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Chapter 1

Normed spaces

1.1 Norms.

Let X be a linear space over the field F', where F' = R or F' = C.
We recall the operations:

A+B={a+blac AbeB}, z+A={z+alac A}, M={)a|ac A}
for every A, B C X and every \ € F.

Definition. We say that the function

l-]: X =R

is a norm on X, if

@ |zl =0,

(i) |z| =0 < z=0,

(iii) [[Az] = | A},

() |z +yll < [lzll + llyll,
for every x,y € X and every A € F.

From the properties of the norm || - || we easily get
=2l =llzll, [llzll = llyll| <z £yl < lll + lyl

forevery z,y € X.

Example 1.1.1. A trivial example of a normed space over F’ is the field F' itself with the absolute
value | - | : FF — R as a norm.

The norm || - || on X induces a metric on X, i.e. the function d : X x X — R defined by
d(z,y) = [lz -yl
for every x,y € X. This metric has the usual properties:
(i) d(z,y) =0 & z =y,

(i) d(y,r) = d(z,y),



(iv) d(z,z) < d(z,y) + d(y, 2)

forevery z,y,z € X.
The metric d induced by a norm as above has the additional properties

() d(z +y,z + z) = d(y, ), i.e. the metric is translation invariant,
(vi) d(A\z, A\y) = || d(z,y), i.e. the metric is positive homogenuous.

Now as in any metric space we define neighborhoods of points, i.e. the open balls and the
closed balls

Bla;r) ={z e X ||z —all <r}, Blar)={re X|[lz—a| <r},

with center ¢ € X and radius » > 0.
Two easily proved identities are

x+ B(a;r) = B(x + a;r), AB(a;r) = B(\a; |A|r).

As in any metric space, we define the open subsets and the closed subsets of the normed space
X. The set A C X is open if for every a € A there is some r > 0 so that B(a;r) C A, i.e. if
every a € A is an interior point of A. The set A C X is closed if its complement A° = X \ A is
open.

It is well known that the special sets () and X are open and closed, that the union of open sets
is open and the intersection of closed sets is closed, and that the intersection of finitely many open
sets is open and the union of finitely many closed sets is closed.

We also have the notion of convergence of sequences in the normed space X. We say that the
sequence (x,,) in X converges to z € X, and we denote this by x,, — =z, if for every € > 0 there
is ng € N so that |z, — z|| < € for every n > ng. Of course

T, w2z in X & dzg,x)=|r,—2z] >0 in R.

Proposition 1.1. The linear space operations of a normed space X are continuous, i.e.
() ifx, > xandy, — yin X, then x,, + y, — v + y in X.
(ii) if xp, — xin X and A, — \in F, then \,z,, — Az in X.

Proof. These two properties are implied by the inequalities
[(@n +yn) — (@ +y)l| < [lon — [ + llyn =yl

[Anzn — Az|| < [An| |70 — 2| + [An — Al [[2]].

O
Proposition 1.2. The norm of a normed space X is continuous, i.e. if x,, — x in X, then ||z, | —
|z|| in R.
Proof. This is implied by the inequality ]||xn\| - HxH] < |lwn — || O

Proposition 1.3. Let X be a normed space and Y be a linear subspace of X. Then cl(Y'), the
closure of Y in X, is a linear subspace of X.

Proof. Leta,b e cl(Y)and \,x € F.

There are sequences (ay,), (by,) € Y so that a,, — a and b,, — b. By the continuity of the linear
space operations, we have that Aa,, + kb, — Aa + kb. Since Aa,, + kb, € Y for every n, we get
that Aa + kb € cl(Y).

So cl(Y) is a linear subspace of X. O



Proposition 1.4. Let X be a normed space.
() If A C X is open (closed), then x + A is open (closed).
(ii) If A C X is open (closed) and A # 0, then \A is open (closed).

Proof. (i) Let A be open. We take any b € x + A and then b — x € A. So there is » > 0 such that
B(b— x;r) C A, and then

B(b;r)=x+ B(b—x;r) Cx+ A.

Therefore x + A is open.

Now let A be closed. We take any sequence (b,,) in « + A and we assume that b, — b. Then
(b, — ) is asequencein Aand b, —z — b— 2. Thusb—z € Aandsob € =z + A.

Therefore x + A is closed.

(ii) The proof is similar. O

As in any metric space we have the notion of compactness for subsets of a normed space
X. We say that K C X is compact if every open covering of K has a finite subcovering of K.
This means that if K C J AcA A, where every A € A is an open subset of X, then there are
A, ..., A, € Asothat K C |J;_; Ay.

We know that K’ C X is compact if and only if every sequence in /& has some subsequence
which converges to an element of K.

We also know that every compact subset of X is closed and bounded (i.e. it is contained in
some ball). In general, the converse is not correct.

1.2 Holder and Minkowski inequalities.

Holder’s inequality for sums. Let p,q > 1 and % + % = 1, and let A,k > O for every k € N.
W) IfS 12N < +ooand 312 ki < 400, then

o0 o0 +o0
kzl kg < ( kzl )\Z) v ( kzl ”Z) 1/q.

(i) If 31425 Ak < 400 and supj, ki < 400, then
+o0o +o0o
Z /\klﬁlk < < Z )\k> Sup K.
k=1 k=1 k

Proof. (i) We observe that the function f(t) = %tp + é — t has minimum value f(1) = 0 in
[0,400). Le. t < %tp + % for every ¢t > 0. We use t = —~ and we get

Kka/P

1 1
A < =W 4 — g1
p q

for every A\, k > 0.
If S0 AP = 3772 ki = 1, then, using the last inequality, we get

= 1 1 & 1 1
E )\k/‘ﬁkS* E )\z—i-* E HZ:*—F*:L

If0 < > /2 A < +ooand 0 < 372 ki < 400, then we set

A= (gxg)l/p, B= (gm@w

3



and we observe that 375 (2)” = 3727 (%)? = 1. Hence
ZAW = ABZE@ < AB.

If one of 3% Aos Sk . is equal to 0, the inequality of (i) is obvious: it becomes 0 < 0.
(ii) This is trivial. O

If p = q = 2, Holder’s inequality for sums is usually called Cauchy’s inequality.
If p,qg > 1and 113 + % = 1, then p, q are called dual exponents. Since +%.o =0, the 1, +o0 are
also dual exponents.

Minkowski’s inequality for sums. Let p > 1, and let i, ki, > 0 for every k € N.
W) IfS L2 NE < +ooand 3125 kP < 4o, then

(§(Ak+/€k ) <Z)\p) (ﬁni)lm

(ii) If sup;, A\, < +00 and supy, kK < +o0, then
sup(A\x + ki) < sup \g + sup K.
k k k
Proof. (i) The inequality of (i) is an obvious equality when p = 1.

Now we take p > 1andq_p 1,andsof+f—1
Since 3720 AP < 400 and 0150 K < 400, we get

+o0 “+oo “+oo
Z()\k + rg)P < 2071 Z)\ﬁ +2r71 Z Kj < +00.
k=1 k=1 k=1

For the last inequality we used the trivial inequality
(A + k)P < 2P7H(\P 4 kP)

for A, k > 0, which can be proved using the convexity of the function ¢ in [0, +00). Then

“+00 —+00
Z()\k—i-lik)p:Z()\k—f—Hk)(/\k—i-lik Z)\k /\k—i-:‘ik -l-ZHk )\k—i-lik) -1
k=1 k=1 k=1

and, using Holder’s inequality for sums,

= X\ IR = 1/q
> (k4 rR)P < (ZAZ) (Z(Ak“"% ) (Z ) (Z k+/€k)p) :
=1 =1 Py

k=1

If 3720 (Ag + Ky )P > 0, we divide the last inequality with ( S°725 (Ag + #x,)P) Y% and we finish
the proof. If Z 21 (A + kg )? = 0, then the inequality of (i) is trivial: 0 < 0 + 0.
(ii) Trivial. O

Holder’s inequality for integrals. Let p, ¢ > 1 and % +1 =1 Let (Q, 3, ) be a measure space,
and f,g € M(Q,X) (i.e. f,gare ¥X-measurable in {2) with f,g > 0 p-a.e. in €.
WD If [ [P dpu < +ooand [, g? dp < +o0, then

/Qfgdﬂg </prd/‘>l/p</ﬂquu)l/q~

(i) If |, f dp < 400 and ess-supg, g < 400, then

/Qfg dp < (/Qfdu> ess-supg, g-

4



Proof. If [, fPdp = [, g% dp = 1, then, using the inequality A < %D AP+ % k9, we get

1 1 11
/fgdué/f”dﬂJr/quM:Jr:l,
Q P Ja qa Jq P q

If0 < [, fPdu < +ooand 0 < [, g7 dp < 400, then we set

A= (fran)". b= (fata)”

and we observe that [, (4)” du = [, (%)?du = 1. Hence

fyg
/Qfgdu AB/QABd,u_AB

If one of fQ fPdu, fQ g? dy is equal to 0, the inequality of (i) is obvious: it becomes 0 < 0.
(ii) Trivial. O

If p = ¢ = 2, Holder’s inequality for integrals is usually called Schwarz’s inequality or
Buniakowsky’s inequality.

Minkowski’s inequality for integrals. Let p > 1. Let (2, X, i) be a measure space, and f,g €
M(Q, %) (i.e. f,gare X-measurable in ) with f,g > 0 p-a.e. in €.
D If [ fPdp < +oc and [ gP dp < 400, then

</Q(f+g)pd,u>1/p < (/prd,u)l/er (/Qgpdu)l/p'

(ii) If ess-supg, f < +oo and ess-supg, g < +00, then
ess-supq (f + g) < ess-supg, f + ess-supg, g.

Proof. (i) The inequality of (i) is an obvious equality when p = 1.

Now let p > 1 and g = ]%, sothat%—i— % =1.

Since [, fPdp < 400 and [, gP du < 400, using the inequality (X + k)P < 2P~ 1(A\P 4 £P), we
get

/(f+9)pd,u§2p_l/fpdu+2p_1/gpdu<+oo.
Q Q Q

Then
p — p—1 — p—1 p—1
/Q(f+g) dp /Q(f+g)(f+g) dp /Qf(f+g) du+/Qg(f+g) dp

and, using Hoélder’s inequality for integrals,

/Q(f+g)pdu§ (/Qf”du)l/p(/g(ﬂg)pdu)l/q+ (/Qg”dﬂ)l/p(/g(f+g)pdu)1/q-

If [o(f + g)Pdp > 0, we divide the last inequality with ( [o,(f + g)? dp) 14 and we finish the
proof. If [,(f + g)? dpu = 0, then the inequality of (i) is trivial: 0 < 0 + 0.
(ii) Trivial. O



1.3 Subspaces, cartesian products, quotient spaces.

We shall now see three ways to produce new normed spaces from old ones. The first is to
consider a subspace of a normed space. The second is to consider the cartesian product of normed
spaces. And the third way is to consider the quotient space of a normed space over any subspace
of it.

Proposition 1.5. Let X be a normed space withnorm ||-|| : X — R, and let Y be a linear subspace
of X. Then the restriction || - || : Y — RisanormonY.
Proof. This is obvious. U

Definition. The linear subspace Y of the normed space X, equipped with the restriction on Y of
the norm on X, is called subspace of X.

We assume that X1, . .., X, are normed spaces (over the same F') with norms |- ||1,. .., || ||m-
We consider the cartesian product X = X; x --- x X,,, and for every z = (x1,...,2py) € X =
X1 x -+ x X,, we define

(lzllf + -+ lamllm) /P, 1< p < +oo,
[l =
max{(|lzifly, .- [[#mllm}, = oo

Proposition 1.6. For every p € [1,+oo] the function | - ||, : X — R just defined is a norm on
X=Xy x---xX,.

Proof. All properties of the norm are trivially satisfied by || - ||, except for the last one, the triangle
inequality, which is implied by Minkowski’s inequality for sums. O

Definition. The norm || - ||,, just defined on the cartesian product X = X; x --- x X, of normed
spaces is called p-norm on X.

Example 1.3.1. We consider X; = ... = X,,, = Fwith|-|1 =... =] - |m = || and then we
get the cartesian product X = F' X --- x F' = F" with the p-norm, which is defined for every
r=A,...,A\m) €E Fx---x F=F"by

laf, = § (AP T Anl) P, 1< p < oo,
8 maX{’)‘l‘a'--ap‘m’}’ p = +o0.
The case p = 2 gives the usual euclidean norm on F™.

Finally, we consider a normed space X and a linear subspace Z of X. We also consider the
quotient space
X/Z={z+Z|ze X}

The elements of X /Z are subsets of X: they are the parallel translations of Z.
We know from Linear Algebra (and we can easily prove) the following facts:

1. f¢e X/Z,then: { =+ 7 & z €.
2. If¢,ne X/ Z,then: ENn#D = £=mn.

.rx+Z=y+2Z & xz—ye .



It is well known from Linear Algebra that the quotient space X /Z is a linear space with addition
and multiplication defined by

(x+2)+Wy+2)=@+y)+Z, Az+2)=(\)+Z

The zero element of X /Zis0+ Z = Z.

It is easy to show that the equality (z + Z) + (y + Z) = (« + y) + Z is not just a formal
definition; it is a true equality between subsets of X. If A = 0, then the same is true for the equality
AMzx+2Z)=(Mx)+ Z. If X =0,then 0(x + Z) = (0x) + Z is not true as an equality between
sets: we have 0 (z + Z) = {0} and (0z) + Z = Z.

Now we define the function

|- llx/z: X/Z = R

by
1€llx/z = inf{||z[| |z € £}
forevery { € X /Z.

Proposition 1.7. If Z is a closed linear subspace of the normed space X, then the function ||-|| x /7"
X/Z — R just defined is a normon X / Z.

Proof. (i) It is obvious that [|{| x/ > 0 forevery { € X /Z.

(i) If £ = Z, i.e. if  is the zero element of X' /Z, then 0 € £ and s0 0 < [[{]|x /7 < [|0]| = 0 and
hence [€]1x /7 = 0.

Conversely, let ||| x/z = 0. Then there are z,, € § so that |[z,|| — 0, i.e. z, — 0. But&isa
closed subset of X, since it is a translation of the closed set Z. Hence 0 € £ andso{ =04+ 2 = Z,
the zero element of X /Z.

(iii) If A = 0, then 0§ = Z and so ||0¢||x/z = ||Z]|x/z = 0. Also, trivially |0[|{|x,z = 0. So
the equality [|0¢]|x /7 = |0][[€]| x z is correct.

Now let A # 0 and £ € X /Z. We take any x € £ and then we have Az € \¢. Therefore

IAEllx/z < Azl = [A[]|z].
Taking the infimum over all z € &, we find

Al x/z < (A€l x ) 2-
We apply this to % in the place of X and to A¢ in the place of &, and we get

1

<
el <

IAllx /2

and so
MEllx/z < IXEllx )z

The two inequalities imply
1Al x /2 = (A€l x ) 2-
(iv)Let{,n € X/Z. We take any = € ¢ and any y € 1. Then z + y € £ + n and hence

1€ +nllx/z < llz +yll < llz]l + llyl-

Taking the infimum over all # € ¢ and, independently, over all y € n, we find

1€ +nllx/z < €llx/z + Inllx)z-



1.4 Banach spaces.

Definition. The normed space X is called Banach space if it is complete, i.e. if every Cauchy
sequence in X converges to an element of X.

Proposition 1.8. Let X be a normed space with norm || - ||. Then the following are equivalent.

(i) X is a Banach space.

(ii) For every sequence (z,,) in X: if S ||z, || < +o0, then 3"t 2, converges to an element
of X.

Proof. Let X be complete and let :{S |zn|| < +00. We consider the partial sums s,, = z1 +
...+ z,, and then for n < m we have

[8m = snll = 12t + - + 2l < 2nal +- -+ 2wl =0

when m, n — +oc. Thus (s,,) is a Cauchy sequence and so it converges to an element of X.
Conversely, we assume that (ii) holds. We take any Cauchy sequence () in X. Then for every
k there is nj, € N so that ||z, — 2, || < 7z when n,m > n;. We may choose nj, so that (ny,) is
strictly increasing and then ||z, ., — 2y, || < % for every k. Thus

+o0

lzn, |+ Y lney = 2n,ll < +oo.
k=1

By our assumption, the series z,,, + > ;5 (Zn, .1 — Tpn,) converges to some element x € X.
Observing the telescoping partial sums of the last series we get that z,, — x. Since (z,) is
Cauchy,

xp = (Tk —Tp,) +2p, >0+ =2

when k£ — +o0.
Therefore X is complete. O

Proposition 1.9. Let X be a Banach space and Y be a subspace of X. Then'Y is a Banach space
if and only if Y is closed.

Proof. Let Y be a Banach space. We take any sequence (y,,) in Y so that y,, — y € X. Since
(yn) converges, it is a Cauchy sequence. But Y is complete, so (y,,) converges to an element of
Y. Since the limit of a sequence is unique, we get that y € Y.

Therefore Y is closed.

Conversely, let Y be closed. We take any Cauchy sequence (y,) in Y. Since X is complete,
yn — y for some y € X. Since Y is closed, we gety € Y.

Hence Y is complete. ]

Observe that in the first part of the last proof the assumption of the completeness of X was not
used. Therefore,

If Y is a complete subspace of a normed space X, then Y is closed in X.

Proposition 1.10. Let X, ..., X,, be Banach spaces with norms || - ||1,...,| - |[m- Then the
product space X = X1 x --- x Xy, equipped with any of the p-norms is a Banach space.

Proof. Let (z,,) be a Cauchy sequence in X, where z,, = (25,1, ..., Zp,m) for every n. Clearly,
for every j = 1,..., m we have

Zn; — Trjll; < llon — 21llp = 0



asn, k — +oo and so (z,,;) is a Cauchy sequence in X;. Thus z,, ; — x; for some z; € X ;. We
consider the element x = (z1,...,z,,) € X and then

l2n = 2llp = (J2ns — 21|+ + [Znm — 2ml5)/P =0
when 1 < p < +0o0, and
[z — @[oo = max{[|lzn1 — z1ll1,- ., [Zpm — Tmllm} — 0

when p = 4o0.
So X is complete. O

Proposition 1.11. Let X be a Banach space and Z be a closed subspace of X. Then X /Z is a
Banach space.

Proof. We consider §,, € X /Z so that

+oo
Z [énllx/z < +o0.
n=1

Since [|€nlx/z = inf{||z|| |z € &}, there is some x,, € &, so that

1
[znll < lénllx/z + 2

Therefore
+oo
> llznll < +oo.
n=1

Since X is a Banach space, the series Z:{g x, converges to an element s € X, i.e.
1+t Ty S

when n — 400. We considern =s+ 2 € X/Z. Thenzy + -+, €&+ -+ &, ands €
and hence (z1 + -+ x,) —s € (&1 + - - + &) — n. Thus

161+ +&) —nllx/z < (@1 + - +x) =] =0

when n — +00. We conclude that the series Z:i’j &y, converges to an element of X /Z.
So X /Z is a Banach space. O

1.5 Linear isometries.

Definition. Let X, Y be normed spaces with norms || - ||x, || - ||y, and let T : X — Y be a linear
operator with the property

IT(2)[ly = =]l x
for every x € X. Then we say that T is a linear isometry of X into Y. It is clear that T'(x) = 0
implies x = 0, and so T' is one-to-one.
IfTisontoY,i.e. if T(X) =Y, then we say that T is a linear isometry of X onto Y. We also
say that X is linearly isometric to Y.

It is easy to see that the relation between normed spaces of being linearly isometric is an equiv-
alence relation.
A linear isometry 7" : X — Y is continuous. Indeed, if z,, — z in X, then
1T (zn) = T()lly = T (zn — 2)[ly = ll#n —2llx =0

and thus T'(z,,) — T(z) in Y.
If T is a linear isometry of X into Y, then we may “identify” every x € X with the corre-
sponding 7'(z) € Y and so we may “identify” X with the subspace 7'(X) of Y.

9



Proposition 1.12. Let X be a normed space with norm || - || x, let Y be a linear space and let
T : X — Y be a linear operator which is one-to-one in X and onto Y. Then there is a norm on
Y so that T becomes a linear isometry of X onto Y.

Proof. We take any y € Y, we consider the unique 2 € X so that T'(x) = y, and we define

lylly = llzllx-

We can easily prove that the function || - |y : Y — R just defined is a norm on Y.
Of course, since T'(xz) = y, the equality ||y||y = ||z||x can be written || T(x)|ly = ||z||x and so
T is a linear isometry of X onto Y. O

In other words, when we have two isomorphic linear spaces and one of them has a norm, then
we can transfer this norm to the other linear space so that the two spaces become linearly isometric.

Example 1.5.1. Let X be a linear space of finite dimension and let {b1,...,b,,} be a basis of X.
We consider the normed space F'"" with any of the p-norms || - ||, 1 < p < 4-00. We also consider
the linear operator 7' : "™ — X defined for every (A1,...,\y,) € F™ by

T(>\17-~7)\m) =AMb1+ -+ A

Then T is one-to-one in /" and onto X, and so the p-norm on F™ can be transfered to a norm
|| - |l - X — R. This norm is defined for every x = A\1b; + - - - + Ay, by, € X by the formula

[zllp = 1Ak + -+ 4+ Ambmllp = [T A1, -5 Am)llp = (A1, -5 Am) [lp
_ 0P+ )P 1 <p < oo,
max{|Ai],...,|Am|}, p = +00.

The norm || - ||, on X just defined is called p-norm on X with respect to the basis {b1, ..., bpy}.
Of course, if we change the basis of X, then we shall get a different norm on X: the coefficient
m-tuple (A1, ..., A\,,) of any z € X depends on the basis.

1.6 Equivalent norms.

Definition. Two norms || - || and ||| - ||| on the same linear space X are called equivalent if there
are constatns ¢, C' > 0 so that
clle] < |llz[ll < O]

for every x € X.

Proposition 1.13. Let || - ||, ||| - ||| be two norms on the linear space X . The following are equivalent.
(i) The norms are equivalent.
(ii) For every sequence (x,,) in X: |||z, || — 0 if and only if ||z, || — O.

Proof. Assume that the two norms are equivalent, i.e. that
cllzf] < [lz(l} < Cl]]
for every x € X, and let ||z, || — 0. Then
llzalll < Cllznll =0

and hence |||z, ||| — 0. In the same manner, if |||z, ||| — 0 we get that ||z,| — 0.
For the converse we assume that there is no ¢ > 0 so that ¢||x|| < |||«||| forevery zz € X. Therefore,
for every n € N there is z,, € X so that 2|z, || > |||z ||. We consider the elements

1
Yn = 77— Tn
(e

10



for which we have .

=1, < -
lynll =1, Mgl <

Then |||y, ||| — 0 but ||y,|| # 0, and we get a contradiction to (ii). In the same manner we get a
contradiction to (ii) if there isno C' > 0 so that |||z||| < C||z|| for every x € X. O

So we see that, if two norms on the same linear space are equivalent, then a sequence (z,,)
converges to x with respect to one of the norms if and only if (x,,) converges to = with respect to
other norm.

Assume again that the norms || - || and ||| - ||| on the same linear space X are equivalent, i.e.
they satisfy c||z|| < |||z]]] < C||z|| for every = € X. If B(a;r) is a ball with respect to the norm
|| - || and D(a;r) is a ball with respect to the norm ||| - |||, then

D(a;cr) € B(a;r) € D(a; Cr).

Therefore, if a set A C X is open with respect to one of the norms, then A is open with respect
to the other norm. Since the closed sets are the complements of the open sets, the same is true for
closed subsets of X. And, since the notion of compact set depends solely on the notion of open
set, the same is true for compact subsets of X. Finally, if a set A is contained in a ball with respect
to one of the norms, then it is contained in a ball with respect to the other norm.

In other words, equivalent norms define the same convergent sequences (with the same limits)
and the same open, closed, compact, and bounded sets.

1.7 Finite dimensional normed spaces.

Proposition 1.14. Let X be a linear space of finite dimension. Then every two norms on X are
equivalent.

Proof. Let {by,...,by,} be a basis of X. We consider the 2-norm on X defined for every z =
Aby + -+ Ay, € X by

lzllz = (1Al + -+ )2,

We shall prove that every other norm || - || on X is equivalent to || - ||2.
Initially, for every x = A1b1 + - -+ + Anbm € X we get

lzll < Al 4 Pl [1Bmll < (NoL1P -4 1bmlP) 2 (AP -4 A 2) 2 = Ol

where C' = (||b1||? + - - - + ||bm||>)*/2. The second inequality above is Cauchy’s inequality.
Now assume that there is no ¢ > 0 so that ¢||z||2 < ||z|| for every x € X. Then, as in the proof of
proposition 1.13, we see that there is a sequence (x,,) in X so that

[znll2 =1, |lzall = 0.
If x, = Ap1b1 + - - - + Ay mbm, then from the last equality we get that
Pral? 4+ Dl = 1

for every n.
Since the unit sphere of F™ is a compact set, there is a subsequence (xy, ) of (z,) so that

(Ank,l, ey /\nk,m) — ()\17 ceey )\m)
for some (A1,...,\y,) € F™ satisfying
AP+ A =1

11



We consider the element
.I'Z/\lbl—l—---—i-)\mbm

of X and then we have
2y, — 2zl < [Angr = Aal[01l] + -+ + [Angm — Aml [[bm ]| — 0

and
|zn, — x|z = (|/\nk71 — )\1|2 S ‘)‘nk,m _ )\m‘2)1/2 0.

Hence x,,, — x with respect to both norms, and so
[zll2=1, [z =0.
This is impossible. O

Proposition 1.15. Let X be a normed space of finite dimension. Then,
(i) every closed and bounded subset of X is compact.
(ii) X is a Banach space.

Proof. (i) Let {b1,...,b,} be a basis of X. Besides the norm || - || on X, we also consider the
2-norm on X defined for every x = A1b1 + - -+ + Ambm € X by

lzllz = (1Al + - 4 )12,

We also consider the linear operator
T:F™"— X

defined for every (A1,...,\y,) € F™ by
T(/\l, .. .,)\m) =Mb1 4+ + Anbm.

As we have already observed, T is one-to-one in F* and onto X . Moreover, 1" and T-1 are linear
isometries between F" and X, if we consider the two spaces equipped with their 2-norms.

Now, let X C X be closed and bounded (with respect to the norm || - ||). Since every two norms
on X are equivalent, K is closed and bounded with respect to the 2-norm on X. Now, since
T : F™ — X is a linear isometry with respect to the 2-norms on F™ and X, T~ !(K) is closed
and bounded in F™. But F'™ with its 2-norm is the standard euclidean space and so 7~ (K) is
compact. Therefore K = T(T~!(K)) is compact in X with respect to the 2-norm on X. Finally,
since the norm || - || and the 2-norm on X are equivalent, X is compact in X with respect to its
original norm || - ||.

(ii) Let (x,,) be a Cauchy sequence in X. Then (x,,) is bounded, i.e. it is contained in some closed
ball B(0; 7). By (i), this closed ball is compact and so (x,,) has a convergent subsequence. Since
(xy,) is a Cauchy sequence, it is convergent. O

Proposition 1.16. Let X be a normed space and let Y be a subspace of X of finite dimension.
Then'Y is closed.

Proof. Since Y is a normed space of finite dimension, it is a complete subspace of X and hence
closed in X. 0
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1.8 Completion.

Definition. Let X be a normed space. We say that the normed space X is a completion of X if X
is complete, i.e. a Banach space, and there is a linear isometry T : X — X so that T(X) is a
dense subspace of X.

In other words, a Banach space X is a completion of X if X is linearly isometric to a dense
subspace of X.

A trivial case is when X itself is complete. Then we may consider X = X, ie. X isa
completion of itself.

Theorem 1.1. Let X be a normed space. Then there is at least one completion of X. Moreover,
every two completions of X are linearly isometric.

Proof. We shall construct a completion X of X.
We first consider the set of all Cauchy sequences in X:

X = {(zn) | (z5,) is a Cauchy sequence in X }.
Then we consider a relation between Cauchy sequences:
(xn) = (yn) if zp—y, —0in X.

This is obviously an equivalence relation in X, and so we may consider the quotient space con-
sisting of all equivalence classes:

X ={l(@n)]|(zn) € X} = X/ =
We define algebraic operations in X:

[(@n)] + [(wn)] = [(&n +yn)],  Al(n)] = [(A2a)].

(It is easy to check that these are well defined.) Thus, X is a linear space over F.
If (x,,) is a Cauchy sequence in X, then it is easy to see that (||z,]|) is a Cauchy sequence in R
and so it converges to some real number. Hence we may define a norm on X by:

l@allx = tim_fza.
(Again, it is easy to check that this is well defined and that it has the properties of a norm.) So X
is a normed space.

Next we consider the linear operator

T:X—>X
defined for every x € X by
T(x) = [(z)],
where () is, of course, the constant sequence x, z, x, . . .. Itis easy to see that 7" is a linear operator,

and that 7' is a linear isometry of X into X:
7@l = @)l = tim_[l] = al.

Now, take any [(x,,)] € X and any ¢ > 0. Since (z,,) is a Cauchy sequence in X, there is ng so
that ||z, — || < € for every n, m > ng. Therefore,

11(@n)] = T(@no )l = l(@n)] = [(@no)]lle = [l(@n = 2no)lle = Um lzn — 2, || < €.

13



This means that 7'(X) is dense in X. -
Finally, let (¢,,) be a Cauchy sequence in X. Since 7'(X) is dense in X, for every n there is some
T, € X so that

1
an - T(l‘n)HY < ﬁ

Then we get

|zn = @m| = [T (zn — 2m)llx = 1T (2n) = T'(zm)|x
< ”T(xn) - anY‘f‘ ||€n - gmHY"'_ Hfm - T(xm)HY —0

when n,m — +o0 and so (xy,) is a Cauchy sequence in X. We now consider the element { =
[(x,)] of X and we get

16m = €llx < 6m = T(@m) I + 1T (2m) = Ellx < % + [[(@m)] = [(za)]llx

where (x,,) is the constant sequence ,, Ty, . ... SO

& ~ €l < -+ l(zm — @)l = = + Tl — zall 50
when m — 4o0.
We conclude that every Cauchy sequence in X converges to an element of X,
Now, assume that X; and X, are two completions of X. Thus there are linear isometries 7} :
X — Xjand Ty : X — X so that T1(X) and T»(X) are dense subspaces of X1 and X .
We take any &; € X 1. Then there is a sequence (z,,) in X so that 71 (x,,) — &1 in X1. So (T1(z,))
is a Cauchy sequence in X1, and since 7 is a linear isometry, (x,,) is a Cauchy sequence in X.
Now, since T% is a linear isometry, (T (z,,)) is a Cauchy sequence in X 2. But X is complete, and
so there is some & € X5 so that Ts(zy) — & in X 5. Now, this procedure defines a function

T: Y1 — Yg
so that for every £; € X1 we have

T (&) = &

Taking this procedure backwards from an arbitrary &, € X5 to & € X we see that 7T is one-to-
one in X; and onto Xs. It is also easy to check that 7" is a linear operator, and that it is a linear
isometry

1T, = leals, = Bm_[Ta(en)liy, = lm = lm_[Ti)l, = 6,
Therefore, X1 and X5 are linearly isometric. O

1.9 Sequence spaces.

Definition. We define the following spaces whose elements are sequences in F':

¢ = {(M\x)| (\x) converges in F'}
C():{(/\k)’)\k—}() in F}
1°° = {(Ax) | (\) is bounded}

+00
P = {()\k) ) ; |AklP < —|—oo}, 1 <p<+oo.
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The algebraic operations in all these spaces are defined component-wise as usual:
(M) + (k) = M + Re)y A(Ag) = (AAg).

These operations are well defined in these spaces, since if (\x), (k) are convergent, or convergent
to 0, or bounded, then (\; + ki), (A\x) are also convergent, or convergent to 0, or bounded.
Regarding the last space, we observe that if (\;) € [P, ie. if > 77, [Ax|P < +o0, then

“+o00 400
ST = AP D AP < +oo
k=1 k=1

and hence (A\\;) € IP. Alsoif (A1), (ki) € 1P, i.e. if 3725 | AP < +ooand 3129 [wpl? < +oo,
then, as we saw in the proof of Minkowski’s inequality for sums,

+oo +oo +oo +oo
Z |Ax 4 re P < Z(P\k! + [rg])P < 2P Z AP +2°71 Z |kk|P < +o0,
k=1 k=1 k=1 k=1

and hence (\; + ki) € IP.
Thus all these sequence spaces are linear spaces over F'.
We have the obvious inclusions

PCcyCecCl™.

We can also prove that
PCl ifl<p<qg<-+oo.

Indeed, if (A\g) € [P, then A\ — 0, and so there is kg so that |\;| < 1 for every & > kq. Then
+o0o +oo
SIS Y P < 4o,
k=ko k=ko

and so (\g) € 19.

Definition. If 1 < p < +o00, we consider the function || - ||, : I’ — R defined for every x = (\;) €
P by

|, = (Zl—:i(l) ’/\k\p)l/p7 1<p<+oo,
b=
supy, | Akl, p = +00.

Minkowski’s inequality for sums implies that || - ||,, is a norm on [?; it is the p-norm of (7.
Theorem 1.2. If 1 < p < 400, then [P with the norm || - ||, is a Banach space.

Proof. We consider the case 1 < p < +4o0.
We take a Cauchy sequence () in IP. If z,, = (A, 1) for every n, then for every k& we have

Ak = Amgl < Nl2n — 2mllp — 0

when n, m — +oo. Since F'is complete, for every k there is \;, € F' so that A, , — A\, when
n — +o0o, and we consider the sequence

x = (Ag)-

We take ng so that ||z, — x,||, < 1 for every n,m > ng. Then for every K and every n > ng
we get

K 1/p R 1/p
(D ) ™ < (D2 Aasl?) ™ = lznlly < 1o = agllp + l2nllp < 1+ 2l
k=1 k=1

15



Taking the limit first when n — 400 and next when K — +o0, we find
+o00 1/p
(D Iwl?) ™ < 1+ flanglp < +00
k=1

and so x € [P.
Now we take any ¢ > 0 and a coresponding ng so that ||z, — =, ||, < € for every n,m > ny.
Then for every K and every n, m > ng we get

K 1/p +00
(Z |)\n,k - )\ch p) < (Z |)\n,k — )\m,k:
k=1 k=1

Taking the limit first when m — +oco and next when K — +o00, we find

1/p
p) = ||zn — zmlp < e

+oo 1/p
o = 2llp = (3 s = Mel?) " < e
k=1

for every n > ng. Thus x,, — x in [P,
Finally, let p = +o00 and consider a Cauchy sequence (z,,) in {*°. If ,, = (), ) for every n, then
for every k we have

Ak — Amkl < 120 — Tl — 0

when n,m — +4-00. Again, since F' is complete, for every £ there is A\;, € F'so that A\, ;, — A
when n — +o00. Define

We take ng so that ||z, — Ty |lcc < 1 for every n,m > ng. Then for every k and every n > ng
we have

|)\n,k:| < znlloo < |lzn — xnoHoo + ”xnoHoo <1+ ||37noHoo'
Taking the limit when n — +o0, we find
Akl <1+ g lloe < 400

for every k, and so x € [*°.
Now we take any ¢ > 0 and a coresponding 7 so that ||z, — z,,||cc < € for every n,m > ny.
Then for every k and every n, m > ng we get

Ak — Amk] < JJ2n — 2mlee <€
Taking the limit when m — +oo, we find
Ak — Ak <€
for every k and every n > ng. Thus ||z, — || < € for every n > ng and so z,, — zin (. O

Now c and ¢y are linear subspaces of [*°, and so they are normed spaces equipped with the
restriction of the norm || - || on each of them.

Theorem 1.3. The spaces c, ¢y with the norm || - || are Banach spaces.

Proof. Since [*° is a Banach space, it is enough to prove that c, ¢ are closed in [*°.
Let (x,,) be a sequence in ¢ and z,, — « in [*°. Let z,, = (A 1) for every n, and = = (\y).
For any € > 0 there is ng so that ||z,, — x|« < € for every n > ng. Then for every k we have

[ Ano .k = Akl < [, — 2lloo <€
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Since (A, k) is a Cauchy sequence in F, there is kg so that |\,  — Apy 1| < € forevery k,1 > kq.
Then
M — Ml <Ak = Ang kel + [Ang ke — Angl + [Anga — Ar < 3e

for every k,1 > kg. Therefore x = (\y) is a Cauchy sequence in F' and so it belongs to c.
Now let (z,,) be a sequence in ¢y and =, — x in [*°. Let x,, = (A, 1) for every n, and z = (\).
For any € > 0 there is ng so that ||z, — x|l < € for every n > ng. Then for every k& we have

Anoke — M| < J|@ng — 2|00 <€
Since A, — 0 when k& — +o0, there is kg so that |\, x| < € for every k > kq. Therefore,
IAk| < Ak — Mg el + | Ang el < 26
for every k > kg, and so x € cg. O

Definition. We define the sequence space
coo = {(A\x) | A\ = 0 dafter some value of k}.

It is obvious that cqg is a linear subspace of all previous spaces c, ¢y, and [P, 1 < p < 4o00. So
in each of these spaces cq is a subspace when we consider the norm of the space restricted to cqg.

Proposition 1.17. ¢y is a dense subspace of each of the spaces cg, and [P, 1 < p < +o0.

Proof. We take any = € cg, with z = (), and any ¢ > 0. Since A\, — 0, there is kg so that
|A\k| < € for every k > ko. Now we take the sequence y = (ky), where k;, = A for k < kg, and
ki = 0for k > ko. Then y € cgg. Also, ki — A\, = 0for k < kg, and ki, — A\, = — A for k > k.
Then

1y — @[loo = sup [k — Ak[ = sup [Ax| <

k k>ko

So ¢ is dense in ¢g.
Now let 1 < p < +00 and take any x € I7, with = (\), and any € > 0. Since >/ | AP <
+00, there is kg so that Zzzozo |A\k|P < €P. Now, as before, we take the sequence y = (kj), where
K = A for k < ko, and k, = 0 for £ > kg. Then y € cog. Also, ki — A\, = 0 for & < ko, and
Kr — A\, = — g, for k > kg. Therefore,

ly — |, = (io |kk — )\k\p)l/p = ( io \)\k|p)l/p <e.
k=1

k=ko
So ¢q is dense in [P, ]

The space cgp with the norm || - || is certainly not complete. To see this we consider any
element z of ¢y \ ¢gp. For example, we may take x to be any sequence in F' which converges to
0 and whose terms are all # 0. Since ¢ is dence in ¢y, there is a sequence () in cgo so that
xn, — x in ¢g. Then (z,,) is a Cauchy sequence in ¢y and hence in ¢ (since the two spaces have
the same norm) but it does not converge to an element of cqp.

In this case, ¢y is a completion of ¢gg with the norm || - ||cc.

With exactly the same argument, we see that ¢ with the norm || - ||, is not complete, and that,
in this case, {? is a completion of cyy with the norm || - ||,..

17



1.10 Function spaces.

1.10.1 Bounded continuous functions.

Definition. We consider the space of all bounded functions f : A — F, where A is any non-empty

set:
B(A)={f|f:A— F isboundedin A}

If f, g are bounded in A and \ € F, then f + g, A f are also bounded in A. So B(A) is a linear
space over F'.

Definition. We consider the function || - ||, : B(A) — R defined for every f € B(A) by

[[fll = sup{|f(a) |a € A}

It is easy to see that || - ||,, is a norm on B(A); it is called uniform norm on B(A).
If f, — f in B(A), we say that ( f,,) converges to f uniformly in A.

Theorem 1.4. B(A) with the uniform norm is a Banach space.

Proof. Take (f,)in B(A) so that || f,, — fm|lw — 0 whenn,m — +oo. Then for every a € A we
have

[fn(a) = fm(a)| <[l fn = finllu =0

when n, m — +o00, and so the sequence (f,,(a)) converges to some element of F'. We consider
f A — F defined for every a € A by

We consider ng so that || f,, — fin||lw < 1 for every n,m > ng. Then for every a € A and every
n > ng we have

[fn(@)| < [ fnllu < 10 = Fuollu + [ fnollu <14l fglu-

Taking the limit when n — +o0, we find

[f(@)] < T+ fnollu

foreverya € Aandso f € B(A).
Now we take any € > 0 and then there is ng so that || f,, — fim|l. < € for every n,m > ng. Then
for every n, m > ng and every a € A we have

[fn(@) = fm(@)| < [Ifn = fullu <€

Taking the limit when m — +o00, we get

[fula) = fla)] <€
forevery n > ng and every a € A. So || fr, — f||u < eforeveryn > ng,ie. f, — fin B(A). O

Definition. We consider the spaces of all continuous and of all bounded and continuous functions
f A — F,where A is any non-empty subset of a metric space or, more generally, of a topological
space:

C(A)
BC(A)

{f|f:A— F iscontinuous in A},
B(A)NC(A) ={f|f:A— F is bounded and continuous in A}.
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It is clear that both spaces are linear spaces and that BC'(A) is a linear subspace of B(A).
Therefore, we may consider the restriction on BC(A) of the uniform norm || - ||, on B(A), and
then BC'(A) becomes a subspace of B(A).

Theorem 1.5. Let A be a topological space. Then BC(A) with the uniform norm is a Banach
space.

Proof. It is enough to prove that BC(A) is a closed subspace of B(A).
We take any sequence (f,,) in BC(A) so that f,, — f for some f € B(A). We takeany a € A
and any € > 0. Then there is ng so that

Fa®) = FO) < 1fu = fllu < 5

for every n > ng and every b € A. Since f,,, is continuous at a, there is some open U C A so that
a € U and

Faa(8) = fuo(@)] < 5
for every b € U. Then
) = F@] < 1F®) = Fag O] + [ Fuo () = Fug (@)] + [fug(@) = f@)] S 545+ 5 =e

forevery b € U. So f is continuous at any a € A. O

1.10.2 Measurable functions.

Now we consider any measurable space (€2, ), i.e. any non-empty set {2 and a o-algebra ¥ of
subsets of 2. We also consider the set of all functions f : 2 — F which are measurable with
respect to >

M(Q) = M(Q,2) ={f|f:Q— F is measurable with respect to X}.

Since the sum of measurable functions and the product of a number and a measurable function
are measurable functions we see that M(2) is a linear space over F'.

Now we also consider a measure 4 on ¥, i.e. a measure space (£2, 3, i¢). As in the basic theory
of Measure and Integration, we consider equal every two functions in M (€2) which differ only in
a set of y-measure equal to 0.

Definition. We define the function spaces
L>(Q) = L2, 2, 1) = {f € M(Q)| f is essentially bounded in Q},
@) =@ = {f e M@| [ |fPdu<roc}. 1<p< o
Q

It is easy to see that the sum of essentially bounded functions and the product of a number and
an essentially bounded function are essentially bounded functions. Hence L°°(£2) is a linear space
over F'.

Regarding the space LP(2) with 1 < p < +o00, we have that, if f € LP((2), then

/ PP dp = AP / P dy < o0
Q Q

and hence \f € LP(Q). Also, if f,g € LP(Q2), then, as we saw in the proof of Minkowski’s
inequality for integrals,

/Q|f+g|pdu§2p_1/Q|f|pdu+2p_1/Q|g|pdu<+oo,

andso f + g € LP(Q2).
Therefore, the space LP(£2) is a linear space over F'.
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Definition. If 1 < p < 400, we consider the function || - ||, : LP(Q2) — R defined for every
f e LP(Q) by

(Jo lFIPdu) P, 1< p < +oo,
11l =
ess-supg | f|, p = +o0.

Minkowski’s inequality for integrals shows that || - ||, is a norm on LP(£2); it is the p-norm of
LP(Q).

Theorem 1.6. L”(2) with the p-norm is a Banach space.

Proof. We first consider the case 1 < p < 4o0.

We take a sequence ( f,,) in LP(2) so that || f,, — fm ||, — 0 when n, m — +o0.

For every k € N there is ny, so that || f,, — fillp < 2% for every n, m > nj. We may assume that
(n4) is strictly increasing and so we have || fp, ., — fa, | < 2% for every k.

We consider the function

Sk = ‘fn1| + |fn2 - fm‘ +eee |fnk - fnk71| € Lp(Q)a

and we have that

1/p
([fﬂm) = llswllp < Wfuallp + Mo = Sasllp =+ Lo = Fus

1

1
< HmeeriJF”'JFF <[ faullp + 1.

Since (sy,) is an increasing sequence of non-negative functions, the monotone convergence theorem
implies that the function S = limg_, o sk : © — [0, +o0] satisfies fQ SPdu < +oo. Hence,
S(z) < 4oo for p-a.e. x € Q and so the series f,,, (x) + 3725 (fn, (¥) — fa,_, (z)) converges
absolutely for p-a.e. « € €. Therefore the limit

lim (fn1 (‘T) + (fnz (:C) - fnl (x)) +e (fnk(x) - fnk—l(x))> = lim fnk(x)

k——+o0 k—+o0

exists in I for p-a.e. x € (0.
Now we consider the function f : {2 — F' defined for u-a.e. z € () by

flx) = lirnOO fop ().
We have

| far @)P = | fr (@) + (fag (%) = fn (@) + -+ (fa (2) = frey (@))]7 < s0(2)P < SP(2)

for p-a.e. x € Q, and hence | f|P < SP p-a.e. in Q. So

/|f|pd,u§/5’pdu<+oo,
Q Q

and thus f € LP()). Moreover, the dominated convergence theorem implies that

» 1/p
e =7l = ([ Ve = S d) =0
when & — +o0. Finally, since ( f,,) is a Cauchy sequence,

1fi = Fllo < Wk = Frillp + 1 fni = fllp = 0
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when k — +o0.
Now let p = 400 and take a Cauchy sequence ( f,,) in L>°(€2).
Considering the union of countably many appropriate sets of y-measure equal to 0, we see that

for p-a.e. = € Q and every n, m. Therefore, lim,,_, o f,(x) exists in F for u-a.e. x € Q. Now
we consider the function f defined for p-a.e. x € Q by

For any € > 0 there is ng so that

[fn(2) = fm(@)] < | fn = fmlloo <€

for p-a.e. z € Q2 and every n, m > ng. Taking the limit when m — +o0, we find that

[fn(z) = f(z)] < e

for py-a.e. x €  and every n > ng. Therefore ||f,, — f||c < € for every n > ng, and so f, — f
in L>°(Q2). O

A special case of the above is when {2 is a topological space. In this special case we may
consider X to be the smallest o-algebra which contains all open subsets of 2. This o-algebra
is denoted B(£2) and it is called o-algebra of the Borel subsets of (2. Since B(f2) is a o-algebra
which contains all open subsets of €2, it also contains all closed subsets of €2, as well as all countable
intersections of open subsets of €2 and all countable unions of closed subsets of 2. The elements
of B(£2) are called Borel subsets of 2.

A measure ;. on () is called Borel measure in 2. If 1 also satisfies (K) < +oo for every
compact K C €, then it is called locally finite Borel measure.

Every continuous function f : 2 — F' is measurable with respect to B(£2). So if 4 is a Borel
measure in {2, we may consider the subset

CYNLPQ) = {f ‘ f:Q — F continuous in ) with / |fIP dp < +oo}
Q

of LP(Q2), which consists of all functions which are continuous and p-integrable in 2. Then C'(Q2)N
LP(Q) is a subspace of LP(£2), and it is well known that C'(2) N L”(€2) is dense in L?(€2). In other
words, LP(€2) is a completion of C'(2) N LP(2).

1.10.3 Differentiable functions.

Let U be an open subset of R? and let f : U — F. We take any multi-index & = (a1, . . ., og) € Nd
with length || = a1 + - - - + o, and we consider the derivative of order |a| at any = € U:

N olelf olel ¢
D2 f(x) = oo T Ozt - - dxy? v

Definition. For every k € N U {+o00} we define the space
CH(U) = {f|f:U — F has continuous derivatives of order < k in U}.

We also define CO(U) = C(U).
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It is clear that all C*(U) are linear spaces over F, and that
c>Ww) cckwy cclu)ce)

for every k,l € Ng with k& > [.
In the following we consider m to be the Lebesgue measure in U C R? and when we write
LP(U) we consider U with the Lebesgue measure m.

Definition. If £ € Ny and 1 < p < +00, we define the space
CrPP(U) = {f € C*(U) | D*f € LP(U) when |a| < k}.
If k € Ng and p = 400, we define the space
Ch(U) = {f € CKU) | D*f € BC(U) when |a| < k}.

Definition. Let k € Ny and 1 < p < +o00. We consider the function || - ||, : C*P(U) — R defined
for every f € C*P(U) by

1F lkp = {(Z'aszc Sy | D2 1P dm) 7, 1 < p < +oc,
Z\alﬁk 1D fllu p = +o00.
Of course, when we write || - ||, we mean the uniform norm on BC(U).
Proposition 1.18. The function | - ||, : C*P(U) — R is a norm on C**(U).

Proof. Let 1 < p < +o00. Then, using Minkowski’s inequalities for sums and integrals, we get

1f + gllkp = ( > /U‘D@f—i—Dag‘Pdm)l/p

|| <k

< (X [(f rswam)™  (107gpan) )
= ( > /U\Daf!pdm>l/p+ ( > /prag‘pdm)l/p

lo| <k lo| <k
= [lfllep + l9llkp-
All other properties of the norm, as well as the case p = +o0, are straightforward. O

Theorem 1.7. C*°°(U) is a Banach space.

Proof. If k = 0, then C%*°(U) = BC(U) and we already know that this is a Banach space.
So we take k > 1 and we consider a Cauchy sequence (f,,) in C*>(U), i.e.

> D% fn = D* finllu — 0

lo| <k

when n, m — 4o00. Then for every o with || < k we have that | D f,, — D fy,||, — 0 when
n,m — +oo, and so (D f,,) is a Cauchy sequence in BC'(U). Therefore, there is f, € BC(U)
so that D f,, — f, uniformly in U.

We take any = (x1,...,2j,...,24) € U and a small A € R so that the linear segment with
endpoints  and « + he; = (x1,...,2;+ h,...,z4) is contained in U. Then for every n we have
hafn
fn(@e, .oz +hyoooxg) = faln, o xg, . xg) = %(xl,...,:vj—i—t,...,md)dt.
0 J
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Because of uniform convegrence, when n — +oo the left side of this equality converges to

f(07---70) (1’1, RN i h,..., :L‘d) — f(07...70) (1‘1, ey Ty ,l‘d)

and the right side converges to

h
/ f(O,...,l,...,O)(xh"‘7$j +t7 ,.Td) dt7
0
where the 1 in the last multi-index appears at the j-th place. Thus
f(07.._70)(1'1, s X+ h,... ,.I‘d)—f .,0) .1‘1, N TR ,$d)

/f 10(@, . rg L xg) dt

Since the integrated function is continuous in ¢, we may differentiate the integral with respect to h
at h = 0 and we get

9fo,..0
éTj)<x) = f(0,..1,...,0) ().
Therefore, if we define f = f then f(o o= 2 in -

In the same way, we can show mductlvely that for every « w1th |a| < k we have f, = D*finU.
Thus for every o with |a| < k we have || D® f,, — D f||, — 0 when n — +o0, and so

I fn = Fllkoo = D> IID*fn = D*fllu = 0

|| <k
when n — +o00. O

If 1 < p < +oo, then the normed spaces C*?(U) are not complete. We shall now say a few
things about the completion of each of these spaces.

Definition. Let X be a topological space and let f : X — F be continuous in X. The set

supp(f) = cl({z € X | f(x) # 0})

is called support of f.
If supp(f) is compact, then we say that f has compact support.

It is easy to see that X \ supp(f) is the largest open subset of X in which f is identically 0.

Definition. Let U C R? be open. We define the space
C(U)={f e C™U)]|f has compact support C U}.

Lemma 1.1. Let X be a topological space, A € F and f,g : X — F be continuous in X. Then
supp(Af) C supp(f) and supp(f + g) < supp(f) U supp(g).

Proof. Trivial. O
Proposition 1.19. C2°(U) is a linear subspace of C*°(U).

Proof. From the last lemma it is obvious that, if f,g € C2°(U), then supp(Af), being a closed
subset of the compact supp( f), is a compact subset of U, and also supp( f+g), being a closed subset
of the compact supp( f) Usupp(g), is a compact subset of U. Therefore Af, f + g € C*(U). O
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If f: U — F has continuous derivatives D f in U for every o with || < k, then integration
by parts implies that

/ Df ¢dm = (—1)'“/ f D% dm
U U
for every o with |a| < k, and every ¢ € C2°(U).

