$$\newcommand{\Ds}{\displaystyle} \newcommand{\PP}{{\mathbb P}} \newcommand{\RR}{{\mathbb R}} \newcommand{\KK}{{\mathbb K}} \newcommand{\CC}{{\mathbb C}} \newcommand{\ZZ}{{\mathbb Z}} \newcommand{\NN}{{\mathbb N}} \newcommand{\TT}{{\mathbb T}} \newcommand{\QQ}{{\mathbb Q}} \newcommand{\Abs}{{\left|{#1}\right|}} \newcommand{\Floor}{{\left\lfloor{#1}\right\rfloor}} \newcommand{\Ceil}{{\left\lceil{#1}\right\rceil}} \newcommand{\sgn}{{\rm sgn\,}} \newcommand{\Set}{{\left\{{#1}\right\}}} \newcommand{\Norm}{{\left\|{#1}\right\|}} \newcommand{\Prob}{{{{\mathbb P}}\left[{#1}\right]}} \newcommand{\Mean}{{{{\mathbb E}}\left[{#1}\right]}} \newcommand{\cis}{{\rm cis}\,} \renewcommand{\Re}{{\rm Re\,}} \renewcommand{\Im}{{\rm Im\,}} \renewcommand{\arg}{{\rm arg\,}} \renewcommand{\Arg}{{\rm Arg\,}} \newcommand{\ft}{\widehat{#1}} \newcommand{\FT}{\left(#1\right)^\wedge} \newcommand{\Lone}{{\left\|{#1}\right\|_{1}}} \newcommand{\Linf}{{\left\|{#1}\right\|_\infty}} \newcommand{\inner}{{\langle #1, #2 \rangle}} \newcommand{\Inner}{{\left\langle #1, #2 \right\rangle}} \newcommand{\nint}{{\frac{1}{2\pi}\int_0^{2\pi}}} \newcommand{\One}{{\bf 1}\left(#1\right)}$$
 Analysis Seminar in Crete (2022-23)

Σεμιναριο Αναλυσης

In chronological ordering

9/22/2022, 11:00, Room: A303
Speaker: Andreas Koutsogiannis ( Aristotle University of Thessaloniki)

Joint ergodicity for functions of polynomial degree

Abstract: In this talk we will deal with multiple ergodic averages having iterates a common integer-valued sequence that comes from appropriate classes of functions. In particular, we are dealing with the combination of a Hardy, a tempered, and a polynomial function satisfying some growth-rate restrictions to avoid local obstructions. Joint work with S. Donoso and W. Sun.

9/29/2022, 11:00, Room: A303
Speaker: Giorgos Chasapis (University of Crete)

On a Rademacher-Gaussian tail comparison

Abstract: Let $\varepsilon_1,\varepsilon_2,\ldots$ be independent Rademacher random variables and $g_1,g_2,\ldots$ be independent standard Gaussian random variables. Pinelis has proved that there is an absolute constant $C>0$ such that for every $n\in\mathbb{N}$, real numbers $v_1,\ldots,v_n$ and any $t>0$, $$\mathbb{P}\left(\left|\sum_{j=1}^n v_j\varepsilon_j\right|\gtrapprox t\right)\lessapprox C\cdot \mathbb{P}\left(\left|\sum_{j=1}^n v_jg_j\right|\gtrapprox t\right).$$ We extend this Rademacher-Gaussian tail comparison to the case of complex coefficients and discuss related open problems.

Based on joint work with R. Liu and T. Tkocz.

All seminars

Seminar organizer for 2022-23: Silouanos Brazitikos

Page maintained by Mihalis Kolountzakis.