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A CLASS OF NON-CONVEX POLYTOPES THAT ADMIT
NO ORTHONORMAL BASIS OF EXPONENTIALS

MIHAIL N. KOLOUNTZAKIS AND MICHAEL PAPADIMITRAKIS

Abstract. A conjecture of Fuglede states that a bounded measurable
set Ω ⊂ Rd, of measure 1, can tile Rd by translations if and only if the

Hilbert space L2(Ω) has an orthonormal basis consisting of exponentials
eλ(x) = exp{2πi〈λ, x〉}. If Ω has the latter property it is called spec-
tral. Let Ω be a polytope in Rd with the following property: there is a
direction ξ ∈ Sd−1 such that, of all the polytope faces perpendicular to
ξ, the total area of the faces pointing in the positive ξ direction is more

than the total area of the faces pointing in the negative ξ direction. It is
almost obvious that such a polytope Ω cannot tile space by translation.
We prove in this paper that such a domain is also not spectral, which

agrees with Fuglede’s conjecture. As a corollary, we obtain a new proof
of the fact that a convex body that is spectral is necessarily symmetric,

in the case where the body is a polytope.

Let Ω be a measurable subset of Rd, which we take for convenience to be
of measure 1. Let also Λ be a discrete subset of Rd. We write

eλ(x) = exp {2πi〈λ, x〉} , (λ, x ∈ Rd),
EΛ = {eλ : λ ∈ Λ} ⊂ L2(Ω).

The inner product and norm on L2(Ω) are

〈f, g〉Ω =
∫

Ω

fg, and ‖f‖2Ω =
∫

Ω

|f |2.

Definition 1. The pair (Ω,Λ) is called a spectral pair if EΛ is an or-
thonormal basis for L2(Ω). A set Ω will be called spectral if there is Λ ⊂ Rd
such that (Ω,Λ) is a spectral pair. The set Λ is then called a spectrum of Ω.

Example. If Qd = (−1/2, 1/2)d is the cube of unit volume in Rd ,then
(Qd,Zd) is a spectral pair (d-dimensional Fourier series).
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We write BR(x) =
{
y ∈ Rd : |x− y| < R

}
.

Definition 2 (Density). The discrete set Λ ⊂ Rd has density ρ, and we
write ρ = dens Λ, if we have

ρ = lim
R→∞

#(Λ ∩BR(x))
|BR(x)|

,

uniformly for all x ∈ Rd.

We define translational tiling for complex-valued functions below.

Definition 3. Let f : Rd → C be measurable and Λ ⊂ Rd be a discrete
set. We say that f tiles with Λ at level w ∈ C, and sometimes write “f + Λ =
wRd”, if

(1)
∑
λ∈Λ

f(x− λ) = w, for almost every (Lebesgue) x ∈ Rd,

with the sum above converging absolutely a.e. If Ω ⊂ Rd is measurable, we
say that Ω + Λ is a tiling when 1Ω + Λ = wRd for some w. If w is not
mentioned it is understood to be equal to 1.

Remark 1. If f ∈ L1(Rd), f ≥ 0, and f + Λ = wRd, then the set Λ has
density

dens Λ =
w∫
f
.

The following conjecture is still unresolved in all dimensions and in both
directions.

Conjecture (Fuglede [F74]). If Ω ⊂ Rd is bounded and has Lebesgue
measure 1 then L2(Ω) has an orthonormal basis of exponentials if and only if
there exists Λ ⊂ Rd such that Ω + Λ = R

d is a tiling.

Fuglede’s conjecture has been confirmed in several cases.
(1) Fuglede [F74] shows that if Ω tiles with Λ being a lattice then it is

spectral with the dual lattice Λ∗ being a spectrum. Conversely, if Ω
has a lattice Λ as a spectrum then it tiles by the dual lattice Λ∗.

(2) If Ω is a convex non-symmetric domain (bounded, open set) then, as
the first author of the present paper has proved [K00], it cannot be
spectral. It has long been known that convex domains which tile by
translation must be symmetric.

(3) When Ω is a smooth convex domain it is clear that it admits no
translational tilings. Iosevich, Katz and Tao [IKT] have shown that
it is also not spectral.
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(4) There has also been significant progress in dimension 1 (the conjec-
ture is still open there as well) by  Laba [La], [Lb]. For example, the
conjecture has been proved in dimension 1 if the domain Ω is the
union of two intervals.

In this paper we describe a wide class of, generally non-convex, polytopes
for which Fuglede’s conjecture holds.

Theorem 1. Suppose Ω is a polytope in Rd with the following property:
there is a direction ξ ∈ Sd−1 such that∑

i

σ∗(Ωi) 6= 0.

Here the finite sum is extended over all faces Ωi of Ω which are orthogonal
to ξ and σ∗(Ωi) = ±σ(Ωi), where σ(Ωi) is the surface measure of Ωi and the
± sign depends upon whether the outward unit normal vector to Ωi is in the
same or opposite direction with ξ.

Then Ω is not spectral.

Such polytopes cannot tile space by translation for the following, intuitively
clear, reason. In any conceivable such tiling the set of positive-looking faces
perpendicular to ξ must be countered by an equal area of negatively-looking
ξ-faces, which is impossible because there is more (say) area of the former
than the latter.

The following corollary is a special case of the result in [K00], which says
that all spectral convex domains are symmetric.

Corollary 1. If Ω is a spectral convex polytope then it is necessarily
symmetric.