Definition. Let 1 < p < +ooand f € LP(U). We say that the function f, € LP(U) is a weak
a-derivative of f in U if

/faqﬁdm:(—l)'a/fDacbdm
U U
for every ¢ € C°(U).

If a weak «-derivative of f exists, then it is unique. Indeed, if both f!, f/ € LP(U) are weak
a-derivatives of f, then

/Uf;cbdm:(—1)“'/UfD“¢dm=/Uf£é¢dm

and hence

/(f;—fgwdm:o
U

for every ¢ € C°(U). This implies that f/, = f/ m-a.e. in U'. Therefore, if f has derivative
D“ f in the usual sense and D* f € LP(U), then a function f, € LP(U) is a weak «a-derivative of
f if and only if f, = D f m-a.e. in U.

The weak derivatives f, are substitutes for the usual derivatives D* f whenever the function
f is not differentiable in the usual sense. We agree to denote D f the weak a-derivative f,, even
when D? f does not exist in the usual sense.

Definition. Let k € Nand 1 < p < +oco. We call Sobolev space and denote WP (U) the set of
all functions f € LP(U) which have weak a-derivatives D f in LP(U) for every o with || < k.
We consider the function || - ||, : W*P(U) — R defined for every f € W*P(U) by

o 1/p
I£ep = (3 [ 101 dm) ™.
jal<k Y
It is clear that || - ||, is a norm on W*P(U) and that C¥?(U) is a subspace of W*?(U).
Proposition 1.20. W*?(U) with the norm || - |1, is a Banach space.

Proof. Let (f,) be a Cauchy sequence in W*P(U), i.e. ||fn — fmllkp — O when n,m — +o0.
Then for every a with |a| < k we have

1D fr = D fmllp < |l fn = fnllkp — 0

when n,m — +o0. So, for every a with |a| < k we have that (D®f,,) is a Cauchy sequence in
LP(U) and hence there is some f, € LP(U) so that D f,, — f, in LP(U).

In particular, when o = (0, . .., 0) we have a function f = fq, . o) so that f,, — f in LP(U).
Now we consider any ¢ € C2°(U) and then we have the equality

/(]Dafnqbdm:(l)'a/(]anagZ)dm

for every n. Using Holder’s inequality, with the dual exponents p and g, we have that

[ Dot = [ fooim| =] [ (0f, = ) oam| < 10°5 = falliol, 0

!This conclusion together with the fact that the space C'>°(U) is non-empty are taken for granted.
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/an%dm [ rorim| = [ (Fu= o dm| <115, = 110760, 0

when n — —+o0. Thus,
[ favdm =0l [ § D dm.
U U

Since this holds for every ¢ € C2°(U), we have that f, is a weak a-derivative of f in LP(U), i.e.
= D*f.

So the function f € LP(U) has weak derivatives D f in LP(U) for every o with || < k. In other

words, f € Wkr(U).

Finally, since D f,, — fo = D f in LP(U) for every o with |a| < k, we find that

1/ /
an_f Z/’Daf Daf|pdm) p (ZHDafn_Dang)lp
la|<k laf<k
when n — +oc. Thus f,, — f in WkP(U). O

Proposition 1.21. > C*P(U) is a dense subspace of W*?(U).

Therefore the Sobolev space W*?(U) is a completion of C*?(U)).

1.11 Measure spaces.

Let €2 be a non-empty set and ¥ be a o-algebra of subsets of (2. We recall from the basic course
on Measure and Integration that a function i : ¥ — F'is called real (if 7' = R) or complex (if
F = C) measure on ¥, if

+oo +oo
() =0, p(1J4) =D n4)
j=1 j=1

for every pairwise disjoint A; € ¥, j € N. (In particular, the last series converges.) Note that a
real or complex measure does not take the values oo and co.
We define

A(Q) = A(Q,X) = {u]| p is areal or complex measure on >}.

It is easy to see that, if yu, v € A(Q2) and A € F, then u + v, \u € A(Q2). So A(Q) is a linear
space over F.

If a real or complex measure p satisfies ;1(A) > 0 for every A € ¥, then we say that p is a
non-negative real measure, and then 1 is a special case of a measure: a measure on X is a function
p s X — [0, +o0] which satisfies p()) = 0 and p( ;r Aj) = Z; 1 (A;) for every pairwise
disjoint A; € ¥, j € N. Therefore, a measure 1 is a non-negative real measure if and only if
1() < 4o00.

Definition. Let ({2, X2) be a measurable space, and . be a real or complex measure on 3. For every
A € ¥ we define

n
|| (A sup{ Z |(A ‘n e N, Ay,..., A, € X are pairwise disjoint, U Ay C A}.

m=1

Then |u|(A) is called total variation of . in A.

2We shall not prove (now) proposition 1.21. For the proof see the book “Sobolev Spaces” by Adams and Fournier.
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Lemma 1.2. Let K C C be finite. Then there is M C K, so that | Yo Al > & > ek [Al-

Proof. C is the union of
Q1 ={N ReA>|ImA\|}, @Q2={)\| ReA < —|ImA|},

Qs ={A|ImA>|Re)|}, Qs={N|Im) < —|Rel}.
If A\,..., \n € @1, then
1
|A1+---+An|2Re(A1+---+An)=ReA1+---+Re>\n2E(IA1|+---+|AnI).

The same is true if A, ..., A, all belong to one of @2, Q3, Q4.
Now, we split K in four pairwise disjoint subsets K1, Ko, K3, K4, so that each contains elements
of K in 1, Q2, @3, Q4, respectively. Then at least one of them, say M, satisfies

D=4 ZIM

AeM AEK

1 1 1
Al > —= A >—=> A =>=> [AL
‘A%\;’ ﬁAEZM 4\/§§< 6Z

AEK

and so

O]

Theorem 1.8. If 11 is a complex measure on %, then |p| is a non-negative real measure on ¥. In
particular, |p] () < +o0.

Proof. It is obvious that |u|(A) > 0 for every A € 3, and that |u|(0) =
Now let A', A2, ... € ¥ be pairwise disjoint, and A = [ J/°] A7.

We take pairwise dlS]OlDt Aq,..., A, € X with Um:l A,,, € A. We consider the A?n = AINA,,

and then .
An=\]J 4, A, cAl
j=1

m=1
Therefore,
n n  +oo n  +oo 400 n
S lalAn)l = D03 ulad)| < 30 Iu(ah) = 303 (A, |<Z\M\AJ
m=1 m=1 j=1 m=1 j=1 j=1m=1

Taking the supremum of the left side, we get |u|(A4) < Z;;O‘f || (A7).
We take any .J, and for every j = 1,...,.J we take any \; < |u|(A7). Then there are pairwise
disjoint A7, ..., A}, € ¥ so that

U ahca, x <Y (4
m=1

m=1
Then A}, ..., A/ , are pairwise disjoint and their union is contained in A. Hence
J J ny
DN <D In(A)] < Jul(4).
j=1 j=1m=1
Taking first the supremum over the Aj, ..., Ay and then the limit when J — 400, we get that

S50 1l(A7) < [pl(A).
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We conclude that Z;’:Of \u|(A7) = |u|(A), i.e. that |u| is a measure, and we still have to prove
that || () < +oc.
We assume that || (£2) = 400, and we claim that there are By, Bs, ... € 3 so that

Bi2B22B32 ..., |pl[(By) =400, [u(Br)|=k-1

for every k. We take B; = () and we assume that we have proven the existence of the first
By, ..., By. Since |u|(By) = +oo, there are pairwise disjoint A1, ..., A, € ¥ so that

UA C By, Z\u m)| > 6(|u(B)| + k).

According to lemma 1.2, there are some of the Ay, ..., A,, which we may assume that they are
the Ay, ..., A;, so that

l
> A (fGZm )l = |(Bi) |+ k.
m=1

We set S = Ulm:1 A,, C By, and then

l1(S)] > |(B)| + k.

Since |u|(S) +|p|(Bx \ S) = |u|(By) = +00, we have that either |p|(S) = oo or |p|(Bg\ S) =
+o0. In the first case we set By+1 = S C By, and then |u(Bj41)| > |u(Bg)| + k > k. In the
second case we set By1 = By, \ S C By, and then |p(Bg11)| > |1(S)| — |u(Bg)| > k.
In any case we have proven the existence of an appropriate By and hence the claim.
Now we consider the pairwise disjoint A; = By \ B2, Ay = By \ Bs, ... and the B, = z;’? By.
Then

“+o0o

H(B1) = j(B) = (B \ Boc) = U An) = Y 1lAn)
- m=1
= lim 2 wAm) = dim (u(B1) — u(By))-

Therefore limy,_, o t(Bg) = 1(Boo), i-e. |t(Bos)| = 400, and we arrive at a contradiction. [

Definition. If 11 is a complex measure on X, then the non-negative real measure |1 on ¥ is called
absolute variation of ;. and the number |u|(2) is called total variation of ..

Definition. We consider the function || - || : A(2, ) — R defined for every u € A(2, %) by
el = 11 (€2).
Proposition 1.22. || - || : A(Q,X) — R is a norm on A(Q, X).

Proof. Let |||l = 0. Then for every A € ¥ we have |u(A)| < |u|(2) = 0, and hence p(A) = 0.
Sopu=0.
Let u € A(Q,X) and A € F. We take pairwise disjoint Ay, ..., A, € ¥ and we have

Do 1O (A = ALY [u(Am)
m=1 m=1

Taking the supremum of both sides, we find || Ap|| = ||| |-
Now let p, v € A(2, X). For every pairwise disjoint Ay, ..., 4, € ¥ we have

n

Dot ) (A < Y |n(An)| + Z v (Am)| < [l + [Iv]]-
m=1

m=1

Taking the supremum of the left side, we get || + v|| < ||u|| + ||¥]|- O
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Theorem 1.9. A(€2, ) with the norm || - || is a Banach space.

Proof. Let (u,,) be a Cauchy sequence in .A(€2, ). Then for every A € ¥ we have

’,U/n(A) - ,U/m(AN < ”,U% - Mm” —0

when n,m — +oc and so the limit lim,,_, ; » pn(A) exists in F'. Thus, we may consider the
function p : ¥ — F defined for every A € ¥ by

p(A) = lim pn(A).

n—-+o0o

Clearly, p£(0) = limy,— oo pn (0) = 0.
Now we take pairwise disjoint A;, As,... € Y and A = U 1 Aj. For every e > 0 there is ng so

that || ptr, — || < € for every n, m > ng. Since Z+ 1 Pno (A ) = tny (A), there is Jy so that

J
fin(A) = 3 ting (4)] < ¢
j=1

for every J > Jy. If m > ng, then

J 400
(tina(A4) = pn(A))= 3 (1ino(A4) = (A = | D (hino(A5) = i (45))
j=1 j=J+1
+oo
< D7 ltnol(Ay) = im(A3)] < Nty =t < .
j=J+1

Taking the limit when m — +oo we find

Mu

(10 (4) = () = D (1n (A7) = (A4))| < €

1

<.
Il

and hence

Mk

(A ‘ < 2

=1

for every J > Jy. Thus ZJ 1 1(A;) = u(A) and so p € AL, 3).

Finally, for any € > 0 we choose ng as before. We take pairwise disjoint Ay, ..., A € X, and
then for every n, m > ng we have

.

k
Z!un = b (A < lpm = pm| < €.

We take the limit when m — 400 and we get

Zmn 4y <.

Considering the supremum of the left side, we get ||u,, — p|| < € for every n > ng. Therefore,
fn — pin A(Q,%). O

Definition. If 2 is a real measure on ¥, then the non-negative real measures j* = % (|p| + 1) and
poo= %(\ wu| — p) are called positive variation of 1. and negative variation of /..
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That these two real measures are non-negative follows from the definition of |u|(A): we have
|| (A) > |u(A)| for every A € X. The two identities

p=pt—pT, pl=pt

are clear.
It is easy to prove for any complex measure x4 : ¥ — C that the functions Re o, Im s : ¥ — R
defined for every A € ¥ by

Rei(A) = Re(u(A)), Imp(A) =Im(u(A)),

are real measures on .. Also the function 7z : ¥ — C defined for every A € 3 by

i(A) = pu(A),
is a complex measure on .. Moreover,
p=Repu+itImy, pw=Repu—:iImy,
|Rep| < |pf, [Impf <[u|, |pl < [Rep|+[Impyl,
n + pol <l +lp2l, (@l = lpl, Al = (A4l

A special case of the above is when (2 is a topological space, and ¥ is the o-algebra 5(£2) of
the Borel subsets of 2. Then every real or complex measure on 5(2) is called real or complex
Borel measure in (2.

Definition. A real or complex Borel measure ;. on B(£2), i.e. an element of A(S2, B(2)) is called
regular, if for every A € B(2) and every € > 0 there are K,U C () so that K is compact, U is
open, and

KCACU, |p/(U\K)<e.

The set of all regular Borel measures on B(£2) is denoted
A (Q,B(2) ={p € A(Q,B(Q)) | p is regular}.

Proposition 1.23. A,.(Q2, B(Q2)) is a linear subspace of A(2, B(£2)).
If p € A (Q,B(Q)), then |u| € A.(Q,B()).

Proof. Trivial. O

So we may consider A, (£2, B(2)) to be a subspace of A(€2, B(£2)) with the total variation || - ||
as norm.

Proposition 1.24. A,.(Q2, B(Q2)) is a closed subspace of A(£2, B(2)) and so it is a Banach space.

Proof. Let (u,,) be a sequence in A, (2, B(12)), and let p,, — p in A(Q, B(R2)).
We take any A € B(€2) and any € > 0. Then there is ng so that ||;n, — p|| < €. Moreover, since
[in, is regular, there are K, U C (2 so that K is compact, U is open, and

KCACU, |un(U\K)<e.

Then
(U N\ K) < | = g (U N\ K) + g (U \ K) < = g |[(2) + [ | (U \ K)
= |1t — pmg || + o (U \ K) < 2e.
Thus, p € A, (Q,B(Q)). .
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1.12 Compact sets in infinite dimensional normed spaces.

Riesz’s lemma. Let X be a normed space, Y g X be a closed subspace of X, and 0 < t < 1.
Then there exists x € X so that ||z|| = 1 and inf,cy ||z — y|| > t.

Proof. To begin with, we observe that if ||z|| = 1 then, since 0 € Y, we have

inf ||z —y|| < ||z —0| = =1
Jof Jle = yll < flo = Ol} =

Now, we take any 2o € X \ Y and then, since Y is closed, there is » > 0 so that B(zq,r)NY = (.
This implies that

inf -yl >r>0.

inf flag —yl| = v

We denote dy = infycy ||zo — y|| and then there is yo € Y so that

do
T > ||z — yol| > do.

We set z = 2= and then ||z|| = 1. Also

lzo—yoll
N Y XA ] B S
lzo — ol lzo — ol [zo — ol
for every y € Y. Thus, inf ey ||z — y|| > . O

We recall that for a subset A of a linear space X the set span(A), the linear span of A, is the
linear subspace of X generated by A or, equivalently, the smallest linear subspace of X containing
A or, equivalently, the set of all linear combinations of elements of A.

Proposition 1.25. Let X be a normed space with dim(X ) = +oo. Then the closed ball B(0;1) is
not compact.

Proof. We take any z; € X with ||z;|| = 1. Then the subspace Y7 = span({x;}) is a one-
dimensional, and hence closed, subspace of X. By Riesz’s lemma there is x5 € X with ||z2|| =1
and infyey, [|z2 — y| > 3 and hence

oz — ol 2 5
-2
Then the subspace Y2 = span({z1, z2}) is a two-dimensional, and hence closed, subspace of X.
By Riesz’s lemma there is 23 € X with ||3| = 1 and inf ey, ||z3 — y|| > 5 and hence

1 1
los = a1l > 5. llos = 2]l > 5.
Continuing inductively, we generate a sequence (z,,) in B(0; 1) so that
o = 2mll = 5
o=
for every n, m with n # m. Obviously, this sequence has no convergent subsequence and so
B(0;1) is not compact. O

Proposition 1.26. Let X be a normed space with dim(X ) = +o00. Then every compact subset of
X has empty interior.

Proof. Let K C X be compact and assume that a is an interior point of K.
Then B(a;r) C K for some » > 0 and so B(a;r) is compact. But the function f : X — X
defined for every x € X by

f@)="(z—a)

is continuous in X and f(B(a;r)) = B(0;1). Therefore, B(0;1) is compact and we arrive at a
contradiction. So K has no interior points. O
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1.13 Series.

Definition. Let I be a non-empty set of indices and {c; | i € I} a set of non-negative real numbers,
i.e. a; > 0 forevery i € I. We say that the series ) . _; «; converges if

S:sup{Zai

ieJ

J finite C I} < 400.

Then we also say that S is the sum of the «;, i € I, and we write
Z Q; = S.
icl

Lemma 1.3. Let I be a non-empty set of indices and c; > 0 for everyi € 1. If ), cv; converges,
then the set Iy = {i € I | a; > 0} is countable.

Proof. We consider I,, = {i € I|a; > 1}, and then we have Iy = |J;°5 I,,. We take any finite
J C I,,, and then

1 card(J) < Zai <S.

n icJ
Thus, card(J) < n.S, and so I, is finite with card(Z,,) < nS. Therefore, I is countable. O
Definition. Let X be a normed space with norm || - || and let (x,,) be a sequence in X. We say that

the series Z:{i’i xp converges to s € X if x1 + - - -+ x, — s. Then we also say that s is the sum
of +°‘i x,, and we write

n=

+oo
> s
n=1
Theorem 1.10. Let X be a Banach space with norm || - || and let {z;|i € 1} C X, where I is

a non-empty set of indices. If the series ), ; ||z;|| converges, then Iy = {i € I|xz; # 0} is
countable.

(i) If Io is finite, then ;. x; is just a finite sum.

(ii) If card(ly) = +oo and if {i1,42,...} is any enumeration of Iy, then the series Zzg Ty,
converges and the sum s = sz{ x;,, does not depend on the particular enumeration of Iy.

Proof. Lemma 1.3 implies that /j is countable.
(i) This is trivial.
(ii) We assume that card(lp) = +oo and that {i1,72,...} is any enumeration of ;. We also
consider the partial sums
Sn = Z Ly, -
k=1

Let

> laill = 5.

iel
We take any € > 0 and then there is a finite J C I so that

S—e<> |l < 8.

ieJ

If J' C I is finite and J N J’ = (), then

S—et laill <Y el + D el = Y llaill <5,

ieJ’ icJ ieJ’ ieJUJ’
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and so

D ]l <e.

ieJ’
Now, there is ng large enough so that J N {in,, ing+1, - - -} = 0. So if ng < n < m, then the sets
Jand J = {in+1,. ..,y } are disjoint and hence

m m
s =sall = | D= @] < 3 Mawll =3 el <
k=n+1 k=n+1 ieJ’

Therefore, (s,,) is a Cauchy sequence in X and so it converges to some s € X. Le.

+o0

Z Ty, = S.

k=1
Finally, we consider any other enumeration {1, jo, ...} of Iy and we consider the corresponding
partial sums

n
t, = Z Tj, -
k=1

Now, there is ng large enough so that J N {in,, ing+1,---} = O and J N {jng,s Jng+1s- - -} = 0. So
if n > ny, then the difference

n n
Sp —tp = szk — ijk
k=1 k=1
contains only terms +x; with indices i € .J’, where J’ C I is finite and J N J’ = (). Therefore, if

n > ng, then
lsn = tall = || 3 i) < D ol < .
ieJ’! ieJ’!

Thus, s, — t, — 0, and since s,, — s, we also get t,, — s. O

Definition. Let X be a normed space with norm || - || and let {z; |i € 1} C X, where I is a non-
empty set of indices.
(i) If the series 3, ||;|| converges, we say that the series ), ; x; converges absolutely.
(i) If Io = {i € I'|2; # 0} is countable and infinite, and if the series Y x;, converges in X
for every enumeration {i1, 12, ...} of Iy, and if the sum s of the last series does not depend on the
enumeration of Iy, then we say that the series ), _; x; converges unconditionally and that s is
its sum, and we write

Z Tr; = S.

icl
So theorem 1.10 says that, in a Banach space, if a series converges absolutely then it converges
unconditionally.

1.14 Separable normed spaces.

Definition. Let X be a normed space. We say that X is separable if there is a countable subset of
X which is dense in X.

Proposition 1.27. All spaces [P, 1 < p < 400, and c, ¢y are separable, but [*° is not separable.
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Proof. We say that A € C is rational if Re A\, Im A € Q. It is obvious that the set of rational
complex numbers is countable and dense in C.
We consider the set

A={(k1,...,kE,0,0,...) |k € N,Kq,..., K arerational in F'}.

Then A is countable and it is a subset of every (P, 1 < p < 400, and of cj.
Let 1 < p < 400, and take any = () € [P and any € > 0. Then there is kg so that

+oo

P
P
Z |/\k| < 92"
k=ko+1
Also, forevery k = 1,. .., ko there is arational kj, € F' so that |\ — k| < m We consider
0

the element y = (k1,...,kk,,0,0,...) € A, and then

ko 400
lz—yllh = e —mlP+ D [P < e,
k=1 kmho+1

and hence ||z — y||, < €. Thus A is dense in [P and so [? is separable.

Now, take any x = (\;) € ¢o and any € > 0. Then there is ko so that [A\z| < e for every
k > ko + 1. Also, for every k = 1,. .., ko there is a rational xj, € F' so that |\, — k| < €. Then
y=(K1,...,Kk,0,0,...) € Aand

H.%' - yHOO = Sup{’)‘l - /il‘?' c ’)‘ko - ﬁkoL ’/\k0+1’, ’)‘koJr?’v .- } <e

Therefore A is dense in ¢ and so ¢ is separable.
For the space ¢ we consider the set

B ={(K1,...,Kk, Ky K,...) |k € NJK,K1,..., Ky are rational in F'}.

Then B is a countable subset of c.

Now we take any x = (\;) € cand any € > 0. If A = limg_, 1o, Ak, then there is kg so that
A — A| < § forevery k > ko 4 1. Now, for every & = 1, ..., ko there is a rational k3, € I’ so
that [\ — | < e. Also, there is a rational x € F so that [\ — x| < § and hence

\)\k—nlg]/\k—)\\+\)\—/<;\<%+§:e

for every k > ko. Theny = (K1, ..., Kkg, K, K, . ..) € B and

”LL’ - yHOO = sup{|)\1 - "11‘7 SR |>‘k0 - "iko‘a |)‘k0+1 - ’{|7 ’)‘k0+2 - K"v .- } <e

Thus B is dense in ¢, and so c is separable.
Finally, assume that [*° has a countable and dense subset

C= {1‘1,.@2, .o .},

where z,, = (\,, ;;) for every n.
For each k we consider \;, € F so that [A\;| < 1and |\ — A | > 1, and we form the element
xz = (Ag) € [*°. Then

||.CC - ‘TTLHOO > |>‘n - )\n,n‘ >1

for every n. So there is no element of C' at a distance from x less than 1 and we arrive at a
contradiction. O
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so that for every A € X with u(A) < 400 and every e > 0 there is B € Z with u(BAA) < e.
Then every LP(Q, %, 1), 1 < p < 400, is separable.

Proposition 1.28. Let (2, X, 1) be a measure space, and assume that there is a countable = C %

Proof. We take any f € LP(2, X, i) and any € > 0. We know that there is a simple function

9= Mexa, € LP(Q, %, p)
k=1

sothat A\, € F, Ax € ¥ and pu(Ag) < +oo forevery k = 1,...,n and

(/Qlf—gl”du)l/p < %6-

We select 7 > 0 depending on € in a way to be made precise in a moment.
Forevery k = 1,...,n there is By € E so that u(BpAAy) < n and there is a rational k € F' so
that |\, — kx| < 1. We consider the function

n
h=>_ rixs,
k=1

and we get

([1r=nraw)” ([ 1g-nran)”

+ 21 —/%\(/ |XAk|de)1/p
k=1 Q
" 1/p
+;\mk\</glx,4k —ka\pdu)

1 n n
=5et Z Ak = ml (AR P+ [kl ((Br A AR)) P
k=1

*€+772 (Ar)) 1/p+771/p2\>\k|+77)
k=1

IN

A\
N =
o 5\\\
=

|

Al

iS]

QL

=

| /\

Since
n

1> (AP + 0P (Ml +1m) = 0

k=1 k=1

when 7 — 04, we may select 7 so that the last sum is < % e and hence (fQ |f —hP du)l/p <e.
So the set

n
= {kaxgk n € N,Kk1,...,k, arerational in F, By,..., B, € E}
k=1
is countable and dense in LP (2, ¥, p). O

It is known that if © is a Borel set in RY, if ¥ = B(R2), and if u = m is the Lebesgue
measure, then the collection = of the sets of the form B = P N {2, where P is any finite union
of parallelepipeds with rational vertices, has the assumed property in the last proposition. So the
corresponding spaces LP (€2, B(2), m), 1 < p < +o0, are separable.
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Chapter 2

Inner product spaces

2.1 Inner products.

Let X be a linear space over the field F', where F' = R or F' = C.

Definition. We say that the function
(b): X xX = F

is an inner product on X, if

(@) (z,z) =

(i) (z,2) =0 & z=0,

(iii) (y, ) = (z,y),

(v) (Az,y) = A(z,y),

() (z1+22,y) = (21,9) + (22,9),

for every x,x1,x2,y € X and every A € F.

If F' = R, then of course (iii) becomes (y, x) = (z,y).

Properties (iv), (v) say that (-, -) is linear in the first variable. If we combine these two properties

with (iii) we get that (-, -) is conjugate-linear in the second variable:
V) (2, Ay) = Az, y),
(Vll) <$7Z/1 + y2> - <.7J,y1> + <.’E,y2>,

for every =, y,y1,y2 € X and every A € F.
Again, if F' = R, then (-, -) is linear in the second variable.
Using A = 0 in (iv) and (vi), we get

(0,9) = (2,00 =0

forevery z,y € X.
A very useful identity which results easily from (iv)-(vii) is

Az + Ky, Az + Ky) = [A*(z,2) + 2Re(\F (z,y)) + |K|* (v, y)

for every z,y € X and every A\, x € F.
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Schwarz’s inequality. Let X be a linear space with an inner product (-, -). Then
(2, 9)* < (,2) (. y)
for every x,y € X.

Proof. Let (x,2z) = 0. Then z = 0, hence (x,y) = 0 and so Schwarz’s inequality becomes 0 < 0.
Now let (z, z) > 0. Then

AP (z, ) + 2Re(A (, 1) + (y,4) = Az +y, Az +y) > 0

forevery A € F.
There is ;1 € F' so that || = 1 and p(x, y) = |(x,y)|. Taking A = tp with ¢ € R we get

£z, @) + 2t {z, y)| + (y,y) > 0

foreveryt € R. If weuset = — ‘éx’y§| in the last inequality, we get Schwarz’s inequality. O

Proposition 2.1. Let X be a linear space with an inner product (-,-). Then the function || - || :
X — R defined for every x € X by

[zl = v/ {z, z)
isanormon X.
Proof. All properties of the norm are easy to prove. For example, for the last property:
Hx+yH2 =(@+yz+y) = (r,z)+2Re((z,9)) + (y,y) < (z,z) + 2[(z, )| + (4,9)
< (z,2) + 2/ (@, 2) (v, 9) + (w,9) = =l® + 2]yl + lyl* = (=] + lly])?,
and hence ||z + y|| < ||| + [lyll. 0

Definition. We say that the norm || - ||, which is defined by the inner product (-,-) as above, is the
norm induced by the inner product.

Now, Schwarz’s inequality takes the form

[z, )| <zl llyll-
Also, identity (2.1) becomes
Iha + wyl® = [APz]] + 2Re(AR (z,)) + |s[|ly]*.

Moreover, taking A = 1,5 = 1 and also A = 1,x = —1, and then adding the two resulting
identities, we get the parallelogram law:

lz + yl* + |z — ylI* = 2l|=]* + 2[lylI*.

Example 2.1.1. A trivial example of a normed space over F' is the field F' itself with the inner
product (\, k) = \R.

Proposition 2.2. The inner product of an inner product space X is continuous, i.e. if x,, — x and
Yyn — y in X, then (x,, yn) — (x,y) inR.

Proof. This is implied by
(@, Yn) — (T, 9)| < HZns Yn) — (T, Y| + [(Tn, ) — (2, 9)| = (@0, Yn — )| + (20 — 2, )]
< lzallllyn = yll + lln — =([|ly]]-
O

Definition. Let X be an inner product space. If X with the norm induced by the inner product is
complete, then we say that X is a Hilbert space.

Hence, a Hilbert space is Banach space with a norm induced by an inner product.
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2.2 Subspaces, cartesian products.

Proposition 2.3. Let X be an inner product space with inner product (-,-) : X x X — F, and let
Y be a linear subspace of X. Then the restriction (-,-) : Y x Y — F'is an inner producton'Y .

Proof. Obvious. O

Definition. The linear subspace Y of an inner product space X, equipped with the restriction on
Y of the inner product on X, is called subspace of X.

Let X1, ..., X,, be inner product spaces with inner products (-, -)1,..., (-, -)m. We consider
the cartesian product X = X; x --- x X,,, and for every z = (x1,...,2m),y = (Y1,...,Ym) €
X = X1 x--- x X,, we define

<x’y> = <$1,y1>1 +eee <xm7ym>m~

Proposition 2.4. The function (-,-) : X x X — F just defined is an inner product on X =

X1 X x X
Proof. Trivial. O
Example 2.2.1. We consider X; = ... = X,;, = F with (\,k); = ... = (\,k),m = A% and then

we get the cartesian product X = F' x - .- x F' = F™ with the inner product which is defined for
every z = (A,...,Am),y = (K1,...,km) € F X --- x F=F"by

(Z,y) = M RL+ -+ A Fom.-

This is the standard euclidean inner product on F™. Obviously, the norm induced by this inner
product is the euclidean norm on F:

(@,2) = MM A+ A A = M+ A = [2]3

2.3 Linear isometries.

Definition. Let X, Y be inner product spaces with inner products (-, ) x, (-, )y,andletT : X —Y
be a linear operator with the property

(T'(21), T(x2))y = (21, 72)x

for every x1,x9 € X. Then T is called linear isometry of X into Y.
IfTisontoY,ie. if T(X) =Y, then T is called linear isometry of X onto Y. We also say that
X is linearly isometric to Y.

Taking 1 = zo = x € X, we see that if 7" : X — Y is a linear isometry, then
IT(2)lly = ll=lx

for every x € X, where the two norms are those which are induced by the inner products. In other
words, an “inner product” linear isometry is also a “norm” linear isometry. We shall immediately
see that the converse is also true. Indeed, assume that

1T (@)ly = llzllx
for every z € X. Then, taking x = x1 + x2, we get
IT ()3 + 2Re((T(21), T(x2))y) + | T(22) [} = [lz1]1% + 2Re((1, 22)x) + [l22]1%
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and hence
Re((T'(x1), T(x2))y) = Re({z1,22) x)

for every z1,x9 € X. If ' = R, then of course we get
(T'(x1), T(x2))y = (T1,22)x

for every z1,x0 € X. If F' = C, then we use ix» in the place of x5 and we get

Im((T (1), T(22))y) = Im({x1, 22) x)
for every x1,xo € X. Therefore
(T(21), T(z2))y = (w1, 72) x
for every z1, 0 € X.

Proposition 2.5. Let X be an inner product space with inner product (-,-)x, let Y be a linear
space and let T' : X — Y be a linear operator which is one-to-one in X and onto Y. Then there
is an inner product on 'Y so that T" becomes a linear isometry of X onto Y.

Proof. We take any y1,y2 € Y, we consider the unique z1,22 € X so that T'(x1) = y; and
T(z2) = y2 and we define

(Y1, 92)y = (z1,22) X"
It is easy to prove that the function (-, -}y : Y X Y — F just defined is an inner product on Y.
Then, since T'(z1) = y1, T'(z2) = y2, the equality (y1, y2)y = (1, z2)x can be written

(T(z1), T(z2))y = (21, 72) X
and so 7 is a linear isometry of X onto Y. O

Thus, when we have two isomorphic linear spaces and one of them has an inner product, then
we can transfer this inner product to the other linear space so that the two spaces become linearly
isometric.

Example 2.3.1. Let X be a linear space of finite dimension and let {b1,...,b,,} be a basis of X.
We consider the inner product space F'" with the euclidean inner product. We also consider the
linear operator 7" : I — X defined for every (A1,...,\p) € F™ by

T, Am) = A1 + -+ Ambim.

Then T is one-to-one in F™ and onto X, and so the euclidean inner product on " can be transfered
to an inner product (-,-) : X x X — F. This is defined for every x = A\1b1 + - - - + \pby, and
y = K1b1 + - - - + Kmbp, in X by the formula

<£L‘, y> = <>‘1b1 + -+ )\mbmy Kkiby + -+ ’imbm>
T ) TR o)

=(( A1y s Am)s (K1ye oy Bm))
N I IR W g

The inner product on X just defined is called euclidean inner product on X with respect to the
basis {b1,...,bm}.
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2.4 Completion.

Definition. Let X be an inner product space. We say that the inner product space X is a completion
of X if X is complete, i.e. a Hilbert space, and there is a linear isometry T' : X — X so that
T'(X) is a dense subspace of X.

Theorem 2.1. Let X be an inner product space. Then there is at least one completion of X. More-
over, every two completions of X are linearly isometric.

Proof. This is just a variant of the proof of theorem 1.1. Again we consider the set X ofall Cauchy
sequences of X and then the same linear space X of the equivalence classes of Cauchy sequences.
Now, instead of defining the norm on X, we define the inner product by

()] () = 1im_ (20, yn)-

n——+00

It is obvious that the norm on X which is induced by the inner product just defined on X is the
same as the norm defined in the proof of theorem 1.1. Then the rest of the proof is the same as the
proof of theorem 1.1. The details are left to the interested reader. O

2.5 Examples.

Besides the finite dimensional Hilbert spaces with their euclidean inner products, we have the
following examples.

1. We have the sequence space

—+00

2= {()\k)‘ Sl < +oo}.

k=1

The inner product on /? is defined by
+00
y) =D AeFr
k=1

for every x = (\),y = (ki) € [?. Of course, the norm induced by this inner product is the
2-norm of {?> which we know from the previous chapter:

Vi = (Soam) " = (S ) = lola
k=1

Schwarz’s inequality in this case is a special case of Holder’s inequality:

‘Z/\k“k‘ = ( P\k\ ) 2(51@12)”2'

Of course, with this inner product /2 is a Hilbert space.
2. Then we have the function space

20,50 = {f € M@ /|f2du

The inner product on L?($2, ¥, ;1) is defined by

g>=/Qfgdu



for every f,g € L*(Q,%, u). Again, the norm induced by this inner product is the 2-norm of

L2(, %, p):
VD= ([ 17an)" = ([ 12 du) " =18l

As in the previous example, Schwarz’s inequality is a special case of Holder’s inequality:

[ rga < ([ 1r2an) ([ oPan)"

Moreover, L?(Q, ¥, 1) with this inner product is a Hilbert space.
3. Finally, we have the Sobolev space 1W*2(U), which is also denoted H*(U), i.e.

H*U) = Wh2(U).

We recall that H*(U) is the set of all functions f € L?(U) which have weak a-derivatives D f
in L2(U) for every a with |a| < k. The inner product on H*(U) is defined by
Fak=3 /U Do Dogdm.

|| <k

With this inner product, H*(U) is a Hilbert space.

2.6 Convex sets.

We know that a set K in a linear space X is convex if
a,be K, 0<t<1 = (1-tlat+tbe K.

The set
[a,b] ={(1 —t)a+tb|]0 <t <1}

is considered as the linear segment with endpoints a, b.

Proposition 2.6. Let X be an inner product space with inner product (-,-) and norm || - ||, let
K C X be convex and complete, and let xo € X. Then there is a unique yy € K so that

Ty — = inf ||zg — vy|.
lzo — yol| yeKHO Yl

Moreover,
Re({zo — %0,y — v0)) <0

forevery y € K.
If X is a Hilbert space, we may only assume that K is convex and closed.

Proof. We denote
d= yiél}f( |lzo — yl|.
Then there is a sequence (y,,) in K so that
[0 — ynll = d

when n — +o00. Now, the parallelogram law implies

2[lzo — yall® + 2llzo — ym|* = (20 — yn) — (0 = ym)II* + (w0 — yn) + (20 — ym)||?

= llyn — ymll* + 4on - WT%HQ

> |lyn — ym|® + 24°
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for every n, m. The last inequality is implied by 21¥= € K which is due to the convexity of K.
Taking the limit when n, m — 400, we find that

Hyn - ymH — 0.

Thus, (y,,) is a Cauchy sequence in K and, since K is complete, there is yp € K so that y,, — yo.
Now [|zo — yn|| = [lzo — yol| and hence ||zg — yol| = d.
If we assume that y, € K and ||zo — (|| = d, then exactly as before we have

Yo + 40 |2
442 = 2|0 — yol2 + 2z — all* = llyo — w612 + 4|}z0 — L = llyo — ol? + 4.

Therefore, ||yo — yb||?> < 0 and so yo = 5. This proves the uniqueness of yp.
Finally, we take any y € K and then for 0 < ¢ < 1 we have that (1 — ¢)yo + ty € K and hence

d* < [lzo — (1 = t)yo + to)[I> = [[(zo — yo) — t(y — vo)|?
= ||lzo — woll* — 2t Re({zo — y0,y — %0)) + t2[ly — wo||*
=d* — 2tRe({zo — Y0,y — o)) + t*|ly — yol*.

When 0 < t < 1 we get
2Re({z0 — ¥,y — yo)) < t|ly — vol*,

and taking the limit when ¢ — 0+ we conclude that Re({(xo — yo,y — yo)) < 0. O

2.7 Orthogonality.

Definition. Let X be an inner product space with inner product (-, -). Letx,y € X,and A, B C X.
(i) If (x,y) = 0, we say that x, y are orthogonal and we write

xz Ly.

(ii) If (x,a) = O for every a € A, we say that x, A are orthogonal and we write
x 1L A

(iii) If {(a, by = O for every a € A and every b € B, we say that A, B are orthogonal and we write
Al B.

It is obvious that
rxrlx = zx=0.

Therefore,
1l A z€eA = x=0,

ALB, AnB#0 = AnB={0}.

Proposition 2.7. Let X be an inner product space, let x,y, z € X and (y,,) be a sequence in X.
M Ifx Lyandx L z, then x L (A\y + kz) for every A,k € F.
(ii) If x Ly, for every n and y,, — y, then x L y.

Proof. Trivial. O

For a subset A of a normed space X the set clspan(A), the closed linear span of A, is the
closure of the linear span of A in X or, equivalently, the smallest closed subspace of X containing
A or, equivalently, the set of the limits of the linear combinations of elements of A.
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Proposition 2.8. Let X be an inner product space, and let x € X and A, B C X.
(i) Ifz L A, then x L clspan(A).
(ii)) If A L B, then clspan(A) L clspan(B).

Proof. This is an easy corollary of proposition 2.7. O

Definition. Let X be an inner product space and A C X. We denote
At ={zeX|z 1L A}
We say that A~ is the subspace which is orthogonal to A.

Proposition 2.9. Let X be an inner product space and A, B C X.
(i) At is a closed subspace of X.

(ii) clspan(A) C (A+)*.

(i) AC B = B+ C AL

(iv) (clspan(A))+ = A+,

Proof. Trivial. O

2.8 Otrhogonal complements.

Definition. Let X be an inner product space. If Y, Z are subspaces of X and
Y+7Z=X, Y 1Z

we say that each of Y, Z is the orthogonal complement of the other.

Proposition 2.10. Let X be an inner product space, and let Y, Z be subspaces of X. If each of
Y, Z is the orthogonal complement of the other, then Z = Y+ and Y = Z*. In particular, Y, Z
are closed.

Proof. Obviously, Y 1 Z implies Z C YL,

Now, let x € Y+. Since X = Y + Z, therearey € Y,z € Zsothatz = y + z. From x € YL
andzecY'twegety=o—2¢cY" Hencey=0andsoz =z € Z. Thus, Y+ C Z.

The proof of Y = Z+ is symmetric. O

Proposition 2.11. Let X be an inner product space, and let Y be a subspace of X.

(i) Y has an orthogonal complement in X if and only if Y + Y+ = X.

(ii) If Y has an orthogonal complement in X, then Y is closed, its orthogonal complement is Y+,
and it is the orthogonal complement of Y+, i.e. Y = (Y 1)L

Proof. Clear from the definition and proposition 2.10. O

Theorem 2.2. Let X be an inner product space with inner product (-, -) and norm || - ||, let Y be a
complete subspace of X, and let xy € X. Then there is a unique yg € Y so that

— = inf — .
|zo — yol| yeyllwo yll
Moreover,
To—yo LY.

Thus
X=Y+Y"+

and so each of Y, Y+ is the orthogonal complement of the other. In particular, Y = (Y+)*.
If X is a Hilbert space, we may only assume that Y is a closed subspace of X.
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Proof. Every linear subspace is a convex set. So proposition 2.6 implies the existence of y and
also that

Re((zo — 0,y — yo)) <0

for every y € Y. Since Y is a linear subspace, we have that y € Y if and only if y — yo € Y/, and
so, replacing y — yo with y in the last inequality, we get

Re((zo — y0,4)) <0

for every y € Y. Now, replacing y with —y, we get Re((zp — yo,y)) > 0 forevery y € Y. So we
have that

Re((zo — v0,¥)) =0

foreveryy € Y.
If F =R, then we get (xg — yo,y) = 0 foreveryy € Y andsozg —yo L Y.
If ' = C, then we replace y with 7y and we get

Im((z0 — yo,y)) =0

for every y € Y. Thus (x¢ — yo,y) = 0 forevery y € Y andso g —yo L Y.
If we set zp = x¢ — Yo, then we have xg = yg + 2o withyg € Y and zp € YL,
We conclude that X = Y + Y. All the rest are implied by proposition 2.11. O

Thus, every complete subspace of an inner product space (and hence every closed subspace of
a Hilbert space) has an orthogonal complement.

Proposition 2.12. Let X be an inner product space and A C X.
(i) If clspan( A) is complete, then clspan(A) = (A+)L.
(i) If X is a Hilbert space, then clspan(A) = (A+)~,.

Proof. (i) Since clspan(A) is a complete subspace of X, theorem 2.2 implies that (clspan(A))+ =

At is an orthogonal complement of clspan(A), and hence clspan(A) = (A+)*.
(ii) Immediate from (i). O

2.9 Orders.

The content of this section is very general and belongs to the Foundations of Set Theory.

Definition. Let A be a non-empty set and let < C A x A. We say that the set < is an order relation
in A, if for every a,a1,as,a3 € A:

() (a,a) €<,

(ii) if (a1, a2) € < and (az,a1) € <, then a; = ax,

(iii) if (al, a2) € < and (GQ, a3) € <, then (al, ag) e <.

If < is an order relation in A, we say that A is ordered by <.

Finally, if < is an order relation in A, we prefer to write

a<ad

instead of (a,a’) € <.

Thus, (i)-(iii) of the definition take the form
(i) a < a,
(ii) if a1 < a9 and ay < a1, then a; = ao,
(iii) if a1 < a9 and az < as, then a1 < as.

Example 2.9.1. R with the usual order relation <.
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Example 2.9.2. N with the relation of divisibility /. Le. a/b if a divides b.

Example 2.9.3. If () is any non-empty set, we consider P((Q), the set of all subsets of (), and as
an order relation in P () we consider the relation of inclusion C.

In the first example, for every x,y € R we have either z < y or y < z. In the second
example, though, we have neither 2/3 nor 3/2. Similarly, in the third example, if () contains at
least two elements g1, g2, then the elements {q; }, {g2} of P(Q) satisfy neither {¢;} C {¢2} nor

{e2} € {a1}-

Definition. Let A be ordered by <, and B C A. Then we say that B is totally ordered if every
b1, by € B satisfy either by < by or by < by.

Definition. Let A be ordered by <, B C A, and a € A. Then a is called upper bound of B, if
b < aforeveryb € B.

Definition. Let A be ordered by <, and a € A. Then a is called maximal element of A, if there is
noa’ € Asuchthata < a' and a # a'.

It is fairly standard to accept as an axiom the following statement.

Zorn’s Lemma. Let A be ordered by some order relation. If every totally ordered subset of A has
an upper bound in A, then A has at least one maximal element.

2.10 Orthonormal bases.

Definition. Let X be an inner product space with inner product (-, -) and norm || - ||, and let A C X.
(i) We say that A is orthogonal ifa # 0 foreverya € Aanda; L as foreveryay,as € A, a1 # as.
(ii) We say that A is orthenormal if ||a|| = 1 for every a € A and a; L as for every a1, as € A,

al 75 ag.

Of course, if A is orthonormal then it is orthogonal. Also, if A is orthogonal, then the set
A = {W%II a|a € A} is orthonormal.

Proposition 2.13. Let X be an inner product space, and A C X. If A is orthogonal, then it is
linearly independent.

Proof. Assume that ay,...,a, € Aand \q,..., A\, € F so that
Aal + -+ Apan = 0.
If we take the inner product of both sides with a; we find A\, = 0. L]

Definition. Let X be an inner product space, and A C X.

(i) We say that A is a maximal orthonormal set of X, if A is orthonormal and there is no or-
thonormal set A’ so that A G A'.

(ii) We say that A is an orthonermal basis of X, if A is orthonormal and clspan(A) = X.

It is easy to see that A is a maximal orthonormal set if and only if it is orthonormal and there is
nox # Osothatx L A. Also, A is an orthonormal basis if and only if it is orthonormal and every
 is the limit of linear combinations of elements of A.

Proposition 2.14. Let X be an inner product space, and A C X.

(i) If A is an orthonormal basis of X, then A is a maximal orthonormal set of X.

(ii) If A is a maximal orthonormal set of X and X is a Hilbert space, then A is an orthonormal
basis of X.
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Proof. (i) Assume that A is an orthonormal basis of X and let = 1. A. Then z L clspan(A) = X
and hence x = 0. So A is a maximal orthonormal set of X.

(ii) Assume that A is a maximal orthonormal set of X and take any € X. Since clspan(A) is a
closed subspace of the Hilbert space X, there are y, z € X so that y € clspan(A), z L clspan(A)
and z = y + z. From z L clspan(A) we get z | A and, since A is a maximal orthonormal set of
X, we find z = 0. Therefore, x = y € clspan(A).

We conclude that X = clspan(A), i.e. A is an orthonormal basis of X. O

Theorem 2.3. Let X # {0} be an inner product space.

(i) There exists a maximal orthonormal set A in X.

(i) If Ag is any orthonormal set in X, then there exists a maximal orthonormal set A in X so that
Ag C A

If X is a Hilbert space, the maximal orthonormal set A in (i-ii) is an orthonormal basis of X.

Proof. Let (-,-) and || - || be the inner product and the norm of X.

(i) We consider the collection .4 of all orthonormal sets of X. If a # 0 is any element of X, then
{ H‘;—”} is an element of .4 and so A is non-empty. We also consider .4 ordered by set inclusion.
Now, let B be any totally ordered subcollection of .A. We define

A= ] B.
BeB

Every a € A belongs to some B € B and so ||a|]| = 1. Also, if aj,a2 € A and a; # ag, then
there are By, By € Bsothat a; € By and as € Bs. Since B is totally ordered, we have that either
By C By or By C By, and hence both a1, as belong to one of By, Bs. Thus a; L as. Therefore,
A € A and A is obviously an upper bound of 5.

Now, Zorn’s lemma implies that .A has a maximal element.

(ii) We consider the collection 4 of all orthonormal sets of X which contain Ay. Then Ay is an
element of .4 and so A is non-empty. Now we repeat the proof of (i). O

Bessel’s inequality. Let X be an inner product space with inner product (-, -) and norm || - ||, and
let A be an orthonormal set in X. Then

> aa)? <z
acA
for every x € X.

Proof. We take any finite B C A and we consider the element z = = — » . 5(«, a)a. Then for
every a’ € B we get

(z,d') = (z,a) = > (z,a)(a,d’) = (x,d) — (z,d) = 0.
a€B

So z L o forevery o’ € B and hence z L )" 5 (x,a)a. This implies

2 2 2
Jall? = [+ >t aya]| = 1P + || D tw ada|| = | St @a] =3 i)
a€EB a€B a€eB

a€eB

Since this holds for every finite B C A, we conclude that Y, 4 [(z, a)|* < ||z[/*. O

The theorem of F.Riesz and Fischer. Let X be a Hilbert space with inner product (-, -) and norm
|| - ||, let A be an orthonormal set in X, and let A\, € F, a € A. If > c 4 |Aa|® < 400, then the
series ) . 4 Aq @ converges unconditionally in X. If v = ) . 4 A4 a is the sum of the series, then
x € clspan(A), and

(i) (x,a) = A, for every a € A,

(D) 2] = Xgea [Aal,

(iii) (x,y) = Y 4ca Ma (Y, a) forevery y € X.
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Proof. Due to lemma 1.3, from }_ . 4 |[Aa|* < oo we get that the set Ay = {a € A| A, # 0}
is countable. Since the case of Ay being finite is trivial, we assume that Ay is infinite, and we

consider any enumeration {a, ag, ...} of Ag. Then the set A,, = {ay,...,a,} is a finite subset
of A and hence .

Z ‘)‘ak‘Q = Z ’/\a’2 < Z |>‘a|2-

k=1 a€A, acA

This is true for every n and so

ZIAakI2 <D Pal? < oo

a€A

We set s, = Y ;1 Aq,ai for every n. Then for every n, m with n < m we get

m 2 m
Hsm_sn||2:H Z )\akakH = Z ‘)\ak‘2_>0

k=n+1 k=n+1

when n, m — +o00. Since X is a Hilbert space, there is x € X so that s,, — x, i.e.

—+00
T = g Aay Ok-
k=1

Obviously, s,, € span(A) for every n, and so x € clspan(A). Moreover, for every a € A we have
n
(x,a) = lim (sp,a) = lim Ay, (0K @ Z)‘“k ax,a) = Ag.

n—-+o0o n—-+o0o
k=1

If we consider any other enumeration {a}, a}, ...} of Ao, then again we have 2’ = 3"/ Aat @
for some 2’ € clspan(A), satisfying (z’, a) = )\, for every a € A. Then

(' —x,a) = (2/,a) — (x,a) =Ag = Ag =0

foreverya € A. Thusz’ —x L Aandsoa’ —x L clspan(A). Since 2’ — = € clspan(A), we
conclude that 2’ — = = 0, i.e. 2’ = z, and so the sum of the series Z;:;"l’ Aq, @ does not depend
on the enumeration of Aq. Thus, the series Zae A Aq a converges unconditionally in X and

Zx\ a—x—ZAakak

acA
Now, for every y € X we get
00 o
(x,y) = lim (sp,y) = lim Ay, (Qk, Y Z)\ak ag,y) = Z)‘“k (y,ar).

n—+400o n—-4o00
k=1

Since the sum (x,y) of > A4, (y, ay.) does not depend on the enumeration of Ay, we get that
the series 3, _ 4 A, (y, a) converges unconditionally, and

= Z)\am

acA

This is the equality of (iii) and, setting y = x, we get the equality of (ii). O
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Definition. Let X be an inner product space with inner product (-, -), let A be an orthonormal set
in X and x € X. The numbers (z,a), a € A, are called Fourier coefficients of = with respect to
A, and the series ), 1(x,a)a is called Fourier series of = with respect to A.

Theorem 2.4. Let X be a Hilbert space with inner product (-,-) and norm || - ||, and let A be
an orthonormal basis of X. Then the Fourier series ) . ,(x,a)a of every x € X converges
unconditionally in X and its sum is x, i.e.

Z<£U,CL>CL = z.
acA

Also,

() [l2* = Xaea (2, @),

(i) (z,y) = D pcal®,a) (y,a) foreveryy € X.
The last two equalities are called Parseval’s identities.

Proof. Bessel’s inequality and then the theorem of F.Riesz and Fischer imply that ) 1 (z,a) a
converges unconditionally in X. If
= Z(m, a)a

a€A

is the sum of the series, then (2/,a) = (z,a) forevery a € A. So 2’ — z L A and, since A is a
maximal orthonormal set, we get ' = x. Thus ) _,(z,a) a = z, and then we get (i),(ii) from
the theorem of F.Riesz and Fischer. O

It is worth seeing that the two Parseval’s identities are equivalent. Indeed, if (ii) holds for every
x,y € X, then, setting y = x, we see that (i) holds for every z € X. Conversely, assume that (i)
holds for every x € X. Then it holds for z, y, z + vy, i.e.

