp)′ as an operator from lq to lq, then it is
equal to Tl : l

q → lq. Thus, in this sense, the right translation and the left translation are each the
dual of the other. This is justified even more by the next proposition which says that in the case
p = q = 2 the two translations are each the adjoint of the other.

Proposition 6.26. If we consider the operators Tl, Tr : l2 → l2, then T ∗
l = Tr : l2 → l2 and

T ∗
r = Tl : l

2 → l2.

Proof. The adjoint operator T ∗
l : l2 → l2 satisfies:

⟨x, T ∗
l (y)⟩ = ⟨Tl(x), y⟩ for every x ∈ l2, y ∈ l2.

If x = (λ1, λ2, . . .) and y = (κ1, κ2, . . .), then Tl(x) = (λ2, λ3, . . .) and Tr(y) = (0, κ1, κ2, . . .),
and so

⟨x, T ∗
l (y)⟩ = ⟨Tl(x), y⟩ = λ2κ1 + λ3κ2 + · · · = λ10 + λ2κ1 + λ3κ2 + · · · = ⟨x, Tr(y)⟩.

Therefore, T ∗
l (y) = Tr(y) for every y ∈ l2, and hence T ∗

l = Tr. Now, T ∗
r = (T ∗

l )
∗ = Tl.

Example 6.9.3.We take a double-sided sequence c = (µi)i∈Z = (. . . , µ−2, µ−1, µ0, µ1, µ2, . . .)
in F , and we consider the operator Tc : lp → lp defined for every x = (λi) by Tc(x) = (κi),
where

κi =

+∞∑
j=1

µi−jλj , i = 1, 2, . . . .

Then Tc is called Toeplitz operator corresponding to c.
We shall not study the boundedness of Tc. We only remark that the matrix [Tc] is

[Tc] =


µ0 µ−1 µ−2 . . .
µ1 µ0 µ−1 . . .
µ2 µ1 µ0 . . .
...

...
...


In other words, [Tc] = [aij ], where

aij = µi−j , 1 ≤ i, j < +∞.

The coordinates in every diagonal which is parallel to the main diagonal are all equal.

Example 6.9.4.We consider a sequence s = (µi) in F , and the operator Hs : l
p → lp defined for

every x = (λi) by Hs(x) = (κi) where

κi =

+∞∑
j=1

µi+j−1λj , i = 1, 2, . . . .
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Then Hs is called Hankel operator corresponding to s.
As in the previous example, we shall not study the boundedness of Hs, but we remark that the
matrix [Hs] is

[Hs] =


µ1 µ2 µ3 . . .
µ2 µ3 µ4 . . .
µ3 µ4 µ5 . . .
...

...
...


Thus, [Hs] = [aij ], where

aij = µi+j−1, 1 ≤ i, j < +∞.

The coordinates in every diagonal which is perpendicular to the main diagonal are all equal.

The Toeplitz and Hankel operators (and their applications) are very important.

6.10 Operators in function spaces.

Example 6.10.1.

Theorem 6.3. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be σ-finite measure spaces. We consider the prod-
uct measure space (Ω1 × Ω2,Σ1 × Σ2, µ1 × µ2), and a measurable function K : Ω1 × Ω2 → F .
We assume that
(i)

∫
Ω1

|K(x, y)| dµ1(x) ≤ M2 for µ2-a.e. y ∈ Ω2,
(ii)

∫
Ω2

|K(x, y)| dµ2(y) ≤ M1 for µ1-a.e. x ∈ Ω1.
If 1 < p < +∞, we consider the operator T : Lp(Ω1) → Lp(Ω2) defined for every f ∈ Lp(Ω1)
by

T (f)(y) =

∫
Ω1

K(x, y)f(x) dµ1(x) for µ2-a.e. y ∈ Ω2.

Then T is a bounded linear operator, and

∥T∥ ≤ M
1
p

1 M
1
q

2 ,

where 1
p + 1

q = 1.
If p = 1, the same is true, with only (ii) as an assumption, and ∥T∥ ≤ M1.
If p = +∞, the same is true, with only (i) as an assumption, and ∥T∥ ≤ M2.

Proof. Let 1 < p < +∞ and take any f ∈ Lp(Ω1). Then, for µ2-a.e. y ∈ Ω2, Hölder’s inequality
implies∫

Ω1

|K(x, y)f(x)| dµ1(x) ≤
(∫

Ω1

|K(x, y)| dµ1(x)
)1/q(∫

Ω1

|K(x, y)||f(x)|p dµ1(x)
)1/p

≤ M
1/q
2

(∫
Ω1

|K(x, y)||f(x)|p dµ1(x)
)1/p

.

Thus,∫
Ω2

(∫
Ω1

|K(x, y)f(x)| dµ1(x)
)p

dµ2(y) ≤ M
p/q
2

∫
Ω2

(∫
Ω1

|K(x, y)||f(x)|p dµ1(x)
)
dµ2(y).

