\( \newcommand{\Ds}{\displaystyle} \newcommand{\PP}{{\mathbb P}} \newcommand{\RR}{{\mathbb R}} \newcommand{\KK}{{\mathbb K}} \newcommand{\CC}{{\mathbb C}} \newcommand{\ZZ}{{\mathbb Z}} \newcommand{\NN}{{\mathbb N}} \newcommand{\TT}{{\mathbb T}} \newcommand{\QQ}{{\mathbb Q}} \newcommand{\Abs}[1]{{\left|{#1}\right|}} \newcommand{\Floor}[1]{{\left\lfloor{#1}\right\rfloor}} \newcommand{\Ceil}[1]{{\left\lceil{#1}\right\rceil}} \newcommand{\sgn}{{\rm sgn\,}} \newcommand{\Set}[1]{{\left\{{#1}\right\}}} \newcommand{\Norm}[1]{{\left\|{#1}\right\|}} \newcommand{\Prob}[1]{{{{\mathbb P}}\left[{#1}\right]}} \newcommand{\Mean}[1]{{{{\mathbb E}}\left[{#1}\right]}} \newcommand{\cis}{{\rm cis}\,} \renewcommand{\Re}{{\rm Re\,}} \renewcommand{\Im}{{\rm Im\,}} \renewcommand{\arg}{{\rm arg\,}} \renewcommand{\Arg}{{\rm Arg\,}} \newcommand{\ft}[1]{\widehat{#1}} \newcommand{\FT}[1]{\left(#1\right)^\wedge} \newcommand{\Lone}[1]{{\left\|{#1}\right\|_{1}}} \newcommand{\Linf}[1]{{\left\|{#1}\right\|_\infty}} \newcommand{\inner}[2]{{\langle #1, #2 \rangle}} \newcommand{\Inner}[2]{{\left\langle #1, #2 \right\rangle}} \newcommand{\nint}{{\frac{1}{2\pi}\int_0^{2\pi}}} \newcommand{\One}[1]{{\bf 1}\left(#1\right)} \)

Analysis Seminar in Crete (2024-25)

Σεμιναριο Αναλυσης

http://www.math.uoc.gr/analysis-seminar


    Department of Mathematics and Applied Math / Previous years: 2023-24/ 2022-23/ 2021-22/ 2020-21/ 2019-20/ 2018-19/ 2017-18/ 2016-17/ 2015-16/ 2014-15/ 2013-14/ 2012-13/ 2011-12/ 2010-11/ 2009-10/ 2008-09/ 2007-08/ 2006-07/ 2005-06/ 2004-05 / Summer 2004 / 2003-04 / 2002-03 / 2001-02 / 2000-01 / 1999-00

    Analysis Seminars in the World / Analysis seminars in Greece

In chronological ordering


Thu, 03 Oct 2024, 11:15, Room: A303
Speaker: Mate Matolcsi (Renyi Institute (Budapest))

The fractional chromatic number of the plane is at least 4

 

Abstract: We prove that the fractional chromatic number of the unit distance graph of the Euclidean plane is greater than or equal to 4. This improves a series of earlier lower bounds edging closer to 4 over the past decades. A fundamental ingredient of the proof is the notion of geometric fractional chromatic number introduced recently in connection with the density of planar 1-avoiding sets. In the proof we also exploit the amenability of the group of Euclidean transformations in dimension 2.

 


Thu, 24 Oct 2024, 11:15, Room: A303
Speaker: Tomasz Tkocz (Carnegie Mellon University)

Two extensions of Webb’s simplex slicing

 

Abstract: I shall present two refinements of Webb’s sharp upper bound on the volume of central slices of the regular simplex: stability as well as sharp bounds on $L_p$ norms.

 


Thu, 31 Oct 2024, 11:15, Room: Α303
Speaker: Natalia Tziotziou (NTUA-SEMFE)

Inequalities for sections and projections of log-concave functions

 

Abstract: We provide extensions of geometric inequalities about sections and projections of convex bodies to the setting of integrable log-concave functions. Namely, we consider suitable generalizations of the affine and dual affine quermassintegrals of a log-concave function f and obtain upper and lower estimates for them in terms of the integral $\|f\|_1$ of $f$, we give estimates for sections and projections of log-concave functions in the spirit of the lower dimensional Busemann-Petty and Shephard problem, and we extend to log-concave functions the affirmative answer to a variant of the Busemann-Petty and Shephard problems, proposed by V. Milman.

 


All seminars

Seminar organizer for 2024-25: Silouanos Brazitikos

Page maintained by Mihalis Kolountzakis.