> =) Ke,a)lPs Nyl =Y 1ol lz+yl?=)_ Kz +ya)f

a€A a€A a€A

The third equality implies

Jall? + 2Re((w, 1)) + yl2 = 3 (@, a) 2 +2 3" Re((w,a) o) + 3 [(y. )
acA a€A a€A

- Z Re((z,a) (y,a))

for every x,y € X. Now, if ' = R, then we have got (ii). If ' = C, then we replace y with ¢y
and we get
= Im({z,a) (y,a))

for every z,y € X. From the last two equalities we get (ii).

Therefore,

Example 2.10.1. In the space [> we consider the elements
en=1(0,...,0,1,0,...), meN,

where e,, has all its coordinates equal to 0 except for the n-th coefficient which is equal to 1. It is

trivial to see that
1, n=m,
<en7 em> =

0, n#m.

47



So the set A = {e,, |n € N} is orthonormal in /2.
If 2 = ()\,) € [? is orthogonal to A, then we have

A = (z,€) =0

for every n and hence x = 0. Thus, A is a maximal orthonormal set in 12 and, since [? is a Hilbert
space, A is an orthonormal basis of 12. So for every z = (\,) € 12 we can write

“+o00 —+00
T = E (x,en)en = E AnCn.-
n=1 n=1

Also, Parseval’s identities for this particular orthonormal basis A = {e, |n € N} of /2 take, for
every z = (\,),y = (k) € [2, the form

+oo “+oo
2] = e en)> =D Al
n=1 n=1

00 +o00
<$)y> = Z(a:,en> <y7 6n> = Z)‘nﬁn
n=1 n=1

In fact these identities are just the defining equalities for the norm and the inner product of /2.

Example 2.10.2. In the space L?([0, 1]) with the Lebesgue measure of [0, 1], we consider the ele-
ments ‘
en(t) = 2™t e Z.

Then we have

1 1 ' 1 _
<€m €m> = / en (t) em (t) dt = / eQm(n—m)t dt — , N m,
0 0 0, n#m.

Therefore, the set A = {e,, | n € Z} is orthonormal in L?([0, 1]). R
If f € L?([0, 1]), then the Fourier coefficient of f with respect to every e, is denoted f(n) and it
is equal to

f(n):<f7en>:/0 f(lt)en(lt)dt:/0 ft)e ™ dqt, ne.

It is known that A = {e,, |n € Z} is an orthonormal basis of L?([0,1]). So every f € L*([0,1])
is equal to its Fourier series with respect to A, i.e.

f:Z<f’en>6n:Zf(n)en-

nez ne”L

Also, Parseval’s identities take, for every f,g € L?(|0, 1]), the form

1 o~
[ 1sOR @ =117 = 15 e = 3 1FoP

ne”L nez

1 . o -
Aﬂwwwwm=2mm@m:2mwm

nez neL
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2.11 Orthogonal projections.

Definition. Let X be an inner product space, and let Y be a subspace of X with an orthogonal
complement in X. Then we know from proposition 2.11 that Y + Y+ = X, that Y is closed, that
its orthogonal complement is Y+ and that Y is the orthogonal complement of Y in X.
We consider the function

Py X—-X

defined for every x € X by
Py(z) =y,

where z =y + z, withy € Y and z € Y+,
The function Py is called orthogonal projection of X onto Y.

Proposition 2.15. Let X be an inner product space with inner product (-, -) and norm || - ||, and
let Y be a subspace of X with an orthogonal complement in X. Then the orthogonal projection
Py : X — X has the following properties.

(i) Py is linear.

(ii) The range of Py is Y, i.e. R(Py) =Y, and its null space is Y, i.e. N(Py) = Y+,

(iii) Py o Py = Py.

(iv) (Py (z1),x2) = (x1, Py (x2)) for every x1,z2 € X.

) | Py ()] < [lo]l for every a € X.

Proof. (i) Take x1,x2 € X. Then there are y1,y2 € Y and 21, 20 € Y+ sothat = y1 + z1 and
To = 1ys+ 20. Now,y1 +y2 € Yand 21 + 20 € Y-, and 2y + 29 = (y1 + y2) + (21 + 22).
Therefore,

Py (x1 + x2) = y1 + y2 = Py (x1) + Py (x2).

Similarly, take z € X and A € F. Then therearey € Y and z € Y so that z = y + 2. Now,
Ay € Y and Az € Y1, and Az = Ay + \z. Therefore,

Py(\x) = Ay = APy (z).

(ii) It is clear that R(Py) C Y. Now, takeany y € Y. Theny =y +0andy € Y,0 € Y. So
Py (y) = y and hence y € R(Py ). Therefore Y C R(Py).

Takeany z € Y. Thenz =0+ zand0 € Y, z € Y. So Py(z) = 0 and hence z € N(Py).
Therefore, Y+ C N(Py).

Conversely, let 2 € N(Py), i.e. Py(z) = 0. Thenz = 0+ zand z € Y and hence x € Y.
Therefore, N(Py) C YL,

(iii) We saw in the proof of (ii) that Py (y) = y for every y € Y. Now, for any z € X we have
that Py-(z) € Y and hence Py (Py (z)) = Py (z).

(iv) Take x1,22 € X. Then there are y;,y2 € Y and 21,22 € Y+ so that z; = y; + 21 and
T2 = Yz + 22. Now,

(Py (1), 22) = (Y1, 92 + 22) = (y1,92) = (Y1 + 21, 42) = (@1, Py (22)).
(v) Take any = € X. Then there are y € Y and z € Y+ so that z = 3 + z. Then
1Py ()12 = llyl® < llyll* + 1201 = lly + 2I* = [|l=]I*.
O

It is clear from the proof of (ii) of proposition 2.15 that if we restrict Py on Y then it is equal
to the identity operator of Y':

PY(y):y7 yEY
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Also, if we restrict Py- on Y then it is equal to the null operator of Y
Py(z)=0, zeY™t

Note that an orthogonal projection Py corresponds to a subspace Y which has an orthogonal
complement in X (i.e. Y1). In this case Y* also has an orthogonal complement in X (i.e. Y)
and so the orthogonal projection Py . is also defined. Proposition 2.15 describes the properties
of any orthogonal projection and hence of Py-.. The following proposition describes some extra
properties of the pair of orthogonal projections Py and Py-. .

Proposition 2.16. Let X be an inner product space, and let Y be a subspace of X with an orthog-
onal complement in X. Then:

(i) Py + Py-1. = I, the identity operator of X.

(ii) Py1 o Py = Py o Py = 0, the null operator of X.

Proof. Take any = € X. Then therearey € Y and z € Y so that z = y + 2.
@) Py(l‘) + PyL(x) =y+z=ux.
(ii) Pyj_ (Py (l‘)) = PyJ_ (y) = 0 and PY(PyJ_ (fL‘)) = Py(z) =0. O

The following proposition describes the properties which characterize orthogonal projections
among linear operators on an inner product space.

Proposition 2.17. Let X be an inner product space with inner product (-, -), and let P : X — X
be a linear operator. If P o P = P and (P(x1),x2) = (x1, P(x2)) for every x1,29 € X, then
there is a subspace Y of X, which has an orthogonal complement in X, so that P = Py.

Proof. We consider the linear subspaces Y = R(P) and Z = N(P) of X.
Clearly, P(z) = 0 for every z € Z. Also, if y € Y, then y = P(x) for some z € X and so

Hence, for every y € Y and every z € Z we have

(y,2) = (P(y), 2) = (y, P(2)) = (y,0) =0,

andsoY 1 Z.
Now take any = € X and consider y = P(x) and z = x — P(z). Theny € Y and

i.e. z € Z. Obviously: x = y + z and we conclude that X =Y + Zand Y | Z. Therefore, Y, Z
are orthogonal complements of each other.

We just saw that for any = € X we have x = P(z) + z, where P(z) € Y and z € Z. Hence
Py (z) = P(x). O

We know from theorem 2.2 that every complete subspace of an inner product space has an
orthogonal complement and so defines a corresponding othogonal projection. Also, theorem 2.3
implies that every complete subspace of an inner product space has an orthonormal basis. Now we
shall describe the orthogonal projection on a complete subspace in terms of an orthonormal basis
of the subspace.

Proposition 2.18. Let X be an inner product space with inner product (-, -), let Y be a complete
subspace of X, and let A be any orthonormal basis of Y. Then for every x € X we have

Py(z) = Z(x, a) a.

a€A
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Proof. Take any z € X. Then therearey € Y and z € Y* so that z = y + 2.
Since a € Y for every a € A, we have that

(z,a0) = (y + 2,a) = (y,a) + (2,a) = (y,q)

for every a € A. Hence

Py(z)=y= Z(y,a>a = Z(m,a} a.

a€A acA

2.12 Separable inner product spaces.

The theorem of Schmidt. Let X be a separable inner product space with dim(X ) = +oc.
(i) Every orthonormal basis of X is countable and infinite.

(ii) X has an orthonormal basis.

(iii) If X is complete, then X and I? are linearly isometric.

Proof. Let M be a countable and dense subset of X.

(i) If A is any orthonormal basis of X, then for every a € A we consider the ball B(a; @) and we
observe that these balls are pairwise disjoint.

Now, for every a € A there is z, € M N B(a; @), and we may consider the function 4 > a —
2, € M. This function is one-to-one in A, and so A is countable.

If A is finite, i.e. A = {a1,...,a,}, then X = clspan({ay,...,a,}) = span({a1,...,a}) has
finite dimension. (We used that any subspace of finite dimension is closed.)

(ii) Now, let M = {x1, z2,x3,...}.

Let n; be the least natural number so that x,,, # 0. Then let ny be the least natural number so that
Zn, is not a multiple of x,,,. We continue inductively: if we have found n1, ..., ng_1, we let ny, be
the natural number so that x,,, is not a linear combination of z,,,, ..., y, . If this process stops
at some point, then there is N so that all x 41,2 n+2,. .. are linear combinations of z1,...,zxy.
Butthen X = clspan({x1,...,zn}) = span({z1,...,zx}) and so X is finite dimensional. Thus,
the above process does not end, and so we get the countable and infinite set

N ={xn,, Tny,...} T M.

Since every x,,, is not a linear combination of x,,,, ..., x,,_,, the set N is linearly independent.
Now, take any = € X and any € > 0. Then there is z; € M so that || — z;|| < e. Then there
is k so that j < ny, and this implies that x; is a linear combination of x,,,, ..., zp, ,. Therefore,

X = clspan(V).
For simplicity, we denote y;, = y,, i.e.

N = {yl,yg,. . }

We define .
a1 = 77— Y1,
[y
and then
{a1} is orthonormal, span({a;}) = span({y1}).
Now assume that we have defined a1, . .., a;_1 so that
{a1,...,ax_1} is orthonormal, span({a,...,ax—1}) =span({y1,...,Yk—1})-
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We denote
M1 = span({a,...,ax-1}) = span({y1, ..., Yr—1})-

Then vy, ¢ Mj_1, and so yi, — Par,_, (yx) # 0, where Py, , is the orthogonal projection on the
finite dimensional subspace M ;. We define

1
ar = (yk — Py, (k)
1Yk — Pagie_y (i) o
and then ay, is orthogonal to Mj_; with [jagx|| = 1. Moreover, aj is a linear combination of
Y1, - .-, Y, and also yy, is a linear combination of ay, ..., ax. Thus
{ala sy A1, ak} is orthonormal, Span({ah ceey Ak—1, ak}) = Span({yla s Yk—1, yk})

Continuing inductively, we construct the set
A ={a1,a9,...},
which is orthonormal and satisfies:
clspan(A) = clspan(N) = X.

Therefore, A is an orthonormal basis of X.
(iii) Let A = {aq, az, ...} be any orthonormal basis of X. If x € X, then

—+o00
3 e a) P = |lz)? < +oo,
k=1

and so we may consider the function 7' : X — [? defined for every = € X by

T(z) = ((z,a1), (z,a2),...).

It is easy to see that 7" is linear. Also, 7' is a linear isometry, since

“+oo
IT @)1= (2, a)? = ||z
k=1

for every z € X. If (\;) € [?, then there is * € X so that (z,a;) = A for every k. Thus
T(z) = (M) and so T is onto [2.
O

This theorem is useful, because many classical Hilbert spaces are separable. For example
L%(Q, B(2), m) with a Borel set Q C R? and the Lebesgue measure m.
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Chapter 3

The dual of a normed space

3.1 Bounded linear functionals.

Definition. Let X be a normed space with norm || - ||, and let | : X — F be a linear functional on
X. Then [ is called bounded if there is C' > 0 so that

l(z)| < Cll]]
for every x € X.

Proposition 3.1. Let X be a normed space withnorm ||-||, and let! : X — F be a linear functional
on X. The following are equivalent:

(i) | is continuous in X.

(ii) N(1) is closed in X.

(iii) | is bounded.

(iv) l is continuous at 0 € X.

Proof. N(I) = I71({0}) is the inverse image of a closed set, and so, if / is continuous in X, then
N({) is closed in X.

Now, assume that N({) is closed in X. If | = 0, then [ is obviously bounded. So assume that I # 0.
Then there is xy € X so that [(x) = 1. Since N(!) is closed and z¢ ¢ N(!), there is » > 0 so that
B(xo;7) NN(l) = (. Now take any x € X with /() # 0. Then

l(xo—l(z))—l(xo)—igg—l—l—o.

Hence 2o — 5 € N(/) and so z¢ — @) ¢ B(xo;r). Thus Hﬁ” >r,ie. |l(z)| < 1|=|. This
is obviously true when [(z) = 0, and we conclude that

1
I(z)] < =
U2)] < 2]

for every © € X. Therefore, [ is bounded.
If [ is bounded, then there is C' > 0 so that |I(z)| < C||z|| for every x € X. If 2, — 0in X, then

()| < Cllzn]l — 0,

and so I(zy,) — 0in R. Hence [ is continuous at 0.
Finally, assume that [ is continuous at 0. If x,, — x in X, then z,, — x — 0 in X, and then
l(xn) —l(z) = l(zy, —x) — 0in R, and then /(x,,) — I(z) in R. So [ is continuous in X. O

Definition. Let X be a normed space. The set of all continuous or, equivalently, bounded linear
functionals on X is called dual space of X, and it is denoted X'.
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Proposition 3.2. Let X be a normed space with norm || - ||. Then X’ as a function space, with
the usual addition of functions and the usual multiplication of numbers and functions, is a linear
space.

Proof. 1fl, 1,15 : X — Fand A € F, we consider the functions [1+1o : X — Fand Al : X — F
defined for every z € X by

(lh + 1) (x) = li(z) + l2(x), (N)(x) = N(z).

It is known from Linear Algebra (and it is very easy to prove) that, if [, [1, [ are linear functionals,
then /1 + lo and Al are also linear functionals. It is also clear that, if [, [, [ are continuous, then
{1 + 5 and Ml are also continuous. O

Usually we denote the elements of X’ with symbols like 2/, 3/ etc.

Definition. Let X be a normed space with norm || - ||. For every 2/ € X' we define

Il = sup |a"(x)].
zeX,|z]|<1

Proposition 3.3. Let X be a normed space with norm || - || and let x' € X'. Then ||2/| is the
smallest constant C' which satifies the inequality |z’ (x)| < C||x|| for every x € X.

Proof. Forevery x € X, x # 0, we have H HJJCTII H = 1, and then, by the definition of ||z’|| we get
/ / €z /
@) = |+ () Il < il
The inequality |z’ (z)| < ||2’||||x|| is obviously satistied if z = 0, and so C' = ||2/|| satisfies the

inequality |2/ (x)| < C||z| for every z € X.
Conversely, let C satisfy the inequality |2’(z)| < C||z|| for every x € X. Then we have |2/(z)| <
C for every z € X with ||z|| < 1,and so ||2/|| < C. O

So, if ' € X', then
|2’ ()| < ||2’||||z| forevery x € X.
Also,
|2/ (z)] < Clz|| forevery z € X = ||| <C.

Proposition 3.4. Let X be a normed space with norm || - ||. The function || - || : X’ — R defined
above is a norm on X', and X' with this norm is a Banach space.

Proof. Obviously, ||2/|| > 0 for every 2’ € X'. Tt is also clear that ||z’|| = 0 if 2’ = 0.
If 2/ € X’ and ||2/|| = 0, then 2/(2) = 0 for every x € X, and so ' = 0.
For every z € X and every z, 2, € X’ we have

(@) + 22) ()] < [ ()] + |25()| < [2h izl + sl = Azl + lzs Dl

Hence ||z} + 25| < [lz} ]| + [|l25]].
For every 2/ € X' and every \ € F we have

Al = sup [(A2)(z)] = sup [All2"(2)[ = [A] sup [a'(x)| = [A[[|2"]].
zeX, || <1 zeX, || <1 zeX, |z <1
Therefore, || - || : X’ — Ris anorm on X'.

Now take a sequence () in X’ so that ||z], — 2/ || — 0 when n, m — 4o00. For every x € X
we have
|27 (2) — 2, ()] = (2], — 27, ()] < [, — 2l [[[l2z]] = 0
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when n, m — +o00, and so (z},(x)) is a Cauchy sequence in F.
We consider the function 2’ : X — F defined for every x € X by

/ T /

Since each z/, is a linear functional, we have for every z,y € X and A € F that

P(x+y)= lim 2, (x+y)= lim 2/ (z)+ lim 2 (y) =2'(z) +2'(y),
n——+00

n—-+00 n——+00
/ T / . - / Nt
' (A\z) = nll}l}_loo x, (Az) = /\nBToo z, (x) = Az’ (x).

So 2/ is a linear functional on X.
Now, there is ng so that ||}, — 2],|| < 1 for every n, m > ny. Hence

|2 ()| < Ja (@) — 2, (2)] + 20, ()] < llas, — 2 ]l + lan, ] < (L + [l Dl
for every n > ng and every x € X. Taking the limit when n — +o00, we find
|2 (2)] < (1 + [l D1z

for every x € X. So 2’ is bounded, i.e. 2’ € X’.
Finally, we take any ¢ > 0 and then there is n so that ||z}, — x| < e for every n, m > ng. Then

|27 (2) — a7 ()] < [l — 2 [l < el
for every n, m > ng and every « € X. Taking the limit when m — +o00, we find

|27, (2) — 2/ ()] < e|z]|

n

for every n > ng and every x € X. Therefore, ||2], — 2’| < € for every n > ng, and so z], — 2’
in X'. O

3.2 Finite dimensional spaces.

Theorem 3.1. Let X be a finite dimensional normed space. Then X' is also finite dimensional
with the same dimension as X.

Proof. Let {b1,...,b,} be abasis of X. Since all norms on X are equivalent, a linear functional
on X is continuous or not independently of the norm we are considering on X . So we may consider
X equipped with its 2-norm with respect to the basis {b1, ..., b,}, i.e.

lzllz = (1M + -+ )2

forevery z = A\1by + - - - + \pb, in X
Now, we take any z = p1b1 + - - - 4+ pn by, in X, and we consider the function [, : X — F' defined
forevery x = A1by + - - - + A\pb, in X by

L(z) = A+ + tinAn.
It is very easy to show that /, is a linear functional on X. We also have
= (@)] < [lzll2]l2]2

for every € X and hence [, € X’ with ||1,|| < ||z]|2.
Now we consider the particular x = 1 b1 + - - - 4+ 1, by, in X, and we get

1213 = It + -+ ] = ()] < [Ll2ll2 = 122112,
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and so ||z]|2 < ||I;||. Therefore,
121 = [l=]l2

for every z € X. Now we consider the function 7" : X — X" defined for every z € X by

If 2= p1b1 + -+ - + pnbp and w = 161 + - - - + vy by, then
lz+w(x> = (Ml + Vl))\l + -+ (,UJn + Vn))\n = lz(x) + lw(w>

forevery x = A\by + -+ - + Apby in X. Thus I, = 1 + 1y, ie. T(z+w) =T(2) + T(w).
If z=p1b1 + -+ + pnby and g € F, then

luz(@) = (ppa) A+ -+ + (ppn) An = pil=(2)

forevery x = A\iby + -+ + A\pby in X. Thus [, = pl, ie. T(puz) = pT'(2).

We conclude that 7" : X — X' is a linear operator.

We have already proven that || T'(z)|| = ||l.|| = ||z||2 for every z € X, and so T is a linear isometry
of X into X’. Now we shall prove that 7" is onto X', i.e. that X and X’ are linearly isometric.
We take any [ € X’ and we define

z2=1(b1)b1 + -+ 1(bp)b, € X.
Then for every x = A1b; + - - - + Apb, in X we have
L(x) =1b)M + -+ 1Ubp)An =1 Ab1 + -+ Apby) = (),
and hence T'(z) = [, = I. Therefore, T is onto X". O

If {b1,...,b,} is the basis of X and T': X — X" is the linear isometry which appeared in the
proof of theorem 3.1, we may define

b;:T(bj):lb]7 .7:177n

Then {b},...,b),} is a basis of X', and in Linear Algebra this basis is called dual to the basis
{b1,...,b,} of X. It is easy to see that:

1 i
bi(bi) =9 o
0, ©#j.

3.3 Sequence spaces.

Theorem 3.2. Let 1 < p < +o0 and % + % =1.
(i) If 1 < p < +oo, then there is a linear isometry of 1 onto (IP)'.
(ii) If p = oo, then there is a linear isometry of I* into (I°°)'.

Proof. We take any z = (u) € (4 and we consider the function [, : [? — F defined for every
x = (\g) € P by

—+00
l,(x) = Zuk)\k.
k=1

Holder’s inequality implies that the series defining [, () converges absolutely. It is easy to see that
[, is a linear functional on [P. Also, Holder’s inequality says that

()] < [[=llqllz[l,
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for every « € [? and hence [, € (IP) and ||I;|| < ||2]|4-
If1 <p<+4oo(andsol < g < +00), we consider the numbers

)\k _ m“”ﬁ’q_zv Mk 75 Oa (3 1)
0, pg = 0.
Then
+oo +oo
DI =D k|t < oo,
k=1 k=1

and so z = (\g) € P with |z}, = ||2|#/”. Also

+oo +oo
Zﬂk)\k = Z | 9.
k=1 k=1
Hence,
1201 = 1= ()] < llNl=ll, = 12112027,

and so [|z[lg < L. |-
If p = +oo (and so ¢ = 1), we select again the x = (\) given by (3.1). Then |\x| < 1 for every
kand so ||z < 1. Also, S0 A = S5 |ux . Thus,

+0o0
l2lls =D s = [1=(2)] < [N elloe < L]
k=1

If p =1 (and so ¢ = +00), then

el = [1=(er)] < NlE=[llexllr = (2]

for every k, and so ||z||co < ||22]].
So, in any case we get
1211 = 1l=llq-

We consider, now, the function 7" : {9 — (IP)’ defined for every z € 17 by
T(z) =1,.

As in the proof of theorem 3.1 we see that T : 19 — (IP)’ is a linear operator. The equality
|T(2)|| = ||i-]] = |||lq says that T is a linear isometry of 19 into (I7)".

Now, we take any [ € (IP)’.

Let 1 < p < 4o00. We consider py, = [(ey) for every k, and Ay as in (3.1). Then for every n we
have

>l = =13 dwen) < (32 eP) = 1 (D te)
k=1 k=1 k=1 k=1 k=1

This implies "7, |ux|? < ||/1]|7 for every n and hence > 77 |kl < |/I]|9. So if we define
z = (pg), then z € (9 and ||z||, < ||I|| < +o0.
If p = 1, we consider again p = [(ey), and then

|kl = [Lex)| < ellflexlln = (1]

for every k. So if we define z = (ug), then z € [*° and ||z||c < ||| < +o0.
Soif1 < p < 400, we have z € [9.
Now for any = = (\) € I” we take z, = (A1,..., M, 0,0,...) = >, A\gey and then

L(zn) =Y mede = > Uew) Ak = U(an).
k=1 k=1
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Since [, [ are continuous and x,, — x in (P, we get [,(x) = I(z). Thus T'(z) =1, =l and so T'is
onto (I7)’. O

In fact the main result of theorem 3.2 is the “onto” part:
Let1 < p < +ooand 217 + % = 1. Then for every | € (IP)’ there is a unique z = (uy) € 1% so that

—+00

1=zl L) = jude forevery = = () € 7.
k=1

In the case p = 400, q = 1 it is worth finding the point at which the last proof fails to show
that the operator 7" is onto (I?)": the problem is that for the general € [ it is not always true
that x,, — z in [*°!

Theorem 3.3. There is a linear isometry of I' onto (cp)’.

Proof. We take any z = (u,) € I' and we consider the function [, : ¢y — F defined for every
xz = (A) € ¢ by

“+oo
k=1

The series converges absolutely, and it is clear that [, is a linear functional on ¢y. Also,

[l=(2)] < [zl |2l

for every = € ¢ and hence [, € (cp) with ||| < ||z]|.
We consider the A\, defined in (3.1) (with ¢ = 1) and then for every n we have

Sl = i =L (D0 M) <IN D dwen]| < il
k=1 k=1 k=1 k=1 >

and so |zl = Y75 || < [lL:]|-
Therefore, ||1.| = |21
We consider the function 7" : I — (cg)’ defined for every z € I! by

T(z) =1,.

It is easy to see that 7" is a linear operator. Since we have proved that | 7'(z)|| = ||I.]| = ||z||1 for
every z € [!, we have that T is a linear isometry of /! into (cp)’.

Now we take any [ € (c¢g)’. We define uy = I(ey) for every k, and the same \;, as above. Then
for every n we get

S lnl = D7 e =13 Mwen) < | D2 Awe]| <
k=1 k=1 k=1 k=1

So, if we consider z = (1), then z € I* and ||z[|; = S°F2 x| < |lI]I-
Now, for every z = (i) € ¢o we take 2, = (A1,..., A, 0,0,...) = >, Apex, and then

L(zn) =Y mde = Uew)hr = U(zn).
k=1 k=1

Since [, [ are continuous and z,, — x in ¢o, we get that [, (x) = I(z). Thus T'(z) = [ and so T is
onto (cp)’. O

The main result of theorem 3.3 is its “onto” part:

Foreveryl € (c)' there is a unique z = (uy,) € 1! so that

—+00

2 =1zl Ux) =) mrdr forevery x = (X) € co.
k=1

58



3.4 Inner product spaces.

Definition. Let X,Y be linear spaces over F and let’T' : X — Y. Then T is called conjugate-
linear operator if

T(x1+ x2) = T(x1) + T(22), T(Ox)=\T(x)

for every x,x1,z2 € X and every X € F.

If XY are normed spaces with norms || - ||x, || - |y, and T : X — Y is conjugate-linear and
satisfies | T'(x)|ly = ||z||x for every x € X, then T is called conjugate-linear isometry of X
intoY.

Of course, if F' = R, then a conjugate-linear operator is just a linear operator.

The theorem of F.Riesz. Let X be an inner product space. Then there is a conjugate-linear isom-
etry of X into X'. If X is a Hilbert space, then this conjugate-linear isometry is onto X'.

Proof. For every z € X we consider the function /, : X — F' defined for every x € X by
l.(z) = (x, z).
It is obvious that [, is a linear functional on X. Also,
L2 (2)] < |lzll|=]|

for every x € X. Hence [, € X' and ||I,|| < ||z]|.
Moreover,
1217 = (2, 2) = 1(2) < [lL:ll=].
So ||z]| < ||Z.|| and hence
121 = 1=

We consider T': X — X’ defined for every z € X by

It is easy to see that
T(z1+ 22) =T(21) + T(22), T(\2) =AT(2)

for every z, 21, 22 € X and every A € F. We have already proven that || 7'(2)|| = ||l;|| = ||z|| for
every z € X and so T is a conjugate-linear isometry of X into X".

Now we assume that X is complete, and we take any [ € X”.

If [ = 0, then, taking z = 0, we obviously have T'(z) = [, = [. So we assume that [ # 0 and then
N({) is a proper closed subspace of X. We take any x( ¢ N(!), and then there are yy € N(/) and
2o L N(l) so that xy = yo + zo. Then l(Zo) = l(xo) 75 0.

Now we take any « € X. Then there are y € N(!) and w L N(I) so that x = y + w. Now we have

l(w) [(w)
1w —I(w) — 1) = 0
(1= gy 20) = M) = i W) =0,
and so w — ll((;‘;)) zp € N(I). Since also w — ll((:;)) 2o L N(I), we get w — ll((:;)) zp = 0 and hence

w= ll((;‘;)) 20. Therefore,

_ _ _Mw) W)

<I’,ZQ> - <y720> + <w)Z0> - <U),Zo> - l(ZO) HZOH - Z(Zo) HZOH
We define z = ﬁiz(‘")g 20, and then we have [, (z) = (z, z) = l(z) forevery z € X. Le. T(z) =
1, =1, and so T is onto X"'. O
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The main result of the theorem of F. Riesz is the “onto™ part:
If X is a Hilbert space with inner product (-, -), then for every | € X' there is a unique z € X so
that
N2l = 1l=]l, l(x) = (x,z) forevery z € X.

3.5 Function spaces.

Definition. Let (2, X, ;1) be a measure space and let v € A({, X).

(i) p is called o-finite if there are Ay, As,... € X so that Q) = U 1 A; and p(A;) < 4o0 for
every j.

(ii) v is called absolutely continuous with respect to p, if v(A) = 0 for every A € X with
u(A) = 0.

The next theorem is a well known result of Measure Theory. We shall see its proof by von
Neumann with Hilbert space methods.

The theorem of Radon-Nikodym. Let (2, X, ;1) be a measure space and let v € A(2,X). If p is
o-finite and v is absolutely continuous with respect to ju, then there is a unique h € L' (2, X, 1)
so that v(A) = [, hdyu for every A € ¥.

Proof. We assume that v is a non-negative real measure and that () < +oc.
We consider the non-negative real measure A = s + v, and the function [ : L?(Q,%,)\) — F

defined for every f € L%(Q, %, \) by
= / fdv.
0
Using Schwartz’s inequality, we get
1/2
i< [irar< [ iriax< a@p2( [ 1rRan)" = @)

for every f € L?(Q, %, \). Itis clear that [ is a linear functional and hence [ € (L*((2, %, ))/
Since L?(€2, ¥, \) is a Hilbert space, the theorem of F. Riesz implies that there is g € L?(£2, %, \)
so that

/fdy:l(f):/fgd)\ for every f € L*(Q, %, \). (3.2)
Q Q

Now we consider the set A = {a € Q| Im(g(a)) > 0} € . If weuse f = xa € L%(Q, X, \)
in (3.2), and if we equate the imaginary parts of both sides, we get 0 = [, Im(g) d), and hence
A(A) = 0. In the same manner we find A\(A) = 0 for the set A = {a € | Im(g(a)) < 0}) = 0.
We conclude that g(a) € R for A-a.e. a € €.

Next we consider the set A = {a € 2| Re(g(a)) > 1}, we use f = x4 in (3.2), and we equate
tha real parts of both sides. Then we get [, (1 —Re(g)) d\ > 0 and hence A(A) = 0. In the same
way we get A(4) = 0 for the set A = {a € | Re(g(a)) < 0}.

Hence, 0 < g(a) < 1 for A-a.e. a € Q.

Our equality (3.2) is equivalent to

/f(l—g)du—/fgdu for every f € L*(, %, \). (3.3)
Q Q

If we take B = {a € Q| g(a) =1} and use f = xp in (3.3), we get 0 = u(B) and so v(B) = 0.
Hence A\(B) = 0andso 0 < g(a) < 1 for A-a.e. a € Q.

Now, for any A € ¥ we consider the function f = (1 + ¢+ g%+ --- + ¢g")x4, and from (3.3) we
get

/A(l—g”“)dvz/A(9+92+---+g"+1)du-
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The monotone convergence theorem implies v(A) = [, ﬁ dp. Weset h = ﬁ, and so we have

V(A) = /Ahdu

for every A € ¥. Clearly, 0 < h(a) < +oo for A\-a.e. a € Q. With A = Q we get [, hdy =
v(Q) < 400, from which h € L1(, %, p).

The general case of a real or complex measure v and of a o-finite measure 4 can be derived from
the particular case we just studied, using standard measure-theoretic techniques, and it is left as an
exercise. The uniqueness of h is also left as an exercise. O

Theorem 3.4. Let (€2, X, 1) be a measure space, and 1 < p < +o0, % + % =1
() If 1 < p < +oo, then there is a linear isometry of LY(Q, %, u) onto (LP(, %, 1)) .
If p is o-finite, then the same result is true when p = 1.

(ii) If p = +oo, then there is a linear isometry of L*(, %, ) into (L (2, %, )

/
Proof. For each h € L9(2, X, 1) we consider the function I, : LP(2,3, u) — F defined for
every f € LP(Q2, X, ) by

W) = [ s

Hoélder’s inequality implies that the function fh is integrable and so the integral defining I (f)
exists. Holder’s inequality implies the more precise inequality

(O < 1Pl

forevery f € LP(Q, 3, ). Itis easy to see that [}, is a linear functional, and so /;, € (LP(Q, 3, ,u))
and [|x] < [|Allq-
Ifl<p<+4oo(andsol < g < +0o0), we define

[ h(a)|n@)|172, h(a) #0,
f(a)_{O, h(a) = 0.

!/

(3.4)

Then [ |f[P dpu = [ |h|9dp < +ooand so f € LP(Q, X, ). Also, [o fhdp = [o|h|?dp and
hence
IRlIE = [Ta (A < Nl fllp = sl BN
This implies ||kl < ||[I4]]-
If p = +00,¢q = 1, then with the f defined by (3.4) we get || f||oc < 1and [, fhdu = [ |h|dp
and hence
12ll1 = 1l ()] < [Talllflloe < [IZa1l-

If p = 1,q = 400 and if u is o-finite, then there are pairwise disjoint By, Bs,... € X so that
Q = ;:f Bj and p(Bj) < +oo for every j. If ||h|loc = 0, then b = 0, and /;, = 0 and so
IRl = [|h]lco = 0. If ||h|lcc > O, then for any j and any ¢ such that 0 < ¢ < ||h||c We consider
the set Bj; = {a € B;||h(a)| > t} and the function f = h|h|"*xp,,. Then || f||1 = pu(Bj)
and [, fhdp = me |h| dyv and hence

tu(Bje) < (O] < [alllf e = [[Tnllw(Biie)-

Since 0 < p(Bj+) < 400 for at least one j, we get ¢ < ||{;,||. Taking the limit when ¢ — ||A||,
we find ||h]|co < [|in]l-
So in any case we have that ||, || = ||h||4 for every h € LI(£2, 3, p).
We consider the function 7' : LY(Q,%, 1) — (LP(Q,%, 1))’ defined for every h € LI(Q, %, 1)
by

T(h) = .
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It is easy to see that 7" is a linear operator, and we have already proved that | 7'(k)|| = ||k||, for
every h € L9(Q, 3, 11). This says that T is a linear isometry of L9(, %, 1) into (LP(Q,3, ) .
For the rest of the proof we assume that ;(2) < +ooand 1 < p < 4o0.

We take any [ € (LP(Q, 3, u))’, and we consider v : ¥ — F' defined for every A € ¥ by

v(A) = l(xa)-

Clearly v(0) = 1(0) = 0.
If Ay, As,... € X are pairwise disjoint, and A = U,j;’ol Ay, we set Cy, = |Ji_; Ak, and then

[v(A) —v(Cn)| = [l(xa) — Uxc,)l = [Hxa — xc,)l = Mxae)! < lxae,
= Il (1(A\ C)) P — 0,
since 1 < p < +oo, A\ C,, | 0 and p is finite. Hence v(C,,) — v(A) and so
SouAr) = Y tea) =1( D xa,) =Uxa,) = ¥(Ca) = v(A).
_ k=1 k=1

k=1

Therefore, v(A) = 3> v(Ay), and we conclude that v is a complex measure on ¥.
If (A) = 0, then

()] = 110ca)l < [llxallp = 121((A)) 7 = o,

and so v is absolutely continuous with respect to x.
The theorem of Radon-Nikodym implies that there is h € L!(Q, X, 11) so that

V(A) = /Ahdu

for every A € . Now, if f = >"}'_; A\gx4, is any simple function, then

W) =D Aellxa,) =) Mev(Ak) =) Mo | hdu= [ fhdp.

If f e L>®(, %, n), there is a sequence ( fx) of simple functions so that f, — f in L>(Q, %, ).
Since p is finite, we have that fi, — f in LP(Q, 3, u). Now, [ is continuous and so I(f;) — I(f).
Also,

| [ i [ hau] < 1 Sl 0.
Q Q
Hence

k—+o0

()= lim_i(fi) = lim /Q fohdy = /Q fhdy (3.5)

forevery f € L>°(Q, 3, u).
If 1 < p < 400, then for every n we consider the set A, = {a € Q| |h(a)| < n} and we define

~ Jh(a)[h(a)|17 xa,(a), h(a)#0,
fla)= {o, h(a) = 0.

Then f € L®(Q, %, u) and also [, [f[Pdp = [, |h|9dpand [, fhdp = [, |h|?dp. So, using
(3.5), we find

J = [ npa= oy <ty = [ )™
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Therefore [ 4, [P dp < ||1]|7 for every n, and from the monotone convergence theorem we con-
clude that |||, < [|I]] < +oc.

If p = 1, then for every n > ||l|| we consider the set A, = {a € Q||l]] < |h(a)] < n}
and the function f = h|h|™' xa,. Then ||f[li = u(Ay)and [, fhdu = [, |h|du. Also
f e L>®(Q,%, u), and, using (3.5),

/ Al dp = / fhdp = 1(F) < L[ fll = [12](An)-
An Q

Therefore, 11(Ay,) = 0 for every n and hence |h(a)| < ||I|| for pu-a.e. a € €2, and we conclude that
1floo < [IZ]] < 4-o00.

So in any case, h € L9(£2,%, ). Then for every f € LP(Q, 3, u) we take a sequence (fx) of
simple functions so that fi — f in LP(Q, 3, ). Now, the continuity of [ and Holder’s inequality
together with (3.5) for each fj, imply

I(f) = lim l(fw=kgr+noo/9fkhdu=/gfhdu=zh<f>-

k——+o0

Therefore, [ = I, = T'(h), and so T is onto (LP(Q, %, u))/.
The general case of a measure y which is not necessarily finite can be derived from the particular
case of a finite u using standard measure-theoretic arguments and it is left as an exercise. O

The main result of theorem 3.4 is its “onto” part:
Let (2, %, i) be a measure space, and 1 < p < 400, %4—% = 1. Then foreveryl € (LP(Q, 3, u))/
there is a unique h € L%(2, %, iu) so that

1=l 1) = [ fhdu forevery 1 € 7(©.%. ).

If p is o-finite, then the same result is true when p = 1.

Lemma 3.1. Let 2 be a Hausdorff topological space, and let K, L. C ) be compact and disjoint.
Then there are disjoint open U,V C Qsothat K CU and L C V.

Proof. Take any x € K. For every y € L we consider disjoint open Uy, V,, so that z € U, and
y € Vj,. Then the collection {V}, | y € L} is an open covering of L, and so there are y1, ..., y, € L
sothat L C V,,, U---UV,, . Thenthe opensets U, = U,, N---NU,, and V, =V}, U---UV,, are
disjoint, and = € U, and L C V,.. Then the collection {U, | z € K} is an open covering of K, and
sothereare z1,...,x,, € Ksothat K C U,, U---UU,,,. Thenthe opensets U = U,, U---UU,,,
andV =V, N---NV,, aredisjoint,and K CUand L C V. OJ

Urysohn’s lemma. Let €2 be a compact, Hausdorff topological space, and K, L C 2 be closed
and disjoint. Then there is a continuous f : Q@ — [0,1] so that f = 0in K,and f = 1in L.

Proof. Lemma 3.1 implies that if A C Q is closed and B C {2 is open, and if A C B, then there
isanopen U sothat A C U C cl(U) C B.
We consider Ag = K and By = Q\ L. Then there is an open B /; so that

AO g Bl/2 g Cl(Bl/Q) g Bl.
Then there are open B /4 and Bs,, so that
Ao C Byjy C cl(Byyy) € Byjp C cl(Byz) € Bsjy C cl(Byg) C Bi.

Let Qg be the set of all rational numbers of the form » = k/2" with 0 < k < 2™.
Continuing inductively, we see that to every r € Q4 corresponds an open set B, so that

AO - B’I‘ - CI(BT) - Bs
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for every r, s € Qg with r < s.
We consider f :  — R defined so that

inf{r € Qq|z € B}, «x¢€ By,
(o) = 7 € Qulz B 1
1, (L‘GQ\BL

Then f =0in K,and f = 1in L, and f : Q — [0, 1]. It remains to show that f is continuous.
Take any x € Q and any € > 0. If 0 < f(z) < 1, then there are r, 7/, s € Qg so that

flz)—e<r<r < flx)<s< f(z)+e

Ify € Bs,then f(y) < s < f(x)+e. Ify € Q\cl(B;), theny ¢ B,,andthen f(y) > r > f(x)—e.
Also, x € By and x ¢ B,s, and hence = € 2\ cl(B,). Therefore the open V' = B; N (Q\ cl(B,))
contains x, and f(x) — € < f(y) < f(x) + e forevery y € V. So f is continuous at x.

If f(x) = 1, we consider, as above, r,7" € Qg sothat 1 —e¢ < r < r’ < 1. Then the open
V =Q\ c(B,) contains z,and 1 —e < f(y) <1< 1+ eforeveryy e V.

Similarly, if f(z) = 0, we consider s € Qg so that 0 < s < €. Then the open V' = Bj contains z,
and —e < 0 < f(y) < eforeveryy € V.

In any case, f is continuous at x. O

We should remark that Urysohn’s lemma holds, more generally, for normal topological spaces
(), i.e. Hausdorff topological spaces with the property: for every two disjoint closed K, L C €
there are disjoint open U, V' C 2 sothat K C U and L C V. This is the only property of €2 which
was used in the proof of Urysohn’s lemma. Lemma 3.1 says that compact, Hausdorff topological
spaces are normal. Another class of normal spaces are the metric spaces. In fact, for a metric space

Q, Urysohn’s lemma has a simple proof: we consider the function f(z) = % for every

x € §, where d(z, A) = infyc 4 d(x,y) for every A C Q.

Lemma 3.2. Le € be a compact, Hausdorff topological space, let K C ) be compact, and let
Uy, ..., U, CQbeopen,sothat K C Uy U---UU,. Then there are continuous fi, ..., fp : 1 —
[0, 1] so that supp(f;) C U; forevery jand fi +---+ f, = 1in K.

Proof. We have that K \ (Us U ---UU,) C U; and so there is an open V; so that
K\(UQU"-UUn) cWw QCI(Vl) Cc U;.

Then K CV;UUyU---UU, and hence K \ (V1 UU3U---UU,) C Us. So there is an open V>
so that
K\(V1UU3U--'UU7L)QVQQCKVQ)QUQ.

Then K C V; UV UUs U---UU,. We continue inductively replacing the open Uy, ..., U, with
the open V1,...,V, sothat K C Vi U--- UV, and cl(V}) C Uj for every j.

We repeat this process, and we find open W1, ..., W,, sothat K C Wy U---U W, and Cl(Wj) C
Vj C cl(V}) C Uj for every j.

Urysohn’s lemma implies that there are continuous gi,...,g, : & — [0,1] so that g; = 1 in
cl(W;) and g; = 0in Q \ Vj. There is also a continuous g : €2 — [0, 1] so that go = 0 in K and
go=1inQ\ (W U---UW,). Now we define

fi = ¥

T gttt
forevery j =1,...,n.
If go(z) # 1, thenx € Wy U --- U W, and hence g;(z) = 1 for some j = 1,...,n. Therefore,
go+g1+--+gp,>1inQ,andso fi,..., fn : © — [0, 1] are continuous in €2.
If z ¢ Vj, then gj(x) = 0, hence f;(x) = 0. So supp(f;) C cl(V;) C U;.
Alsof1+~-+fn:%:1inK,sincego:OinK. O
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Definition. Let 2 be a topological space, let K C €2 be compact, let Uy, . ..,U, C ) be open and
K CU U---UUy,. If fi,..., fn : Q@ — [0,1] are continuous, supp(f;) C Uj for every j, and
fi+ -+ fn = 1in K, then the collection { f1, ..., f,} is called partition of unity for K with
respect to its open covering {Uy, ..., Up}.

Thus, lemma 3.2 says that in a compact, Hausdorff topological space every compact set has a
partition of unity with respect to any of its finite open coverings.

Lemma 3.3. Let €2 be a topological space, and let . € A(S2, B(£2)). Then for every f € C(Q2) we
have | [o, fdu| < fo | Fldlpl < [ fllull el

Proof. 1t is enough to prove the left inequality. This is well known if f is real and y is non-
negative.

If f is real and y is real, then 4 = u™ — p—, where p*, i~ are the positive and the negative
variations of y, and so

[ rau] <| [ ra|+] [ raw| < [iant+ [ i@ = [ 11,
If f is complex and y is complex, then
[ rau] <] [ Rerareqn)] + | [ Re(s) aim)
+| [ m(dreo] -+ | [ m(p)dimip)|
Q Q

< [ IRe(PIdIReGo)] + [ [Re(P]dlm(o)

" /Q [1m(f)| d| Re(j2)| + /Q [1m(f)| d] Im(y2)|
<4 /Q |l dlul.

Now we decompose the disc {\ € C||\| < | f|l.} in pairwise disjoint Borel sets Q1,...,Qn
where each of them has diameter < ¢, and we consider the A; = {z € Q| f(z) € Q;}. We also
take one \; € (); for every j, and then

[ s S;‘/Ajfdu‘ s;\/Aju—Aj)du\+;|Aj||u<AJ>
<4y et + Y llA)
=1 j=1
§461u!(9)+2/_!f!d\MH;/Aj\f—/\jd\u\

< selul(@) + [ 171l

Since € > 0 is arbitrary, we get | [, f du| < [, [f] d|ul. O

Definition. Let [ : C'(2) — F be a linear functional.
(i) We say that  is real, if [(f) € R for every real f € C(12).
(i) We say that [ is non-negative, if [(f) > O for every non-negative f € C(f2).

(
_Itis easy to see that, if [ is real, then Re(I(f)) = I(Re(f)) and Im(/(f)) = I(Im(f)) and also
I(f) = I(f) for every f € C(R). Similarly, if [ is non-negative, then I(f) < i(g) for all real
frg € C(2) with f < gin Q.
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The theorem of F.Riesz-Radon-Banach-Kakutani. Let €2 be a compact, Hausdorff topological
space. Then there is a linear isometry of A, (2, B(Q2)) onto C(Q)’.

Proof. For every 1 € A,(Q2, B(£2)) we consider the functon {,, : C(2) — F' defined for every
fe Q) by

L(f) = /Q fdu.

Then [,, is a linear functional on C(£2) and

P =] [ rau] < a1,

for every f € C'(§2). Therefore, I, € C(Q) and ||1,,]| < ||pl|.
We take any € > 0. The definition of |||l implies that there are pairwise disjoint Borel sets
Aq,..., A, C Qsothat

[pll =€ < [u(AD)| + -+ |u(An)|.
Since p is regular, for every j there is a compact K; C A; so that |u|(A4; \ K;) < % € and so

]l = 2e < [u(K)| + - -+ |u(Kn)|.

Since K1, ..., K, are pairwise disjoint, there are pairwise disjoint open U1, ..., U, so that K; C
Uj forevery j, and |u|(U; \ Kj) < % ¢ for every j. Urysohn’s lemma implies that for every j there
is a continuous f; : 2 — [0, 1] so that f; = 1in K and f; = 0in Q \ U;. Finally, we consider

m“/‘Uj fjd’u‘_l’ ij fﬂd/ﬁ5£07

i =
’ 07 fUijd/'Lzov

and f = Z?:l )\jfj. NOW, |f| < Z?:l |)\j’fj < Z?:l fj <1lin Q. Thus,
Il = WAl = | [ 7] =300 [ s =] [ s
Q@ =1 “Ui j=1 7Uj

=SCAIED S BT BN S S CAVOEN R
j=1 j=1 JU\K; j=1

Since € > 0 is arbitrary, we conclude that ||/,,|| > ||x|| and hence ||I,,|| = |||

Assume that [, is real. We consider any Borel set A, and then a compact K C A and an open
U D Asothat |u|(U\ K) < e. There is a continuous f : 2 — [0,1]sothat f =1lin K'and f =0
inQ\ U. Then

o:]Im(/Qfdu)]>|1m<u<K>>|—\Im(/U\deu)]

> [Im(u(A)] — | Im(u(A\ K))| ~ ul(U \ K)
> [Im(u(A))] — 2|l(U \ K) > [ Im(u(A)] - 2e.

Since € > 0 is arbitrary, we get Im(x4(A)) = 0 and so  is a real measure.

Assume that [, is non-negative. With the same choice of A, K, U, f as in the previous paragraph,
we get

0< [ Fdup=p(K)+ [ fdu<p(a)+ 2O\ K) < p(a) + 26
Q U\K
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Again, since € > 0 is arbitrary, we find p(A) > 0 and so x is a non-negative measure.
We consider the function 7" : A,(Q2, B(2)) — C(Q2)’ defined for every u € A,.(2, B(€2)) by

Then T is linear and we have already seen that ||T'(x)|| = [|i4|| = ||| forevery pn € A,.(2, B(£2)).
So it remains to prove that 7" is onto C'(2)’, i.e. to prove that for every [ € C'(2)’ there is a complex
(if F' = C) or real (if F = R) Borel measure  so that [(f) = [, f du for every f € C(Q).

At first we assume that [ € C'(£2)’ is non-negative.

For every open U C (2 and every f € C(2) we write

f=0,

if f:Q —[0,1] and supp(f) C U.
Now, for every open U C (2 we define

p(U) = sup{i(f)| f < U}

and, then, for every £ C () we define
p*(E) =inf{u(U) |U open D E}.

If U,U" C Q are open and U C U’, then f < U implies f < U’, and hence pu(U) < p(U").
Therefore,

for every open U.

If f < U, thenl(f) < |[I|l|fllw < |I]]. So w(U) < ||I|| and hence p*(E) < ||I|| for every E C Q.
It is clear that p*(0) = u(0) = 0, and that p*(E) < p*(E’) forevery E, E' C Q with E C F'.
Now, let E = (J;°} E;. For each j we find an open U; D Ej so that u(Uj) < p*(Ej) + o
and we consider the open U = U;“:Of U;. Let f < U, and let K = supp(f) C U. Then there is
n so that X' C |Jj_, U; and we consider a partition of unity {f1,..., f»} for K with respect to

{Ui,...,Up}. Then f = ffi+---+ ff, and supp(f f;) < U, for every j, and so
n n +o00 400
() =D UFf) < DUy <D uUy) <Y u(By) +e
j=1 j=1 j=1 j=1

Taking the supremum of I(f) over all f < U, we get u(U) < Z;L:Of p*(Ej;) + e Since E C U,
we get u*(F) < Z;;O? 1*(E;) + €. Finally, since € > 0 is arbitrary, we find

+o0o
w(E) < S 1t (E)).
j=1

Thus p* is an outer measure on 2.

Now the process of Caratheodory defines the o-algebra of ©*-measurable subsets of (2, and then
w* restricted on this o-algebra is a measure.

We take any open U C  and any E C (). We take any € > 0, and then there is an open U’ O E
with u(U’) < p*(E) 4+ e anda f < U' NU with I(f) > w(U' NU) — e. Then U’ \ supp(f)
is open, and there is a ¢ < U’ \ supp(f) so that I(g) > (U’ \ supp(f)) — €. We observe that
f+g=<U andso

pH(E) +e>pU') > 1U(f+9) =1U(f) +1(g) > (U N U) + pu(U"\ supp(f)) — 2¢
> (ENU)+p (E\U) — 2e.
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Since € > 0 is arbitrary, we find
p(E) = p (ENU) +p (E\U)

and so U is p*-measurable. Therefore, the o-algebra of ;*-measurable sets contains all open sets,
and so it contains 3(£2). We define 1 to be the restriction of 1* on 5(£2), and so 4 is a non-negative
Borel measure on (2. Then p is identical with the already defined p on all open sets, since we have
proved that ;/*(U) = u(U) for every open U.

Now we shall prove that

u(K) =inf{l(f)| f € C(Q),xx < [ in 2} (3.6)

for every compact K C (2.

We take any f € C(Q2) so that f > xg,ie. f>0inQand f > 1in K. We take any ¢ with
0 < t < 1, and we consider the openset U = {z € Q| f(z) >t} D K.If g < U, thentg < fin
(2, and then t/(g) < I(f), since [ is non-negative. From this, taking the supremum of /(g) over all
g < U, we find tu(U) < I(f), and hence tu(K) < I(f). Then we take the supremum over ¢ < 1,
and we get u(K) < I(f). Thus,

u(K) < inf{i(f)| f € C(), xx < f in Q.