Tonelli’s theorem implies that∫
Ω2

(∫
Ω1

|K(x, y)f(x)| dµ1(x)
)p

dµ2(y) ≤ M
p/q
2

∫
Ω1

(∫
Ω2

|K(x, y)| dµ2(y)
)
|f(x)|p dµ1(x)

≤ M1M
p/q
2

∫
Ω1

|f(x)|p dµ1(x) < +∞.
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Hence
∫
Ω1

|K(x, y)f(x)| dµ1(x) < +∞ for µ2-a.e. y ∈ Ω2, and so T (f)(y) is defined for µ2-a.e.
y ∈ Ω2 and |T (f)(y)| ≤

∫
Ω1

|K(x, y)f(x)| dµ1(x) for µ2-a.e. y ∈ Ω2. Therefore,∫
Ω2

|T (f)(y)|p dµ2(y) ≤ M1M
p/q
2

∫
Ω1

|f(x)|p dµ1(x) = M1M
p/q
2 ∥f∥pp

and hence ∥T (f)∥p ≤ M
1/p
1 M

1/q
2 ∥f∥p.

If p = 1 and f ∈ L1(Ω1), from Tonelli’s theorem we have∫
Ω2

(∫
Ω1

|K(x, y)f(x)| dµ1(x)
)
dµ2(y) =

∫
Ω1

(∫
Ω2

|K(x, y)| dµ2(y)
)
|f(x)| dµ1(x)

≤ M1

∫
Ω1

|f(x)| dµ1(x) < +∞.

Hence
∫
Ω1

|K(x, y)f(x)| dµ1(x) < +∞ for µ2-a.e. y ∈ Ω2, and so T (f)(y) is defined for µ2-a.e.
y ∈ Ω2 and |T (f)(y)| ≤

∫
Ω1

|K(x, y)f(x)| dµ1(x) for µ2-a.e. y ∈ Ω2. So∫
Ω2

|T (f)(y)| dµ2(y) ≤ M1

∫
Ω1

|f(x)| dµ1(x) = M1∥f∥1

and hence ∥T (f)∥1 ≤ M1∥f∥1.
Finally, if p = +∞ and f ∈ L∞(Ω1), then∫

Ω1

|K(x, y)f(x)| dµ1(x) ≤ M2∥f∥∞ < +∞

for µ2-a.e. y ∈ Ω2. Thus T (f)(y) is defined for µ2-a.e. y ∈ Ω2 and |T (f)(y)| ≤ M2∥f∥∞ for
µ2-a.e. y ∈ Ω2. Thus, ∥T (f)∥∞ ≤ M2∥f∥∞.

The operator defined above is called integral operator with kernelK.

Example 6.10.2.We consider a measurable space (Ω,Σ) and a fixed measurable function m :
Ω → F . This determines an operator Mm mapping every measurable function f : Ω → F to the
measurable function

g = Mm(f) = mf : Ω → F.

The operatorMm is called multiplication operator, and it is a linear operator.

Proposition 6.27. Let (Ω,Σ, µ) be a σ-finite measure space, and 1 ≤ p ≤ +∞. Then Mm :
Lp(Ω) → Lp(Ω) is bounded if and only ifm ∈ L∞(Ω), and in this case we have ∥Mm∥ = ∥m∥∞.

Proof. Letm ∈ L∞(Ω).
If 1 ≤ p < +∞, then for every f ∈ Lp(Ω) we have∫

Ω
|Mm(f)|p dµ =

∫
Ω
|m|p|f |p dµ ≤ ∥m∥p∞

∫
Ω
|f |p dµ = ∥m∥p∞∥f∥pp < +∞,

and so Mm(f) ∈ Lp(Ω), and ∥Mm(f)∥p ≤ ∥m∥∞∥f∥p. Similarly, if p = +∞, then for every
f ∈ L∞(Ω) we have

ess-supΩ |Mm(f)| = ess-supΩ |mf | ≤ ess-supΩ |m| ess-supΩ |f | = ∥m∥∞∥f∥∞ < +∞,

and so Mm(f) ∈ L∞(Ω), and ∥Mm(f)∥∞ ≤ ∥m∥∞∥f∥∞.
Hence,Mm : Lp(Ω) → Lp(Ω) is bounded, with ∥Mm∥ ≤ ∥m∥∞.
(In the first part of the proof the assumption that µ is σ-finite is not necessary.)
Conversely, letMm : Lp(Ω) → Lp(Ω) be bounded.
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Since µ is σ-finite, there are Bk ∈ Σ so that
∪+∞

k=1Bk = Ω and µ(Bk) < +∞ for every k.
For each n ∈ N we consider the set

An =
{
x ∈ Ω

∣∣∣ |m(x)| ≥ ∥Mm∥+ 1

n

}
∈ Σ.

Then An =
∪+∞

k=1(Bk ∩ An) and µ(Bk ∩ An) < +∞ for every k. If µ(Bk ∩ An) > 0, we take
f = χBk∩An and we have(
∥Mm∥+ 1

n

)
(µ(Bk∩An))

1/p ≤ ∥mf∥p = ∥Mm(f)∥p ≤ ∥Mm∥∥f∥p = ∥Mm∥(µ(Bk∩An))
1/p

when 1 ≤ p < +∞, and

∥Mm∥+ 1

n
≤ ∥mf∥∞ = ∥Mm(f)∥∞ ≤ ∥Mm∥∥f∥∞ = ∥Mm∥

when p = +∞. In both cases we arrive at a contradiction, and so µ(Bk ∩ An) = 0 for every k.
Thus, µ(An) = 0 for every n, and so ∥m∥∞ ≤ ∥Mm∥.

