EFFECTIVE DIMENSION BOUNDS FOR THE MAXIMAL FUNCTION ALONG A POLYNOMIAL CURVE

IOANNIS PARISSIS

ABSTRACT. Let $d\mu$ be a probability measure on \mathbb{R}^d and $d\mu_r$ be appropriate dilations of the measure $d\mu$. The maximal operator associated with the measure $d\mu$ is then defined as

$$\mathcal{M}(f)(x) = \sup_{r>0} (|f| * d\mu_r)(x)$$

The usual maximal operators can be put in this general context. I will discuss an approach in proving L^2 bounds for \mathcal{M} without using the endpoint weak L^1 bounds and interpolation (initiated by Stein, Wainger, Bourgain and others). I will then study in more detail the maximal function along the polynomial curve $(\gamma_1 t, \ldots, \gamma_d t^d)$:

$$\mathcal{M}(f)(x) = \sup_{r>0} \frac{1}{2r} \int_{|t| \leq r} |f(x_1 - \gamma_1 t, \dots, x_d - \gamma_d t^d)| dt,$$

and outline the proof of the following estimate:

$$\|\mathcal{M}f\|_{L^2(\mathbb{R}^d)} \le c \log d \|f\|_{L^2(\mathbb{R}^d)},$$

where c > 0 is an absolute constant. The proof follows the ideas of Bourgain. The new element is a construction of an appropriate semi-group of operators which is compatible with the anisotropic structure implied by the curve $(\gamma_1 t, ..., \gamma_d t^d)$.

E-mail address: ioannis.parissis@gmail.com

Institutionen för Matematik, Kungliga Tekniska Högskolan, SE 100 44, Stockholm, Sweden.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 42B20, 42B25 Secondary: 42B15, 43A15.

Key words and phrases. Maximal function, Polynomial curve, parabolic dilations, semigroup of operators.