Now we take any ¢ > 0, and then there is an open U DO K with p(U) < pu(K) + ¢ and a
continuous f :  — [0, 1] with f = 1 in K and supp(f) C U. Then f > yx and f < U, and so
I(f) < w(U) < u(K) + €. Since € > 0 is arbitrary,

inf{I(f)| f € C(Q),xx < f in Q} < p(K),

and the proof of (3.6) is finished.
We shall now prove the regularity of .
For any Borel set £/ we have

w(E) = w*(B) = inf{u(U) | U open 2 E}

by the definition of p*(F), and this is the first regularity condition.

Now we take any Borel set ' and any e > 0. Then thereisanopenU 2 Esothat u(U) < pu(E)+e,
anda g < U so that I(g) > p(U) — e. We consider the compact K = supp(g) C U. For every
f € C(Q) with f > xk, we have f > ¢, and hence [(f) > I(g). From (3.6) we get u(K) > I(g)
and hence p(K) > u(U) — €. Since u(U \ E) = u(U) — u(E) < ¢, thereisanopen U’ D U \ E
so that u(U’) < 2e. Now we set L = K \ U’ and we observe that L is a compact subset of F and
that E\ L C (U\ K)UU'. Hence u(E) — u(L) < u(U \ K) + p(U’) < 3¢ and so

w(E) =sup{p(L) | L compact C E}.

This is the second regularity condition.

Finally, we shall prove that [(f) = [, f du for every f € C(2). Because of the linearity of /, it is
enough to prove this for real f. (Of course, if F' = R, then all our functions are real.) If f is real
we consider f+ = 1(|f|+ f) > 0and f~ = 1(|f| — f) > 0, and then f = f* — f~. Therefore,
in proving I(f) = fQ fdp it is enough to consider f > 0 and, multiplying with an appropriate
constant, we may assume that 0 < f < 1in €.

We take any n € N and we consider K, = {z € Q| f(z) > %} for 0 < k < n. Then K}, is

compact, and Ky = 2. Also, for every j = 0,...,n — 1 we consider the function
i .
fi= min{max{f, l}, i} 7,
n n n
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Then every f; is continuous in 2 and

1 1
XK+ <fi < n XEKi
forevery j =0,...,n — 1 and also
n—1
F=> 1
j=0

Adding the last inequalities and integrating we find

n n—1
1 1
— K;) < dp < — K
n;mjnﬂfu_ngm

From xr;,, < nf; and (3.6) we get u(Kj;41) < I(nf;) = nl(f;). Now, we take any open
U D Kj. From nf; < xx, we get nf; < U and hence ni(f;) = l(nf;) < u(U). So from the
definition of u(K;) = i (K ) we get nl(f;) < u(Kj;). Therefore,

1 1
EM(Kj+1) <I(f) < E”(Kj)v
and, adding, we find
n n—1
1 1
n ZH(KJ)) <IUf) < n ZM(KJ)
7j=1 7=0
Therefore,
1
/fdu—l Zu —*ZM p(Ko \ Kn) < —p(92).
Since n is arbitrary, we get
17 = [ fan
Q

We finished the proof in the case of a non-negative [ € C(2)": we proved that there is a non-

negative y € A, (Q,B(Q)) so that I(f) = [, f du for every f € C(Q).
Now let [ € C'(Q2)’ be real. For every non-negative f € C(2) we define

() = sup{l(g) |g € C(2),0 < g < f in O},

Obviously, [T(f) > 1(0) =0and IT(f) > I(f).
If0 <g < f, theni(g) <[i(g)| < [ltlllgllu < ][]l f]l, and so

0<I7(f) < Ul fllu < +oo.

For every A > 0 and every non-negative f € C'(Q2) we have

I"(\f) = sup{i(9) | g € C(),

= sup{l(Ah) | h € C(2),

= Asup{l(h) | h € C(Q),

If fi, fo € C(Q) are non-negative, and 0 < g3 < f; and 0 < go < fo, then I(g1) + I(g2) =
(g1 + g2) and, since 0 < g1 + g2 < f1 + f2, we get I(g1) + I(g2) < I*(f1 + f2). Taking the

supremum over g1 and g9, we find [T (f1) + {7 (f2) < 1T (f1 + f2)-
Now let 0 < g < f1 + fo. Weset gy = min{f1,9}, andthen0 < ¢; < fy and g; < g. If
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we set go = g — g1, then it is easy to see that 0 < go < f5 and, of course, g = g1 + go. Thus
I(g) =Ug1) +U(g2) <I(f1) + 1T (f2), and, taking the supremum over g, we get [T (f1 + f2) <
I*(f1) + 1 (fa).

We conclude that
I (fi+ f2) = U7 (fr) + 17 (f2).

Until now, [*(f) is defined only for non-negative f € C(Q2). Now, for any real f € C(Q) we
consider fT = %(\f| +f)>0and f~ = %(|f] — f) > 0,sothat f = f* — f~. Then for every
real f € C(Q) we define

) =155 = 7).
We observe that, if f = g — h for any non-negative g, h € C(2), then f* +h = f~ + g, and so
)+ ) =1 (P +h) =1 (" +9) =17 (f7) +17(g).

Thus,

() =170 = (f7) =17 (g) = 17 (h).
If f1, fo € C(Q) arereal, then f1 + fo = (f;" + f57) — (fi + f5 ), and from the last identity we
have

Wi+ fo) = U+ f) = UWf + f) = 1A + 1) = 1(f7) = Ufy) = W) + U f2).
If f € C() is real and A > 0, then
FOf) = PO =P 7) = NP (FD) = N () = N (),
while if A < 0, then
CEO) = UE(AST) = TALST) = A7) = IR (FT) = A ().

If F =R, we have proved that [* : C(2) — R is linear.
If FF = C, then for every f € C'(Q2) we define

[7(f) = 1" (Re(f)) + il ™ (Im(f))
and it is easy to see that [T : C'(2) — C is linear. If f € C'(Q) is real then
EHL = () — ()] < maxE (£, 040} < max{ I o 11 1)
= (1 £ -

If f € C() is complex, then there is A € C with |A\| = 1 so that Al (f) = |I*(f)], and then we
have

()= NF(f) =17 (Af) =Re(IT(Af)) = 1" (Re(Af)) < [l2f[[[ Re(AS) | < LI

So [ is a non-negative linear functional on C'(Q2) with [|IT]| < [|I]|.

We also define [~ = [T — [ : C(Q) — F. This is a bounded linear functional on C({2) and it is
non-negative, since for every non-negative f € C(Q) we have [~ (f) = IT(f) — I(f) > 0. So
there are non-negative ji1, i3 € A, (2, B(2)) sothat I*(f) = [, f dpy and I~ (f) = [, f dpa for
every f € C(Q2). Now we consider ;1 = p1 — p2 and then p € A,.(Q2, B(Q2)) is real and

l(f)sz)—l(f)z/ﬂfdm—/gfdm:/gfdu

for every f € C(Q).
At this point the proof is complete if ' = C and [ is real, or if ' = R (and so [ is automatically
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real).

If F = C and ! is complex, then Re(l) and Im({) are real continous R-linear functionals on C(2)
and hence they are continuous R-linear functionals on Cr(2), the R-linear space of the real con-
tinuous functions on 2. So there are real i1, u2 € A, (2, B(Q)) so that Re(I)(f) = [, f dp1 and
Im(I)(f) = [q f dus for every real f € C(Q). So if we set yu = iy +ipo, then p € A, (Q, B(Q))
and for every real f € C'(Q2) we get

1) = Re)(f) + (1) = [ fr+i [ fdpa= [ Fan

So for every f € C(Q2) we get

I(f) = l(Re(f)) + l(Im(f)) = /

Q

Re(f)du—i—i/ﬂlm(f)du—/ﬂfd,u.

The main result of the theorem of F.Riesz-Radon-Banach-Kakutani is its “onto” part:

Let ) be a compact, Hausdorff topological space. Then for every | € C()) there is a unique
w € A (Q,B(Q)) so that

=l i) = /Q fdu forevery f € C(Q).

If l is non-negative, i.e. I(f) > 0 for every non-negative f € C(f2), then p is non-negative.
Iflisreal, ie. I[(f) € R for everyreal f € C(), then p is real.

3.6 The theorem of Hahn-Banach.

3.6.1 The analytic form.

Definition. Let X be a linear space over F. Then p : X — R is called positive-homogenuous
and subadditive functional on X, if

(i) p(tx) = tp(x) for every z € X and every t > 0,

(i) p(z +y) < p(x) + p(y) for every z,y € X.

Definition. Let X be a linear space over F'. Then p : X — R is called seminorm on X, if
(i) p(Ax) = |A|p(x) for every x € X and every A € F,
(i) p(z +y) < p(x) + p(y) for every z,y € X.

Every seminorm is a positive-homogenuous and subadditive functional.

Lemma 3.4. (i) If p is a positive-homogenuous and subadditive functional on X, then p(0) = 0,
—p(~z) < p(x) for every = € X, and p(x) — p(y) < p(x — y) < p(x) + p(—y) for every
z,y € X.

(ii) If p is a seminorm on X, then p(0) = 0, p(—x) = p(z) for every x € X, and |p(x) — p(y)| <
p(x — y) for every x,y € X. In particular, p(x) > 0 for every z € X.

Proof. Exercise. 0

Assume that a seminorm p : X — R has the additional property: p(x) = 0 implies x = 0.
Then, clearly, p is a norm on X.

The theorem of Hahn-Banach. We consider F' = R. Let X be a linear space and Y be a linear
subspace of X, let p be a positive-homogenuous and subadditive functional on X, and let [ be
a linear functional on Y. We assume that [(y) < p(y) for every y € Y. Then there is a linear
functional L on X so that

(i) L(y) = l(y) for every y € Y, i.e. L is an extension of l,

(ii) L(z) < p(z) for every xz € X.
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Proof. We consider the set K of all £ with the properties:

(i) k : D(k) — Ris a linear functional on a linear subspace D(k) of X,

(ii) % is an extension of /, i.e. Y = D(l) C D(k) and l(y) = k(y) foreveryy € Y,

(iii) k(z) < p(z) for every z € D(k).

Then [ is an element of K, and so K is non-empty. We define an order relation < on X in the
following way: k1 < ko means that ks is an extension of ki, i.e. D(k;) C D(ko) and k1(2) =
ka(z) for every z € D(ky). It is very easy to see that < has the properties of an order relation.
Now let M be any totally ordered subset of K. We consider the set

Zy= | D(k).
keM
Since D(I) C D(k) for every k € M, weseethatY = D(l) C Zy C X.
If 21,29 € Zp, then there are k1, ko € M so that z; € D(kp) and z2 € D(ks). Since one of
k1, ko is an extension of the other, we have that either D (k1) C D(k2) or D(ky) C D(ky). If
D(k1) € D(ks) then 21, 220 € D(k2), and, since D(ks) is a linear subspace of X, we have that
21+ 22 € D(kg), and so z1 + z3 € Zj. Obviously, the same is true if D(ks) C D(ky).
If z € Zypand A € R, then there is £ € M so that z € D(k). Since D(k) is a linear subspace of
X, we have Az € D(k), and so Az € Z.
Therefore, Z is a linear subspace of X.
Now we take any z € Zy. Then z € D(k) for some k € M. If z € D(k’) for any other &’ € M,
then, since one of k, k" is an extension of the other, we get that k(z) = k’(z). So we may consider
the function
]{0 : Zo —-R

defined for every z € Z by
ko(z) = k(z) forany k € M with z € D(k).
We saw that, if z1, zo € Z, then there is £ € M so that z1, zo € D(k), and hence
ko(z1 4 22) = k(21 + 22) = k(21) + k(22) = ko(21) + ko(22).
Similarly, if z € Zp and A € R, then there is k € M so that z € D(k), and hence
ko(Az) = k(A\z) = Mk(2) = Ako(2).

Thus, kg is a linear functional on Zj.

It is obvious that & is an extension of [ and that ko (z) < p(z) for every z € Z.

Thus, kg € K. It is also clear that & is, by its definition, an extension of every k& € M, and so kg
is an upper bound of M.

Now Zorn’s lemma implies that K has at least one maximal element. In other words, there is L
with the properties (i), (ii) and (iii), and there is no £ with the same properties which is a proper
extension of L.

We shall prove that D(L) = X and this will finish the proof.

Towards a contradiction, we assume that D(L) # X, and we take any g € X \ D(L). We
consider the linear subspace

Z = {a+Azo|a € D(L),\ € R}

of X. Then D(L) as a proper linear subspace of Z. We shall define a linear functional & : Z — R
so that k(a) = L(a) for every a € D(L), and k(z) < p(z) for every z € Z. This means that & is
a proper extension of L with the properties (i), (ii) and (iii), and we shall arrive at a contradiction.
Now we take any A\g € R and we consider k£ : Z — R defined for every a + Axp € Z (i.e. for
every a € D(L) and every A € R) by

k:(a + )\330) = L(a) + )\)\0.
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Then it is very easy to see that k is a linear functional on Z and that k(a) = L(a) for every
a € D(L). So we only have to choose A so that k(a + Azg) < p(a + Axg) for every a € D(L)
and every A € R. This is equivalent to

L(a) + Mo < p(a+ Azg) forevery a € D(L),\ € R.

So for A = 0 we must have L(a) < p(a) for every a € D(L), which is true.
Then we must have

1 1 a a
< — — = = — — —
Ao < )\p(a + Axp) 3 L(a) p()\ + x()) L(}\) forevery a € D(L),A >0

or, equivalently,
Mo < pla+x9) — L(a) forevery a € D(L).

Finally, we must have

a

1 1 a
Xo > —pla+ Azg) — —~ L(a) = —p(m —x()) +L(|/\|

3 3 ) forevery a € D(L),A <0

or, equivalently,
Xo > —p(a —x0) + L(a) forevery a € D(L).
In other words, we must choose )\ so that
—pla — xo) + L(a) < Ao < p(a+ z9) — L(a) forevery a € D(L).
The existence of such ) is clearly equivalent to the inequality
sup{—p(a — zo) + L(a)|a € D(L)} < inf{p(a + z0) — L(a)[a € D(L)},
and this is equivalent to
—p(a1 — o) + L(a1) < p(az + o) — L(az) forevery ay,az € D(L).
But this last inequality is true, since
L(a1)+ L(az) = L(a1 + a2) < p(a1 + az2) = p(a1 — zo + a2 + x0) < p(ai — xo) + plaz + o)
for every a;,a2 € D(L). O
Definition. Let X be a linear space over C. Then [l : X — C is called R-linear functional on X,
i
f lx1+x2) =1(x1) + 1(z2), I(Ax) = A(x)
for every x,x1,x2 € X and every A € R.

So the difference between a linear functional and a R-linear functional is that the first satisfies
I(Ax) = M(x) for every A\ € C and the second satisfies the same equality for every A € R. So,
obviously, every linear functional is also a R-linear functional.

Lemma 3.5. Let X be a linear space over C.
(i) If | - X — C is a linear functional, then its real part Re(l) : X — R is a R-linear functional,
and

l(x) =Re(l)(z) — iRe(l)(iz)

for every x € X.
(ii) For every R-linear functional ly : X — R, there is a unique linear functional [ : X — C so
that Re(l) = Iy in X.
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Proof. (i) Equating real parts in [(z1 + x2) = I(z1) + [(x2) and [(Az) = A(z) with A € R, we
see that Re(/) is a R-linear functional.
From [(z) = Re(l)(x) + i Im()(z) we get

iRe(l)(z) — Im(l)(z) = il(z) = l(iz) = Re(!)(iz) + i Im(1) (iz),

and hence Im(l)(z) = — Re(l)(ix). Thus I(z) = Re(l)(x) — i Re(l)(ix) for every x € X.
(ii) We consider [ : X — C defined for every x € X by

l(x) = lo(x) —ilp(ix).
For every 1, z9 € X we get
l(x1+m2) = lo(x1 +2) —ilg (i1 +ix2) = lo(x1) +lo(22) —ilo(iz1) —ilo(ixe) = l(x1) +1(x2).
Also, if A = p +iv € C, then

I(A\x) = l(px +ive) = l(px) + (ive) = lo(px) — ilg(ipx) + lo(ive) — ilg(—v)
= plo(x) — iulo(iz) + vip(iz) + ivlg(x) = pl(z) + wvl(z) = N(x).

Hence [ is a linear functional and, clearly, Re(l) = [o.
If Re(l1) = Re(ly) for two linear functionals /1, l2, then

ll(:c) = Re(ll)(x) — iRe(ll)(z’az) = Re(lg)(x) — iRe(lg)(z’x) = ZQ(ZK)
forevery z € X, and so l; = ls. O
The next result is the “complex” version of the theorem of Hahn-Banach.

The theorem of Bohnenblust-Sobczyk. We consider F' = C. Let X be a linear space and Y be a
linear subspace of X, let p be a seminorm on X, and let [ be a linear functional on Y. We assume
that |l(y)| < p(y) for every y € Y. Then there is a linear functional L on X so that

(i) L(y) = l(y) for every y € Y, i.e. L is an extension of l,

(ii) |L(z)| < p(x) for every x € X.

Proof. We can obviously consider X (and hence also Y') as a linear space over R. Lemma 3.5
implies that Re(l) : Y — R is a R-linear functional on Y" and that

I(y) = Re(l)(y) — i Re(l)(iy)

foreveryy € Y.

We also have Re(1)(y) < |i(y)| < p(y) foreveryy € Y.

The theorem of Hahn-Banach implies that there is a R-linear functional Ly : X — R so that
Lo(y) = Re(l)(y) forevery y € Y, and Lo(x) < p(x) for every z € X.

Lemma 3.5 implies that there is a linear functional L : X — C so that Re(L) = L in X. Then
for every y € Y we have

L(y) = Re(L)(y) — iRe(L)(iy) = Lo(y) — iLo(iy) = Re(l)(y) — i Re(l)(iy) = I(y),

and so L is an extension of [.
Finally, for every z € X there is A € C so that |\| = 1 and |L(z)| = AL(z). Then

IL(@)] = AL(x) = L(Ax) = Re(L)(Ax) = Lo(Az) < p(Ax) = [Ap(a) = p(a)

for every z € X. O
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3.6.2 The geometric form.

Definition. Le X be a linear space over F', and let A C X.
(i) We say that A absorbs X, if for every x € X there is 7o > 0 so that [0, x] C roA.
(ii) We say that A is balanced, if \a € A for every a € Aandevery A € F, |\| < 1.

It is obvious that 0 belongs to every A which absorbs X, and also to every balanced A.

Assume that A absorbs X and take any x € X. Then there is 79 > 0 so that [0, 2] C r¢A4,
i.e. sz € rgA forall s, 0 < s < 1. This implies that x € rA for all » > ry. Therefore, the set
{r > 0]z € rA} is a halfline in (0, +00).

Definition. Let X be a linear space, and assume that A C X is convex and absorbs X . We consider
the function p4 : X — [0, +00) defined for every = € X by

pa(z) =inf{r > 0|z € rA}.
The function p 4 is called Minkowski functional of A.

From the remarks before the definition, it is clear that € r A for every r > p(z). It is also
clear that, if 0 < r < pa(x), then x ¢ rA.

Proposition 3.5. Let X be a linear space, and assume that A C X is convex and absorbs X. If
pA is the Minkowski functional of A, then

(i) pa is positive-homogenuous and subadditive on X .

(ii) if A is also balanced, then p 4 is a seminorm on X.

(iii) {o € X |pa(x) < 1} CAC {z € X | palx) < 1}

Proof. (i) If t > 0, then

pa(te) =inf{r > 0|tz € rA} :inf{r > O‘a: € %A} =inf{ts > 0|z € sA}
=tinf{s > 0|z € sA} =tpa(x).

Also, 0 € rA for every r > 0, and so p4(0) = 0. Thus, pa(tz) = tpa(x) holds also for ¢ = 0.
Now, take any 7 > p4(z) and any s > pa(y). Thenz € rAandy € sA, andso +z € A and
% y € A. Then the convexity of A implies that

1 r 1 s 1

= - —y € A.
r+s<x+y) r+s rx+r+s sy

Therefore, z +y € (r+ s)A and so pa(x +y) < r+ s. Since this holds for every > p4(x) and

every s > pa(y), we getpa(z +y) < pa(z) + pa(y).
(ii) If A # 0, then

A A A
pA()\x):inf{r>0|)\$ErA}:inf{r>0"/\|‘T‘xeA}:inf{r>0‘umeA}
:inf{r>0‘:c€ ﬁA} = |Ainf{s > 0|z € sA} = |A\|pa(x).

We saw in the proof of (i) that p4(Az) = |A|pa(x) holds also for A = 0.
(iii) If pa(x) < 1, thenz € 1A= A. If x € A = 1A, thenpa(z) < 1. O

Proposition 3.6. Let X be a linear space and let p : X — R be a positive-homogenuous and
subadditive functional on X.

(i) B={z € X |p(x) <1}and C = {x € X |p(z) < 1} are convex and they absorb X.

(ii) If p is a seminorm, then B, C' are also balanced.

(iii) If A is convex and B C A C C, then p4 = max{p, 0}. If p is a seminorm, then p4 = p.
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Proof. (i) If x,y € Band 0 <t < 1, then

pltr + (1 —t)y) < p(tr) + p((1 = t)y) = tp(z) + (1 = t)p(y) <t+ (1 —t) = 1.

Thus, tx + (1 — t)y € B and so B is convex. The same argument shows that C'is convex.

Let z € X, and take any ro > max{p(z),0}. If 0 < s < 1, then p(;; 2) = ;= p(z) < 1, and
hence ;> z € B. Thus [0, 2] C roB and so B absorbs X. Now, C absorbs X, since B C C.

(ii) Letz € B and |A\| < 1. Then p(Ax) = |A|p(z) < 1 and hence Az € B. So B is balanced, and
the same argument shows that C' is balanced.

(iii) A absorbs X, since B absorbs X . From proposition 3.5 we have that

{r € X|pa(x) <1} CAC{z e X |pa(z) <1}

Thus, pa(z) < 1 implies p(z) < 1. Also, p(x) < 1 implies pa(z) < 1.

If A > max{p(z),0}, then p(+z) < 1, then pa(3x) < 1, and so pa(z) < A. Therefore,
pa(e) < max{p(z), 0}.

If A > pa(z)(> 0), then pa(3 z) < 1, then p(+ ) < 1, and so p(z) < A. Therefore, p(z) <
pa(z). Since 0 < pa(z), we get max{p(z),0} < pa(x).

Hence, p4(x) = max{p(z), 0} for every z € X.

If p is a seminorm, then p(z) > 0, and hence p4(x) = p(z) for every x € X. O

Definition. Let X be a linear space, A C X and a € X. We say that A absorbs X with center a,
if A — a absorbs X.

Clearly, if A absorbs X with center a, then0 € A — a, and so a € A.

It is easy to see that, if A absorbs X with center a, then, for every b € X and every A € F, we
have that A + b absorbs X with center a + b, and that A A absorbs X with center \a.

We know from Linear Algebra that, if [ # 0 is a linear functional on X, then its null space
(or kernel) N(I) = {z € X |I(z) = 0} is a linear subspace of X of codimension equal to 1.
Conversely, if Y is a linear subspace of X of codimension equal to 1 then there is a linear functional
[ # 0on X sothat Y = N(I). Moreover, any set of the form Y + a, where Y is a linear subspace
of X of codimension equal to 1 and a € X, is called hyperplane of X. Then it is easy to see that a
subset of X is a hyperplane if and only if it is of the form {x € X | I(z) = A}, where! # Oisalinear
functional on X and A\ € F. Then we say that {x € X |I(z) < A} and {x € X |I(z) > A} are
the open halfspaces, and {z € X |I(z) < A} and {z € X |I(x) > A} are the closed halfspaces
determined by the hyperplane.

Theorem 3.5. We consider F' = R. Let X be a linear space, and let A C X be convex and absorb
X with every a € A as center. If b ¢ A, then there is a hyperplane of X which contains b and so
that A is contained in one of the two open halfspaces determined by this hyperplane. Therefore, A
is equal to the intersection of all open halfspaces which contain A.

Proof. At first we assume that 0 € A. Then A is convex and absorbs X, and we consider the
Minkowski functional p4 of A. Proposition 3.5 implies that p4(a) < 1 for every a € A, and also
that p4(b) > 1 forevery b ¢ A.

If a € A, then A — a absorbs X. Then there is 7 > 0 so that a € r(A — a), and hence 11" a € A.
Then pa (1t~ a) < 1 and hence pa(a) < 15 < 1. Therefore, p4(a) < 1 for every a € A.

Now we take any b ¢ A (and so b # 0) and we consider the linear subspace Y = {\b| A € R} of
X, of dimension equal to 1, and the linear functional / : Y — R defined for every Ab € Y by

I(Ab) = A,

If A <0, then
IAb) = X <0 < pa(AD).
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If A > 0, then
I(Ab) = XA < Apa(b) = pa(Ab).

Therefore, [(y) < pa(y) forevery y € Y.

The theorem of Hahn-Banach implies that there is a linear functional L : X — R which is an
extension of [ and so that L(z) < pa(x) for every x € X. Then L(b) = I(b) = 1 and L(a) <
pa(a) < 1forevery a € A. So the hyperplane {x € X | L(x) = 1} contains b, and A is contained
in the open halfspace {x € X | L(z) < 1}.

Now, assume that 0 ¢ A. We take any ay € A and we consider the set Ay = A—ag. Then0 € Ay,
and Ay is convex and absorbs X with every a € Ag as center.

Now we take any b ¢ A, and we consider by = b — ag ¢ Ag. We have proved that there is a
hyperplane Ly which contains by and so that A is contained in one of the two open halfspaces
determined by Lg. Then the hyperplane L + ag contains b, and A is contained in one of the two
open halfspaces determined by Lg + ag. O

Theorem 3.6. We consider F' = R. Let X be a linear space, and let A C X be convex and absorb
X with some a € A as center. If b ¢ A, then there is a hyperplane of X which contains b and so
that A is contained in one of the two closed halfspaces determined by this hyperplane.

Proof. We just repeat the proof of theorem 3.5, ommiting the part which proves that p4(a) < 1
for every a € A. It is enough that p4(a) < 1 holds for every a € A. O

Theorem 3.7. We consider I' = R. Let X be a linear space, let A C X be convex and absorb
X with some (or every) a € A as center, let B C X be convex, and AN B = (). Then there is a
hyperplane of X so that A is contained in one of the two closed (or open) halfspaces determined
by this hyperplane, and B is contained in the complementary closed halfspace.

Proof. We consider the set C' = A — B. Then C'is convex and 0 ¢ C'. Also, it is easy to show that
C absorbs X with some ¢ € C as center. Indeed, assume that A absorbs X with center ¢y € A
and take any by € B. Then A — by absorbs X with center ag — by. Since A — by C A — B, we
have that A — B absorbs X with center ag — bg.
Then theorems 3.5 and 3.6 imply that there is a hyperplane which contains 0O (i.e. a linear subspace
of X of codimension equal to 1) so that C is contained in one of the two closed halfspaces deter-
mined by this hyperplane. In other words, there is a linear functional [ : X — R, [ # 0, so that
l(c) < 0 for every ¢ € C. This implies that {(a — b) < 0, i.e. I(a) < I(b) for every a € A and
every b € B.
Therefore,

sup{i(a)|a € A} <inf{l(b)|b € B}.

Now if we consider any A € R between these supremum and infimum, then
AC{ze X |l(z) <A}, BC{zxeX|l(z)> A}

Now, assume that A absorbs X with center a. We take any « € X so that I(z) > A. Then there
istg > Osothatx —a € to(A — a) and so there is ay € A so that x — a = tg(ag — a), i.e.
xr = tgag + (1 — to)a. Then

A < U(z) = tol(ap) + (1 — to)l(a) < toh + (1 — to)l(a).

This excludes the case ¢y < 1. So ¢y > 1 and then we get [(a) < A.
Therefore, if A absorbs X with every a € A as center, then

AC{z e X|l(z) <A}, BC{zxeX|l(z)> A}

Now, the hyperplane we need is the {x € X |I(z) = A}. O

77



3.7 Implications of the theorem of Hahn-Banach.

The following is one of the fundamental results in the theory of normed spaces. It is very often
called theorem of Hahn-Banach, but it is actually a corollary of the theorem of Hahn-Banach and
its “complex” version, the theorem of Bohnenblust-Sobczyk.

Let X be a normed space, and Y be a subspace of X. Assume that ¢y’ € Y’, that 2/ € X', and
that 2’ is an extension of ¢/, i.e. that 2/(y) = 4/(y) for every y € Y. Then it is very easy to show
that ||/|] < ||«’||. Indeed,

1 [|= sup [¥'(y)l= sup [|2'(y)|<  sup 2 (x)] = 2]
yeyY,|lylI<1 yeY,|lylI<1 zeX,|lz||<1

We may say that extensions have larger norms.

Theorem 3.8. Let X be a normed space, and Y be a subspace of X. Then for every y' € Y’ there
isz’ € X' sothat 2'(y) = y/(y) foreveryy € Y, and ||2'|| = ||v/]|.

Proof. We consider the seminorm p : X — R defined for every x € X by
p(x) = [ly'llll=l

The linear functional 3’ on Y satisfies |¢/(y)| < p(y) foreveryy € Y.
Let F' = C. Then the theorem of Bohnenblust-Sobczyk implies that there is a linear functional z’
on X so that 2/(y) = y/(y) for every y € Y and

|2 (z)] < p(x) = [ly/'[ll]z]

for every x € X. Therefore, 2’ € X’ and ||2’|| < ||/||. Since ||3/|| < ||’| is trivially satisfied, we
get that [|z'|| = [|y/||.

Let ' = R. Since y/(y) < p(y) for every y € Y, the theorem of Hahn-Banach implies that there
is a linear functional 2’ on X so that z'(y) = ¢/(y) for every y € Y and

'(z) < p(x) = [ly'llll=
for every 2 € X. If we replace  with —z in this inequality, we get —||3/||||z|| < 2’(x) and so
|2 (2)] < [yl
for every 2 € X. Thus, ||2’|| < |||, and hence [|l2’|| = [|/|. O

Definition. Let X be a normed space. If A C X, we define
At = {2/ € X'|2'(x) = 0 for every x € A}.

If X is a space with inner product (-, -) and A C X, then A~ has been defined in two different
forms. The old form is

AL — fo e X |(x,2) =0 forevery 2 € A} C X,
and the new form is
Abmew — 197 € X' |2/ (z) = 0 forevery z € A} C X',
According to the theorem of F.Riesz, there is a conjugate-linear isometry 7" of X into X', given

by:
T(z)(x) = (x,z) forevery z € X andevery z € X.
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Therefore, if we write A+°4 = {> € X |(x, 2) = 0 for every = € A}, then we see that
T(A) = (T(2) € X'| (x,2) = 0 for every z € A}
={T(2) € X'|T(2)(z) =0 forevery x € A}
— T(X) N AJ_,new C AJ_,new'

If X is a Hilbert space, then T is onto X’ and so

T(AJ_,old) _ AJ_,new.
Proposition 3.7. Let X be a normed space. If A C X, then AL is a closed subspace of X'.
Proof. Exercise. O
Theorem 3.9. Let X be a normed space, x € X and Y be a subspace of X. Then

max 2 (x)] = inf ||z — y||.
Lma @) = inf =]

Proof. For every z' € Y1 with ||2/|] < 1 and for every y € Y we have

|2 (2)] = |2’ (z) — 2/ ()| = 2" (z — )| < |2 [[]lz =yl < [l = y].

Hence
sup  [2'(x)| < inf [lz — yl|.
a'eY L |la||<1 yey

So it is enough to prove that there is z’ € Y so that ||2’|| < 1 and |2/ ()| = inf ey ||z — y]|.

If 7 € Y, then inf ey ||z — y|| = 0 and |2/(z)| = 0 for every 2’ € V1. So in this case the proof
is complete.

If x ¢ Y, we consider the linear subspace Y; of X which is spanned by Y U {z}:

Yi={y+Xr|yeY,Ae F}.
We consider ¢ : Y1 — F' defined by
Y (y+ Ax) = M

foreveryy € Y and every A € F, where d = infcy ||z—y]|. Itis clear that 3/’ is a linear functional
on Y.
If A =0, then

Y/ (y+ Az)| = [Ald =0 < [ly + Az

If A # 0, then
v+ )l =N < W[z = (= 5 9) [ = lly + Aall.

Hence ¢’ € Y{ and ||y/|| < 1.

Now theorem 3.8 implies that there is ' € X’ so that 2/(y + Az) = Ad for every y € Y and every
A€ F,and ||2/|| = ||| < 1. Now, 2/(y) = 2/(y + 0z) = 0d = 0 for every y € Y, and so
¢’ € Y4, and |2/ (2)| = |2/(0 + 12)| = 1d = d. O

Theorem 3.10. Let X be a normed space, and x € X. Then

z|| = max ' (x)].
lell = _max _ 1+'62)

Proof. This is a corollary of theorem 3.9. We consider the linear subspace Y = {0}, and then we
have {0} = X’ and inf,c(oy [|# — yl| = [|# — 0O]| = [||. O
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Theorem 3.11. Let X be a normed space, A C X and x € X. Then z € clspan(A) if and only if
2'(x) = 0 for every 2’ € A*.

Proof. This is a corollary of theorem 3.9. We take Y = clspan(A), and then A+ = Y and

max 2 (x)] = inf ||z — y||.
I,QAL’”MHSI\ ()] yeyH yll

Since Y is closed, we have that 2 € Y if and only if inf,cy || — y|| = 0 if and only if 2/(z) = 0
for every 2’/ € A+ with ||2’|| < 1 if and only if 2’(z) = 0 for every 2’ € A+, O

Proposition 3.8. Let X be a normed space. If X' is separable, then X is separable.

Proof. Let {z], |n € N} be a countable dense subset of X".

For each n we consider z,, € X so that ||z,,|| = 1 and |2/,(z,,)| > 3 ||=},|| and we define the set
A ={z,|neN}

Assume that there is x € X so that x ¢ clspan(A). Then theorem 3.11 implies that there is
x' € At sothat 2'(z) # 0. Hence, 2/(x,,) = 0 for every n and 2’ # 0 and so ||z’|| > 0.

Since {z, | n € N} is dense, there is n so that |z’ — 2/,|| < % ||2/||. Then

lnll = [l = ll2" = 27| > 2" — a5, I,

and so

1
3 lnll < lan (@)l = [ (zn) = 2'(za)] < a7, — 2"l < 5 [l

and we have a contradiction.
Therefore, for every z € X we have that = € clspan(A). Thus, for every € > 0 there are n € N
and A\1,..., )\, € F sothat

|z — (Aiz1 + - 4+ Apzp) || < e

Now we take rational £1, ..., k, € F sothat |\; — ;| < m for every j and we easily see that
J

|z — (k11 + -+ 4+ kpxn) || < 2e.

So the countable set, whose elements are all linear combinations of elements of A with rational
coefficients, is dense in X. O

Corollary 3.1. I! is not linearly isometric with (1°°)'. In fact I* is not even topologically homeo-
morphic with (1°°)’.

Proof. 1! is separable, so, if the two spaces are topologically homeomorphic, then (I°°)’ is separa-
ble. But then proposition 3.8 implies that [*° is also separable and this is not true. O

Theorem 3.12. Let X be a normed space, let Y be a subspace of X, and 2’ € X'. Then

sup |7'(y)| = min [|z' - Z/|.
yeY|lylI<1 Zey

Proof. For every y € Y with ||y|| < 1, and every 2’ € Y* we have
' ()] = |2'(y) = 2" ()] < [l = Zllly]| < fl2" = 2]

Hence,
sup |2'(y)] < inf 2’ — 2.
ey L

yeYllyll<1
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S fe o 1 ! _ ! !
So it is e'nough to prove that t.he're is 2/ € Y= so that sup, ey, <1 [2(y)] = [[2" — 2.
We consider 3’ to be the restriction of =’ on Y, and then

1/l = sup [¥'(y)|= sup [|2'(y)l.
yeYllyll<1 yeYllyll<1

Theorem 3.8 implies that there is 2} € X’ so that 2 (y) = ¥/(y) = 2/(y) for every y € Y and

|z}l = II¥]]- Now we take 2’ = 2’ — 2} € X’, and then
" =2 =llyll = sup ['(y)|-
yeY|lylI<1
Also 2/(y) = 2'(y) — 2} (y) = 0 for every y € Y, and hence 2’ € Y*. O

3.8 The second dual.

The second dual X" = (X’)’ of a normed space X is a Banach space with norm

"= sup |2"(af)

Pex! o' <1

[Ez

for every 2" € X”.

Definition. Let X be a normed space. For every x € X we consider the function I, : X' — F
defined for every 2’ € X' by
l.(2)) = 2/ ().

Theorem 3.13. Let X be a normed space. For every x € X the function I, is an element of X"
and the function
J: X = X",

defined for every x € X by J(z) = I, is a linear isometry.
Proof. We have
lo(@] +a5) = (21 + 29)(2) = 21(2) + 25(2) = lo(2]) + la(2)),

l:(A\2") = (\2')(z) = M/ (z) = Nl (2)

for every 2/, 2, 2, € X’ and every A € F. Thus, [, is a linear functional on X
Theorem 3.10 implies that

sup  |lo(2')| = sup [2'(2)| = [|=].
/X |l2']I<1 o/ eX/ |la’||<1
This means that I,, € X" and ||l,;|| = ||z||.

Now,
loytas (27) = @' (21 + 22) = 2/ (1) + 2" (22) = Iz, (27) + Iz, (27)

for every 2/ € X’ and hence Iy, 44, = loy + lz,. Also,
Ie(2') = 2'(Ax) = M (2) = N (2)
for every 2’ € X’ and hence [y, = Al,. Thus, J is linear:
J(x1 4+ 22) = lpytay = loy + 1oy = J(x1) + J(22), J(Ax) = e = Ny = A (2).
We saw that ||.J(z)|| = ||lz]| = ||z|| for every x € X, and so J is a linear isometry. O
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Definition. Let X be a normed space. The linear isometry J : X — X" defined in theorem 3.13 is
called natural embedding of X into X"
If J is onto X", then we say that X is reflexive.

Thus, if X is reflexive, then X is linearly isometric with X”. The converse is not true in
general: there are normed spaces X which are linearly isometric with their second dual X" but
their natural embeddings .J are not onto X"

We observe that a necessary condition for a normed space X to be reflexive is its completeness.
Indeed, X" = (X’)’ is a dual space, and so it is complete. Hence, if X is linearly isometric with
X", then X is also complete.

A second observation is the following. X is complete, since it is a closed subspace of the
Banach space X”. Also, J(X) is dense in X7, since X is the closure of J(X). Now, J(X) C X"
is linearly isometric with X, and we conclude that X is a completion of X.

Proposition 3.9. Every Hilbert space is reflexive.

Proof. We consider the conjugate-linear isometry of the theorem of F. Riesz, T': X — X', given
by
T(z)(x) = (z,2)

forevery z € X and z € X.

We shall prove that the natural embedding .J : X — X" is onto X”.

We take any 2" € X" and we consider the function 2’/ o T' : X — F. Itis easy to prove that this
is linear:

2" o T (21 + z2) = 2"(T'(21 + 22)) = " (T(21) + T(22)) = 2" (T'(21)) + 2" (T'(22))
=2"(T(z1)) + 2" (T(22)) = 2" o T(z1) + 2" 0 T'(22),

"o T(A\2) = 2" (T(\2)) = 2" (AT(2)) = X" (T(2)) = Aa"(T(2)) = Az" o T(2).
Also

2" o T(2)| = [2"(T(2))| = |2"(T(2))| < =" T(2)|| = ll="[|]]2],
and hence 2" o T € X'.
Since T is onto X', there is x € X so that 2 o T' = T'(x). Then,

2"(T(2)) = T(x)(2) = (2,2) = (x,2) = T(2)(2) = J(2)(T(2))

for every z € X. Since T is onto X', the last equality implies that

for every 2/ € X’. Therefore, 2" = J(x), and so J is onto X" O

Proposition 3.10. If 1 < p < +oo and (2, X, i) is a measure space, then [P and LP(Q2, %, 1) are
reflexive.

Proof. We consider ¢ given by % + % — 1 and the linear isometries 7®) : [¢ — (1?)" and T9) :
P — (19)" given by

ka T (y)(z)

forevery x = (\;) € [9and y = (i) € IP.
We also consider the natural embedding J : [P — (IP)".
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We take any " € (IP)", and we consider the function ¢/ o T(®) : 19 — F. Then 3 o T?) is a
composition of linear functions and, hence, it is a linear functional on [¢. Also,

[y" o TV (@) = [y (TP (@)| < Iy I TP ()] = lly" |l

for every 2 € 19. Hence y" o T(P) € (19)".
Since 7@ is onto (19)’, there is y € I? so that 3/ o T®?) = T(9)(y). Thus,

T (TP (z)) = TP (2)(y) = TV (y)(z) = y" (TP (x))

for every z € 149. Since T() is onto (I?)’, the last equality implies

for every ¥/ € (I?)’. Thus Jy = 3" and so J is onto (IP)".
The proof of the reflexivity of LP(€2, 3, i) is similar. O

Theorem 3.14. Let X be a normed space, and Y be a closed subspace of X. If X is reflexive, then
Y is reflexive.

Proof. Take any 4" € Y. We consider 2" : X’ — F defined for every 2’ € X’ by
2"(2') =" (@ly),
where 2’|y € Y is the restriction of 2/ on Y. It is easy to see that z” is linear. Also

2" (@) = 1y" @ )L < Ny T2 Il < My ]2

forevery 2’ € X'. Therefore, 2" € X" and, since X isreflexive, thereis x € X sothat J(x) = 2",

where J is the natural embedding of X onto X”. This implies
y'(@'ly) = 2"(a') = J(2) (@) = 2/ ()

for every 2’ € X'.

Now, we take any =’ € Y*. Then 2’|y (y) = 2/(y) = 0 for every y € Y, and so 2|y = 0. The
last equality above implies that z’(z) = y”(0) = 0. So, theorem 3.9 implies inf,cy ||z — y|| = 0
and, since Y is closed, we get that x € Y. Therefore,

V'(@ly) =2 (z) = 2|y (2)

for every 2/ € X'.
Theorem 3.8 says, in particular, that for every 4/ € Y there is 2/ € X’ so that 2’|y = /. So for
every y' € Y/ we have, by the last equality,

Y'(y) =y (x) = J'(2)(¥/),

where J’ is the natural embedding of Y into Y. Thus ¢ = J'(z) with z € Y, and we conclude
that J’ is onto Y. O

3.9 The uniform boundedness principle.
Lemma 3.6. Let X be a complete metric space with metric d. If C, is a non-empty closed subset

of X foreveryn € N, so that C,,1 C C,, for every n and diam(C},) — 0, then ;fz C,, contains
exactly one element.

83



Proof. We take any z,, € C),. If n < m, then z,,, x,,, € Cy,, and so d(zy,, ) < diam(C,,) — 0
when n,m — +oo. Thus (z,,) is a Cauchy sequence, and, since X is complete, there is z € X
so that 2, — x. Since the sequence (x,,) is contained, after the index m, in the closed set C,,, we
get that x € Cy,. Thus, z € Ii’j C,.

If also y € N> Cy, then x,y € C, for every n. Therefore, d(z,y) < diam(C,,) for every n,
and so d(z,y) = 0. Thus z = y. O

The theorem of Baire. Let X be a complete metric space. If U, is an open and dense subset of X
for every n € N, then ﬂ:{(xi U,, is dense in X.

Proof. We consider the set U = ﬂzg U,, and we take any r > 0.
Since U is dense, there is x; € B(x;r) N U;. Since B(x;r) N Uy is open, there is r; > 0 so that
ry < %7‘ and

c(B(z1;71)) € B(xy;7m1) € B(z;r) N U;.

Since Uy is dense, there is zo € B(x1;7r1) N Us. Since B(x1;r1) N Us is open, there is r2 > 0 so
that r9 < %7‘1 < 2%Tand

cl(B(wa;72)) € B(wa;12) C B(x1;7m1) N Us.

We continue inductively, and we see that for every n € N thereis a ball B(x,,; ) so thatr, < 2% T,

and so that
cl(B(2nt1;mn41)) € B(@nirn) N Unta € B(wn;mn) € d(B(zn;n))

for every n. We aplly lemma 3.6 to the non-empty closed sets cl(B(z,;r,)) and we get that that
there is some

+oo
y € () d(B(@nirn)).
n=1

Now, this implies that y € cl(B(x1;71)) and hence y € B(x;r). It also implies that y €
cl(B(xy;7y)) and hence y € U, for every n. Therefore, y € B(x;r) N U and we conclude
that U is dense in X. O

If A is a subset of a metric space Y with metric d, then A is bounded if the distances of the
elements of A from any fixed element 3, of Y are bounded, i.e.

sup d(a, yp) < +00.
a€A
The uniform boundedness principle. Let X be a complete metric space, let Y be a metric space
with metric d, let yo € Y, and let F be a collection of continuous functions f : X — Y. We
assume that
sup d(f(z),y0) < +oo forevery x € X.
feF
Then there is a non-empty open U C X and a M > 0 so that d(f(x),yo) < M for every x € U
and every f € F,i.e.
sup d(f(x),30) < +o0.
z€U,fEF

Proof. For each n € N we define

Py ={z € X|d(f(x),y0) < n forevery f € F} = () {z € X|d(f(x),y0) < n}.
feF

It is easy to see that the continuity of the metric d and the continuity of each function f,, imply that
{z € X|d(f(x),y0) < n} isaclosed set. Since P, is the intersection of closed sets, it is closed.
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Also, the assumption that sup ;¢ x d(f(),y0) < +oc for every x € X, implies that for every = €
X there is n € N so that sup ¢ d(f(z),y0) < n, and hence = € P,. Therefore X = Uts p..
If we define U,, = X \ P,, then U,, is open and (/> U, = 0.

Now, the theorem of Baire implies that there is M € N so that U, is not dense in X, i.e.

A(Uy) £ X.

We consider the set U = X \ cl(Uyy), Then U is open and non-empty, and U N cl(Uy;) = 0. So
U NUy = 0 and hence U C Pyy. Of course, this implies that d(f(x),yo) < M for every x € U
and every f € F. O

Regarding the uniform boundedness principle, sup . d(f(z),y0) < +oc is equivalent with
{f(z)]| f € F} being a bounded subset of the metric space Y. So we may say that the assumption
that sup s d(f(),yo) < +oo for every x € X means that the collection of functions F is point-
wise bounded in X . The result of the uniform boundedness principle, is that, under the assumption
of its pointwise boundedness, the collection F is uniformly bounded in some open subset U of X.
Of course, another central assumption is the completeness of X.

The next two theorems are just a few, among many, applications of the uniform boundedness
principle. For both theorems we consider the metric space Y = F' with its usual euclidean metric.
The role of yg € Y is played by 0 € F'. So d(f(z), yo) is simply | f(x)| for functions f : X — F.
In other words, we have the following special case of the uniform boundedness principle.

The uniform boundedness principle Let X be a complete metric space, and let F be a collection
of continuous functions f : X — F. We assume that

sup | f(z)| < 400 forevery x € X.
feF

Then there is a non-empty open U C X and a M > 0 so that |f(x)| < M for every x € U and
every f € F,le.

sup |f(z)] < +oo.
zelU,feF

Theorem 3.15. Let X be a Banach space and let F C X' satisfy sup,, r |2'(x)| < +oc for every
x € X. Then sup, 7 ||2'|| < +oc.

Proof. We apply the uniform boundedness principle to the collection X’ of functions 2’ : X — F,
and we get that there is a non-empty open U C X and a M > 0 so that |2/(z)| < M for every
2’ € Fandeveryxz € U.

Now we take any xo € U and then there is R > 0 so that B(xo; R) C U. Therefore, we have that
|2/(x)] < M for every 2’ € F and every z € B(xo; R).

Take any ' € F, any  # 0 and any ¢ > 1. Then zy € B(xo; R) and ¢ + B ore B(zo; R).

tl]
Hence
al el R al el R alEd
2 (x :—x’<—x)‘ :—x’<x +—x) — ' (x ’<—2M.
i O G T ) B RN A B
Since t > 1 is arbitrary, we get
()] < 22 el
J— R .
This is true also for z = 0, and hence ||2/|| < % for every 2/ € F. O
Since [|2'|| = sup,ex jz<1 [2(#)| = sup, 50,1y [#'(2)], theorem 3.15 says that if X is a

Banach space and the collection F C X' is pointwise bounded in X, then F is uniformly bounded
in the closed unit ball B(0;1) of X.
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Theorem 3.16. Let X be a normed space and let F C X satisfy sup,¢ r |2'(x)| < 400 for every
z' € X'. Then sup,¢ 7 ||z|| < +oc.

Proof. We consider the natural embedding J : X — X” and the collection J(F) C X" of the
functions J(z) : X’ — F for every x € F. We apply the previous theorem for the Banach space
X' and for the collection J(F) C (X'}, since

sup |J(z)(z")] = sup |2'(z)| < +o0
J(z)eJ(F) xeF

for every 2’ € X'.
We conclude that sup, ¢ z [|z|| = sup j(,)es(x) I/ ()] < +o0. O

3.10 Weak convergence and weak-star convergence.

Definition. Let X be a normed space.
(i) We say that the sequence (x,,) in X converges weakly to x € X, if 2/(z,,) — 2/(x) for every
x’ € X'. Then we write

Ty .

(ii) We say that the sequence (x}) in X' converges weaklyx to 2’ € X', if x|, (z) — 2/(x) for
every x € X. Then we write
;] Wk g
Ty — T
Of course, when we write x,, — z or ], — z’ we mean ||z,, — z|| — 0 or ||z}, — 2'|| — 0,
respectively. To stress the difference between the various notions of convergence, we may say that

(x,,) converges strongly to z, if z,, — z, and we may say that (z},) converges strongly to 2/, if
x!, — ’. This terminology is justified by the:

Proposition 3.11. Let X be a normed space.
() In X: if z,, — x, then x,, ~ .
(i) In X': if o/, — 2/, then ], ™% .

Proof. (i) If z,, — z, then for every 2’ € X’ we have |2/(z,,) — 2/(z)| < ||2/||||xn — x| — O.
Hence z,, X .

(ii) If zj, — 2/, then for every x € X we have |z}, (z) — 2/(x)| < ||z}, — 2'||||z|| — 0. Hence
a5 O
Proposition 3.12. Let X be a normed space.

()In X: if £, = 2, yn — yand A, — A, then z,, + yn — x + y and Az, — A\z.

(i) In X': if ! 3 2,y S/ and N\, — A, then 2!, + 3/, 5 2/ + o/ and Mz, 5 Mo’

(iii) In X : if x, — y and z,, — z, theny = z.

(iv) In X': if 2!, S o/ and !, 5 2/, thenyf/ = 2.

Proof. (i) For every 2’ € X' we have
x,(xn + yn) = $/(xn) + $/(yn) — x'(:v) + x/(y) = x'(:v + y)a
2 (M) = M2/ () — M/ (2) = 2/ (\x).

Hence x,, + yn, X or+ y and A, xy, .

(ii) Similar to the proof of (i).

(iii) For every 2’ € X' we have 2/(z,) — 2/(y) and 2/(z,,) = 2/(z), and hence 2/(y — z) =
z'(y) — 2'(z) = 0. Theorem 3.10 implies thaty — z = 0 and so y = z.

(iv) For every z € X we have 2/, (x) — y/(x) and 2},(z) = 2/(x), and hence y/(x) = 2/(z).
Therefore, y' = 2/. O
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We must stress the difference between the natures of (iii) and (iv) of the last proposition, i.e.
the uniqueness of the weak limit and the weaks limit, which is reflected in the difference between
the difficulties of their proofs.

Example 3.10.1. If 1 < p < 400, then e,, — 0 in [? and also in ¢, ¢y. But (e,,) does not have a
weak limit in /1.

In all cases the norms of the e,, are equal to 1, and (e,,) does not converge since the norms of the
differences e,, — e, are constant and # 0.

Example 3.10.2. If {a,, | n € N} is an orthonormal set in an inner product space X, then a,, — 0
in X.

Theorem 3.17. Let X be a normed space, and x, ~ x in X. Then sup,, [|zn|| < +oo and
llz|| < liminf,, 4o ||2n]]-

Proof. For every ' € X' the sequence (2'(x,)) converges to z/(z) in F, and so it is bounded.
Theorem 3.16 implies that sup,, ||z, | < +oo.