Proposition 6.28. Let (Ω,Σ, µ) be a σ-finite measure space, and 1 ≤ p ≤ +∞. If Mm(f) ∈
Lp(Ω) for every f ∈ Lp(Ω), then m ∈ L∞(Ω).

First proof. Let fn → f in Lp(Ω) and mfn = Mm(fn) → g in Lp(Ω). Then there is a subse-
quence (fnk

) of (fn) so that fnk
→ f and mfnk

→ g µ-a.e. in Ω. Hence, g = mf = Mm(f).
The closed graph theorem implies that Mm is bounded, and now proposition 6.27 says that m ∈
L∞(Ω).
Second proof. Let A = {x ∈ Ω | |m(x)| = +∞}. Since µ is σ-finite, there are Bk ∈ Σ so
that

∪+∞
k=1Bk = Ω and µ(Bk) < +∞ for every k. If µ(Bk ∩ A) > 0, we take f = χBk∩A,

and we have that f ∈ Lp(Ω) and |Mm(f)| = |mχBk∩A| = +∞ at a set of positive measure,
and so Mm(f) /∈ Lp(Ω). We conclude that µ(Bk ∩ A) = 0 for every k, and so µ(A) = 0, i.e.
|m(x)| < +∞ for µ-a.e. x ∈ Ω.
Now, for each n ∈ N, we consider the function mn = min{m,n}. Then |mn(x)| ≤ n for µ-a.e.
x ∈ Ω and soMmn : Lp(Ω) → Lp(Ω) is bounded, with ∥Mmn∥ = ∥mn∥∞ ≤ n.
We also consider the sets An = {x ∈ Ω | |m(x)| > n} = {x ∈ Ω |m(x) ̸= mn(x)}. Since
|m(x)| < +∞ for µ-a.e. x ∈ Ω, we have that µ

(∩+∞
n=1An

)
= 0.

Let 1 ≤ p < +∞, and take any f ∈ Lp(Ω). Then Mm(f) = mf ∈ Lp(Ω), and, according to the
dominated convergence theorem,

∥Mm(f)−Mmn(f)∥pp =
∫
An

|f(x)|p → 0 when n → +∞.

Thus, Mmn(f) → Mm(f) when n → +∞, and so supn∈N ∥Mmn(f)∥p < +∞. It is easy to see
that the same is true when p = +∞.
Now, the uniform boundedness principle implies that supn∈N ∥Mmn∥ < +∞, i.e. there is M <
+∞ so that

∥mn∥∞ ≤ M for every n.

Of course, this implies thatm ∈ L∞(Ω).

Example 6.10.3.We consider the differentiation operator D : C1([−1, 1]) → C([−1, 1]) de-
fined for every f ∈ C1([−1, 1]) by

D(f)(x) = f ′(x), −1 ≤ x ≤ 1.

We consider C1([−1, 1]) as a subspace of C([−1, 1], with the uniform norm.
Now, we consider any sequence (fn) inC1([−1, 1]) so that fn → f inC1([−1, 1]) andD(fn) → h
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in C([−1, 1]). Thus, ∥fn − f∥u → 0 and ∥f ′
n − h∥u → 0.

For every n we have

fn(b)− fn(a) =

∫ b

a
f ′
n(x) dx for every a, b ∈ [−1, 1].

By uniform convergence, we get

f(b)− f(a) =

∫ b

a
h(x) dx for every a, b ∈ [−1, 1].

Since h is continuous in [−1, 1], we get f ′(x) = h(x) for every x ∈ [−1, 1]. Thus, D(f) = h,
and we conclude that D is closed.
But D is not bounded: we consider fn(x) = xn and we have

∥fn∥u = 1, ∥D(fn)∥u = n,

and so
sup

f∈C1([−1,1]),∥f∥u≤1

∥D(f)∥u = +∞.

The closed graph theorem cannot be applied, because C1([−1, 1]), as a subspace of C([−1, 1]), is
not a Banach space. To see this, we consider the sequence (gn) in C1([−1, 1]) given by gn(x) =
|x|(n+1)/n. Then it is easy to see that gn → g inC([−1, 1]), where g(x) = |x|. So (gn) is a Cauchy
sequence in C1([−1, 1]), but it does not converge to a function in C1([−1, 1]).

6.11 Compact operators.

Definition. Let X,Y be normed spaces, and T ∈ L(X,Y ). We say that T is compact or com-
pletely continuous, if T (BX) has compact closure in Y , where BX = {x ∈ X | ∥x∥ ≤ 1} is the
closed unit ball with center 0 of X .
The set of all compact T ∈ L(X,Y ) is denotedK(X,Y ), and the set of all compact T ∈ L(X) is
denoted K(X).

Proposition 6.29. Let X,Y be normed spaces, and T ∈ L(X,Y ).
(i) T is compact if and only if for every bounded sequence (xn) inX there is a subsequence (xnk

)
so that (T (xnk

)) converges in Y .
(ii) If T is compact then for every bounded K ⊆ X the image T (K) has compact closure in Y .