Proof. If Ω is spectral, then by Theorem 1 the area measure of Ω is sym-
metric. (See [S] for the definition of the area measure.) This implies that
Ω is itself symmetric, as the area measure determines a convex body up to
translation [S, Th. 4.3.1]. Therefore Ω and −Ω, which have the same surface
measure, are translates of each other. �

It has been observed in recent work on this problem (see, e.g., [K00]) that
a domain (of volume 1) is spectral with spectrum Λ if and only if |χ̂Ω|2 + Λ
is a tiling of Euclidean space at level 1. By Remark 1 this implies that Λ has
density 1.

By the orthogonality of eλ and eµ for any two different λ and µ in Λ, it
follows that

(2) χ̂Ω(λ− µ) = 0.

It is only this property, and the fact that any spectrum of Ω must have density
1, that are used in the proof.
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Proof of Theorem 1. The quantities P,Q,N, ` and K, which are introduced
in the proof below, will depend only on the domain Ω. (The letter K will
denote several different constants.)

Suppose that Λ is a spectrum of Ω. Define the Fourier transform of χΩ as

χ̂Ω(η) =
∫

Ω

e−2πi〈x,η〉 dx.

By an easy application of the divergence theorem we get

χ̂Ω(η) = − 1
i|η|

∫
∂Ω

e−2πi〈x,η〉
〈
η

|η|
, ν(x)

〉
dσ(x), η 6= 0,

where ν(x) = (ν1(x), . . . , νd(x)) is the outward unit normal vector to ∂Ω at
x ∈ ∂Ω and dσ is the surface measure on ∂Ω.

From the last formula we easily see that for some K ≥ 1

(3) |∇χ̂Ω(η)| ≤ K

|η|
, |η| ≥ 1.

Without loss of generality we assume that ξ = (0, . . . , 0, 1). Hence

χ̂Ω(tξ) = − 1
it

∫
∂Ω

e−2πitxdνd(x) dσ(x).

Now it is easy to see that each face of the polytope other than the faces Ωi
contributes O(t−2) to χ̂Ω(tξ) as t→∞. Therefore

(4)

∣∣∣∣∣χ̂Ω(tξ) +
1
it

∑
i

e−2πiλitσ∗(Ωi)

∣∣∣∣∣ ≤ K

t2
, t ≥ 1,

where λi is the value of xd for x = (x1, . . . , xd) ∈ Ωi.
Now define

f(t) =
∑
i

σ∗(Ωi)e−2πiλit, t ∈ R.

f is a finite trigonometric sum and has the following properties:

(i) f is an almost-periodic function.
(ii) f(0) 6= 0 by assumption. Without loss of generality assume f(0) = 1.
(iii) |f ′(t)| ≤ K, for every t ∈ R.

By (i), for every ε > 0 there exists an ` > 0 such that every interval of R of
length ` contains a translation number τ of f belonging to ε:

(5) sup
t
|f(t+ τ)− f(t)| ≤ ε

(see [B32]).
Fix ε > 0 to be determined later (ε = 1/6 will do) and the corresponding `.

Fix the partition of R in consecutive intervals of length `, one of them being
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[0, `]. Divide each of these `-intervals into N consecutive equal intervals of
length `/N , where

N >
6K`
√
d− 1
ε

.

In each `-interval there is at least one (`/N)-interval containing a number τ
satisfying (5). For example, in [0, `] we may take τ = 0 and the corresponding
(`/N)-interval to be [0, `/N ].

Define the set L to be the union of all these (`/N)-intervals in R. Then
Lξ is a copy of L on the xd-axis. Construct M by translating copies of the
cube [0, `/N ]d along the xd-axis so that they have their xd-edges on the `/N -
intervals of Lξ.

The point now is that there can be no two elements λ of Λ in the same
translate of M , at distance D > 2K/ε from each other. Suppose, on the
contrary, that

λ1, λ2 ∈ Λ, |λ1 − λ2| ≥ D, λ1, λ2 ∈M + η.

Then λ1 = t1ξ + η + η1, λ2 = t2ξ + η + η2, for some t1, t2 ∈ L, η1, η2 ∈ Rd
with

|η1|, |η2| <
`

N

√
d− 1 <

ε

6K
.

Hence, λ1 − λ2 = (t1 − t2)ξ + η1 − η2, and an application of the mean value
theorem together with (2) and (3) gives

|χ̂Ω((t1 − t2)ξ)| ≤ 3K
|t1 − t2|

|η1 − η2|.

From (4) we get

|f(t1 − t2)| ≤ 3K|η1 − η2|+
K

|t1 − t2|
< 2ε.

Now, since t1, t2 ∈ L, there exist τ1, τ2 satisfying (5) so that

|τ1 − t1|, |τ2 − t2| <
`

N

and hence (by (iii))

|f(τ1 − τ2)− f(τ1 − t2)|, |f(τ1 − t2)− f(t1 − t2)| < K
`

N
< ε.

Therefore

2ε > |f(t1 − t2)|
≥ |f(0)| − |f(0)− f(−τ2)| − |f(−τ2)− f(τ1 − τ2)|

−|f(τ1 − τ2)− f(τ1 − t2)| − |f(τ1 − t2)− f(t1 − t2)|
≥ 1− ε− ε− ε− ε.

It suffices to take ε = 1/6 for a contradiction.
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Therefore, as the distance between any two λ’s is bounded below by the
modulus of the zero of χ̂Ω that is nearest to the origin, there exists a natural
number P so that every translate of M contains at most P elements of Λ.
Hence there exists a natural number Q (we may take Q = 2NP ) so that
every translate of

Rξ + [0, `/N ]d

contains at most Q elements of Λ.
It follows that Λ cannot have positive density, a contradiction as any spec-

trum of Ω (which has volume 1) must have density equal to 1. �
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