Let ¢ = liminf,,,; ||y|. Then there is a subsequence (x,, ) so that ||z, || — ¢. For every
z’ € X' with ||2'|| <1 we have |2/(z, )| < ||zp,]|. Since 2/ (xy, ) — 2/(z), we find |2'(x)| < q.
Now theorem 3.10 implies that ||2|| = max,c x7 |7 <1 |2/ ()| < g. O

Wk

Theorem 3.18. Let X be a Banach space and x|, — «' in X'. Then sup,, ||z, || < +occ and

l'[| < Timinfn 400 27, -

Proof. For every 2z € X the sequence (z/,(z)) converges to /() in F, and so it is bounded.
Theorem 3.15 implies that sup,, ||z, < +oc.

Let ¢ = liminf, . [|27,]. Then there is a subsequence (7, ) so that |27, || — ¢. For every
z € X with [|z]| < 1 we have |z;, (z)|] < ||z}, ||. Since 27, (z) — 2/(x), we find |2 (z)| < q.
Therefore, ||z'|| = sup,¢ x |jz<1 [%'(2)] < ¢. O

87



Chapter 4

Weak topologies 1

4.1 Generalities about topological spaces.

4.1.1 Open sets and closed sets.

Definition. Let A be a non-empty set, and T be a collection of subsets of A, with the properties:
HDeT,AeT.

(ii) The union of any elements of T is an element of T. In other words, if U; € T for every i € I,
then J,c; Ui € T.

(iii) The intersection of any finitely many elements of T is an element of T. In other words, if
Ui,...,U, €T, then(\\_ Ui € T.

Then T is called topology of A, and the elements of T are called open (with respect to T') subsets
of A. Finally, A equipped with a topology is called topological space.

If A atopological space, then (ii) says that the union of any open subsets of A is an open subset
of A, and (iii) says that the intersection of any finitely many open subsets of A is an open subset
of A.

Example 4.1.1. Let A be a non-empty set. Then {(), A} is a topology of A.

Example 4.1.2. Let A be a non-empty set. Then P(A), the collection of all subsets of A, is a
topology of A.

Example 4.1.3. Let A be a metric space with metric d. Then
T ={U C A|U is open with respect to d}

is a topology in A. In this case we say that the topology 7 is induced by d.

To be more precise, U C A is open with respect to d if for every « € U there is a radius » > 0 so
that the ball B(z,r) = {y € A|d(y,z) < r}isincluded in U.

It is easy to see that () and A are open with respect to d.

Now assume that U; is open with respect to d for every i € I, and take any = € |J;; U;. Then
x € Us, for some ig € 1, and then there is r > 0 so that B(xz;r) C U;,. Hence B(xz;r) C J;c; Us
and we have that | J,; U; is open with respect to d.

Finally, assume that U1, ..., U,, are open with respect to d, and take any = € ();_, U;. Then for
every i = 1,...,n there is r; > 0 so that B(z;r;) C U;. If we take r = min{ry,...,r,} > 0,
then B(z;r) C B(z;r;) C U; forevery i = 1,...,n, and hence B(z;r) C (i, Us. So i, U;
is open with respect to d.

Every ball B(x;r) is open with respect to d. Indeed, take any y € B(z; ). Then d(y, z) < r, and
we consider s = r — d(y, z) > 0. Now, if z € B(y; s), then

d(z,z) < d(z,y) +d(y,x) <s+d(y,z) =r
and hence z € B(z; ). Thus B(y; s) C B(z;7).
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Definition. Let A be a topological space, and F' C A. We say that F is clesed, if A\ F is open.

Proposition 4.1. Let A be a topological space. Then

(i) 0 and A are closed.

(ii) The intersection of any closed subsets of A is a closed subset of A.

(iii) The union of any finitely many closed subsets of A is a closed subset of A.

Proof. The proof is a trivial corollary of the definition of closed set, of the properties of open sets,
and of the laws of de Morgan for the complements of unions and intersections. O

Definition. Let A be a topological space, and x € A. Every open set containing x is called open
neighborhood of x.

Definition. Let A be a topological space, and M C A. Then the set (\{F | F 2 M is closed} is
called closure of M and it is denoted cl(M).

Proposition 4.2. Let A be a topological space, and M C A.
(i) cl(M) is the smallest closed subset of A which includes M.
(ii) x € cl(M) if and only if U N M # () for every open neighborhood U of .

Proof. (i) cl(M) is the intersection of closed sets which include M, and so it closed and includes
M. Also, if F'is closed and includes M, then cl(M) C F. So cl(M) is the smallest closed subset
of A which includes M.

(ii) Let z € cl(M), and take any open neighborhod U of x. Then A \ U is closed and, since
x ¢ A\ U, we have that cI(M) is not included in A \ U. According to (i), M is not included in
A\ U, and hence U N M # 0.

Conversely, assume that U N M # () for every open neighborhood U of x. We take any closed
F D M, and then A\ Fisopenand (A\ F) M = (). Therefore, x ¢ A\ F andso x € F. We
conclude that z € cl(M). O

Definition. Let A be a topological space with topology T, and let (x,,) be a sequence in A. We say
that (x,,) converges (with respect to 7) to x € A, if for every open neighborhood U of x there is
ng So that x,, € U for every n > ny.

Then we say that x is a limit of (x,,), and we write x,, — x.

4.1.2 Continuous functions.

Definition. Let A, B be two topological spaces, M C A,and f : M — B.

(i) We say that f is continuous at x € M if for every open V. C B such that f(x) € V there is
anopenU C Asothatz € Uand f(UNM) C V,ie. sothatz € U, and f(y) € V for every
yeUNM.

(ii) We say that f is continuous in M if it is continuous at every x € M.

Proposition 4.3. Let A, B be two topological spaces, M C A, and f : M — B. Then f is
continuous in M if and only if for every open V' C B there is an open U C A so that f~1(V) =
UnNM.

Proof. Let f be continuous in M, and let V' C B be open. Then for every z € f~1(V) we
have f(z) € V, and so there is an open U, C A such that x € U, and f(U, N M) C V.
Then U = U,ep-1(y) Uz © Ais open, and it is easy to see that f~Y(V) = U N M. Indeed, if
y € f71(V), theny € U,N M and hence y € U N M. Also, ify € UN M, theny € U, N M for
some x € f~1(V). Then f(y) € V and hencey € f~1(V).

Conversely, take any x € M and any open V' C B so that f(x) € V. Then there is an open U C A
sothat f~1(V) =U N M. Thenx € U and f(U N M) C V, and so f is continuous at . O
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Proposition 4.4. (i) Let A, B, C be topological spaces, M C A, N C B, f : M — N and
g : N — C. If f is continuous at = € M and g is continuous at f(x) € N, then g o f is
continuous at x.

(ii) Let A be a topological space, M C A, f,g : M — R™ and A\ € R. If R" has the topology
induced by the euclidean metric and f, g are continuous at x € M, then f + g, A f are continuous
at x.

Proof. (i) Let W C C be open and (g o f)(z) = g(f(z)) € W. Then there is an open V' C B
so that f(z) € V and g(V N N) C W. Then there is an open U C A so that z € U and
f(UNM)CV.Then f(UNM)C VNN and hence

(g0 F)(UNM) = g(f(UNM)) C g(V AN) CW.

Thus g o f is continuous at x.

(ii) Let V. C R™ be open and f(z) + g(z) € V. Then there is » > 0 so that z € V for every
z € R" with ||z — (f(x) + g(z))|| < r. Now, there is an open U; C A so that € U; and
I f(y) = f(x)| < § forevery y € Uy N M. Also, there is an open U, C A so that 2 € Us and
llg(y) — g(z)|| < § foreveryy € UyN M. Then U = U; N U C A'is open, and z € U, and for
every y € U N M we have

() + 9()) = (F@) + gD < 1) = F@ +lg(w) — g(e)ll < 5 + 5 =
and hence f(y) + g(y) € V. So f + g is continuous at z.
The proof for \f is similar. O

Definition. Let A, B be topological spaces, and f : A — B. We say that f is a homeomorphism
of A onto B, if f is one-to-one in A and onto B, and f is continuous in A and f~! is continuous
in B. In this case we say that A, B are homeomorphic.

If A, B are homeomorphic topological spaces, and f : A — B is a homeomorphism of A
onto B, then we may identify the two spaces: we identify every a € A with the corresponding
b= f(a) € B and, conversely, we identify every b € B with the corresponding a = f~1(b) € A.
Then every open U C A is identified with the open V' = f(U) C B and, conversely, every open
V C B is identified with the open U = f~1(V) C A.

4.1.3 Compact sets.

Definition. Let A be a topological space. We say that A is a Hausdorff topological space, if for
every r1,xro € A, x1 # xs, there are disjoint open U1, Us C A so that x1 € Uy and xo € Us.

Proposition 4.5. Every metric space is Hausdorff.

Proof. 1f d is the metric of A and z1,x2 € A, 1 # 22, we take r = %d(ml, xg) > 0, and then
B(x1;7) N B(xg; ) = (). The balls B(x1;7), B(xe;r) are open with respect to d. O

Proposition 4.6. Let A be a Hausdorff topological space. If a sequence in A has a limit, then this
limit is unique.

Proof. Let x,, — y and x,, — 2. If y # z, then there are disjoint open U,V C Asothaty € U
and z € V. But then there is ng so that x,, € U and x,, € V for every n > ng, and obviously this
is impossible. 0

Definition. Let A be a topological space, and K C A. We say that a collection {U; | i € I} of open
subsets of A is an open cover of K, if K C | J;c; Ui.
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Definition. Let A be a topological space, and K C A. We say that K is compact, if for every open
cover of K there is a finite subcover of K. More precisely, K is compact, if for every open cover
{Ui|i € I} of K thereare iy,...,i, € I sothat {U;, |1 < k < n} is also an open cover of K.

Proposition 4.7. Let A be a topological space.
() If K C A is compact and A is Hausdorf(f, then K is closed.
(ii) If K C A'is compact and K’ C K is closed, then K' is compact.

Proof. (i) Take any x € A\ K. For every z € K there are disjoint open U,,V, C A so that
z € Uyand z € V,. Then {U, |z € K} is an open cover of K. Since K is compact, there are
Z1y...,2n € Ksothat K C U, U---UU,, . ThenV,, N---NV,, isopen, itis included in A\ K,
and contains x. Therefore, A \ K is open, and so K is closed.

(ii) Let {U; | ¢ € I} be any open cover of K’. Then {U;|i € I} U {A\ K’} is an open cover
of K. Since K is compact, there are i1,...,%, € I sothat K C ({U;_; Ui,) U (A\ K’). Then
K' C Up_, Ui, and so K’ is compact. O

Proposition 4.8. Let A, B be topological spaces, M C A, and let f : M — B be continuous. If
K C M is compact, then f(K) is compact.

Proof. Let {V;|i € I} be any open cover of f(K), ie. f(K) C J,c;Vi. SinceeachV; C B is
open and f is continuous, proposition 4.3 implies that there is a corresponding open U; C A so
that f~1(V;) = U; N M. Then,

ke (Uv) =Usron=Uwinm cJu.

el el el el

Since K is compact, there are i1, ..., i, € I sothat K C |J;_, U;,. Then
f(K) = mmMcMUUmm%ﬂﬁmmMQUm
k=1 k=1 k=1

So f(K) is compact. O

Proposition 4.9. Let A be a topological space, M C A, and let f : M — R be continuous. If
K C M is compact, then f has a maximum value and a minimum value in K.

Proof. According to proposition 4.8, f(K) is a compact subset of R, and hence it is closed and
bounded. Since f(K) is bounded, u = sup(f(kK)) is a real number. Then for every ¢ > 0 there
isa € f(K) sothata € (u — €] and hence u € cl(f(K)). Since f(K) is closed, we conclude
that v € f(K) and so u is the maximum value of f in K. The case of the minimum value is
similar. U

Definition. Let A be a non-empty set, and C be a non-empty collection of subsets of A. We say that
C has the finite intersection property, if ()._, Cj # 0 for every C1,...,Cy € C.

Proposition 4.10. Let A be a topological space, and K C A. Then K is compact if and only
if for every collection F of subsets of K with the finite intersection property we have that K N

Npercl(F) # 0.

Proof. Assume that K is compact, and consider any collection F of subsets of K with the finite
intersection property. Then G = {A \ cl(F') | F' € F} is a collection of open subsets of A. For
every Fi,...,F,, € Fweget KN(i_, Fr = iy Fr # 0 andso K N(_,cl(Fy) # 0
which implies [ J;;_, (A \ cl(F%)) # K. So there is no finite subcollection of G which is a cover
of K. Since K is compact, G is not a cover of K. Thus, |Jzc 7(A \ cl(F')) # K and this implies
KN Nperc(F) #0.

Now, assume that for every collection F of subsets of K with the finite intersection property we
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have that ' Nz cl(F') # (. Take any open cover G of K. If z € K, then 2 € G for some
Go € G,and, since (K'\Go)NGo = 0, wegeta ¢ cl(K\Go). Therefore, KN(qcg l(K\G) = 0.
Now F = { K\G | G € G}isacollection of subsets of & which, according to our assumption, does
not have the finite intersection property. So there are G1, ..., G, € Gsothat()_,(K \ G) =0,
ie. K C {J,_, Gk. Therefore, K is compact. O

4.1.4 Subspace topology.

Proposition 4.11. Let A be a topological space with topology T, and B C A. Then the collection
S={UNB|U € T}isatopology of B.

Proof. ) =0 N Band B= AN B,so(and B belong to S.

Let V; € S forevery ¢ € I. Then there are U; € T so that V; = U; N B for every i € I. Since T
is a topology, we have | J,.; U; € T. Hence, | J;; Vi = (Uiel Ui) NnBeS.

Let Vi,...,V, € 8. Then there are U; € T sothat V; = U; N B forevery¢ = 1,...,n. Since 7
is a topology, we have (), U; € T. Hence, ", Vi = (L, U;) N B € S. O

Definition. Let A be a topological space, and B C A. The topology of B, which is described in
proposition 4.11, is called subspace topology or relative topology of B (with respect to A).

In other words, if B C A has its subspace topology, then the open subsets of B are the inter-
sections with B of the open subsets of A.

LetV C B C A. Then we say that V is openin A, if V' is open as a subset of A4, i.e. it belongs
to the topology of A, and we say that V' is open in B, if V' is open as a subset of B, i.e. it belongs
to the subspace topology of B. In the second case, by definition, V = U N B for some U C A
which is open in A.

Proposition 4.12. Let A be a topological space, and let B C A have its subspace topology. Then
G C Bisclosed in B if and only if there is F' C A closed in A so that G = F'N B.

Proof. Let G C B be closed in B. Then B\ G is open in B, and so B\ G = U N B for some U
open in A. Wetake F' = A\ U, and then G = F'N B and F'is closed in A.
The proof of the converse is similar. O

4.2 Weak topology.

Proposition 4.13. Let A be a non-empty set, and let F be a non-empty collection of functions
[+ A — By, where every By is a topological space with topology Sy. For every x € A we
consider the collection N, of all sets

N, ={y € Al fi(y) € V) forevery k =1,...,n},

with arbitrary n € N, arbitrary fi,..., f, € F, and arbitrary Vi € Sy,,...,V, € Sy, such that
fr(x) € Vi foreveryk =1,... n.

Observe that x € N,.

Finally, we consider the collection

(A, F)={U C A|forevery x € U thereis N, € N, sothat N, C U}.

Then o (A, F) is a topology of A.
Moreover, for every x € X, every N, € N belongs to (A, F).

Proof. 1Ttis easy to see that ) € o(A, F), and that A € o (A, F).
Let U; € (A, F) for every i € I, and take any = € |J;.; U;. Then x € U, for some ig € I, and
so there is N, € N, so that N, C Us, € J;¢; Ui Therefore | J,.; U; € o(A, F).
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LetUi,...,U, € 0(A, F), and take any = € (,_; Ui. Thenz € Uy, forevery k = 1,...,n, and
so there are N,1, ..., Ny, € N, so that N, C Uy for every k = 1,...,n. Now, it is easy to see
that (;_; Nax € Na, and (;_; Npr € (—; Uk. Therefore, ;;_, Uy € o(A, F).

Finally, take any N, € N, i.e.

N, ={ye€ Al fr(y) € V} forevery k =1,...,n}

for some n € N, some fi,..., f, € F, andsome V| € Sy,,...,V,, € Sy, such that fy(x) € Vj
forevery k =1,...,n.

We take any z € N,, and then fi(z) € Vj for every k = 1,...,n. Now, if we define N, = N,,
then clearly we have that N, € A, and obviously N, C N,.. This implies that N, € o(A, F). O

Definition. Let A be a non-empty set, and let F be a non-empty collection of functions f : A — By,
where every By is a topological space with topology Sy. Then the topology o (A, F) of A, which is
described in proposition 4.13, is called weak topology of A induced by the collection of functions
F. The elements of o(A, F) are called weakly open subsets of A with respect to the collection of
functions F.

Definition. Let A be non-empty set, and let T1, T2 be two topologies of A. We say that T is weaker
than T» and that T is strenger than 71, if T1 C Ts.

In other words, 77 is weaker than 75 if and only if every U C A which is open with respect to
71 is also open with respect to 75. It is clear that 77 is weaker than 7 if and only if every ' C A
which is closed with respect to 77 is also closed with respect to 7s.

Proposition 4.14. Let A be a non-empty set, and let F be a non-empty collection of functions
[+ A — By, where every By is a topological space with topology S¢. Then o(A, F) is the
weakest topology of A with respect to which every f € F is continuous.

Proof. We take any f € F, and any = € A. We consider any V' € Sy such that f(z) € V. Then
theset N, = {y € A| f(y) € V} clearly belongs to N,. Now N, € o(A,F), x € N, and
obviously f(N,) C V. Hence f is continuous at every = € A.
Let 7 be any topology of A such that every f € F is continuous. We take any x € A and any
N, € N, ie.

N, ={ye A| fr(y) € V) forevery k =1,...,n}

for some n € N, some fi,..., f, € F, and some Vi € Sy,,...,V,, € Sy, such that fi(z) € Vj
forevery k = 1, ..., n. We observe that

Ne = () £ (Ve).
k=1

Since each f}, is continuous, we have that f,~ (Vi) € T foreveryk =1,...,n,andhence N, € 7.
Now we consider any U € o (A, F). Then for every 2z € U there is N, € N sothatz € N, C U.
This implies that U = UIeU N,, and since N, € T for every x € U, we conclude that U € T.
Therefore, o (A, F) C S. O

Proposition 4.15. Let A be a non-empty set, and let F be a non-empty collection of functions
f + A — By, where every By is a topological space with topology Sy, and let A have the weak
topology o (A, F). Consider also a topological space D and g : D — A. Then g is continuous if
and only if f o g : D — By is continuous for every f € F.

Proof. If g is continuous, then, obviously, f o g : D — By is continuous for every f € F.
Conversely, let f o g : D — By be continuous for every f € F. We take any p € D and any
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U € 0(A, F)suchthat g(p) € U. Then there are fi,..., f, € Fand V; € Sy,,...,V, € S,, 50
that fx(g(p)) € Vi forevery k = 1,...,n and so that

Nypy ={y € Al fr(y) € Vi forevery k =1,...,n} CU.

Since each fj, o g is continuous, there is P, € R, where R is the topology of D, so that p € Py
and

Ji(9(a)) = (fk 0 9)(q) € Vi forevery q € Fy.
Now, if P = (;_, Px, then P € R, p € P, and

9(q) € Nyp) CU forevery g € P.

Therefore ¢ is continuous at p. O

Definition. Let A be a non-empty set, and F be a non-empty collection of functions f : A — By. We
say that F is separating, if for every x1, x5 € A, 1 # x4y there is f € F so that f(x1) # f(x2).

Proposition 4.16. Let A be a non-empty set, and let F be a non-empty collection of functions
f + A — By, where every By is a topological space with topology Sy, and let A have the weak
topology o(A, F). If F is separating, and if every topology Sy is Hausdorff, then o(A, F) is
Hausdorff.

Proof. Let x1,x9 € A, x1 # x2. Since F is separating, there is f € F so that f(z1) # f(z2).
Now, since f(x1), f(x2) € By and Sy is Hausdorff, there are V1,1V, € Sy so that f(z1) € Vi,
f(ajg) eVoand Vi NV, = 0.

Now we consider N, = {y € A|f(y) € Vi}and N, = {y € A| f(y) € Va}. Thenz; € Ny,
x9 € Ny, and Ny, , Ny, € 0(A, F),and N, N N,, = 0. O

4.3 Product topology.

Definition. We consider a non-empty set I of indices, and a collection of sets {A;|i € I}. We
define the set

HAZ' = {x‘az I — UAZ- so that x(i) € A; forevery i € I}.
i€l il

This set is called cartesian product of { 4; |7 € I}.

Axiom of choice. If I is non-empty and A; is non-empty for every i € I, then the cartesian product
of {A;|i € I} is non-empty.

Proof. We consider the set X whose elements are all the functions = : D(x) — |J;c; As, where
D(x) is any non-empty subset of I and x(i) € A; for every i € D(x).

If we choose any iy € I and any a9 € A;, we may define the function z¢ : {io} — (U;c; 4i by
xo(ig) = ag. Clearly, zp € X.

We define an order relation in X as follows. If x1, o € X, we write x1 < x» if x5 is an extension
of z1,i.e. if D(x1) C D(x2) and x1(i) = x2(i) forevery i € D(z1). Itis clear that < is an order
relation in &X'.

Let &) be any totally ordered subset of X'. We consider the set

Jo=|J D).
TEX)
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If i € Jy, there is x € X so thati € D(x). If i € D(z') for any other z’ € X), then, since one of
the -, 2’ is an extension of the other, we get that x(7) = 2/(i). So we can consider the function

.7302J0—>UA,‘

icl
defined for every ¢« € Jy by
zo(i) = xz(i) forany z € Xy with i € D(x).

Then D(xzg) = Jo C I, and it is clear that z is an element of X, and that it is an extension of
every € Xp. Thus, x¢ is an upper bound of A} in X.

Therefore, Zorn’s lemma implies that there is at least one maximal element x in X’. This means
that z : D(x) — J,c; Ai, where D(z) C I, and x(i) € A; for every i € I, and also that there is
no ' € X’ which is a proper extension of z.

If D(x) = I, then z is an element of the cartesian product [ [, A;.

Assume that D(z) # I. Then we take any i9p € I \ D(z) and any ag € A4,,, and we consider
the function 2’ : D(x) U {io} — U, A; defined so that: 2/(i) = x(i) for every i € D(x), and
2’ (ip) = ag. Obviously, 2’ € X and 2’ is a proper extension of . This is a contradiction. O

We proved the axiom of choice using Zorn’s lemma. It is possible to prove Zorn’s lemma using
the axiom of choice, and so the axiom of choice and Zorn’s lemma are equivalent.

Exactly as in the case of sequences, a convenient way to denote elements x of the cartesian
product [ [,.; A; is

r = (T;)ier,

where we denote x; the value x(i) € A; and we call it i-th coordinate or i-th term of x. If the
index setis = {1,2,...,n}, then the cartesian product is denoted []" ; A; or A} x --- x A,,
and its elements are denoted x = (x;)]", or x = (x1,...,2,). Similarly, if the index set is
N = {1,2,...}, then the cartesian product is denoted szof A;or A; x Ay X - - -, and its elements

are denoted x = ()7 or z = (21, 72, ...).

Definition. For each j € I we consider the function 7; : [[,.; A; — A; defined for every x =
(z:)icr by
mj(x) = z;.

This function is called j-th projection.

Definition. Let I be a non-empty set of indices, and for each i € I let A; be a topological space with
topology S;. We also consider the collection P = {r;|i € I} of projections 7 : [[,.; Ai — Aj.
The weak topology o ([;c; Ai, P) of [1,; Ai, is called product topology of [, A;.

We recall proposition 4.13 in order to describe the product topology of [ [,.; A;, i.e. the weak
topology o ( [[;c; Ai, P). For every x € [[,o; A; we consider the collection A, of all sets

N, = {y € HAi ’ vi, = i, (y) € V; forevery k = 1,...,n}
il

with arbitrary n € N, arbitrary ¢y,...,%, € I, and arbitrary V;, € S;,,...,V;, € S;, such that
z;, = m, (x) € V;, forevery k = 1,...,n. Then

a(gAi,P) - {Ug EA,»

We also have that every set NV, belongs to the product topology 0( [Licr Ais 73).
The next proposition collects all the basic results about the product topology.

for every x € U thereis N, € N, sothat N, C U}.
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Proposition 4.17. Let I be a non-empty set of indices, and for each i € I let A; be a topological
space with topology S;.

(i) The product topology is the weakest topology of | |
7 [Lier Ai — A; is continuous.

(ii) Let D be a topological space and g : D — [],.; As, and let [ [, ; A; have its product topology.
Then g is continuous if and only if m; o g : D — Aj is continuous for every j € 1.

(iii) If every topology S; is Hausdorff, then the product topology is Hausdorff.

sc1 Ai with respect to which every projection

Proof. (i) Direct implications of proposition 4.14.

(ii) Direct implication of proposition 4.15.

(iii) The collection P = {m; | i € I} is separating. Indeed, take any x,y € [],.; A; so that z # y.
Then there is ¢ € I so that z; # y;, i.e. m;(x) # m;(y). Now the result is a direct implication of
proposition 4.16. O

The theorem of Tychenov. Let I be a non-empty set of indices, and for each i € I let A; be a
topological space with topology S;. Let [ [, ; A; have its product topology. If every A; is compact,
then [ [, A; is compact.

Proof. We shall use proposition 4.10.
We take any collection F of subsets of [ [,_; A; with the finite intersection property, and we shall

prove that () o cl(F) # 0.
We consider the collection

P= {g ‘Q D F is a collection of subsets of H A; with the finite intersection property}.
i€l
We also consider the order relation of set inclusion in P.
Now we take any totally ordered Py C P, and we define

=g

GEePy

This is a collection of subsets of [, ; A; with the finite intersection property. Indeed, if we take
any C1,...,Cp, € Fo, then Cy € Gy,...,C, € G, for some G1,...,G, € Py. Since Py is totally
ordered, there is one of Gy, . .., G,, which includes all the others. Thus, C1, ..., C, belong to one
G € Py, and so (,_; Cx, # 0. It is also clear that 7 C F;. Therefore, 7, € P. Since G C Fy for
every G € Py, we conclude that Fj is an upper bound of Py in P.

According to the lemma of Zorn, P has a maximal element, i.e. there is a collection G O F
of subsets of [[,.; A; with the finite intersection property, and so that there is no strictly larger
collection with the same properties.

This implies, in particular, that every intersection of finitely many elements of G belongs to G.
Indeed, if G is the intersection of finitely many elements of G so that G ¢ G, then G’ = GU{G} D
F is a collection of subsets of [ [, ; A; with the finite intersection property, and it is strictly larger
than G.

Now, since F C G, it is enough to prove that ﬂGeg c(G) # 0.

For each j € I we consider the collection G; = {7;(G) |G € G} of subsets of A;. It is easy to
see that G; has the finite intersection property. Indeed, if we take any G1, ..., G, € G, then there
isz € (p_; Gr, and so z; = m;(z) € (;_; 7(Gk). Therefore, the compactness of A; implies
that (g cl(m;(G)) # 0. For every j € I we take any

Tj € m CI(WJ(G))a
Geg

and we consider the

v = (v:)icr € [ Ai-

el

96



We shall prove that = € [;¢g cl(G).

Now, let V; be any open neighborhood of z; in A;. Since z; € [5¢g cl(m;(G)), we have that V;
has non-empty intersection with 7;(G) for every G € G. So if we take any G € G, then there is
aj € V;Nm;(G), and so there is y € G so that mj(y) = a; € Vj, ie. y € 7r]_1(VJ) N G. Thus,
7r;1(V]) has non-empty intersection with every G € G. This implies that G U {77;1(1/])} > F
is a collection of subsets of [ [,.; A; with the finite intersection property. Since G is a maximal
collection with these properties, we get that 77]71 (V;) €g.

Now we take any i;,...,%4, € I and any open neighborhoods V;,,...,V; of x;,...,z;, in
Ay, Ag,. Then (i 7, Y(Vi,) € G and hence N}_, L 1(V;,) has non-empty intersection
with every G € G.

Now, let U be any open neighborhood of x in Hie ; Ai. Then there are 4;,...,%, € I and open

neighborhoods V;,,...,V;, of x;,...,z;, in A;,..., A; sothat
n
ﬂ wi*kl(V;k) =0, = {y € HAZ- Vi, = i, (y) € V;, for every k = 1,...,n} CcU.
k=1 iel

So every open neighborhood U of = has non-empty intersection with every G € G. Thus z € cl(G)
for every G € G, and we conclude that z € (g¢g cl(G). O

4.4 Weak topologies of linear spaces.

Lemma 4.1. Let X be a linear space, and let L be a non-empty collection of linear functionals
[ : X — F. We consider F' with its usual euclidean topology, and X with the weak topology
o(X,L). Then U C X is weakly open if and only if for every x € U there are ly,...,l, € L and
€1,...,€, > 0so that

Cr={y € X||lg(y) — lp(x)| < e forevery k =1,...,n} CU. 4.1)

Moreover, every set of the form Cy, = {y € X ||lx(y) — lx(x)| < € forevery k = 1,...,n}is
weakly open.

Proof. LetU € o(X, L) and z € U. According to the definition of o(X, £), as this appears in
proposition 4.13, there are [y, ...,l, € £, and open sets V1,...,V,, C F so that [x(x) € Vj for
every k = 1,...,n and so that

Ny ={ye X|lg(y) € V forevery k =1,...,n} CU.
Then for every k = 1,...,n there is ¢ > 0 such that {\ € F' ||\ — l(z)| < ex} C V. Thus,
Cr={y € X||lg(y) — lp(x)| < e forevery k=1,...,n} C N, CU.

Conversely, assume that for every x € U there are [y, ...,l, € Land €1,..., €, > 0so that (4.1)
is true. Then each Vj, = {\ € F'||A — lx(x)| < €} is an open subset of F' containing I (x), and
we clearly have

N, ={ye X|lx(y) € Vy forevery k =1,...,n} =C, CU.

SoU € o(X,L).
Finally, we already noticed that

Cr, ={y € X||lx(y) — lx(x)| < ex forevery k =1,...,n}
={ye X|l(y) € Vi forevery k =1,...,n} = N,

where each V;, = {\ € F ||\ — lx(z)| < e} is an open subset of F, and so, according to
proposition 4.13, this set is weakly open. O
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Proposition 4.18. Let X be a linear space, and let L be a non-empty collection of linear functionals
[ : X — F. We consider F with its usual euclidean topology.

(i) o (X, L) is the weakest topology of X with respect to which every | € L is continuous.

(ii) Let D be a topological space and g : D — X, and let X have the weak topology (X, L).
Then g is continuous if and only ifl o g : D — F'is continuous for every | € L.

(iii) If L is separating, then o (X, L) is Hausdorff.

Proof. (i) Direct implication of proposition 4.14.
(ii) Direct implication of proposition 4.15.
(iii) Direct implication of proposition 4.16, since F' with the euclidean topology is Hausdorff. [J

Proposition 4.19. Let X be a linear space, and let L be a non-empty collection of linear functionals
l: X — F. We consider F' with its usual euclidean topology, and X with the weak topology
o(X, L). Then the linear space operations of addition and multiplication are continuous.

Proof. We consider addition: + : X x X — X.
Let x1,z9 € X and let x1 + x9 € U, where U € o(X, L). Then there are [,...,l, € £ and
€1,...,€, > 0so that

Cortas ={y € X | |le(y) — lp(x1 + x2)| < € forevery k =1,...,n} CU.
We consider the sets

Coy={yex ( () = Iulwn)] < 5 forevery k=1,...,n},

Cpy = {y eX ‘ e (y) — le(z2)] < %k for every k = 1,...,n}.

Then Cy,,Cy, € 0(X, L) and 21 € Cy,, 22 € Cyy,. Now, if y1 € Cy,, y2 € Cy,, then for every
k=1,...,nweget

€ €
(g1 4 v2) — be(@1 + 22)| < k(1) = Le(@1)] + [T (y2) — le(22)] < 5’“ + E’f = e,

and hence y; + y2 € Cy, 44, C U. Therefore, addition is continuous.
The proof that multiplication - : F' x X — X is continuous is similar and we leave it as an
exercise. =

Definition. Let X be a linear space equipped with a topology T. If the linear space operations
of addition and multiplication on X are continuous with respect to T, then we say that X is a
topological linear space.

Example 4.4.1. If X is a linear space equipped with the weak topology which is induced by a
non-empty collection of linear functionals in X, then X is a topological linear space.

Example 4.4.2. Every normed space X is a topological linear space.

Lemma 4.2. Let X be a linear space, and [, 11, ...,l, : X — F be linear functionals in X. If
l(x) = 0 for every x € X such that l1(z) = ... = l,(x) = 0, then there are k1, ...k, € F so
thatl = k1l1 + - - + Eplp.

Proof. We consider the linear function L : X — F™ defined for every x € X by

L@) = (h(@), .., ln(x)).
Then we consider the function M : R(L) — F' defined for every y € R(L) by

M(y) =1(z) where y = L(x).
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This function is well defined, since, if y = L(z1) and y = L(x2), then I(z1) = [(x2). It is also
easy to see that M is linear on the linear subspace R(L) of F™.
Now, we extend M to F", i.e. we consider any linear functional M : F" — F so that M (y) =
M (y) foreveryy € R(L). Thenthereare ky, ..., K, € Fsothatforeveryy = (A,...,\,) € F"
we have

M(y) = k1AL + - + Kpdn.

This implies
I(z) = M(L(z)) = M(L(x)) = M(l1(2), ..., 1n(7)) = k1l1(x) + - - + Kplp ()
for every z € X. 0

Proposition 4.20. Let X be a linear space, let L be a non-empty collection of linear functionals
l: X — F,and let X have the weak topology (X, L). Then a linear functional | : X — F'is
continuous in X if and only if | € span(L).

Proof. 1fl € span(L), i.e. ifl = k1l1+- - -+ Knl, forsome k1, ..., K, € F andsomely,..., I, €
L, then it is obvious that [ is continuous in X.

Conversely, let [ be continuous in X. Then [ is continuous at 0 € X and so there are ly,...,l, € £
and €1, ...,€, > 0sothat |I(z)| < 1 for every x € Cj, where

Co={r e X||lg(z)| < e forevery k=1,...,n}.

Now, take any x € X such that l;(x) = ... = [,(z) = 0. Then for every ¢ > 0 we have
li(tx) = ... = ly(tx) = 0 and hence tz € Cy. Thus,

ti(z)] = [I(tx)] <1,
and letting t — 400 we get [(x) = 0. Now, lemma 4.2 finishes the proof. O

Proposition 4.21. Let X be a linear space, and let L be a separating collection of linear func-
tionals | : X — F. We consider the function ¢ : X — [],c, F defined for every x € X by
¢(z) = (I(x))icc. Then ¢ is one-to-one in X.

If X has the weak topology o (X, L), and [ [, » F has the product topology (where each F" has the
euclidean topology), and ¢(X) has the subspace topology, then ¢ : X — ¢(X) is a homeomor-
phism of X onto ¢(X).

Proof. Take any z1,x2 € X with ¢(z1) = ¢(x2). Then ¢(z1); = ¢(x2); and hence l[(x1) = I(x2)
for every [ € L. Since L is separating, we get x1 = x2. Thus, ¢ is one-to-one.
It remains to prove that ¢ : X — ¢(X) and ¢~ ! : ¢(X) — X are continuous.
If x € X, then the parametersn € N, ly,...,l, € Land €y, ..., €, > 0 define the open neighbor-
hood

Cr={y € X ||lx(y) — lx(x)| < e, forevery k =1,...,n}

of = with respect to o(X, £).
If z € [],c F, then the same parameters define the open neighborhood

N, = {wGHF‘\wlk—zlk| < €k foreverykrzl,...,n}
lel

of z with respect to the product topology. Now, if we restrict z, w in ¢(.X) and set z = ¢(z), w =
#(y) with z,y € X, we get an open neighborhood N, of z € ¢(X) with respect to the subspace
topology of ¢(X). Writing



forevery k = 1,...,n, we get

N. = {6(y) € 6(X) | ln(y) — ()| < ¢ forevery k = 1,...,n}.

So N, = ¢(Cy).

Take z € X and V' open in ¢(X) with respect to its subspace topology so that z = ¢(z) € V.
Then there is some N, C V. We consider the corresponding C;, which is an open neighborhood
of z in X with respect to o (X, £), and then ¢(C;) = N, C V. Therefore, ¢ is continuous at x.
Take z = ¢(z) € ¢(X) and U open in X with respect to o(X, £) so that z = ¢~ !(z) € U. Then
there is some C,, C U. We consider the corresponding /N,, which is an open neighborhood of z
in ¢(X) with respect to its subspace topology, and then ¢~1(N,) = C, C U. Therefore, ¢~ is
continuous at z. O

4.5 Weak topologies of normed spaces.

If X is a normed space, then theorem 3.10 implies that the collection £ = X’ of bounded linear
functionals in X is separating. Indeed, let z1,x2 € X, x1 # x2. Then

0 <z — x| = max |2 (21 — 22)|,
z'eX’ |la'||<1

and so there is 2’ € X’ such that 2/(z1) — 2/(z2) = 2/ (z1 — x2) # 0.

Definition. Let X be a normed space. The topology o(X, X') is called weak topology of X. A
subset of X which is open or closed or compact with respect to o(X, X') is called weakly open
or weakly closed or weakly compact, respectively.

According to lemma 4.1, a basic open neighborhood of 2z € X with respect to o (X, X’) is

Ce ={y € X||z.(y) — 7} (z)| < e, forevery k =1,...,n},

wheren € N, z,...,2), € X' and €1, ..., €, > 0 are arbitrary.

rn

We know the following about o (X, X”). All are consequences of propositions 4.18, 4.19 and
4.20.
(i) If X has the weak topology o (X, X'), then the linear space operations of addition and multi-
plication on X are continuous.
(ii) o (X, X') is the weakest topology of X with respect to which every 2/ € X" is continuous.
(iii) Let D be a topological space and g : D — X, and let X have its weak topology (X, X’).
Then g is continuous if and only if 2/ o g : D — F is continuous for every ' € X’.
(iv) o(X, X') is Hausdorff.
(v) If X has its weak topology o (X, X”), then a linear functional / : X — F is continuous in X if
and only if [ € X',

We have exactly the same situation for X’ and its dual X”. The weak topology on X" is
(X', X"). On the other hand, there is another interesting topology on X".

Definition. Let X be a normed space, and consider the natural embedding J : X — X". Then
J(X) C X" is a collection of linear functionals in X'. The topology o(X', J(X)) is called
weak topology on X'. Because of the identification of X with J(X), the topology o (X', J(X))
is traditionally denoted o (X', X ). A subset of X' which is open or closed or compact with respect
to o(X', X) is called weakly open or weaklyx closed or weakly+ compact, respectively.

A basic open neighborhood of 2’ € X’ with respect to o(X’, X”) is

Co ={y € X'||2}(y) — 2} (2))] < e forevery k =1,...,n},
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for arbitrary n € N, 2, ... 2! € X" and €1,...,¢, > 0.
Also, a basic open neighborhood of 2’ € X’ with respect to (X', X) = o(X’, J(X)) is

Co ={y € X'||J(z)(y) — J(x1)(2))| < e forevery k =1,...,n}
={y € X'||y(zx) — 2/ (x1)| < e, forevery k =1,...,n},

for arbitrary n € N, 21, ...,2, € X and €1,...,€, > 0.

We have the following for o (X', X).

(i) If X’ has the weakx topology o(X’, X), then the linear space operations of addition and mul-
tiplication on X’ are continuous.

(ii) o (X', X) is the weakest topology of X’ with respect to which every 2" € J(X) is continuous.
(iii) Let D be a topological space and g : D — X', and let X’ have its weaks topology o (X', X).
Then g is continuous if and only if J(z) o g : D — F is continuous for every =z € X.

(iv) o(X’, X)) is Hausdorff.

(v) If X’ has its weaks topology (X', X), then a linear functional [ : X’ — F is continuous in
X'if and only if [ € J(X).

The fact that o(X’, X) = o(X’, J(X)) is Hausdorff follows from proposition 4.18, since
J(X) is separating. Indeed, if 2,25 € X', | # ¥, then there is z € X so that 2} () # z5(z)
and hence J(z)(x}) # J(x)(z}).

In a normed space X we have two topologies: the weak topology and the topology which is
induced by the norm of X, which is also called strong topology on X.

In X’ we have three topologies: the strong topology, the weak topology, and the weaks topol-
ogy. Clearly, if X is reflexive, then the weak topology and the weakx topology of X' are the same.

In X" we have two topologies: the strong topology and the weaks topology.

The next proposition expresses the relation between the weak topology on X and the weaksx
topology on X" through the natural embedding of X into X”. What happens is that, after the
identification of X with J(X), the weak topology of X and the weakx topology of J(X) (more
precisely, the restriction of the weaks topology of X” on J(X)) are the same.

Proposition 4.22. Let X be a normed space, and let J : X — X" be the natural embedding. If X
has the weak topology, X" has the weakx topology, and J(X) C X" has the subspace topology,
then J : X — J(X) is a homeomorphism.

Proof. Take any 2 € X. The parameters n € N, z,..., 2/, € X' and €1, ..., €, > 0 give us the
open neighborhood

Cr ={y € X||z)(y) — z)(x)] < ¢ forevery k =1,...,n}
of = with respect to the weak topology of X. The same parameters give us the open neighborhood
Cray = {y" € X"y (x}) — J(@)(2})| < e forevery k=1,...,n}

of J(x) with respect to the weaksx topology of X”. Restricting y” in J(X), i.e. taking " = J(y),
and writing J(z)(z}) = «}.(x) and J(y)(x}) = }.(y), we get the open neighborhood

Coey = {I(y) € J(X) | |2} (y) — 24(2)] < e forevery k= 1,...,n}

of J(x) with respect to the subspace topology of J(X).

It is clear that éj(z) = J(Cy).

Take any x € X, and any V' open with respect to the subspace topology of .J(X) so that J(x) € V.
Then there is Cy(,,y € V/, and for the corresponding C* we get J(C,;) = C(,) € V. Therefore,
J is continuous at x.

Now take any z = J(z) € J(X), and any U weakly open in X so that x € U. Then there is
C» C U, and for the corresponding C(,) we get J~'(Cj(y) = Cp € U. Therefore, J ! is
continuous at z = J(z). O
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Proposition 4.23. Let X be a normed space.
(i) z,, ~ x in X if and only if (xy,) converges to x with respect to the weak topology of X.
(i) =/, *3 2’ in X' if and only if (z,) converges to z’ with respect to the weaks topology of X'.

Proof. (i) Let z,, — x in X. We take any U € o (X, X’) such that z € U. Then there are
zy,...,z,, € X"and €y, ..., €, > 0so that

Cy ={y € X||z}.(y) — x)(z)] < ¢ forevery k =1,...,m} CU.

Since z'(z,) — 2'(x) for every 2/ € X', there is ng so that |z} (z,) — 2. ()| < € for every
n > ng and every k = 1,...,m. This means that z,, € C,, C U for every n > ngy. So ()
converges to x with respect to the weak topology of X.

Conversely, let (z,,) converge to x with respect to the weak topology of X. We take any 2/ € X’
and the weakly open neighborhood C,, = {y € X ||2/(y) — 2/(z)| < €} of . Then there is ng so
that x,, € C,, for every n > ny, i.e. |2/(z,) —2/(z)| < € for every n > ng. Thus, 2’ (x,) — 2/ (x)
for every 2/ € X', and so z,, — .

(ii) Similarly. 0

Proposition 4.24. Let X be a normed space.

(i) The weak topology of X is weaker than the strong topology of X.

(ii) The weakx topology of X' is weaker than the weak topology of X' and this is weaker than the
strong topology of X'.

Proof. (i) If X has its strong topology, then every 2 € X' is continuous. Since o (X, X’) is the
weakest topology of X with respect to which every 2/ € X’ is continuous, we get that o(X, X’)
is weaker than the strong topology of X.

(ii) That o (X', X") is weaker than the strong topology of X’ is an immediate consequence of (i).
Now, every x” € X" is continuous with respect to o(X’, X”'). In particular, every 2" € J(X) C
X" is continuous with respect to o(X’, X”). Since o(X', X) = o(X’, J(X)) is the weakest
topology of X’ with respect to which every 2" € J(X) is continuous, we get that o(X’, X) is
weaker than (X', X"). O

Proposition 4.25. Let X be a normed space.
() If K C X is weakly compact, then it is weakly closed and bounded.
(ii) If K C X' is weaklyx compact, then it is weaklyx closed and, if X is a Banach space, bounded.

Proof. (i) Since X with the topology o (X, X') is Hausdorff, the weakly compact K C X is
weakly closed.

Every 2’ € X’ is continuous in X, and hence in K, with respect to o (X, X'). Since K is weakly
compact, we get sup, - |2’(x)| < +oo for every 2’ € X'. According to theorem 3.16, we have
that sup,c  ||z|| < 400, and so K is bounded.

(ii) Similarly. O

The theorem of Alaoglou. Let X be a normed space.
(i) The closed unit ball of X' with center 0 is weaklyx compact.
(ii) If K C X' is weakly* closed and bounded, then it is weakly* compact.

Proof. (i) We apply proposition 4.21 to the space X’ with £ = J(X) C X” and the induced
weakx topology of X’. To do this we consider the homeomorphism

¢$: X' —»oXc [ F=]]F
(z)e(

J X) zeX

defined for every 2’ € X’ by
o(2) = (J(2)(2) sw)esx) = (@' (2))zex-
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Let B' = {2/ € X'|||2/|| < 1} be the closed unit ball of X’ with center 0. Then for every z € X
and every 2’ € B’ we have

|6(2")a] = [2"(2)] < [l].
Therefore, if 2/ € B, then ¢(a'), € {\||A| < ||z||} for every 2 € X. Hence,

sB) < [T <z} <[] F

zeX zeX

Now, it is enough to prove that qﬁ(?l) is a closed subset of [ .y F' with respect to the product
topology. Indeed, this will imply that ¢(B’) is a closed subset of [Lex{MAl < |||}, which is
compact by the theorem of Tychonov, and this will imply that gb(E/) is compact, and hence that
B', a continuous image of ¢(B'), is weaklyx compact.

Let k = (kz)zex € [[,ex F belong to Cl(¢(§/)). We take any x1, 22 € X, any A € F and any
€ > 0, and the open neighborhood of k:

{:u = (Mx)xeX € H F‘ ’“361 - KI1| < €a|:u$2 - KCJC2| <€,
rzeX

|Mrl+x2 - ”x1+x2‘ <¢, ‘IU’Afl'l - HAI1| < 6}'

Then there is 2/ € B’ so that ¢(z") belongs to this neighborhood. This means that
|2 (1) — Koy | <€, |2 (22) — K| <€, |2/ (21 4+ 22) — Kaytan| <€ |2 (A21) — Fipgy | < e
Since 2’ is linear and ||2’|| < 1, we easily prove that
|Kay e — Koy — Kao| < 36, |Kxgy — Abzy | < (L+|A)e, Kz | < ||z + €.
Finally, since ¢ is arbitrary, we get
Kaytas = Koy + Kagy  Fday = Mz, [Rey | < |z

for every x1,x2 € X and every A € F.
Now we consider 2’ : X — F defined for every x € X by 2/(x) = k,. Then

(21 + 22) = & (21) + 2/ (22), 2/ (A1) = A2l (@1), [ (21)| < [l ]

for every z1, 25 € X and every A € F. This means that 2’ € B’ and ¢(2') = &, andso r € ¢(B)).
We just proved that = € ¢(B') for every z € cl(¢(B')), and hence that ¢(B') is closed.

(ii) Let K C X' be weakly* closed and bounded. Then there is M > 0 so that K C E’(O; M),
where E’(O; M) is the closed ball of X’ with center 0 and radius M.

Now, B'(0; M) is the image of B' = B'(0; 1) under multiplication by M. Since multiplication is
a continuous function with respect to the weak* topology of X’ and since Bis weakly* compact,
we get that E/(O; M) is also weakly* compact. Then K is a weaklyx* closed subset of E’(O; M)
and so it is weakly* compact. O

The theorem of Mazur. Let X be a normed space, let A, B C X be convex and disjoint, and let
0 be an interior point of A, i.e. B(0; R) C A for some R > 0. Then there is ' € X' so that
|2/|| < £, Re(z'(a)) < 1 forevery a € A, and Re(2'(b)) > 1 for every b € B. If, moreover, A is
open, then we may also have that Re(x'(a)) < 1 for every a € A.

103



Proof. Itis obvious that the ball B(0; R) absorbs X, and so A absorbs X. If, moreover, A is open,
then A absorbs X with every a € A as center.

If F' = R, then theorem 3.7 implies that there is a linear functional / : X — R, [ # 0,and A € R
sothat [(a) < X forevery a € A, and [(b) > X for every b € B. If, moreover, A is open, then we
may also have that [(a) < A for every a € A.

Since [ # 0, there is 2:p € X so that [(xz¢) # 0. Then both points iﬁ xo belong to B(0; R) C
A, and [ has opposite values at these points. This implies A > 0.

Now, take any x # 0 and any ¢ > 1. Then iWIZH x € B(0; R) C A, and hence

R

4+ —
t ]

l(x):l<i x>§A

R
t |l

and hence |I(x)| < % ||z||. Since ¢ > 1 is arbitrary, we get
A
l < —= .
)l < 3 N

This is also true for z = 0, and so € X’ with ||{|| < #%. Now we consider 2’ = } [ € X’ and we
have that ||2/|| < &, 2/(a) < 1 for every a € A, and 2/(b) > 1 for every b € B. If, moreover, A
is open, then we may also have 2/(a) < 1 for every a € A.

If F = C, we consider at first X as a R-linear space. From the first part we know that there is a
R-linear functional zj, : X — R such that ||z}|| < &, zh(a) < 1 for every a € A o zjy(b) > 1
for every b € B. Moreover, if A is open, we may also have z((a) < 1 for every a € A.

Now, lemma 3.5 implies that there is a linear functional 2’ : X — C so that Re(z’) = x{,. Then,
obviously, Re(2/(a)) < 1 for every a € A, and Re(2’(b)) > 1 for every b € B. If, moreover, A is
open, then Re(z'(a)) < 1 for every a € A.

Also, for every x € X there is A € C so that |A| = 1 and |2/(z)| = A\2/(x), and hence

|2 (2)] = Aa'(x) = 2'(Az) = Re(a’)(Az) = 2((Az) < [lag|[Az] < % ]]-

Therefore, 2’ € X' with ||| < +. O

Since the weak topology of a normed space X is weaker than its strong topology, every K C X
which is weakly closed is also closed. The next theorem says that the converse is true for convex
sets K.

Theorem 4.1. Let X be a normed space, and K C X be convex. If K closed, then it is weakly
closed.

Proof. Let K be convex and closed. We consider any = ¢ K, and we shall prove that there is a
weakly open neighborhood of x which is disjoint from K.

Since translations are continuous with respect to both the strong and the weak topology of X, we
may assume that x = 0. Then there is R > 0 so that B(0; R) N K = (). The theorem of Mazur
implies that there is 2’ € X, so that ||2/|| < &, and Re(z/(z)) < 1 for every z € B(0; R), and

Re(x'(z)) > 1 forevery x € K. Then {z € X ||2/(x)| < 1} is a weakly open neighborhood of 0
which is disjoint from K. O
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Chapter 5

Weak topologies 2

5.1 Generalities about topological spaces.

5.1.1 Open sets and closed sets.

Definition. Let A be a non-empty set, and T be a collection of subsets of A, with the properties:
HDeT,AeT.

(ii) The union of any elements of T is an element of T. In other words, if U; € T for every i € I,
then J,c; Ui € T.

(iii) The intersection of any finitely many elements of T is an element of T. In other words, if
Ui,...,U, €T, then(\\_ Ui € T.

Then T is called topology of A, and the elements of T are called open (with respect to T') subsets
of A. Finally, A equipped with a topology is called topological space.

If A atopological space, then (ii) says that the union of any open subsets of A is an open subset
of A, and (iii) says that the intersection of any finitely many open subsets of A is an open subset
of A.

Example 5.1.1. Let A be a non-empty set. Then {(), A} is a topology of A.

Example 5.1.2. Let A be a non-empty set. Then P(A), the collection of all subsets of A, is a
topology of A.

Example 5.1.3. Let A be a metric space with metric d. Then
T ={U C A|U is open with respect to d}

is a topology in A. In this case we say that the topology 7 is induced by d.