Proof. (i) Let T be compact, and take any bounded (xn) inX . If ∥xn∥ ≤ M for every n, then the
sequence (T (xn

M )) is inT (BX) ⊆ cl(T (BX)). Since cl(T (BX)) is compact, there is a subsequence
(xnk

) such that T (xnk
M ) → y for some y ∈ Y . Then T (xnk

) → My in Y .
Conversely, take any (yn) in cl(T (BX)). For each n there is xn ∈ BX so that ∥T (xn)−yn∥ < 1

n ,
and so there is a subsequence (xnk

) so that T (xnk
) → y for some y ∈ Y . Then

∥ynk
− y∥ ≤ ∥ynk

− T (xnk
)∥+ ∥T (xnk

)− y∥ ≤ 1

nk
+ ∥T (xnk

)− y∥ → 0

and so ynk
→ y. Now, since cl(T (BX)) is closed, we get y ∈ cl(T (BX)). Therefore, cl(T (BX))

is compact.
(ii) Let T be compact, and take any boundedK ⊆ X . Then there isM so that ∥x∥ ≤ M for every
x ∈ K, and soK ⊆ M BX . Since T is linear, we have that

T (K) ⊆ T (M BX) = M T (BX) ⊆ M cl(T (BX)).

Now,M cl(T (BX)) is closed and so cl(T (K)) ⊆ M cl(T (BX)). Therefore, cl(T (K)) is a closed
subset of the compact setM cl(T (BX)), and so it is compact.
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Proposition 6.30. Let X,Y, Z be normed spaces.
(i) K(X,Y ) is a linear subspace of L(X,Y ).
(ii) If Y is a Banach space, K(X,Y ) is a closed subspace of L(X,Y ).
(iii) If T ∈ L(X,Y ) and S ∈ L(Y, Z), then ST is compact if at least one of S, T is compact.

Proof. (i) Exercise.
(ii) Take any (Tn) inK(X,Y ) and T ∈ L(X,Y ) so that ∥Tn − T∥ → 0.
We consider any bounded sequence (xn) in X . Then there isM so that ∥xn∥ ≤ M for every n.
Since T1 is compact, there is a subsequence (x1n) of (xn) so that (T1(x1n)) is convergent, and
hence it is a Cauchy sequence in Y . Since T2 is compact, there is a subsequence (x2n) of (x1n) so
that (T2(x2n)) is convergent, and hence it is a Cauchy sequence in Y . Since T3 is compact, there is
a subsequence (x3n) of (x2n) so that (T3(x3n)) is convergent, and hence it is a Cauchy sequence
in Y . Continuing inductively, we find successive sequences

(xn) : x1, x2, . . . , xn, . . .

(x1n) : x11, x12, . . . , x1n, . . .

(x2n) : x21, x22, . . . , x2n, . . .

...
(xkn) : xk1, xk2, . . . , xkn, . . .

...

so that each of them is a subsequence of the previous one, and so that (Tk(xkn)) is a Cauchy
sequence in Y for each k ≥ 1.
Now we consider the diagonal sequence (xnn), which is a subsequence of the original (xn), and
is such that (Tk(xnn)) is a Cauchy sequence for each k. Indeed, after its k-th term, (Tk(xnn)) is a
subsequence ot (Tk(xkn)).
Now we take any ϵ > 0. Then there is k so that ∥Tk − T∥ < ϵ

3M+1 and then there is n0 so that
∥Tk(xnn)− Tk(xmm)∥ < ϵ

3 when n,m ≥ n0. Thus,

∥T (xnn)− T (xmm)∥ ≤ ∥T (xnn)− Tk(xnn)∥+ ∥Tk(xnn)− Tk(xmm)∥
+ ∥Tk(xmm)− T (xmm)∥

≤ M∥T − Tk∥+ ∥Tk(xnn)− Tk(xmm)∥+M∥Tk − T∥

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ

for every n,m ≥ n0. So (T (xnn)) is a Cauchy sequence in Y and, since Y is complete, it con-
verges in Y .
We proved that for every bounded sequence (xn) in X there is a subsequence (xnn) so that
(T (xnn)) converges in Y . Proposition 6.29 implies that T is compact.
(ii) Let T be compact. We have that

(ST )(BX) = S(T (BX)) ⊆ S(cl(T (BX))).

Now, cl(T (BX)) is compact and, since S is continuous, S(cl(T (BX))) is compact. Therefore,
cl((ST )(BX)) ⊆ S(cl(T (BX))) and so cl((ST )(BX)) is compact.
Let S be compact. Since T is bounded, T (BX) is bounded. Hence, according to proposition 6.29,
cl((ST )(BX)) = cl(S(T (BX))) is compact.

Proposition 6.31. Let X,Y be normed spaces, and T ∈ L(X,Y ). If dim(R(T )) < +∞, then
T ∈ K(X,Y ).
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Proof. We have T (BX) ⊆ R(T ). Since R(T ) is finite dimensional, it is a closed subspace of
Y , and so cl(T (BX)) ⊆ R(T ). Since T is bounded, T (BX) and hence cl(T (BX)) is bounded.
Thus, cl(T (BX)) is a closed and bounded subset of a finite dimensional normed space, and so it
is compact.

Proposition 6.32. Let X,Y be normed spaces, dim(Y ) = +∞, and T ∈ L(X,Y ). If T is com-
pact, then T (BX) has empty interior. In particular, if T is a homeomorphism, then T is not
compact.

Proof. Proposition 1.26 implies that cl(T (BX)) has empty interior. Hence, also T (BX) has empty
interior.
If T is a homeomorphism, and UX is the open unit ball with center 0 of X , then T (UX) is open.
Now, T (UX) ⊆ T (BX), and so T (BX) has nonempty interior. Therefore, T is not compact.

