Το Τμήμα Μαθηματικών του Πανεπιστημίου Κρήτης οργανώνει το Σαββατοκύριακο 25-26 Μαΐου 2002 στο Ηράκλειο ένα διήμερο ομιλιών στην Αρμονική και Μιγαδική ανάλυση.
Καλούνται να συμμετάσχουν, είτε δίνοντας μια ομιλία πάνω στην έρευνά τους είτε απλά ως ακροατές, όσοι εργάζονται ερευνητικά στον ευρύτερο τομέα της Αρμονικής και Μιγαδικής Ανάλυσης.
Θα προσπαθήσουμε να καλύψουμε τουλάχιστον τα τοπικά έξοδα όσο γίνεται περισσοτέρων ομιλητών.
Δηλώστε έγκαιρα συμμετοχή στέλνοντας e-mail στο
ή με FAX (υπ' όψιν Μ. Κολουντζάκη στο 0810393881) ή ταχυδρομείο.
Μανόλης Κατσοπρινάκης, Αναπληρωτής Καθηγητής, Πανεπ. Κρήτης
Μιχάλης Κολουντζάκης, Αναπληρωτής Καθηγητής, Πανεπ. Κρήτης
Βασίλης Νεστορίδης, Καθηγητής, Πανεπ. Αθηνών
Μιχάλης Παπαδημητράκης, Αναπληρωτής Καθηγητής, Πανεπ. Κρήτης
We shall explain the method of Bloch wave expansions and how it can be used to study the asymptotic behavior of convolution powers of densities on Lie groups.
We establish the notion of multiresolution analysis (MRA) on the space of N-periodic sequences, where and we give sufficient conditions for the existence of sampling Theorems on MRA subspaces; in particular we present several examples of sampling formulas of Haar and Shannon-type. Each sampling expansion is an MRA projection, so we estimate its Truncation error.
We will prove that there exist functions which are universal with respect to overconvergence, to derivatives, to antiderivatives and to translations and they realise approximations simultaneously with the same approximation sequence. Our result is generic.
Let For denote by the complex hyperplane in orthogonal to The dimensional complex volume of is minimal if for where and maximal, if has only one non-zero coordinate,
We study the following question posed by Turan. Suppose is a convex body in Euclidean space which is symmetric with respect to the origin. Of all positive definite functions supported in , and with value at the origin, which one has the largest integral? It is probably the case that the extremal function is the indicator of the half-body convolved with itself and properly scaled, but this has been proved only for a small class of domains so far. We add to this class of known Turan domains the class of all spectral convex domains. These are all convex domains which have an orthogonal basis of exponentials , . As a corollary we obtain that all convex domains which tile space by translation are Turan domains.
We also give a new proof that the Euclidean ball is a Turan domain.
Let be a complete, noncompact Riemannian manifold. We assume that satisfies the doubling volume property i.e.
for all and , and that the Poincare inequality
holds on .
If is the Laplace-Beltrami operator, we show that its imaginary powers , , are bounded on the Hardy space .
Let be a compact subset of the unit disk and let be the circular projection of on the radius . We will prove the following inequalities for the harmonic measure:
1. If and , then
2. If and , then
These results extend the classical Beurling-Nevanlinna projection theorem.
Let be a simply connected domain, and holomorphic in . We denote by . Let be a compact set such that is connected and (or , respectively). Let be a polynomial. We are looking for a sequence such that:
(i) For every compact set with connected such that (or , respectively) and every we have:
and
(ii)
In the case , , we have a generic property in . In the case , we have a generic property in a natural subspace of provided that is connected. It is not possible to have and simultaneously.
We point out that certain classical matrices when acting on spaces of analytic functions, can be written in terms of composition operators. These are the Cesàro and Hilbert matrices,
and certain Hausdorff of the form
where
with the forward difference operator on scalar sequences, and a moment sequence i.e.
where is a positive finite Borel measure on .
Let be a simply-connected domain in the complex plane bounded by a closed Jordan curve , and let , , be polynomials of respective degrees that are orthonormal in with respect to the area measure (the so-called Bergman polynomials). Let be a conformal map of onto the unit disk. We characterize in terms of the asymptotic behavior of the zeros of 's the case when has a singularity on . To investigate the opposite case we consider a special class of lens-shaped domains that are bounded by two orthogonal circular arcs. Utilizing the theory of logarithmic potentials with external fields, we show that the limiting distribution of the zeros of the 's for such lens domains is supported on a Jordan arc joining the two vertices of . We determine this arc along with the distribution function.
Let be a bounded domain in , , containing the origin. We consider the Hardy inequality
We show that this can be repeatedly improved by adding specific lower order terms in the right hand side, thus obtaining a ``series expansion'' of Hardy's inequality. We also give various extensions.
Οι ομιλίες θα γίνουν στην αίθουσα Λ 221 του προκατασκευσμένου κτιρίου του Πανεπιστημίου Κρήτης στο συγκρότημα της Λεωφ. Κνωσού. Η αίθουσα είναι στη βορειότερη πτέρυγα του κτιρίου, πάνω από το κυλικείο.
Ώρα | Ομιλητής | Τίτλος |
Σάββατο | ||
10:00-10:45 | Νίκος Ατρέας | Sampling in multiresolution analysis subspaces of periodic sequences |
11:00-11:45 | Μαρίζα Ζυμωνοπούλου | Extremal sections of complex -balls, |
12:00-12:45 | Νίκος Στυλιανόπυλος | Zero Distribution of Bergman Orthogonal Polynomials for Certain Planar Domains |
16:00-16:45 | Βάγια Βλάχου | Identical approximative sequences for various notions of universality |
17:00-17:45 | Βασίλης Νεστορίδης | Generic approximation of all orders derivatives by Taylor series |
18:15-19:00 | Δημήτρης Μπετσάκος | Inequalities for harmonic measure in the unit disk |
19:15-20:00 | Στάθης Φίλιππας | Improved Hardy inequalities |
Κυριακή | ||
10:00-10:45 | Γιώργος Αλεξόπουλος | The asymptotic behavior of convolution powers on Lie groups |
11:00-11:45 | Μιχάλης Μαριάς | -boundedness of imaginary powers of the Laplacian on Riemannian manifolds |
12:15-13:00 | Μιχάλης Κολουντζάκης | On a problem of Turan about positive definite functions |