To be more precise, U C A is open with respect to d if for every « € U there is a radius » > 0 so
that the ball B(z,r) = {y € A|d(y,z) < r}isincluded in U.

It is easy to see that () and A are open with respect to d.

Now assume that U; is open with respect to d for every i € I, and take any = € |J;; U;. Then
x € Us, for some ig € 1, and then there is r > 0 so that B(xz;r) C U;,. Hence B(xz;r) C J;c; Us
and we have that | J,; U; is open with respect to d.

Finally, assume that U1, ..., U,, are open with respect to d, and take any = € ();_, U;. Then for
every i = 1,...,n there is r; > 0 so that B(z;r;) C U;. If we take r = min{ry,...,r,} > 0,
then B(z;r) C B(z;r;) C U; forevery i = 1,...,n, and hence B(z;r) C (i, Us. So i, U;
is open with respect to d.

Every ball B(x;r) is open with respect to d. Indeed, take any y € B(z; ). Then d(y, z) < r, and
we consider s = r — d(y, z) > 0. Now, if z € B(y; s), then

d(z,z) < d(z,y) +d(y,x) <s+d(y,z) =r
and hence z € B(z; ). Thus B(y; s) C B(z;7).
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Definition. Let A be a topological space, and F' C A. We say that F is clesed, if A\ F is open.

Proposition 5.1. Let A be a topological space. Then

(i) 0 and A are closed.

(ii) The intersection of any closed subsets of A is a closed subset of A.

(iii) The union of any finitely many closed subsets of A is a closed subset of A.

Proof. The proof is a trivial corollary of the definition of closed set, of the properties of open sets,
and of the laws of de Morgan for the complements of unions and intersections. O

Definition. Let A be a topological space, and x € A. Every open set containing x is called open
neighborhood of x.

Definition. Let A be a topological space, and M C A. Then the set (\{F | F 2 M is closed} is
called closure of M and it is denoted cl(M).

Proposition 5.2. Let A be a topological space, and M C A.
(i) cl(M) is the smallest closed subset of A which includes M.
(ii) x € cl(M) if and only if U N M # () for every open neighborhood U of .

Proof. (i) cl(M) is the intersection of closed sets which include M, and so it closed and includes
M. Also, if F'is closed and includes M, then cl(M) C F. So cl(M) is the smallest closed subset
of A which includes M.

(ii) Let z € cl(M), and take any open neighborhod U of x. Then A \ U is closed and, since
x ¢ A\ U, we have that cI(M) is not included in A \ U. According to (i), M is not included in
A\ U, and hence U N M # 0.

Conversely, assume that U N M # () for every open neighborhood U of x. We take any closed
F D M, and then A\ Fisopenand (A\ F) M = (). Therefore, x ¢ A\ F andso x € F. We
conclude that z € cl(M). O

Definition. Let A be a topological space with topology T, and let (x,,) be a sequence in A. We say
that (x,,) converges (with respect to 7) to x € A, if for every open neighborhood U of x there is
ng So that x,, € U for every n > ny.

Then we say that x is a limit of (x,,), and we write x,, — x.

5.1.2 Continuous functions.

Definition. Let A, B be two topological spaces, M C A,and f : M — B.

(i) We say that f is continuous at x € M if for every open V. C B such that f(x) € V there is
anopenU C Asothatz € Uand f(UNM) C V,ie. sothatz € U, and f(y) € V for every
yeUNM.

(ii) We say that f is continuous in M if it is continuous at every x € M.

Proposition 5.3. Let A, B be two topological spaces, M C A, and f : M — B. Then f is
continuous in M if and only if for every open V' C B there is an open U C A so that f~1(V) =
UnNM.

Proof. Let f be continuous in M, and let V' C B be open. Then for every z € f~1(V) we
have f(z) € V, and so there is an open U, C A such that x € U, and f(U, N M) C V.
Then U = U,ep-1(y) Uz © Ais open, and it is easy to see that f~Y(V) = U N M. Indeed, if
y € f71(V), theny € U,N M and hence y € U N M. Also, ify € UN M, theny € U, N M for
some x € f~1(V). Then f(y) € V and hencey € f~1(V).

Conversely, take any x € M and any open V' C B so that f(x) € V. Then there is an open U C A
sothat f~1(V) =U N M. Thenx € U and f(U N M) C V, and so f is continuous at . O
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Proposition 5.4. (i) Let A, B, C be topological spaces, M C A, N C B, f : M — N and
g : N — C. If f is continuous at = € M and g is continuous at f(x) € N, then g o f is
continuous at x.

(ii) Let A be a topological space, M C A, f,g : M — R™ and A\ € R. If R" has the topology
induced by the euclidean metric and f, g are continuous at x € M, then f + g, A f are continuous
at x.

Proof. (i) Let W C C be open and (g o f)(z) = g(f(z)) € W. Then there is an open V' C B
so that f(z) € V and g(V N N) C W. Then there is an open U C A so that z € U and
f(UNM)CV.Then f(UNM)C VNN and hence

(g0 F)(UNM) = g(f(UNM)) C g(V AN) CW.

Thus g o f is continuous at x.

(ii) Let V. C R™ be open and f(z) + g(z) € V. Then there is » > 0 so that z € V for every
z € R" with ||z — (f(x) + g(z))|| < r. Now, there is an open U; C A so that € U; and
I f(y) = f(x)| < § forevery y € Uy N M. Also, there is an open U, C A so that 2 € Us and
llg(y) — g(z)|| < § foreveryy € UyN M. Then U = U; N U C A'is open, and z € U, and for
every y € U N M we have

() + 9()) = (F@) + gD < 1) = F@ +lg(w) — g(e)ll < 5 + 5 =
and hence f(y) + g(y) € V. So f + g is continuous at z.
The proof for \f is similar. O

Definition. Let A, B be topological spaces, and f : A — B. We say that f is a homeomorphism
of A onto B, if f is one-to-one in A and onto B, and f is continuous in A and f~! is continuous
in B. In this case we say that A, B are homeomorphic.

If A, B are homeomorphic topological spaces, and f : A — B is a homeomorphism of A
onto B, then we may identify the two spaces: we identify every a € A with the corresponding
b= f(a) € B and, conversely, we identify every b € B with the corresponding a = f~1(b) € A.
Then every open U C A is identified with the open V' = f(U) C B and, conversely, every open
V C B is identified with the open U = f~1(V) C A.

5.1.3 Compact sets.

Definition. Let A be a topological space. We say that A is a Hausdorff topological space, if for
every r1,xro € A, x1 # xs, there are disjoint open U1, Us C A so that x1 € Uy and xo € Us.

Proposition 5.5. Every metric space is Hausdorff.

Proof. 1f d is the metric of A and z1,x2 € A, 1 # 22, we take r = %d(ml, xg) > 0, and then
B(x1;7) N B(xg; ) = (). The balls B(x1;7), B(xe;r) are open with respect to d. O

Proposition 5.6. Let A be a Hausdorff topological space. If a sequence in A has a limit, then this
limit is unique.

Proof. Let x,, — y and x,, — 2. If y # z, then there are disjoint open U,V C Asothaty € U
and z € V. But then there is ng so that x,, € U and x,, € V for every n > ng, and obviously this
is impossible. 0

Definition. Let A be a topological space, and K C A. We say that a collection {U; | i € I} of open
subsets of A is an open cover of K, if K C | J;c; Ui.
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Definition. Let A be a topological space, and K C A. We say that K is compact, if for every open
cover of K there is a finite subcover of K. More precisely, K is compact, if for every open cover
{Ui|i € I} of K thereare iy,...,i, € I sothat {U;, |1 < k < n} is also an open cover of K.

Proposition 5.7. Let A be a topological space.
() If K C A is compact and A is Hausdorf(f, then K is closed.
(ii) If K C A'is compact and K’ C K is closed, then K' is compact.

Proof. (i) Take any x € A\ K. For every z € K there are disjoint open U,,V, C A so that
z € Uyand z € V,. Then {U, |z € K} is an open cover of K. Since K is compact, there are
Z1y...,2n € Ksothat K C U, U---UU,, . ThenV,, N---NV,, isopen, itis included in A\ K,
and contains x. Therefore, A \ K is open, and so K is closed.

(ii) Let {U; | ¢ € I} be any open cover of K’. Then {U;|i € I} U {A\ K’} is an open cover
of K. Since K is compact, there are i1,...,%, € I sothat K C ({U;_; Ui,) U (A\ K’). Then
K' C Up_, Ui, and so K’ is compact. O

Proposition 5.8. Let A, B be topological spaces, M C A, and let f : M — B be continuous. If
K C M is compact, then f(K) is compact.

Proof. Let {V;|i € I} be any open cover of f(K), ie. f(K) C J,c;Vi. SinceeachV; C B is
open and f is continuous, proposition 5.3 implies that there is a corresponding open U; C A so
that f~1(V;) = U; N M. Then,

ke (Uv) =Usron=Uwinm cJu.

el el el el

Since K is compact, there are i1, ..., i, € I sothat K C |J;_, U;,. Then
f(K) = mmMcMUUmm%ﬂﬁmmMQUm
k=1 k=1 k=1

So f(K) is compact. O

Proposition 5.9. Let A be a topological space, M C A, and let f : M — R be continuous. If
K C M is compact, then f has a maximum value and a minimum value in K.

Proof. According to proposition 5.8, f(K) is a compact subset of R, and hence it is closed and
bounded. Since f(K) is bounded, u = sup(f(kK)) is a real number. Then for every ¢ > 0 there
isa € f(K) sothata € (u — €] and hence u € cl(f(K)). Since f(K) is closed, we conclude
that v € f(K) and so u is the maximum value of f in K. The case of the minimum value is
similar. U

Definition. Let A be a non-empty set, and C be a non-empty collection of subsets of A. We say that
C has the finite intersection property, if ()._, Cj # 0 for every C1,...,Cy € C.

Proposition 5.10. Let A be a topological space, and K C A. Then K is compact if and only
if for every collection F of subsets of K with the finite intersection property we have that K N

Npercl(F) # 0.

Proof. Assume that K is compact, and consider any collection F of subsets of K with the finite
intersection property. Then G = {A \ cl(F') | F' € F} is a collection of open subsets of A. For
every Fi,...,F,, € Fweget KN(i_, Fr = iy Fr # 0 andso K N(_,cl(Fy) # 0
which implies [ J;;_, (A \ cl(F%)) # K. So there is no finite subcollection of G which is a cover
of K. Since K is compact, G is not a cover of K. Thus, |Jzc 7(A \ cl(F')) # K and this implies
KN Nperc(F) #0.

Now, assume that for every collection F of subsets of K with the finite intersection property we
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have that ' Nz cl(F') # (. Take any open cover G of K. If z € K, then 2 € G for some
Go € G,and, since (K'\Go)NGo = 0, wegeta ¢ cl(K\Go). Therefore, KN(qcg l(K\G) = 0.
Now F = { K\G | G € G}isacollection of subsets of & which, according to our assumption, does
not have the finite intersection property. So there are G1, ..., G, € Gsothat()_,(K \ G) =0,
ie. K C {J,_, Gk. Therefore, K is compact. O

5.2 Weak topologies of linear spaces.

Proposition 5.11. Let X be a linear space, and let L be a non-empty collection of linear functionals
l: X — F. Forevery x € X we consider the collection C,, of all sets

Co={y € X||lx(y) — lx(x)| < ek forevery k =1,...,n},

with arbitrary n € N, arbitrary ly, .. .,l, € L, and arbitrary €1, ..., €, > 0.
Observe that x € C,.
Finally, we consider the collection

o(X,L)={U C X |forevery x € U thereis C, € C, sothat C,, C U}.

Then o(X, L) is a topology of X.
Moreover, for every x € X, every C, € C, belongs to o (X, L).

Proof. Itis easy to see that ) € o(X, L), and that X € o(X, £).

Let U; € o(X, L) for every i € I, and take any = € | J;; U;. Then = € Uj, for some ig € I, and
so there is C;, € C, so that C; C Uy, € |J;; Ui. Therefore | J,o; U; € 0(X, £).

LetUy,...,U, € 0(X, L), and take any = € (;_, Uy. Then z € Uy, forevery k = 1,...,n, and
so there are Cy1,...,Cyy € Cp so that Cup, C Uy forevery k£ = 1,...,n. Now, it is easy to see
that (;_; Cuk € Cz, and (p_; Cor € (Ni— Uk. Therefore, ,_, Uy € 0(X, L).

Finally, take any C,, € C,, i.e.

Cr={y € X||lx(y) — lx(x)| < € forevery k =1,...,n}

forsomen € N, l1,...,l, € L,and €1,...,€e, > 0.
We take any z € (', and then

l(2) — lg(z)| < e forevery k=1,...,n.
Foreach k = 1,...,n we consider 6y = €, — |lx(2) — lx(z)| > 0. We also consider
C,={y € X||lg(y) — lx(2)| < 6 forevery k =1,...,n}.
Then for every y € C, we get
e (y) —li(@)| < [l (y) =l (2) [+ |06 (2) =l (2)| < S|tk (2)—lk(@)| = €k forevery k=1,...,n
and hence y € C,. Therefore, C, C C,, and so C € (X, L). O

Definition. Let X be a linear space, and let L be a non-empty collection of linear functionals
l : X — F. Then the topology o(X, L) of X, which is described in proposition 5.11, is called
weak topology of X induced by the collection of linear functionals L. The elements of o(X, L)
are called weakly open subsets of X with respect to the collection of linear functionals L.

Proposition 5.12. Let X be a linear space, and let L be a non-empty collection of linear functionals
l: X — F. We consider X with the weak topology o (X, L). Then the linear space operations of
addition and multiplication are continuous.
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Proof. We consider addition: + : X x X — X.
Let 1,22 € X and let 1 + zo € U, where U € o(X, £). Then there are [y,...,l, € £ and
€1,...,€, > 0so that

Cortas ={y € X | |le(y) — lu(x1 + x2)| < € forevery k=1,...,n} CU.
We consider the sets

Coy={ye X ( e(y) = lulr)] < 5 for every k = Lonf,

Cp, = {y eX ‘ 1k (y) — Ik (z2)] < %k for every k = 1,...,n}.

Then C,,Cy, € o(X, L) and 21 € Cy,, 2 € Cy,. Now, if y; € Cy,, y2 € Cy,, then for every
k=1,...,nwe get

€ €
[k (y1 + y2) — (@1 + 22)| < [le(y1) — le(@)] + [Tk(y2) — lk(22)] < Ek + 5’“ = €L,

and hence y; + y2 € Cy, 44, C U. Therefore, addition is continuous.
The proof that multiplication - : F' x X — X is continuous is similar and we leave it as an
exercise. ]

Definition. Let X be a linear space equipped with a topology T. If the linear space operations
of addition and multiplication on X are continuous with respect to T, then we say that X is a
topological linear space.

Example 5.2.1. If X is a linear space equipped with the weak topology which is induced by a
non-empty collection of linear functionals in X, then X is a topological linear space.

Example 5.2.2. Every normed space X is a topological linear space.

Definition. Let A be non-empty set, and let Ty, T2 be two topologies of A. We say that T; is weaker
than T, and that T is stronger than Ty, if 71 C Ta.

In other words, 7 is weaker than 75 if and only if every U C A which is open with respect to
71 is also open with respect to 75. It is clear that 77 is weaker than 7 if and only if every ' C A
which is closed with respect to 77 is also closed with respect to 7s.

Proposition 5.13. Let X be a linear space, and let L be a non-empty collection of linear functionals
l: X — F. Then o(X, L) is the weakest topology of X with respect to which every | € L is
continuous.

Proof. Wetakeany ! € £, z € X, and € > 0. Then the set
Co ={y € X||l(y) — U(z)| < €}

belongsto o (X, L), x € C,, and we obviously have |{(y)—[(x)| < e forevery y € C,. Therefore,
[ is continuous at .

Now, let 7 be any topology of X such that every [ € L is continuous. We take any x € X and
any C,, € C,, i.e.

Cr={y € X ||lx(y) — lx(x)| < e forevery k =1,...,n}

forsome ly,...,l, € Land ey, ..., €, > 0. We observe that
C$ - ﬂ llzl(vk)a
k=1
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where each Vi, = {\ ||\ — lx(z)| < €x} is open in F. Since each [ is continuous, we have that
1,'(Vi) € T forevery k = 1,...,n, and hence C; € T.

Now we consider any U € o(X, £). Then for every x € X thereis C, € C, sothatz € C, C U.
This implies that U = UzeU C., and, since C,, € T for every x € U, we conclude that U € T.
In other words o(X, L) C 7. O

Proposition 5.14. Let X be a linear space, let L be a non-empty collection of linear functionals
l: X — F,and let X have the weak topology o (X, L). Consider also a topological space D and
g: D — X. Then g is continuous if and only if l o g : D — Fis continuous for every | € L.

Proof. If g is continuous, then, obviously, [ o g : D — F'is continuous for every [ € L.
Conversely, let [ o g : D — F' be continuous for every [ € £. We take any p € D and any
U € o(X, L) such that g(p) € U. Then there are ly,...,l, € Land €y,..., €, > 0, so that

Cy(p) = {y € X ||lk(y) — lk(g9(p))| < e forevery k =1,...,n} CU.
Since each [, o g is continuous, there is P, € R, where R is the topology of D, so that p € P, and

k(9(0) = (9P| = [(lk © 9)(@) = (lk 0 9)(p)| < €, forevery g € Fy.
Now, if P = (;_, P, then P € R, p € P, and
9(q) € Cyy CU forevery g € P.
Therefore ¢ is continuous at p. O

Definition. Let X be a linear space, and let L be a non-empty collection of linear functionals
l: X — F. We say that L is separating, if for every x1,xo € X, x1 # xo thereis | € L so that

l(x1) # U(z2).

Proposition 5.15. Let X be a linear space, let L be a non-empty collection of linear functionals
l: X — F,and let X have the weak topology o(X, L). If L is separating, then (X, L) is
Hausdorff.

Proof. Letxy,x9 € X, x1 # x2. Since L is separating, there is | € £ so that[(x1) # [(x2). Now,

[{(z1)—l(z2)|
2

we take € = > (0 and we consider the sets

Coy ={y € X|[l(y) — la1)| <€}, Coy={y € X|i(y) — U(z2)| <e}.
Then Cy,,Cy, € 0(X, L) and 1 € Cy,, x2 € Cy, and it is easy to see that Cy, N Cpy = 0. O

Lemma 5.1. Let X be a linear space, and [, 11, ...,l, : X — F be linear functionals in X. If
l(x) = 0 for every x € X such that ly(z) = ... = l,(x) = 0, then there are k1, ...k, € F so
thatl = k1ly + -+ + Kplp.

Proof. We consider the linear function L : X — F™ defined for every x € X by
L(z) = (li(x), ..., lu(x)).
Then we consider the function M : R(L) — F defined for every y € R(L) by
M(y) =1(z) where y = L(x).

This function is well defined, since, if y = L(z1) and y = L(x2), then [(z1) = l(x2). It is also
easy to see that M is linear on the linear subspace R(L) of F™. o
Now, we extend M to ", i.e. we consider any linear functional M : F™ — F so that M (y) =
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M (y) foreveryy € R(L). Thenthereare ki, ..., K, € Fsothatforeveryy = (A,...,\,) € F"
we have

M(y) = k11 + - + Kp .

This implies
I(z) = M(L(z)) = M(L(z)) = M(I1(x),...,ln(x) = k1l1(x) + - + Kplp(7)
forevery z € X. O

Proposition 5.16. Let X be a linear space, let L be a non-empty collection of linear functionals
l: X — F,and let X have the weak topology o (X, L). Then a linear functional l : X — F'is
continuous in X if and only if | € span(L).

Proof. 1fl € span(L), i.e. if| = k1l +- -+ Kpl, forsome k1, ..., K, € Fandsomely,..., I, €
L, then it is obvious that [ is continuous in X.

Conversely, let [ be continuous in X . Then [ is continuous at 0 € X and so there are ly,...,l, € £
and €y, ..., €, > 0so that |l(x)| < 1 for every z € Cj, where

Co={r € X||lg(z)| < e forevery k=1,...,n}.

Now, take any z € X such that [y(z) = ... = [,(x) = 0. Then for every ¢ > 0 we have
li(tx) = ... = ly(tx) = 0 and hence tz € Cy. Thus,

ti(z)| = [l(tx)] <1,

and letting t — +oo we get [(z) = 0. Now, lemma 5.1 finishes the proof. O

5.3 Weak topologies of normed spaces.

If X is a normed space, then theorem 3.10 implies that the collection £ = X’ of bounded linear
functionals in X is separating. Indeed, let z1,x2 € X, x1 # x2. Then

0 <[z —a2f = max |2’ (21 — 2)],
@/ eX/ [l <1

and so there is 2’ € X’ such that 2/(z1) — 2'(22) = 2/ (x1 — x2) # 0.

Definition. Let X be a normed space. The topology o(X, X') is called weak topology of X. A
subset of X which is open or closed or compact with respect to o (X, X') is called weakly open
or weakly closed or weakly compact, respectively.

According to proposition 5.11, a basic open neighborhood of 2 € X with respect to o(X, X”)

is
Ce ={y € X||z.(y) — 7). (z)| < e, forevery k =1,...,n},

wheren € N, 2),...,2), € X" and €1, ..., €, > 0 are arbitrary.

We know the following about (X, X’). All are consequences of propositions 5.12, 5.13, 5.14,
5.15 and 5.16.
(i) If X has its weak topology o (X, X’), then the linear space operations of addition and multipli-
cation on X are continuous.
(ii) o (X, X') is the weakest topology of X with respect to which every 2’ € X’ is continuous.
(iii) Let D be a topological space and g : D — X, and let X have its weak topology (X, X’).
Then ¢ is continuous if and only if 2’ 0 g : D — F' is continuous for every 2’ € X",
(iv) o(X, X') is Hausdorff.
(v) If X has its weak topology o (X, X’), then a linear functional / : X — F is continuous in X if
and only if [ € X',

We have exactly the same situation for X’ and its dual X”. The weak topology on X" is
o(X’, X"). On the other hand, there is another interesting topology on X".
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Definition. Let X be a normed space, and consider the natural embedding J : X — X". Then
J(X) C X" is a collection of linear functionals in X'. The topology o(X', J(X)) is called
weak topology on X'. Because of the identification of X with J(X), the topology o(X', J(X))
is traditionally denoted o (X', X ). A subset of X' which is open or closed or compact with respect
to (X', X) is called weaklyx open or weaklyx closed or weakly+ compact, respectively.

A basic open neighborhood of 2’ € X’ with respect to (X', X”) is
Co =1{y € X'||2}(y)) — z}(2))] < e forevery k =1,...,n},

for arbitrary n € N, 2, ..., 2} € X" and €1,..., ¢, > 0.
Also, a basic open neighborhood of 2’ € X’ with respect to o(X’, X) = (X', J(X)) is

Co =1{y € X'||J(xp)(y) — J(xx)(2')| < € forevery k =1,...,n}
={y € X' ||y (zx) — 2’ (zx)| < ¢ forevery k=1,...,n},

for arbitraryn € N, x1,...,x2, € X and €y,...,¢, > 0.

We have the following for o (X', X).

(i) If X’ has its weakx topology o (X', X), then the linear space operations of addition and multi-
plication on X' are continuous.

(ii) o (X', X) is the weakest topology of X'’ with respect to which every 2 € J(X) is continuous.
(iii) Let D be a topological space and g : D — X', and let X’ have its weakx topology o (X', X).
Then g is continuous if and only if J(z) o g : D — F is continuous for every z € X.

(iv) o(X’, X)) is Hausdorff.

(v) If X’ has its weakx topology o (X', X), then a linear functional / : X" — F is continuous in
X if and only if I € J(X).

The fact that o(X’, X) = o(X’, J(X)) is Hausdorff follows from proposition 5.15, since
J(X) is separating. Indeed, if 27,25 € X', ] # ¥, then there is 2 € X so that 2 (z) # z5(x)
and hence J(z)(x}) # J(x)(x}).

In a normed space X we have two topologies: the weak topology and the topology which is
induced by the norm of X, which is also called strong topology on X.

In X’ we have three topologies: the strong topology, the weak topology, and the weaks topol-
ogy. Clearly, if X is reflexive, then the weak topology and the weakx topology of X' are the same.

In X" we have two topologies: the strong topology and the weaks topology.

Proposition 5.17. Let X be a normed space.
(i) x, — x in X if and only if (z,) converges to x with respect to the weak topology of X.
(i) =/, *3 2’ in X' if and only if (x,) converges to z’ with respect to the weaks topology of X'.

Proof. (i) Let z,, — x in X. We take any U € o (X, X’) such that z € U. Then there are
zy,...,z,, € X"and €y, ..., €, > 0so that

Cy ={y € X||z}.(y) — x)(z)] < ¢ forevery k =1,...,m} CU.

Since z'(z,) — 2'(x) for every 2/ € X', there is ng so that |z} (z,) — 2. ()| < € for every
n > ng and every k = 1,...,m. This means that z,, € C,, C U for every n > ng. Thus, (zy,)
converges to x with respect to the weak topology of X.

Conversely, let (x,,) converge to = with respect to the weak topology of X. We take any 2’ € X’
and the weakly open neighborhood C,, = {y € X ||2/(y) — 2/(z)| < €} of x. Then there is ng so
that z,, € C,, for every n > ny, i.e. |2/(z,) —2/(z)| < € for every n > ng. Thus, 2’ (x,,) — 2/ (x)
for every 2/ € X', and so z,, — .

(ii) Similarly. O
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Proposition 5.18. Let X be a normed space.

(i) The weak topology of X is weaker than the strong topology of X.

(ii) The weakx topology of X' is weaker than the weak topology of X' and this is weaker than the
strong topology of X'.

Proof. (i) If X has its strong topology, then every 2/ € X' is continuous. Since o (X, X’) is the
weakest topology of X with respect to which every 2/ € X is continuous, we get that o(X, X')
is weaker than the strong topology of X.

(ii) That o(X'’, X") is weaker than the strong topology of X' is an immediate consequence of (i).
Now, every 2’/ € X" is continuous with respect to o(X’, X”'). In particular, every 2" € J(X) C
X" is continuous with respect to o(X’, X”). Since o(X’, X) = o(X',J(X)) is the weakest
topology of X’ with respect to which every z” € J(X) is continuous, we get that o(X’, X) is
weaker than o (X', X"). O

Proposition 5.19. Let X be a normed space.
() If K C X is weakly compact, then it is weakly closed and bounded.
(ii) If K C X' is weaklyx compact, then it is weaklyx closed and, if X is a Banach space, bounded.

Proof. (i) Since X with the topology o (X, X’) is Hausdorff, the weakly compact K C X is
weakly closed.

Every 2/ € X’ is continuous in X, and hence in K, with respect to o (X, X’). Since K is weakly
compact, we get sup, - |2’(x)| < +oo for every z’ € X'. According to theorem 3.16, we have
that sup,c ¢ ||| < 400, and so K is bounded.

(ii) Similarly. O

The theorem of Alaoglou. Let X be a normed space.
(i) The closed unit ball of X' with center 0 is weaklyx compact.
(ii) If K C X' is weakly* closed and bounded, then it is weakly* compact.

Proof. (i) Let B' = {2’ € X'|||2’|| < 1} be the closed unit ball of X’ with center 0. To prove
that B is weakly* compact, we shall use proposition 5.10.

We consider any collection F of subsets of B’ with the finite intersection property, and we shall
prove that B N Nper l(F) # 0. (The symbol cl(F') means the weakly closure of F'.)

We consider

P = {G|G D F is a collection of subsets of B’ with the finite intersection property}.

We also consider the order relation of set inclusion in P.
Now we take any totally ordered Py C P, and we define

Fo= Ug.

GePy

This is a collection of subsets of B’ with the finite intersection property. Indeed, if we take any
Gy,...,G, € Fo,then G1 € Gq,...,G,, € G, for some Gy,...,G, € Py. Since Py is totally
ordered, there is one of Gy, . .., G, which includes all the others. Thus, GGy, . .., G, belong to one
G € Py, and so (;_; G, # 0. It is also clear that 7 C Fy. Therefore, Fy € P. Since G C F for
every G € Py, we conclude that Fj is an upper bound of Py in P.

According to the lemma of Zorn, P has a maximal element, i.e. there is a collection G O F of
subsets of B’ with the finite intersection property, and so that there is no strictly larger collection
with the same properties.

This implies that every intersection of finitely many elements of G belongs to G. Indeed, if G is the
intersection of finitely many elements of G so that G ¢ G, then G’ = G U {G} D F is a collection
of subsets of B’ with the finite intersection property, and it is strictly larger than G.
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Now, since F C G, it is enough to prove that B' N Naeg UG) # 0.
For each z € X we consider the collection

Ge = {J(2)(G)| G € G}

of subsets of F'. For each G € G, we have |J(z)(2')| = |2/(z)| < ||z|| for every 2’ € G (since
G C B'), and hence J(2)(G) C {A||A| < ||lz|} C F. Thus, G, is a collection of subsets of
{XA] < ||z||}. Now we take any G1,...,G, € G. Then there exists 2’ € (,_; G, and so
J(x)(x") € Mgy J(2)(G). We conclude that G, has the finite intersection property, and now
the compactness of {A | [A| < ||z} implies that {A | |A| < [|z]|} N Ngeg cl(J(2)(G)) # 0.

For every x € X we take any number

pe € QAN < Jl2l} 0 () d(JT(@)(G)).
Geg

Now, let D, be any open neighborhood of p, in F'. Since p; € [\geg cl(J(2)(G)), we have
that D, has non-empty intersection with J(z)(G) for every G € G. So if we take any G € G,
then there is k, € D, N J(z)(G), and so there is 4/ € G so that J(z)(y') = ky € Dy, i.e.
y € J(z)~'(D;) N G. Thus, J(z)~(D,) has non-empty intersection with every G € G, and,
since G C B, we have that J(z)"'(D,) N B has non-empty intersection with every G € G.
This implies that G U {J(z)~'(D;) N B'} D F is a collection of subsets of B’ with the finite
intersection property. Since G is a maximal collection with these properties, we get that

J(z) Y (D,)NB €¢.

Now we take any z1, ..., 2z, € X and any open neighborhoods D, ,..., Dy, of g, ,..., sz, in
F'. Then by the finite intersection property of G we have

(N 7@ (D) B = () (J@) ™ (Da) N B)) #0, (5.1)

( N J(xk)_l(ka)> NG = ( M (J(xx) (D) mE’)) NG #0 forevery G € §. (5.2)
Now we take any z1,22 € X and any A € F and we consider the following open neighbrhoods
of Bxys Hzo s Hay+zas KAz, in £

D$1:{H’|H_N:E1|<6}a Dw2:{5||ﬁ_ﬂw2‘<€}7

Dy yay = {8 | |K — pay 1y ] < €}, Dy,y = {k]]r— Pz, | < €}

Then (5.1), applied to z1, 2, 1 +x2, Ax1 € X and to the corresponding D, , Dy, Dz, 4255 Dz, »
implies that there is 4/ € B’ so that

W (1) = pray | < €, Y (@2) = pay]| < €, Y (21 +22) = flayan| < € Y (AT1) — pire, | <€
Since ¢/ is linear and ||y/|| < 1, we easily prove that
|Hartas — oy — Has| <36, [paw, — My | < (LH[ADe,  pay] < 2] +e
Finally, since ¢ is arbitrary, we get
faytas = Hay + Hagy ey = My, e | < 2]
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for every x1,22 € X and every A € F.
Now we consider ' : X — F defined for every = € X by 2/(z) = u,. Then

(21 + w2) = 2'(21) + 2 (22), 2/ (Aw1) = Ml (21), |2 (21)] < [

for every x1,r2 € X and every \ € F. This means that 2’ € B
Now, consider any weakly* open neighborhood U of z’. Then there are x1,...,x, € X and
€1,...,€, > 0so that

Co ={y € X'| |y (x1) — 2/ (x1)| < ek forevery k=1,...,n} CU.

We apply (5.2) with D, = {k ||k — 2'(a)| < ex} = {K ||k — pa),| < €} fork =1,...,n, and
we get
Cy NG #( forevery G € G.

Therefore, U N G # () for every G € G. Since this is true for every weakly* open neighborhood
U of 2/, we conclude that 2" € cl(G) for every G € G.

Hence #/ € B' N Neeg <l(G), and so B'n Neeg U(G) # 0.

(ii) Let K C X' be weakly* closed and bounded. Then there is M > 0 so that K C E’(O; M),
where E’(O; M) is the closed ball of X’ with center 0 and radius M.

Now, B'(0; M) is the image of B' = B'(0; 1) under multiplication by M. Since multiplication is
a continuous function with respect to the weak* topology of X’ and since B'is weakly* compact,
we get that E/(O; M) is also weakly compact. Then K is a weaklyx* closed subset of E’(O; M)
and so it is weakly* compact. O
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Chapter 6

Bounded linear operators

6.1 Bounded linear operators.

Definition. Let X, Y be two normed spaces (over the same F’), and let T : X — Y be a linear
operator. Then T is called bounded, if there is C' > 0 so that

[Tz]| < Cllz|
for every x € X.

It is more precise to write | Tz||y < C||z| x, or something similar, in order to distinguish
between the norms of the different spaces X, Y, but most of the time we shall adopt the simpler
notation.

Proposition 6.1. Let X,Y be normed spaces, and let T' : X — Y be a linear operator. The
following are equivalent:

(i) T is continuous in X.

(ii) T is continuous at 0 € X.

(iii) T' is bounded.

Proof. Let T be continuous at 0 € X. Then there is 6 > 0 so that | 7'(z)|| < 1 for every x € X

with ||z]| < 0. Now, if z # 0, then y = ﬁ x satisfies ||y|| < ¢ and hence

i@l = 2y < 2 ja.

The inequality ||T'(z)|| < %||z|| is obviously true also for z = 0, and so T is bounded.
If T is bounded, then there is C' > 0 so that || T'(x)|| < C||z|| for every z € X. So, if z, — z in
X, then

1T () = T(@)|| = 1T (20 — 2)|| < Cllzn — [ =0

and so T'(z,,) — T'(x). Hence T is continuous in X. O

Proposition 6.2. Let X,Y be normed spaces, and let T' : X — Y be a linear operator. If T is
continuous, then N(T') is closed in X.

Proof. N(T) = T~1({0}) is the inverse image of a closed set, and so, if 7" is continuous in X,
then N(T') is closed in X. O

Definition. Let X,Y be normed spaces. The set of all continuous or, equivalently, bounded linear
operators T : X — Y is denoted L(X,Y).
IfY = X, then we denote L(X) instead of L(X, X).

If Y = F, then, obviously, L(X, F) = X'.
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Proposition 6.3. Let X,Y be normed spaces. Then L(X,Y") as a function space, with the usual
addition of functions and the usual multiplication of numbers and functions, is a linear space.

Proof. If T,T1,T> : X — Y and A\ € F, we consider the functions 77 + 75 : X — Y and
AT : X — Y defined for every = € X by

(Th + 1) (x) =Ti(x) + Ta(z), (AT)(x) = AT'(x).

It is known from Linear Algebra that, if 7,77, 75 are linear operators, then 77 + 7> and AT are
also linear operators. It is also clear that, if 7", T}, T5 are continuous, then 77 4+ 75 and AT’ are also
continuous. L]

Definition. Let X, Y be normed spaces. For every T' € L(X,Y’) we define

1T =" sup [T(x)].
z€X |lal|<1

Proposition 6.4. Let X,Y be normed spaces and let T' € L(X,Y). Then ||T|| is the smallest
constant C which satifies the inequality | T (z)|| < C||z|| for every z € X.

Proof. Forevery x € X, z # 0, we have H H%H H = 1, and then, by the definition of || T'||, we get

7@ = () et < Il

The inequality ||T'(z)|| < ||T||||x|| is obviously satistied also if x = 0, and so C' = ||T'|| satisfies
the inequality || 7'(z)|| < C||z| for every z € X.

Conversely, let C' satisfy the inequality ||7'(z)|| < C||z| for every x € X. Then we have
|T(x)|| < C forevery x € X with ||z|| < 1,and so ||T|| < C. O

So, if T € L(X,Y), then
1T(@)[| < [ T|llz]|  for every = € X.

Also,
IT(z)|| < Cllz| foreveryz e X = |T| <C.

Proposition 6.5. Let X, Y be normed spaces. The function || - || : L(X,Y) — R defined above is
anormon L(X,Y). IfY is a Banach space, then L(X,Y") with this norm is a Banach space.

Proof. Obviously, ||T'] > 0 for every 7" € L(X,Y"). Itis also clear that | 7’| = 0if 7" = 0.
IfT e L(X,Y)and |T| =0, then T'(z) = 0 for every z € X, and so T' = 0.
For every x € X and every 71, 7> € L(X,Y) we have

(T + o) (@) || < | Tu(2)[| + | T2() | < ITallll2l] + [1T2l[llz]} = AT+ T2 [D]]-

Hence |11 + 1o < [[Th| + [|T2].
Forevery T € L(X,Y) and every A € F' we have

AT = sup [[AT)(z)[ = sup [A[[T(x)| = Al sup |[T(z)[| = [AT]]
zeX, ||| <1 zeX,[z]|<1 zeX,|z]|<1
Therefore, || - || : L(X,Y) — Risanormon L(X,Y).

Now we assume that Y is a Banach space, and we take any Cauchy sequence (7;,) in L(X,Y).
For every x € X we have

1T (2) = T (@)l = [(Tn = Tw) (@) || < T = Tl ]| — O
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when n, m — +o0, and so (T;,(x)) is a Cauchy sequence in Y. Since Y is complete, the sequence
(T),(x)) has a limit in Y. Now we consider the function 7" : X — Y defined for every z € X by

T(z) = lim T,(z) €Y.

n——+0oo

Since each 7, is a linear operator, we have for every x, z € X and A € F that

Tx+z)= lim T,(x+z)= nHIJPoo T (x) + nEIJIrloo To(z) =T(z) +T(z),

n—-+o0o
T(\x) = nEIEOO T,(A\x) = )\ngr_ir_loo T, (x) = \T'(x).

So T is a linear operator.
Now, there is ng so that ||7;, — T},|| < 1 for every n,m > ng. Hence

1T (@) < T (2) = Tog (@) || + 1 Tnp ()| < T = T [l 4 [[Tg |2l < (14 [T 1) ]|
for every n > ng and every x € X. Taking the limit when n — 400, we find
1T (@) < (1+ [T []) ||

for every x € X. So T is bounded, i.e. T € L(X,Y).
Finally, we take any € > 0 and then there is ng so that |7, — T},,|| < € for every n,m > ng. Then

1Tn(z) = Ton (@) || < 1T — Tl ]| < €l
for every n, m > ng and every x € X. Taking the limit when m — +o0, we find
[Tn(z) = T(z)|| < el

for every n > ng and every = € X. Therefore, ||7,, — T'|| < € for every n > ng, and so T,, — T'
in L(X,Y). O

Example 6.1.1. If 7" : X — Y is a linear isometry from X into Y, then ||7'|| = 1. Indeed,

IT||= sup |[T(z)]|= sup [lzf| =1.
weX,[lzl|<1 zeX, o<1

Example 6.1.2. Let X be an inner product space, let Y be a subspace of X with an orthogonal
complement in X, and let Py : X — X be the orthogonal projection of X onto Y. If Y # {0},
then || Py || = 1.
Indeed, for every = € X we have || Py (x)| < ||z|| and this shows that || Py || < 1. Also, for every
y €Y,y # 0, we have

lyll = 1Py (Il < 1P [yl

and so || Py|| > 1. Therefore, | Py || = 1.

Proposition 6.6. Let XY, Z be normed spaces, T' € L(X,Y)and S € L(Y,Z). Then So T €
L(X, Z), and ||S o T|| < || S/l

Proof. For every z € X we have
1S o T)a|| = ST @) < ISHT @) < ISTIT ]
So S o T is bounded, and ||S o T'|| < [|S||||T|- O

We shall use the notation
ST insteadof SoT.

The next proposition is useful when it is convenient to work with a one-to-one operator.
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Proposition 6.7. Let X, Y be normed spaces, andT' € L(X,Y’). We consider T:X/N(T) =Y
defined for every £ € X /N(T) by T(§) = T'(x), where v € X is such that [x] = {. Then T is a
bounded linear operator. Also, T is one-to-one, R(T') = R(T), and ||T|| = ||T'||.

Proof. 1f x1,z9 € X are such that [x1] = [x2] = &, thenzy —29 € N(T),andso T'(x1)—T(z2) =
T(x1 — x2) = 0. Thus, T is well defined.

If [.rl] =&, [332] = &9, then [:1:1 + 332] = [.1‘1] + [1‘2] = &1 + &. Also, if [l‘] =¢and \ € F, then
[Az] = A[z] = A, Then

T(&1+ &) = T(w1 +a2) = T(x1) + Tx2) = T(&1) + T(&),

T(XE) = T(Ax) = XT'(z) = AT(€).

Thus, 7 is linear. It is also clear that R(T') = R(T).
If [x] = &, we have N
17N = T @) < [IT]ll|=[].

Taking the infimum over all - such that [2] = ¢, we get ||T(&)|| < || T/[|€]l- So T is bounded, and
1T < [IT]l.
Also, for every z € X we take £ = [z], and then

IT @) = 1T < ITNIEN < Tl
Hence ||T|| < ||T|, and we conclude that || T|| = ||T||. O

Proposition 6.8. Let X, Y be normed spaces, and T € L(X,Y). Assume that X,Y are comple-
tions of X, Y, i.e. there are linear isometries Sy : X — X and Sy : Y — Y so that Sx(X)isa
dense subspace of X and Sy (Y') is a dense subspace of Y. Then there is a unique T € L(X,Y)
such that TSx = SyT. Also, ||T| = ||T||.

Proof. Take any ¢ € X. Then there is a sequence (Sx (z,,)) in Sx (X) such that Sx (z,,) — £ in
X. Then (Sx(z,)) is a Cauchy sequence and, since

[0 = zmll = 1Sx (2n — 2m) || = [1Sx (20) = Sx (zm)|| = 0,
we have that (x,,) is a Cauchy sequence in X. Now,

1Sy T)(@n) = (SyT)(@m)|| = ISy (T'(xn)) = Sy (T(xm))[| = |5y (T'(xn) = T'(2m))|
= [[T(xn) = T(@m)|l < [ITl|l2n — 2m| — 0.

Thus, ((SyT)(x,)) is a Cauchy sequence in Y, and so it converges to some element of Y.
Now we consider the function 7' : X — Y defined for every ¢ € X by
T(&) = lim (SyT)(ra)
It is easy to see that T'(€) is well defined, i.e. that it depends on ¢ and not on the sequence ().

Moreover, using the linearity of T, Sx, Sy, it is very easy to show that T is linear.
Also, for every £ € X,

T — . — . < . — .
IT©l = tim ISyT)ea)l = lim [Tl < lim [Tzl = lim |T]]Sx ()]
= IT)el

This says that T € L(X,Y) and ||T| < ||T]|.
If £ € Sx(X), then £ = Sx(x) for some = € X. Then we may take the constant sequence (z) to
define T'(¢), and then

T(Sx(x)) =T(§) = lim (SyT)(z) = (SyT)().

n—-+o00
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Therefore T'S x=5yT. _ B
Now, take any 7' € L(X,Y’) such that T'Sx = SyT. Then for each { € X we take, as above, a
sequence (Sx (zy)) in Sx (X) such that Sx (z,,) — £ in X, and we get

T(€) = lim T(Sx(zn)) = lim (SyT)(zn) =T(£).

n——+0o0 n—-+00
Thus, T = T.
Finally, since Sx (X) C X, we get
ITl=sup [T > sup [ T(Sx(2)) = sup [Sy(Tz)|
£eX |lglI<1 2€X,||Sx (2)[|<1 reX,||z||<1
= sup [Tzl =T

zeX[lz]|<1

Thus, [|T|| > ||T|, and we conclude that ||T'|| = || T O

The relation 7Sy = Sy T means, of course, that
T(Sx(z)) = Sy (T(x))

for every z € X. Now, we may “identify” X with the subspace Sx(X) of X,and Y with the
subspace Sy (Y') of Y, by “identifying” every z € X with the corresponding Sx(x) € X, and
every y € Y with the corresponding Sy (y) € Y. Then the above relation becomes

for every 2 € X. In other words, it appears as if the operator ' € L(X,Y) extends the operator
Te L(X,Y).

6.2 The dual operator.

Proposition 6.9. Let X,Y be normed spaces, and T € L(X,Y). We consider T' : Y/ — X'
defined for every y' € Y' by
T'(y') =y oT.

ThenT' € L(Y', X'), and || T'|| = || T
Proof. Forevery ¢/, vy}, v, € Y’ and every A € F we have
T'(y) +T'(ya) =1 0T +ys 0T = (yr +35) o T =T'(y + 1),
T'(Ny) = (\y) o T =AY oT) = AT'(y),

andsoT” : Y/ — X' is a linear operator.
Take any 3 € Y’. Then
1Ty = lly" o TN < ¥ IT])-

Therefore, 77 € L(Y', X’) and || T"|| < || T||-
Now we take any € X. According to theorem 3.10, there is ¥/ € Y’ so that ||y/|| < 1 and
IT(2)Il = |y/(T'(x))]. Then

I7@)] = 1" o T)(@)] = 17" @)1 < 1T @Ol < 1Ty =l < 1712
This implies || T|| < ||7”|, and hence ||T”|| = || T||. O

Definition. Let X, Y be normed spaces, and T' € L(X,Y’). The operator T € L(Y', X") defined
in proposition 6.9 is called dual of T'.
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The defining relation 7"(y’) = v’ o T means that
T'(y)(x) =y (T(x)) foreveryx € X, v/ €Y.

Proposition 6.10. Let X, Y, Z be normed spaces.

WDIfT, T, T € L(X,Y)and A € F, then (T} + T>) =T + T4 and (\T)" = \T".
() IfT € L(X,Y)and S € L(Y, Z), then (ST) =T'S".

(iii) I' = I and 0" = 0, where [ is the identity operator and 0 is the zero operator.
(V) IfT € L(X,Y)and T~! € L(Y, X), then (T")~! = (T~')".

Proof. Exercise. O

We recall the definition of AL. If X is a normed space, and A C X, we define
At = {2’ € X'|2'(a) = 0 forevery a € A}.
Here is a similar notion.
Definition. Let X be a normed space. If A C X', we define
LA={z e X|a(z) =0 forevery a € A}.

Proposition 6.11. Let X be a normed space. If A C X', then - A is a closed subspace of X.
Proof. Exercise. O

If AC X, then AL C X'.1f AC X/, then+A C X.

Proposition 6.12. Let X be a normed space.
(i) If A C X, then clspan(A) = +(A1).
(i) If A C X', then clspan(A) C (+A)*.

Proof. (i) This is the content of theorem 3.11. This theorem says: x € clspan(A) if and only if
z'(x) = 0 for every 2’ € A*. Equivalently: = € clspan(A) if and only if z € +(A™).

(ii) Take any 2’ € A. Then for every z € - A we have z/(z) = 0, and so 2’ € (+A)+. Hence
A C (+A)*. Since (+A)* is a closed subspace of X', we get clspan(A) C (+A)+. O

Proposition 6.13. Let X, Y be normed spaces, and T' € L(X,Y). Then:
() N(T') = R(T)*.

(ii)) N(T) = + R(T").

(iii) cl(R(T")) € N(T))*-.

(iv) cl(R(T)) = + N(T").

Therefore:

(v) T' is one-to-one if and only if R(T') is dense in Y.

(vi) T is one-to-one if R(T") is dense in X'.

Proof. (i)y’ € N(T") ifand only if 7"(y') = 0 if and only if ' o T = 0 if and only if ¥/ (T'(z)) = 0
for every x € X if and only if 3’ € R(T)*.

(ii) x € N(7T) if and only if T'(x) = 0 if (theorem 3.10) and only if ¢/ (7'(x)) = 0 forevery y’ € Y’
if and only if 7"(y’)(x) = 0 for every ¢/ € Y’ if and only if z € + R(T").

(iii) Direct implication of (ii) and of (ii) of proposition 6.12.

(iv) Direct implication of (i) and of (i) of proposition 6.12.

(v) Use (i) and (iv).

(vi) Use (ii) and (iii). O
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6.3 Finite dimensional spaces.

Let X,Y be two finite dimensional linear spaces, and take any basis B = {b1,...,b,} of X and
any basis C' = {c1,...,¢cn} of Y. We know from Linear Algebra that to every linear operator
T : X — Y corresponds the m X n matrix

[T]5c = aij],

where the a;; € I are determined by the relations

m
Tbj):Zaijcl-, j:1,...,n.
=1

Conversely, every m x n matrix [a;;] determines a linear operator 7" : X — Y such that [T|pc =
la;j]. Therefore, the linear space of all linear operators 7" : X — Y is in a one-to-one correspon-
dence with the linear space of all m x n matrices [a;;] through the mapping 7" +— [T] .

If to every x € X we assign the n x 1 matrix [z]p = [)\;], where the \; are determined by
x = ) 7 1 Ajbj, and to every y € Y we assign the m x 1 matrix [ylc = [s;], where the r; are
determined by y = Y ;" | Kic;, then

y=T() < [lo=[Tlsclls.
We also know that for every linear operators 7, S : X — Y and every A € F' we have
[ATpc = AT|pc, [T+ Slpc = [T]sc + [Sle

Thus, the mapping 7" +— [T']g¢ is a linear space isomorphism between the linear space of all
linear operatots 7" : X — Y and the linear space of all 7 x n matrices [a;;].

If Z is another finite dimensional linear space, with a basis D = {dy, ..., d;}, then for every
linear operators 7' : X — Y and S : Y — Z we have

[ST]sp = [S]ep[TBC-

Now let B’ = {V),...,b,} be the basis of X’ which is dual to the basis B of X. Also let
={c},...,c,} be the basis of Y/ which is dual to the basis C of Y. Then the relation between
the matrices of the linear operator 7' : X — Y and of the dual linear operator 7" : Y/ — X’ is

[T"crp = ([T]Bc),

where [a;;]" = [a;;] is the transpose matrix of [a;;].

It is obvious that, if I : X — X is the identity operator, then [I|gp = [;;] is the unit matrix,
where §;; = 1,if ¢ = j, and 6;; = 0, if ¢ # j. Also, if 0 : X — Y is the zero linear operator, then
[0] pc = [0] is the zero matrix.

Finally, in the case m = n, the linear operator 7' : X — Y is invertible if and only if [T g¢ is
an invertible matrix, and then

(T)5e) ™" = [TYes.

In fact, [T] pc is an invertible matrix if and only if det([T]z¢) # 0.

Everything we have said up to this point is known from Linear Algebra. Now we shall see that
every linear operator 7' : X — Y is bounded. We assume that X, Y have arbitrary norms, and
then for every x € X withz = Z?Zl A;jb; we get

1<

IT( ‘_HZ)‘T )| < muT )HélgagnHT(bj)HZIM—max 17(b5) 2]
- Jj=

< ; =
< c max [T J)IIH:L'H Clz,
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where ¢ > 0 is a constant such that ||z||; < ¢||z|| forevery x € X, and C = ¢ maxi<;j<p, || T(b;)].
The existence of such a constant c is implied by the equivalence of the arbitrary norm || - || with
the 1-norm || - ||1.

If we consider the p-norm of X and the g-norm of Y, where 1 < p, ¢ < 400, then we usually
denote ||T’||,4 the norm of a linear operator 7" : X — Y, i.e.

1T lpg = sup 1T (z)]]q-
I€X7||$Hp§1

Since all norms of X are pairwise equivalent and all norms of Y are also pairwise equivalent,
it is easy to show that all norms of L(X,Y") are equivalent. This can also be proven in another
way. We have seen that there is a linear space isomorphism between L(X,Y") and the linear space
My, of all m x n matrices. This implies that L( X, Y") is finite dimensional, with dimension equal
to mn. Therefore every two norms of L(X,Y") are equivalent.