Example 6.11.1.We consider m = (µi) ∈ l∞, and the multiplication operator Mm : lp → lp

defined for every x = (λi) ∈ lp by Mm(x) = (µiλi) ∈ lp. We know that Mm ∈ L(lp), and
∥Mm∥ = ∥m∥∞.

Proposition 6.33.Mm ∈ K(lp) if and only if m ∈ c0.

Proof. If (µi) does not converge to 0, there is δ > 0 and a subsequence (µik) of (µi) so that
|µik | ≥ δ for every k. Then for every k, l with k ̸= l we have that

∥Mm(eik)−Mm(eil)∥p = (|µik |
p + |µil |

p)1/p ≥ 21/pδ > 0,

if 1 ≤ p < +∞, and

∥Mm(eik)−Mm(eil)∥∞ = max{|µik |, |µil |} ≥ δ > 0.

So there is no convergent subsequence of (Mm(eik)), and henceMm is not compact.
Now, let µi → 0. For each n we consider the sequence mn = (µ1, . . . , µn, 0, 0, 0, . . .) and the
corresponding multiplication operatorMmn : lp → lp. Then for every x = (λi) ∈ lp we have

Mmn(x) = (µ1λ1, . . . , µnλn, 0, 0, . . .).

It is clear that R(Mmn) ⊆ span({e1, . . . , en}). According to proposition 6.31,Mmn is compact.
Now, for every x = (λi) ∈ lp we have

Mm(x)−Mmn(x) = (µ1λ1, . . . , µnλn, µn+1λn+1, µn+2λn+2, . . .)

− (µ1λ1, . . . , µnλn, 0, 0, . . .)

= (0λ1, . . . , 0λn, µn+1λn+1, µn+2λn+2, . . .) = Mm−mn(x).

Therefore,Mm −Mmn = Mm−mn and so

∥Mm −Mmn∥ = ∥Mm−mn∥ = ∥m−mn∥∞ = sup
i≥n+1

|µi| → 0

when n → +∞. Now, proposition 6.30 implies thatMm is compact.

Example 6.11.2. This example considers an integral operator between spaces of continuous func-
tions.

Theorem 6.4. Let A,B be compact topological spaces,K : A×B → F be continuous in A×B,
and µ be a Borel measure on A. Then the integral operator, defined for every f ∈ C(A) by

T (f)(y) =

∫
A
K(x, y)f(x) dµ(x) for every y ∈ B,

is a compact operator T : C(A) → C(B) with ∥T∥ ≤ supy∈B
∫
A |K(x, y)| dµ(x).
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Proof. Let n ∈ N. For every (x, y) ∈ A × B there are open neighborhoods Ux,y, Vx,y of x, y so
that

|K(x′, y′)−K(x, y)| < 1

n
for every (x′, y′) ∈ Ux,y × Vx,y.

Then for every x ∈ A we have B =
∪

y∈B Vx,y. Since B is compact, there are y1, . . . , ym so that
B =

∪m
k=1 Vx,yk . Now we take Ux =

∩m
k=1 Ux,yk , and then Ux is an open neighborhood of x.

Now let x′ ∈ Ux and y ∈ B. Then y ∈ Vx,yk for some k = 1, . . . ,m, and then x′ ∈ Ux,yk . Hence

|K(x′, y)−K(x, y)| ≤ |K(x′, y)−K(x, yk)|+ |K(x, y)−K(x, yk)| <
1

n
+

1

n
=

2

n

for every (x′, y) ∈ Ux × B. Since A is compact and A =
∪

x∈A Ux, there are x1, . . . , xp so that
A =

∪p
j=1 Uxj . Finally, we consider

A1 = Ux1 , Aj = Uxj \ (Ux1 ∪ · · · ∪ Uxj−1), 2 ≤ j ≤ p.

Then the sets A1, . . . , Ap are pairwise disjoint Borel sets, Aj ⊆ Uxj for every j = 1, . . . , p, and
A =

∪p
j=1Aj . Moreover, for every j and every x ∈ Aj we have

|K(x, y)−K(xj , y)| <
2

n
for every y ∈ B.

Now for every f ∈ C(A) we write

T (f)(y) =

∫
A
K(x, y)f(x) dµ(x) =

p∑
j=1

∫
Aj

K(x, y)f(x) dµ(x)

=

p∑
j=1

∫
Aj

K(xj , y)f(x) dµ(x) +

p∑
j=1

∫
Aj

(K(x, y)−K(xj , y))f(x) dµ(x).

We consider the function

Sn(f)(y) =

p∑
j=1

∫
Aj

K(xj , y)f(x) dµ(x) =

p∑
j=1

(∫
Aj

f(x) dµ(x)
)
K(xj , y).

This is a linear combination of the functions K(x1, ·), . . . ,K(xp, ·) which are continuous in B,
and so Sn(f) is continuous in B. Also

|Sn(f)(y)− T (f)(y)| =
∣∣∣ p∑
j=1

∫
Aj

(K(x, y)−K(xj , y))f(x) dµ(x)
∣∣∣

≤
p∑

j=1

∫
Aj

|K(x, y)−K(xj , y)||f(x)| dµ(x)

≤ 2

n

p∑
j=1

∫
Aj

|f(x)| dµ(x) = 2

n

∫
A
|f(x)| dµ(x) ≤ 2µ(A)∥f∥u

n

for every y ∈ B. Thus ∥Sn(f)− T (f)∥u ≤ 2µ(A)∥f∥u
n . So the sequence (Sn(f)) is in C(B) and

converges to T (f) uniformly in B. Therefore, T (f) ∈ C(B) and so T : C(A) → C(B). The
operator T is clearly linear. Also

|T (f)(y)| ≤
∫
A
|K(x, y)||f(x)| dµ(x) ≤

∫
A
|K(x, y)| dµ(x) ∥f∥u

for every y ∈ B. Therefore ∥T (f)∥u ≤ M∥f∥u for every f ∈ C(A), where

M = sup
y∈B

∫
A
|K(x, y)| dµ(x).
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So T is bounded with ∥T∥ ≤ M .
Now we observe that Sn : C(A) → C(B) is a bounded linear operator. Indeed,

|Sn(f)(y)| ≤
p∑

j=1

∫
Aj

|f(x)| dµ(x) |K(xj , y)| ≤ ∥K∥u
∫
A
|f(x)| dµ(x) ≤ ∥K∥uµ(A)∥f∥u.

Finally the operator Sn : C(A) → C(B) has finite dimensional range:

R(Sn) ⊆ span({K(x1, ·), . . . ,K(xp, ·)}).

Therefore, Sn is a compact operator. Since ∥Sn(f) − T (f)∥u ≤ 2µ(A)∥f∥u
n for every f ∈ C(A),

we have that ∥Sn − T∥ ≤ 2µ(A)
n → 0, and we conclude that T is compact.

Example 6.11.3. Another example of a compact integral operator.

Theorem 6.5. Let 1 < p < +∞, 1
p + 1

q = 1, and let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be σ-finite
measure spaces. We consider the product measure space (Ω1 × Ω2,Σ1 × Σ2, µ1 × µ2), and a
measurable function K : Ω1 × Ω2 → F . We assume that(∫

Ω1

(∫
Ω2

|K(x, y)|p dµ2(y)
) q

p
dµ1(x)

) 1
q
= M < +∞.

We consider the operator T : Lp(Ω1) → Lp(Ω2) defined for every f ∈ Lp(Ω1) by

T (f)(y) =

∫
Ω1

K(x, y)f(x) dµ1(x) for µ2-a.e. y ∈ Ω2.

Then T is a compact linear operator, and ∥T∥ ≤ M .

Proof. At first we assume that µ1, µ2 are finite measures and that f,K are essentially bounded
functions. Then for every y ∈ Ω2 we set h(y) =

∫
Ω1

|K(x, y)||f(x)| dµ1(x), and, applying
Tonelli’s theorem and then Hölder’s inequality, we find∫

Ω2

h(y)p dµ2(y) =

∫
Ω2

h(y)h(y)p−1 dµ2(y)

=

∫
Ω1

(∫
Ω2

|K(x, y)|h(y)p−1 dµ2(y)
)
|f(x)| dµ1(x)

≤
(∫

Ω2

h(y)p dµ2(y)
)1/q

∫
Ω1

(∫
Ω2

|K(x, y)|p dµ2(y)
)1/p

|f(x)| dµ1(x).

Hence,(∫
Ω2

h(y)p dµ2(y)
)1/p

≤
∫
Ω1

(∫
Ω2

|K(x, y)|p dµ2(y)
)1/p

|f(x)| dµ1(x)

≤
(∫

Ω1

(∫
Ω2

|K(x, y)|p dµ2(y)
)q/p

dµ1(x)
)1/q(∫

Ω1

|f(x)|p dµ1(x)
)1/p

.

(6.7)

If the general case, we consider setsΩ1,N ,Ω2,N so that µ1(Ω1,N ) < +∞ and µ2(Ω2,N ) < +∞ for
every N , and Ω1,N ↑ Ω1 and Ω2,N ↑ Ω2. We also consider the functions fN (x) = min{f(x), N}
andKN (x, y) = min{K(x, y), N}. Wewrite (6.7) forΩ1,N ,Ω2,N , fN ,KN and the corresponding
hN , and we apply the monotone convergence theorem. We conclude that(∫

Ω2

h(y)p dµ2(y)
)1/p

≤ M
(∫

Ω1

|f(x)|p dµ1(x)
)1/p

.
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If f ∈ Lp(Ω1), then h(y) < +∞ for µ2-a.e. y ∈ Ω2. Thus, T (f)(y) =
∫
Ω1

K(x, y)f(x) dµ1(x)
is well defined for µ2-a.e. y ∈ Ω2, and(∫

Ω2

|T (f)(y)|p dµ2(y)
)1/p

≤ M
(∫

Ω1

|f(x)|p dµ1(x)
)1/p

.

So T : Lp(Ω1) → Lp(Ω2) is bounded, and ∥T∥ ≤ M .
To prove that T is compact it is enough to prove that for every ϵ > 0 there is S : Lp(Ω1) → Lp(Ω2)
so that dim(R(S)) < +∞ and ∥T − S∥ < ϵ.
It is clear that, taking the positive and negative parts of the real and the imaginary parts ofK, it is
enough to assume thatK(x, y) ≥ 0 for every (x, y) ∈ Ω1 ×Ω2. As before, we consider the Ω1,N ,
Ω2,N andKN (x, y) = min{K(x, y), N} and we also consider

K(N)(x, y) = KN (x, y)χΩ1,N
(x)χΩ2,N

(y).