To get an idea of this kind of calculations, we shall find the exact value of the norm

[Tllocco = sup [|T(2)]lo

zeX,[[z]loo <1

of a linear operator 7' : X — Y.
If [T]gc = [aij;], then for every z = Z?zl Ajbj € X we have

Z)\T Z/\ (Zawcz>—il(2aw )cz,

and so

n n
IT@)] = max. )Zla,»jxj] < max, 3l max Dol = max Z\amuxum
j: =

1<i<m
J

Therefore, [|T'||occo < Maxi<i<m y_j—; |aijl-

Now, there is 7 so that
n

> laigs] = max Z |ai;]

j=1
and then we choose Ay, ..., A, so that |[\;| = 1 and aioj)\j = |a;,;| for j = 1,...,n. Then for the
particular z = > ", A;b; we have

e = max || = 1

and so

n n n n
Tl 2 7)o = max |3~ aids| 2 | 3 aigsds| = 3 laiyl = max 37 Jay.
7j=1 j=1 j=1 j=1

We conclude that

n
|7 ]locoo = max Z‘aij‘-
1§7,§mj:1

6.4 Hilbert spaces.

In a Hilbert space, besides the notion of dual operator, we also have the notion of adjoint operator.
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Proposition 6.14. Let X, Y be Hilbert spaces, and T' € L(X,Y’). Then there is T* € L(Y, X)
such that

(z,T"(y)) = (T'(x),y) (6.1)
for every x € X,y € Y. Moreover, | T*| = ||T|.

Proof. We take any y € Y and we consider the function [, : X — F' defined for every z € X by
ly(x) = (T'(z),y).

It is clear that [, is a linear functional in X. Also

ly ()] = [(T (@), »)| < 1T @)yl < 1Tyl

for every x € X, andso [, € X'.
According to the theorem of F. Riesz, there is an element of X, which we denote 7*(y), such that
(2, T*(y)) = 1y (2), ie.
{x,T*(y)) = (T(x),y)
forevery z € X.
Now, for every y1,y2 € Y we get

(2, T"(y1 + y2)) = (T(x), 11 + y2) = (T(@),51) + (T(2),y2) = (x, T"(y1)) + (2, T7(y2))
= (2, T"(y1) + T*(y2))

for every x € X. This implies T*(y1 + y2) = T*(y1) + T*(y2). In a similar manner we may
show that 7*(\y) = A\T™(y) for every y € Y and every A € F. Therefore, 7" : Y — X is linear.
Also,

IT*(W)II* = (T*(y), T* () = (T(T* (). y) < ITT* )yl < ITHIT* W)yl
and hence ||[7*(y)|| < ||T||||ly|| for every y € Y. Therefore, T* is bounded, with ||7™|| < ||7||.
Symmetrically,

IT(2)* = (T(x), T(x)) = (&, T*(T(x))) < lz||T*(T(@))I| < &I T[T ()]
and hence ||T'(x)|| < ||T*||||x| for every € X. Thus, |T|| < ||T*||, and we conclude that
17l = 1IT1]- N

Definition. Let X, Y be Hilbert spaces, and T' € L(X,Y). The operator T* € L(Y, X) defined in
proposition 6.14 is called adjoint of T'.

Proposition 6.15. Let X, Y, Z be Hilbert spaces.

) IfT, Ty, T, € L(X,Y) and A € F, then (Ty + T3)* = T} + Ty and (\T)* = \T*.

(i) IfT € L(X,Y), then (T*)* =T.

(i) IfT € L(X,Y)and S € L(Y, Z), then (ST)* = T*S*.

(V) IfT € L(X,Y)and T~! € L(Y, X), then (T*)~' = (T~1)*.

Proof. Exercise. 0

Proposition 6.16. Let X,Y be Hilbert spaces, and T' € L(X,Y). Then | T*T| = ||[TT"|| =
I72.

Proof. We have || T*T|| < ||T*[|[|T]| = | T|]*.
Also, for every x € X,

IT(@)]* = (T(x), T(x)) = (2, T*(T(2))) <l [(T*T) ()| < |2 |IT*T|]| ]

= | Tl|=]?,
and so ||T||2 < ||T*T)||. Therefore, || T*T|| = ||T||>.
The equality | TT*|| = ||T'||? can be proved either in the same manner or by using 7™* in the place
of Tin | T*T|| = ||T|> O
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To find the relation between the notions of the dual operator 77 € L(Y’, X') and the adjoint
operator 7* € L(Y, X ), we consider the conjugate-linear isometries

SxiX—>X/, Sy:Y—)Y/

which are defined through the theorem of F. Riesz. We recall that Sx is onto X’ and Sy is onto
Y’. The defining formulas of these isometries are

Sx(2)(x) = {z,2z) Sy (w)(y) = {y,w)

for every z,z € X and every y,w € Y.
Proposition 6.17. Let X,Y be Hilbert spaces. Then T™* = S)_(IT’ Sy.

Proof. Forevery z € X,y € Y we have

Sx(T*())(@) = (&, T* () = (T(2),5) = Sy W)(T(x)) = T'(Sy (1)) (@).
Thus, Sx (T*(y)) = T'(Sy (y)) for every y € Y and so SxT* = T"'Sy. O
Definition. Let X be a Hilbert space. We say that T' € L(X) is self-adjoint, if I = T.

In the case of a self-adjoint operator, (6.1) states

(21, T(22)) = (T'(21), 22)
for every z1,x0 € X.

Example 6.4.1. If Y is a closed subspace of a Hilbert space X, then we have the orthogonal pro-
jection Py € L(X).

Now, proposition 2.15 implies that Py is self-adjoint. In fact, proposition 2.17 says that orthogo-
nal projections are exactly those operators P € L(X) which are self-adjoint and satisfy P? = P
(where P? means PP = P o P).

In an inner product space X we have two notions of “orthogonal” set A+ of aset A C X. One
of the A" is a subspace of X', exactly as in the case of a general normed space X. The other A~
is a subspace of X itself:

At ={zeX|z 1L A}

The relation between these two notions of A+ was determined just before proposition 3.7.
Now we shall see the analogue of proposition 6.13 for the adjoint operator.

Proposition 6.18. Let X, Y be Hilbert spaces, and T' € L(X,Y"). Then:
() N(T*) = R(T)*.

(i) N(T) = R(T*)*.

(iii) cl(R(T*)) = N(T)*.

(iv) cI(R(T)) = N(T*)*.

Therefore:

(v) T* is one-to-one if and only if R(T') is dense in Y.

(vi) T is one-to-one if and only if R(T™*) is dense in X.

Proof. (i) y € N(T™) if and only if 7*(y) = 0 if and only if (z,7*(y)) = O for every x € X if
and only if (T'(x),y) = 0 for every z € X if and only if y € R(T)"*.

(ii) z € N(7) if and only if T'(x) = 0 if and only if (T'(x),y) = 0 for every y € Y if and only if
(z,T*(y)) = 0 for every y € Y if and only if x € R(T*)*.

(iii) Direct implication of (ii) and of (ii) of proposition 2.12.

(iv) Direct implication of (i) and of (i) of proposition 2.12.

(v) Use (i) and (iv).

(vi) Use (ii) and (iii). O

126



If X is a finite dimensional Hilbert space, and B = {b1,...,b,} is a basis of X, we consider
the n x n matrix
[T)B = [aij].

Then the corresponding n x n matrix of 7" is
(1" = ([T]BB)" = lay]",

where [a;;]* = [aj;] is the conjugate-transpose matrix of [a;].

6.5 Normed algebras. The normed algebra L(X).

Definition. The linear space X over F'is called algebra over F', if, besides the (internal) operation
of addition of elements of X and the (external) operation of multiplication of numbers in F' with
elements of X, there is also an (internal) operation of multiplication of elements of X, which to
every (x,y) € X x X assigns the product xy € X, so that

(i) (xy)z = z(yz) for every x,y,z € X,

(i)x(y+2) =xy+xzzand (xr +y)z = xz + yz forevery z,y, z € X,

(iii) (A\x)y = x(A\y) = A(xy) for every A € F and every z,y € X.

If there is some e € X \ {0} so that

(iv)ex = xe = x foreveryz € X,

then e is called unit of the algebra X, and X is called algebra with unit.

Also, if

(v) xy = yx for every x,y € X,

then X is called commutative algebra.

If the algebra X has a unit, and if for any x € X, x # 0, there is some z—' € X so that

zx~! = 27 'x = ¢, then x is called invertible, and x~! is called inverse of z.

It is very easy to prove that z0 = Ox = 0 for every z € X, where 0 is the zero element of
X. Also, if the algebra X has a unit, then this is unique. Moreover, if some element of X has
an inverse, then this is unique. Finally, if x,y € X are invertible, then zy is also invertible, and

(zy) "t =y Ttz
Definition. Let X be an algebra. If || - || is a norm on the linear space X such that ||zy|| < ||z||||y]|
for every x,y € X, then X is called normed algebra. If, moreover, X is complete, then X is

called Banach algebra.
If the normed algebra X has a unit e, and ||e|| = 1, then X is called normed algebra with unit.

Example 6.5.1. In the space [*° we consider the operation of multiplication defined for every x =
(Ak),y = (ki) € 1°° by

xy = (Akkik)-
It is easy to see that [*° with this multiplication is a commutative algebra with unit. The unit e is
the constant sequence (1). Moreover, [*° is a normed algebra, since

[zylloo = sup [Arrk| < sup [Ar|sup |rk| = [|2]lcol|ylloo
keN keN keN

and ||e||oc = supyey |1 = 1.

Example 6.5.2. In L>° = L>*°(Q) = L*>°(2, X, ) we consider the standard operation of multipli-
cation of functions: the product of essentially bounded functions is an essentially bounded function.
Then L*° is a commutative algebra with unit. Its unit is the constant function 1. Moreover, L is
a normed algebra, since

| fgllcc = ess-sup |fg| < ess-sup | f|ess-sup |g| = || f|loc |90

and ||1]|oc = ess-sup |1| = 1.
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Example 6.5.3. The spaces B(A) and BC(A) are normed algebras with unit. As in the previous
example, multiplication in these spaces is the standard multiplication of functions, and we have

1fgllu = sup | f(z)g(x)| < sup |f(z)] sup [g(z)] = ||f[|ullg]l
€A TEA z€EA

and ||1l, = sup,c4 [1] = 1.

Example 6.5.4. A more interesting example is the normed space /(7). This is a variant of the
usual space /' = [1(N), and it is the set of all double-sided sequences z = (\;) = (A )rez With
the 1-norm, which is defined by

+oo
lzll =" Al =D [l

keZ —00

Addition and multiplication by numbers are defined in I'(Z) exactly as in I = ['(N). With its
1-norm, I*(Z) is a Banach space.

Now, we define an operation in /'(Z) as follows. For any x = (\;),y = (kz) € ['(Z) and any
k € 7Z we define

e =Y Me—mbm. (6.2)
MEZ
Then
Sl <30 (D Pl = 32 (30 Pl il = 32 (D2 1wl )l
kEZ keZ meZ meZ keZ meZ keZ (6.3)
=1l Y ol = Il llyls < +oc.

keZ — mez
Hence the sequence (1) is in I*(Z).

Definition. We denote the sequence (1), defined by (6.2), by the symbol x * y and we call it con-
volution of z, y:

xxy = (kr)-
So we have defined the operation of convolution in /!(Z), and it is easy to show the properties:
(x*xy)xz=xx(y*x2), zx(y+z)=cxy+taxxz, (z+y) xz=x*x2+y*z2,

Ar)xy=x*(\y) = ANz *xy), zxy=yx*zx

for every A € F and every z,y, z € [*(Z). This means that /' (Z) is a commutative algebra, with
convolution as the operation of multilication. This algebra has a unit: the sequence e = (d;),
which is defined by 6, = 1, if K = 0, and 6, = 0, if k # 0, satisfies

eExXxr =T *xe=2T

for every x € [1(Z).
Now, (6.3) says that the norm of /*(Z) satisfies

lz*ylln < [J2ll1llyll:

for every 2,y € I1(Z). Also

lells =" 16k = 1.

kEZ

Therefore, I'(Z) is a commutative Banach algebra with unit.
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Example 6.5.5. Another interesting example is the normed space L' = L'(Q) = L'(Q, %, p).
We define an operation in L' as follows. For any f,g € L' one can show that the function
f(x — y)g(y) is measurable with respect to the product o-algebra ¥ x ¥ in ©Q x €. Tonelli’s
theorem implies

J] e =awidee e = [ ([ 176 -wllowl @) duto
//'”‘ lduta)) o dnts) = [ ([ 17 dute)latw)ldnts) 64

- / (@) du(z) / l9(0)] duy) = 111 lgllx < +oo.
Q Q

Now, Fubini’s theorem implies that the function f(x — y)g(y) is integrable with respect to the
product o-algebra ¥ x ¥ in 2 x €, that for p-a.e. x € Q the function f(z — y)g(y) (as a function

of y) is in L!(£2), that the function
| 1=t dno),

as a function of z, is in L!((2), and that

/Q‘/Qf(a:—y)g(y ()‘du s /\f z —y)|lg(y)| du( ))du()
:/ (/ @ = )llg@)l du@) ) dinty) = gl
Q Q

where the last equality comes from (6.4).

(6.5)

Definition. For every f, g € L' we define the function

(f*g)(x /fx— y)du(y) for p-a.e. x € Q.

The function f * g is called convelution of f, g.

We saw that f x g € L! and (6.5) says that

1+ gl < [1fllllglls-

It is relatively easy to show the properties:
(fxg)xh=fx(gxh), [fx(g+h)=fxg+fxh, (f+g)xh=[fxh+gxh,

Af)xg=f*(Ag) =A(f=*g), frxg=gxf

for every A € F and every f,g,h € L'. This means that L! is a commutative algebra, with
convolution as the operation of multilication. It can be proved that, in general, the algebra L' does
not have a unit.

We conclude that L' is a commutative Banach algebra.

The last example is the most important for us in this course.

Example 6.5.6. Let X be a normed space. We know that L(X) = L(X, X) is a normed space,
and that, if X is a Banach space, then L(X) is also a Banach space. We have seen in proposition
6.6 that, if we denote ST the composition S o T of S,T € L(X), then ST € L(X) and

ST < (IS
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One can easily prove the properties
(TS)R=T(SR), T(S+R)=TS+TR, (T+S)R=TR+ SR,
(AT)S =T(AS) = \TS9).

Therefore, L(X) is a normed algebra with composition as the operation of multiplication. The unit
of multiplication in L(X) is the identity operator I : X — X, and this satisfies ||/| = 1. The
algebra L(X), in general, is not commutative.
Regarding the notion of invertibility, we must be careful. By definition, 7" € L(X) is invertible,
if thereis 7! € L(X) sothat TT~! = T—'T = I. The equality TT~! = T~!T = I, by itself,
is equivalent to the function 7" being one-to-one in X and onto X, and then 7! is the mapping
which is inverse to 7. We also know from Linear Algebra that the linearity of 7" automatically
implies the linearity of 7. But when we write 7 € L(X) and 7! € L(X) we also mean that
T and T~! are bounded. Now, the boundedness of 7" does not imply the boundedness of 7. In
other words, for 7' € L(X), the invertibility of T as a mapping is not equivalent to its invertibility
as an element of L(X). In the context of Functional Analysis, when we say that T' € L(X) is
invertible we mean that T is invertible as an element of L(X), i.e. that T is one-to-one in X and
onto X, and the inverse linear operator T~! is bounded.

A little later, in the open mapping theorem, we shall prove that, if X is a Banach space, then
for every T' € L(X) which is invertible as a mapping, i.e. which is one-to-one in X and onto Y/,
T~ is automatically bounded, and hence T is an invertible element of L(X).

In the algebra L(X ) we use the notations

T°=71, TF=To...0T whenkeN.
k

Also, if T is invertible and 7! € L(X), we write

T% = (T')* when k € N.

6.6 The uniform boundedness principle.

Theorem 6.1. Let X be a Banach space, Y be a normed space, and let ¥ C L(X,Y). If
suppcr ||T(z)|| < +oo for every x € X, then supp 7 || T']| < +o0.

Proof. According to the uniform boundedness principle, there is a non-empty open U C X and a
M > 0so that | T'(z)|| < M forevery T' € F and every € U. We take any =y € U and then
there is R > 0 so that B(xo; R) C U. So we have that ||7'(z)|| < M for every T' € F and every
x € B(xo; R).

Now we take any 7" € F, any z # 0 and any ¢ > 1. Then xy € B(xo; R) and xg + tIIwH S
B(xo; R). Hence
tl]l || R ]l
i@ = "2 (g )| = 7 I (oo + g ) — i < T 2
tll| R tll|
Since ¢ > 1 is arbitrary, we get
2M
IT(@)] < 25 el
This is true also for x = 0, and hence ||T’|| < % forevery T' € F. O

Theorem 6.2. Let X be a Banach space, Y be a normed space, and let ¥ C L(X,Y). If
supper [v/ (T'(x))| < 400 for every x € X and every y' € Y’, then sup¢ 7 || T|| < +o0.

Proof. Theorem 3.16 implies that sup;c 7 ||Tz|| < +oo for every z € X, and then theorem 6.1
finishes the proof. O
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6.7 The open mapping theorem.

Lemma 6.1. Let X be a Banach space, Y be a normed space, and let T € L(X,Y) and K > 0.
If{y e Yllyl <1} € d({T(2)[|z]| < K}), then{y € Y [[ly|| < 1} S {T(z)|]|=]| < 2K},
and T isonto Y.

Proof. Using {y € Y| |ly|]| <1} Ccl({T(x)|||z| < K}), we easily get
{yeYllyll <r} Cd{T(@)||z| <rK}) (6.6)

for every r > 0. Indeed, take any y € Y with ||y|| < r. Then ||2 y|| < 1 and so there is a sequence
(z5,) in X so that ||z,|| < K for every n and T'(z,,) — % y. Then the sequence (rzy,) satisfies
|rezy|| < rK for every nand T'(ray,) = rT(z,) — .

Now, take any y € Y with ||y|| < 1. Then (6.6) with = 1 implies that there is z; € X so that

1
o]l < K, ly —T(z1)]| < 5

Then (6.6) with r = % implies that there is x5 € X so that

1

2] < =

5 ly=T() T <

Then, similarly, there is 3 € X so that

1
lzsll < 55 lly = T(21) = T(x2) = T(zs)ll < 55
Continuing inductively, we see that for every k there is 3, € X so that
K 1
okl < g Ny = Tlwn) =+ = T | < 57

Since > ||lzk|| < +oo, the series "5 x converges in X, and we consider
+o0
T = E L.
k=1
Then

+00 +oo K
=] < Z k]l < ZF =2K
k=1 k=1

Moreover, by the continuity of 7', we have

k k
a&TmZT% = dim (Y ) =7( lim Y m) =T

Jj=1 Jj=1
O

The open mapping theorem. Let X, Y be Banach spaces, and let T € L(X,Y) be onto Y. Then
(i) thereis M > Osothat {y € Y |||y|| < 1} C{T'(z) | ||z|| < M}.

(ii)) T(U) isopen in Y for every U open in X.

(ii) if T is one-to-one in X, then T~ € L(X,Y).
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Proof. (i) Since T is onto Y, we have Y = (J>° {T'(x) | ||=|| < m}, and hence

+oo
Y = {J d({T(@) | all < m}).
m=1

The theorem of Baire implies that there is mq so that cl({7'(z)|||z| < mo}) has non-empty
interior in Y. So there are yp € Y and R > 0 such that

{y €Y [lly—wol < R} € A({T(2) [ |l=]l < mo}).

Now take any y € Y with |ly|| < 1. Then Ry + yo isin {y € Y ||y — wol < R} and so
there is a sequence (x,,) so that ||z,| < mg for every n and T'(x,) — Ry + yo. Also, yo is in
{y € Y||ly — yol| < R}, and so there is a sequence (xoy,) so that ||zo,| < mg for every n and
T(xon) — Yo- Then

1 1 1

T(E (3771 - mOn>> = ET(xn — Top) = E(T(mn) - T(xﬂn)) -y

and || & (25, — zon)|| < 232 for every n. Therefore
{yeYlllyll <1} S d({T(z)|[l=] < K}),

where K = 2%.
Now, lemma 6.1 implies that

{yeY[lyl <1} S{T(2) [ |l=]] < 2K},

and this shows (i) with M = 2K.
(ii) Take any open U C X, and any yo = T'(zo) € T(U) with g € U. Then there is » > 0 so that

{zeX|||lxr—xo]| <r} CU.

T

Let ||y — yol| < 17. Then % (y —yo)isin{y € Y ||ly|]| < 1} and so (i) implies that there is
z € X so that ||z|| < M and T'(z) = 2 (y — yo). Then

r r
1(Gye) w1+
Y " + Yo Mx-i-wo
and 7 « + x¢ isin {z | ||z — x0|| < r}. Therefore,
r
{ve¥|ly—wl <57} € @ [le - w0l <7} <TO)
and so 7'(U) is open.

(iii) Let 7" be one-to-one in X. Then 7! : Y — X is defined and it is a linear operator.
Now, for any y € Y with y # 0 and any ¢ > 1 we have that TZH yisin{y € Y||ly|| < 1}, and (i)

implies that there is = € X so that ||x|| < M and TZH y =T (x). Thus

1T~ @)l = tllylllz] < Myl

Since t > 1 is arbitrary, we get || T~ (y)|| < M]||y||. This is also true for y = 0, and we conclude
that [|T~1(y)| < M||y|| foreveryy € Y. O
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6.8 The closed graph theorem.

Definition. Let X, Y be normed spaces, and let T' : X — Y be a linear operator. We say that T
is closed if for every sequence (z,,) in X such that x,, — x in X and T'(x,,) — y in Y it follows
that T(x) = y.

If X,Y are linear spaces, then we know from Linear Algebra that their direct sum
XaY={(zy)|re X yeY}

is their cartesian product, equipped with the linear space operations

(x1,y1) + (T2, 92) = (21 + 22,91 + ¥2), Az, y) = (Az, A\y).

Definition. Let X,Y be normed spaces. We consider || - || : X & Y — R defined for every
(x,y) e X Y by
G, 9l = ]l + [yl

It would be more precise to write ||(z,y)|| = ||z||x + ||y|ly, or something similar, since the
spaces X, Y may not have the same norm. But we ignore this, keeping the simpler notation.

Proposition 6.19. Let X, Y be normed spaces. Then the function || - || defined on X &Y is a norm.
Moreover, if X, Y are Banach spaces, then X ® Y is a Banach space.

Proof. Exercise. U
Definition. If f : A — B, then the set G(f) = {(a, f(a))|a € A} C A x B is called graph of f.

It is trivial to show that, if X, Y are linear spaces and 7' : X — Y is a linear operator, then
G(T) is a linear subspace of X & Y.

Lemma 6.2. Let X, Y be normed spaces, and T' : X — Y be a linear operator. Then T is closed
ifand only if G(T') is a closed subspace of X &Y.

Proof. Exercise. O

Proposition 6.20. Let X,Y be normed spaces, and T’ : X — Y be a linear operator. If T is
bounded, then T is closed.

Proof. Exercise. O

The closed graph theorem. Let X, Y be Banach spaces, andT' : X — Y be a linear operator. If
T is closed, then T is bounded.

Proof. LetT : X — Y be closed. Proposition 6.19 and lemma 6.2 imply that G(T') is a closed
subspace of the Banach space X @ Y and hence it is a Banach space.
We consider S : G(T') — X defined for every x € X by

S(z,T(x)) = =x.

It is clear that S is a linear operator which is one-to-one in G(7") and onto X. Moreover, S is
bounded since

15(z, T(@)| = llzll < =[] + [|T(2)|| = ||z, T(z))]| forevery z € X.

The open mapping theorem implies that S~ : X — G(T) is bounded and so there is C' > 0 so
that
]| + 1T (@) = [[(z, T(2))]| = ST (@) < Clla| v kdBe z € X.

Therefore, C' > 1, and also ||T'(z)|| < (C' — 1)||z|| for every z € X. O
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6.9 Operators in sequence spaces.

Let 7" be a linear operator mapping sequences of elements of I to sequences of elements of F'. We
define the infinite matrix

ail a9 AT

a21 a2 ... Q2n
[T] = [ai;] =

Anl Ap2 ... Qnn

where the numbers a;;, 1 <4, j < 400, are determined by
T(ej) = (aij,a95,...), j=1,2,....

Of course, (e;) = (d;;), with 6;; = 1,if i = j, and 6;; = 0, if i # j. In other words, the j-th
column of [T7] is formed by the coefficients of the sequence/element T'(e;).
We shall see a few important examples of such operators.

Example 6.9.1. We consider a fixed sequence m = (y;) in F', and the operator M,,, mapping any
sequence x = (;) in F' to the sequence

y = Mp(z) = (LiXi)-
The operator M,, is called multiplication operator, and it is very easy to show that M, is linear.

Proposition 6.21. Let 1 < p < +o00. Then M,, : [P — [P is bounded if and only if m € [*°, and
in this case we have | M, || = ||m||co-

Proof. Letm = (u;) € [*°.
If 1 < p < 400, then for every 2z = ()\;) € I” we have

—+00 —+00
D oIl < mlB Y Nl = [[mlBllz]lf < 400,
=1 i=1

and so My,(xz) € [P, and | My (z)||, < |[m|ool|z||p- Similarly, if p = +oo, then for every
x = (\;) € 1> we have

sup |piAi] < [|m]oo sup |Ai] = [lm|oo||#]lc0 < +o0,
i€EN ieN

and so M, (z) € [*°, and || M, () ]|co < ||m||oo]|Z]|00-

Thus, M, : [P — [P is bounded, with || M, ]| < ||m/|cc-

Conversely, assume that M,, : [P — [P is bounded.

For each j we have ||e;|, = 1. Moreover, M,,(e;) = (1:0i;), where p;0;; = p;, if ¢ = j, and

pid;; = 0, if i # j. Therefore,
[ M| = [[ M (e5)[lp = 1]

for every 7, and hence || M| > [|m]|co-
We conclude that || M, || = [|m||co- O
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Now, we shall determine the matrix [M,,| = [a;;]. We have seen that for each j we have M, (e;) =
(uiéij), where ,U,Z‘(Sij = Ky, ifi = j, and Niéij =0, if 4 7& ] Thus, Q5 = Mj, ifi = j, and Q5 = 0,
if i # j. Therefore, [M,,] is the diagonal matrix with the sequence m = (1;) on its main diagonal:

_Ml 0O ... 0
0 Mmoo 0
M) = | ¢ :
0 0 ... punp

At the beginning of the proof of proposition 6.21 we showed that, if m € [°°, then M,,,(z) € [P for
every x € [P. This was done using elementary inequalities. The converse is much more difficult,
and it uses either the closed graph theorem or the uniform boundedness principle.

Proposition 6.22. If M,,(x) € [P for every x € [P, then m € [*°.

First proof. We take any sequence (x,,) of elements of [P, and we assume that x,, — z in [ and
that M, (z,) — yinlP. If x,, = (A\y;) and z = (\;) and y = (k;), then M,,(z,) = (i \ni), and
so for every ¢ we have

[Ani — il < lzn — zllp = 0, |pirni — kil < ||My(2n) —yllp — 0.

Therefore, k; = p;\; for every i, and hence y = M,, ().

We conclude that M), is a closed operator, and so, according to the closed graph theorem, that M,,,
is bounded. Now, proposition 6.21 implies that m € [*°.

Second proof. We consider the sequence m,, = ({1, - - ., fin,0,0,...). Then m,, € [°° and so the
operator M, : [P — [P is bounded with || M., || = ||mn]|co-

Let 1 < p < 400, and take any = = (\;) € [P. Then M,,(x) = (u;\i) € P, and hence

“+o00
[ M (2) = My, ()| = > [piXil? = 0 when n — +oc.
i=n+1

Thus, My, (z) — Mp,(x) when n — +o00, and so sup,,cy || M, ()|, < +o00. Itis easy to see
that the same is true when p = +o0.
Now, the uniform boundedness principle implies that sup,,cy || Mim,, || < 400, i.e. there is M <
—+00 so that
<M f .
lréliagxn || < or every n
Of course, this implies that sup,y || < M, and so m € [*°. O

If1 <p< +4ooand % + % = 1, then we know that there is a linear isometry S : (9 — (IP)" which
is onto (IP)". The operator S is defined for every y = (k;) € 1% by

+o0
S(y)(z) = Z kiA; forevery x = ()\;) € IP.
i=1

Proposition 6.23. Let m = (p;) € I, and 1 < p < +o0, % + % = 1. If we consider the
multiplication operator M,, : I’ — IP, then M! = SM,,S~!: (IP)" — (IP)'.

Proof. The dual operator M), : (I?)" — (IP)’ satisfies:

M! (S(y))(x) = S(y)(My,(z)) forevery x €17, y € l9.
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Thus, if x = (\;) and y = (k;), then M,,(z) = (piAi) and My, (y) = (uik4), and so

+oo +o00o

M (SW))(x) = S(y)(Mm(z)) = S(y)(miri) = D ki(widi) = Y _ (ki) Ai = S(Mn(y))(x).
i=1 i=1

Therefore, M/ (S(y)) = S(M,,(y)) for every y € 19 and hence M, S = SM,,. O

Therefore, if we identify every element S(y) € (I?)" with the corresponding element y € 1%, then
the equality M, (S(y)) = S(M,,(y)) which appears in the last sentence of the previous proof,
says that M/ (y) = M,,(y) for every y € 1. In other words, if we view the dual operator M, :
(IP)" — (IP)" as an operator from /7 to 1%, then it is again the multiplication operator M, : {9 — 14
determined by the same m.

Proposition 6.24. Let m = (1;) € [°°. If we consider the multiplication operator M,, : 1> — 12,
then M}, = Mz : 12 — I, where m = (Jz;).

Proof. The adjoint operator M}, : 12 — [? satisfies:
(@, My,(y)) = (M (), y) forevery z € I?, y € I°,

Thus, if x = (\;) and y = (k;), then M,,,(z) = (u;\;) and M (y) = (1 K4), and so

+o0 +oo
(@, My () = (M (), ) = (i), (50)) = > ki = > Nifia i = (i), (77 kq))
i=1 i=1
= (2, Mz (y))-
Therefore, M}, (y) = Mz (y) for every y € [? and hence M}, = M. O

Example 6.9.2. We consider the operators 73,7, : [P — [P defined for every z = (\;) =
(A1, A2, A3, . ..) € 1P by

TZ(L’E) = ()\2,)\3, .. .), TT(.%') = (0,)\1,)\2,)\3, .. )

The operator 717 is called left translation, and 7’. is called right translation.

It is clear that both operators are linear and bounded with norms ||7;|| = ||7}|| = 1.

The matrix of 7} has all its coordinates equal to 0 except for its coordinates on the first diagonal
above the main diagonal which are all equal to 1. Similarly, the matrix of 7} has all its coordinates
equal to 0 except for its coordinates on the first diagonal below the main diagonal which are all
equal to 1:

01 00 000
1 0 0
i 0010 7] 01 0
l pu— pu—
0 0 01 r 00 1
In other words, [T}] = [ai;], where a;; = 1,if j —i = 1, and a;; = 0, if j — ¢ # 1. Similarly,

[Tr] = [aij], where Qi5 = 1, if 7 —j = 1, and Qi5 = 0, if 7 —j 75 1.

Proposition 6.25. Let 1 < p < 400, 1% + % = 1. If we consider the operators 1;,T,. : I[P — [P,
then T/ = ST, S~ : (IP) — (I?) and T, = ST,;S~' : (IP) — (I7)..

Proof. The dual operator T} : (IP)" — (IP)’ satisfies:

T/ (S(y))(z) = S(y)(T;(z)) forevery z € P, y € l9.
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Ifz = ()\1,)\2, .. ) andy = (H,l,h‘,g, .. .), then Tl(a?) = ()\2,)\3, .. ) and Tr(y) = (0, K1,K2, .. .),
and so

T/ (S(y)(x) = S(y)(Ti(z)) = S(y) (A2, A3, . ..) = K1da + KaAs + -+
=0A + KiXoa + Kodg+ - = S(Tr(y))(x)

Therefore, T} (S(y)) = S(T»(y)) for every y € (7 and hence T}S = ST,.
The equality 7/S = ST} has a similar proof. O

Just as we did in the previous example, if we identify every element S(y) € (I?) with the cor-
responding element y € 19, then the equality 7}(S(y)) = S(7,(y)) which appears in the last
sentence of the previous proof, says that 7} (y) = T).(y) for every y € 9. Hence, if we view the
dual operator 7} : (")’ — (IP)" as an operator from {7 to [%, then it is equal to 7} : 17 — 9.
Similarly, if we view the dual operator 7 : (IP?)" — (IP)’ as an operator from [7 to {9, then it is
equal to 7; : [9 — [4. Thus, in this sense, the right translation and the left translation are each the
dual of the other. This is justified even more by the next proposition which says that in the case
p = q = 2 the two translations are each the adjoint of the other.

Proposition 6.26. If we consider the operators T;,T, : 1* — I?, then T} = T, : I* — I? and
Tr=1Ty: 1% — 2

Proof. The adjoint operator 7" : [2 — [? satisfies:
(x,T7 (y)) = (Ti(x),y) forevery z € ?, y el

Ifr = (Al,)\g, .. ) andy = (Hl,/‘&Q, .. .), then Tl(.’L') = ()\2,)\3, .. ) and Tr(y) = (0, K1,K92, .. .),
and so

(z, T (y)) = (Ti(w),y) = Xak1 + Azkia + -+ = M0+ Aok + Agkz + - - = (2, T0-(y))-
Therefore, T} (y) = T(y) for every y € [%, and hence T} = T;.. Now, T = (1}")* = T;. O

Example 6.9.3. We take a double-sided sequence ¢ = (1;)icz = (- .. fh—2y b1, 405 [15 (42, - - -)
in F', and we consider the operator T, : [P — [P defined for every x = (\;) by T.(z) = (ki),
where

+o0o
’ii:ZHifjAja i:1,2,....
j=1

Then T, is called Toeplitz operator corresponding to c.
We shall not study the boundedness of T... We only remark that the matrix [7] is

Mo H-1 H-—2
M1 Mo H—1
[TC] =

K2 H1 o Mo

In other words, [T¢] = [a;;], where
Qjj = Mi—j, 1 S%] < +o0.
The coordinates in every diagonal which is parallel to the main diagonal are all equal.

Example 6.9.4. We consider a sequence s = (y;) in F, and the operator Hy : I[P — [P defined for
every © = (\;) by Hs(z) = (k;) where

“+00
/‘fi:Z,U/z#jfl)\j, ’L':1,2,... .
7=1
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Then H is called Hankel operator corresponding to s.
As in the previous example, we shall not study the boundedness of H,, but we remark that the
matrix [Hy] is

K1 p2 {3
K2 B3 4
[H s} =

H3 4 M5

Thus, [H] = [ai;], where
Qij = Pivj-1, 1<14,7 <400

The coordinates in every diagonal which is perpendicular to the main diagonal are all equal.

The Toeplitz and Hankel operators (and their applications) are very important.

6.10 Operators in function spaces.

Example 6.10.1.

Theorem 6.3. Let (21, X1, 1) and (22, 3o, p2) be o-finite measure spaces. We consider the prod-
uct measure space (21 x Qg, 31 X Yo, 1 X u2), and a measurable function K : 1 x Q9 — F.
We assume that

@) fo, K (2, y)| dui(z) < Ma for pz-a.e. y € Qa,

(ii) fQ2 | K (z,y)| dua(y) < My for pi-a.e. x € €.
If 1 < p < +o0, we consider the operator T : LP(Qy) — LP(Q2) defined for every f € LP(€)

by

T(F)w) = | Ke.)f@)din@) for pae.y € O

Then T' is a bounded linear operator, and
11
1T} < My My,

where % + % =1
If p = 1, the same is true, with only (ii) as an assumption, and ||T'|| < M;.
If p = 400, the same is true, with only (i) as an assumption, and ||T'|| < M.

Proof. Let1 < p < +oc and take any f € LP(€2;). Then, for ps-a.e. y € Q9, Holder’s inequality
implies

i ns@ane < ([ Keidn@) " ([ Eeoiep o)
<a/( [ Kl dn) "

Thus,

L (] Eas@ldn@) dew <08 [ ([ 1K@l dow) do)

2 1

Tonelli’s theorem implies that

L (] @@l an) anw <2 [ ([ 5l dnm) e e

< [ @ dia(a) < +ox.

971
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Hence le |K (z,y) f(z)| dpi(x) < +oo for ps-a.e. y € Qo, and so T'(f)(y) is defined for pp-a.e.
y € Yand [T(f)(y)| < [q, [K(z,y)f(x)|dp(x) for po-ae. y € Q2. Therefore,

()W) dpa(y) < MM ) | (@)P dpn () = My ME?| £

and hence [ 7(f)l|, < M”30, £
If p=1and f € L'(£2;), from Tonelli’s theorem we have

/Q2 ( o, |K(w,y)f(x)\d/~61(a?)) dus(y) = /Ql ( o, \K(a:,y)\dﬂ2(y)>’f($)’d/i1($)

< M, ; |f(x)|dur(z) < 4o00.

Hence le |K (z,y) f(x)| dui(x) < +oo for us-a.e. y € Qa, and so T'(f)(y) is defined for pz-a.e.
y € 0 and [T(F)(y)| < Jop, 1K (2,9) ()| dpr () for pa-ace. y € Q. So

; IT(f) ()] dua(y) < M A |f (@) dpa (x) = M| flla

and hence [|T'(f)[l1 < M| f]]x.
Finally, if p = 400 and f € L>°(£,), then

o |K (x,y)f(z)| dp1(z) < Mal| flleo < +00

for ps-a.e. y € Qo. Thus T'(f)(y) is defined for us-a.e. y € Q9 and |T(f)(y)| < Mzl f]|o for
pz-a.e. y € Q. Thus, [T(f)]loc < Mo f||oo- u

The operator defined above is called integral operator with kernel K.

Example 6.10.2. We consider a measurable space (£2,Y) and a fixed measurable function m :
Q0 — F. This determines an operator }/,,, mapping every measurable function f : {2 — F'to the
measurable function

g=Mp(f)=mf:Q— F.

The operator M,, is called multiplication operator, and it is a linear operator.

Proposition 6.27. Let (€2, X, 1) be a o-finite measure space, and 1 < p < +oc. Then M, :
LP(Q2) — LP(Q) is bounded if and only if m € L>({2), and in this case we have || M, || = ||m||oo-

Proof. Letm € L*°(9Q).
If 1 < p < 400, then for every f € LP(2) we have

/Q Mo (F)P da = /Q mlP|f1P du < lm|2. /Q P dp = [m|E | FIE < +oo,

and so My, (f) € LP(Q2), and || M, (f)llp < |lmlooll f]lp. Similarly, if p = +oo, then for every
f € L>*(Q2) we have

ess-supq |1, ()] = ess-supg [m f] < ess-supg [m| ess-supq | f| = [ml|oollflloo < +oc,

and so My, (f) € L>(9), and [| My (f) oo < [lmf]oo]l 1] co-

Hence, M,, : LP(Q2) — LP(2) is bounded, with || M, || < [|m]|co-

(In the first part of the proof the assumption that y is o-finite is not necessary.)
Conversely, let M, : LP(§2) — LP(2) be bounded.
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Since p is o-finite, there are By, € X so that | J;>] By, = Q and u(By,) < +oo for every k.
For each n € N we consider the set

A, = {a; cQ ( im(a)| > || Mo + %} =

Then A, = {25 (Bx N A,) and (B N Ay,) < 400 for every k. If u(Bj, N A,) > 0, we take
[ = xB.na4, and we have

1
(HMmHJrE)(u(BmAn))l/p < Nmfllp = 1M (Hllp < 1Ml £llp = | Ml (1(Ben An)) P

when 1 < p < +0o0, and

1
1Ml + = < Imflloe = [1Mim(f)lloo < [1Miml]| Flloo = 1| Mnm]

when p = +o00. In both cases we arrive at a contradiction, and so p(By N A,,) = 0 for every k.
Thus, 11(A,) = 0 for every n, and so ||m||ecc < || M| O

Proposition 6.28. Let (2, X, 1) be a o-finite measure space, and 1 < p < +oo. If M, (f) €
LP(Q) for every f € LP(Q2), then m € L>(Q).

First proof. Let f, — fin LP(Q) and mf, = M,,(fn) — ¢ in LP(Q2). Then there is a subse-
quence (fy,) of (fy) so that f,, — fand mf,, — g p-a.e. in Q. Hence, g = mf = My, (f).
The closed graph theorem implies that M, is bounded, and now proposition 6.27 says that m €
L>(Q).

Second proof. Let A = {x € Q||m(z)| = +oo}. Since p is o-finite, there are By € X so
that /2] Br, = Q and pu(By) < +oo for every k. If (B, N A) > 0, we take f = xp,n4,
and we have that f € LP(2) and |M,,(f)| = |mxB,nal = +oo at a set of positive measure,
and so M, (f) ¢ LP(€2). We conclude that p(Bx N A) = 0 for every k, and so u(A) = 0, i.e.
|m(z)| < +oo for p-a.e. x € Q.

Now, for each n € N, we consider the function m,, = min{m, n}. Then |m,(z)| < n for u-a.e.
x € Qandso M,,, : LP(Q) — LP(Q) is bounded, with || M,,, || = ||mn]|co < n.

We also consider the sets A, = {z € Q||m(x)] > n} = {z € Q|m(z) # mu(x)}. Since
Im(z)| < +oo for p-a.e. x € Q, we have that p( (2] A,) = 0.

Let 1 < p < 400, and take any f € LP(Q2). Then M,,(f) = mf € LP(2), and, according to the
dominated convergence theorem,

My (f) = Mo, (P2 = / F(@)P =0 when n — +oc.

n

Thus, My, (f) = My (f) when n — +o00, and so sup,,cy || Mo, (f)|l, < +oo. Itis easy to see
that the same is true when p = +o0.

Now, the uniform boundedness principle implies that sup,,cy || Mm
~+00 so that

| < 400, i.e. thereis M <

|

lmnllec < M for every n.

Of course, this implies that m € L>°(2). O

Example 6.10.3. We consider the differentiation operator D : C'([-1,1]) — C([-1,1]) de-
fined for every f € C1([—1,1]) by

D(f)(z)=f'(z), -1<z<l1.

We consider C'([—1, 1]) as a subspace of C'([—1, 1], with the uniform norm.
Now, we consider any sequence ( f,,) in C1([—1, 1]) sothat f,, — fin C'([-1,1])and D(f,) — h
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in C([-1,1]). Thus, || fn — f|lu — O and || f;, — k|l — O.
For every n we have

fn(b) — fnla) = /b fl(x)dx forevery a,be [-1,1].

By uniform convergence, we get

b
f(b) — f(a) :/ h(z)dx forevery a,b € [—1,1].

Since h is continuous in [—1, 1], we get f'(z) = h(x) for every x € [—1,1]. Thus, D(f) = h,
and we conclude that D is closed.
But D is not bounded: we consider f,,(x) = z™ and we have

[fallu =1, D) llu = n,

and so
sup ID()llu = +oc.
fec (=11l fllus1
The closed graph theorem cannot be applied, because C*([—1, 1]), as a subspace of C([—1, 1]), is
not a Banach space. To see this, we consider the sequence (g,,) in C*([—1, 1]) given by g, (z) =
|2|(»+1)/" Then it is easy to see that g, — g in C'([—1, 1]), where g(z) = |z|. So (g,,) is a Cauchy
sequence in C'*([—1, 1]), but it does not converge to a function in C*([—1, 1]).

6.11 Compact operators.

Definition. Let X, Y be normed spaces, and T € L(X,Y). We say that T is compact or com-
pletely continuous, if T'(Bx ) has compact closure in Y, where Bx = {x € X |||z| < 1} is the
closed unit ball with center 0 of X.

The set of all compact T € L(X,Y") is denoted K (X,Y"), and the set of all compactT € L(X) is
denoted K (X).

Proposition 6.29. Let X, Y be normed spaces, and T' € L(X,Y).

(i) T' is compact if and only if for every bounded sequence (zy,) in X there is a subsequence (zy,,)
so that (T'(xy,,)) convergesinY'.

(ii) If T is compact then for every bounded K C X the image T'(K') has compact closure in Y.

Proof. (i) Let T' be compact, and take any bounded (x,,) in X. If ||z, | < M for every n, then the
sequence (1'(%%))isinT(Bx) C cl(T'(Bx)). Since cl(T'(Bx)) is compact, there is a subsequence
(2n, ) such that T(%) — y forsome y € Y. Then T'(z,, ) - My inY.

Conversely, take any (y,,) in cl(T(Bx)). For each n there is z,, € Bx so that | T(z,,) — yn| < 2,
and so there is a subsequence (zy, ) so that T'(z,, ) — y for some y € Y. Then

1
i =yl < Mmic = T@n )l + 1T @ni) =9l < -+ 1T () = wll = 0

and so y,, — y. Now, since cl(T'(Bx)) is closed, we get y € cl(T'(Bx)). Therefore, cI(T'(Bx))
is compact.

(ii) Let T be compact, and take any bounded K C X. Then there is M so that ||z|] < M for every
x € K,and so K C M Byx. Since T is linear, we have that

T(K) C T(M Bx) = MT(Bx) C M cl(T(Bx)).

Now, M cl(T(Bx))is closed andso cl(T(K)) C M cl(T(Bx)). Therefore, cl(T(K)) is a closed
subset of the compact set M cl(7'(Bx)), and so it is compact. O
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Proposition 6.30. Let X, Y, Z be normed spaces.

(i) K(X,Y) is a linear subspace of L(X,Y).

(ii) If Y is a Banach space, K (X,Y) is a closed subspace of L(X,Y).

(i) If T € L(X,Y)and S € L(Y, Z), then ST is compact if at least one of S, T is compact.

Proof. (i) Exercise.

(ii) Take any (7},) in K(X,Y)and T € L(X,Y) so that || T, — T'|| — 0.

We consider any bounded sequence (z,,) in X. Then there is M so that ||z, | < M for every n.
Since T} is compact, there is a subsequence (x1,) of () so that (T} (x1,)) is convergent, and
hence it is a Cauchy sequence in Y. Since 75 is compact, there is a subsequence (x2;,) of (z1,,) so
that (T5(z2,,)) is convergent, and hence it is a Cauchy sequence in Y. Since T3 is compact, there is
a subsequence (x3;,) of (x2,) so that (73(z3,)) is convergent, and hence it is a Cauchy sequence
in Y. Continuing inductively, we find successive sequences

(zp) : L1, Ly Ty e

($1n) : T11, 2125+ -+, Tlny - - -
(lﬂzn) : T21, 222y -+, L2ny - -+
(Cckn) : $k1737k27'~737kn7-~

so that each of them is a subsequence of the previous one, and so that (7} (zx,)) is a Cauchy
sequence in Y for each k& > 1.

Now we consider the diagonal sequence (), which is a subsequence of the original (z,,), and
is such that (Tj(z,,)) is a Cauchy sequence for each k. Indeed, after its k-th term, (T (xyy)) is a
subsequence ot (7% (xky))-

Now we take any € > 0. Then there is & so that ||T}, — T'|| < 33777 and then there is ng so that
1Tk (Tnn) — Ti(Tmm)|| < § when n,m > ng. Thus,

1T (znn) = T(@mm) | < 1T (@nn) = Tr(@nn) | + | Tk(Tnn) — Tr(@mm)||
+ 1Tk (Zmm) — T(Tmm) ||
< MIIT = Tyl + | Ti(nn) — T | + MITi = T

L
37373°°¢

for every n,m > ng. So (T(xyy)) is a Cauchy sequence in Y and, since Y is complete, it con-
vergesin Y.
We proved that for every bounded sequence () in X there is a subsequence (x;,) so that

(T'(xyy)) converges in Y. Proposition 6.29 implies that 7" is compact.
(ii) Let 7" be compact. We have that

(ST)(Bx) = S(T(Bx)) € S(cl(T(Bx)))-

Now, cl(T'(Bx)) is compact and, since S is continuous, S(cl(7'(Bx))) is compact. Therefore,
c((ST)(Bx)) € S(cl(T'(Bx))) and so cl((ST)(Bx)) is compact.

Let S be compact. Since 7" is bounded, 7'(Bx) is bounded. Hence, according to proposition 6.29,
c((ST)(Bx)) = cl(S(T'(Bx))) is compact. O

Proposition 6.31. Let X,Y be normed spaces, and T' € L(X,Y). If dim(R(T)) < +o0, then
T e K(X,Y).
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Proof. We have T'(Bx) C R(T'). Since R(T) is finite dimensional, it is a closed subspace of
Y, and so cl(T'(Bx)) € R(T). Since T is bounded, T'(Bx) and hence cl(T(Bx)) is bounded.
Thus, cl(7(Bx)) is a closed and bounded subset of a finite dimensional normed space, and so it
is compact. O

Proposition 6.32. Let X,Y be normed spaces, dim(Y') = o0, and T' € L(X,Y). If T is com-
pact, then T(Bx) has empty interior. In particular, if T is a homeomorphism, then T is not
compact.

Proof. Proposition 1.26 implies that cl(7'( By )) has empty interior. Hence, also T'( Bx ) has empty
interior.

If T is a homeomorphism, and Uy is the open unit ball with center 0 of X, then 7'(Ux) is open.
Now, T'(Ux) € T(Bx ), and so T'(Bx ) has nonempty interior. Therefore, T" is not compact. [J

Example 6.11.1. We consider m = (u;) € [°°, and the multiplication operator M, : [P — [P
defined for every « = (\;) € P by M,,(z) = (i\i) € [P. We know that M,,, € L(I?), and
[ M| = [Im]]co-

Proposition 6.33. M,,, € K (IP) if and only if m € c.

Proof. If (y;) does not converge to 0, there is 6 > 0 and a subsequence (1, ) of (1;) so that
|pi, | > 0 for every k. Then for every k, [ with k # [ we have that

1M (€)= M (ei)lp = (s [P + | [P)/P > 2176 > 0,
if 1 <p < 400, and
HMm(eik) - Mm(eiz)HOO = max{|uik‘7 |Miz‘} >4 >0.

So there is no convergent subsequence of (M, (e;, )), and hence M, is not compact.
Now, let ; — 0. For each n we consider the sequence m,, = (p1,. .., tn,0,0,0,...) and the
corresponding multiplication operator M,,, : I’ — [P. Then for every x = ()\;) € [P we have

My, () = (11, - - -5 A, 0,0,..0).

It is clear that R(M,,,, ) C span({e1,...,e,}). According to proposition 6.31, M, is compact.
Now, for every x = (\;) € [P we have
My (x) = M, (z) = (115 -+, B Ans fnp1 Ant 15 B2 An42; - - -)
- (}L1>\1, ey Mn)\na O, 0, .. )
= (0>\1’ oo 0Ap, Mn-i—l)\n—i-l’ Nn+2)\n+27 .- ) = Mm—mn (55)

Therefore, M,, — M,,, = M;,—m,, and so
[Mm, — M, || = | Min—m, || = [[m — mnllec = sup |ui| —0
i>n+1
when n — +o00. Now, proposition 6.30 implies that M, is compact. O

Example 6.11.2. This example considers an integral operator between spaces of continuous func-
tions.

Theorem 6.4. Let A, B be compact topological spaces, K : A x B — F be continuous in A X B,
and p be a Borel measure on A. Then the integral operator, defined for every f € C(A) by

T = [ Kle)f@)dua) forevery y < B
is a compact operator T': C(A) — C(B) with || T|| < sup,cp [, |K(x,y)| du(z).

143



Proof. Let n € N. For every (z,y) € A x B there are open neighborhoods U, y, V., of =,y so
that

1
K (z',y") — K(x,9)|] < - for every (z,y') € Uy y X Vi y.

Then for every z € A we have B = UyE g Viy- Since B is compact, there are yq, . .., ¥y, so that
B = UL Vay,. Now we take U, = [\, Uy, , and then U, is an open neighborhood of z.
Now let 2’ € U, and y € B. Theny € V,,, forsome k =1,...,m, and then 2’ € U, ,, . Hence

1 1 2
(@' y) — K, y) < 1K y) = Koyl + K (,y) = Ko <+ ==

for every (/,y) € U, x B. Since A is compact and A = |J,. 4 U, there are 1, ...,z so that
A= U§:1 Uy, Finally, we consider

Ay = Uy, Aj:ij\(leu'”UU$jfl)7 2<j<p.

Then the sets Ay, ..., A, are pairwise disjoint Borel sets, A; C U, forevery j = 1,...,p, and
A= U?:l Aj. Moreover, for every j and every x € A; we have

2
|K(z,y) — K(xj,y)| < — forevery y € B.
n

Now for every f € C(A) we write

= [ K@) dute) - > / (o) (0) ()
= ; /Aj K(zj,y)f(z) du(z) + ; /Aj(K(ﬂc,y) — K(xj,9))f(z) du(z).

We consider the function

:;/Ajmxj,y) ) d( :; /f )du(a)) K (2;,9).