If T (N) is the integral operator corresponding to K(N), then the dominated convergence theorem
implies

∥T − T (N)∥ ≤
(∫

Ω1

(∫
Ω2

|K(x, y)−K(N)(x, y)|p dµ2(y)
)q/p

dµ1(x)
)1/q

→ 0.

So there is N such that ∥T − T (N)∥ < ϵ
3 .

Then we take the sets

Cm,M =
{
(x, y)

∣∣∣ (m− 1)N

M
< K(N)(x, y) ≤ mN

M

}
, 1 ≤ m ≤ M

and we set

LM = N

M∑
m=1

m

M
χCm,M

.

If SM is the integral operator defined by the function LM , then

∥T (N) − SM∥ ≤
(∫

Ω1

(∫
Ω2

|K(N)(x, y)− LM (x, y)|p dµ2(y)
)q/p

dµ1(x)
)1/q

≤ N

M
(µ1(Ω

(N)
1 ))1/q(µ2(Ω

(N)
2 ))1/p.

So there isM such that ∥T (N) − SM∥ < ϵ
3 .

Finally, for each Cm,M there are Cm,M,k, each of which is a union of pairwise disjoint sets of the
form A1 × A2 with A1 ∈ Σ1, A2 ∈ Σ2, so that χCm,M,k

↑ χCm,M
a.e. in Ω1 × Ω2. This implies

that ∥SM − SM,k∥ → 0, where SM,k is the integral operator defined by

LM,k = N
M∑

m=1

m

M
χCm,M,k

.

Now we consider S = SM,k, where k is large enough to have ∥SM − SM,k∥ < ϵ
3 .

Therefore, ∥T − S∥ < ϵ and it is easy to see that dim(R(S)) < +∞. Indeed, S is a linear
combination of integral operators of the form

U(f)(y) =

∫
Ω1

χA1×A2(x, y)f(x) dµ1(x) =
(∫

A1

f(x) dµ1(x)
)
χA2(y)

and we obviously have R(U) ⊆ span({χA2}).
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Definition. Let A be a topological space, and let F be a collection of functions f : A → F .
(i) We say that F is bounded at a ∈ A, if there is K > 0 so that |f(a)| ≤ K for every f ∈ F .
(ii) We say that F is equicontinuous at a ∈ A, if for every ϵ > 0 there is an open neighborhood
U of a so that |f(a′)− f(a)| < ϵ for every a′ ∈ U and every f ∈ F .

It is obvious that, if F is equicontinuous at a ∈ A, then every f ∈ F is continuous at a.

The theorem of Arzela-Ascoli. LetA be a compact topological space, andF ⊆ C(A) be bounded
and equicontinuous at every a ∈ A. Then for every sequence (fn) in F there is a subsequence
(fnk

) which converges uniformly in A to some f ∈ C(A).

Proof. We take any n ∈ N and then for every a ∈ A there is an open neighborhood Ua,n of a so
that |f(a′) − f(a)| < 1

n for every a′ ∈ Ua,n and every f ∈ F . Since A is compact, there are
an1, . . . , anmn ∈ A so that A =

∪mn
k=1 Uank,n. Now we consider the countable set

B = {ank |n ∈ N, k = 1, . . . ,mn}.

By its construction, to every b ∈ B corresponds an open neighborhood Vb of b, and these neigh-
borhoods have the following property: for every ϵ > 0 there are b(1), . . . , b(p) ∈ B so that
A =

∪p
i=1 Vb(i) and so that for every i = 1, . . . , p we have |f(a)− f(b(i))| ≤ ϵ for every a ∈ Vb(i)

and every f ∈ F .
Now, we take any sequence (fn) in F . Since B is countable, we may write

B = {bm |m ∈ N}.

The set {fn(b1) |n ∈ N} ⊆ F is bounded. So there is a subsequence (f1,n) of (fn) such that
(f1,n(b1)) is a Cauchy sequence in F . Similarly, the set {f1,n(b2) |n ∈ N} ⊆ F is bounded. So
there is a subsequence (f2,n) of (f1,n) such that (f2,n(b2)) is a Cauchy sequence in F . Similarly,
the set {f2,n(b3) |n ∈ N} ⊆ F is bounded. So there is a subsequence (f3,n) of (f2,n) so that
(f3,n(b3)) is a Cauchy sequence in F . We continue inductively and we find

f1,1 f1,2 f1,3 . . . f1,n . . .
f2,1 f2,2 f2,3 . . . f2,n . . .
...

...
...

...
fm,1 fm,2 fm,3 . . . fm,n . . .
...

...
...

...

so that (a) the sequence in every row is a subsequence of the sequence in the previous row, and
hence of the original sequence (fn), and (b) (fm,n(bm)) is a Cauchy sequence in F for everym.
Now we consider the diagonal sequence (fn,n). For every m, (fn,n) is, after the value m of the
index n, a subsequence of (fm,n) and hence (fn,n(bm)) is a Cauchy sequence in F . Also, (fn,n)
is a subsequence of (fn).
Now we take any ϵ > 0, and then we consider the corresponding b(1), . . . , b(p) ∈ B so that A =∪p

i=1 Vb(i) and so that for every i = 1, . . . , p we have |f(a)− f(b(i))| ≤ ϵ for every a ∈ Vb(i) and
every f ∈ F .
We take any a ∈ A, and then a ∈ Vb(i) for some i = 1, . . . , p. Then

|fn,n(a)− fm,m(a)| ≤ |fn,n(a)− fn,n(b
(i))|+ |fn,n(b(i))− fm,m(b(i))|

+ |fm,m(b(i))− fm,m(a)|
≤ 2ϵ+ |fn,n(b(i))− fm,m(b(i))|.

Then there is n0 so that |fn,n(b(i))− fm,m(b(i))| ≤ ϵ for every n,m ≥ n0 and every i = 1, . . . , p.
All these imply |fn,n(a) − fm,m(a)| ≤ 3ϵ for every n,m ≥ n0 and every a ∈ A, and hence
∥fn,n − fm,m∥u ≤ 3ϵ for every n,m ≥ n0. Thus, (fn,n) is a Cauchy sequence in C(A), and so it
converges uniformly in A to some f ∈ C(A).
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The theorem of Schauder. Let X,Y be normed spaces, and T ∈ L(X,Y ). If T is compact, then
T ′ is compact. If Y is a Banach space, then the converse is also true.

Proof. Let T be compact. We consider the closed unit ball BY ′ of Y ′, and we shall prove that
cl(T ′(BY ′)) is compact.
The ball BY ′ = {y′ ∈ Y ′ | ∥y′∥ ≤ 1} is a collection of functions y′ : cl(T (BX)) → F , which
is bounded and equicontinuous at every point of the compact set cl(T (BX)). Indeed, for each
y ∈ cl(T (BX)) we have |y′(y)| ≤ ∥y′∥∥y∥ ≤ ∥y∥ for every y′ ∈ BY ′ , and so BY ′ is bounded at
y. Also, for each y ∈ cl(T (BX)) and for each ϵ > 0we take U = {u ∈ cl(T (BX)) | ∥u−y∥ < ϵ}
and then we have |y′(u)− y′(y)| ≤ ∥y′∥∥u− y∥ < ϵ for every y′ ∈ BY ′ , and so BY ′ is equicon-
tinuous at y.
We take any sequence (y′n) in BY ′ . According to the theorem of Arzela-Ascoli, there is a subse-
quence (y′nk

) which converges uniformly in cl(T (BX)) to some f ∈ C(cl(T (BX))). Then (y′nk
)

converges uniformly in T (BX) to f , and hence (y′nk
◦T ) converges uniformly inBX to g = f ◦T .

Thus, T ′(y′nk
) → g uniformly in BX . In particular, T ′(y′nk

)(x) → g(x) for every x ∈ BX , and
hence

T ′(y′nk
)(x) = ∥x∥T ′(y′nk

)
( x

∥x∥

)
→ ∥x∥g

( x

∥x∥

)
for every x ∈ X . Therefore, (T ′(y′nk

)) converges pointwise in X to some function x′ : X → F .
Then, clearly, x′ is a linear functional in X . Moreover, the uniform convergence of (T ′(y′nk

)) in
BX implies

∥T ′(y′nk
)− x′∥ = sup

x∈BX

|T ′(y′nk
)(x)− x′(x)| → 0.

Thus, T ′(y′nk
) → x′ in X ′.

We proved that for every sequence (y′n) in BY ′ there is a subsequence (y′nk
) so that (T ′(y′nk

))
converges in X ′. Clearly, this can be generalized to every bounded sequence (y′n) in Y ′, and then
proposition 6.29 implies that T ′ is compact.
Conversely, let Y be a Banach space and T ′ be compact. The first part implies that T ′′ : X ′′ → Y ′′

is compact.
Now we consider the linear isometries JX , JY of X,Y into X ′′, Y ′′. Then for every x ∈ X and
every y′ ∈ Y ′ we have

T ′′(JX(x))(y′) = (JX(x))(T ′(y′)) = T ′(y′)(x) = y′(T (x)) = JY (T (x))(y
′).

Thus, T ′′(JX(x)) = JY (T (x)) for every x ∈ X , and hence T ′′JX = JY T .
Now take any bounded sequence (xn) in X . Then (JX(xn)) is a bounded sequence in X ′′, and,
since T ′′ is compact, there is a subsequence (xnk

) so that (T ′′(JX(xnk
))) converges to some y′′ ∈

Y ′′. Thus, (JY (T (xnk
))) converges to some y′′ ∈ Y ′′ and so it is a Cauchy sequence in Y ′′. Then

(T (xnk
)) is a Cauchy sequence in Y , and, since Y is complete, it converges to some y ∈ Y . We

conclude that T is compact.

Theorem 6.6. LetX,Y be Hilbert spaces, and T ∈ L(X,Y ). Then T is compact if and only if T ∗

is compact.

Proof. If we consider the conjugate-linear isometries SX , SY of X,Y onto X ′, Y ′, then proposi-
tion 6.17 says that T ∗ = S−1

X T ′SY .
If T is compact, then the theorem of Schauder implies that T ′ is compact, and then the relation
T ∗ = S−1

X T ′SY easily implies that T ∗ is also compact.
Now, if T ∗ is compact, then T = (T ∗)∗ is also compact.
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