This is a linear combination of the functions K (z1, ), ..., K(z;,-) which are continuous in B,
and so Sy, (f) is continuous in B. Also

p

5.1 =TI = [ 3 [ () = Ky o) )|
j=174
gg/A [, ) — K (2 )1 )| da(z)

Z/ @l anta) = 2 [ 17000 dute) < 240D

for every y € B. Thus ||Sn(f) — T(f)|l« M. So the sequence (S, (f)) isin C(B) and
converges to 7'(f) uniformly in B. Therefore T( f) € C(B)andsoT : C(A) — C(B). The
operator 7' is clearly linear. Also

T ( |</|Kﬂfy!|f( ) dp(x /IKﬂ:yldu( ) ([ £l

for every y € B. Therefore ||T'(f)||, < M||f||. for every f € C(A), where

sup/\Kﬂcy\du ).
yeB
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So T is bounded with || T|| < M.
Now we observe that S,, : C(A) — C(B) is a bounded linear operator. Indeed,

[Sn ()] < ;/Aj [f (@) dp(z) [K (25, y)| < HKIIu/A!f(w)Idu(fE) < 1K s -

Finally the operator S,, : C'(A) — C(B) has finite dimensional range:
R(Sn) € span({K (z1,-), ..., K(zp,-)}).

Therefore, S,, is a compact operator. Since ||.S,,(f) — T(f)|l. < % for every f € C'(A),
we have that ||.S,, — T'|| < % — 0, and we conclude that 7" is compact. O

Example 6.11.3. Another example of a compact integral operator.

Theorem 6.5. Let 1 < p < +o0, % + % = 1, and let (21, %1, u1) and (g, X, u2) be o-finite
measure spaces. We consider the product measure space (€21 x Qg,%1 X Yo, 1 X u2), and a
measurable function K : )y x Q9 — F. We assume that

a 1
([ (] K@l aunw)” duw)’ =M < +.
o ~Jo,
We consider the operator T' : LP(21) — LP()9) defined for every f € LP(€);) by

() = [ Ky f)du() for prae.y e

Then T is a compact linear operator, and | T|| < M.

Proof. At first we assume that 1, po are finite measures and that f, K are essentially bounded
functions. Then for every y € Q3 we set h(y) = le |K(x,y)||f(x)| dpi(x), and, applying
Tonelli’s theorem and then Hélder’s inequality, we find

/ h(y)P dpialy) = / By () dua(y)
Q2

Qo

~ [ ([ B wlher duw)is@)] do)
Q0 Q2

< ([ mwrawew)” [ ([ Kepraew) i)

Hence,

</Q h(y)pdﬂz(y))l/pg/g (/Q \K(x,y)\pduz(y)>l/p\f(x)ydul(x)
<([ ([ 1K@l dew)"” da@) ([ 15@Pdn@) "

If the general case, we consider sets €21, Q2 n so that p1 (21 x) < +ooand 2 (22 x) < +oo for
every N, and ; y 1T € and Q3 T Q2. We also consider the functions fx (z) = min{ f(z), N}
and Ky (z,y) = min{ K (z,y), N }. We write (6.7) for Q; n, Q2 n, fn, K and the corresponding
hn, and we apply the monotone convergence theorem. We conclude that

([ v am)” <3 ([ 1spame)”

(6.7)
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If f e Lp(Ql), then h(y) < 400 for Mo-a.e. y € . Thus, T fQ )d,ul( )
is well defined for uq-a.e. y € €29, and

(f, rner ) <o ( [ epanw)™

SoT : LP(2y) — LP(Qe) is bounded, and ||T'|| < M.

To prove that 7" is compact it is enough to prove that for every e > 0 thereis S : LP(21) — LP(Qq)
so that dim(R(S)) < +oo and ||T"— S| < e.

It is clear that, taking the positive and negative parts of the real and the imaginary parts of K it is
enough to assume that K (x,y) > 0 for every (z,y) € Q1 x 2. As before, we consider the ©; v,
Q9 ny and Ky (x,y) = min{ K (x,y), N} and we also consider

K(N) (ZIS‘, y) = KN(Q?, y)XQLN (x)XQQ,N (y)

If T(Y) is the integral operator corresponding to & (¥), then the dominated convergence theorem
implies

-7 < ([ ([ 1K) - KO )" dn@) " o

So there is N such that |7 — T(V)|| < 3
Then we take the sets

—1)N

ConMm = {(x,y) ) (m— LN

N
(N) < may <m<
<K (:c,y)_M}, 1<m<M

and we set
Ly =N Z XComnr

If Sy is the integral operator defined by the function L, then

T = sl < ([ ([ 1K) - L)l dustw)"” (@)

N N N
< 57 (@)Y aa(05™) V.
So there is M such that ||[T(Y) — Sy/|| < g
Finally, for each C,,, s there are Cy, ark, each of which is a union of pairwise disjoint sets of the
form A; x Ag with A1 € X1, Ay € Y, so that XCorrk T XCpopr 8-€. 1N Q1 x Q9. This implies
that ||Sys — Sar k|| — 0, where Sy, is the integral operator defined by

Lk —NZ XClmoat e

Now we consider S = Sy i, where k is large enough to have ||Sys — Sy < §.
Therefore, || — S| < € and it is easy to see that dim(R(S)) < +occ. Indeed, S is a linear
combination of integral operators of the form

vihw = |

951

XAy x Ay (T, ) f () dpy () = ( A f(x) dul(w)) X4, (Y)

and we obviously have R(U) C span({x4,})- O
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Definition. Let A be a topological space, and let F be a collection of functions f : A — F.

(i) We say that F is bounded at a € A, if there is K > 0 so that |f(a)| < K for every f € F.
(ii) We say that F is equicontinuous at a € A, if for every ¢ > 0 there is an open neighborhood
U ofasothat |f(a') — f(a)| < € foreverya’ € U and every f € F.

It is obvious that, if F is equicontinuous at a € A, then every f € F is continuous at a.

The theorem of Arzela-Ascoli. Let A be a compact topological space, and F C C(A) be bounded
and equicontinuous at every a € A. Then for every sequence (f,) in F there is a subsequence
(fn,.) which converges uniformly in A to some f € C(A).

Proof. We take any n € N and then for every a € A there is an open neighborhood U, ,, of a so
that |f(a’) — f(a)| < & for every a’ € U, and every f € F. Since A is compact, there are
Anls- - ., Apm, € Asothat A = ;" U,,, n- Now we consider the countable set

nk,T
B={ap|neNk=1,...,my}.

By its construction, to every b € B corresponds an open neighborhood V}, of b, and these neigh-
borhoods have the following property: for every ¢ > 0 there are b), ... b(®) € B so that
A =Jf_, V) and so that for every i = 1,...,p we have | f(a) — f(D)] < eforevery a € Vi
and every f € F.

Now, we take any sequence ( f,,) in F. Since B is countable, we may write

B = {b,,|m € N}.

The set {f,,(b1) |n € N} C F is bounded. So there is a subsequence (f1,) of (f5) such that
(f1,n(b1)) is a Cauchy sequence in F'. Similarly, the set { fi ,(b2) |n € N} C F' is bounded. So
there is a subsequence (f2,,) of (f1,,) such that (f2,(b2)) is a Cauchy sequence in F'. Similarly,
the set { f2,(b3) |n € N} C F is bounded. So there is a subsequence (f3,) of (f2,) so that
(f3n(b3)) is a Cauchy sequence in F'. We continue inductively and we find

fir fiz fiz oo fin
fo1  fo2 fo3 .. fon

fm,l fm,2 fm,3 fm,n

so that (a) the sequence in every row is a subsequence of the sequence in the previous row, and
hence of the original sequence ( f,,), and (b) (fm.n(bm)) is a Cauchy sequence in F' for every m.
Now we consider the diagonal sequence ( f, ). For every m, (fy ) is, after the value m of the
index n, a subsequence of (f,, ) and hence ( f;, (b)) is a Cauchy sequence in F'. Also, ( fy.n)
is a subsequence of ( f,,).

Now we take any ¢ > 0, and then we consider the corresponding b("), ..., e B so that A =
UY_; Vi) and so that for every ¢ = 1, ..., p we have |f(a) — f(O®)| < e forevery a € Vi) and
every f € F.

We take any a € A, and then a € V, ;) forsome: =1,...,p. Then

‘f'ﬂm(a) - fm,m(a)‘ S ’fn,n(a) - fn,n(b(z))’ + ’fn,n(b(l)) - fm,m(b(l))‘
+ ‘fm,m(b(l)) - fm,m(a)‘
Then there is 79 5o that | f, ;, (0%)) — fi.m (b®)| < € for every n,m > ng and every i = 1,..., p.

All these imply |f,.n(a) — fmm(a)] < 3e for every n,m > ng and every a € A, and hence
| frn — frmomllu < 3e for every n,m > ng. Thus, (f, ) is a Cauchy sequence in C'(A), and so it

converges uniformly in A to some f € C(A). O
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The theorem of Schauder. Let X, Y be normed spaces, and T' € L(X,Y"). If T is compact, then
T" is compact. If Y is a Banach space, then the converse is also true.

Proof. Let T be compact. We consider the closed unit ball By of Y”, and we shall prove that
cl(T'(By)) is compact.

The ball By: = {y’ € Y'|||y/|| < 1} is a collection of functions 3’ : cl(T(Bx)) — F, which
is bounded and equicontinuous at every point of the compact set cl(7'(Bx)). Indeed, for each
y € cl(T'(Bx)) we have |y (y)| < |V lllyll < ||y|| for every ¢’ € By, and so By~ is bounded at
y. Also, foreach y € cl(T'(Bx)) and for each ¢ > 0 we take U = {u € cl(T'(Bx)) | [lu—y| < €}
and then we have [y'(u) — y'(y)| < [[v/'[[lu — y|| < € for every y’ € By, and so By~ is equicon-
tinuous at y.

We take any sequence (y,,) in By. According to the theorem of Arzela-Ascoli, there is a subse-
quence (y,, ) which converges uniformly in cl(T'(Bx)) to some f € C(cl(T(Bx))). Then (y,,, )
converges uniformly in 7'(Bx) to f, and hence (y;, oT') converges uniformly in Bx to g = foT.
Thus, T'(yy,, ) — ¢ uniformly in Bx. In particular, 7'(y;, )(z) — g(x) for every z € By, and
hence

7w ) @) = 1217 W) () = Ila ()

for every x € X. Therefore, (T"(y,, )) converges pointwise in X to some function z' : X — F.
Then, clearly, 2’ is a linear functional in X'. Moreover, the uniform convergence of (7"(yj, )) in
Bx implies

IT(5,) — 'l = sup [Ty}, )(x) — ()] — 0.

r€Bx

Thus, T"'(y;,, ) — 2’ in X"
We proved that for every sequence (y;,) in By there is a subsequence (y;, ) so that (T"(y;, ))
converges in X’. Clearly, this can be generalized to every bounded sequence (y/,) in Y”, and then
proposition 6.29 implies that 7" is compact.
Conversely, let Y be a Banach space and 7" be compact. The first part implies that 7" : X" — Y
is compact.
Now we consider the linear isometries Jx, Jy of X,Y into X" Y”. Then for every x € X and
every iy € Y’ we have

T"(Ix(@N) = (Ix@)(T'(Y) = T'(Y)(x) =y (T(x)) = Ty (T(2))(y).

Thus, T7"(Jx (x)) = Jy (T(z)) for every x € X, and hence 7" Jx = JyT.

Now take any bounded sequence (x,) in X. Then (Jx(x,)) is a bounded sequence in X", and,
since 7" is compact, there is a subsequence (x,,, ) so that (7" (Jx (zr, ))) converges to some 3" €
Y"”. Thus, (Jy (T'(zy,))) converges to some y” € Y and so it is a Cauchy sequence in Y”. Then
(T'(xp, )) is a Cauchy sequence in Y, and, since Y is complete, it converges to some y € Y. We
conclude that 7" is compact. O

Theorem 6.6. Let X, Y be Hilbert spaces,and T' € L(X,Y'). Then T is compact if and only if T*
is compact.

Proof. If we consider the conjugate-linear isometries Sx, Sy of X,Y onto X', Y, then proposi-
tion 6.17 says that T* = S 'T" Sy

If T is compact, then the theorem of Schauder implies that 7" is compact, and then the relation
T = S)_(IT’ Sy easily implies that 7™ is also compact.

Now, if 7 is compact, then 7' = (7™)* is also compact. O
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Chapter 7

Spectra of bounded operators

7.1 Spectrum.

Definition. Let X be a normed space, and T' € L(X). We say that \ € F belongs to the resolvent
set of T, if:

(i) \I — T is one-to-one,

(ii)) R(AI — T') is dense in X,

(i) (A —T)~' : R(AI — T)) — X is bounded.

In this case we denote R(\; T) = (M — T)~! and we call R(\; T) resolvent operator of T at \.
The resolvent set of T' is denoted p(T'), and its complement in F' is called spectrum of T', and we
denote it o (T).

If A € o(T), then at least one of (i), (ii), (iii) is false. Thus, o(T") is partitioned in three pairwise
disjoint sets which are defined as follows.

Definition. Let X be a normed space, and T € L(X).

(i) P,(T) is the set of all A € F for which \I — T is not one-to-one.

(ii) R, (T) is the set of all A € F for which A\I — T is one-to-one but does not have dense range.
(iii) Cy(T) is the set of all A € F for which \I — T is one-to-one and has dense range, but its
inverse is not bounded.

P,(T) is called point spectrum of T' and its elements are called eigenvalues of T. R,(T) is
called residual spectrum of T', and C,(T') is called continuous spectrum of 7.

Definition. Let X be a normed space, and T € L(X). It is clear that \ is an eigenvalue of T if
and only if N(AI —T') # {0}. Then N(\I — T') is called eigenspace of ' corresponding to A\, and
its dimension is called multiplicity of \. The elements of N(A\I — T'), i.e. every x € X such that
Tx = Az, is called eigenvector of T" with respect to \.

Example 7.1.1. Let X be a finite dimensional normed space, and let 7" : X — X be linear.

Then 7T is automatically bounded, and for every A € F there are two cases: either A\ -7 : X — X
is not one-to-one, and then A is an eigenvalue of 7', or A\l =T : X — X is one-to-one, and then it is
automatically onto X, its inverse linear operator is also bounded, and so X belongs to the resolvent
set of 7.

Therefore, the spectrum of 7" consists only of the point spectrum, o(7") = P,(T).

If B= {b1,...,b,} is any basis of X, and [T'] = [a;;] is the matrix of 7" with respect to B, then
(Al — T = [Adij — ai;]. We know from linear algebra that \ is an eigenvalue of 7" if and only
if det([Ad;; — a;j]) = 0. The expression in the left side of this equation is a polynomial of X of
degree n with coefficients in F', and we call it characteristic polynomial of 7.

If ¥ = C, then the characteristic polynomial has at least one root (and in fact exactly n roots,
considering multiplicities), and so the spectrum of T is always non-empty.

If FF = R, then the characteristic polynomial may have no root and so the spectrum of 7" may
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be empty. For example, we take n = 2, and we consider the operator defined for every x =
A1b1 + A2bo, A1, A2 € R, by T'(z) = —A2b1 + A1be. Then the characteristic polynomial of 7" is

(|2 3])=xn

In the following we restrict our study in Banach spaces.

Lemma 7.1. Le X be a Banach space, Y be a normed space,andT € L(X,Y). IfT : X — R(T)
has a bounded inverse, then R(T) is closed in Y.

Proof. LetT : X — R(T') have a bounded inverse. Then there is M > 0 so that
lz]| = IT7H(T(2))|] < M| T(x)|

which has no roots in R.

for every z € X.
We take any sequence (y,,) in R(7T') so that y,, — y in Y. For each n there is a unique x,, € X so
that 7'(x,,) = yn. Since

|zn — 2|l < M| T (2 — 2m)l| = Mllyn — ymll,

we have that (z,,) is a Cauchy sequence, and hence x,, — x for some = € X. By the continuity
of T we get that y,, = T'(x,,) — T'(x). Thus, y = T(x) € R(T) and so R(T) is closed. O

Proposition 7.1. Let X be a Banach space, and T' € L(X). Then A € F belongs to the resolvent
set of T if and only if \I — T is one-to-one in X and onto X and (A — T)~! € L(X).

Proof. 1t is enough to prove that, if A belongs to the resolvent set of 7', then R(AI — T') = X.
If A belongs to the resolvent set of 7', then lemma 7.1 implies that R(AI — T') is closed. Since
R(AI —T) is dense in X, we get that R(A] — T') = X. O

In other words, if X is a Banach space, then A\ € F' belongs to the resolvent set of 7' € L(X)
if and only if AT — T is an invertible element of the Banach algebra L(X).

Lemma 7.2. Let X be a Banach space, and T’ € L(X) with ||T'|| < 1. Then I — T is an invertible

element of L(X) with [|(I — T)™}| < 7.

Proof. Since

+oo +o0
I+ D ITH <1+ > 17" < 400
k=1 k=1

and since L(X) is a Banach space, the series I + >> T* converges in L(X). Let
+o0o
I+ Th=5¢€ L(X).
k=1

For every n € N we have
(I+T+ - +THYI-T)=(I-T)I+T+---+T") =1-T"""
Since |7+ < ||T||""* — 0, we have that T"*! — 0 in L(X), and so
S(I-T)=(I-T)S =1.
Thus, I — T is invertible and (I — T')~! = S. Also

1
L= |7

“+o0o +00
I =DM =180 = [+ > 74| <1+ Y i =
k=1 k=1
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Theorem 7.1. Let X be a Banach space, and T' € L(X).
(i) o(T') is a compact subset of F', such that o(T') C {\| || < ||T]|}.
(ii) For every A\, i € p(T') we have

RNT) = Ry T) = (0= RN T)R(ws T).
(iii) R(-;T) : p(T) — L(X) is a continuous function in the open set p(T).

Proof. (i) Take any A € p(T). Then AI — T is invertible and R(\; T) = (A — T)~! € L(X).
We take any p € F with | — \| < ||[R(\;T)|~! and we write

pl =T =X =T — (A= p)I = M —=T)(I — (A= p)R(A;T)).

Now lemma 7.2 implies that I — (A — ) R(\; T') is invertible in L(X'). Thus u — T is invertible
in L(X), and
-1
R(u;T) = (I = (A= )R\ T)) R T).
Hence
IR
| = AR T

We just proved that, if A € p(T'), then all points p which are close to A belong to p(7"). Hence
p(T') is open and so o(7') is a closed subset of F'.

Also, if [A| > ||T'||, lemma 7.2 again implies that A\ — 7" = A\(I — A~'T)) is invertible in L(X).
Thus o(T) C {A||A\| < ||T"||} and so o(T") is compact.

(ii) For each \, u € p(T") we have

IR )] < (7.1)

RN T) = RNT) (Wl = T)R(;T) = ROGT) (0 — NI + (M = T))R(w; T)
= (L= NRNT)R(w; T) + R T).

Hence, R(\;T) — R(u; T) = (u — AN RN T)R(w; T).
(iii) The identity of (ii) together with (7.1) when | — A| < ||R(X; T)||~!, imply

o i — Al[|RO T2
1R(p: T) = R T < 1= [ = MR T

for every A € p(T') and p with [ — A| < ||[R(A\; T)|| 7.
Hence R(u;T) — R(A;T) in L(X) when po — X in p(T). O

Definition. Let X be a Banach space, and T € L(X). If o(T') # (), then the non-negative number

(T) = A
7o (T) Arer;aé)ll

is called spectral radius of T'.

Theorem 7.2. Let X be a Banach space, and T' € L(X).

(i) The limit lim,,_, o ||T™||Y/™ exists, and lim,_, o |T™||Y/™ < || T%||/* for every k.
(i) If |\| > LMy o [T 17, then R(A;T) = 3252 AL,

(iii) If o(T') # 0, then 1o (T') < limy, o0 [T "/,

(iv) If || < 1imy,—s o0 || 77|/, then 3125 AT~ does not converge in L(X).

Proof. (i) We take any k € N and for each n € N with n > k we write n = pk + ¢, where p € N,
q€Zand0<q<k—1.ThenZ — } and £ — 0 when n — +oo. Since

T < PR T < TP
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we getlimsup, . | T"[V/7 < [T,

Since this holds for every k, we get limsup,,_, .. |7™[|"/" < liminf,_ oo ||77'/™. Therefore,
lim,, oo ||77]|M/™ exists and lim,, _, 4 oo ||77]|/™ < ||T%||"/* for every k.

(i) If [A| > lim,,_, o0 || 77]|*/", then we take 7 so that |\| > 7 > lim,,_, ;o || 7"||*/". Then there
is ng so that 7 > ||77||'/" for every n > ng. Then

400 +o0
ST S T < e,
n=ng+1 n=ng-+1

and so >3 A7"T"~! converges in L(X).
If S =3 AT, then

M -T)S= lim M TN T+ 4+ X" = lim (I - X" 7"ty =1
n—+oo n—+o00

Similarly, S(A\ — T) = I, and so R(\;T) = S = Y12 AL,

(iii) Clear from (ii).

(iv) Assume that 3"t A="T"~! converges in L(X). Then |A™"1T"|| — 0, and so there is ng

such that [|A\="~'7"|| < 1 when n > ng. Then |\|*t1)/» > || T"||/" when n > ng, and so

A > limy s yo [T V7. 0

Example 7.1.2. We take m = (j;) € [°° and the multiplication operator M,, : 1> — 2 defined
for every z = ()\;) € 12 by M,,(z) = (ui\;).

We know that M, is bounded with || M,,|| = ||m||s-

For each i we have M,,(e;) = p;e;, and hence every p; is an eigenvalue of M,,, with corresponding
eigenvector e;.

Now, conversely, assume that \ is an eigenvalue of M,,. Then there is a non-zero x = (\;) € 12
so that M,,,(z) = Az, i.e. so that yi;\; = A\, for every i. Since \; # 0 for some i, we get A = p;
for some 1.

Hence P,(M,,) = {ui|i € N}.

Now take any A in the residual spectrum of M,,. Then A is not an eigenvalue, and R(A\] — M,,)
is not dense in /2. Then there is a non-zero y = (k;) € [? which is orthogonal to R(AI — M,,).
This is equivalent to (A\x — M,,,(z),y) = 0 for every = € I. Taking = = e;, we get

0= (Aei — Mp(ei),y) = (Aei — piei, y) = (A — pi)lei, y) = (A — pi) K;

for every . Since \ is not an eigenvalue, we have that A # u; for every ¢, and hence x; = 0
for every 4, i.e. y = 0. We arrive at a contradiction and so the residual spectrum is empty:
Ry, (M) = 0.

Now, assume that A ¢ cl({p; |7 € N}). Then there is 6 > 0 so that |[A — u;| > ¢ for every
1, and hence the sequence m) = (/\%M) is in [*°. So the corresponding multiplication operator
M, : 12 — 1% is bounded, and for every z = ()\;) € [? we have

M, (M = M)()) = Mo, (A = pi)Ni)) = <>\ _1 i (A= Mz')/\z‘> = (M) ==
Thus, My, (A — M,,) = I.
Similarly, (AI — M,,) M, = I, and so (\I — M,;,)"t = M,,, € L(X).
We proved that o(M,,,) C cl({u;|i € N}). On the other hand we have that {u; |i € N} =
Py(M,,) € o(M,,), and, since o(M,,) is closed, we get cl({u; |i € N}) C o(M,,).
We conclude that o(M,,) = cl({p; | i € N}).
Finally, since R, (M,,) = 0, we get that C,,(M,,) = cl({pi |7 € N}) \ {ui |7 € N}.
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Example 7.1.3. We consider the right translation 7} : 1> — (2 given by T,(z) = (0, A1, \a, .. .)
for every z = (A1, Aa,...) € I%

Let X be an eigenvalue of 7}.. Then there is = (A1, Az, ...) # 0in [2 so that T}.(z) = Az, i.e. so
that 0 = A\; and A\; = A\;41 for every ¢ > 1. Considering the cases A\ = 0 and X\ # 0, we easily
see that this is impossible. So we conclude that 7, has no eigenvalues: P,(7,) = 0.

Now take any ) in the residual spectrum of T;. Then R(AI — 7) is not dense in 2, and so
there is a non-zero y = (x;) € % which is orthogonal to R(A\I — T;.). This is equivalent to
(A\x — Ty(x),y) = 0 for every = € I, Taking = = ¢;, we get

0= (Ae; —Tr(€i),y) = (Ne; — €ix1,Y) = ARy — Rip1

for every 4. This implies
y= m(l,x,XQ,XS, S
Since y # 0, we get k1 # 0. Then, since y € [, we get || < 1.

If, conversely, |\| < 1, then we take the non-zero y = (1, A, A ,XS, ... ) which is in {2, and for
every z = (\;) € I we get

<)\(L‘ — Tr(x), y> = A1+ (A2 = A)A+ (A3 — )\2))\2 + (A — /\3)/\2 +---=0.

Thus, the non-zero y € [? is orthogonal to R(AI — T;.), and so R(A\I — T}) is not dense in /2.
Therefore, A is in the residual spectrum of 7;..

Hence, R,(T,) = {\ € F'| |\ < 1}.

Since ||7;|| = 1, theorem 7.1 implies o(7;) C {\ € F'||\| < 1}. Since {\ € F ||\ < 1} =
R,(T,) C o(T},) and o(T;) is closed, we get {\ € F'| |\ < 1} C o(T}).

We conclude that o(7,) = {\ € F||A] < 1}.

Finally, since P,(7}) = 0, we get that C,(T},) = {\ € F'||\| = 1}.

Example 7.1.4. We consider the left translation 7} : [ — 2 given by T;(z) = (A, As, . ..) for
every x = (A1, A, ...) € [2.

Let A be an eigenvalue of 7j. Then there is © = (A1, Az, ...) # 0in [? so that T}(z) = Az, i.e. so
that A\; 11 = A\; for every ¢ > 1. This implies

=AM (1, A2 03, ...).

Since = # 0, we get A\; # 0. Then, since = € [, we get || < 1.

If, conversely, |\| < 1, then we take the non-zero = (1, A\, A2, \3,...) which is in /2, and we
easily see that 7T;(x) = Az. Thus, ) is an eigenvalue of 7;.

We conclude that P, (T;) = {\ € F ||| < 1}.

Now take any A in the residual spectrum of 7;. Then R(\ — T7) is not dense in 12, and so there is a
non-zeroy = (k;) € I? whichis orthogonal to R(AI —17}). This is equivalent to (A\z—Tj(x),y) = 0
for every x € [2. Taking = = e;, we get

0= (Xex — Ti(e1),y) = (Ne1,y) = AF1.
Also, taking z = e; with ¢ > 2, we get
0= (Xe; —Ti(ei),y) = (Nei —ei—1,y) = AR — Ri—1

for every i > 2. Considering the cases A = 0 and A # 0, we easily see that this is impossible.
Therefore, R, (T}) = 0.

Now we follow the last steps of the previous example.

Since ||T;|| = 1, theorem 7.1 implies o(7;) C {\ € F'||A\| < 1}. Since {\ € F ||\ < 1} =
P,(T}) C o(T;) and o(T;) is closed, we get {\ € F'| |\ < 1} C o(T7).

We conclude that o(77) = {\ € F'||\| < 1}.

Finally, since R, (1) = 0, we get that C,(T;) = {\ € F ||\ = 1}.
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In the last part of this section we shall assume that ' = C and we shall see how the methods
of complex analysis give more precise results about the spectrum of bounded operators in Banach
spaces.

Definition. Let Z be a Banach space over C, let U C C be open, and let f : U — Z. Then f is
called holomorphic in U with values in Z, if for every A € U the limit

L £ = F)

USk—\ K—A
exists in Z. This limit is denoted f'(\), and f' : U — Z is called derivative of f in U.

Proposition 7.2. Let Z be a Banach space over C, let U C C be open, and let f be holomorphic
in U with values in Z. Then for every z' € Z' the function 2’ o f : U — C is holomorphic in U in
the usual sense (i.e. as a complex-valued function).

Proof. Exercise. O

Proposition 7.3. Let Z be a Banach space over C, and let f be holomorphic in C with values in
Z. If f is bounded, i.e. if there is M > 0 so that || f(k)|| < M for every r € C, then f is constant
in C.

Proof. We assume that f is not constant in C, and so there are k1, ko so that f(k1) # f(k2).
Then there is 2’ € Z' so that 2/(f(k1)) # 2'(f(k2)). Proposition 7.2 implies that the function
z' o f : C — C is holomorphic in C. Since

("0 f)(m)| = 12 (f ()] < NIZ'[l| £ (5)] < [|2"]| M1

for every xk € C, the theorem of Liouville implies that 2’ o f is constant in C, and we arrive at a
contradiction. ]

Theorem 7.3. Let X be a Banach space over C,and T € L(X).
(i) R(-;T) : p(T") — L(X) is holomorphic in the open set p(T") C C with values in L(X).
(i) o(T) # 0 and 1o (T) = lim,,_ oo || T7||V/™.

Proof. (i) From the equality R(\;T") — R(p; T) = (1 — N)R(X; T)R(u; T') and the continuity of
R(-;T)in p(T) we get

=—R\T)?
p(T)3pu—A p—=A AT

for every A € p(T).
(ii) Assume that o(7") is empty. Then R( -;T’) is holomorphic in p(7T") = C.
Theorem 7.2 implies

+oo
. — —nrpmn—1 : n|l/n
R(\T) ZIA ™ D> lim T (7.2)
o
The same theorem says that lim,,_, ;o || 77||*/™ < ||T||, and so, if |A| > 2T, then

+o0
IR T <D ITIT T < 2007

n=1

Thus, R(-;T) is bounded in C.
Now, proposition 7.3 implies that R( -;7T) is constant in C. Also our last inequality implies that

lim |[|[R\T) < lim 20"t=0
[A| =400 [A| =400
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and hence R(\;T") = 0 for every A € C. This is impossible since R(\; T') is invertible, and so we
get o(T) # 0.

By the definition of the spectral radius, we have that
{A e ClIAl > ro(T)} € p(T).

So (i) implies that R( -;7T) is holomorphic in {\ € C||\| > r,(T)} with values in L(X). Then
proposition 7.2 says for every 2’ € (L(X))’ the function 2’ o R(-;T’) is holomorphic in the same
open set with values in C and so it has a Laurent series:

“+o0o
Z,(R()‘§T)) = Z an('z/))‘_na Al > 7o (T). (7.3)

n=—oo

Since 2’ is continuous in L(X), from (7.2) we get

+00
"(R(\:T)) = TN | li /", 7.4
Z'(R(A\;T)) ;Z( AT |>n¢rpm|| | (7.4)

Now, theorem 7.2 implies that r,(T") < lim,_, 4o ||7"||*/". Moreover, by the uniqueness of

Laurent series, comparing (7.3) and (7.4) we get a,,(z') = 2/(T™ 1), if n > 1, and a,,(z') = 0, if
n < 0. Therefore, (7.3) and (7.4) taken together, say that

+oo
JRNT)) =D Z(THAT, A > re(T).

n=1
By the well known formula for the coefficients of a Laurent series, we have

1

/ Tnfl -
Z( ) 271

7{ Z(RNTHNHaN,  r>re(T).
[Al=r
Now we take any r > r, (7). Since R(-;T) is continuous, there is K, so that ||R(\;T)|| < K,
for every A with |A| = r. Thus
2 (RO THA T < IZIIIRO D)7~ < Kyl

for every A with |A\| = r, and so
1
(T D] < o K|l 2w = K12

for every n > 1.
Now theorem 3.10 implies

It = [£(T"H] < Kpr”

max
ZE(L(X)),[l2']I<1
for every n > 1. Then | T"|| < K,r"** for every n > 0 and so

lim HT”Hl/n< lim Kg/nr(n—l—l)/n:n

n——+oo n——+oo

Since r > r,(7T') is arbitrary, we find that lim,, ;o ||7"||'/" < r,(T'). This, taken together with
7o (T) < limp—s oo ||T7|/™, implies ro(T) = lim,_4o0 || T7]|*/™. O
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7.2 Operators in Hilbert spaces.

Proposition 7.4. Let X be an inner product space, and T' € L(X). Then

17 = sup [(T'(), y)l.
2yeX, al|<1, v <1

Proof. Let M = sup,, e |jo<1,lyj<1 [{T(2), 9)]-
If ||z|| < 1and |ly|| <1, then

[{T(), )| < IT@) Nyl < 1Tzl < 1T,

and hence M < ||T.
If ||z|| < 1and T'(x) # 0, we have

IT@ = (7). )] <.

This is also true when T'(z) = 0, and so we have || T| = sup,¢ x <1 [|T(z)]| < M.
Therefore, ||T'|| = M. O

When T" € L(X) we use the notation
X, =N\ —T).

Thus, A is an eigenvalue of 7" if and only if X\ # {0}, and then X is the eigenspace corresponding
to the eigenvalue ).

Proposition 7.5. Let X be a Hilbert space, and let T' € L(X) be selfadjoint.
() IfY is a subspace of X and T(Y) C Y, then T(Y+) C Y.

(ii) (T'(z),x) € R for every z € X.

(iii) Every eigenvalue of T is real.

(iv) If A1, A2 are eigenvalues of T and A1 # Ao, then X, L X,.

W) Tl = sup,ex o<1 (T (@), ).

Proof. (i) Let T(Y) C Y and take any w € Y*. Then for every y € Y we have T'(y) € Y and
hence

(y, T(w)) = (T(y), w) = 0.
Thus, T'(w) € Y+,
(i) If z € X, we have
(T'(x),z) = (2,T(x)) = (T(x),z).
Hence (T'(z),z) € R.
(iii) Let X be an eigenvalue of T". Then there is 2z € X with z # 0 so that T'(x) = Ax. Hence

(T(x),2) = (o, z) = All2]|.

Now, (ii) implies that A € R.
(iv) Let A1, A2 be eigenvalues of 7" with A\; # Ao. Then for every z; € X, and 2 € X, we
have

)\1<$1,l’2> = <)\1$1,$2> = <T(l’1),$2> = <CL‘1,T(IL‘2)> = <l’1,)\21‘2> = )\72<I‘1,$2>.

Since \g isreal and A\; # A2, we get (z1, z2) = 0.
(V) Let M = sup ¢ x iz <1 [(T(), 2)].
If ||z|| < 1, then
(T(x), )| < T (@)|lll«] <|ITll|=|* <|IT],
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and hence M < ||T.
Now, for every x # 0 we have

)2 = (7 (o) o 117 < Mlel

||

Obviously, this also true for z = 0.
Now, take any z,y € X with ||z|| < 1and ||y|| < 1. Then

(T(z+y)z+y) = (T(x),2) +(T(x),y) + (T(y), =) +(T(y),y)
(T(z—y)z—y) = (T(z),z) = (T(z),y) = (T(y), z) +(T(y),y)
and so
(T(x+y)z+y) —(T(x—y)z—y) =2(T(2),y) + 2(T'(y),z) = 4Re((T(z),y)).
Hence,
[4Re((T(z), y))| < M|z +y|* + Mz —y||* = 2M (||=[* + [|ly[|*) < 4M

and so |Re((T'(z),y))| < M forevery z,y € X with ||z|| < 1and |ly|| < 1.
Thus, if ||z|| < 1and T'(x) # 0, we have

7@ = [Re ({T(@), )] < M

This is also true when T'(z) = 0, and so we have || T|| = sup,¢ x <1 [|T(z)]| < M.
Therefore, ||T'|| = M. O

Example 7.2.1. Let M; : L?([0,1]) — L?([0, 1]) be the multiplication operator determined by the
identity function i¢(z) = x in [0, 1]. Thus, we have M;(f)(z) = i(z)f(x) = zf(x) for every
f € L*([0,1)).

Then M; is linear and bounded, with || V|| = ||i]|eo = 1.

Also, for every f,g € L%(]0, 1]) we have

/ M;(f )d:c—/01$f(:c)g(az)dx:/Olf(x):zg(:p)d$
/ § (@) Mi(g) () do = (. Milg)).

Thus, M; is selfadjoint. We shall find the spectrum of M;.

Let A be an eigenvalue of M;. Then there is f € L%([0,1]), f # 0, so that M;(f)(z) = Af(x),
i.e. so that x f(x) = Af(x) for m-a.e. x € [0, 1]. This implies f(z) = 0 for m-a.e. = € [0, 1] and
we arrive at a contradiction. Therefore, P, (M;) = ().

We see that M; has no eigenvalue, even though M/; is selfadjoint.

Now, let ) be in the residual spectrum of M;. Then R(AI — M;) is not dense in L?([0, 1]), and so
there is g € L([0,1]), g # 0, so that ((\I — M;)(f),g) = 0 for every f € L?([0, 1]). Then

(f, (AT = M;)(9)) = (f, Ag) — (f, Mi(9)) = (\f,9) — (Mi(f), 9) = (A = M;)(f),9) =0

for every f € L?([0,1]), and hence (AI — M;)(g) = 0. This implies (A —
z € [0,1], and so g = 0. We arrive at a contradiction, and so R, (M;) = 0.
Therefore, o(M;) = Cy(M;).

Now, assume that A\ ¢ o(M;). Then A\ — M; is one-to-one in L?([0, 1]) and onto L?([0, 1]), and
(A — M;)~t : L2([0,1]) — L?([0,1]) is bounded. To find the formula of (Al — M;)~!, we see

x)g(z) = 0 for m-a.e.
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that (Al — M;)(f) = g is equivalent to (A — z)f(x) = g(z) for m-a.e. x € [0, 1] and this is
equivalent to ¥ (z) = f(z) for m-a.e. z € [0, 1]. Thus,

(A — M;)"Y(g)(z) = f(_g”)x for m-a.e. z € [0, 1].

The boundedness of (A — M;)~! implies that there is M > 0 so that

b lg(@)P?
o [A—=f?

dz <M/ lg(z)|* dx

for every g € L?(]0,1]). In particular, for g = 1, we get f01 ﬁ dxr < +ooandso A ¢ [0, 1].
Conversely, if A ¢ [0, 1], there is § > 0 so that |\ — z| > § for every = € [0, 1]. Then

Ul
g
/A—x|2 —5/‘9 I de

for every g € L?([0,1]). So (A — M;)~! is bounded in L?([0, 1]) and hence \ ¢ o ().
We conclude that o(M;) = [0, 1].

Spectral theorem for compact selfadjoint operators. Let X be a Hilbert space, and let T' €
K (X) be selfadjoint.
(i) There is an orthonormal basis A of X which consists of eigenvectors of T'.
(ii) If A\, is the corresponding eigenvalue to each a € A, then P,(T) = {\,|a € A}.
(iii) Every A\, # 0 has finite multiplicity. Also, if {\, | a € A} is infinite, then its elements form a
sequence converging to 0.
(iv) If {\a | a € A} is finite, then o(T) = {\q|a € A}. If {\s| a € A} is infinite, then o(T") =
{Aa]a € A} U {0}, and 0 belongs either to P,(T') or to C,(T).
(v) We have

xr = Z(x,a)a, T(x) = Z(w, a)\qa forevery x € X.

acA a€A

(vi) For every \ € p(T) we have

a forevery x € X.

R\ T)(x) = (M =T)~ Z
A

a

Proof. (i) If T' = 0, then T'(x) = 0 = Ox for every x € X. Thus, A = 0 is the only eigenvalue of
T and Xy = X. In this case, every orthonormal basis of X is an orthonormal basis which consists
of eigenvectors of 7.

Now, let T' # 0. Proposition 7.5 implies

sup  [(T'(z),z)| = |T| > 0.
zeX,||z]|<1

So there is a sequence (x,,) in X such that ||z, || < 1 for every n and
(T(xp),xn) — A, where |\ = ||T|.

Proposition 7.5 says that (T'(x,,),z,) € R for every n, and so A € R. Thus, A = ||T|| or A =
=T
Since T is compact, there is a subsequence (zy,, ) of (x,), and a y € X so that

T(xn,) — y.

Now
T 2 T (@n )l 2 ([T (zn ) [z, || 2 KT (@ny), @) | = (A = || T]
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and 50 ||z, || = 1, [[T(xn, )| = T and [ly|[ = [|T[]. Also

”T(x”k) - /\xnkHQ = HT(xnk)HQ - 2)‘< (xnk) xnk> + )‘QHxTLkHZ
S ||TI? =222+ X2 = |T|> - X2 =0.

Since T(acnk) — y, we conclude that Az, — v, and hence T'(y) = A\y. Now we consider
ﬁ ”T” Then T'(z) = Az, and so A is an eigenvalue of 7" with corresponding eigenvector
z, such that || z|| = 1.

Now we consider the collection A of all orthonormal sets in X which consist of eigenvectors of
T'. We just proved that this collection is nonempty, and we consider the order of inclusion among
the elements of A. If Ay is any linearly ordered subcollection of A, then it is easy to show that
Ao = Use Ao A Is an orthonormal set consisting of eigenvectors of 7', and so it is an upper bound
of Ap in A. Now, Zorn’s lemma implies the existence of a maximal orthonormal set A consisting
of eigenvectors of I". We shall show that A is an orthonormal basis of X.

We assume that A is not an orthonormal basis of X, and let Y = clspan(A).

z =

For every aq,...,a, € A with corresonding eigenvalues A1, ..., \,, and every k1, ...,k € F
we have
n n n
T(Z Hkak) = ZT(KkCLk) = Z KpAgap €Y.
k=1 k=1 k=1

If z € Y, then there are x,, so that x,, — x and where each z,, is a linear combination of elements
of A. Then T'(zy,) € Y and T'(z,,) — T'(x). Since Y is closed, we get 7'(z) € Y. We conclude
that 7(Y) C Y. Proposition 7.5 implies T(Y+) C Y+.

If S is the restriction of 7" in Y, then it is clear that S € K (Y ) and that S is selfadjoint. Hence
S has at least one eigenvector y € Y with ||y|| = 1. Then y is also an eigenvector of T', and,
since A C Y, we have that A U {y} is an orthonormal set consisting of eivenvectors of 7', and we
arrive at a contradiction.

Therefore, A is an orthonormal basis of X . Then every € X can be written as

x = Z(w,a)a. (7.5)
acA
Since T is bounded, we get
T(x) =) (z.a)T(a) = ) _(z,a)\ea, (7.6)
acA acA

where ), is the eigenvalue corresponding to the eigenvector a. Similarly, for every A € F we get

M = T)(z) = > (,a)(A = T)(a) = > (x,a)(A = A)a. (7.7)
acA acA
Now takeany A ¢ {\q |a € A}. If (\[=T')(x) = 0, then (7.7) implies ) _ . 4 (x, a)(A—Aq)a = 0.
Hence (x,a) = 0 for every a € A, and from (7.5) we get z = 0. We conclude that the only
eigenvalues of T are the Ay, a € A4, i.e.

Po(T) = {\a]a € AL,

Let Ay C A be the set of all @ € A which correspond to the same eigenvalue A\ of 7. Then
clspan(A)) € X ). On the other hand, if x € X, then proposition 7.5 implies that (z, a) = 0 for
every a € A\ Ay. Then (7.5) implies that z = >, 4 (,a)a and hence z € clspan(A,). We
conclude that Ay is an orthonormal basis of X for every eigenvalue \ of T'.

Now we consider any A\ ¢ cl({\,|a € A}). Then there is 6 > 0 so that [A — \,| > J for every
a € A, and so for every x € X we have

Z /\’2_622|xa 52|]$H2<+oo

aEA a€A
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This implies that the sum _ , 3= )\> a converges in X, and

H Z \— H Z ‘)\ )\ ‘2 = 52 |2 ||2 (7.8)

acA

Now from (7.7) and (7.5) we have

(AI—T)(Z )faic;? a) = Z(m,a}a =z

a€A a acA

for every z € X. Hence A\l — T is onto X and, since it is also one-to-one in X, we find

(z,a)
A=A,

ROT) () =M =T)(x) =)
acA
for every . Now, (7.8) shows that R(\; T) = (A —T') ! is bounded in X, with || R(\; T)|| < 4,
andso A ¢ o (7).
Therefore, o(T") C cl({\q |a € A}). Since, {\,|a € A} C o(T) and o(T') is closed, we get

o(T) = cl({\q | a € A}).

Now, we take any € > 0, and we assume that A contains a sequence (a,,) of distinct eigenvectors
such that |\,,, | > € for every n. If n # m, then by the orthonormality of A we have

IT(an) = T(am)l* = [Aanan = Aapamll® = Panl? + [Aa,l? > 26% > 0.

Thus, there is no convergent subsequence of (7'(a,,)) and this contradicts the compactness of 7.
We conclude that every non-zero eigenvalue of 7" has finite multiplicity. We also conclude that if
{A\4| @ € A} is infinite, then its elements form a sequence converging to 0.

Now there are three cases.

Case 1: {\,|a € A} is finite.

Then clearly cl({\, | a € A}) = {\q|a € A} and hence

o(T)={ a|a€ A} = P,(T).

Case 2: {\,|a € A} is infinite and 0 € {\, |a € A}.
Then, again, cl({\,|a € A}) = {\,|a € A} and hence

o(T) = {\a|a € A} = P,(T).

Case 3: {\,|a € A} is infiniteand 0 ¢ {\, |a € A}.
Then cl({\,|a € A}) = {As|a € A} U{0} and hence

o(T) = {Aala € A} U{0} = P»(T) U{0}.

In this case 0 is not an eigenvalue of 7, i.e. N(7") = {0}, and we shall prove that 0 € C,(T).
Let 0 be in the residual spectrum of 7". Then R(7") is not dense in X and so there is a non-zero
y € X which is orthogonal to R(T'), i.e. such that (T'(z),y) = 0 for every x € X. This implies
(x,T(y)) = 0 for every x € X, and hence T'(y) = 0. Since N(T) = {0}, we arrive at a
contradiction, and we conclude that 0 is in the continuous spectrum of 7.

We can get the same result in a different way.

We take any y € X, and then from (7.5) we have y = > ,(y, a)a. Then for every ¢ > 0 there

is a finite subset A’ of A sothat ||y — >, 4/ (y,a)a| < e. Now wetakex =3 <y)\’5> a. Then

1) = 3 %D 1) = 3 .a)a

acaA’ @ ac A’

and so ||y — T'(x)|| < e. Thus, R(T") is dense in X, and 0 is in the continuous spectrum of 7". [
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Example 7.2.2. We consider theorem 6.5 with the same measure space and p = ¢ = 2.
Let (€2, X, 1) be a o-finite measure space, and the product measure space (€2 x €, 3 X 3, u X ),
and a measurable function K : 2 x 2 — F'. We assume that

) 1/2
(J[ 1K@aPde<nwp) " =1 <+
QxQ
We consider the operator 7' : L?(Q2) — L?() defined for every f € L?(2) by

/K x,y) f(x)du(z) for u-ae. y e Q.

Then T is a compact linear operator, and ||7'|| < M.
We also assume that K (y, z) = K (x,y) for (u x p)-a.e. (z,y) € Q x Q. Then

T(H)a) = [ TN / /Ky ) du(x) ) () du(y)

= [ @) (| Kawaiiduw) dute) = [ 5@ [ Kooabdut) dute)
- [ 1@)( [ Kot du(y))du(x) - [ H@ T @) duo)
= (. 1(9)

for every f, g € L?(Q2) and so T is self-adjoint.

By the spectral theorem, the set of nonzero eigenvalues of 7 is either finite, {\1,...,An}, or
countably infinite, {\, |n € N}. In the last case we have \,, — 0. We consider the two cases
separately.

Case 1: Let {A1,...,An} be the set of nonzero eigenvalues of 7" and let {¢1,...,¢n} be an
orthonormal set of corresponding eigenvectors. Then, by the spectral theorem and since every A,
is real, for p-a.e. y € 2 we have

N

/QK(J:,y)f(:r) du(z) = T(f ZAn £ dnonly) = (1, ZAncbn )

n=1
N

-/ f(x)(; Ann () Gn(3) ) ()
for every f € L%(Q). Therefore
x,y) = Z Antbn () n(y) for p-ae. z,y € Q.

By the orthonormality of {¢1, ..., ¢x} we get successively

/|Kﬂc Y| du(y) ZM I|pn(z)?  for p-ae. z € Q

N
] @R s e = [ ([ E@aR ) dite = 3

n=1
Case 2: Let {\,|n € N} be the set of nonzero eigenvalues of 7" and let {¢, |n € N} be an
orthonormal set of corresponding eigenvectors. Since

//IKwy)l2du( dp(y //QXQ (2,y)> d(p x p)(z,y) < 400,
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we have that [, |K (z,y)|> du(z) < 4oo for p-a.e. y € Q. Then, by the spectral theorem with
f(xz) = K(x,y), we have

[ K@ Pdute) = [ Ke) Koy duto)
Q Q

+o00 +oo
=S MlEC ) o)) = S A /Q K (@, ) én(@) dpi(2) d(y)
n=1 n=1

+00
_ ;)\n /Q K(2,9)én (@) du(@) dn(y)

+00 too
= A Afn(®) 6n(m) = > Al lén ()
n=1 n=1

for p-a.e. y € €. From this we immediately get

J] K@ P = [ ([ K@P )

~+00 +o00
=2 |An!2/ [En (W) daly) =D [Aal*.
n=1 @ n=1

From the same equality we have that, for p-a.e. y € €, the function g = Z;ﬁ'& An On(y) én
belongs to L?(£2) and hence

+oo
[ K@)t dute) = T() = 32 Malf. 62)0nlo) = (fo0)

n=1

+o0 L
- [ 1@ (3 2n0(2) 57 o)
for every f € L%(Q). Therefore

+o00
K(z,y) = Z An®n(x) dn(y) for u-ae. z,y € Q.
n=1

So in any case we get a representation of the kernel K of the integral operator in terms of the
orthonormal set of eigenvectors which correspond to the non-zero eigenvalues of the operator.

Definition. Let X be a Hilbert space, and T € L(X). We say that T is normal if TT* = T*T.
Example 7.2.3. If T is selfadjoint, then 7" is normal.

Example 7.2.4. Let T € L(R?) be given by T'(A1,\2) = (—A2, A1) for every (A1, \2) € R2.
Then it is easy to show that 7% (A1, o) = (A2, — A1) for every (A1, \2) € R2. Thus,

(TT*)(A1,A2) = T(T* (M1, A2)) = T (A2, —A1) = (A1, A2)

for every (A1, \2) € R2. Le. TT* = I, the identity operator. Similarly, 7*T = I, and so T is
normal.
It is also easy to see that 7" has no eigenvalues.

Spectral theorem for compact normal operators. Let X be a Hilbert space over F' = C, and let
T € K(X) be normal.
(i) There is an orthonormal basis A of X which consists of eigenvectors of T'.
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(ii) If A, is the corresponding eigenvalue to each a € A, then P,(T) = {\, | a € A}.
(iii) Every A, # 0 has finite multiplicity. Also, if {\, | a € A} is infinite, then its elements form a
sequence converging to 0.
(iv) If {\a | a € A} is finite, then o(T) = {\s | a € A}. If {\q |a € A} is infinite, then o(T') =
{Aa]a € A} U {0}, and 0 belongs either to P,(T") or to Cy(T).
(v) We have

x = Z(x,a)a, T(z)= Z(x, a)\qa forevery z € X.

acA acA

(vi) For every \ € p(T') we have

R\T)(z) = (M -T) Y(z) = Z )fllcj\) a forevery x € X.
acA a

Proof. We consider the operators M, N € L(X) defined by

T+T* T—-T*
N = .
2 7 27

M =
Then M, N are selfadjoint, and
T=M+iN, T*=M-—iN, MN=NM.

Since 7" is compact, 7™ is also compact, and so M, N are compact.

Then there is an orthonormal basis B of X which consists of eigenvectors of M.

Let X, be the eigenspace corresponding to \, i.e. X = {z € X | M(x) = Az}. Also,let By C B
be the set of all b € B which correspond to the same eigenvalue A\ of M. We know that B, is an
orthonormal basis of X.

Now, if x € X, then

M(N()) = (MN)(z) = (NM)(x) = N(M(x)) = N(Ar) = AN(x),

and hence N(z) € X.

We see that N(X,) C X, and so N is a compact selfadjoint operator on the Hilbert space X.
Hence, there is an orthonormal basis Ay of X which consists of eigenvectors of N. Then, obvi-
ously, Ay consists of eigenvectors of M and N.

Now, we replace the orthonormal basis B) of X by the orthonormal basis Ay of X,. We also
replace B, i.e. the union of B}, by A, i.e. the union of all A). Then it is easy to see that A is an
orthonormal basis of X which consists of eigenvectors of M and N.

If a € A, then M(a) = pa and N(a) = va for some eigenvalues i, v of M, N. Then

T(a) = M(a) +iN(a) = pa +iva = (p + iv)a

and so «a is an eigenvector of T'. Therefore A is an orthonormal basis of X which consists of eigen-
vectors of 7.

The rest of the proof is identical to the proof of the spectral theorem for compact selfadjoint oper-
ators. O
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